
J2UL-1907-02ENZ0(01)
February 2020

FUJITSU Software

FUJITSU
C-SSL II User's Guide

ii

Preface
This manual describes the functions and use of the C Scientific Subroutine Library II (C-SSL II). C-SSL II is intended to
be used on various systems from personal computers to vector supercomputers. The interface between the user's program
and the C-SSL II library is the same regardless of system type, and therefore this manual can be used for all systems
where the C-SSL II library is in use. Note that some of the C-SSL II routines may be unavailable or restricted on certain
systems due to hardware restrictions.

When using the C-SSL II for the first time, the user should read the Introduction first.

The contents of the C-SSL II may be amended to keep up with the latest technology. That is, if new, revised or updated
routines include or surpass the functionality of the current routines, then the current routines may then be deleted from the
library.

Export Controls
Exportation/release of this document may require necessary procedures in accordance with the regulations of your
resident country and/or US export control laws.

Date of Publication and Version
Version Manual code

June 2016, 11th Version J2UL-1907-02ENZ0(00)
September 2015, 10th Version J2UL-1907-01ENZ0(01)
October 2014, 9th Version J2UL-1907-01ENZ0(00)
June 2013, 8th Version ―

March 2013, 7th Version ―
March 2006, 6th Version ―
December 2002, 5th Version ―
January 2001, 4th Version ―
September 1999, 3rd Version ―
January 1999, 2nd Version ―
December 1997, 1st Version ―

Copyright
Copyright FUJITSU LIMITED 1997-2020

February 2020, Version 11.1 J2UL-1907-02ENZ0(01)

iii

Update History

Changes Location Version
The following routine was added.
• c_dvcft3

Tables of routines,
Transforms, Description of the
C-SSL II Routines

7th Version

A note related to the Neumann preconditioner is appended. c_dvcgd, c_dvcge 8th Version
Rework format Cover, Preface 9th Version
A note related to the work area w is appended. c_dvcfm1, c_dvcft3 10th Version
A description of isw is modified. c_dvcpf1 11th Version

• All rights reserved.
• The information in this manual is subject to change without notice.

Rework format Cover, Preface 12th Version

 v

Acknowledgements
The SSL II library represents the work of many people over many years. Some of the people and organizations who have

contributed to this work are:

People

Masatsugu Tanaka

Ichizo Ninomiya

Tatsuo Torii

Takemitsu Hasegawa

Kazuo Hatano

Yasuyo Hatano

Toshio Yoshida

Kaoru Tone

Takashi Kobayashi

Toshio Hosono

Richard Peirce Brent

Andrew James Cleary

Murray Leslie Dow

Markus Hegland

Judith Helen Jenkinson

Margaret Helen Kahn

Zbigniew Leyk

David John Miron

Michael Robert Osborne

Peter Frederick Price

Stephen Gwyn Roberts

David Barry Singleton

David Edward Stewart

Christopher Robert Dum

Lutz Grosz

David Lawrence Harrar II

Jeoffrey Keating

Gavin John Mercer

Ole Møller Nielsen

Organizations

Computation Centre, Hokkaido University

Computation Centre, Nagoya University

Computation Centre, Kyoto University

Computation Centre, Kyusyu University

Japan Atomic Energy Research Institute

Austrailian National University

 vi

The C-SSL II library was based on the SSL II, and developed jointly with fecit (Fujitsu European Centre for Information

Technology Ltd).

 vii

How to use this manual
It is strongly recommended that the Introduction is read carefully by first time users of the C-SSL II, even if they are

familiar with the Fortran SSL II. The Introduction provides:

an overview of the library,

 the library design,

 information on using the library,

 an annotated sample calling program,

 the array storage formats employed,

 an annotated example of what is contained in each routine description.

The Selection of routines chapter gives an overview of the functionality covered by the library and allows the user to

select an appropriate routine for his/her own calculation. Each major section of the library, e.g. linear algebra, is covered

separately to allow users to locate the relevant section more quickly.

After the Selection of routines chapter are Tables of routines, which contain summary information for every routine in the

library, with cross references to the detailed routine desciptions. This is intended to allow experienced users to quickly

locate the routine they require. The routines are listed by section and then by generality, e.g. general solution routines are

listed before routines for more specific cases.

The bulk of the manual contains the routine descriptions. The routine descriptions are arranged in alphabetical order. Each

description contains an overview, argument descriptions, sample calling program and important information on how to

use each routine.

Detailed descriptions of the underlying numerical methods can be found in the manuals for the Fortran SSL II library and

in the references specified in the Bibliography.

Further sources of information

There are three different manuals that describe underlying Fortran routines. These are:

1. SSL II User's Guide (Code 99SP4020E-1).

2. SSL II Extended Capabilities User's Guide (Code 99SP4070E-2).

3. SSL II Extended Capabilities User's Guide II.

There are extensive further references provided in the Bibliography.

Typographic conventions

Courier and Times fonts are used as follows:

 Courier regular font - used for routine names, arguments, program objects, such as arrays and

code.

 Times regular font - standard font for text.

 Times italic font - emphasis, book titles, manual section references, e.g. See Comments on use , components

of matrix and vector objects, e.g. ija .

 Times bold font - Whole matrix and vector objects, e.g. bAx , as well as section titles.

 viii

Mathematical conventions

Throughout this manual, the distinction is made between matrices and arrays.

 Matrices and vectors are mathematical objects that are indexed from one, so the first element of a matrix A

is 11a .

 2-D and 1-D arrays are C objects indexed from 0, so that the first element of 2-D array a is a[0][0].

When used in mathematical expressions, i is usually used to denote the imaginary part of a complex number, for example

in z = 5 + i10, 1i .

The modulus function || x is used to denote absolute value, including complex absolute value. Unless otherwise

delimited, norms such as x are the 2-norm (so xxx T).

 ix

Tables of routines

Linear algebra

1. Storage mode conversion of matrices

Routine name Description Page

c_dcgsm Storage format conversion of matrices (real standard format to symmetric format). 279

c_dcsgm Storage format conversion of matrices (real symmetric format to standard format). 314

c_dcgsbm Storage format conversion of matrices (standard format to symmetric band format) 276

c_dcsbsm Storage format conversion of matrices (symmetric band format to symmetric format). 312

c_dcsbgm Storage format conversion of matrices (symmetric band format to standard format). 310

c_dcssbm Storage format conversion of matrices (symmetric format to symmetric band format). 317

2. Matrix manipulation

Routine name Description Page

c_daggm Addition of two matrices (real + real). 98

c_dsggm Subtraction of two matrices (real - real). 522

c_dvmggm Multiplication of two matrices (real by real). 693

c_dmav Multiplication of a real matrix by a real vector. 446

c_dmcv Multiplication of a complex matrix by a complex vector. 448

c_dvmvsd Multiplication of a real sparse matrix by a real vector (diagonal storage format). 707

c_dvmvse Multiplication of a real sparse matrix by a real vector (ELLPACK storage format). 709

c_dmsgm Multiplication of two matrices (symmetric by general). 463

c_dassm Addition of two matrices (symmetric + symmetric). 138

c_dsssm Subtraction of two matrices (symmetric - symmetric). 535

c_dmssm Multiplication of two matrices (symmetric by symmetric). 465

c_dmgsm Multiplication of two matrices (general by symmetric). 453

c_dmsv Multiplication of a symmetric matrix and a vector. 467

c_dmsbv Multiplication of a symmetric band matrix by a vector. 461

c_dvmbv Multiplication of a band matrix by a vector. 680

3. Linear equations drivers

Routine name Description Page

c_dvlax Solution of a system of linear equations with a real matrix (blocking LU-decomposition

method).

645

c_dlcx Solution of a system of linear equations with a complex matrix (Crout’s method). 412

c_dlsix Solution of a system of linear equations with an indefinite symmetric matrix (block diagonal

pivoting method).

434

c_dvlsx Solution of a system of linear equations with a symmetric positive definite matrix (modified

Cholesky’s method).

661

 x

Routine name Description Page

c_dvlbx Solution of a system of linear equations with a band matrix (Gaussian elimination). 648

c_dvlspx Solution of a system of linear equations with a symmetric positive definite matrix (blocked

Cholesky decomposition method).

658

c_dvlsbx Solution of a system of linear equations with a symmetric positive definite band matrix

(modified Cholesky decomposition).

655

c_dlsbix Solution of a system of linear equations with an indefinite symmetric band matrix (block

diagonal pivoting method).

431

c_dlstx Solution of a system of linear equations with a symmetric positive definite tridiagonal matrix

(modified Cholesky’s method).

437

c_dltx Solution of a system of linear equations with a tridiagonal matrix (Gaussian elimination

method).

440

c_dvcgd Solution of a system of linear equations with a symmetric positive definite sparse matrix

(preconditioned CG method, diagonal storage format).

608

c_dvcge Solution of a system of linear equations with a symmetric positive definite sparse matrix

(preconditioned CG method, ELLPACK storage format).

612

c_dvtfqd Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix

(TFQMR method, diagonal storage format).

770

c_dvtfqe Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix

(TFQMR method, ELLPACK storage format).

773

c_dvqmrd Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix

(QMR method, diagonal storage format).

711

c_dvqmre Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix

(QMR method, ELLPACK storage format).

714

c_dvcrd Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix

(MGCR method, diagonal storage format).

627

c_dvcre Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix

(MGCR method, ELLPACK storage format).

630

c_dvbcsd Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix

(BICGSTAB(l) method, diagonal storage format).

569

c_dvbcse Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix

(BICGSTAB(l) method, ELLPACK storage format).

573

c_dvltqr Solution of a system of linear equations with a tridiagonal matrix (QR factorization). 664

c_dvltx Solution of a system of linear equations with a tridiagonal matrix (cyclic reduction method). 666

c_dvltx1 Solution of a system of linear equations with a constant-tridiagonal matrix (Dirichlet type and

cyclic reduction method).

669

c_dvltx2 Solution of a system of linear equations with a constant-tridiagonal matrix (Neumann type

and cyclic reduction method).

672

c_dvltx3 Solution of a system of linear equations with a constant almost tridiagonal matrix (periodic

type and cyclic reduction method).

675

4. Matrix inversion

Routine name Description Page

c_dvluiv The inverse of a real matrix decomposed into L and U factors. 678

c_dcluiv The inverse of a complex matrix decomposed into L and U factors. 297

 xi

Routine name Description Page

c_dvldiv The inverse of a positive definite matrix decomposed into LDL T form. 651

5. Decomposition of matrices

Routine name Description Page

c_dvalu LU-decomposition of a real matrix (blocking LU-decomposition method). 566

c_dclu LU-decomposition of a complex matrix (Crout’s method). 294

c_dsmdm MDM T - decomposition of an indefinite symmetric matrix (block diagonal pivoting method). 528

c_dvsldl LDL T decomposition of a symmetric positive definite matrix (modified Cholesky’s method). 754

c_dvblu LU – decomposition of a band matrix (Gaussian elimination). 583

c_dsbmdm MDM T - decomposition of an indefinite symmetric band matrix (block diagonal pivoting

method).

514

c_dvspll LLT decomposition of a symmetric positive definite matrix (blocked Cholesky decomposition

method).

757

c_dvbldl LDL T decomposition of a symmetric positive definite band matrix (modified Cholesky’s

method).

577

6. Solution of decomposed systems

Routine name Description Page

c_dlux Solution of a system of linear equations with a real matrix in LU-decomposed form. 443

c_dclux Solution of a system of linear equations with a complex matrix in LU-decomposed form. 300

c_dmdmx Solution of a system of linear equations with an indefinite symmetric matrix in MDM T -

decomposed form.

450

c_dvsplx Solution of a system of linear equations with LLT -decomposed positive definite matrix. 760

c_dvldlx Solution of a system of linear equations with a symmetric positive definite matrix in LDL T -

decomposed form.

653

c_dvblux Solution of a system of linear equations with LU - decomposed band matrix. 586

c_dbmdmx Solution of a system of linear equations with an indefinite symmetric band matrix in

MDM T - decomposed form.

210

c_dvbldx Solution of a system of linear equations with a symmetric positive definite band matrix in

LDL T - decomposed form.

580

7. Least squares solution

Routine name Description Page

c_dlaxl Least squares solution with a real matrix (Householder transformation). 406

c_dlaxlm Least squares minimal norm solution with a real matrix (singular value decomposition

method).

409

c_dginv Generalized inverse of a real matrix (singular value decomposition method). 359

c_dasvd1 Singular value decomposition of a real matrix (Householder and QR methods). 140

 xii

Eigenvalues and eigenvectors

1. Eigenvalue and eigenvector routines

Routine name Description Page

c_deig1 Eigenvalues and corresponding eigenvectors of a real matrix (double QR method). 327

c_dceig2 Eigenvalues and corresponding eigenvectors of a complex matrix (QR method). 268

c_dseig1 Eigenvalues and corresponding eigenvectors of a real symmetric matrix (QL method). 518

c_dvseg2 Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix (parallel

bisection and inverse iteration methods).

744

c_dvsevp Eigenvalues and eigenvectors of a real symmetric matrix (tridiagonalization, multisection

method, and inverse iteration)

747

c_dheig2 Eigenvalues and corresponding eigenvectors of a Hermitian matrix (Householder, bisection

and inverse iteration methods).

370

c_dvhevp Eigenvalues and eigenvectors of a Hermitian matrix (tridiagonalization, multisection method,

and inverse iteration)

636

c_dbseg Eigenvalues and corresponding eigenvectors of a real symmetric band matrix (Rutishauser-

Schwarz, bisection and inverse iteration methods).

229

c_dbsegj Eigenvalues and corresponding eigenvectors of a symmetric band matrix (Jennings’ method). 232

c_dvland Eigenvalues and corresponding eigenvectors of a symmetric sparse matrix (Lanczos method,

diagonal storage format).

640

c_dvtdev Eigenvalues and eigenvectors of a tridiagonal matrix. 766

c_dteig1 Eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix (QL method). 537

c_dteig2 Selected eigenvalues and corresponding eigenvectors of a real symmetric tridiagonal matrix

(bisection and inverse iteration methods).

539

c_dvgsg2 Selected eigenvalues and corresponding eigenvectors of a real symmetric generalized

eigenvalue problem: BxAx (parallel bisection and inverse iteration methods).

633

c_dgbseg Eigenvalues and corresponding eigenvectors of a symmetric band generalised eigenproblem

(Jennings’ method).

352

2. Eigenvalue routines

Routine name Description Page

c_dhsqr Eigenvalues of a Hessenberg matrix (double QR method). 376

c_dchsqr Eigenvalues of a complex Hessenberg matrix (QR method). 287

c_dtrql Eigenvalues of a symmetric tridiagonal matrix (QL method). 552

c_dbsct1 Selected eigenvalues of a symmetric tridiagonal matrix (bisection method). 226

3. Eigenvector routines

Routine name Description Page

c_dhvec Eigenvectors of a Hessenberg matrix (inverse iteration method). 378

c_dchvec Eigenvectors of a complex Hessenberg matrix (inverse iteration method). 289

c_dbsvec Eigenvectors of a symmetric band matrix (inverse iteration method). 242

 xiii

4. Other routines

Routine name Description Page

c_dblnc Balancing of a real matrix. 207

c_dcblnc Balancing of a complex matrix. 263

c_dhes1 Reduction of a matrix to a Hessenberg matrix (Householder method). 372

c_dches2 Reduction of a complex matrix to a complex Hessenberg matrix (stabilized elementary

similarity transformation).

285

c_dhbk1 Back transformation and normalization of the eigenvectors of a Hessenberg matrix. 367

c_dchbk2 Back transformation of the eigenvectors of a complex Hessenberg matrix to the eigenvectors

of a complex matrix.

282

c_dtrid1 Reduction of a symmetric matrix to a symmetric tridiagonal matrix (Householder method). 548

c_dtridh Reduction of a Hermitian matrix to a real symmetric tridiagonal matrix (Householder method

and diagonal unitary transformation).

550

c_dbtrid Reduction of a symmetric band matrix to a symmetric tridiagonal matrix (Rutishauser-

Schwarz method).

245

c_dtrbk Back transformation of the eigenvectors of a symmetric tridiagonal matrix to the eigenvectors

of a symmetric matrix.

543

c_dtrbkh Back transformation of the eigenvectors of a symmetric tridiagonal matrix to the eigenvectors

of a Hermitian matrix.

545

c_dnrml Normalization of the eigenvectors of a real matrix. 489

c_dcnrml Normalization of the eigenvectors of a complex matrix. 303

c_dgschl Reduction of a symmetric matrix system BxAx to a standard form. 364

c_dgsbk Back transformation of the eigenvectors of the standard form eigenproblem to the

eigenvectors of the symmetric generalized eigenproblem.

362

Nonlinear equations

Routine name Description Page

c_drqdr Roots of a quadratic with real coefficients. 512

c_dcqdr Roots of a quadratic with complex coefficients. 308

c_dlowp Roots of a low degree polynomial with real coefficients (fifth degree or lower). 423

c_drjetr Roots of a polynomial with real coefficients (Jenkins-Traub method). 510

c_dcjart Roots of a polynomial with complex coefficients (Jarratt method). 292

c_dtsd1 Root of a real function which changes sign in a given interval (derivative not required). 555

c_dtsdm Root of a real function (Muller’s method). 557

c_dctsdm Root of a complex function (Muller’s method). 319

c_dnolbr Solution of a system of nonlinear equations (Brent’s method). 478

Extrema

Routine name Description Page

c_dlminf Minimization of a function with a single variable (quadratic interpolation using function

values only).

417

c_dlming Minimization of a function with a single variable (cubic interpolation using function values

and derivatives).

420

 xiv

Routine name Description Page

c_dminf1 Minimization of a function of several variables (revised quasi-Newton method using function

values only).

455

c_dming1 Minimization of a function of several variables (quasi-Newton method using function values

and derivatives).

458

c_dnolf1 Minimization of the sum of squares of functions of several variables (revised Marquardt

method using function values only).

482

c_dnolg1 Minimization of the sum of squares of functions of several variables (revised Marquardt

method using function values and derivatives).

485

c_dlprs1 Solution of a linear programming problem (revised simplex method). 425

c_dnlpg1 Nonlinear programming (Powell’s method using function values and derivatives). 473

Interpolation and approximation

1. Interpolation

Routine name Description Page

c_daklag Aiken-Lagrange interpolation. 104

c_dakher Aitken-Hermite interpolation. 100

c_dbif1 B-spline interpolation, differentiation and integration (I). 166

c_dbif2 B-spline interpolation, differentiation and integration (II). 169

c_dbif3 B-spline interpolation, differentiation and integration (III). 172

c_dbif4 B-spline interpolation, differentiation and integration (IV). 175

c_dbifd1 Two-dimensional B-spline interpolation, differentiation and integration (I-I). 178

c_dbifd3 B-spline two dimensional interpolation (III-III). 182

c_dakmid Two-dimensional quasi-Hermite interpolation. 107

c_dakmin Quasi-Hermite interpolation coefficient calculation. 110

c_dbic1 B-spline interpolation coefficient calculation (I). 148

c_dbic2 B-spline interpolation coefficient calculation (II). 151

c_dbic3 B-spline interpolation coefficient calculation (III). 154

c_dbic4 B-spline interpolation coefficient calculation (IV). 156

c_dbicd1 Two-dimensional B-spline interpolation coefficient calculation (I-I). 159

c_dbicd3 B-spline two-dimensional interpolation coefficient calculation (III-III). 163

2. Approximations

Routine name Description Page

c_dlesq1 Polynomial least squares approximation. 415

3. Smoothing

Routine name Description Page

c_dsmle1 Data smoothing by local least squares polynomials (equally spaced points). 531

c_dsmle2 Data smoothing by local least squares polynomials (unequally spaced data points). 533

c_dbsf1 B-spline smoothing. 235

 xv

Routine name Description Page

c_dbsc1 B-spline smoothing coefficient calculation. 213

c_dbsc2 B-spline smoothing coefficient calculation (variable knots). 217

c_dbsfd1 B-spline two-dimensional smoothing. 238

c_dbscd2 B-spline two-dimensional smoothing coefficient calculation (variable knots) 221

4. Series

Routine name Description Page

c_dfcheb Chebyshev series expansion of a function (fast cosine transform). 334

c_decheb Evaluation of a Chebyshev series. 322

c_dgcheb Differentiation of a Chebyshev series. 356

c_dicheb Indefinite integral of a Chebyshev series. 382

c_dfcosf Cosine series expansion of an even function (fast cosine transform). 338

c_decosp Evaluation of a cosine series. 324

c_dfsinf Sine series expansion of an odd function (fast sine transform). 345

c_desinp Evaluation of a sine series. 330

Transforms

Routine name Description Page

c_dvcfm1 One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7). 594

c_dvmcf2 Singlevariate, multiple and multivariate discrete complex Fourier transform (complex array,

mixed radix).

683

c_dvmcft Singlevariate, multiple and multivariate discrete complex Fourier transform (real and

imaginary array separated, mixed radix).

686

c_dvmrf2 Singlevariate, multiple and multivariate discrete real Fourier transform (mixed radix). 695

c_dvmrft Multiple and multivariate discrete real Fourier transform (mixed radices of 2, 3, and 5). 700

c_dvsrft One-dimensional and multiple discrete real Fourier transform (mixed radices of 2, 3, and 5). 763

c_dvcft1 Discrete complex Fourier transform (radix 2 FFT). 597

c_dvcft2 Discrete complex Fourier transform (memory efficient, radix 2 FFT). 601

c_dvcft3 One-dimensional discrete complex Fourier transforms (Radix 2, for data sequence with a

constant stride).

605

c_dvrft1 Discrete real Fourier transform (radix 2 FFT). 732

c_dvrft2 Discrete real Fourier transform (memory efficient, radix 2 FFT). 736

c_dvmcst Discrete cosine transform. 690

c_dvcos1 Discrete cosine transform (radix 2 FFT). 617

c_dfcosm Discrete cosine transform (midpoint rule, radix 2 FFT). 342

c_dvmsnt Discrete sine transform. 704

c_dvsin1 Discrete sine transform (radix 2 FFT). 751

c_dfsinm Discrete sine transform (midpoint rule, radix 2 FFT). 349

c_dvcpf1 One-dimensional prime factor discrete complex Fourier transforms. 620

c_dvcpf3 Three-dimensional prime factor discrete complex Fourier transform. 623

c_dvrpf3 Three-dimensional prime factor discrete real Fourier transform. 740

c_dvccvf Discrete convolution or correlation of complex data. 589

c_dvrcvf Discrete convolution or correlation of real data. 727

 xvi

Routine name Description Page

c_dvwflt Wavelet filter generation. 776

c_dv1dwt One-dimensional wavelet transform. 560

c_dv2dwt Two-dimensional wavelet transform. 563

c_dlaps1 Inversion of Laplace transform of a rational function (regular in the right-half plane). 397

c_dlaps2 Inversion of Laplace transform of a general rational function. 400

c_dlaps3 Inversion of Laplace transform of a general function. 403

c_dhrwiz Assessment of Hurwitz polynomials. 374

Numerical quadrature

Routine name Description Page

c_dsimp1 Integration of a tabulated function (Simpson’s rule, equally spaced points). 524

c_dtrap Integration of a tabulated function (trapezoidal rule, unequally spaced points). 541

c_daqn9 Integration of a function (adaptive Newton-Cotes 9-point rule). 135

c_daqc8 Integration of a function by a modified Clenshaw-Curtis rule. 112

c_daqe Integration of a function (double exponential formula). 115

c_daqeh Integration of a function over a semi-infinite interval (double exponentiation formula). 119

c_daqei Integration of a function over an infinite interval (double exponentiation formula). 122

c_daqmc8 Multiple integration of a function (modified Clenshaw-Curtis integration rule). 125

c_daqme Multiple integration of a function by double exponential formula. 129

Differential equations

Routine name Description Page

c_dodge Solution of a stiff or non-stiff system of first order initial value ordinary differential equations

(Gear’s or Adams methods).

498

c_dodam Solution of a non-stiff system of first order initial value ordinary differential equations

(Adams method).

492

c_dodrk1 Solution of a system of first order ordinary differential equations (Runge-Kutta-Verner

method).

505

Special functions

Routine name Description Page

c_dceli1 Complete elliptic integral of the first kind)(xK . 270

c_dceli2 Complete elliptic integral of the second kind)(xE . 272

c_dexpi Exponential integrals)(xEi and)(xEi . 332

c_dsini Sine integral)(xSi . 526

c_dcosi Cosine integral)(xCi . 306

c_dsfri Sine Fresnel integral)(xS . 520

c_dcfri Cosine Fresnel integral)(xC . 274

c_digam1 Incomplete Gamma function of the first kind),(xv . 389

c_digam2 Incomplete Gamma function of the second kind),(xv . 391

c_dierf Inverse error function)(erf 1 x . 385

 xvii

Routine name Description Page

c_dierfc Inverse complimentary error function)(erfc 1 x . 387

c_dbj0 Zero-order Bessel function of the first kind)(0 xJ . 190

c_dbj1 First-order Bessel function of the first kind)(1 xJ . 192

c_dby0 Zero-order Bessel function of the second kind)(0 xY . 247

c_dby1 First-order Bessel function of the second kind)(1 xY . 249

c_dbi0 Modified zero-order Bessel function of the first kind)(0 xI . 144

c_dbi1 Modified first-order Bessel function of the first kind)(1 xI . 146

c_dbk0 Modified zero-order Bessel function of the second kind)(0 xK . 199

c_dbk1 Modified first-order Bessel function of the second kind)(1 xK . 201

c_dbjn nth-order Bessel function of the first kind)(xJn . 194

c_dbyn nth-order Bessel function of the second kind)(xYn . 251

c_dbin Modified nth-order Bessel function of the first kind)(xI n . 186

c_dbkn Modified nth-order Bessel function of the second kind)(xKn . 203

c_dcbin Modified nth-order Bessel function of the first kind with complex variable)(zIn . 255

c_dcbkn Modified nth-order Bessel function of the second kind with complex variable)(zKn . 261

c_dcbjn nth-order Bessel function of the first kind with complex variable)(zJn . 257

c_dcbyn nth-order Bessel function of the second kind with complex variable Yn(z). 266

c_dbjr Real-order Bessel function of the first kind)(xJv . 196

c_dbyr Real-order Bessel function of the second kind)(xYv . 253

c_dbir Modified real-order Bessel function of the first kind)(xIv . 188

c_dbkr Modified real-order Bessel function of the second kind)(xKv . 205

c_dcbjr Real-order Bessel function of the first kind with complex variable)(zJv . 259

c_dndf Normal distribution function)(x . 469

c_dndfc Complimentary normal distribution function)(x . 471

c_dindf Inverse normal distribution function)(1 x . 393

c_dindfc Inverse complimentary normal distribution function)(1 x . 395

Pseudo-random numbers

Routine name Description Page

c_dvrau4 Uniform [0,1) pseudo-random numbers. 724

c_dvran3 Normal pseudo-random numbers. 718

c_dvran4 Generation of normal random numbers. (Wallace’s method) 721

c_rane2 Exponential pseudo-random numbers (single precision). 780

c_ranp2 Poisson pseudo-random numbers. 782

c_ranb2 Binomial pseudo-random numbers. 778

Auxiliary routines

Routine name Description Page

c_dmach Unit round-off. 790

c_dsum Inner product (real vector). 791

c_dcsum Inner product (complex vector). 786

c_iradix Radix of the floating-point number system. 793

 xviii

Routine name Description Page

c_dfmax Positive maximum value of the floating-point number system. 788

c_dfmin Positive minimum value of the floating-point number system. 789

 xix

Contents
How to use this manual .. vii

Tables of routines .. ix
Linear algebra .. ix
Eigenvalues and eigenvectors ... xii
Nonlinear equations ... xiii
Extrema .. xiii
Interpolation and approximation .. xiv
Transforms .. xv
Numerical quadrature ... xvi
Differential equations ... xvi
Special functions .. xvi
Pseudo-random numbers ... xvii
Auxiliary routines ... xvii

Introduction .. 1
Overview of the C-SSL II library.. 1
Array storage formats .. 6
Unit round-off ... 14
Machine constants ... 14
Sample routine documentation with annotation .. 15

Selection of Routines .. 19
Linear algebra ... 20
Eigenvalues and eigenvectors ... 33
Nonlinear equations .. 44
Extrema ... 48
Interpolation and approximation ... 56
Transforms .. 69
Numerical differentiation and quadrature ... 80
Differential equations .. 85
Special functions ... 90
Pseudo-random numbers ... 95

Description of the C-SSL II Routines .. 97
c_daggm .. 98
c_dakher .. 100
c_daklag .. 104
c_dakmid ... 107
c_dakmin ... 110
c_daqc8 ... 112
c_daqe ... 115
c_daqeh ... 119
c_daqei .. 122
c_daqmc8 .. 125
c_daqme .. 129
c_daqn9 ... 135
c_dassm ... 138
c_dasvd1 ... 140
c_dbi0 .. 144
c_dbi1 .. 146
c_dbic1 .. 148
c_dbic2 .. 151
c_dbic3 .. 154
c_dbic4 .. 156
c_dbicd1 .. 159

xx

c_dbicd3 .. 163
c_dbif1 .. 166
c_dbif2 .. 169
c_dbif3 .. 172
c_dbif4 .. 175
c_dbifd1 .. 178
c_dbifd3 .. 182
c_dbin .. 186
c_dbir .. 188
c_dbj0 .. 190
c_dbj1 .. 192
c_dbjn .. 194
c_dbjr .. 196
c_dbk0 ... 199
c_dbk1 ... 201
c_dbkn ... 203
c_dbkr ... 205
c_dblnc .. 207
c_dbmdmx ... 210
c_dbsc1 ... 213
c_dbsc2 ... 217
c_dbscd2 ... 221
c_dbsct1 .. 226
c_dbseg ... 229
c_dbsegj .. 232
c_dbsf1 .. 235
c_dbsfd1 .. 238
c_dbsvec .. 242
c_dbtrid ... 245
c_dby0 ... 247
c_dby1 ... 249
c_dbyn ... 251
c_dbyr ... 253
c_dcbin .. 255
c_dcbjn .. 257
c_dcbjr ... 259
c_dcbkn ... 261
c_dcblnc .. 263
c_dcbyn ... 266
c_dceig2 .. 268
c_dceli1 ... 270
c_dceli2 ... 272
c_dcfri ... 274
c_dcgsbm .. 276
c_dcgsm .. 279
c_dchbk2 ... 282
c_dches2 .. 285
c_dchsqr .. 287
c_dchvec ... 289
c_dcjart .. 292
c_dclu .. 294
c_dcluiv ... 297
c_dclux .. 300
c_dcnrml.. 303
c_dcosi .. 306
c_dcqdr .. 308
c_dcsbgm .. 310
c_dcsbsm ... 312
c_dcsgm .. 314

 xxi

c_dcssbm ... 317
c_dctsdm ... 319
c_decheb ... 322
c_decosp .. 324
c_deig1 .. 327
c_desinp .. 330
c_dexpi .. 332
c_dfcheb .. 334
c_dfcosf ... 338
c_dfcosm ... 342
c_dfsinf ... 345
c_dfsinm .. 349
c_dgbseg ... 352
c_dgcheb ... 356
c_dginv .. 359
c_dgsbk ... 362
c_dgschl .. 364
c_dhbk1 ... 367
c_dheig2 .. 370
c_dhes1 ... 372
c_dhrwiz .. 374
c_dhsqr .. 376
c_dhvec ... 378
c_dicheb .. 382
c_dierf ... 385
c_dierfc ... 387
c_digam1 ... 389
c_digam2 ... 391
c_dindf .. 393
c_dindfc ... 395
c_dlaps1 .. 397
c_dlaps2 .. 400
c_dlaps3 .. 403
c_dlaxl ... 406
c_dlaxlm .. 409
c_dlcx .. 412
c_dlesq1 .. 415
c_dlminf .. 417
c_dlming.. 420
c_dlowp ... 423
c_dlprs1 ... 425
c_dlsbix ... 431
c_dlsix ... 434
c_dlstx ... 437
c_dltx ... 440
c_dlux .. 443
c_dmav .. 446
c_dmcv .. 448
c_dmdmx ... 450
c_dmgsm ... 453
c_dminf1 ... 455
c_dming1 ... 458
c_dmsbv .. 461
c_dmsgm ... 463
c_dmssm .. 465
c_dmsv .. 467
c_dndf ... 469
c_dndfc .. 471
c_dnlpg1 .. 473

xxii

c_dnolbr .. 478
c_dnolf1 .. 482
c_dnolg1 .. 485
c_dnrml ... 489
c_dodam .. 492
c_dodge ... 498
c_dodrk1 ... 505
c_drjetr .. 510
c_drqdr .. 512
c_dsbmdm ... 514
c_dseig1 .. 518
c_dsfri ... 520
c_dsggm .. 522
c_dsimp1 ... 524
c_dsini ... 526
c_dsmdm ... 528
c_dsmle1 ... 531
c_dsmle2 ... 533
c_dsssm ... 535
c_dteig1 ... 537
c_dteig2 ... 539
c_dtrap ... 541
c_dtrbk .. 543
c_dtrbkh .. 545
c_dtrid1 ... 548
c_dtridh ... 550
c_dtrql ... 552
c_dtsd1 .. 555
c_dtsdm ... 557
c_dv1dwt ... 560
c_dv2dwt ... 563
c_dvalu .. 566
c_dvbcsd ... 569
c_dvbcse .. 573
c_dvbldl ... 577
c_dvbldx .. 580
c_dvblu .. 583
c_dvblux .. 586
c_dvccvf .. 589
c_dvcfm1 ... 594
c_dvcft1 ... 597
c_dvcft2 ... 601
c_dvcft3 ... 605
c_dvcgd ... 608
c_dvcge ... 612
c_dvcos1 ... 617
c_dvcpf1 .. 620
c_dvcpf3 .. 623
c_dvcrd .. 627
c_dvcre .. 630
c_dvgsg2 ... 633
c_dvhevp ... 636
c_dvland .. 640
c_dvlax .. 645
c_dvlbx .. 648
c_dvldiv ... 651
c_dvldlx ... 653
c_dvlsbx .. 655
c_dvlspx .. 658

 xxiii

c_dvlsx .. 661
c_dvltqr ... 664
c_dvltx ... 666
c_dvltx1 ... 669
c_dvltx2 ... 672
c_dvltx3 ... 675
c_dvluiv ... 678
c_dvmbv .. 680
c_dvmcf2 ... 683
c_dvmcft.. 686
c_dvmcst ... 690
c_dvmggm ... 693
c_dvmrf2 ... 695
c_dvmrft .. 700
c_dvmsnt ... 704
c_dvmvsd .. 707
c_dvmvse .. 709
c_dvqmrd .. 711
c_dvqmre ... 714
c_dvran3 .. 718
c_dvran4 .. 721
c_dvrau4 .. 724
c_dvrcvf .. 727
c_dvrft1 ... 732
c_dvrft2 ... 736
c_dvrpf3 .. 740
c_dvseg2 ... 744
c_dvsevp ... 747
c_dvsin1 .. 751
c_dvsldl ... 754
c_dvspll ... 757
c_dvsplx .. 760
c_dvsrft ... 763
c_dvtdev .. 766
c_dvtfqd .. 770
c_dvtfqe ... 773
c_dvwflt .. 776
c_ranb2 .. 778
c_rane2 .. 780
c_ranp2 .. 782

Description of the auxiliary routines .. 785
c_dcsum .. 786
c_dfmax ... 788
c_dfmin ... 789
c_dmach .. 790
c_dsum .. 791
c_iradix ... 793

Bibliography ... 795

 1

Introduction

Overview of the C-SSL II library

1. Background

The main aims in the design of the C-SSL II are to provide a high-performance scientific library with an ANSI C user
interface, while exploiting the existing Fortran SSL II to minimize the effort involved in the port and to ease future
maintenance. This section details the implementation of the C library; outlining general techniques and focusing on
specific problem areas. The most important aspect of the library is that it consists primarily of C interface routines to
existing Fortran library codes. This has implications for the routine names and the calling sequences employed, as is
discussed later. Despite the similarity between the two libraries, if the user already has C-code containing calls to Fortran
SSL II routines then all of these calls should be replaced with calls to the C-SSL II. Mixing direct calls to the Fortran SSL
II and calls to the C-SSL II might not work correctly.

The C-SSL II only supports double precision double functionality; single precision float is not supported except in
three random number routines. Double precision complex numbers are also supported via a special dcomplex type
definition. In addition, all integer arguments and results are of type int.

The coverage of the C-SSL II is similar to that of the Fortran SSL II, except that float will not be widely supported.
Furthermore, where Extended Capability Fortran routines reproduce the functionality of the original routines, only the
Extended Capability routines are supported.

The areas covered are:
A. Linear algebra

• Array storage format conversion,
• Basic matrix manipulation,
• Solutions of linear equations for a variety of matrix types, including complex, banded, indefinite,

symmetric, positive definite, tridiagonal and sparse matrices,
• Matrix decomposition, inversion and solver routines for a variety of matrix types,
• Singular value decomposition, generalized inverses and linear least squares.

B. Eigenvalues and eigenvectors
• Eigenvalues and eigenvectors for a range of matrix types including symmetric, Hermitian and

symmetric band, and also the generalized eigenvalue problem,
• Routines for matrix balancing and reduction, as well as back transformation and normalization of

eigenvectors.
C. Nonlinear equations

• Roots of polynomials and nonlinear functions, with one routine for nonlinear systems.
D. Extrema

• Minimization of nonlinear functions of one or several variables,
• Constrained minimization of nonlinear systems,
• Nonlinear least squares,
• Linear and nonlinear programming.

E. Interpolation and approximation

Introduction

2

• Interpolation with a variety of functions including B-splines,
• Smoothing using B-splines and least squares,
• Series expansion including sine, cosine and Chebyshev,
• Least squares approximation.

F. Transforms
• Real and complex FFTs, including singlevariate, multiple and multivariate, with fixed, prime factor

or mixed radices,
• Cosine and sine transforms,
• Laplace transforms,
• Wavelet transforms,

G. Numerical quadrature
• 1-D quadrature for finite, infinite and semi-infinite ranges,
• Two routines for multidimensional quadrature,
• Integration of tabulated functions.

H. Differential equations
• Solutions of systems of stiff and non-stiff initial value ordinary differential equations.

I. Special functions
• Extensive support for Bessel and other special functions.

J. Pseudo-random numbers
• Support for uniform, normal, exponential, Poisson and binomial pseudo-random numbers.

K. Auxiliary routines
• Summation
• Machine constants

Each major section (with the exception of the auxilliary routines) is described in detail within the Selection of routines
chapter following the Introduction chapter.

2. Details on the C-SSL II interface

Routines in the C library have names consistent with the Fortran library with the C function name constructed by adding
the prefix c_ to the underlying Fortran routine name in lower case. As nearly all of the routines deal with double precision
arguments, this means that the nearly all routines start with c_d. The next letter for enhanced capability routines is v,
hence c_dvalu. The remaining letters (at most 5) attempt to convey some description of the underlying function. For
instance, nearly all routines that involve arguments with type dcomplex follow the c_d (c_dv with extended
capability routines) with the letter c, hence c_dclu, which performs the LU-decomposition of a dcomplex array. This
is not always true, but is a useful guideline; for instance c_dvcos1 performs a 1-D, radix-2 cosine transform on real data.

From the users’ viewpoint the C-SSL II consists of C routines using standard C conventions for argument passing,
argument types and return values. Input-only scalars are passed by value; output and input / output arguments are passed
by pointer. Input-only arguments are not altered and can be reused by the user. Output arguments do not have to be
initialized by the user before the function call. Input / output arguments need to be defined before function calls and are
altered as a result of the call. The values are not necessarily meaningful to the user. Work arrays are labelled as such,
which implies that no user action is required on the initial call, but their output contents may be significant. It is often
possible to recall a function to carry on with a computation (for instance, a new end point can be specified in one of the
differential equation routines) and in almost all such cases, work arguments must remain unchanged between calls.

 Overview of the C-SSL II library

 3

Argument names follow the traditional Fortran implicit typing conventions, so that arguments of type int begin with the
letters i to n. Arguments of type double start with the letters a to h and o to y. The letter z is the exception and is
usually reserved for arguments of type dcomplex.

Every (non-auxiliary) library routine returns a standard int error value. If the routine completed successfully then 0 is
returned; if there was some error detected in the routine, or if the results may not be reliable, 1 is returned. The user
program can check the error return value and if an error occurred more information about the error condition can be
obtained from the icon parameter.

As much as possible, the arguments in each C library routine are identical to the arguments in the Fortran library routine,
and they are specified in the same order. Generally, main arguments are listed first, control arguments are in the middle
and workspaces are located towards the last of the arguments. The last argument is always icon, the error condition code
(note that this argument is not present in the auxiliary routines). Some argument types are described more fully elsewhere
in this document: multidimensional-arrays (Section 4), user functions (Section 5), and complex numbers (Section 6).

Notice that where temporary work array arguments are required by a Fortran library routine, the C interface routine also
includes these arguments. This is not normal C programming, where work space is generally allocated within a routine
using malloc. However, as mentioned above, there are several instances where data stored in the work area is actually
required on subsequent calls to the same function.

The C-SSL II is provided with a header file cssl.h which contains prototypes for all of the user-accessible functions,
and other information such as the dcomplex data type definition. Every user program which calls the C library must
include this header file. The function name of the user main program is main or MAIN__ (two underscores after MAIN).

3. Sample calling program

The following program calls the routine c_dvlax to solve a dense system of linear equations using LU-decomposition.
The program also calls the matrix-vector routine c_dmav. The array a is declared larger than the actual matrix used in
this example. By doing so, the user could generate matrices of different sizes in the same program and call a C-SSL II
routine repeatedly with different matrices, but the same array storage. On many modern architectures, particularly vector
supercomputers, the user needs to consider one more thing: it is possible to choose the number of columns, COLS to
improve performance by reducing cache bank or memory bank conflicts. On vector supercomputers, one guideline is to
use an odd number for COLS. On most systems, declaring COLS to be a power of two should be avoided. One final point,
in order to access elements of a correctly within a routine, the value of COLS must be passed to it as one of the arguments.
In the documentation, the number of columns of a 2-D array is called the C fixed dimension.

#include <stdio.h>
#include "cssl.h"

#define ROWS 100
#define COLS 101

MAIN__()
{
 int ierr, icon;
 int n, i, j, isw, is;
 double epsz, eps;
 double a[ROWS][COLS], b[ROWS], x[ROWS], vw[ROWS];
 int ip[ROWS];

 n = 50;
 /* Initialize matrix a */
 ...

Use #define to declare constants. It
makes life much easier!

C-SSL II standard header file.

Non-standard C required– there are 2 underscores
present after MAIN.

Introduction

4

 n = 50;
 /* Initialize matrix a */
 ...
 /* Initialize solution vector x */
 ...

 /* Initialize constant vector b = a*x */
 ierr = c_dmav((double*)a, COLS, n, n, x, b, &icon);

 epsz = 0.0;
 isw = 1;

 /* solve system of equations */
 ierr = c_dvlax((double*)a, COLS, n, b, epsz, isw, &is, vw, ip, &icon);

 if (icon != 0) {
 printf("ERROR: c_dvlax failed with icon = %d\n", icon);
 exit(1);
 }

 /* check solution vector */
 ...
}

4. Multidimensional arrays

As shown in the above example, the library expects users to declare matrices as 2-D arrays. These arrays must be recast as
a pointer to type double in calls to a library routines and it is also necessary to specify the C fixed dimension of the array.

The approach taken incurs a small performance penalty. This is because the user's code will use C row-ordered arrays, but
before these are passed to the Fortran code, they must be transformed to Fortran column-ordered format. Also, before
exiting from the C wrapper, the arrays may need to be transformed back again to C row-ordered format if the user is
expected to access the array data.

With most library routines the output array data is not accessed directly by the user program but instead the array is passed
to another library routine for further processing, e.g. c_dvalu and c_dvluiv. This means that the wrapper for the first
routine, e.g. c_dvalu, does not need to transpose the array on exit; and the second wrapper routine, e.g. c_dvluiv,
does not need to transpose the array on entry or exit. This definition of the array data differs from that for the Fortran
library.

See the Array storage formats section for further details about arrays.

5. User defined functions

User defined functions work as C programmers would expect. Thus a user function expects scalar arguments to be passed
by value. When the result is a scalar, this is returned as the function value. When the desired result is a 1-D array , the
function is a void function, and the result is passed back via one of the function arguments. Some of the Fortran
routines expect a 2-D array to be returned. The associated arguments are recast as double pointers and the
documentation shows users how to assign entries to the array elements.

With simple scalar functions, the user's program will be normal C code:

/* include C SSL header file */
#include "cssl.h"
/* user function prototype 8/
double func(double x);

/* user's main program */

It is good practice to always check the value of icon.

Notice the recast!

Notice the C fixed dimension!

 Overview of the C-SSL II library

 5

MAIN__()
{
 int ierr, nmin, nmax, n, icon;
 double epsa, epsr, a, b, s, err;
 ...
 /* call C library routine */
 ierr = c_daqn9(a, b, func, epsa, epsr, nmin, nmax,
 &s, &err, &n, &icon);
 ...
}

/* user function */
double func(double x)
{
 double res;
 res = x*sin(x);
 return res;
}

When the user must return values through a double pointer that will be interpreted as a 2-D array, the user’s program
would resemble:

#include <stdlib.h>
#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2 /* order of system */

/* user function prototypes */
void fun(double x, double y[], double yp[]);
void jac(double x, double y[], double *pd, int k);

MAIN__()
{
 int ierr, icon;
 int i, n, isw, mf, ivw[N+25];
 double x, y[N], xend, epsv[N], epsr, h, vw[N*(N+17)+70];

 /* Define the input to the routine */
 ...
 /* solve system */
 ierr = c_dodge(&x, y, fun, n, xend, &isw, epsv, &epsr,
 mf, &h, jac, vw, ivw, &icon);
 /* Check for errors, print results etc. */
 ...
}

/* user function */
void fun(double x, double y[], double yp[])
{
 yp[0] = y[1];
 yp[1] = -11*y[1]-10*y[0];
 return;
}

/* user Jacobian function */
void jac(double x, double y[], double *pd, int k)
{ /* [i][j] -> [i*k+j] */
 pd[0*k+0] = 0; /* [0][0] */
 pd[0*k+1] = 1; /* [0][1] */
 pd[1*k+0] = -10; /* [1][0] */
 pd[1*k+1] = -11; /* [1][1] */
 return;
}

6. Complex numbers

ANSI C does not provide a complex data type, but it is common C practice to define a complex type using a typedef:

typedef struct {
 double re, im;
} dcomplex;

Introduction

6

The C-SSL II supports complex numbers defined in this manner. Only double precision real and imaginary parts are
supported. An example of user code to handle such complex numbers is:

/* include C-SSL II header file */
#include "cssl.h"
#define NMAX 1000

MAIN__()
{
 dcomplex za[NMAX][NMAX];
 dcomplex zvw[NMAX];
 ...
 /* initialize matrix from file */
 for (i=0;i<n,i++)
 for (j=0;j<n;j++)
 fscanf(in, "%le, %le", &za[i][j].re, &za[i][j].im);
 ...
 ierr = c_dclu(za, k, n, epsz, ip, &is, zvw, &icon);
 ...
}

7. Condition codes

The icon argument indicates the resultant status after execution of the library function (the condition code) and should
always be checked on output. To make this slightly easier, the C library routines also provide a return code. As suggested
in Section 2, the error return value is 0 only if the result is considered to be reliable (i.e. icon < 10000). A value of 1 is
returned if the result may be unreliable (20000 ≤ icon < 30000) or if the routine detected an error in the input
arguments (icon = 30000).

The following table shows the range into which the icon value normally falls, and how users should interpret the
reliability of the processing results. A small number of routines return icon values that are negative or larger than 30000.
With such routines, it is important that the user checks the routine documentation for the range of such icon values and
their meaning.

Code Explanation Reliability of result Result
0 Processing terminated normally.
1 - 9999 Processing terminated normally, but additional

information is included.

Result is reliable as far as the routine
can determine.

Normal

10000 -

19999

Processing terminated due to an internal restriction
imposed during processing.

The result is reliable, subject to
restrictions.

Warning

20000 -

29999

Processing is stopped due to an error that occurred
during processing.

30000 Processing is bypassed due to an error in the input
argument(s).

The result is not to be relied upon. Error

Array storage formats
The methods for storing matrices in arrays depends on the structure and form of the matrices as well as the computation in
which it is involved. Viewed as a mathematical object class, the C-SSL II library at present supports the following matrix
class structure:

 Array storage formats

 7

Positive Definite

Symmetric Hermitian

Positive Definite

Symmetric

Band

Symmetric
Positive Definite

Sparse

Positive Definite

Symmetric

Tridiagonal

Matrix

Therefore there are matrices, there are sparse matrices and there are symmetric positive definite sparse matrices. This
structure only represents the matrix classes that are exploited in this library. For each class or sub-class there are one or
more array storage formats. Some of the different formats are only used in one or two routines in order to obtain better
performance from a vector processor. The storage formats for tridiagonal are routine specific and are described only in the
relevant routine documentation.

1. Storage formats for general matrices

When an argument is defined as a matrix, that is from the parent-class and not a child-class, such as symmetric, all of the
elements of a matrix are assumed significant. A standard 2-D array is used to store the matrix, so that matrix element ija is
stored in array element a[i-1][j-1]. Matrices are indexed from 1, which is standard mathematical usage, while array
dimensions are indexed from 0, which is standard C. This also applies to vectors. Again, the mathematical tradition
numbers the elements from 1, so that vector element iy would be stored in array element y[i-1].

Another feature of the 2-D arrays used in the C-SSL II library is that most routines are designed so that users can specify a
larger memory area for a 2-D array than is required for a particular problem. Consider the example in Figure 1, where a 5
by 5 matrix A has been stored in an m by k array a. In order for this matrix to be used in a function call, in addition to the
matrix size (in this case 5), it is also necessary to specify k, the number of columns of a. In the documentation, this is
referred to as the C fixed dimension.

2524232221
2019181716
1514131211
109876
54321

2524232221
2019181716
1514131211
109876
54321

⇒
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=A m

k

5

double a[m][k]

Figure 1 Storage format for general matrices

Introduction

8

2. Storage formats for symmetric matrices

Symmetric matrices
As shown in Figure 2, the elements of the diagonal and the lower triangular portions of an n by n symmetric matrix are
stored row by row in a 1-D array with nt = n(n+1)/2 elements.

Note: This storage format might also be used in eigenvalue routines where the matrix is required to be symmetric positive
definite.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44434241

333231

2221

11

aaaa
aaa

aa
a

A

a11

a21

a22

a31

a32

a33

a42

a43

a44

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

nt

a41

Figure 2 Storage format for symmetric matrices

Symmetric positive definite matrices
The storage format for symmetric positive definite matrices stores the lower triangular part of an n by n matrix column by
column into a 1-D array with nt = n(n+1)/2 elements, as shown in Figure 3.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44434241

333231

2221

11

aaaa
aaa

aa
a

A

 a
[
9
]

 a
[
8
]

 a
[
7
]

 a
[
6
]

 a
[
5
]

 a
[
4
]

 a
[
3
]

 a
[
2
]

 a
[
1
]

 a
[
0
]

nt

a44a43a33a42a32a22a31a21 a41a11

Figure 3 Storage format for symmetric positive definite matrices

nt = 4(4+1)/2 = 10

nt = 4(4+1)/2 = 10

 Array storage formats

 9

3. Storage format for Hermitian matrices

The real parts of the elements of a Hermitian matrix are stored on the diagonal and lower triangular portions of a 2-D array,
as shown in Figure 4. The imaginary parts of the lower triangular elements of a Hermitian matrix are stored in the upper
triangular portion of the same 2-D.

5554535251

5444434241

5343333231

5242322221

5141312111

555454535352525151

44434342424141

3332323131

222121

11

aaaaa
baaaa
bbaaa
bbbaa
bbbba

aibaibaibaiba
aibaibaiba

aibaiba
aiba

a

⇒
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++++
+++

++
+

=A

5

k

m

Figure 4 Storage format for Hermitian matrices

4. Storage formats for band matrices

Band storage format
A band matrix is one in which only a certain range of diagonals above and below the main diagonal contain non-zeros.
The total range of non-zeros is referred to as the matrix bandwidth, designated by w in the following discussion. Generally,

),1min(21 nhhw ++= where 1h is defined to be the lower bandwidth (that is the diagonal farthest below the main
diagonal that contain non-zeros) and 2h is the upper bandwidth. With symmetric matrices, by convention, 21 hhh == is
referred to as the lower bandwidth, so that 12 +⋅= hw .

The band storage format is designed to ensure that sufficient storage is available for fill-ins caused during matrix
factorizations, such as LU-decompositions. This necessitates providing additional storage than that required to just store
the original matrix. A typical layout is shown in Figure 5. In this example, h1, the lower band width has the value 2 and h2,
the upper bandwidth, has the value 1. The matrix is stored by row, with a total of 12 21 ++⋅ hh array elements set aside
for each row. When this total is larger than n, a routine for the general n by n matrix should be used rather than a
specialized matrix routine for band matrices. Notice that leading elements of the first h1 rows need not be defined (denoted
by asterisks or * in Figure 5). Similarly, the trailing 21 hh + elements of the last row do not need to be defined, but all other
array values that do not initially contain matrix elements must be initialized to zero.

Introduction

10

nt

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

555453

45444342

34333231

232221

1211

0

0

aaa
aaaa

aaaa
aaa

aa

A

a11

a12

a21

a22

 *

a22

a31

a32

a33

a34

a42

a43

a44

a53

a54

a55

a45

 *

 *

0

0

0

0

0

0

0

0

h1

h2

h1

h1

h1

h1

h1

h1

h1

 *

 *

 *

h1

h1

a[20]

a[21]

a[22]

a[23]

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

n = 5
h1 = 2
h2 = 1
nt = (2×2+1+1)×5
 = 30
* - undefined

Figure 5 Storage format for band matrices

Symmetric band storage format
The elements of the diagonal and lower band portions of a symmetric band matrix are stored row by row in a 1-D array as
shown in Figure 6. Only the elements on the main diagonal and h sub-diagonals need to be stored, so that the 1-D array
has nt = n(h+1) - h(h+1)/2 elements.

Note: This storage format might also be used in eigenvalue routines where the matrix is required to be symmetric positive
definite.

 Array storage formats

 11

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

555453

444342

333231

2221

11

0 aaa
aaa

aaa
aa

a

A

a11

a21

a22

a31

a32

a33

a42

a43

a44

a53

a54

a55

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

a[10]

a[11]

nt

Figure 6 Storage format for symmetric band matrices

Symmetric positive definite band storage format
The mapping of a symmetric postive definite band matrix onto a 1-D array is shown in Figure 7. The elements of the
lower triangular matrix are stored column by column into the array, which must have nt = n(h+1) elements. The upper
triangular portion of the matrix is ignored. The trailing elements of the last h columns of the mapped matrix do not have to
be defined, so the contents of these elements in the array are marked by asterisks.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

555453

444342

333231

2221

11

0 aaa
aaa

aaa
aa

a

A

a54a44a53a43a33a42a32a22a31a21a11 * a55 * *

a
[
1
1
]

a
[
1
0
]

 a
[
9
]

 a
[
8
]

 a
[
7
]

 a
[
6
]

 a
[
5
]

 a
[
4
]

 a
[
3
]

 a
[
2
]

 a
[
1
]

 a
[
0
]

nt

a
[
1
2
]

a
[
1
3
]

a
[
1
4
]

 h+1 h+1 h+1 h+1 h+1

Figure 7 Storage format for symmetric positive definite band matrices

5. Storage formats for general sparse matrices

ELLPACK storage format
The ELLPACK storage format is a sparse matrix format that is best suited to those situations where either the matrix non-
zeros are spread over a wide range of the matrix or the matrix diagonals are themselves very sparse (see [63] and [90] for
further details on ELLPACK). Two 2-D arrays are used to represent the matrix. The array referred to as coef in Figure 8

n = 5
h = 2
nt =)1(hn +×
 = 15
* - undefined

n = 5
h = 2
nt = 2/3235 ×−×
 = 12

Introduction

12

contains the non-zeros of the matrix, stored so that the i-th column of the array contains the non-zeros on the matrix row
i+1 and the array icol contains the matrix column index of the corresponding non-zero element in coef. Another input
variable is iwidt, the maximum number of non-zeros in any row of A. If a row has fewer than iwidt non-zeros, then
the associated column of coef must be padded with zeros. The corresponding elements of icol must contain the row
number of the row in question.

In Figure 8, row 1 of A has non-zeros in columns 1 and 4. Therefore, coef[0][0] has the value 1 and icol[0][0]
has the value 1, because 111 =a . Similarly, coef[1][0] has the value 2 and icol[1][0] = 4 , because 214 =a .
Row 3 of matrix A has fewer than iwidt non-zeros. Therefore, coef[1][2] is zero and icol[1][2] = 3. Row 4 of
matrix A is treated similarly. Although not illustrated in the example, the ordering of non-zero elements within a column
of coef is not important, provided that the same ordering is used in icol.

2

4334
1321

0042
6531

0006
0500
0430
2001

=

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

iwidt

icol

coef

A

Figure 8 ELLPACK storage format for sparse matrices

Diagonal storage format
The diagonal storage format is effective for those sparse matrices where the non-zero elements all lie along a small
number of diagonals. This format is intended to be used with preconditioned iterative linear equation solvers and it only
stores the main diagonal and those off-diagonals that contain non-zeros. Notice however that all of such diagonals are
stored, including the zero elements.

Two arrays are used to store this matrix. The first array, referred to as diag in Figure 9, is a 2-D array whose rows
contain the diagonal elements and the second is a 1-D array, referred to as nofst whose i-th element contains the offset
of the diagonal stored in the i-th row of diag. The upper diagonals have a positive offset, the main diagonal an offset of
zero and the lower diagonals a negative offset. There is no special restriction on the order in which the diagonals are
stored, although it is essential that the elements within a diagonal are stored consecutively.

Also notice that leading zeros on the lower diagonals and trailing zeros on the upper diagonals must be explicitly included.
The reason for these is illustrated in Figure 9. For further information, see [68] and [78].

()1210

10740
 0063
 0902

11851

00
0

111000
9870
6054
03210

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⇒

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nofst

diag

A

Figure 9 Diagonal storage format for sparse matrices

 Array storage formats

 13

6. Storage formats for symmetric positive definite sparse matrices

ELLPACK storage format
This version of the ELLPACK storage format is intended to be used with symmetric positive definite matrices, where the
main diagonal has been normalized to ones. There are some important differences between the way elements are stored
for this matrix sub-class and its parent class. In particular, the main diagonal elements are not stored, because they are
assumed to be 1 and the upper triangular non-zeros are stored separately from the lower triangular non-zeros. Both the
upper and lower triangular elements are stored, even though one could be determined from the other. The maximum
number of non-zeros in each row vector of the upper triangular matrix is nsu and the maximum number of non-zeros in
each row vector of the lower triangular matrix is nsl. If nsh = max(nsl, nsu), then the non-zeros of the upper
triangular matrix are stored in rows 0 to nsh –1 and the non-zeros of the lower triangular matrix are stored in rows nsh
to 2*nsh-1. In other words, occasionally, one or other of the sub-matrix entries will be padded by zeros.

The indexing for non-zeros (and row numbers for explicit zeros in coef) is still in terms of the original matrix. For
instance, in Figure 10, coef[2][2] has the value 6, icol[2][2] has the value 2, so that we know 632 =a .
Similarly, coef[0][2] has the value 7, icol[0][2] has the value 4, so that 734 =a .

It is the user’s responsibility to ensure that the normalization of the matrix and right hand sides are correct. To obtain the
solution to bAx = , obtain the solution to the normalized problem ** byA = , where 2/12/1 ADDA =∗ and

bDb 2/1* = and then obtain the solution from yDx 2/1= , where D is the diagonal matrix containing the inverse of the
diagonal elements of A.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⇒

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∗

21321
43211
54354
55432

43000
87650
00043
08765

18040
81703
07160
40615
03051

icol

coef

A

Figure 10 ELLPACK storage format for normalized symmetric positive definite sparse matrices

Diagonal storage format
The data structures used for symmetric positive definite matrices is similar to those in the general case. As with the
ELLPACK storage format, only normalized matrices are supported, where the main diagonal of the matrix is assumed to
consist of ones. Therefore, the main diagonal is not explicitly stored because its values are known. An example is
provided in Figure 11. The order in which the diagonals are stored is now important, with the upper diagonals being
stored first in diag. Diagonals are given in order from nearest to the main diagonal for both of the upper and lower
triangular matrices. The entries for the upper diagonals have trailing zeros, so diagonal j will have j trailing zeros. The
entries for the lower diagonals have leading zeros, so diagonal –j will have j leading zeros.

Introduction

14

()3131

43000
87650
00043
08765

18040
81703
07160
40615
03051

−−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⇒

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∗

ndlt

diag

A

Figure 11 Diagonal storage format for normalized symmetric positive definite sparse matrices

Unit round-off
C-SSL II routines frequently use the unit round-off. This value is a basic concept in the error analysis of floating point
arithmetic. It is defined to be the largest floating point value μ such that 11 =+ μ . The unit round-off is often used in the
C-SSL II as part of a convergence criterion or to test for the loss of significant figures. Its value can be obtained using the
auxiliary function c_dmach.

Error analysis for floating point arithmetic is covered in depth in [117] and [122]. A more basic treatment is found in [16].

Machine constants
There are several references in this manual (particularly in the discussion about special functions) to symbols that express
computer constants that are hardware dependent. These include:

• flmin – the positive minimum value for the floating point number system (on hardware supporting the IEEE floating
point standard, the double value for this is approximately 308102.2 −×). Its value can be obtained using the
auxiliary function c_dfmin.

• flmax – the positive maximum value for the floating point number system (on hardware supporting the IEEE floating
point standard, the double value for this is approximately 308108.1 ×). Its value can be obtained using the
auxiliary function c_dfmax.

• tmax – the upper limit of an argument for a trigonometric function (sin and cos). This is typically around
151053.3 × for double data types.

It should be noted that the large size of flmax means that it is unlikely that values near this limit will occur in the course of
normal computation. The same cannot be said about tmax. Values of the size of tmax can occur in practice. Due care must be
taken with trigonometric functions to ensure that the input values are in a meaningful range. Even greater care must be
taken with the transcendental functions (for example 710e will produce an overflow when evaluated as a double). Such
care also applies to the special functions supported in the C-SSL II, which is why the range information supplied in the
documentation is so important.

 Sample routine documentation with annotation

 15

Sample routine documentation with annotation
The following is a complete routine description. The layout shown is used throughout the manual.

Introduction

16

Short
description
and sample
call.

c_dmav

Multiplication of a real matrix by a real vector.

ierr = c_dmav(a, k, m, n, x, y, &icon);

1. Function

This function performs matrix-vector product of an m × n real matrix A with a real vector x of size n.
y = Ax (1)

The solution y is a real vector of size m (m and n ≥ 1).

2. Arguments

The routine is called as follows:

ierr = c_dmav((double*)a, k, m, n, x, y, &icon);

where:

a double a[m][k] Input Matrix A.

k int Input C fixed dimension of array a (≥ n).

m int Input The number of rows m for matrices A.

n int Input The number of columns n for matrices A.

See Comments on use.

x double x[n] Input Vector x.

y double y[m] Input Vector y.

Only applies to equation (2). See Comments on use.

Output Solution vector of multiplication.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

• m < 1

• n = 0

• k < n

Bypassed.

Name of routine.

Mathematical description of the function.

Full sample call and argument description.

Notice the recast
operation.

Argument C declaration Usage Description of the arguments

Values routine dependent

 Sample routine documentation with annotation

 17

3. Comments on use

General Comments

The function primarily performs computation for equation (1) but it can also manage to do equation (2) that is very much like (1).
y = y’ - Ax (2)

To tell the function to perform (2), specify argument n=-n and either copy or set the contents of the arbitrary vector y’ into y before calling the

function. Equation (2) is commonly use to compute the residual vector r of linear equations (3) with a right-hand-side vector b.
r = b – Ax (3)

Note, to comply with the same functionality of the Fortran routine. The same style for specifying the operation is followed in the C function.

4. Example program

This example program calculates a matrix-vector multiplication. The matrix has 10000 elements, and the vector has 100.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int m, n, i, j, k;
 double eps;
 double a[NMAX][NMAX], x[NMAX], y[NMAX];

 /* initialize matrix and vector */
 m = NMAX;
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 for (j=0;j<n;j++)
 a[i][j] = 1.0/(j+1);
 x[i] = i+1;
 }
 /* perform matrix vector multiply */
 ierr = c_dmav((double*)a, k, m, n, x, y, &icon);
 if (icon != 0) {
 printf("ERROR: c_dmav failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((y[i]-n)/n) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

The standard matrix-vector product algorithm is used. For further information consult the entry for MAV in the Fortran SSL II User’s Guide.

Programs show basic use; source is available.

Discussions are minimal, with references to relevant
Fortran routines and research papers

Additional details on arguments and use of function

 19

Selection of Routines
The following sections are intended to enable the user to select the most suitable C-SSL II routine for his/her calculation.
They are organised according to the major sections outlined in the Introduction chapter.

Each section in this chapter is designed to be independant of all the other sections, so that the user only needs to read the
section directly relevant to operation they wish to perform.

Selection of Routines

20

Linear algebra

1. Outline

In Table 1 the Linear algebra operations available in the C-SSL II are classified depending on the structure of the
coefficient matrix and the related problems.

Table 1 Classification of operations for linear equations

Structures Problem Section
Conversion of array storage formats 2
Matrix manipulation 3
Systems of linear equations; Matrix inversion 4

Dense
matrix

Least squares solution 7
Conversion of array storage formats 2
Matrix manipulation 3

Band
matrix

Systems of linear equations 4
Tridiagonal
matrix

Systems of linear equations 5

Matrix manipulation 3 Sparse
matrix Iterative solution of systems of linear

equations
6

The time and memory required to solve a system of linear equations can be reduced significantly if it is possible to use a
method that has been optimized for a particular matrix structure.

2. Matrix storage format conversion

The C-SSL II provides conversion routines for the following transformations:

 Real general matrix

Real symmetric matrix Real symmetric band matrix

Figure 12 Supported conversion operations

The names of the associated routines are given in Table 2. The storage format of an array depends on the structure and
form of the underlying matrix. For example, when storing the elements of a real symmetric matrix, only elements on the
diagonal and upper triangle portion are stored. See the Array storage formats section in the Introduction for details.

Linear algebra

 21

Table 2 Array storage format conversion routines

 After conversion
Before conversion Standard Symmetric Symmetric band
Standard c_dcgsm c_dgsbm

Symmetric c_dcsgm c_dcssbm

Symmetric band c_dcsbgm c_dcsbsm

3. Matrix manipulation

The following basic matrix manipulations are supported:

• Addition/Subtraction of two matrices A ± B.
• Multiplication of a matrix by a vector Ax.
• Multiplication of two matrices AB.

C-SSL II provides the routines listed in Table 3 for matrix manipulation. There are two different routines for sparse
matrices, depending on whether the diagonal storage format or ELLPACK storage format is used.

Table 3 Matrix manipulation routines

 B or x
A General real Symmetric Vector

Addition c_daggm

Subtraction c_dsggm

General real

Multiplication c_dvmggm c_dmgsm c_dmav

General complex Multiplication c_dmcv

Addition c_dassm

Subtraction c_dsssm

Symmetric

Multiplication c_dmsgm c_dmssm c_dmsv

Band Multiplication c_dvmbv

Symmetric band Multiplication c_dmsbv

Sparse – diagonal Multiplication c_dvmvsd

Sparse – ELLPACK Multiplication c_dvmvse

Comments on use
The non-sparse matrix vector multiplication routines also support the operation r = r – Ax, which can be used to compute
the residual vector in the approximate solution of systems of linear equations.

4. Linear equations and matrix inversion (direct methods)

This section describes the routines that are used to solve the following problems.

• Solve systems of linear equations Ax = b, where A is an n × n matrix, x and b are vectors of size n.
• Obtain the inverse of a matrix A.

Selection of Routines

22

• Obtain the determinant of a matrix A.

Users are recommended to solve such problems using the linear equation 'driver' routines that are provided in the C-SSL
II. These driver routines call a sequence of component routines, where the actual computation takes place. Alternatively, a
C interface exists to most of the componant routines and therefore, the computation may be performed by making a
sequence of calls to component routines.

Depending on the matrix classification, there are component routines to perform the following operations.

• Numeric decomposition of a coefficient matrix
• Solving based on the decomposed coefficient matrix
• Matrix inversion based on the decomposed matrix

Combinations of these routines ensure that systems of linear equations, inverse matrices, and the determinants can be
solved.

Linear equations
The solution of the equations can be obtained by calling the component routines consecutively as follows:

...
/* Decomposition routine */
ierr = c_dvalu((double *)a,k,n,epsz,ip,&is,vw,&icon)
/* Solve routine given a decomposition */
ierr = c_dlux(b,(double *)a,k,n,isw,ip,&icon)
...

Matrix inversion
The inverse can be obtained by calling the above components routines serially as follows:

...
/* Decomposition routine */
ierr = c_dvalu((double *)a,k,n,epsz,ip,&is,vw,&icon);
/* Compute matrix inverse given a decomposition */
ierr = c_dvluiv((double *)a,k,n,ip,(double *)ai,&icon);
...

The inverses of band matrices are generally dense matrices so that it is not efficient to compute these matrices directly.
Therefore, no such component routines are provided.

Determinants
There are no component routines that return the value of a matrix determinant. However, the value can be computed from
the elements of a decomposition component routine.

Routines available
Table 4 lists the driver routines and component routines available for the direct solution of systems of linear equations.
Driver routines for tridiagonal and sparse matrices are discussed separately.

Table 4 Driver and component routines for direct methods

Matrix type Driver routines Decomposition Solve Inverse
General c_dvlax c_dvalu c_dlux c_dvluiv

Complex c_dlcx c_dclu c_dclux c_dcluiv

Symmetric c_dlsix c_dsmdm c_dmdmx

Linear algebra

 23

Matrix type Driver routines Decomposition Solve Inverse
Symmetric positive definite
(Modified Cholesky method)

c_dvlsx c_dvsldl c_dvldlx c_dvldiv

Symmetric positive definite
(Cholesky method)

c_dvlspx c_dvspll c_dvsplx

General band c_dvlbx c_dvblu c_dvblux

Symmetric band c_dlsbix c_dsbmdm c_dbmdmx

Symmetric positive definite
band

c_dvlsbx c_dvbldl c_dvbldx

Comments on use
Matrix inversion
Usually, it is not advisable to invert a matrix when solving a system of linear equations.

 Ax = b (1)

That is, in solving equation (1), the solution should not be obtained by calculating the inverse A-1 and then multiplying b
by A-1 from the left side as shown in (2).

 x = A-1 b (2)

Instead, it is advisable to compute the LU-decomposition of A and then perform the operations (forward and backward
substitutions) shown in (3).

yUx
bLy

=
=

 (3)

Higher operating speed and accuracy can be attained by using method (3). The approximate number of multiplications
involved in the two methods (2) and (3) are n3 + n2 and n3/3 respectively. Therefore, matrix inversion should only be
performed when absolutely necessary.

Equations with identical coefficient matrices
When solving a number of systems of linear equations as in (4) where the coefficient matrices are the identical and the
constant vectors are the different,

⎪
⎪
⎭

⎪
⎪
⎬

⎫

=

=
=

mm bAx

bAx
bAx

M
22

11

 (4)

it is not necessary to decompose the matrix A for each equation. After decomposing A when solving the first equation,
only the forward and backward substitution shown in (3) need be performed for solving the other equations. In driver
routines, the user can control whether or not processing begins with the decomposition of A via the isw argument in the
routine call.

Notes and internal processing
When using any of the routines, the following should be noted for convenience of internal processing.

Selection of Routines

24

Blocking LU decomposition, Crout’s method, Gaussian elimination
In the C-SSL II, a blocking LU decomposition is used to decompose a matrix in standard form. This is a variant of
Gaussian elimination that has been designed to produce good performance on modern computer architectures. Crout’s
method is also a variant of Gaussian elimination and is employed for complex matrices. Both produce a decomposition for
general matrices of the form:

 A = LU (5)

where L is a lower triangular matrix and U is an upper triangular matrix.

Cholesky method and modified Cholesky method
The blocked Cholesky decomposition method and the modified Cholesky method is used for positive-definite symmetric
matrices, that is, the decomposition shown in (6) is done.

 A = LLT,
 A = LDLT (6)

where L is a lower triangular matrix and D is a diagonal matrix. Special variants of the Cholesky method are used for
symmetric indefinite matrices and for symmetric positive definite band matrices.

Matrix decompositions are summarized in Table 5.

Table 5 Matrix decompositions

Matrix type Contents of decomposed matrices
General matrices PA = LU

L: Lower triangular matrix
U: Unit upper triangular matrix
P is a permutation matrix.

Positive-definite symmetric matrices
(Cholesky method)

A = LLT
L: lower triangular matrix
 (To minimize calculation, the lower
triangular matrix is actually given as LT.)

Positive-definite symmetric matrices
(Modified Cholesky method)

A = LDLT
L: Unit lower triangular matrix
D: Diagonal matrix
(To minimize calculation, the diagonal
matrix is actually given as D-1.)

Pivoting and scaling
Consider decomposing the real general matrix (7) into the form shown in (5).

 ⎥
⎦

⎤
⎢
⎣

⎡
=

0.00.2
0.10.0

A (7)

In this state, LU decomposition is impossible. And also in the case of (8)

Linear algebra

 25

 ⎥
⎦

⎤
⎢
⎣

⎡
=

0.10.1
0.10001.0

A (8)

Decomposing by floating point arithmetic with the precision of three digits will cause unstable solutions. These
unfavourable conditions can frequently occur when the rows of a matrix are not properly ordered. This can be avoided by
pivoting, which selects the element with the maximum absolute value for the pivot. Problems can be avoided in (8) by
exchanging each element in the first row and the second row.

In order to perform pivoting, the method used to select the maximum absolute value must be unique. By multiplying all of
the elements of a row by a large enough constant, any absolute value of a non-zero element in the row can be made larger
than the corresponding element in the other rows. Therefore, it is just as important to equilibrate the rows and columns as
it is to determine a pivot element of the maximum size in pivoting. C-SSL II uses partial pivoting with row equilibration.
The row equilibration is performed by scaling so that the maximum absolute value of each row of the matrix to be
decomposed is 1. Actually the values of the elements are not changed in scaling; the scaling factor is only used when
selecting a pivot.

Transposition vectors
Since row exchanges are performed in pivoting, the historical data is stored as the transposition vector. The matrix
decomposition which accompanies this partial pivoting can be expressed as;

 PA = LU (9)

Where P is the permutation matrix which performs row exchanges required by partial pivoting. This permutation matrix P
is not stored directly, but is handled as a transposition vector. In other words, in the j th, stage (j = 1,.., n) of decomposition,
if the i th row (i ≥ j) is selected as the j th pivotal row, the i th row and the j th row of the matrix in the decomposition
process are exchanged and the j th row element of the transposition vector P is set to i.

Testing for a zero or relatively zero pivot
In the decomposition process, if a zero or relative-zero pivot is detected, the matrix can be considered to be singular. In
such a case, the pivot may have few correct significant digits and continuing the calculation might fail to obtain an
accurate result. The argument epsz is used to determine whether to continue or discontinue processing. In other words,
when epsz is set to 10-s, if a loss of over s significant digits occurs when computing the pivot, the pivot is considered to
be relatively zero and processing is discontinued.

5. Linear equations (tridiagonal systems)

The routines that solve tridiagonal systems of linear equations are listed in Table 6. Different array storage formats are
employed in the different routines. In addition, each requires differing amounts of work area. If a vector processor is being
employed, but the matrix has no other special properties apart from being non-singular, tridiagonal, then the routine
c_dvltqr is recommended. If the matrix is diagonally dominant, so that no pivoting is required, then c_dvltx is the
fastest routine for this class of problem when the matrix size is large and a vector processor is being employed. A slight
disadvantage of both of these routines is that they require more storage than either c_dltx or c_dlstx. These two
routines are only suggested for small problems or where a scalar processor is being employed.

The routines c_dvltx1, c_dvltx2 and c_dvltx3 are specialized versions of c_dvltx that are designed for the
solution of special tridiagonal systems where the diagonal elements all have the same value and the off-diagonal elements
all have the same value except at one or two specific locations. Matrices with these properties arise in the numerical
approximation of partial differential equations (PDEs) via finite differences. Different boundary conditions (Dirichlet,

Selection of Routines

26

Neumann or periodic) in the underlying PDE produce slightly different matrices, which is reflected in the three routines
provided. These routines are memory efficient as well as being designed to perform well on a vector processor.

Table 6 Routines for tridiagonal systems

Matrix type Routine
General real tridiagonal c_dvltqr

General real tridiagonal c_dltx

General real diagonally dominant tridiagonal c_dvltx

Symmetric positive definite tridiagonal c_dlstx

Real constant tridiagonal (Dirichlet type) c_dvltx1

Real constant tridiagonal (Neumann type) c_dvltx2

Real constant almost tridiagonal (periodic type) c_dvltx3

6. Iterative Linear equation Solvers and Convergence

Routines for the iterative solution of sparse systems of linear equations are given in Table 7. The choice of storage format
for the sparse matrix depends on the extent to which non-zero matrix elements are concentrated along matrix diagonals.

Table 7 Routines for the iterative solution of sparse systems of linear equations

Matrix type Method Diagonal storage
format

ELLPACK storage
format

Symmetric positive
definite

Preconditioned conjugate
gradients

c_dvcgd c_dvcge

Transpose-free quasi-
minimal residual

c_dvtfqd c_dvtfqe

Quasi-minimal residual c_dvqmrd c_dvqmre

Modified generalized
conjugate residual

c_dvcrd c_dvcre

Nonsymmetric or
indefinite

Bi-Conjugate gradient
stabilized(l)

c_dvbcsd c_dvbcse

6.1 Scaling

It is strictly recommended to scale the equation in order to balance the matrix entries for the efficient usage of iterative
linear equation solver. This normalisation of the matrix strongly improves the numerical stability and the convergence rate
of the iterative solver. The normalised coefficient matrix Â should have non--negative entries in the main diagonal and,
for instance, the sum of absolute values in each row should be approximately equal to one.

 Ax = b (10)

A normalised form of the linear system (10) can be constructed by multiplying the coefficient matrix A by a diagonal
matrix L from the left and with a diagonal matrix R from the right. By introducing a new variable xRx 1ˆ −= the linear
system(10) is written as

Linear algebra

 27

 bxALbxLAR ˆˆˆˆ =⇔=

where, LARA =ˆ , Lbb =ˆ .

Instead of A the normalised matrix Â is used in the iterative solver. Keep in mind that the right hand side b has to be
transformed by multiplication with L before the solver is called and the returned solution approximation has to be
transformed by multiplication with R.

If for all i=1,...,n the ∑
=

=
n

j
iji as

1

 value is the absolute sum of entries in the i-th row one can set

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≠

=

=
ji

ji
s
a

L
i

ii

ij

0
if

)sgn(

 (11)

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≠

=

=
ji

ji
s

R
i

ij

0
if

1

 (12)

for all i,j=1,...,n. It is emphasized that there are other possible ways of introducing a normalisation with rather different
effects on the convergence rate of the iterative solvers, see [116] for an overview.

Notice , that with selection (11) and (12) the normalised matrix Â is symmetric and positive definite if and only if the
original matrix is symmetric and positive definite.

6.2 Symmetry of Matrix and Iterative solvers

a) Symmetric Matrix

If the matrix A is symmetric, ie. aij=aji for all i,j=1,...,n, and positive definite the classical conjugate gradient method(see
[53]) can be used to solve the linear system.

If the matrix is not positive definite a break down will occurred.

b) Non-symmetrical or Indefinite Matrix

In case of a non-symmetrical or indefinite coefficient matrix a set of solvers are available. The optimal solver for the given
linear system depends on the properties of the coefficient matrix A (or if the normalised system Â is considered). For the
different classes of matrices the following solvers are available:

6.3 Eigenvalues Distribution of Matrix and Convergence

a) MGCR method

If the eigenvalues of the coefficient matrix are close to the positive real axis (see Figure 13) can be used with a small
number of search directions (eg. 5-10). If the imaginary part of any eigenvalue is large more search directions must be

Selection of Routines

28

considered in order to get good convergence. This increases the storage requirements as well as the amount of
computation per iteration step which makes MGCR (see [66]) less efficient.

For a small number of search directions MGCR is a very fast but not very robust method.

b) TFQMR method

If the eigenvalues are in the positive half plane but there are eigenvalues with large imaginary part (see Figure 14)
TFQMR(see [36]) is the recommended method. Also the solvers converge best if the minimal real part of any eigenvalue
is as large as possible. So, for example, the convergence will be poor if there is an eigenvalue which has a very small
nonzero real part. The convergence rate of TFQMR can be worse than the convergence rate of MGCR with a large
number of search directions. However, every iteration step of TFQMR is much cheaper than MGCR with a large number
of search directions so that a solution is calculated within less CPU time. So TFQMR is more robust but slower than
MGCR with a small number of search directions.

c) BICGSTAB(l) method

Similarly to TFQMR BICGSTAB(l)(see [102]) is suitable for matrices with eigenvalues that are in the positive half plane.
Also the solvers converge best if the minimal real part of any eigenvalue is as large as possible. So, for example, the
convergence will be poor if there is an eigenvalue which has a very small nonzero real part. In some applications where
the eigenvalues of the coefficient matrix are close to the positive real axis BICGSTAB(l) has an even faster convergence
rate than MGCR with a small number of search directions. However, every iteration step of BICGSTAB(l) is very
expensive as it requires two matrix vector multiplications. Therefore in some cases MGCR or TFQMR are faster than
BICGSTAB(l) but BICGSTAB(l) is more robust.

If no information about the eigenvalues of the (normalised) coefficient matrix is available it is suggested to try the
methods MGCR, TFQMR and BICGSTAB(l) one after the other. MGCR should be used with 5 and 10 search directions.
The order in which the methods are tested is important. So the fast but less robust methods should be tested before more
robust methods are used. A suitable criterion for the quality is the CPU time the solver needs to reach the accuracy 0.1.

 Imaginary part

Real part

Figure 13 Eigenvalues distribution for convergent MGCR

 Imaginary part

Real part

Figure 14 Eigenvalues distribution for convergent
TFQMR and BICGSTAB(l)

Linear algebra

 29

7. Least squares solution

The types of linear least squares problems handled by the C-SSL II with the associated routine names are given in Table 8.

Table 8 Routines for m × n matrices

Problem type Routine
Least squares solution c_dlaxl

Least squares minimal norm solution c_dlaxlm

Generalized inverse c_dginv

Singular value decomposition c_dasvd1

Least squares solution
The least squares solution is the vector x~ which minimizes 2bAx − , where A is an m × n matrix (m ≥ n, rank (A) = n),
x is a vector of size n and b is a vector of size m.

Least squares minimal norm solution (underdetermined systems)
The least squares minimal norm solution is the vector x+ which has the minimum 2x over all x for which 2bAx − is
minimized. A is an m × n matrix, x is a vector of size n and b is a vector of size m.

Generalized inverse
An n × m matrix X that satisfies the equations in (13) for an m × n matrix A is called a Moore-Penrose generalized inverse
of a matrix A and is denoted by A+. The generalized inverse is unique. The C-SSL II supports this operation for any m × n
matrix, independent of the relative sizes of m and n.

 ()
() XAXA

AXAX
XXAX
AAXA

T

T

=
=
=
=

 (13)

Singular value decomposition
Singular value decomposition is obtained by decomposing a real m × n matrix A as shown in (14).

 T
00 VUA Σ= (14)

Here U0 and V are m × m and n × n orthogonal matrices respectively, Σ0 is an m × n diagonal matrix where Σ0=diag(σi)
and σi ≥ 0. The σi are called the singular values of A. Suppose A is an m × n matrix with m ≥ n. Since Σ0 is an m × n
diagonal matrix, the first n columns of U0 are used for U0 Σn VT in (14). That is, U0 may be considered as an m × n matrix.
Let U be this matrix, and let Σ be an n × n matrix consisting of matrix Σ0 without the zero (m-n) × n sub-matrix of Σ0.
When using matrices U and Σ, if m is far larger than n, the storage space can be reduced. So matrices U and Σ are more
convenient than U0 and Σ0 in practice. This is also true when m is smaller than n (m < n), in which case only the first m
rows of VT are used and VT can be considered as an m × n matrix.

Assume that:

Selection of Routines

30

 TVUA Σ= (15)

where: l = min (m, n) is assumed and U is an m × l matrix, Σ is an l × l diagonal matrix where Σ = diag (σi), and σi ≥ 0,
and V is an n × l matrix.

When l = n (m ≥ n),

nIVVVVUU === TTT

when l = m (n ≥ m),

mIVVUUUU === TTT

The next section describes some of the properties of the matrices U, V and Σ that are obtained when computing the
singular values of matrix A. For further details, refer to reference [41] and to the Method section for the routine LAXLM
in the Fortran SSL II User's Guide.

Properties of matrices arising in a singular value decomposition
Singular values σi, i = 1, 2, ..., l are the positive square roots of the first to l-th eigenvalues of matrices ATA and AAT
ranked from largest to smallest. The i-th column of matrix U is an eigenvector of matrix AAT corresponding to the
eigenvalue σi

2. The i-th column of matrix V is an eigenvector of matrix ATA, corresponding to eigenvalue σi
2. This can be

seen by multiplying AT = V Σ UT from the right and left sides of (15) and applying UT U = VT V = Il as follows:

 2T ΣVAVA = (16)

 2T ΣUUAA = (17)

Condition number of matrix A
If σi > 0, i=1, 2, ..., l, the condition number of matrix A is given by :

 () lσσ /cond 1=A (18)

Rank of matrix A
If σr > 0, and σr+1 = L = σl = 0, the rank of A is r and is given by:

 rank (A) = r (19)

Basic solution of homogeneous linear equations Ax = 0 and ATy = 0
The non-trivial linearly independent solutions of Ax = 0 and AT y = 0 consist of the columns of V and U which
correspond to the singular values σi = 0. These can be easily obtained from equations AVT = UΣ and ATU = VΣ.

Least squares minimal norm solution of Ax = b
The solution x is represented by using the singular value decomposition of A as follows:

 bUVx T+= Σ (20)

where the diagonal matrix Σ+ is defined as:

Linear algebra

 31

),,,(diag 21
++++ σσσ= lLΣ (21)

⎩
⎨
⎧

=σ
>σσ

=σ +

0,0
0,/1

i

ii
i (22)

Generalized inverse of a matrix
The generalized inverse A+ of A can be expressed by:

 TUVA ++ = Σ (23)

Comments on use
Systems of linear equations and the rank of coefficient matrices
A least squares minimal norm solution to the system of linear equations (Ax = b) with an m × n coefficient matrix can be
obtained regardless of the number of columns or rows, or ranks of the coefficient matrix A. That is, the least squares
minimal norm solution can be applied to any type of equations. However, obtaining this solution requires a great amount
of calculation. If the coefficient matrix is rectangular, m > n and the rank is full (i.e. rank (A) = n), the routine for least
squares solution should be used instead because it requires less calculation.

Least squares minimal norm solution and generalized inverse
The solution of linear equations Ax = b with m × n matrix A (m ≥ n or m < n, rank(A) ≠ 0) is not unique. However, the
least squares minimal norm solution always exists uniquely. This solution can be calculated by x = A+ b after the
generalized inverse A+ of the coefficient matrix A is obtained. This requires a great amount of calculation. It is advisable
to use the routine for the least squares minimal norm solution, for the sake of high speed processing. This routine provides
the argument isw by which the user can solve efficiently multiple equations with the same coefficient matrix (see below).

Equations with the identical coefficient matrix
Both the least squares solution and least squares minimal norm solution of a system of linear equations consist of two
stages: the decomposition of the coefficient matrices and then obtaining the solution.

When obtaining the least squares solution or least squares minimal norm solution of a number of systems with the
identical coefficient matrices, it is not necessary to repeat the decomposition.

mm xAx

bAx
bAx

=

=
=

M

22

11

In this case, a user should decompose the matrix to solve only the first of these systems as this reduces the of number of
calculations. C-SSL II provides the argument isw, which can control whether matrix A is decomposed or not.

Obtaining singular values
The singular values are obtained by singular value decomposition as shown in (24):

Selection of Routines

32

 TVUA Σ= (24)

This decomposition requires a great amount of calculation. Some savings can be made since the routine does not need to
calculate the matrices U and V if they are not required by the user. C-SSL II provides parameter isw to control whether
matrices U or V should be computed. C-SSL II can handle any type of m × n matrices (m > n, m = n, m < n).

Eigenvalues and eigenvectors

 33

Eigenvalues and eigenvectors

1. Outline

Eigenvalue problems can be organized as show in Table 9 according to the type of problem (Ax = λx, Ax = λBx) and the
shape (dense, band, sparse), type (real, complex), and form (symmetric, nonsymmetric) of the matrices. The reader should
refer to the appropriate section specified in the table.

Table 9 Organization of eigenvalue problems

Shape of
matrix

Type of
problem

Matrix type and form Driver
routines

Explanation
section

Real matrix c_deig1 2
Complex matrix c_dceig2 3
Real symmetric matrix c_dseig1

c_dvseg2

c_dvsevp

4

Ax=λx

Hermitian matrix c_dheig2

c_dvhevp

5

Dense matrix

Ax=λBx Real symmetric matrix c_dvgsg2 9
Ax=λx Real symmetric band matrix c_dbseg

c_dbsegj

6 Band matrix

Ax=λBx Real symmetric band matrix c_dgbseg 10
Sparse matrix Ax=λx Real symmetric matrix c_dvland 7

Real matrix c_dvtdev Tridiagonal
matrix

Ax=λx
Real symmetric matrix c_dteig1

c_dteig2

8

The emphasis in this section is on the driver routines that provide all (or a selected subset) of the eigenvalues of a matrix
along with the corresponding eigenvectors. For the driver routines that are not based on extended capability routines, there
are also associated component routines. The C-interfaces to these component routines often involve matrix transpositions,
so that a sequence of calls to component routines is always slower than a single call to the corresponding driver routine.

2. Eigenvalues and eigenvectors of a real matrix

C-SSL II provides the following:

• A driver routine by which all the eigenvalues and eigenvectors of real matrices may be obtained.
• Component routines decomposed by function.

User problems can be classified as follows:

• Obtaining all eigenvalues,
• Obtaining all eigenvalues and eigenvectors,

Selection of Routines

34

• Obtaining all eigenvalues and selected eigenvectors.
The use of component routines and driver routines to obtain all eigenvalues and eigenvectors is illustrated by code
fragments. The routines required to obtain selected eigenvectors are mentioned.

The user is recommended to use the driver routine when obtaining all the eigenvalues and eigenvectors of a real matrix.
This is a robust routine and normally only fails if the matrix is very badly conditioned.

Obtaining just the eigenvalues or obtaining the eigenvectors corresponding to specified eigenvalues can only be done by
calling a series of component routines.

Obtaining all eigenvalues
In the following program segment, all eigenvalues of the real matrix A (stored in array a) are obtained through the use of
the component routines shown in steps 1, 2 and 3.

...
ierr = c_dblnc((double *)a, k, n, dv, &icon); /* step 1 */
ierr = c_dhes1((double *)a, k, n, pv, &icon); /* step 2 */
ierr = c_dhsqr((double *)a, k, n, er, ei, &m, &icon); /* step 3 */
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

1. A is balanced, if balancing is not necessary, this step can be omitted.
2. A is reduced to a Hessenberg matrix using the Householder method.
3. The eigenvalues of A are obtained by calculating the eigenvalues of the Hessenberg matrix using the

double QR method.

Obtaining all eigenvalues and eigenvectors
All eigenvalues and corresponding eigenvectors of real matrix A can be obtained by calling the driver routines as shown
below.

...
ierr = c_deig1((double *)a, k, n, mode, er, ei, (double *)ev, vw, &icon);
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

In the driver routine, the eigenvectors are obtained simultaneously by multiplying all the transformation matrices obtained
successively. If eigenvalues are tightly clustered or are multiple roots, the eigenvectors can be determined more accurately
using this method than by using the inverse iteration method. Inverse iteration is employed in the component routine
c_dhvec to obtain the eigenvectors of a Hessenberg matrix, given the Hessenberg matrix and its eigenvalues. This
routine can also be used to obtain the eigenvectors of selected eigenvalues of a Hessenberg matrix. These can then be
transformed back to the corresponding eigenvectors of the original matrix A by calling the routine c_dhbk1. For further
details and a sample calling program, consult the documentation for c_dhbk1.

Balancing of matrices
Errors in calculating eigenvalues and eigenvectors can be reduced by reducing the norm of real matrix A. One way to
achieve such a reduction is to balance the matrix, whereby the absolute sum of row i and that of column i in A are made
equal by a diagonal similarity transformation. Symmetric matrices and Hermitian matrices are already balanced. The user
can control whether the driver routine c_deig1 performs balancing through the mode argument. The component routine
c_dblnc may also be used for this purpose.

Eigenvalues and eigenvectors

 35

Since this method is especially effective when magnitudes of elements in A differ greatly, balancing should normally be
performed. Except in certain cases (i.e. when the order of A is small), balancing should not take more than 10% of the
total processing time.

3. Eigenvalues and eigenvectors of a complex matrix

C-SSL II provides the following:

• A driver routine by which all eigenvalues and eigenvectors of a complex matrix can be obtained.
• Component routines decomposed by function.

User problems are classified as follows:

• Obtaining all eigenvalues
• Obtaining all eigenvalues and eigenvectors
• Obtaining all eigenvalues and selected eigenvectors

The use of driver routines to obtain all eigenvalues and eigenvectors is illustrated by code fragments. The routines
required to obtain selected eigenvectors are mentioned.

The user is recommended to use the driver routine when obtaining all the eigenvalues and eigenvectors of a complex
matrix. This is a robust routine and normally only fails if the matrix is very badly conditioned.

Obtaining just the eigenvalues or obtaining the eigenvectors corresponding to specified eigenvalues can only be done by
calling a sequence of component routines.

Obtaining all eigenvalues
In the following program segment, all eigenvalues of the complex matrix A (stored in array za) are obtained through the
use of the component routines shown in steps 1, 2 and 3.

...
ierr = c_dcblnc((dcomplex *)za, k, n, dv, &icon); /* step 1 */
ierr = c_dches2((dcomplex *)za, k, n, pv, &icon); /* step 2 */
ierr = c_dchsqr((dcomplex *)za, k, n, ze, &m, &icon); /* step 3 */
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

1. A is balanced, if balancing is not necessary, this step can be omitted.
2. A is reduced to a Hessenberg matrix using the Householder method.
3. The eigenvalues of A are obtained by calculating the eigenvalues of the complex Hessenberg matrix using

the complex QR method.

Obtaining all eigenvalues and eigenvectors
All eigenvalues and corresponding eigenvectors of complex matrix A can be obtained by calling the driver routines as
shown below.

...
ierr = c_dceig2((dcomplex *)za, k, n, mode, ze, (dcomplex *)zev, vw, ivw, &icon);
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}

Selection of Routines

36

...

In the driver routine, the eigenvectors are obtained simultaneously by multiplying all the transformation matrices obtained
successively. If eigenvalues are close roots or multiple roots, the eigenvectors can be determined more accurately using
this method than by using the inverse iteration method. Inverse iteration is employed in the component routine
c_dchvec to obtain the eigenvectors of a Hessenberg matrix, given the Hessenberg matrix and its eigenvalues. This
routine can also be used to obtain the eigenvectors of selected eigenvalues of a Hessenberg matrix. These can then be
transformed back to the corresponding eigenvectors of the original matrix A by calling the routine c_dchbk2. For
further details and a sample calling program, consult the documentation for c_dchbk2.

4. Eigenvalues and eigenvectors of a symmetric matrix

C-SSL II provides the followings:

• Driver routines by which all or selected eigenvalues and corresponding eigenvectors of a symmetric matrix
may be obtained.

• Component routines decomposed by function.

User problems can be classified as follows:

• Obtaining all eigenvalues,
• Obtaining selected eigenvalues,
• Obtaining all eigenvalues and eigenvectors,
• Obtaining selected eigenvalues and corresponding eigenvectors.

The use of component routines and driver routines to obtain all eigenvalues and eigenvectors is illustrated by code
fragments.

The user is recommended to use the driver routines when obtaining all or selected eigenvalues and corresponding
eigenvectors of a symmetric matrix. Component routines must be used if only eigenvalues are required.

C-SSL II uses the compressed symmetric matrix storage format to store the associated matrix. (For details, refer to the
Array storage formats section of the Introduction).

Obtaining all eigenvalues
All eigenvalues of a symmetric matrix A can be obtained as shown below in steps 1 and 2.

...
ierr = c_dtrid1(a, n, d, sd, &icon); /* step 1 */
ierr = c_dtrql(d, sd, n, e, &m, &icon); /* step 2 */
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

1. A is reduced to a tridiagonal matrix using the Householder method. Omit this step if A is already a
tridiagonal matrix.

2. The eigenvalues of A are obtained by calculating all the eigenvalues of the tridiagonal matrix.

Obtaining selected eigenvalues
The largest (or smallest) m eigenvalues of a symmetric matrix A can be obtained as shown:

Eigenvalues and eigenvectors

 37

...
ierr = c_dtrid1(a, n, d, sd, &icon); /* step 1 */
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); /* step 2 */
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

1. Same as step 1 in the previous “Obtaining all eigenvalues”.
2. The largest (or smallest) m (absolute value of argument m) eigenvalues of tridiagonal matrix are obtained

using the bisection method. The sign of m controls whether the routine starts from the largest or smallest
eigenvalue. If n/4 or more eigenvalues are to be determined, it is faster to use routine c_dtrql to obtain
all the eigenvalues.

Obtaining all eigenvalues and eigenvectors
All eigenvalues and eigenvectors of a symmetric matrix A can be obtained by calling the driver routine as shown below.

...
ierr = c_dseig1(a, n, e, (double *)ev, k, m, vw, &icon);
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

All eigenvalues of the symmetric matrix are computed by transforming the matrix to tridiagonal form and then applying
the QL method. The eigenvectors are obtained simultaneously by multiplying each of the transformation matrices
obtained by the QL method. Each eigenvector is normalized such that its Euclidean norm is 1.

Obtaining selected eigenvalues and corresponding eigenvectors
Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix A can be obtained by calling the driver
routine as shown below.

...
ierr = c_dvseg2(a, n, m, epst, e, (double *)ev, k, vw, ivw, &icon);
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

Selected eigenvalues and corresponding eigenvectors of a tridiagonal matrix are determined using the parallel bisection
method and inverse iteration. The obtained eigenvectors are normalized such that each Euclidean norm is 1.

QL method
The QL method, mentioned above, is basically the same as the QR method. However, the QR method determines
eigenvalues from the lower right corner of matrices, while the QL method determines eigenvalues from the upper left. The
choice of these methods is based on how the data in the matrix is organized. The QR method is ideal when the magnitude
of matrix elements decreases with element index order (from the upper left to lower right). If the magnitude of the matrix
elements increases with index order, the QL method is better. Normally, the tridiagonal matrix output by c_dtrid1 has
elements that increase with index order and so the QL method is used. This component routine is also called by the two
driver routines.

Direct sum of submatrices
When a matrix is a direct sum of submatrices, the processing speed and precision in determining eigenvalues and
eigenvectors increases if eigenvalues and eigenvectors are obtained from each of the submatrices. Because of this, a
tridiagonal matrix is split into submatrices according to (1), and then the eigenvalues and eigenvectors are determined.

Selection of Routines

38

 () nibbc iii ,,3,2,1 K=+μ≤ − (1)

μ is the unit round off; ci, bi are as shown in Figure 15.

nn

n

i

ii

ii

i

bc

c

c

cb
bc

c

c

cb

OO

OO

OOO

OOO

OOO

OO

OO

OO

OO

OOO

OOO

OOO

OO

OO

0

0

0

0

0

0

1

1

11

1

2

21

+

+

−−

−

Note: Element ci is treated as zero according to (1).

Figure 15 Example in which a tridiagonal matrix is the direct sum of two submatrices

5. Eigenvalues and eigenvectors of a Hermitian matrix

C-SSL II provides the following:

• A driver routine by which all or selected eigenvalues and corresponding eigenvectors of Hermitian matrices
may be obtained.

• Component routines decomposed by function.

User problems can be classified as follows:

• Obtaining all eigenvalues.
• Obtaining selected eigenvalues.
• Obtaining all or selected eigenvalues and corresponding eigenvectors.

The use of component routines and driver routines to obtain all eigenvalues and eigenvectors is illustrated by code
fragments.

The user is recommended to use the driver routine when obtaining eigenvectors along with all or selected eigenvectors of
a Hermitian matrix. This is a robust routine and normally only fails if the matrix is very badly conditioned.

Obtaining just the eigenvalues can only be done by calling a sequence of component routines.

C-SSL II uses a special Hermitian matrix storage format. (For details, refer to the Array storage formats section of the
Introduction.)

Eigenvalues and eigenvectors

 39

Obtaining all eigenvalues
All eigenvalues of a Hermitian matrix A can be obtained in steps 1 and 2 below.

...
ierr = c_dtridh((double *)a, k, n, d, sd, v, &icon); /* step 1 */
ierr = c_dtrql(d, sd, n, e, m, &icon); /* step 2 */
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

1. A Hermitian matrix A is reduced to a symmetric tridiagonal matrix using the Householder method.
2. All eigenvalues of the symmetric tridiagonal matrix are obtained using the QL method.

Obtaining selected eigenvalues
The largest (or smallest) m eigenvalues of a Hermitian matrix A can be obtained as shown.

...
ierr = c_dtridh((double *)a, k, n, d, sd, v,&icon); /* step 1 */
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); /* step 2 */
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

1. A Hermitian matrix A is reduced to a symmetric tridiagonal matrix by the Householder method.
2. The largest (or smallest) m eigenvalues of the symmetric tridiagonal matrix are obtained using the

bisection method. If n/4 or more eigenvalues are to be determined, it is faster to use routine c_dtrql to
obtain all the eigenvalues.

Obtaining all or selected eigenvalues and corresponding eigenvectors
All or selected eigenvalues and corresponding eigenvectors can be obtained by calling the driver routine as shown below.

...
ierr = c_dheig2((double *)a, k, n, m, e, (double *)evr, (double *)evi, vw, &icon);
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

A Hermitian matrix A is reduced to a symmetric tridiagonal matrix. Eigenvalues of the symmetric tridiagonal matrix (i.e.,
eigenvalues of A) and corresponding eigenvectors are obtained using the QL method. The eigenvectors of the tridiagonal
matrix are transformed to the eigenvectors of A. The fourth argument m indicates that the largest m eigenvalues are to be
computed.

6. Eigenvalues and eigenvectors of a symmetric band matrix

Routines c_dbseg, c_dbsegj and c_dbtrid are provided for obtaining eigenvalues and eigenvectors of a real
symmetric band matrix.

These routines are suitable for large matrices, for example, matrices of the order n > 100 and h/n < 1/6, where h is the
band-width. Routine c_dbsegj, which uses the Jennings method, is effective for obtaining fewer than n/10 eigenvalues.
Obtaining all eigenvalues and eigenvectors of a real symmetric band matrix is not required in most cases and therefore
driver routines are provided only to obtain some eigenvalues and corresponding eigenvectors.

Example code fragments that illustrate the use of these routines are given below. C-SSL II handles the symmetric band
matrix in a compressed storage format. (for details, refer to the Array storage formats section of the Introduction.)

Selection of Routines

40

Obtaining selected eigenvalues
The largest (or smallest) m eigenvalues of a real symmetric band matrix A of order n and bandwidth h are obtained as
shown below.

...
ierr = c_dbseg(a, n, nh, m, 0, epst, e, (double *)ev, k, vw, &icon);
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

The zero value for the fifth argument indicates that no eigenvectors are required.

Obtaining all eigenvalues
All the eigenvalues can be obtained by specifying n as the fourth argument in the example of c_dbseg used to obtain
some eigenvalues. However, the following component routines are recommended instead.

...
ierr =c_dbtrid(a, n, nh, d, sd, &icon); /* step 1 */
ierr = c_dtrql(d, sd, n, e, &m, &icon); /* step 2 */
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

1. Real symmetric band matrix A of order n and bandwidth h is reduced to the real symmetric tridiagonal
matrix T by using the Rutishauser-Schwarz method.

2. All eigenvalues of T are obtained by using the QL method.

Obtaining selected eigenvalues and corresponding eigenvectors
The two driver routines could be used as shown below.

c_dbseg

...
ierr = c_dbseg(a, n, nh, m, nv, epst, e, (double *)ev, k, vw, &icon);
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

The routine c_dbseg obtains the largest (or smallest) eigenvalues by using the Rutishauser-Schwarz method, the
bisection method and the inverse iteration method consecutively. In the above example, the number of eigenvalues, m, and
the number of eigenvectors, nv, of a real symmetric band matrix A of order n and bandwidth h are obtained.

c_dbsegj

...
ierr = c_dbsegj(a, n, nh, m, epst, lm, e, (double *)ev, k, &it, vw, &icon);
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

The routine c_dbsegj obtains the largest (or smallest) absolute value of eigenvalues and also the eigenvectors by using
the Jennings method based on a simultaneous iteration. This routine is only recommended where a relatively small
number of eigenvalues and eigenvectors (no more than n/10, where n is the matrix order) are to be obtained. In the
example above eigenvectors of A, are obtained based on the m initial eigenvectors given. At the same time, the
corresponding eigenvalues can be also obtained. Care needs to be taken when giving initial eigenvectors in ev and the
upper limit for the number of iterations in lm.

Eigenvalues and eigenvectors

 41

Obtaining all eigenvalues and eigenvectors
By specifying n as the fourth and fifth arguments of the routine c_dbseg described above, all eigenvalues and
eigenvectors can be obtained.

7. Selected eigenvalues and eigenvectors of a sparse symmetric matrix

The routine c_dvland can be used to obtain the first few largest and/or smallest eigenvalues and corresponding
eigenvectors of a sparse symmetric matrix. The matrix must be stored using the diagonal storage format. This routine uses
the Lanczos method to obtain the eigenvalues and eigenvectors. This is not a deterministic method and is not as robust as
an approach based on tridiagonalization via the Householder method.

The argument list for c_dvland is reasonably complicated and the user is advised to study the corresponding routine
documentation carefully. In addition, before using c_dvland, the user should be convinced that more robust alternative
routines, such as c_dbseg or c_dbsegj are not appropriate for the matrix in question.

8. Selected eigenvalues and eigenvectors of a tridiagonal matrix

The routine c_dvtdev can be used to obtain selected eigenvalues and corresponding eigenvectors of a nonsymmetric
tridiagonal matrix. A Sturm count-based algorithm (see [96] for further details) is used to obtain eigenvalues. Eigenvectors
are obtained using inverse iteration. Careful attention is paid to the problem of clustered eigenvalues and obtaining
eigenvectors for such clusters.

This is a sophisticated routine and the user is advised to study the corresponding routine documentation carefully. Selected
eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix can be obtained by calling c_dteig2.

9. Eigenvalues and eigenvectors of a symmetric generalized eigenproblem

When obtaining eigenvalues and eigenvectors of Ax=λBx (A – a symmetric matrix, and B – a positive definite symmetric
matrix), how each C-SSL II subroutine is used is illustrated by code fragments.

The sequence to obtain eigenvalues and eigenvectors of a generalized eigenproblem consists of the following six steps:

1. Reduction of the generalized eigenvalue problem (Ax=λBx) to the standard eigenvalue problem of a real
symmetric matrix (Sy=λy)

2. Reduction of the real symmetric matrix S to a real symmetric tridiagonal matrix T (Sy=λy→Ty′=λy′).
3. Obtaining eigenvalue λ of the real symmetric tridiagonal matrix T.
4. Obtaining eigenvector y′ of the real symmetric tridiagonal matrix T.
5. Back transformation of eigenvector y′ of the real symmetric tridiagonal matrix T to eigenvector y of the

real symmetric matrix S.
6. Back transformation of eigenvector y of the real symmetric matrix S to eigenvector x of the generalized

eigenproblem.

C-SSL II provides component routines corresponding to these steps and a driver routine that performs all the steps in one
call.

User generalized eigenproblems can be classified as follows:

Selection of Routines

42

• Obtaining all eigenvalues.
• Obtaining selected eigenvalues.
• Obtaining all eigenvalues and eigenvectors.
• Obtaining selected eigenvalues and corresponding eigenvectors.

In the following descriptions, the use of component routines and the driver routine is illustrated by code fragments.

The user is recommended to use the driver routine when obtaining eigenvectors along with all or selected eigenvalues in a
generalized eigenproblem.

C-SSL II handles both matrices in a compressed storage format (For details, refer to the Array storage formats section of
the Introduction).

Obtaining all eigenvalues
All the eigenvalues can be obtained from the steps 1, 2 and 3 below.

...
ierr = c_dgschl(a, b, n, epsz, &icon); /* step 1*/
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
ierr = c_dtrid1(a, n, d, sd, &icon); /* step 2*/
ierr = c_dtrql(d, sd, n, e, m, &icon); /* step 3*/
...

1. The generalized eigenproblem (Ax = λBx) is reduced to the standard eigenproblem (Sy = λy)
2. The real symmetric matrix S is reduced to a real symmetric tridiagonal matrix using the Householder

method.
3. All the eigenvalues of the real symmetric tridiagonal matrix are obtained using the QL method.

Obtaining selected eigenvalues
From the following steps 1, 2 and 3, the largest (or smallest) m number of eigenvalues can be obtained.

...
ierr= c_dgschl(a, b, n, epsz, &icon); /* step 1*/
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
ierr = c_dtrid1(a, n, d, sd, &icon); /* step 2*/
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); /* step 3*/
...

1. Same as step 1 in Obtaining all eigenvalues.
2. Same as step 2 in Obtaining all eigenvalues.
3. The largest (or smallest) m eigenvalues of the real symmetric tridiagonal matrix are obtained using the

bisection method.

When obtaining more than n/4 eigenvalues of an order n matrix A, it is generally faster to use the example shown in
Obtaining all eigenvalues.

Obtaining all eigenvalues and eigenvectors
All of the eigenvalues and eigenvectors of a generalized eigenproblem can be obtained using the driver routine as shown
below:

...
ierr = c_dvgsg2(a, b, n, n, epsz, epst, e, (double *)ev, k, vw, &icon);
if (icon >= 20000) {

Eigenvalues and eigenvectors

 43

 /* output a message, maybe terminate processing */
}
...

The driver routine c_dvgsg2 performs all the necessary steps through a single call. In this case, the fourth argument n of
c_dvgsg2 indicates that all n eigenvalues are to be obtained.

Obtaining selected eigenvalues and corresponding eigenvectors
The simplest way in which to obtain selected eigenvalues and corresponding eigenvectors is to use the driver routine as
shown below.

...
ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, (double *)ev, k, vw, &icon);
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

 The argument m specifies that the m largest (or smallest) eigenvalues are to be computed.

10. Eigenvalues and eigenvectors of a symmetric band generalized
eigenproblem

C-SSL II provides the driver routine c_dgbseg to obtain eigenvalues and eigenvectors of Ax = λBx (A – a symmetric
band matrix and B – a positive definite symmetric band matrix). This is used for large matrices of order n with h/n < 1/6,
where h is the bandwidth. This routine uses the Jennings method so it is most appropriate when obtaining fewer than n /10
eigenvalues and eigenvectors. Since this routine uses simultaneous iteration to obtain the specified m eigenvalues and
eigenvectors, if it terminates abnormally, no eigenvalues or eigenvectors will be returned.

An illustration of the use of this routine is shown below.

C-SSL II handles the real symmetric band matrix in a compressed storage format, (for details, refer to the Array storage
formats section of the Introduction).

Obtaining selected eigenvalues and eigenvectors

...
ierr = c_dgbseg(a, b, n, nh, m, epsz, epst, lm, e, (double *)ev, k, &it, vw, &icon);
if (icon >= 20000) {
 /* output a message, maybe terminate processing */
}
...

The eigenvalues and eigenvectors are obtained by using the Jennings simultaneous iteration method. Argument m is used
to specify that the largest (or smallest) m number of eigenvalues and eigenvectors are to be obtained.

Selection of Routines

44

Nonlinear equations

1. Outline

This section is concerned with finding roots of polynomial equations, transcendental equations and systems of nonlinear
equations (simultaneous nonlinear equations).

2. Polynomial equations

The routines shown in Table 10 are used for these types of problems.

When solving real polynomial equations of fifth degree or lower, c_dlowp can be used. When solving only quadratic
equations, c_drqdr should be used.

General conventions and comments concerning polynomial equations
The general form for a polynomial equation is

 0,0 0
1

10 ≠=+++ − aaxaxa nnn L (1)

where ai (i = 0, 1 ... n) is real or complex.

If ai is real, (1) is called a real polynomial equation. If ai is complex, (1) is called a complex polynomial equation, and z is
used in place of x.

Unless specified otherwise, routines which solve polynomial equations try to obtain all of the roots. Methods and their use
are covered in this section.

Algebraic and iterative methods are available for solving polynomial equations. Algebraic methods use the formulas to
obtain the roots of equations whose degree is four or less. Iterative methods may be used for equations of any degree. In
iterative methods, an approximate solution has been obtained. For most iterative methods, roots are determined one at a
time; after a particular root has been obtained, it is eliminated from the equation to create a lower degree equation, and the
next root is determined.

Neither algebraic methods nor iterative methods are “better” since each has merits and drawbacks.

Demerits of algebraic methods
Underflow or overflow situations can develop during the calculations process when there are extremely large variations in
size among the coefficients of (1).

Demerits of iterative methods
Choosing an appropriate initial approximation presents problems. If initial values are incorrectly chosen, convergence
may not occur no matter how many iterations are done, so if there is no convergence, it is assumed that the wrong initial
value was chosen. It is possible that some roots can be determined while others cannot. Convergence must be checked for
at each iteration, which increases the computation required.

Nonlinear equations

 45

Table 10 Polynomial equation routines

Objective Routine name Method Notes
Real quadratic equations c_drqdr Root formula
Complex quadratic equations c_dcqdr Root formula
Real low degree equations c_dlowp Algebraic method and iterative

method are used together.
Fifth degree or lower

Real high degree polynomial
equations

c_drjetr Jenkins-Traub method

Complex high degree
polynomial equations

c_dcjart Jaratt method

In order to avoid the demerits of algebraic methods, C-SSL II uses iterative methods except when solving quadratic
equations. The convergence criterion method in C-SSL II is described in this section.

When iteratively solving a polynomial equation:

() 0
0

=≡ ∑
=

−
n

k

kn
k xaxf

if the calculated value of f(x) is within the range of calculation error, it is meaningless to make the value any smaller. Let
the upper limit for calculation errors when evaluating f(x) be ε(x), then

 () ∑
=

−=
n

k

kn
k xax

0

με (2)

where µ is the round-off unit.

Thus, when x satisfies

 () ()xxf ε≤ (3)

there is no way to determine if x is the actual root.

Therefore, when

 ∑∑
=

−

=

− ≤
n

k

kn
k

n

k

kn
k xaxa

00

μ (4)

is satisfied, convergence is judged to have occurred, and the solution is used as one of the roots.

With both algebraic and iterative methods, when calculating with a fixed number of digits, it is possible for certain roots to
be determined to a higher accuracy than others.

Generally, multiple roots and neighboring roots tend to be less accurate than the other roots. If neighbouring roots are
among the solutions of an algebraic equation, the user can assume that those roots are not as precise as the rest.

Selection of Routines

46

3. Transcendental equations

A transcendental equation can be represented as

 f(x) = 0 (5)

If f(x) is a real function, the equation is called a real transcendental equation. If f(x) is a complex function, the equation is
called a complex transcendental equation, and z is used in place of x.

The objective of routines which solve transcendental equations is to obtain only one root of f(x) within a specified range
or near a specified point.

Table 11 lists routines used for transcendental equations.

Iterative methods are used to solve transcendental equations. The speed of convergence in these methods depends mainly
on how narrow the specified range is or how close a root is to the specified point. Since the method used for determining
convergence differs among the various routines, the descriptions of each should be studied.

Table 11 Transcendental equation routines

Objective Routine name Method Notes
c_dtsd1 Bisection method, linear interpolation

method and inverse second order
interpolation method are all used.

Derivatives are not
needed.

Real transcendental
equation

c_dtsdm Muller’s method No derivatives needed.
Initial values specified.

Zeros of a complex
function

c_dctsdm Muller’s method No derivatives needed.
Initial values specified.

4. Nonlinear simultaneous equations

Nonlinear simultaneous equations are given as:

 f(x) = 0 (6)

where f(x) = (f1(x), f2(x),..., fn(x))T and 0 is an n-dimensional zero vector. Nonlinear simultaneous equations are solved by
iterative methods in which the user must gives an initial vector x0 and it is improved repeatedly until the final solution for
(6) is obtained within a required accuracy.

Table 12 Nonlinear simultaneous equation routine

Objective Routine name Method Notes
Non-linear simultaneous
equations

c_dnolbr Brent’s method Derivatives are not
needed.

Table 12 lists the routine used for nonlinear simultaneous equations. The best known method among iterative methods is
Newton method, expressed as:

 xi +1 = xi – Ji
-1f(xi), i = 0, 1, .. (7)

Nonlinear equations

 47

where Ji is the Jacobian matrix of f(x) for x = xi, which means:

i

i

xx

J

=⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

n

nnn

n

n

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

L

MMM

L

L

21

2

2

2

1

2

1

2

1

1

1

 (8)

The Newton method is theoretically ideal - its order of convergence is quadratic and calculations are simple. However,
this method develops several calculation problems when it manipulates complex (or larger) systems of nonlinear
equations. The major reasons are:

• It is often difficult to obtain the coefficients ∂fi /∂xi in (8), (i.e., partial derivatives cannot be calculated
because of the complexity of the equations).

• The number of calculations for all elements in (8) is too large.
• Since a system of linear equations with coefficient matrix Ji must be solved on each iteration, calculation time

is long.

If the above problems are solved and the order of convergence is kept quadratic, this method provides short processing
time as well as ease of handling.

The following are examples of the above problems and their solutions. To address the first problem, ∂fil∂xi can be
approximated by differences, i.e. by selecting an appropriate value for h, we can obtain:

() ()

h
xxfxhxxf

x
f ninji

j

i ,,,,,, 11 LLL −+
≈

∂
∂

 (9)

For the second and third problems, instead of directly calculating the Jacobian matrix, a pseudo Jacobian matrix (which
need not calculate all the elements) is used to solve the simultaneous equations. All of the above means are adopted in
SSL II. Several notes on the use of the C-SSL II routine for nonlinear simultaneous equations follows.

The user must provide the routine to evaluate f(x) for an arbitrary x. The following points should be taken into
consideration in order to use the routines effectively and to obtain an accurate solution.

• Loss of accuracy should be avoided in calculating functions. This is especially important because functions
values are used to approximate derivatives.

• The magnitude of elements such as those of variable vector x or of function vector f(x) should be balanced. If
unbalanced, the larger elements often mask the smaller elements during calculations. The C-SSL II routine
checks the variance in the largest element to detect convergence. In addition, the accuracy of a solution vector
depends upon the tolerance given by the user. Generally, the smaller the tolerance for convergence, the higher
the accuracy for the solution vector. However, because of the round-off errors, there is a limit to the accuracy
improvement.

• The next problem is how to select the initial value x0. It should be selected by the user depending upon the
characteristics of the problem to be solved with the equations. If such information is not available, the user
may use a method of 'trial and error' by arbitrarily selecting the initial value and repeating calculations until a
final solution is obtained.

Selection of Routines

48

Extrema

1. Outline

The following problems are considered in this section:

• Unconstrained minimization of a single variable function,
• Unconstrained minimization of a multivariable function,
• Unconstrained nonlinear least squares,
• Linear programming,
• Nonlinear programming (Constrained minimization of multivariable function).

2. Minimization of a single variable function

Given a single variable function f(x), the local minimum point x* and the function value f(x*) are obtained in interval [a, b].

Routines
Table 13 gives the applicable routines, depending on whether the user can define a derivative g(x) analytically in addition
to the function f(x).

Table 13 Routines for unconstrained minimization of a single variable function

Analytical
definition

Routine name Notes

f(x) c_dlminf Quadratic
interpolation

f(x), g(x) c_dlming Cubic
interpolation

Comments on the interval [a, b]
In the C-SSL II, only one minimum point of f(x) is obtained within the error tolerance. It is assumed that f(x) is unimodal
over the interval [a, b]. If there are several minimum points in interval [a, b], the minimum point to which the resultant
value converges is not guaranteed to be the global minimum over [a, b].

This means that it is desirable to specify values for the end points a and b of an interval that are near to and bracket x*.

3. Unconstrained minimization of multivariable function

Given a real function f(x) of n variables and an initial vector x0, the vector (local minimum) x* which minimizes the
function f(x) is obtained together with its function value f(x*), where x = (x1, x2, ..., xn)T.

Starting from x0, a sequence of iteration vectors, xk, is defined such that f(xk+1) < f(xk), k = 0, 1, Iteration continues until

∞+ − k1k xx falls below a threshold value or no further minimization is possible.

Extrema

 49

Normally, the iteration vector is modified based on the direction in which the function f(x) decreases in the region of xk by
using not only the value of f(x) but also the gradient vector g and the Hessian matrix B as defined in (1).

()
ji xx

f
ijij

n

bb

x
f

x
f

x
f

∂∂
∂==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

=

2

,

,,,
T

21

B

g L
 (1)

Formula based on Newton method
If the function f(x) is quadratic and is concave, the global minimum point x* can be obtained theoretically within at most n
iterations by using the Newton iterative formula.

A function can be expressed approximately as a quadratic in the region of the local minimum point x* as shown in (2).

 () () () ()*** xxxxxx −−+≈ B
T

2
1ff (2)

Therefore, if the Hessian matrix B is positive definite, an iterative formula based on Newton’s method applied to the
quadratic function shown in (2) will be a good iterative formula for any function in general. Now let gk be a gradient
vector at an arbitrary point xk in the region of the local minimum point x*, then the basic iterative formula of Newton’s
method is obtained from (2) as shown in (3).

 kkk gBxx 1
1

−
+ −= (3)

The C-SSL II includes routines that implement two types of iterative formulae based on (3).

Revised quasi-Newton method
The underlying iterative formula is given in (4).

kkk

kkkk

kkk

EBB
pxx

gpB

+=
+=

−=

+

+

1

1 α (4)

Where Bk is an approximate matrix to the Hessian matrix and is improved by the rank two matrix Ek during the iteration
process, pk is a search vector that defines the direction in which the function value decreases locally and αk is a constant
by which f(xk+1) is locally minimized (linear search).

The formula in (4) can be used when the Hessian matrix cannot be defined analytically.

Quasi-Newton method
The underlying iterative formula is given in (5).

kkk

kkkk

kkk

FHH
pxx

gHp

+=
+=

−=

+

+

1

1 α (5)

Where Hk is an approximation to the inverse matrix of the Hessian matrix B-1 and is improved by the rank 2 matrix Fk
during the iterative process, pk is a search vector that defines the direction in which the function value decreases locally
and αk is a constant by which f (xk+1) is locally minimized (linear search).

Selection of Routines

50

Routines
The relevant C-SSL II routines are shown in Table 14. The routines differ by whether or not the user must analytically
define a gradient vector g in addition to the function f(x).

Table 14 Routines for unconstrained minimization of a function with several variables

Analytical
definition

Routine name Notes

f(x) c_dminf1 Revised quasi-
Newton method

f(x), g(x) c_dming1 Quasi-Newton
method

Comments on use
Giving an initial vector x0
Choose the initial vector x0 as close to the expected local minimum x* as possible. When the function f(x) has more than
one local minimum point, if the initial vector is not given appropriately, the method used may not converge to the
expected minimum point x*.

User defined functions calculation
Efficient coding of the user defined functions to calculate the function f(x) and the gradient vector g(x) is important. The
number of evaluations for each function made by the C-SSL II routine depends on the method used and its initial vector.
In c_dminf1, the gradient vector g is usually approximated by differences. Therefore the effect of round-off errors
should also be considered. Consistent with the assumption that f(x) can be locally approximated by a quadratic function,
as shown in (6), it is assumed that if x is changed by ε, then the function f(x) changes by ε2. If possible, the function
should be scaled consistent with this assumption.

 () () xxxxx δδδ B* T*

2
1

+≈+ ff (6)

Convergence criterion and accuracy of minimum value ()*xf

In an algorithm for minimization, the gradient vector g(x*) of the function f(x) at the local minimum point x* is assumed to
satisfy g(x*) = 0, that is, the iterative formula approximates the function f(x) as a quadratic function in the region of the
local minimum point x*. In the C-SSL II, given a convergence criterion ε, if

 () ε,0.1max1 ⋅≤−
∞∞+ kkk xxx (7)

is satisfied for the iteration vector xk, then xk+1 is taken as the local minimum point x*. Therefore, if the minimum value
f(x*) is to be obtained as accurately as the rounding error, an appropriate convergence criterion ε is 2/1ε μ= where μ is
the unit round off. The C-SSL II uses 2/12μ as a default convergence criterion.

4. Unconstrained nonlinear least squares

Given m real functions f1(x), f2(x), ..., fm(x) of n variables and an initial vector x0, the vector (local minimum) x* which
minimizes

Extrema

 51

{ }∑
=

=
m

i
ifF

1

2)()(xx

is obtained together with its function value F(x*), where, x = (x1, x2, ...xn)T and m ≥ n.

If all the functions fi (x) are linear, it is a linear least squares solution problem. For detailed information on its solution,
refer to the Linear Algebra section, or routine documentation, for example routine c_dlaxl. If all the functions fi (x) are
nonlinear, the routines explained in this section may be used. When the approximate vector xk of x* is varied by Δx, F(xk
+ Δx) is approximated as shown in (8).

kkkk

kkkkk

kkkkkkF

xJJx

xJxfxfxf

xxfxxfxx

ΔΔ+

Δ+≈

Δ+Δ+=Δ+

TT

TT

T

)(2)()(

)()()(

 (8)

Where |F(xk)| is assumed to be sufficiently small, f(x) = (f1 (x), f2 (x), ..., fm (x))T and Jk is a Jacobian matrix of f(x) at
vector xk.

Δxk which minimize this F(xk + Δxk) can be obtained as the solution of the system of linear equations (9) derived by
differentiating the right side of (8).

 ()kkkkk xfJxJJ T−=ΔT (9)

The equations shown in (9) are called the normal equations. The iterative method based on the Δxk is called the Newton-
Gauss method. In the Newton-Gauss method function value F(x) decrease along direction Δxk, however, Δxk itself may
diverge.

The gradient vector ∇F(xk) at xk of F(x) is given by

)(2)(T
kkkF xfJx =∇ (10)

−∇F(xk) is the steepest descent direction of F(x) at xk.

The following is the method of steepest descent.

)(kk F xx −∇=Δ (11)

Δxk guarantees the reduction of F(x). However the iteration proceeds in a zigzag fashion to the minimum value.

Formula based on the Levenberg-Marquardt method
Levenberg, Marquardt, and Morrison proposed to determine Δxk by combining the ideas of the methods of Newton-Gauss
and steepest descent as shown in (12).

 { })(T
kkkkkk v xfJxIJJ T−=Δ+ 2 (12)

where vk is a positive integer (called Marquardt number).

Δxk obtained in (12) depends on the value of vk that is, the direction of Δxk is that of the Newton-gauss method if vk → 0; if
vk → ∞ it is that of steepest descent.

Selection of Routines

52

C-SSL II uses an iterative formula based on (12). It does not directly solve the equation in (12) but it obtains the solution
of the following equation, which is equivalent to (12), by the least squares method (Householder method) to maintain
numerical stability.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=Δ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0

xf
x

I

J
LL

)(k

k

k

k

v
 (13)

The value vk is determined adaptively during iteration.

Routines
The routines provided are shown in Table 15. They differ depending on whether or not the user can analytically define a
Jacobian matrix J in addition to the functions f1 (x), f2 (x), ..., fm (x).

Table 15 Routines for unconstrained nonlinear least squares

Analytical definition Routine name Notes
f1(x), f2(x),..., fm(x) c_dnolf1 Revised Marquardt Method
f1(x), f2(x),..., fm(x), J c_dnolg1 Revised Marquardt Method

Comments on use
Giving an initial vector x0
Choose the initial vector x0 as close to the expected local minimum point x* as possible. When the function F(x) has more
than one local minimum point, if the initial vector is not given appropriately, the method used may not converge to the
expected minimum point x*.

Function calculation program
Efficient coding of the function programs to calculate the function {fi (x)} value of Jacobian matrix J is important. The
number of evaluations for each function made by the C-SSL II routine depends on the method used or its initial vector. In
general, the evaluation of user functions takes the majority of the total processing and has an effect on the efficiency.

In c_dnolf1, the Jacobian matrix, J, is approximated by using differences. Therefore, an efficient coding to reduce the
effect of round-off errors should also be considered.

Convergence criterion and accuracy of minimum value F(x*)
In an algorithm for minimization, F(x) at the local minimum point x* is assumed to satisfy

 0)(2)(T ==∇ ** xfJxF (14)

that is, the iterative formula approximates the function F(x) as a quadratic function in the region of the local minimum
point x* as follows:

 xJJxxxx ** δδδ TT)()(+≈+ FF (15)

Equation (15) indicates that when F(x) is scaled appropriately, if x is changed by ε, function F(x) changes by ε2.

In C-SSL II, if

Extrema

 53

ε⋅≤−

<

+

+

),0.1max(
)()(

221

1

kkk

kk FF
xxx

xx
 (16)

is satisfied for the iteration vector xk, then xk+1 is taken as the local minimum point x*, where ε is a convergence criterion.
If the minimum value F(x) is to be obtained as accurately as the rounding-error, the convergence criterion should be given
as 2/1με ≈ where, µ is the unit round-off.

The C-SSL II uses 2/12 μ⋅ as a default convergence criterion.

5. Linear programming

Linear programming is used to obtain:

• The value of a variable to minimize (or maximize) a linear function
• The minimum (or maximum) value of a linear function under the constrained conditions represented by the

combination of several related linear inequalities and equalities.

The following is a standard linear programming problem:

Minimize the linear objective function: z = cT x + c0

subject to

 dAx = (17)

 0x ≥ (18)

where, A is an m × n coefficient matrix with rank(A) = m ≤ n and

where, x = (x1, x2, ..., xn)T is a variable vector,

d = (d1, d2, ..., dm)T is a constant vector,

c = (c1, c2, ..., cn)T is a coefficient vector and

c0 is a constant term.

Let aj be the j-th column of A. If m columns of A, ak1, ak2, ..., akm, are linearly independent, a group of the corresponding
variables (xk1, xk2, .., xkm) are called bases. xki (i-th corresponding variable) is called a basic variable. A basic solution in (17)
is obtained by setting all the values of non-basic variables to zeros. A basic solution that additionally satisfies (18) is
termed a basic feasible solution. Furthermore, the optimal solution that satisfies the constraints and minimizes the value of
the objective function can be found over the basic feasible solutions (fundamental theorem of linear programming).

Simplex method
Given a basic feasible solution, the simplex method provides a means of changing basic variables one by one, always
maintaining a basic feasible solution, to obtain the optimal solution value (if one exists).

Selection of Routines

54

Revised simplex method
Using the iterative calculation of the simplex method, coefficients and constant terms required for determining the basic
variables to be changed are calculated using the matrix inversion of the basic matrix, B = [ak1

, ak2
, ..., akm

], the original
coefficient A, c, and constant term d.

The C-SSL II routine c_dlprs1 uses this revised simplex method. If the constrained condition contains inequalities, the
routine defines additional variables to change these into equalities.

For example,

a11x1 + a12 x2 + ... + a1n x n ≤ d1

is changed into

a11x1 + a12 x2 + ... + a1n x n + xn+1= d1 where xn+1 ≥ 0

and

a21x1 + a22 x2 + ... + a2n x n ≥d2

is changed into

a21x1 + a22 x2 + ... + a2n x n – xn+2 = d2, xn+2 ≥ 0

• Non-negative variables such as xn+1 or xn+2 that are added to change an inequality into an equality constraint
are called slack variables.

• Maximization can be performed by multiplying the objective function by -1 and minimizing instead.

If the user is not able to provide a basic feasible solution, the linear programming can be performed in two stages:

• At the first stage, obtain the basic feasible solution
• At the second stage, obtain the optimal solution

An example is shown below. At the first stage the optimal solution is obtained.

Minimize ∑
=

=
m

i

a
ixz

1

)(
1

subject to:

Ax + A(a) x(a) = d,
 x ≥ 0, x(a) ≥ 0

where x(a) = (x1
(a), x2

(a), ..., xm
(a))T , A(a) is an m-order diagonal matrix of A(a) = (aii

(a)) where aii
(a) = 1 when di ≥ 0 and aii

(a)
= –1 when di < 0

xi
(a) is called an artificial variable. When the optimal solution is obtained, if z1 is larger than zero (z1 > 0), no x will satisfy

the conditions in (17) and (18).

If z1 is zero then x(a) = 0 so that a basic feasible solution of the original problem has been obtained. The second stage can
be proceeded to. But if rank (A) < m and there is an x which satisfies the equation in (17), (m-r) of the conditional
equations are useless. (If r = rank(A) of the conditional equations are satisfied, the others equations will necessarily hold).

Extrema

 55

The optimal solution obtained at the first stage results in a basic feasible solution for a rank-reduced problem. The routine
will return and processing will be stopped. The user can examine which indices were used in this reduced problem and
possibly redefine the original problem and call c_dlprs1 with a suitably redefined set of input arguments (a smaller
value of m, a smaller matrix A, the indices of a basic feasible solution etc.)

6. Nonlinear programming (constrained minimization of multivariable
function)

Given an n-variable real function f(x) and the initial vector x0, the local minimum point and the function value f(x*) are
obtained subject to the constraints:

 ci(x) = 0, i = 1, 2,, m1 (19)

 ci(x) ≥ 0, i = m1 + 1,, m1 + m2 (20)

Where x is vector as (x1, x2,, xn)T and m1 and m2 are the numbers of equality and inequality constraints respectively.

The algorithm for this problem is derived from that for unconstrained minimization explained in Section 3 by adding
certain procedures for constraints of (19), (20). That is, the algorithm minimizes f(x) by using the quadratic approximation
for f(x) at an approximate point xk:

 Byygyxx TT

2
1)()(++≈ kkff (21)

where y = x – xk and B is a Hessian matrix, on the basis of a linear approximation to the constraints (19), (20) at xk as
follows:

 1
T ,,2,1,0)()(micc kiki L==∇+ xyx (22)

211

T

,,1
,0)()(

mmmi
cc kiki

++=
≥∇+

L

xyx (23)

Where ∇ci is a gradient vector of ci

This defines a quadratic programming with respect to y.

C-SSL II supplies the routine c_dnlpg1 that determines a local minimum point by solving a quadratic programming at
each iteration.

Selection of Routines

56

Interpolation and approximation

1. Outline

This section is concerned with the following types of problems.

Interpolation
Given discrete points x1 < x2 < ...< xn and their corresponding function values yi = f(xi), i = 1,, n (in some cases

)(ii xfy ′=′ are also given), an approximation to f(x) (hereafter called the interpolating function) is determined such that
it passes through the given points; or, that the interpolating function is used to determine an approximate value (hereafter
called interpolated value) to f(x) at a point x = v other than xi.

Least-squares approximation
Given discrete points x1 < x2 < ... < xn and their corresponding observed values yi, i = 1, ..., n the approximation ()xmy
that minimizes

{ } 0)(,)()(
1

2 ≥−∑
=

i

n

i
imii xwxyyxw

is determined; w(x) is a weight function, and ()xym is a polynomial of degree m. In this type of problem yi is observed
data. This method is used when the observation error varies among the data.

Smoothing
Given discrete points x1, x2, ..., xn and their corresponding observed values yi, i = 1, 2, ...n a new series of points { }iy~
which approximates the real function is obtained by smoothing out the observation errors contained in the observed value
{yi}. Hereafter, this processing is referred to as smoothing. iy~ (or { }iy~) is called the smoothed value for yi (or {yi}),

ii yy ~− shows the extent of smoothing, and the polynomial used for smoothing is called the smoothing polynomial.

Series
When a smooth function f(x) defined on a finite interval is expensive to evaluate, or its derivatives or integrals can not be
obtained analytically, it is suggested that f(x) be expanded as a Chebyshev series.

The features of Chebyshev series expansion are:

• Good convergence
• Easy to differentiate and integrate term by term
• Effective evaluation owing to the fast Fourier transformation, leading to numerical stability.

Determine the item number n and the coefficient number in the Chebyshev expansion depending upon the required
precision. Then obtain the derivative and indefinite integral of f(x) by differentiating and integrating each item of the
obtained series in forms of series. The derivative value, differential coefficient and definite integral can be obtained by
summing these series. If the function f(x) is a smooth periodic function, it can be expanded to trigonometric series. Here
the even function is expanded to the cosine series and the odd function to a sine series depending upon the required
precision.

Interpolation and approximation

 57

In the field of interpolation or smoothing in this library, and also in that of numerical differentiation or quadrature of a
tabulated function, spline functions are used extensively. The definition and the representations of these functions are
described below.

2. Spline function

Definition
Suppose that discrete points x0, ..., xn divide the range [a, b] into intervals such that

 a = x0 < x1 < ... < xn = b (1)

Then, a function S(x) which satisfies the following conditions:

a. DkS(x) = 0 for each interval (xi, xi+1)

b. []baCxS k ,)(2−∈ (2)

where D≡d/dx is defined as the spline function of degree (k-1) and the discrete points are called knots.

As shown in (2), S(x) is a polynomial of degree (k-1) which is separately defined for each interval (xi, xi+1) and whose
derivatives of up to degree (k-2) are continuous over the range [a, b].

Representation-1 of spline functions
Let aj, j = 0, 1,, k − 1 and bi, i = 1, 2, ..., n − 1 be arbitrary constants, then a spline function is expressed as

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=

+=

−

−

∑

∑

−

=

−
+

−

=

j
k

j
j

k
i

n

i
i

xx

xx

axp

bxpxS

)(

)(

0

1

0

1
1

1

)(

,where

)()(

 (3)

The function 1)(−
+− k

ixx is defined as

⎪⎩

⎪
⎨
⎧

<
≥−

=−
−

−
+

i

i
k

ik
i xx

xxxxxx
,0

,)()(
1

1 (4)

The following illustration proves that (3) satisfies (2). Suppose that x is moved from x0 to the right in (3).

For x0 ≤ x < x1, S(x) = p(x), so S(x) is a polynomial of degree (k-1).

For x1 ≤ x < x2, S(x) = p(x) + b1(x – x1)k-1, so S(x) is a polynomial of degree (k-1).

In general, for xi ≤ x<xi+1

1

1
)()()(−

=

−∑+= k
r

i

r
r xxbxpxS

So, it is found that S(x) is a polynomial of degree (k-1) which is separately defined for each interval.

From equation (3) we obtain

Selection of Routines

58

lk
ii

n

i

lj
j

k

j

l
l

l

xxblk

xxaljj

xSxS
dx
d

kk

j

−−
+

−

=

−
−

=

−−+

−+−=

=

−−

−

∑

∑

1
1

1

0

1

1

)(

)()((

)()1(

)()(

)2)(1

)1(

L

L

The l-th derivatives from the left and the right of S(x) at xi, are

lk
iii

lk
rir

i

r

lj
ij

k

j
i

l

lk
rir

i

r

lj
ij

k

j
i

l

xxblkkk

xxblk

xxaljjxS

xxblk

xxaljjxS

kk

j

kk

j

−−

→ε

−−
−

=

−
−

=→ε

−−
−

=

−
−

=→ε

−ε+−−−+

−−+

−+−=ε+

−−+

−+−=ε−

−−

−

−−

−

∑

∑

∑

∑

1

0

1
1

1

0

1

1

)(

0

1
1

1

0

1

1

)(

0

)()()2)(1(lim

)()((

)()1()(lim

)()((

)()1()(lim

)2)(1

)1(

)2)(1

)1(

L

L

L

L

L

Thus,

lk

i

i
l

i
l

blkkk

xSxS

−−

→

→→

−−−=

−−+

1

0

)(

0

)(

0

)()2)(1(lim

)(lim)(lim

ε

εε

ε

εε

L
 (5)

For l = 0, 1, ..., 2−k , the right hand side is zero, so that

)(lim)(lim)(

0

)(

0
εε

εε
−=+

→→
i

l
i

l xSxS (6)

Equation (5) shows the S(l)(x) is continuous at x = xi

When l = −k 1 the right hand side becomes (k – 1) (k –2) … 1⋅bi

Since generally bi≠0

 () ()εε
εε

−≠+ −

→

−

→
i

k
i

k xSxS)1(

0

)1(

0
limlim (7)

Equation (7) shows that the (k-1)th derivative of S(x) becomes discontinuous at x = xi. Even in this case, if bi, i = 1, 2, ..., n
– 1 are all zero, the (k-1)th derivative of S(x) becomes continuous. Then, from (3), it can be found that S(x) = p(x) over the
range [a, b]. This means that S(x) is virtually equal to the power series expanded at x = x0. Therefore, it can be said that an
arbitrary polynomial of degree (k-1) defined on [a, b] is a special form of the spline function. Equation (3) is referred to as
the expression of spline function by the truncated power function, it is in general numerically unstable because (x – xi)k-1
tends to assume a large absolute value.

Representation-2 of spline functions (introduction of B-splines)
In contrast with the representation (3), the representation by B-splines, which are defined below, can avoid numerical
difficulties.

Interpolation and approximation

 59

Let a series of points {tr} be defined by

121

1100121

−+++

−+−+−

≤≤≤≤=<
<=<=≤≤≤≤

knnnnn

kk

tttxt
xtxtttt

L

LL
 (8)

This series is shown in Figure 16.

xn-1 xnx2x1x0

tn+k-1 tn tn+1tn-1t2t1t0t-1t-k+1 ...

...

Figure 16 A series of points

Define gk (t; x) as a function of t with parameter x.

⎪⎩

⎪
⎨
⎧

<
≥−

=−=
−

−
+ xt

xtxtxtxtg
k

k
k ,0

,)()();(
1

1 (9)

See Figure 17.

t
x

gk(t;x)

xixi-1 xi+2xi+1

ti+2ti+1titi-1
Figure 17 gk (t; x)

Then, the k th order divided difference of gk (t ; x) with respect to t = tj, tj+1, ..., tj+k, multiplied by a constant:

];,,,[)()(1, xtttgttxN kjjjkjkjkj +++ −= L (10)

is called the normalized B-spline (or simply B-spline) of degree (k − 1).

The characteristics of B-spline Nj,k (x) are as follows. Now, suppose that the position of x is moved with tj, tj+1, ..., tj+k fixed.
When x ≤ tj since Nj,k(x) includes the k th order divided difference of a polynomial of degree (k-1) with respect to t, it
becomes zero. When tj+k ≤ x, Njk(x) is zero because it includes the k th order divided difference of a function which is
identically zero. When tj < x < tj+k, Nj,k(x) ≠ 0. In short,

⎪⎩

⎪
⎨
⎧

≤≤=

<<≠

+

+

xttx

txt
xN

kjj

kjj
kj or,0

,0
)(, (11)

(indeed, when tj < x < tj+k, 0 < Nj,k(x) ≤ 1)

Next, suppose that j is moved with x fixed. Here, let ti = xi < x < xi+1 = ti+1.

Then, in the same way as above, we can obtain

⎩
⎨
⎧

≤+−≤=
≤≤+−≠

jikij
ijki

xN kj 1or,0
1,0

)(, (12)

The characteristics (11) and (12) are referred to as the locality of B-spline functions.

Selection of Routines

60

From (10), B-spline Nj,k(x) can be written as

 ∑
+

= ++−

−
+

−−−−
−

−= +

kj

jr kjrrrrrjr

k
r

j tttttttt
xtttxN kjkj)())(()(
)()()(

11

1

,
LL

 (13)

Therefore, Nj,k(x) is a polynomial of degree (k-1) defined separately for each interval (xi, xi+1) and its derivatives of up to
degree k-2 are continuous. Based on this characteristic of Nj,k(x), it is proved that an arbitrary spline function S(x)
satisfying equation (2) can be represented as

)()(,

1

1
xNcxS kj

n

kj
j∑

−

+−=

= (14)

where cj, j = – k + 1, – k + 2,, n − 1 are constants

Calculating spline functions
Given a (k – 1)-th degree spline function,

)()(,

1

1
xNcxS kj

n

kj
j∑

−

+−=

= (15)

the method of calculating its function value, derivatives and integral

dyyS
x

x
)(

0
∫

at the point x ∈ [xi, xi+1) is described hereafter.

Calculating the function value
The value of S(x) at x ∈ [xi, xi+1] can be obtained by calculating Nj,k(x). In fact, because of locality (12) of Nj,k(x), only non-
zero elements have to be calculated.

Nj,k(x) is calculated based on the following recurrence equation

)()()(1,1
1

1,
1

, xN
tt

xtxN
tt

txxN sr
rsr

sr
sr

rsr

r
sr −+

++

+
−

−+ −
−

+
−

−
= (16)

where,

[]

⎩
⎨
⎧

≠
=

=

−−−=

−
−

−=

−=

+++

+

+
+

++

ir
ir

xtxt

tt
xtgxtg

tt

xttgttxN

rr

rr

rr
rr

rrrrr

,0
,1

)()(

);();(
)(

;,)()(

00
1

1

111
1

1111,

 (17)

By applying s = 2, 3,, k, r = i – s + 1, i – s + 2, ..., i to Eqs. (16) and (17), all of the Nr,s(x) given in Figure 18 can be
calculated, and the values in the rightmost column are used for calculating the S(x).

Interpolation and approximation

 61

N

N
N N N

N N N N

i k k

i

i i i k

i i i i k

− +

−

− − −

1

2 3

1 2 1 3 1

1 2 3

0
0

0

0

r

s
0 0

,

,

, , ,

, , , ,

Figure 18 Calculating Nr.s(x) at x∈[xi,xi+1)

Calculating derivatives and integral
From

)()()()(
,

1

1

)(xNxSxS
dx
d l

kj

n

kj
jcl

l

l

∑
−

+−=

== (18)

S(l)(x) can be obtained by calculating Nj,k
(l)(x).

From

 lk
l

kl

l
xt

lk
kxtg

x
−−

+−
−−
−−

= 1)(
)!1(
)!1()1();(

∂
∂ (19)

so Nj,k
(l)(x) is the divided difference of order k at t = tj, tj+1, ..., tj+k of (19).

Now let

⎪⎩

⎪
⎨
⎧

<
≥−

=−=
−−

−−
+ xt

xtxtxtxtd
lk

lk
k ,0

,)()();(
1

1

and let Dj,k(x) be the divided difference of order k at t = tj, tj+1,…, tj+k, i.e.,

];,,,[)(1, xtttdxD kjjjkkj ++= L (20)

This Dj,k(x) can be calculated by the following recurrence equations. For x ∈ [xi, xi+1),

ksl
tt

xDxtxDtx
xD

ls
tt

xDxD
xD

ir
irxx

xD

rsr

srsrsrr
sr

ssr

srsr
sr

ii
r

≤≤+
−

−+−
=

+≤≤
−

−
=

⎩
⎨
⎧

≠
=−

=

+

−++−

+

−−+

+

2,

)()()()(
)(

12,
)()(

)(

,0
),/(1

)(

1,11,
,

1,1,1
,

1
1,

 (21)

and if s = 2, 3, ..., k, and r = i – s + 1, i – s + 2, ..., i are applied, Dj,k for i – k + 1 ≤ j ≤ i, can be obtained. Then Nj,k
(l)(x) can

be obtained as follows:

)(
)!1(
)!1()1()()(,

)(
, xD

lk
kttxN kj

l

jkjkj −−
−−

−= +
ι

and S(l)(x) can then be obtained by using this equation. Next, the integral is expressed as

Selection of Routines

62

 dyyNdyySI
x

x kj

n

kj
jc

x

x
)()(

00
,

1

1
∫∑∫

−

+−=

== (22)

so it can be obtained by calculating dyyN
x

x kj)(
0

,∫

Integration of Nj,k(x) can be carried out by exchanging the sequence of the integration calculation with the calculation of
divided difference included in Nj,k(x).

First, from (9), the indefinite integral of gk(t ; x) can be expressed by

k
k xt

k
dxxtg +−−=∫)(1);(

where an integration constant is omitted. Letting ek(t; x) = (t – x)k
+ and its divided difference of order k represented by

 Ij,k(x) = ek[tj, tj+1, ..., tj+k ; x] (23)

then Ij,k(x) satisfies the following recurrence equation.

rsr

srsrsrr
sr

iiir

tt
xIxtxItx

xI

ir
irxxxx

ir
xI

−

−+−
=

⎪
⎩

⎪
⎨

⎧

+≥
=−−

−≤
=

+

−++−

++

)()()()(
)(

1,1
),/()(

1,0
)(

1,11,
,

111,

 (24)

where x ∈ [xi, xi+1).

If (24) is applied for s = 2, 3, ..., k and r = i – s + 1, i – s + 2, ..., i then a series of Ij,k (x) are obtained as shown in the
rightmost column in Figure 19.

0

0
0

0

1 1 1

r

s
1

1

2 3

1 2 1 3 1

1 2 3

I

I
I I I

I I I I

i k

i

i i i k

i i i i k

− +

−

− − −

,

, , ,

, , , ,

Figure 19 Calculation Ir,s(x) at x ∈ [xi, xi+1)

The integration of Nj,k(y) is represented by

[]

[])()(
)(

)()(
)(

)(

,0,

0,,
0

,

xIxI
k

tt

xIxI
k

tt
dyyN

kjkj
jkj

kjkj
jkix

x kj

−
−

=

−
−

−=

+

+
∫

Therefore from (22),

Interpolation and approximation

 63

()[]

() ()

()
⎪⎭

⎪
⎬
⎫

−+

⎪⎩

⎪
⎨
⎧

−−−=

−−==

∑

∑∑

∑∫

=
+

+
+−=

+
+−=

+

−

+−=

i

j
jkjj

kjjkj

i

kij
jkjjkj

kj
j

kjkjjkj

n

kj
j

x

x

ttc

xIttcxIttc
k

xIxIttc
k

dyySI

1

,
1

0,

0

1

,0,

1

10

)()(1

)()(1)(

 (25)

It has so far been assumed that the coefficients cj in equation (15) are known in the calculation procedures for function
values, derivatives, and integral values of the spline function S(x). The cj can be determined from the interpolation
condition if S(x) is an interpolation function, or from least squares approximation if S(x) is a smoothing function. In the
case of interpolation, for example, since n + k – 1 coefficients cj (– k + 1 ≤ j ≤ n – 1) are involved in (15), cj will be
determined by assigning n + k – 1 interpolation conditions to (15). If function values are given at n + 1 points (x = x0,
x1,, xn) in Figure 16, function values must be assigned at additional (n + k – 1) – (n + 1) = k – 2 points or k – 2 other
conditions (such as those on the derivatives) of S(x) must be provided in order to determine n + k – 1 coefficients cj.
Further information is available in Section 3.

The C-SSL II applies the spline function of (15) to smoothing, interpolation, numerical differentiation, quadrature, and
least squares approximation.

Definition, representation and calculation method of bivariate spline function
The bivariate spline function can be defined as an extension of the single variable spline functions described earlier.

Consider a closed region R = {(x,y) | a ≤ x ≤ b, c ≤ y ≤ d} on the x – y plane and points (xi, yj), where 0 ≤ i ≤ m and 0 ≤ j ≤
n according to the division given in (26)

dyyyc
bxxxa

n

m

=<<<=
=<<<=

L

L

10

10 (26)

Denoting Dx=∂/∂x and Dy=∂/∂y, the function S(x, y) which satisfies

Dx
k S(x,y) = Dy

k S(x,y) = 0

for each of the open regions (27) and satisfies (28)

 { }11, ,),(++ <<<<= jjiiji yyyxxxyxR (27)

][),(2,2 RCyxS kk −−∈ (28)

is called a bivariate spline function of full degree k – 1. Equation (27) and (28) shows that S(x,y) is a polynomial in x and y
on each of Rij and is at most degree (k – 1) with respect to either x or y. Further, (27) shows that on the entire R

),(yxS
yx μλ

μλ

∂∂
∂ +

exists and is continuous when λ = 0, 1, .., k−2 and μ = 0, 1, ..., k−2.

If a series of points are taken as :

Selection of Routines

64

s-k+1≤s-k+2≤L≤s-1≤s0=x0<s1=x1<L<
 <sm=xm≤sm+1≤L≤sm+k-1

t-k+1≤t-k+2≤L≤t-1≤t0=y0<t1=y1<L<
 <tn=yn≤tn+1≤L≤tn+k-1

the B-splines in either the x or y directions are defined in the same way as the B-spline with a single variable.

Nα ,k(x) = (sα+k−sα) gk[sα, sα+1, LL, sα+k ; x]
Nβ ,k(y) = (tβ+k−tβ) gk[tβ, tβ+1, LL, tβ+k ; y]

Then the bivariate spline function of dual degree k – 1 defined above can be represented in the form

)()(),(,,,

1

1

1

1
yNxNcyxS kk

m

k

n

k
βαβα

αβ
∑∑

−

+−=

−

+−=

= (29)

where, cα,β are arbitrary constants.

The calculation of function values, partial derivatives and indefinite integral of S (x,y) can be done by applying the
calculation for a single variable, if using the expression (29). First of all, for λ ≥ 0 and μ ≥ 0,

),(),(),(yxS
yx

yxS μλ

μλ
μλ

∂∂
∂ +

=

)()()(
,

)(
,,

1

1

1

1
yNxNc kk

m

k

n

k

μ
β

λ
αβα

αβ
∑∑

−

+−=

−

+−=

= (30)

Therefore, the calculation of the function values and partial derivatives are accomplished by separately calculating
N xkα

λ
,

() () , and N ykβ
μ
,

() () which can be done by applying the previously described method for a single variable.

Next, consider the value which is obtained by differentiating S(x,y) μ times with respect to y and then by integrating with
respect to x, namely

 dx
y

yxSyxS
x

x∫ ∂
∂

=−

0

),1(),(),(μ

μ
μ (31)

This value is unchanged even when the order of differentiation and integration is reversed. Rewriting the right-hand side
of (31) by using (29), we obtain

∫∑

∫∑∑
−

+−=

−

+−=

−

+−=

=

⋅
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

x

x k

m

k

x

x kk

n

k

m

k

dxxNc

dxxNyNc

0
,

1

1

0
,

)(
,,

1

1

1

1

)(

)()(

α
α

α

α
μ

ββα
βα (32)

where

)()(
,

1

1
, yNcc k

n

k

μ
β

β
βαα ∑

−

+−=

= .

This is similar to (23) given previously. Therefore, calculation of (32) is performed first by calculating cα and then by
calculating the integral by using the method for a single variable.

Interpolation and approximation

 65

In addition S(−1,μ)(x,y),

dy
x

yxSy

y
yxS ∫ ∂

∂
=−

0

)1,(),(
),(λ

λ
λ

∫∫=−− x

x

y

y
dxyxSdyyxS

00

)1,1(),(),(

can be calculated by applying the method for calculating derivatives and integrals for a single variable each for x and y
separately.

3. Interpolation

The general procedure of interpolation is to first obtain an approximate function; e.g. polynomial, piecewise polynomial,
which fits given sample points (xi,yi), then to evaluate that function.

When polynomials are used for approximation, they are called Lagrange interpolating polynomials or Hermite
interpolating polynomials (using derivatives as well as function values). The Aitken-Lagrange interpolation and Aitken-
Hermite interpolation methods used in C-SSL II belong to this. As a characteristic, they find the most suitable interpolated
values by increasing the degree of interpolating polynomials iteratively.

Piecewise polynomials are used for the interpolation function when a single polynomial is difficult to apply. C-SSL II
provides quasi-Hermite interpolation and spline interpolation methods.

Interpolating splines are defined as functions which satisfy the interpolating condition; i.e fits the given points.
Interpolating splines are not uniquely determined: they can vary with some additional conditions. In C-SSL II, four types
of spline interpolation are available. The B-spline representation is used because of its numerical stability.

Interpolation by B-spline
Routines using B-spline are divided into two types according to their objectives.

• Routines by which interpolated values (or derivatives, integrals) are obtained
• Routines by which interpolating splines are obtained.

Since the routines which obtain interpolated values use interpolating splines, these splines must be obtained first.

C-SSL II provides various interpolating B-splines. Let discrete points be xi, i = 1, 2, ..., n, then four types of B-spline
interpolating function of degree m (=2l − 1, l ≥ 2) are available depending on the presence/absence or the contents of
boundary conditions.

• Type I S(j)(x1), S(j)(xn), j = 1, 2, ..., l – 1 are specified by the user.
• Type II S(j)(x1), S(j)(xn), j = l, l+1, L, 2l−2 are specified by the user.
• Type III No boundary conditions.
• Type IV S(j)(x1) = S(j)(xn), j = 0, 1,L, 2l−2 are satisfied. This type is suitable to interpolate periodic

functions.

Selection of the above four types depends upon the quantity of information on the original function available to the user.
Typically, routines of type III (No boundary conditions) can be used.

Selection of Routines

66

The bivariate spline function S(x,y) shown in (29) is used as an interpolation function for a two-dimensional interpolation.
The C-SSL II provides interpolation using only type I or III in both x and y directions.

The degree of spline must be selected by the user. Usually m is selected as 3 or 5, if the original function does not change
abruptly, m may take a higher value. However, m should not exceed 15 because it may cause another problem.

Table 16 lists interpolation routines.

Table 16 Interpolation routines

Objective Routine name Method Notes
c_daklag Aitken-Lagrange

interpolation
Derivatives not
needed.

c_dakher Aitken-Hermite
interpolation

Derivatives
needed

c_dbif1 B-spline interpolation (I) Type I
c_dbif2 B-spline interpolation (II) Type II
c_dbif3 B-spline interpolation (III) Type III
c_dbif4 B-spline interpolation (IV) Type IV
c_dbifd1 B-spline two-dimensional

interpolation(I-I)
Type I-I

c_dbifd3 B-spline two-dimensional
interpolation (III-III)

Type III-III

Interpolated value

c_dakmid Two-dimensional quasi-
Hermite interpolation

c_dakmin Quasi-Hermite interpolation
c_dbic1 B-spline interpolation (I) Type I
c_dbic2 B-spline interpolation (II) Type II
c_dbic3 B-spline interpolation (III) Type III
c_dbic4 B-spline interpolation (IV) Type IV
c_dbicd1 B-spline two-dimensional

interpolation (I-I)
Type I-I

Interpolating
function

c_dbicd3 B-spline two-dimensional
interpolation (III-III)

Type III-III

Quasi-Hermite interpolation
This is an interpolation by using piecewise polynomials similar to spline interpolation. The only difference between the
two is that quasi-Hermite interpolation does not require so strict a condition on the continuity of higher degree derivatives
as the spline interpolation does.

A characteristic of quasi-Hermite interpolation is that no “wiggle” appears between discrete points. Therefore it is suitable
for curve fitting or surface fitting to the accuracy of a hand-drawn curve by a trained draftsman.

However, if very accurate interpolated values, derivatives or integrals are to be obtained, the B-spline interpolation should
be used.

Interpolation and approximation

 67

4. Approximation

This includes least-squares approximation polynomials as listed in Table 17. The least squares approximation using B-
splines is treated in Section 5.

Table 17 Approximation routine

Objective Routine name Method Notes
Least squares
approximation
polynomials

c_dlesq1 Discrete point
polynomial

The degree of the polynomial is
determined within the routine.

5. Smoothing

Table 18 lists routines used for smoothing.

Table 18 Smoothing routines

Objective Routine name Method Notes
c_dsmle1 Local least-squares

approximation polynomials
Equally spaced discrete points

c_dsmle2 Local least-squares
approximation polynomials

Unequally spaced discrete
points

c_dbsf1 B-spline smoothing Unequally spaced discrete
points

Smoothed
value

c_dbsfd1 B-spline two-dimensional
smoothing

Unequally spaced lattice points

c_dbsc1 B-spline smoothing (fixed
nodes)

c_dbsc2 B-spline smoothing (added
nodes)

Unequally spaced discrete
points

Smoothing
function

c_dbscd2 B-spline two-dimensional
smoothing (added nodes)

Unequally spaced lattice points

Routines c_dsmle1 and c_dsmle2 apply local least-squares approximation for each discrete point instead of applying
the identical least-squares approximation over the observed values. However, it is advisable for the user to use B-spline
routines. In B-spline smoothing, spline functions shown in (14) and (29) are used for the one-dimensional smoothing and
two-dimensional smoothing respectively. Coefficients cj or cα,β are determined by the linear least squares. The smoothed
value is obtained by evaluating the obtained smoothing function. C-SSL II provides routines for evaluating the smoothing
functions.

There are two types of routines to obtain B-spline smoothing functions depending upon how to determine knots. They are:

• The user specifies knots (fixed knots)
• Routines determine knots adaptively (variable knots)

The former requires experience on how to specify knots. Usually the latter routines are recommended.

Selection of Routines

68

6. Series

C-SSL II provides routines shown in Table 19 for Chebyshev series expansion, series evaluation, derivatives and
indefinite integral.

Table 19 Chebyshev series routines

Objective Routine name Method Notes
Series expansion c_dfcheb Fast cosine transformation Number of terms is

(Power of 2) + 1.
Evaluation of series c_decheb Backward recurrence equation
Derivatives of series c_dgcheb Differention formula for

Chebyshev polynomials

Indefinite integral of
series

c_dicheb Integral formula for Chebyshev
polynomials

Table 20 lists routines used for cosine series expansion, sine series expansion and their evaluation, which are for periodic
functions.

Table 20 Cosine or sine series routines

Objective Routine name Method Notes
Cosine series expansion c_dfcosf Fast cosine transformation Even functions
Cosine series evaluation c_decosp Backward recurrence equation Even functions
Sine series expansion c_dfsinf Fast sine transformation Odd functions
Sine series evaluation c_desinp Backward recurrence equation Odd functions

Transforms

 69

Transforms

1. Outline

This section explains discrete Fourier transforms and Laplace transforms.

Characteristics
For a discrete Fourier transform, routines are provided for each of the characteristics of transformed data. The data
characteristics are classified as

• Real or complex data, and
• For real data, even or odd function

2. Discrete real Fourier transforms

When handling real data, routines are provided to perform the transform (1) and the inverse transform (2)

⎪
⎪

⎭

⎪
⎪

⎬

⎫

−==

==

∑

∑
−

=

−

=

1
2

,,2,1,
2

sin2

2
,,1,0,

2
cos2

1

0

1

0

nk
n

kj
x

n
b

nk
n

kj
x

n
a

n

j
jk

n

j
jk

L

L

π

π

 (1)

1,,1,0,cos
2
1

2
sin

2
cos

2
1

2/

12/

1
0

−=π+

⎟
⎠

⎞
⎜
⎝

⎛ π
+

π
+= ∑

−

=

njja

n
kj

b
n

kj
aax

n

n

k
kkj

L

 (2)

where ak and bk are called discrete Fourier coefficients. These correspond to the integrals

()

() ⎪
⎪
⎭

⎪⎪
⎬

⎫

∫

∫
π

π

π

π
2

0

2

0

sin1

cos1

dtkttx

dtkttx
 (3)

which define Fourier coefficients of a real valued function x(t) with period 2π. The transforms (1) can be derived by
representing the function x(t) by n points

1,,1,0,2
−=⎟

⎠
⎞

⎜
⎝
⎛= njj

n
xx j K

π ,

in the closed interval [0,2π] and by applying the trapezoidal rule. Particularly, if x(t) is the (n/2 – 1)th order trigonometric
polynomial, the transforms (1) are the exact numerical integral formula of the integrals (3). In other words, the discrete
Fourier coefficients are identical to the analytical Fourier coefficients.

Either the discrete cosine or sine transforms can be used, depending on whether the function x(t) is even or odd.

Selection of Routines

70

3. Discrete cosine transforms

Routines are provided to perform two variants of the cosine transform for even functions. One of the transforms includes
the end points of the closed interval [0,π], and the other transform does not include the end points.

Discrete cosine transform (Trapezoidal rule)
This variant of the cosine transform is defined by representing an even function x(t) by

⎟
⎠
⎞

⎜
⎝
⎛= j

n
xx j

π , j=0, 1, ..., n

in the closed interval [0,π] and by applying the trapezoidal rule to

 ()∫
π

π 0
cos2 dtkttx (4)

which defines the Fourier coefficients of x(t). The transform and inverse transform are:

 nkkj
n

x
n

a
n

k
jk ,,1,0,cos"2

0
L== ∑

=

π (5)

 njkj
n

ax
n

k
kj ,,1,0,cos"

1

0
L== ∑

−

=

π (6)

where Σ″ denotes that both the first and the last terms of the sum are multiplied by 1/2.

Discrete cosine transform (midpoint rule)
This variant of the cosine transform is defined by representing an even function x(t) by

1,,1,0,
2
1

2/1 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=+ njj

n
xx j L

π

in the open interval (0,π). The transform (7) can be derived by applying a midpoint rule with n terms to the integral (4).
The transform and inverse transform are:

 1,,1,0,
2
1cos2 1

0 2
1 −=⎟

⎠
⎞

⎜
⎝
⎛ += ∑

−

= +
nkjk

n
x

n
a

n

j jk L
π (7)

 1,,1,0,
2
1cos'

1

02
1 −=⎟

⎠
⎞

⎜
⎝
⎛ += ∑

−

=+
njjk

n
ax

n

k
k

j
L

π (8)

where Σ′ denotes that the first term of the sum is multiplied by 1/2.

4. Discrete sine transforms

Routines are provided to perform two variants of the sine transform for odd functions. One of the transforms includes the
end points of the closed interval [0,π], and the other transform does not include the end points.

Discrete sine transform (Trapezoidal rule)
This variant of the sine transform is defined by representing an odd function x(t) by

Transforms

 71

⎟
⎠
⎞

⎜
⎝
⎛= j

n
xx j

π , j=1, ..., n-1

in the closed interval [0,π] and by applying the trapezoidal rule to the integral:

 ()∫
π

π 0
sin2 dtkttx (9)

which defines the Fourier coefficients of x(t). The transform and inverse transform are:

 1,,2,1,sin2 1

1
−== ∑

−

=

nkkj
n

x
n

b
n

j
jk L

π (10)

 1,,2,1,sin
1

1
−== ∑

−

=

njkj
n

bx
n

k
kj L

π (11)

Discrete sine transform (midpoint rule)
This variant of the sine transform is defined by representing an odd function x(t) by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=+ 2

1
2/1 j

n
xx j

π , j=0,1, ..., n-1

in the open interval (0,π). The transform (12) can be derived by applying the midpoint rule with n terms to the integral (9).
The transform and inverse transform are:

 nkjk
n

x
n

b
n

j jk ,,2,1,
2
1sin2 1

0 2
1 L=⎟

⎠
⎞

⎜
⎝
⎛ += ∑

−

= +

π (12)

 ⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ += ∑

−

=+ 2
1sin

2
1

2
1sin

1

12
1 jbjk

n
bx n

n

k
kj

ππ j n= −0 1 1, , ,L (13)

5. Discrete complex Fourier transforms

For complex data, routines are provided to perform the transforms corresponding to the transform (14) and the inverse
transform (15)

 1,,1,02exp1 1

0
−=⎟

⎠

⎞
⎜
⎝

⎛−= ∑
−

=

nk
n
jkix

n

n

j
jk Lπα (14)

 1,,1,02exp
1

0
−=⎟

⎠

⎞
⎜
⎝

⎛= ∑
−

=

nj
n
jk

ix
n

j
kj Lπα (15)

Transform (14) can be derived by representing the complex valued function x(t) with period 2π by

,,,1,0,2 njj
n

xx j K=⎟
⎠
⎞

⎜
⎝
⎛=

π

in the closed interval [0,2π] and by applying the trapezoidal rule to the integral

Selection of Routines

72

 () ()∫ −
π

π
2

0
exp

2
1 dtikttx (16)

which defines the Fourier coefficients of x(t).

The discrete type Fourier transforms described above are all performed by using the Fast Fourier Transform (FFT).

The fastest implementations of the FFT require the number of data items n to be a power of two. One of the complex FFT
routines allows the number of data items to be arbitrary, but in general performance will be better if one of the following
apply:

• The number of data items is a power of 2 (radix 2)
• The number of data items can be expressed as a multiple of 2, 3 and 5 only (radix 2, 3 and 5)
• The number of data items can be expressed as a product of mutually prime factors selected from

{2,3,4,5,7,8,9,16} (mixed radix).

In addition, selected routines can perform combinations of:

• Multiple transforms
• Multidimensional transforms (where normally the number of dimensions is 1, 2 or 3)
• Multivariate transforms.

Table 21 lists the routines for each data characteristic.

Comments on use
Sample point number (dimension)
The number of data points, n, of transformed data is defined differently depending on the properties of the function x(t).
That is, n corresponds to:

• the number of sample points taken in the half period interval, (0,π), or [0,π], for the cosine and sine
transforms or

• the number of sample points taken in the full period interval, [0,2π], for the real and complex transforms.

Real transform versus cosine and sine transforms
If it is known in advance that the x(t) is either an even or odd function, the routine for cosine and sine transforms should
be used. (The processing speed is about twice as fast as for a real transform.)

Fourier coefficients in real and complex transforms
The following relationships exist between the Fourier coefficients {ak} and {bk} used in a real transform (including cosine
and sine transforms) and the Fourier coefficient {αk} used in a complex transform.

 ()
() ⎪

⎭

⎪
⎬

⎫

−=−=
−=+=

==

−

−

12/,2,1,
12/,,2,1,

2,2 2/2/00

nkib
nka

aa

knkk

knkk

nn

L

L

αα
αα

αα
 (17)

where n denotes equally spaced points in a period [0,2π]. Based on the above relationships, users can use both routines for
real and complex transforms as appropriate. However, attention must be paid to scaling and data ordering.

Transforms

 73

Trigonometric functions
For cosine and sine transforms, the necessary trigonometric function table for transforms is provided in the routine for
better processing efficiency. The function table is output to the argument tab, which can be used again for successive
transforms.

For each transform, two routines are provided based on the trapezoidal rule and the midpoint rule. The size of the
trigonometric function table is smaller and therefore more efficient in the former.

Scaling
Scaling of the resultant values is left to the user.

Table 21 Routines for discrete Fourier transform

Type of transform Radix Routine Features

Cosine
Trapezoidal rule

2
c_dvcos1

Midpoint rule c_dfcosm
 Arbitrary c_dvmcst

Sine
Trapezoidal rule

2
c_dvsin1

Midpoint rule c_dfsinm
 Arbitrary c_dvmsnt

Real transform

2, 3 or 5
c_dvmrft Multiple,

multivariate
c_dvsrft 1-D multiple

2
c_dvrft1
c_dvrft2 Memory efficient

Mixed
c_dvrpf3 3-D
c_dvmrf2

Complex transform

Arbitrary c_dvmcft Multiple,
Multivariate

2

c_dvcft1
c_dvcft2 Memory efficient
c_dvcft3 for data sequence

with a constant
stride

Mixed

c_dvcpf1 1-D
c_dvcpf3 3-D
c_dvcfm1 1-D
c_dvmcf2

6. Laplace transform

The Laplace transform of f(t) and its inverse are defined respectively as:

Selection of Routines

74

0

e dttfsF st (18)

i

i
st dssF

i
tf

e

2
1 (19)

where > 0, 0 (abscissa of convergence).

In these transforms, f(t) is called the original function and F(s) the image function. Assume the following about F(s).

0

0s

0

Refor * 3)

Refor 0lim 2)
>Refor r nonsingula is 1)

ssFsF

ssF
ssF

*

 (20)

where F*(s) is the conjugate of F(s). Condition 1) is always satisfied, condition 2) is satisfied unless f(t) is a distribution
and condition 3) is satisfied when f(t) is a real function. The C-SSL II routines perform the numerical transformation of
expression (19). The outline of the method is described below.

Formula for numerical transformation
Assume 0 0 for simplicity, that is F(s) is regular in the domain of Re(s) > 0, and the integral (19) exists for an arbitrary
real value greater than 0. Since

 see s

0cosh2lim 0

0

est in (19) is approximated as follows using an appropriate value for

 stestEec 00 cosh2, 0

Function Eec(st,0) is characterized as follows:

There are an infinite number of poles on the line expressed by Re(s)=0/t. Figure 20 shows locations of the poles. This can
be explicitly represented as:

n

n

ec tnis
i

t
estE

5.0
1

2
,

0
0

0

Then, f(t,0) which denotes an approximation of the original function f(t) is:

ir

ir ec dsstEsF
i

tf 00 ,
2
1, (21)

where 0 < < 0/t is assumed.

It follows that the integral of the right-hand side can be expanded in terms of integrals around the poles of Eec(st,0).

Transforms

 75

Imaginary axis

Real axis

Re(s)=

Figure 20 Poles of Eec(st,0)

Since F(s) is regular in the domain of Re(s) > 0, the following is obtained according to Cauchy’s integral formula:

1

0

01
0

5.0
Im1

5.0
1

2
,

0

0

n

n

n

n

n

t
ni

F
t

e

t
ni

iF
t

etf

 (22)

If 0 > 0 the condition 0 < < 0/t cannot be satisfied for a certain value of t(0 < t <). This means 0 0 is
necessary for (22) to be used for 0 < t < .

Function f(t,0) gives an approximation to function f(t) and is expressed as follows:

 tfetfetftf 53, 00 42
0

 (23)

This means that function f(t,0) gives a good approximation to f(t) when 0 >> 1. Moreover, (23) can be used for
estimating the approximation error.

For numerical calculation, the approximation can be obtained principally by truncating (22) up to an appropriate term;
however, the direct summation is often not practical. The Euler transformation that can be generally applied in this case is
incorporated in the routines. Define function Fn as follows:

t
ni

FF n
n

 5.0
Im1 0 (24)

Then, the Euler transformation is applicable when the following conditions are satisfied (See reference [14] for details.):

 1) For an integer k1, the sign of Fn alternates when nk (25)

 2) 1/2 | Fn+1/Fn | < 1 when n k

When Fn satisfies these conditions, the series represented by (22) can be transformed as:

 kRFDFF p

p

q
k

q
q

k

n
n

n
n 1

0
1

1

11 2
1

 (26)

where Rp(k) is defined as:

Rp(k) 2P(DpFk+DpFk+1+DpFk+2+)

Selection of Routines

76

DpFk is the pth difference defined as

 1
10 ,
 k

p
k

p
k

p
kk FDFDFDFFD (27)

In the routines, the following expression is employed:

p

q
q

k
qk

n
n

N

n
nN

FD
F

t
eF

t
etf

0
1

1

11
0

2
,

00
 (28)

where N = k + p,

r
p

AAA

FA
FD

rprppp

p

r
rkrpp

p

q
q

k
q

1
,1

2
1

2

,1,,

0
,1

0
1

 (29)

The determination of the values for 0, k, and p is explained in each routine description.

The following has been proved for the truncation error of fN(t,0). Suppose (n) Fn. If the p th derivative of (x), (p)(x),
is of constant sign for positive x and monotonously decreases with increase of x (for example, if F(s) is a rational function),
the following will be satisfied:

 k
p

pNN

pN

FD
t

etftf

kR
t

etftf

1
1001

100

2
1,,

,,

0

0

 (30)

where fN+1(t,0) stands for (28) with k + 1 instead of k. To calculate Dp+1Fk in the above formula, Fk+p+1 is required, in
addition to the set {Fn; n = k, k+1,, k+p} to be used for calculation of fN(t,0); hence, one more evaluation of the
function is needed. To avoid that, the following expression is substituted for the truncation error of fN(t,0) in the routines;

 1
1

1010
2

1,,
0

 k
p

pNN FD
t

etftf

In the routines, the truncation error is output in the form of the following relative error:

rk

p

r
rpp

k

n
n

k
p

p

N

NN

FAF

FD

tf
tftf

0
,1

1

1

1
1

1

0

010

2
1

2
1

,
,,

Dp+1Fk-1 is a linear combination of Fk-1, Fk, ..., Fk+p. The coefficients Ap,r can be calculated as a cumulative sum, as shown
in (29). Thus, these coefficients can easily be calculated by using Pascal’s triangle. Figure 21 shows this calculation
techniques (for p = 4)

Transforms

 77

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

31 26 16 6 1

coefficients of
D5Fk-1

A4,r
Figure 21 Pascal’s triangle (for p=4)

When 0>0, since F(s) is not regular in the domain of Re(s) > 0; the above technique cannot be directly applied. Note,
however, that the integral in (19) can be expressed as:

 tge

dsesG
i

e

dsesF
i

tf

tr

stir

ir

tr

tsir

ir

0

0

0

)(
2

2
1

0

 (31)

 where r>0, G(s)=F(s+ro)

 dsesG
i

tg stir

ir

2
1

Since G(s) is regular in the domain of Re(s) > 0, g(t) can be calculated as explained above; then f(t) is obtained by
multiplying g(t) by t0e

Transformation of rational functions
A rational function F(s) can be expressed as follows using polynomials Q(s) and P(s) each having real coefficients:

 F(s) = Q(s) / P(s) (32)

To determine whether 00 or 0>0, it is only necessary to check whether P(s) is a Hurwitz polynomial (that is, all zeros
are on the left-half plane {s | Re(s)<0}. The procedure used for the check is described below (reference [56]):

A polynomial P(s) of degree n with real coefficients is expressed as follows:

3
4

1
2

1
2

31

1
1

21

0,where
nn

nn

nn
nn

sasasn

asasasm

snsm
asasasasP

The ratio of n(s) to m(s) is defined as:

 snsmsW

Then, W(s) is expanded into continued fraction as:

Selection of Routines

78

shshsh
shsW

432
1

111

If all of h1, h2, are positive, P(s) is a Hurwitz polynomial. If F(s) has singularities in the domain of Re(s) >0, the above
procedure can be repeated by increasing (> 0) so that G(s)=F(s+) is regular in the domain of Re(s) > 0. The value of
fN(t,0) is calculated by multiplying et by gN(t,0), the inverse of G(s).

When F(s) is an irrational function or a distribution, there is no practical method that tests if F(s) is regular in the domain
of Re(s) > 0, therefore, the abscissa of convergence of a general function F(s) must be specified by the user.

Choice of routines
Table 22 shows routines for the inversion of Laplace transforms. c_dlaps1 and c_dlaps2 are used for rational
functions with c_dlaps1 for 0 0 and c_dlaps2 otherwise. c_dhrwiz judges the condition P(s), that is, examines
if 0 > 0 in (32) is a Hurwitz polynomial; and if 0 > 0 is detected, the approximated value of 0 is calculated. The condition
0 > 0 means that the original function f(t) increases exponentially as t . c_dhrwiz can be used for examining this
behaviour. Figure 22 shows a flowchart for choosing routines.

Table 22 Laplace transform routines

Function type Routine name Remarks

Rational functions

c_dlaps1
Rational functions regular
in the right-half plane.

c_dlaps2 General rational functions.

c_dhrwiz
Judgment on Hurwitz
polynomials.

General functions
c_dlaps3

Convergence coordinate 0
must be input.

Transforms

 79

0 is
required

0 0 is
satisfied

Inversion
required

Rational
function

cdlaps1

cdlaps3

cdhrwz

cdlaps2

End

Inversion
required

0 0 is
satisfied

no

1

no

no
no

no

noyes

yes

yes

yes

1

yes

yes

Figure 22 Flowchart for choosing Laplace transform routines.

Selection of Routines

80

Numerical differentiation and quadrature

1. Outline

This section describes the following types of problems.

Numerical differentiation:
Given function values yi = f(xi), i = 1, ... n at discrete points x1 < x2 < ... < xn, the l - th order derivative)()(vf l , at x = v in
the interval [x1, xn] is determined, where l 1.

Two-dimensional differentiation is also included. Given the function f(x), the derivative 1,)()()(ldxxfdxf lll
is approximated by a Chebyshev series expansion.

Numerical quadrature:
Given function values yi = f(xi), i = 1, ..., n at discrete points x1, x2, ..., xn, the integral of f(x) over the interval [x1, xn] is
determined. Also, given the function f(x), the integral

b

a
dxxfS)(

is determined within a required accuracy. Multi-dimensional integrals are also supported.

2. Numerical differentiation

When performing numerical differentiation, C-SSL II divides problems into the following two types:

Discrete point input
In numerical differentiation, an appropriate B-spline interpolation function is first obtained to fit the given sample points
(xi,yi) where i = 1, 2, ..., n, then it is differentiated.

See the Interpolation and approximation section in this chapter for a description of spline functions and the B-spline
representation.

Function input
Given the function f(x) and domain [a, b], f(x) is expanded in Chebyshev series within a required accuracy. That is, it is
approximated by the following functions:

1

0

2)(
n

k
kk ab

abxTcxf

Then by differentiating term by term.

1

0

2ln

k
k

l
k

l

ab
abxTcxf

the derivatives are expanded in Chebyshev series. The derivative values are obtained by summing the appropriate
Chebyshev series at the point x = v in the interval [a, b].

Numerical differentiation and quadrature

 81

Table 23 lists routines used for numerical differentiation.

Table 23 Routines used for numerical differentiation

Objective Routine name Method Remarks
Derivative
value

c_dbif1 B-spline interpolation (I) Discrete point input
c_dbif2 B-spline interpolation (II)
c_dbif3 B-spline interpolation (III)
c_dbif4 B-spline interpolation (IV)
c_dbsf1 B-spline smoothing
c_dbifd1 B-spline 2-dimensional

interpolation (I-I)
Discrete point input 2-
dimensional

c_dbifd3 B-spline 2-dimensional
interpolation (III-III)

c_dbsfd1 B-spline two-dimensional
smoothing

Derivative
function and
derivative
value

c_dfcheb Fast cosine transformation Function input, Chebyshev
series expansion

c_dgcheb Backward recurrence
equation

Chebyshev series
derivative

c_decheb Backward recurrence
equation

Summing Chebyshev
series

3. Numerical quadrature

Numerical quadrature is divided into the following two types.

Integration of a tabulated function
Given function values yi = f(xi), i = 1, ..., n at discrete points x1 < x2< <xn, the definite integral:

nx

x
dxxfS

1

)(

is approximated using only the given function values yi. The bounds of error of the approximated value cannot be
calculated. Different routines are used depending on whether or not the discrete points are equally spaced.

Integration of a function
Given a function f(x) and the interval of integration [a, b], the definite integral:

b

a
dxxfS)(

is calculated within a required accuracy. Different routines are used according to the form, characteristics, and the interval
of integration of f(x).

The following types of integrals are also supported.

Selection of Routines

82

0
)(dxxf

dxxf)(

b

a

d

c
dyyxfdx),(

Routines used for numerical quadrature are shown in Table 24.

Table 24 Numerical quadrature routines

Objective Routine name Method Remarks
1-dimensional finite
interval
(equally spaced)

c_dsimp1 Simpson’s rule Discrete point input

1-dimensional finite
interval
(unequally spaced)

c_dtrap Trapezoidal rule
c_dbif1 B-spline interpolation (I)
c_dbif2 B-spline interpolation (II)
c_dbif3 B-spline interpolation (III)
c_dbif4 B-spline interpolation (IV)
c_dbsf1 B-spline smoothing

2-dimensional finite
interval

c_dbifd1 B-spline 2-dimensional
interpolation (I-I)

Discrete input 2-
dimensional

c_dbifd3 B-spline 2-dimensional
interpolation (III-III)

c_dbsfd1 B-spline two-dimensional
smoothing

1-dimensional finite
interval

c_daqn9 Adaptive Newton-Cotes 9
point rule

Integration of a function

c_daqc8 Clenshaw-Curtis integration
c_daqe Double exponential formula

1-dimensional semi-
infinite interval

c_daqeh Double exponential formula

1-dimensional infinite
interval

c_daqei Double exponential formula

Multi-dimensional
finite region

c_daqmc8 Clenshaw-Curtis quadrature Multi-variate function
input

Multi-dimensional
region

c_daqme Double exponential formula

General conventions and comments on numerical quadrature
The routines used for numerical quadrature are classified primarily by the following characteristics.

 Dimensions of the variable of integration: 1, 2 or 3 dimensions
 Interval of integration: dimensions finite interval, infinite interval, or semi-infinite interval.

Numerical differentiation and quadrature

 83

Numerical integration methods differ depending on whether a tabulated function or a continuous function is given. For a
tabulated function, since integration is performed using just the function values yi = f(xi), i = 1, ...n it is difficult to obtain
an approximation with high accuracy. On the other hand, if a function is given, function values in general can be
calculated anywhere (except for singular cases), thus the integral can be obtained to a desired precision by calculating a
sufficient number of function values. Also, the bounds of error can be estimated.

Integrals of one-dimensional functions over a finite interval
Automatic quadrature routines
Four quadrature routines, c_dsimp2, c_daqn9, c_daqc8, and c_daqe are provided for the integration of

b

a
dxxf ,

as shown in Table 24. All these routines are automatic quadrature routines, that is they calculate the integral to satisfy the
desired accuracy when integrand f(x), integration interval [a, b], and a desired accuracy for the integral are given.

Generally in automatic quadrature routines, an integral calculation starts with only several abscissas (where the integrand
is evaluated), and improves the integral by increasing the number of abscissas gradually until the desired accuracy is
satisfied. Then the calculation stops and the integral value is returned.

In recent years, many automatic quadrature routines have been developed all over the world. These routines have been
tested and compared with each other many times for reliability (i.e. ability to satisfy the desired accuracy) and economy
(i.e. less calculation) by many persons. These efforts are reflected in the C-SSL II routines.

Adaptive method
This is the most commonly used type of automatic integration method. This is not a specific integration formula (for
example, Simpson’s rule, Newton-Cotes 9 point rule, or Gauss’s rule, etc.), but a method which controls the number of
abscissas and their positions automatically in response to the behavior of the integrand. That is, it locates abscissas densely
where the integrand changes rapidly, or sparsely where it changes gradually. Routines c_dsimp2 and c_daqn9 use this
method.

Routine selection
As a preliminary for routine selection, Table 25 shows several types of integrands from the viewpoint of actual use.

It is necessary in routine selection to know which routine is suitable for the integrand. The types of routines and functions
are described below in conjunction with Table 25.

Table 25 Integrand type

Code Meaning Example
Smooth Function with rapidly

convergent power series. 1

0
e dxx

Peak Function with some high
peaks and wiggles in the
integration interval.

1

1 62)10(x
dx

Oscillatory Function with severe, short
length wave oscillations.

1

0
100sin xdx

Selection of Routines

84

Code Meaning Example
Singular Function with algebraic

singularity (x, -1 <) or
logarithmic singularity (log x).

1

0

1

0

log

/

xdx

xdx

Discontinuous Function with discontinuities
in the function value or its
derivatives

0
cos dxx

c_daqn9 Adaptive method based on Newton-Cotes’ 9-point rule. This is the recommended adaptive method in because of

its superior reliability or economy. Since this routine is good at detecting local actions of integrand, it can be used
for functions which have singular points such as a algebraic singularity, logarithmic singularity, or discontinuities
in the integration interval, and in addition, peaks.

c_daqc8 Since this routine is based on the Chebyshev series expansion of a function, the more effectively the function can
be approximated, the better the convergence property of the integrand. For example, it can be used for smooth
functions and oscillatory functions but is not suitable for singular functions and peak type functions.

c_daqe This method extends the integration interval [a, b] to (-,) by variable transformation and uses the trapezoidal
rule. In this processing, the transformation is selected so that the integrand after conversion will decay in a
manner of a double exponential function (exp(-aexp|x|), where a>0) when x. Due to this operation, the
processing is still effective even if the function changes rapidly near the end points of the original interval [a, b].
This routine is well suited for functions which have an algebraic singularity or logarithmic singularity only at the
end points; processing is more successful than any other routine, but is not as successful on functions with
interior singularities.

Table 26 summarizes these descriptions. The routine marked by ‘OK’ is the most suitable for the corresponding type of
function, and routines marked by ‘X’ should not be used for the type. A blank indicates that the routine is not always
suitable but can be used. All these routines can satisfy the desired accuracy for the integral of smooth type. However,
c_daqc8 is best in the sense of economy, that is, the amount of calculation is the least among the three.

Table 26 Routine selection

 Function type
Routine Smooth Peak Oscillatory End point

singularity
Interior
singularit
y

Discontinuous Unknown*

c_daqn9 OK OK OK OK
c_daqc8 OK X OK X X X
c_daqe OK X X

* Functions with unknown characteristics

C-SSL II provides routines c_daqmc8 and c_daqme for integration in up to 3 dimensions. They are automatic
quadrature routines as described below.

c_daqmc8 Uses Clenshaw-Curtis quadrature for each dimension. It can be used for a smooth and oscillatory functions.
However, it is not applicable to functions having singular points or peaked functions.

c_daqme Uses double exponential formula for each dimension. Since this routines has all formulas used in c_daqe,
c_daqeh and c_daqei, it can be used for any type of intervals (finite, semifinite or infinite interval).

Differential equations

 85

Differential equations

1. Outline

This section describes the solution of initial value problems of ordinary differential equations.

Initial value problems of systems of first order ordinary differential equations are solved directly.

)(,,,,

)(,,,,
)(,,,,

001

0220122

0110111

xyyyyxfy

xyyyyxfy
xyyyyxfy

nnnnn

n

n

 (1)

Initial value problems of high order ordinary differential equations can be reduced to the form shown in (1). Namely,
when a high order equation:

),,,,,,()1()(kk yyyyxfy

)(,),(),(0
)1(

0020010 xyyxyyxyy k
k

is handled, we can let:

)(,),(),()1(
21 xyyxyyxyy k

k

Then, the high order equations can be reduced to and expressed as:

)(,,,,

)(,
)(,

001

022032

011021

xyyyyxfy

xyyyy
xyyyy

kkkk

 (2)

2. Ordinary differential equations

To solve the initial value problem y´ = f(x,y), y(x0) = y0 on the interval [x0, xe] means to obtain approximate solutions at
discrete points x0 < x1 < x2 < ... <xe step by step as shown in Figure 23.

Selection of Routines

86

y

y0

 0 x0 x1 x2 x3 x4 x5 xe
x

Figure 23 Approximate solutions of y = f (x, y), y(x0) = y0

Solution output
In Figure 23, solution output points x1, x2, x3, ... are either specified by the user or selected as a result of step-size control
by the routine. The purpose of solving the differential equations is to obtain:

 the solution y(xe) only at xe,
 the solutions at the points selected as a result of step-size control by the routine. In this case, the purpose is to

know the behavior of solutions, and no restriction is necessary to the solution output points because the
behaviour of the solutions is all that is needed,

 the solution at user-specified points {j} or at equally spaced points.

The C-SSL II ordinary differential equation routines provide two return mechanisms to the user program from the routine
corresponding to the purposes described above.

 Final value output – when the solution y(xe) is obtained, return to the user program. To obtain output at
specified points, set xe to i sequentially, where i = 1, 2, ..., and call the routine repeatedly.

 Step output – under step-size control, return to the user program after one step integration. The user program
can call this routine repeatedly to obtain output at final output points.

C-SSL II provides routines c_dodrk1, c_dodam and c_dodge which incorporate final value output and step output.
The user can select the manner of output by specifying an argument.

Stiff differential equations
This section describes stiff differential equations, which appear in many applications, and presents definitions and
examples.

The equations shown in (1) can be expressed in vector notation as shown in (3).

 00)(),,(yyyfy xx (3)

where ,,,, T

21 nyyy y

 ,,,,,,,),(T
21 yyyyf xfxfxfx n

 nii yyyxfxf ,,,,, 21 y

Differential equations

 87

Suppose f(x, y) is linear, that is

 xx ΦAyyf , (4)

where, A is a constant coefficient matrix and (x) is an appropriate function vector. Then, the solution for (3) can be
expressed by using eigenvalues of A and the corresponding eigenvectors as follows:

n

i
i

x
i xekx i

1

Ψuy (5)

 ki : constant

Let us assume the following conditions for i and (x) in (5):

 Re(i)<0, for i=1, 2, ..., n
 (x) is smoother than any eix (that is, it has rapidly convergent power expansion).

Under these conditions, as x tends to infinity,

n

i
i

x
i

iek
1

0u

Therefore, the solution y(x) tends to (x). After (x) has become dominant, the solution can be obtained by the
approximate solution for (x). Relatively large step-sizes can be used.

However, attempts to use methods such as Euler and classical Runge-Kutta encounter a phenomenon that errors
introduced at a certain step increase from step to step. Therefore, when using these methods, the step sizes are
substantially restricted. The larger the value of max (|Re(i)|), the smaller the step size must be.

Although solution y(x) can be approximated numerically by the smooth function (x), the step sizes must be small for
integration. This causes an imbalance between two step sizes, one that is small enough to approximate the solution
numerically, and the other that is required for error protection.

If (x)=0, that is, (x)=0 in (3), solution y(x) becomes smaller. Therefore, it is actually approximated by the term ki eix
ui corresponding to the smallest | Re(i) |. In this case, if max | Re(i) | is large, the above mentioned difficulty occurs.

A stiff differential equation is defined as follows:

Definition 1
When the linear differential equation

 xΦAyy (6)

satisfies the (7) and (8),

 Re(i)<0, i=1, 2, , n (7)

 i

i

Remin
Remax

>>1 (8)

they are called stiff differential equations. The left side of the equation in (8) is called stiffness ratio. If this value is large, it
is strongly stiff: otherwise, it is mildly stiff. Strong stiffness with a stiffness ratio of magnitude 106 is quite common.

Selection of Routines

88

An example of stiff linear differential equations is shown in (9). Its solution is shown in (10) (See Figure 24).

0
1

0,
1999999

1998998
yyy (9)

1
1

1
2 1000xx eey (10)

Obviously, the following holds as x , y1 2e-x , y2 e-x

-1

0

1

2

y1

y2

x

Figure 24 Approximate graph for the solution in (10)

Suppose f(x, y) is nonlinear. The eigenvalues of the Jacobian matrix

y

yfJ

x,

determines stiffness, where the eigenvalues vary with x. Then, Definition 1 is extended for nonlinear equations as follows.

Definition 2
When the nonlinear differential equation y = f(x, y) satisfies the following conditions in a certain interval, I, it is said to be
stiff in that interval.

 nixi ,,2,1,0Re x I

 i

i

Remin
Remax

>>1 , x I

where i(x) are the eigenvalues of J.

Whether the given equation is stiff or not can be checked to some extent as follows:

 When the equation is linear as shown in (6), the stiffness can be checked directly by calculating the
eigenvalues of A.

 When the equation is nonlinear, routine c_dodam can be used to check stiffness. c_dodam uses the Adams
method by which non-stiff equations can be solved. c_dodam notifies of stiffness via the icon argument if
the equation is stiff.

 Routine c_dodge can be used to solve stiff equations.

Routine selection
Table 27 lists routines used for differential equations.

Differential equations

 89

 c_dodge for stiff equations.
 c_dodrk1 or c_dodam for non-stiff equations.
 c_dodrk1 is effective when the following conditions are satisfied:

 The accuracy required for solution is not high.
 When requesting output of the solution at specific points of independent variable x, the interval

between points is wide enough.
 The user should use c_dodam when any of these conditions is not satisfied.
 Use c_dodam at first if the equation is not known to be stiff or non-stiff.
 c_dodam can be changed to c_dodge if stiffness is detected.

Table 27 Ordinary differential equation routines

Objective Routine name Method Comments
Initial value
problem

c_dodrk1 Rung-Kutta-Verner
method

Variable step size

c_dodam Adams method Variable step size, Variable order
c_dodge Gear’s method Variable step size, Variable order

(Stiff equations)

Selection of Routines

90

Special functions

1. Outline

The special functions of C-SSL II are functions not available as Fortran basic functions. This includes some special
functions where the variables and functions are complex.

The following properties are common in special function routines.

Accuracy
The balance between accuracy and speed is important and therefore taken into account when selecting calculation
formulas. In C-SSL II, calculation formulas have been selected such that the theoretical accuracies (accuracies in
approximation) are guaranteed to be within about 16 digits. However, since the accuracy of function values depends on
the number of working digits available for calculation in the computer, the theoretical accuracy cannot always be assured.
The accuracy of the double precision routines has been checked by comparing their results with those of extended
precision (“long double”) routines that have much higher precision than double precision routines.

Speed
Special functions are designed with an emphasis on accuracy first and speed second. Though real type functions may be
calculated with complex type function routines, separate routines are available with greater speed for real type calculations.
For frequently used functions, both general and limited purpose routines are available.

There are some important aspects of the C-SSL II routines for special functions that must be taken into account:

Calling method
Since various difficulties may occur in calculating special functions, routines for these functions have the icon argument
to indicate how computations have finished. Accordingly, the C-SSL II routines return the result of the special function as
one of the argument values.

icon
Special functions use Fortran basic functions, such as exponential functions and trigonometric functions. If errors occur in
these basic functions, such as overflow or underflow, detection of the real cause of problems will be delayed. Therefore, to
identify such troubles as early as possible, checks are made before using basic functions in special function routines, and if
problems are detected, information about them is returned in the argument icon.

2. Elliptic integrals

Elliptic integrals are shown in Table 28.

A second order iteration method can be used to calculate complete elliptic integrals, however, it has the disadvantage that
the speed depends upon the magnitude of the argument. In C-SSL II routines, an approximation formula is used so that a
constant speed is maintained.

Special functions

 91

Table 28 Routines for elliptic integrals

Item Mathematical
symbol

Routine
name

Complete elliptic integral of
the first kind

K(x) c_dceli1

Complete elliptic integral of
the second kind

E(x) c_dceli2

3. Exponential integral

The exponential integral routine is shown in Table 29.

Table 29 Routine for exponential integral

Item Mathematical
symbol

Routine name

Exponential
integral

)(xEi , x > 0 c_dexp1

)(xE i , x > 0

Since the exponential integral is rather difficult to compute, various formulas are used for various ranges of the variable.

4. Sine and cosine integrals

Sine and cosine integrals are shown in Table 30.

Table 30 Routines for sine and cosine integrals

Item Mathematical
symbol

Routine name

Sine integral Si(x) c_dsini

Cosine integral Ci(x) c_dcosi

5. Fresnel integrals

Fresnel integrals are shown in Table 31.

Table 31 Routines for Fresnel integrals

Item Mathematical
symbol

Routine name

Sine Fresnel
integral

S(x) c_dsfri

Cosine Fresnel
integral

C(x) c_dcfri

Selection of Routines

92

6. Gamma functions

Gamma functions are shown in Table 32.

Table 32 Routines for gamma functions

Item Mathematical
symbol

Routine name

Incomplete gamma
function of first kind

(,x) c_digam1

Incomplete gamma
function of second kind

(,x) c_digam2

Between the complete Gamma function () and the first and the second kind incomplete Gamma functions the following
relationship holds:

 xvxvv ,,

The corresponding C basic external function should be used for ().

7. Error functions

Error functions are shown in Table 33.

Table 33 Routines for error functions

Item Mathematical
symbol

Routine name

Inverse error function erf-1(x) c_dierf

Inverse complementary
error function

erfc-1(x) c_dierfc

The relationship

erf-1 (x) = erfc-1 (1 – x)

holds between the inverse error function and inverse complementary error function. Each is evaluated by using the
function that is appropriate for that range of x.

The corresponding C basic functions must be used for erf(x) and erfc(x).

8. Bessel functions

Bessel functions are classified into various types as shown in Table 34 and Table 35. Since zero-order and first-order
Bessel functions are used quite often, limited purpose routines, which are quite fast, are provided.

Special functions

 93

Table 34 Routines for Bessel functions with a real argument

Item Mathematical
symbol

Routine
name

First kind

Zero-order Bessel function J0 (x) c_dbj0

First-order Bessel function J1 (x) c_dbj1

Integer order Bessel function Jn(x) c_dbjn

Real-order Bessel function Jv(x)
(v 0.0)

c_dbjr

Zero order modified Bessel function I0 (x) c_dbi0

First order modified Bessel function I1(x) c_dbi1

Integer order modified Bessel
function

In(x) c_dbin

Real order modified Bessel function Iv(x)
(v 0.0)

c_dbir

Second
kind

Zero-order Bessel function Y0(x) c_dby0

First-order Bessel function Y1(x) c_dby1

Integer order Bessel function Yn(x) c_dbyn

Real-order Bessel function Yv(x)
(v 0.0)

c_dbyr

Zero order modified Bessel function K0(x) c_dbk0

First order modified Bessel function K1(x) c_dbk1

Integer order modified Bessel
function

Kn(x) c_dbkn

Real order modified Bessel function Kv(x) c_dbkr

Table 35 Bessel function routines with a complex argument
Item Mathematical

symbol
Routine
name

First
kind

Integer order Bessel function Jn(z) c_dcbjn

Real order Bessel function Jv(z)
(v 0.0)

c_dcbjr

Integer order modified Bessel
function

In(z) c_dcbin

Second
kind

Integer order Bessel function Yn(z) c_dcbyn

Integer order modified Bessel
function

Kn(z) c_dcbkn

9. Normal distribution functions

Normal distribution functions are shown in Table 36.

Selection of Routines

94

Table 36 Normal distribution function routines

Item Mathematical
symbol

Routine
name

Normal distribution
function

(x) c_dndf

Complementary normal
distribution function

(x) c_dndfc

Inverse normal
distribution function

-1(x) c_dindf

Inverse complementary
normal distribution

-1(x) c_dindfc

Pseudo-random numbers

 95

Pseudo-random numbers

1. Outline

This section deals with the generation of pseudo-random (real or integer) numbers with various probability distribution
functions.

2. Pseudo-random number generation

Random numbers with any given probability distribution can be obtained by transformation of the uniform pseudo-
random numbers. Let g(x) be the probability density function of the desired distribution. Then, the required pseudo-
random numbers y are obtained by the inverse function)(1 uFy of

 dxxgyF y
 0

)(

where F(y) is the cumulative distribution function of g(x) and u is a uniform pseudo-random number.

Pseudo-random numbers with discrete distribution are complicated slightly by intermediate calculations. For example the
routine c_dranp2 first generates a table of cumulative Poisson distribution and a reference table which refers efficiently
to a generated uniform number and then produces Poisson pseudo-random integers.

Table 37 shows a list of routines provided in the C-SSL II. These routines provide an argument to be used as a starting
value to control random number generation. Usually, only one setting of the argument will suffice to yield a sequence of
random numbers. Notice that some of these routines do NOT return a double argument value.

Table 37 List of routines for pseudo random number generation

Type Routine name
Fast uniform [0,1) pseudo-random numbers c_dvrau4

Exponential pseudo-random numbers c_rane2

Fast normal pseudo-random numbers
c_dvran3

c_dvran4

Poisson pseudo-random integers c_ranp2

Binomial pseudo-random numbers c_ranb2

 97

Description of the C-SSL II Routines

Description of the C-SSL II Routines

98

c_daggm
Addition of two matrices (real + real).
ierr = c_daggm(a, ka, b, kb, c, kc, m, n,

&icon);

1. Function

This function performs addition of two m n general real matrices, A and B.

 C A B (1)

In (1), the resultant C is also an m n matrix (m,n 1).

2. Arguments

The routine is called as follows:
ierr = c_daggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, &icon);

where:
a double

a[m][ka]

Input Matrix A.

ka int Input C fixed dimension of array a (n).
b double

b[m][kb]

Input Matrix B.

kb int Input C fixed dimension of array b (n).
c double

c[m][kc]

Output Matrix C. See Comments on use.

kc int Input C fixed dimension of array c (n).
m int Input The number of rows m for matrices A, B and C.
n int Input The number of columns n for matrices A, B and C.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m < 1
 n < 1
 ka < n
 kb < n
 kc < n

Bypassed.

 c_daggm

 99

3. Comments on use

Efficient use of memory
Storing the solution matrix C in the same memory area for matrix A (or B) is permitted if array contents (matrix A) can be
discarded after computation. To take advantage of this efficient reuse of memory, the array and dimensioning associated
for matrix A need to appear in the locations reserved for C on the function argument list, as indicated below.

For A:

ierr = c_daggm(a, ka, b, kb, a, ka, m, n, &icon);

And for B:

ierr = c_daggm(a, ka, b, kb, b, kb, m, n, &icon);

Note, if both matrices A and B are required after the solution then a separate array must be supplied for storing matrix C.

4. Example program

This example program performs a matrix addition and checks the results. Each matrix is 100 by 100 elements.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, m, ka, kb, kc, i, j;
 double eps, err;
 double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX];

 /* initialize matrices*/
 m = NMAX;
 n = NMAX;
 ka = NMAX;
 kb = NMAX;
 kc = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<n;j++) {
 a[i][j] = n-i-j;
 b[i][j] = i+j;
 }
 /* add matrices */
 ierr = c_daggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, &icon);
 if (icon != 0) {
 printf("ERROR: c_daggm failed with icon = %d\n", icon);
 exit(1);
 }
 /* check matrix */
 eps = 1e-6;
 for (i=0;i<n;i++)
 for (j=0;j<n;j++) {
 err = fabs((c[i][j]-n)/n);
 if (err > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 }
 printf("Result OK\n");
 return(0);
}

Description of the C-SSL II Routines

100

c_dakher
Aitken-Hermite interpolation.
ierr = c_dakher(x, y, dy, n, v, &m, &eps, &f,

vw, &icon);

1. Function

Given discrete points nxxx ...21 , with their corresponding function values)(ii xfy , and derivative values
)(ii xfy , i=1,2,...,n, this routine interpolates for a given point vx using Aitken-Hermite interpolation.

2. Arguments

The routine is called as follows:
ierr = c_dakher(x, y, dy, n, v, &m, &eps, &f, vw, &icon);

where:
x double x[n] Input Discrete points ix .
y double y[n] Input Function values iy .
dy double dy[n] Input Derivative values iy .
n int Input Number of discrete points n.
v double Input Interpolation point v.
m int Input Number of discrete points to be used in the interpolation (n).
 Ouput Number of discrete points actually used. See Comments on use.
eps double Input Threshold value.
 Output Estimate of the absolute error of the interpolated value.
f double Output Interpolated value.
vw double vw[5n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 The interpolation point v matched a discrete point

x[i] for some i.
f is set to y[i].

30000 One of the following has occurred:
 n < 1
 m = 0
 x[i-1] x[i] for some i

f is set to zero.

3. Comments on use

m
To specify m:

 c_dakher

 101

1. When it is known that in a neighbourhood of vx the original function can be approximated well by
polynomials of degree 12 k or less, it is natural to use a polynomial of degree 12 k or less. In this case,
argument m should be specified equal to k.

2. When the condition in 1 is unknown, m should be specified equal to n.

In the above two cases, the routine will determine the actual degree of polynomial to be used by applying a
stopping criterion given below, and the actual number of discrete points to be used in the interpolation will be
output in m.

3. When the user wants an interpolated value that is obtained using exactly m points, without applying the
stopping criterion, m must be specifed equal to –m (for example, m = -k or m = -n).

Stopping criterion and eps
Consider the effect of the degree of interpolation on numerical behaviour. Let jZ denote the interpolated value obtained
using j discrete points near vx (discrete points selected such that the points closest to vx are selected first), and let

jD denote the difference defined as 1 jjj ZZD with mj ,...,2 , and m the maximum number of discrete points to
be used. In general, as the degree of interpolation polynomial increases, the curve jD behaves similar to that shown in
Figure 25

l m j

|Dj|

Figure 25 The curve of jD as degree of polynomial increases

In Figure 25, at l the truncation error and the calculation error of the interpolation polynomial are both at the same level,
and lZ is usually considered the numerical optimum interpolated value. However, jD can exhibit various types of
behaviour, depending on the tabulated function, for example, oscillation can occur as in Figure 26.

Description of the C-SSL II Routines

102

l m j

|Dj|

s

Figure 26 Possible behaviour of jD

In the case of Figure 26, lZ , and not sZ , should be used for the interpolated value. Therefore the interpolated
value to be output is determined as shown below:

When calculating mDDD ,...,, 32 ,

- if epsjD , mj ...,3,2 then l is determined such that jjl DD min

- if epsjD , for a certain j, then from j on, l is determined such that 1 ll DD , or if

this does not occur then l is set to m.
In all cases, the arguments f, m, and eps are set to the values of lZ , l, and lD .

The user can specify eps = 0 when jZ corresponding to the minimum jD is to be output as the interpolated

value.

4. Example program

This program interpolates the function xxf sin)(at 10 equally spaced points in the interval],0[. It then computes
approximations to the function value associated with a particular point and checks the result.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10

MAIN__()
{
 int ierr, icon;
 int i, n, m;
 double x[NMAX], y[NMAX], dy[NMAX], vw[5*NMAX];
 double p, h, v, f, eps, exact, pi;

 /* initialize data */
 n = NMAX;
 m = n;
 p = 0;
 pi = 2*asin(1);
 h = pi/(n-1);
 /* set function and derivative values */
 for (i=0;i<n;i++) {
 x[i] = p+i*h;
 y[i] = sin(x[i]);
 dy[i] = cos(x[i]);
 }
 eps = 1e-6;
 v = pi/2;
 exact = sin(v);
 /* interpolate */
 ierr = c_dakher(x, y, dy, n, v, &m, &eps, &f, vw, &icon);
 printf("icon = %i f = %12.6e m = %i eps = %12.6e\n", icon, f, m, eps);

 c_dakher

 103

 eps = 1e-6;
 /* check result */
 if (fabs((f-exact)/exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

5. Method

The method used is the Aitken-Hermite interpolation method. For further information consult the entry for AKHER in the
Fortran SSL II User's Guide and [40].

Description of the C-SSL II Routines

104

c_daklag
Aitken-Lagrange interpolation.
ierr = c_daklag(x, y, n, v, &m, &eps, &f, vw,

&icon);

1. Function

Given discrete points x x xn1 2 and their corresponding function values y f xi i () for i n 1, , , this
function interpolates for a given point x v using the Aitken-Lagrange interpolation.

2. Arguments

The routine is called as follows:
ierr = c_daklag(x, y, n, v, &m, &eps, &f, vw, &icon);

where:
x double x[n] Input Discrete points xi .
y double y[n] Input Function values yi .
n int Input Number of discrete points n.
v double Input Interpolation point v.
m int Input Number of discrete points to be used in the interpolation (n)
 Output Number of discrete points actually used. See Comments on use.
eps double Input Threshold value.
 Output Absolute error of the interpolated value. See Comments on use.
f double Output Interpolated value.
vw double

vw[4*n]

Work

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 The interpolation point v matched a discrete

point xi .
f is set to yi .

30000 One of the following has occurred:
 n < 1
 m = 0
 x xi i 1

f is set to zero.

3. Comments on use

m
1. When it is known that in the neighbourhood of x v , the original function can be well approximated by

polynomials of degree k or less, it is natural to use interpolating polynomials of degree k or less. In this
case, argument m should be specified equal to k+1.

 c_daklag

 105

2. When the condition in 1 is unknown, m should be the same as argument n.
3. It is possible that the user wants an interpolated value that is obtained by using exactly m points without

applying the stopping criterion. In this case, the user can specify m equal to –m.

Stopping criterion
First, lets consider the effect of the degree of interpolation on numerical behaviour. If we let Z j to denote the interpolated
value obtained by using j discrete points near x v (discrete points are selected such that the points closest to x v are
selected first). The difference D j is defined as:

D Z Zj j j 1

with j m 2, , , and m is the maximum number of discrete points. In general, as the degree of interpolation
polynomial increases, the curve for D j would behave similar to what is in Figure 27.

l m j

|Dj|

Figure 27 The curve of D j as degree of polynimial increases

In Figure1, l indicates that the truncation error and the calculation error of the approximation polynomial are both at the
same level. Where Zl is usually considered as the numerical optimum interpolated value.

eps
The following conditions are considered. Convergence is tested, as described above, but D j can exhibits various types of
behaviour depending on the tabulated function, as shown in Figure 28, vacillation can occur in some cases.

l m j

|Dj|

s

Figure 28 Behaviour of D j

Description of the C-SSL II Routines

106

In this case, Zl instead of Zs should be used for the interpolated value. Based on this, the interpolated value to be output
is determined as below.

When calculating D D Dm2 3, , , :

 If D j eps with j m 2 3, , , then l is determined such that

 D Dl j min (1)

 If D j eps occurs for a certain j then from then on l is determined such that

 D Dl l 1 (2)

and Zl , l, and D j are output. If (2) does not occur then l is set to m and the output are Zm , m and D j .

If the user specifies eps as zero then Z j corresponding to the minimum D j is output as the interpolated value.

4. Example program

This program evaluates the function xxxf)sin()(at 10 equally spaced points in the interval]1,0[and then uses the
interpolation routine to estimate the function value at a certain point, then checks the result.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10

MAIN__()
{
 int ierr, icon;
 int i, n, m;
 double x[NMAX], y[NMAX], v, f, eps, vw[4*NMAX], h, p, exact;

 /* initialize data */
 n = NMAX;
 p = 0;
 h = 1.0/n;
 for (i=0;i<n;i++) {
 x[i] = p;
 y[i] = sin(p)*sqrt(p);
 p = p + h;
 }
 m = n;
 v = x[n/2] + (x[n/2+1]-x[n/2])/2;
 eps = 1e-6;
 exact = sin(v)*sqrt(v);
 /* interpolate */
 ierr = c_daklag(x, y, n, v, &m, &eps, &f, vw, &icon);
 printf("icon = %i f = %12.6e m = %i eps = %12.6e\n", icon, f, m, eps);
 eps = 1e-6;
 /* check result */
 if (fabs((f-exact)/exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

5. Method

The method used is the Aitken-Lagrange interpolation method. For further information consult the entry for AKLAG in
the Fortran SSL II User's Guide and [89].

 c_dakmid

 107

c_dakmid
Two-dimensional quasi-Hermite interpolation.
ierr = c_dakmid(x, nx, y, ny, fxy, k, &isw,

vx, &ix, vy, &iy, &f, vw, &icon);

1. Function

Given function values f f x yij i j (,) at points (,)x yi j where x x xnx1 2 for i nx 1, , and
y y yny1 2 for j ny 1, , , an interpolated value at the point P v vx y(,) is obtained by using the piecewise

two-dimensional quasi-Hermite interpolating function of dually degree 3, where
xnx xvx 1 and

yny yvy 1 . Note
that xn and yn must be greater than or equal to 3.

2. Arguments

The routine is called as follows:
ierr = c_dakmid(x, nx, y, ny, fxy, k, &isw, vx, &ix, vy, &iy, &f, vw, &icon);

where:
x double x[nx] Input Discrete points in the x-direction xi .
nx int Input Number of discrete points in x-direction nx .
y double y[ny] Input Discrete points in the y-direction y j .
ny int Input Number of discrete points in y-direction n y .
fxy double

fxy[nx][k]

Input Function values f ij .

k int Input C fixed dimension of array fxy (ny).
isw int Input isw = 0 on first call. Repeated calls leave isw unchanged, as when a

series of interpolated values are needed with the same data set.
 Output Information on (i, j) that satisfies x v xi x i 1 and x v xj y j 1

for repeated calls. Set isw = 0 when starting with new data set.
vx double Input The x-coordinate of point P v vx y(,) .

ix int Input The i-th element that satisfies x v xi x i 1 . Note that due to the C
indexing, 1 iix . When v xx nx

 then ix = 2xn .

 Output The i-th element that satisfies x v xi x i 1 . See Comments on use.
vy double Input The y-coordinate of point P v vx y(,) .
iy int Input The j-th element that satisfies 1 jyj yvy . Note that due to the C

indexing, 1 jiy . When v yy ny
 then iy = 2yn .

 Output The j-th element that satisfies y v yj y j 1 . See Comments on use.
f double Output Interpolated value.
vw double vw[50] Work Do not alter contents when repeating calls.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Description of the C-SSL II Routines

108

Code Meaning Processing
0 No error. Completed.
10000 Either x[ix] vx < x[ix+1] or

y[iy] vy < y[iy+1] is not satisfied.
ix or iy satisfying the relationship on the left is
searched for in the function and the processing is
continued.

29000 Memory allocation error. Bypassed.
30000 One of the following has occurred:

 vx < x[0] or vx > x[nx-1]
 vy < y[0] or vy > y[ny-1]
 isw has an invalid value
also when 0isw , one of the following my
have occurred:
 x[i] x[i+1] exists
 y[j] y[j+1] exists
 nx < 3 or ny < 3
 k < ny

Bypassed.

3. Comments on use

General
The interpolating function used in the function and its first order derivative are continuous in the area for (x, y) bounded
by x x xnx1 and y y yny1 , but its second and higher order derivatives may not be. However, this interpolating
function has a characteristic which irregular points or planes do not appear.

To obtain an interpolated value, derivative and integral value for a bivariate function with accuracy, function c_bifd3
that uses an interpolation method by the spline function should be used.

When obtaining more than one interpolated value with the same input data (x y fi j ij, ,), the function is more effective if
it is called with its input points continuous in the same grid area (See Example). In this case, argument values of isw and
vw must not be altered.

ix and iy
The arguments ix and iy should satisfy x[ix] vx< x[ix+1] and y[iy] vy < y[iy+1] , respectively. If not,
ix or iy satisfying the relationship is searched for to continue the processing.

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by
one, i.e. C starts from 0 and the mathematics starts from 1.

4. Example program

This program evaluates the function xyxyyxf)sin(),(at 100 points in the region]1,0[]1,0[and then uses the
interpolation routine to estimate the function value at a point and then checks the result.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10

MAIN__()

 c_dakmid

 109

{
 int ierr, icon;
 int i, j, nx, ny, k, ix, iy, isw;
 double x[NMAX], y[NMAX], fxy[NMAX][NMAX], eps, vw[50], exact;
 double hx, hy, px, py, vx, vy, f;

 /* initialize data */
 nx = NMAX;
 ny = NMAX;
 k = NMAX;
 isw = 0;
 hx = 1.0/(nx-1);
 hy = 1.0/(ny-1);
 px = 0;
 for (i=0;i<nx;i++) {
 x[i] = px;
 px = px + hx;
 }
 py = 0;
 for (j=0;j<ny;j++) {
 y[j] = py;
 py = py + hy;
 }
 for (i=0;i<nx;i++)
 for (j=0;j<ny;j++) {
 px = x[i];
 py = y[j];
 fxy[i][j] = sin(px*py)*sqrt(px*py);
 }
 ix = nx/2;
 vx = x[ix] + (x[ix+1]-x[ix])/2;
 iy = ny/2;
 vy = y[iy] + (y[iy+1]-y[iy])/2;
 exact = sin(vx*vy)*sqrt(vx*vy);
 /* interpolate */
 ierr = c_dakmid(x, nx, y, ny, (double*)fxy, k, &isw,
 vx, &ix, vy, &iy, &f, vw, &icon);
 printf("icon = %i f = %12.6e\n", icon, f);
 eps = 1e-4;
 /* check result */
 if (fabs((f - exact)/exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

5. Method

For further information consult the entry for AKMID in the Fortran SSL II User's Guide and [3].

Description of the C-SSL II Routines

110

c_dakmin
Quasi-Hermite interpolation coefficient calculation.
ierr = c_dakmin(x, y, n, c, d, e, &icon);

1. Function

Given discrete points x x xn1 2 and their corresponding function values y f xi i () for i n 1, , , this
function obtains the quasi-Hermite interpolating polynomial of degree 3, equation (1).

 S x y c x x d x x e x xi i i i i i i() () () () 2 3 (1)

In (1), x x xi i 1 for i n 1 2 1, , , with n 3 .

2. Arguments

The routine is called as follows:
ierr = c_dakmin(x, y, n, c, d, e, &icon);

where:
x double x[n] Input Discrete points xi .
y double y[n] Input Function values yi .
n int Input Number of discrete points n.
c double c[n-1] Output Coefficients of ci .
d double d[n-1] Output Coefficients of di .
e double e[n-1] Output Coefficients of ei .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 x[i] x[i+1] exists
 n < 3

Bypassed.

3. Comments on use

The interpolating function obtained by this function is characterized by the absence of unnatural deviation, and thus
produces curves close to those manually drawn. However, the derivatives of this function in interval [x1 , xn] are
continuous up to the first degree, but discontinuous above the second and higher degrees.

If f x() is a quadratic polynomial and xi , for i n 1, , , are given at equal intervals, then the resultant interpolating
function represents f x() itself, provided there is no calculation errors.

If interpolation should be required outside the interval (x x 1 or x xn), the polynomials corresponding to i 1 or
i n 1 in (1) may be employed but they do not yield good accuracy.

 c_dakmin

 111

4. Example program

This program interpolates the function xxxf)sin()(at 10 equally spaced points in the interval]1,0[. The library
routine is used to produce the interpolation coefficients and then the piecewise cubic function is evaluated at a point and
this value compared with the true function value.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10

MAIN__()
{
 int ierr, icon;
 int i, n, k;
 double x[NMAX], y[NMAX], c[NMAX-1], d[NMAX-1], e[NMAX-1];
 double f, eps, h, p, v, exact;

 /* initialize data */
 n = NMAX;
 p = 0;
 h = 1.0/n;
 for (i=0;i<n;i++) {
 x[i] = p;
 y[i] = sin(p)*sqrt(p);
 p = p + h;
 }
 /* calculate interpolation coefficients */
 ierr = c_dakmin(x, y, n, c, d, e, &icon);
 k = n/2;
 v = x[k] + (x[k+1]-x[k])/2;
 exact = sin(v)*sqrt(v);
 /* calculate function value using coefficients */
 h = v-x[k];
 f = y[k] + (c[k]+(d[k]+e[k]*h)*h)*h;
 printf("calculated = %12.6e exact = %12.6e\n", f, exact);
 eps = 1e-4;
 /* check result */
 if (fabs((f-exact)/exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

5. Method

For further information consult the entry for AKMIN in the Fortran SSL II User's Guide and [2].

Description of the C-SSL II Routines

112

c_daqc8
Integration of a function by a modified Clenshaw-Curtis rule.
ierr = c_daqc8(a, b, fun, epsa, epsr, nmin,

nmax, &s, &err, &n, &icon);

1. Function

Given a function)(xf and constants a, b, a , and r , this routine obtains an approximation S which satisfies

b

a
ra

b

a
dxxfdxxfS)(,max)(, (1)

using a modified Clenshaw-Curtis. Here, a , r 0.

2. Arguments

The routine is called as follows:
ierr = c_daqc8(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);

where:
a double Input Lower limit a of the interval.
b double Input Upper limit b of the interval.
fun function Input User defined function to evaluate)(xf . Its prototype is:

double fun (double x);
 x double Input Independent variable x.
epsa double Input Absolute error tolerance a (0). See Comments on use.
epsr double Input Relative error tolerance r (0). See Comments on use.
nmin int Input Lower limit on the number of function evaluations (0). An appropriate

value is 15. See Comments on use.
nmax int Input Upper limit on the number of function evaluations (nmax nmin). An

appropriate value is 511. Values greater than 511 are interpreted as 511.
See Comments on use.

s double Output Approximation S to the integral. See Comments on use.
err double Output Estimate of the absolute error in the approximation. See Comments on

use.
n int Output Number of function evaluations actually performed.
icon int Output Condition Code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 The desired accuracy cannot be obtained due to

round-off errors.
Stopped. s is the approximation obtained so far.
The accuracy is the maximum attainable.

20000 The desired accuracy has not been obtained, even
though the number of function evaluations has

Stopped. s is the approximation obtained so far,
but is not accurate.

 c_daqc8

 113

Code Meaning Processing
reached nmax.

30000 One of the following has occurred:
 epsa < 0
 epsr < 0
 nmin < 0
 nmax < nmin

Bypassed.

3. Comments on use

General comments
When this routine is called many times a table of constants (weights and abscissae for the integration formula) is
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.

The routine works most successfully when the integrand function)(xf is an oscillatory function. For a smooth function,
this routine requires less function evaluations than routines c_daqn9 and c_daqe. For functions which contain
singularity points, routine c_daqe is suitable if the singularity points are only on the end points of the integration interval,
and routine c_daqn9 is suitable if the singularity points are between end points, or for a peak type function.

nmin and nmax
The number of evaluations of)(xf actually performed is strictly controlled by the arguments nmin and nmax,
regardless of the convergence of the integration. Therefore,

nmin n nmax .

If the solution is not reached after nmax evauations of)(xf , the routine stops with icon = 20000. If the value of nmax
is less than 15, a default of 15 is used.

s, epsa and epsr
Given the two error tolerances a and r , in arguments epra and epsr, this routine determines an approximation
satisfying (1). When 0 r , the absolute error criterion is used, and when 0 a the relative error criterion is used.
When a and r are too small in comparison with the arithmetic precision of)(xf , the effect of round-off error may
become dominant before the maximum number of function evaluations nmax has been reached. In such a case, the
routine stops with icon = 10000. At this time the accuracy of s has reached the attainable limit for the computer used.

Sometimes the approximation does not converge within the maximum number of function evaluations nmax. For
example, due to unexpected characteristics of the function)(xf . In such cases, the routine stops with icon = 20000, and
s is the approximation obtained so far and is not accurate.

err
This routine always outputs an estimate of the absolute error, in argument err, together with the integral approximation
in argument s.

4. Example program

As p is increased from 0.1 to 0.9, the integral of)cos()(pxxf is calculated.

#include <stdio.h>

Description of the C-SSL II Routines

114

#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

double fun(double x); /* user function prototype */
double p;

MAIN__()
{
 int ierr, icon;
 int i, n, nmin, nmax;
 double a, b, epsa, epsr, err, s;

 /* initialize data */
 a = -1;
 b = 1;
 epsa = 1e-5;
 epsr = 1e-5;
 nmin = 15;
 nmax = 511;
 printf(" icon p s err n\n");
 for (i=1;i<10;i++) {
 p = (double)i/10;
 /* calculate integral */
 ierr = c_daqc8(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);
 printf("%6i %6.2f %12.4e %12.4e %4i\n", icon, p, s, err, n);
 }
 return(0);
}

/* user function */
double fun(double x)
{
 return cos(p*x);
}

5. Method

Consult the entry for AQC8 in the Fortran SSL II User's Guide and [21].

 c_daqe

 115

c_daqe
Integration of a function (double exponential formula).
ierr = c_daqe(a, b, fun, epsa, epsr, nmin,

nmax, &s, &err, &n, &icon);

1. Function

Given a function f x() and the constants aba ,, and r , this library function obtains an approximation S which satisfies:

b

a
ra

b

a
dxxfdxxfS)(,max)((1)

by Takahashi-Mori’s double exponential formula.

2. Arguments

The routine is called as follows:
ierr = c_daqe(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);

where:
a double Input Lower limit of the integral.
b double Input Upper limit of the integral.
fun function Input Name of the user defined function to evaluate f x() . Its prototype is:

double fun(double x[]);

where:
x double

x[2]
Input x[0]is the independent

variable x. x[1] is the
distance from the endpoint of
the integration interval. See
Comments on use.

epsa double Input Absolute error tolerance a .
epsr double Input Relative error tolerance r .
nmin int Input Lower limit on the number of evaluations of f x() . A suitable value is

20.
nmax int Input Upper limit on the number of evaluations of f x() . A suitable value is

641. Values greater than 641 are interpreted as 641.
s double Output An approximation to the integral. See Comments on use.
err double Output An estimate of the absolute error in the approximation of the integral.
n int Output Number of evaluations of f x() actually performed.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 The desired accuracy cannot be obtained due to Processing stopped. The approximation so far is

Description of the C-SSL II Routines

116

Code Meaning Processing
rounding errors. given in s. The accuracy has reached the

attainable limit.
11000 The function value increases rapidly near the

upper limit of the integration interval.
Processing stopped. Can be continued with
relaxed error tolerances.

12000 The function value increases rapidly near the
lower limit of the integration interval.

13000 The function value increases rapidly near both
limits of the integration interval.

20000 The desired accuracy has not been reached, even
though the number of function evaluations has
reached nmax.

Processing stopped. s is the approximation so far
but is not accurate.

21000 to 23000 The same as icon = 11000 to 13000, but the
maximum number of function evaluations
(nmax) has also been reached.

25000 The abscissa table has been exhausted. Processing stopped. s is an approximation using
the smallest step size allowed in this library
function.

30000 One of the following has occurred:
 epsa 0
 epsr 0
 nmin 0
 nmax nmin

Bypassed.

3. Comments on use

General comments
When this routine is called many times, a table of constants (weights and abscissas for the integration formula) are
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.

This library function works most successfully when the integrand function f x() changes rapidly near the endpoints of the
integration interval. Therefore, if f x() has algebraic or logarithmic singularities at the endpoints of the integration (only),
this routine is highly useful.

If the integrand contains singularities within the integration interval, the user can either split up the interval at the
singularity points and call this library function once for each section, or use the c_daqn9 function over the whole
interval.

This library function does not evaluate the integrand at either endpoint. Therefore f x() is permitted at the
endpoints, but not between them.

nmin and nmax
The number of evaluations of f x() actually performed is strictly controlled by the arguments nmin and nmax,
regardless of the convergence of the integration. Therefore:

 nmin n nmax

If the solution is not reached after nmax evaluations of f x() , the routine aborts with icon = 20000 to 23000.

 c_daqe

 117

epsa and epsr
This library function approximates s (see equation (1)), given the two error tolerances a and r (in the arguments
epsa and epsr respectively). When a = 0, the relative error is used to test for convergence, and when r = 0, the
absolute error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example,
when a and r are very small in comparison with the arithmetic precision in the integrand function evaluations, the
effect of rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has
not been reached.

err
err provides an estimate of the accuracy of the approximation s. Both of these arguments are set on output from the
function, even if the computation has not converged. The user is referred to the table of condition codes for a detailed
explanation of the different errors that may occur.

fun
The independent variable x is passed from the library routine to this user defined function as the first element of a 2-
element vector rather than a scalar. The second element enables the user to calculate)(xf in the user defined function in
an alternate way to avoid numerical cancellation, as shown below. However it is expected that the second element in the
vector will be ignored in most cases, and x (the independent variable) can therefore be treated in the user defined function
as a pointer to a double scalar.

Avoiding numerical cancellation
Consider the following integral, in which the integrand has singularities at points x = 1 and x = 3:

 I dx
x x x

 () ()3 11 4 3 4

1

3

Near the end points, the function takes extremely large values, which dominate the integral, and so these values need to be
accurately calculated. Unfortunately, the function cannot be calculated accurately at these points due to cancellation when
calculating (3-x) and (x-1).

However, this library function allows the user to avoid this by describing the integrand in another form using variable
transformation. The user defined function fun may be used as follows:

double fun(double x[]);

where:
x double x[2] Input x[0] is the integration variable and,

x[1] is defined according to the integration variable as follows:
Let AA a b min(,) and BB a b max(,) then,

BBxBBAAxBB

BBAAxAAxAA
2/)(,

2/)(,
x[1]

Therefore x[1]is the distance from the nearest endpoint, and f x() can be written as:

0x[1]x[1]

0<x[1]x[1]

),(
),(

)(
BBf
AAf

xf

The user can then elect to use either x[0] or x[1] to evaluate)(xf .

Description of the C-SSL II Routines

118

4. Example program

This program computes an approximation to dx
xx

1

1)1)(1(
1 .

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

double fun(double x[]); /* user function prototype */
double p;

MAIN__()
{
 int ierr, icon;
 int n, nmin, nmax;
 double a, b, epsa, epsr, err, s;

 /* initialize data */
 a = -1;
 b = 1;
 epsa = 1e-5;
 epsr = 0;
 nmin = 20;
 nmax = 641;
 /* calculate integral */
 ierr = c_daqe(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);
 printf(" icon s err n\n");
 printf("%6i %12.4e %12.4e %4i\n", icon, s, err, n);
 return(0);
}

/* user function */
double fun(double x[])
{
 double p, res;
 p = (1+x[0])*(1-x[0]);
 res = 0;
 if (p > 0)
 res = 1.0/sqrt(p);
 return(res);
}

5. Method

For further information on Takahashi-Mori’s method, and the computational techniques used in this function, consult the
entry for AQE in the Fortran SSL II User’s Guide and also [109].

 c_daqeh

 119

c_daqeh
Integration of a function over a semi-infinite interval (double exponential
formula).
ierr = c_daqeh(fun, epsa, epsr, nmin, nmax,

&s, &err, &n, &icon);

1. Function

Given a function f x() and the error tolerances a and r , this library function obtains an approximation S which
satisfies:

00
)(,max)(dxxfdxxfS ra (1)

by Takahashi-Mori’s double exponential formula.

2. Arguments

The routine is called as follows:
ierr = c_daqeh(fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);

where:
fun function Input Name of the user defined function to evaluate f x() . Its prototype is:

double fun(double x);

where:
x double Input Independent variable.

epsa double Input Absolute error tolerance a .
epsr double Input Relative error tolerance r .
nmin int Input Lower limit on the number of evaluations of f x() . A suitable value is

20.
nmax int Input Upper limit on the number of evaluations of f x() . A suitable value is

689. Values greater than 689 are interpreted as 689.
s double Output An approximation to the integral. See Comments on use.
err double Output An estimate of the absolute error in the approximation of the integral.
n int Output Number of evaluations of f x() actually performed.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 The desired accuracy cannot be obtained due to

rounding errors.
Processing stopped. The approximation so far is
outputted in s. The accuracy has reached the
attainable limit.

11000 The function value increases rapidly as x 0 . Processing stopped. Can be continued with
relaxed error tolerances.

Description of the C-SSL II Routines

120

Code Meaning Processing
12000 The function value does not tend to 0 quickly

enough as x .
Processing stopped. Can be continued with
relaxed error tolerances.

13000 As 11000 and 12000, but together.
20000 The desired accuracy has not been reached, even

though the number of function evaluations has
reached nmax.

Processing stopped. s is the approximation so far
but is not accurate.

21000 to 23000 The same as icon = 11000 to 13000, but the
maximum number of function evaluations
(nmax) has also been reached.

25000 The abscissa table has been exhausted. Processing stopped. s is an approximation using
the smallest step size allowed in this library
function.

30000 One of the following has occurred:
 epsa 0
 epsr 0
 nmin 0
 nmax nmin

Bypassed.

3. Comments on use

General comments
When this routine is called many times, a table of constants (weights and abscissas for the integration formula) is
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.

This library function works most successfully when the integrand function f x() converges slowly to zero as x , or
when Gauss-Laguerre’s rule cannot be applied to the integrand. If the integrand severely oscillates an accurate integral
value may not be obtained.

This library function does not evaluate the integrand x 0 . Therefore f x() is permitted as x 0 . If this
occurs however, values of f x() will be required for small values of x (i.e. close to zero), and so fun must be able to deal
with overflows if a high degree of accuracy is required.

nmin and nmax
The number of evaluations of f x() actually performed is strictly controlled by the arguments nmin and nmax,
regardless of the convergence of the integration. Therefore:

 nmin n nmax

If the solution is not reached after nmax evaluations of f x() , the routine aborts with icon = 20000 to 23000.

epsa and epsr
This library function approximates S (see equation (1)), given the two error tolerances a and r (in the arguments epsa
and epsr respectively). When a = 0, the relative error is used to test for convergence, and when r = 0, the absolute
error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example, when

a and r are very small in comparison with the arithmetic precision in the integrand function evaluations, the effect of
rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has not been
reached.

 c_daqeh

 121

err
err provides an estimate of the accuracy of the approximation s. Both of these arguments are set on output from the
function, even if the computation has not converged. The user is referred to the table of condition codes for a detailed
explanation of the different errors that may occur.

4. Example program

This program computes an approximation to dxxe x

0
)sin(.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

double fun(double x); /* user function prototype */

MAIN__()
{
 int ierr, icon;
 int n, nmin, nmax;
 double epsa, epsr, err, s;

 /* initialize data */
 epsa = 1e-5;
 epsr = 0;
 nmin = 20;
 nmax = 689;
 /* calculate integral */
 ierr = c_daqeh(fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);
 printf(" icon s err n\n");
 printf("%6i %12.4e %12.4e %4i\n", icon, s, err, n);
 return(0);
}

/* user function */
double fun(double x)
{
 double res;
 if (x > 176)
 res = 0;
 else
 res = exp(-x)*sin(x);
 return(res);
}

5. Method

This function, when compared to c_daqe uses a transformation on the integration variable as follows:

))sinh(exp()(2
3 ttx

and to the weight function)(t :

))sinh(exp()cosh()(2
3

2
3 ttt

For further information on Takahashi-Mori’s method, and the computational techniques used, consult the entry for AQE in
the Fortran SSL II User’s Guide.

Description of the C-SSL II Routines

122

c_daqei
Integration of a function over an infinite interval (double exponential
formula).
ierr = c_daqei(fun, epsa, epsr, nmin, nmax,

&s, &err, &n, &icon);

1. Function

Given a function f x() and the error tolerances a and r , this library function obtains an approximation S which
satisfies:

dxxfdxxfS ra)(,max)((1)

by Takahashi-Mori’s double exponential formula.

2. Arguments

The routine is called as follows:
ierr = c_daqei(fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);

where:
fun function Input Name of the user defined function to evaluate f x() . Its prototype is:

double fun(double x);

where:
x double Input Independent variable.

epsa double Input Absolute error tolerance a .
epsr double Input Relative error tolerance r .
nmin int Input Lower limit on the number of evaluations of f x() . A suitable value is

20.
nmax int Input Upper limit on the number of evaluations of f x() . A suitable value is

645. Values greater than 645 are interpreted as 645.
s double Output An approximation to the integral. See Comments on use.
err double Output An estimate of the absolute error in the approximation of the integral.
n int Output Number of evaluation of f x() actually performed.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 The desired accuracy cannot be obtained due to

rounding errors.
Processing stopped. The approximation so far is
given in s. The accuracy has reached the
attainable limit.

11000 The function value does not tend to 0 quickly
enough as x .

Processing stopped. Can be continued with
relaxed error tolerances.

 c_daqei

 123

Code Meaning Processing
12000 The function value does not tend to 0 quickly

enough as x .

13000 The function value does not tend to 0 quickly
enough as x .

20000 The desired accuracy has not been reached, even
though the number of function evaluations has
reached nmax.

Processing stopped. s is the approximation so far
but is not accurate.

21000 to 23000 The same as icon = 11000 to 13000, but the
maximum number of function evaluations
(nmax) has also been reached.

25000 The abscissa table has been exhausted. Processing stopped. s is an approximation using
the smallest step size allowed in this library
function.

30000 One of the following has occurred:
 epsa 0
 epsr 0
 nmin 0
 nmax nmin

Bypassed.

3. Comments on use

General comments
When this routine is called many times, a table of constants (weights and abscissas for the integration formula) is
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.

This library function works successfully even when the integrand function f x() converges slowly to zero as x ,
and when Gauss-Hermite’s rule cannot be applied to the integrand. If f x() has a high peak around x 0 or is
oscillatory, then the integral value obtained may be inaccurate.

As the library function requires values of f x() at large values of x, fun must be able to deal with overflows and
underflows if a high degree of accuracy is required.

nmin and nmax
The number of evaluations of f x() actually performed is strictly controlled by the arguments nmin and nmax,
regardless of the convergence of the integration. Therefore:

 nmin n nmax

If the solution is not reached after nmax evaluations of f x() , the routine aborts with icon = 20000 to 23000.

If nmax is specified to be too small, the library function increases it to a suitable value, determined by the behaviour of
f x() .

epsa and epsr
This library function approximates S (see equation (1)), given the two error tolerances a and r (in the arguments epsa
and epsr respectively). When a = 0, the relative error is used to test for convergence, and when r = 0, the absolute
error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example, when

Description of the C-SSL II Routines

124

a and r are very small in comparison with the arithmetic precision in the integrand function evaluations, the effect of
rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has not been
reached.

err
err provides an estimate of the accuracy of the approximation s. Both of these arguments are set on output from the
function, even if the computation has not converged. The user is referred to the table of condition codes for a detailed
explanation of the different errors that may occur.

4. Example program

This program computes an approximation to dx
x

 2210
1 .

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

double fun(double x); /* user function prototype */

MAIN__()
{
 int ierr, icon;
 int n, nmin, nmax;
 double epsa, epsr, err, s;

 /* initialize data */
 epsa = 1e-3;
 epsr = 0;
 nmin = 20;
 nmax = 645;
 /* calculate integral */
 ierr = c_daqei(fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);
 printf(" icon s err n\n");
 printf("%6i %12.4e %12.4e %4i\n", icon, s, err, n);
 return(0);
}

/* user function */
double fun(double x)
{
 double res;
 if (fabs(x) > 1e35)
 res = 0;
 else if (fabs(x) < 1e-35)
 res = 100;
 else
 res = 1/(1e-2+x*x);
 return(res);
}

5. Method

This function, when compared to c_daqe uses a transformation on the integration variable as follows:

))sinh(sinh()(2
3 ttx

and to the weight function)(t :

))sinh(cosh()cosh()(2
3

2
3 ttt

For further information on Takahashi-Mori’s method, and the computational techniques used, consult the entry for AQE in
the Fortran SSL II User’s Guide.

 c_daqmc8

 125

c_daqmc8
Multiple integration of a function (modified Clenshaw-Curtis integration
rule).
ierr = c_daqmc8(m, lsub, fun, epsa, epsr,

nmin, nmax, &s, &err, &n, &icon);

1. Function

A multiple integration of dimension m where 31 m is defined here by:

),,,(2121

2

2

1

1

mm xxxfdxdxdxI
m

m

 (1)

where the limits of integration are given by:

),,,(

)(
(constant)

121mm

122

1

mxxx

x
a

),,,(

)(
(constant)

121mm

122

1

mxxx

x
b

 (2)

This library function obtains an approximation S such that:

),max(IIS ra (3)

for the error tolerances a (absolute) and r (relative) using a modified Clenshaw-Curtis rule applied to each dimension.

2. Arguments

The routine is called as follows:
ierr = c_daqmc8(m, lsub, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);

where:
m int Input Dimension m of the integral, where 1 3 m .
lsub function Input The user defined function which calculates the limits of the integration

k and k . The prototype is as follows:
void lsub(int k, double x[], double *a, double

*b);

where:
k int Input Dimension of the integration

variable. 1 k m
x double

x[m-1]

Input Integration variables
x x xm1 2 1, , , which are
stored in x[0] to x[m-2].

a double Output The value of the lower limit.
See equations (1) and (2).

Description of the C-SSL II Routines

126

b double Output The value of the upper limit.
See equations (1) and (2).

fun function Input The user defined function that evaluates the integrand f x x xm(, , ,)1 2 .
Its prototype is:
double fun(double x[]);

where fun returns a value of type double and the argument is:
x double

x[m]

Input Integration variables
x x xm1 2, , , which are stored
in x[0] to x[m-1].

epsa double Input Absolute error tolerance a .
epsr double Input Relative error tolerance r .
nmin int Input Lower limit on the number of evaluations of the integrand. A suitable

value is 7.
nmax int Input Upper limit on the number of evaluations of the integrand. A suitable

value is 511. Values greater than 511 are interpreted as 511.
s double Output An approximation to the integral. See Comments on use.
err double Output An estimate of the absolute error in the approximation of the integral.
n int Output Number of evaluations of the integrand actually performed.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed
100, 1000,
1100, 10000
10100, 11000
11100

When integrating in the direction of a certain co-
ordinate axis, the required accuracy could not be
obtained due to round off errors. A ‘1’ in the ‘ten-
thousands’ digit indicates that the problem
occurred when integrating along the x1 axis, a ‘1’
in the ‘thousands’ digit indicates the x2 axis, and
a ‘1’ in the ‘hundreds’ digit indicates the x3 axis.

When icon = 100, 1000 or 1100, the accuracy of
the solution has either reached the limit of the
arithmetic precision, or has satisfied the required
accuracy (check err). When icon = 10000 to
11100, the accuracy of the solution has reached
the limit of the arithmetic precision.

200, 2000
2200, 20000
20200, 22000
22200

When integrating in a certain direction, the
number of evaluations of the integrand reached
nmax, and the requested accuracy in this
direction could not be obtained. Again the
positions of the ‘2’s in the icon value indicate
the different directions, with ‘ten-thousands’,
‘thousands’ and ‘hundreds’ representing
directions x x1 2, and x3 respectively.

When icon = 200, 2000 or 2200, the accuracy
of the approximation may or may not have
achieved the required accuracy (check err).
When icon = 20000 to 22200, the
approximation is inaccurate.

300 to 23300 Both problems discussed above (i.e. icon = 100
to 11100, and icon = 200 to 22200) occur
concurrently. As above, the different digits
indicate the different directions of integration.

The approximation may or may not have
achieved the required accuracy (check err). See
Comments on use.

30000 One of the following has occurred:
 epsa 0
 epsr 0
 nmin 0

Bypassed.

 c_daqmc8

 127

Code Meaning Processing
 nmax nmin
 m 0 or m 4

3. Comments on use

General comments
When c_daqmc8 is called many times, a table of constants (weights and abscissas for the integration formula) is
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.
c_daqmc8 is useful for both smooth and oscillatory integrand functions.

nmin and nmax
The number of evaluations of the integrand function actually performed is controlled by the arguments nmin and nmax.
Therefore, for each dimension of the integration i = 1,2,...,m:

 nmaxnnmin i

If the solution is not reached after nmax evaluations, the library function aborts with icon = 200 to 22200, with the
position of the ‘2’ indicating the direction of integration which caused the error, i.e. the x x1 2, and x3 directions being
represented by the 10000, 1000 and 100 positions respectively.

When nmax is specified as less than 7, it is taken to be 7.

epsa and epsr
This library function approximates s (see equation (3)), given the two error tolerances a and r (in the arguments
epsa and epsr respectively). When a = 0 the relative error is used to test for convergence, and when r = 0, the
absolute error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example,
when a and r are very small in comparison with the arithmetic precision in the integrand function evaluations, the
effect of rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has
not been reached. If this occurs, the library function aborts with icon = 100 to 11100, with the position of the ‘1’
indicating the direction of integration which caused the error, i.e. the x x1 2, and x3 directions being represented by the
10000, 1000 and 100 positions respectively.

In general, when icon returns a value of 100, 1000, or 1100, the overall accuracy of the approximation s may still satisfy
the required accuracy. The value of err should therefore be checked.

err
err provides an estimate of the accuracy of the approximation s. Both of these arguments are set on output from the
function, even if the computation has not converged (unless illegal arguments were passed to the library function).

icon
When integrating in the directions of the x2 and x3 , if both rounding errors occur and nmax is reached, the library
function returns icon = 300, 3000 or 3300 as specified in the table of condition codes. However, when integrating in the
direction of x1 , c_daqmc8 behaves differently, terminating processing after the first of the 2 errors occur. This means
that condition codes with a ‘3’ in the ‘ten-thousands’ digit, due to these 2 errors occurring together are impossible.

Description of the C-SSL II Routines

128

4. Example program

This program computes an approximation to:

 dxdydz
pzpypx

3

3

2

2

1

1)cos()cos()cos(
1

with p varying from 1 to 3 in increments of 1.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

/* function prototypes */
void lsub(int k, double x[], double *a, double *b);
double fun(double x[]);

double p;

MAIN__()
{
 int ierr, icon;
 int i, m, n, nmin, nmax;
 double epsa, epsr, err, s;

 /* initialize data */
 epsa = 1e-5;
 epsr = 1e-5;
 nmin = 7;
 nmax = 511;
 m = 3;
 printf("p icon s err n\n");
 for (i=1;i<4;i++) {
 p = (double)i;
 /* calculate integral */
 ierr = c_daqmc8(m, lsub, fun, epsa, epsr,
 nmin, nmax, &s, &err, &n, &icon);
 printf("%3.0f %6i %12.4e %12.4e %4i\n", p, icon, s, err, n);
 }
 return(0);
}

/* limits function */
void lsub(int k, double x[], double *a, double *b)
{
 switch (k) {
 case(1):
 *a = -1;
 *b = 1;
 break;
 case(2):
 *a = -2;
 *b = 2;
 break;
 case(3):
 *a = -3;
 *b = 3;
 break;
 }
}

/* user function */
double fun(double x[])
{
 double res;
 res = 1/(cos(p*x[0])*cos(p*x[1])*cos(p*x[2])+2);
 return(res);
}

5. Method

For further information on the Clenshaw-Curtis rule, and the computational techniques used in this library function,
consult the entries for AQMC8 and AQC8 in the Fortran SSL II User’s Guide.

 c_daqme

 129

c_daqme
Multiple integration of a function by double exponential formula.
ierr = c_daqme(m, intv, lsub, fun, epsa, epsr,

nmin, nmax, &s, &err, &n, &isf,

&icon);

1. Function

This routine obtains an approximation S to a multiple integral of dimension m (1)3 m defined by

 1121
1

1

2

2

...),...,,(... dxdxdxxxxfI
m

m
mmm

 .

Generally the lower and upper limits of integration are as follows:

),...,,(
...

)(

121

122

1

mmm xxx

x
a

),...,,(
...

)(

121

122

1

mmm xxx

x
b

where a and b are constants. The region of integration],[kk for kx , may be finite, semi infinite),0[or infinite
),(.

The approximation S is calculated using the Takahashi-Mori double exponential formula repeatedly and satisfies

 ||,max|| IIS ra (1)

for given a (0) and r (0).

2. Arguments

The routine is called as follows:
ierr = c_daqme(m, intv, lsub, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &isf,

&icon);

where:
m int Input Dimension m of the integral.
intv int intv[m] Input Information indicating the type of interval of integration for each

variable. intv[k] indicates the type of integration interval for 1kx as
follows:
intv[k] = 1 for a finite interval
intv[k] = 2 for a semi-infinite interval
intv[k] = 3 for an infinite interval

For example, for

0 0

2

0
123321),,(dxdxdxxxxfI ,

intv[0] = 2, intv[1] = 1, intv[2] = 1.
lsub function Input User defined function to evaluate the lower limit k and upper limit

Description of the C-SSL II Routines

130

k . Its prototype is:
void lsub (int k, double x[], double *a,

 double *b);
 k int Input Index k of integration variable

mk 1 .
 x double

x[m-1]

Input Integration variables
x[k-1] = kx , k = 1,2,...,m-1.

 a double Output Lower limit),...,,(121 kk xxx .
 b double Output Upper limit),...,,(121 kk xxx
 If the interval],[kk is either),0[or),(it is not necessary

to define values of a and b for the corresponding k.
fun function Input User defined function to evaluate)...,,(,21 mxxxf . Its prototype is:

double fun (double x[]);
 x double

x[m]

Input Integration variables
x[k-1] = kx , k=1,2,...,m.

 See Comments on use.
epsa double Input Absolute error tolerance a (0). See Comments on use.
epsr double Input Relative error tolerance r (0). See Comments on use.
nmin int Input Lower limit (0) on the number of evaluations of the integrand

function when integrating in each integration variable. An appropriate
value is 20. See Comments on use.

nmax int Input Upper limit (0) on the number of evaluations of the integrand function
when integrating in each integration variable. An appropriate value is
705. If the value exceeds 705, then 705 is assumed. See Comments on
use.

s double Output Approximation S to the integral. See Comments on use.
err double Output Estimate of the absolute error in approximation s. See Comments on use.
n int Output Total number of integrand evaluations actually performed.
isf int Output Information about the behaviour of the integrand when the value of

icon is in the 25000’s. isf is a 3-digit positive integer in decimal.
Representing isf by
 isf = 321 10100 jjj ,

1j , 2j , and 3j indicate the behaviour of the integrand function in the
direction of axis 1x , 2x , and 3x respectively. Each ij assumes the
value 1, 2, 3 or 0 as explained below:

 isf = 1 The function increases rapidly near the lower limit of
integration, or if the interval is infinite, the function tends to
zero very slowly as ix .

 isf = 2 The function increases rapidly near the upper limit of
integration, or if the interval is semi-infinite or infinite, the
function tends to zero very slowly as ix .

 isf = 3 The events indicated in 1 and 2 above occur concurrently.
 isf = 0 None of the events indicated in 1, 2, and 3 above occurs.
icon int Output Condition code. See below.
The complete list of condition codes is:

 c_daqme

 131

Code Meaning Processing
0 No error. Completed.
10001 to 10077 When integrating in the direction of axis 3x and

2x , the required accuracy has not been obtained
in the direction of the axis, as indicated by the
lower two digits of the code. The last of these two
digits indicates the direction of axis 3x , and the
other digit indicates the direction of axis 2x . Each
digit assumes a value from 0 to 7 (there is no case
when both are zero.). The digits have the
following meanings:
1 – the required accuracy in the direction of the
axis cannot be obtained due to the round-off error.
2 – the required accuracy in the direction of the
axis cannot be obtained even if the number of
integrand evaluations in the direction of the axis
reaches the upper limit nmax.
3 – the events indicated in 1 and 2 above occur
concurrently.
4 – the required accuracy in the direction of the
axis cannot be obtained even if integrating by the
minimum step-size defined in the routine.
5 – the events indicated in 1 and 4 above occur
concurrently.
6 – the events indicated in 2 and 4 above occur
concurrently.
7 – the events indicated in 1, 2 and 4 above occur
concurrently.
0 - none of the events indicated above occur.

s is the approximation obtained and err is an
estimate of the absolute error in s. The required
accuracy may be satisfied.

10100 to 10177 When integrating in the direction of axis 1x , the
required accuracy cannot be obtained due to the
round-off error. The lower two digits indicate the
same as those in codes 10001 to 10077.

s is the approximation obtained and err is an
estimate of the absolute error in s.
The accuracy is the maximum attainable.

20200 to 20277 When integrating in the direction of axis 1x , the
required accuracy cannot be obtained even
though the number of integrand evaluations in the
direction of the axis has reached the upper limit
nmax. The lower two digits indicate the same as
those in codes 10001 to 10077.

s is the approximation obtained and err is an
estimate of the absolute error in s. The required
accuracy may not have been reached. If nmax is
increased (up to nmax = 750), the accuracy may
be improved.

20400 to 20477 When integrating in the direction of axis 1x , the
required accuracy was not obtained even using
the minimum step size defined in the routine. The
lower two digits indicate the same as those in
codes 10001 to 10077.

s is the approximation obtained and err is an
estimate of the absolute error in s.

25000 to 25477 When integrating in the direction of one of the
axes, the value of the function rapidly increases

Continued after relaxing the required accuracy.
The obtained approximation is output in s, and

Description of the C-SSL II Routines

132

Code Meaning Processing
near the lower limit or upper limit of the
integration interval, or when the integration
interval is semi-finite or infinite, the integrand
function slowly converges to zero as the
integration variable tends to infinity. With the
middle digit of the code indicating the direction of
axis 1x , the lower three digits mean the same as
in codes 10001 to 10077.

err is an estimate of the absolute error in s.
Even when the integral does not exist
theoretically, this range of code may be returned.
Refer to argument isf for information on the
behaviour of the integrand.

30000 One of the following has occurred:
 epsa < 0
 epsr < 0
 nmin < 0
 nmax < nmin
 m 0 or m 4
 Some value other than 1, 2, or 3 is input for

an element of intv.

Bypassed.

3. Comments on use

General comments
When this routine is called many times a table of constants (weights and abscissae for the integration formula) is
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.

This routine usually works successfully even when the integrand function changes rapidly in the neighbourhood of the
boundary of the integration region. The routine is recommended when algebraic or logorithmic singularities are located on
the boundary. If the integrand is smooth or oscillatory and the region of integration is finite, routine c_daqmc8 should be
used.

This routine usually works successfully when the integrand function converges to zero rather slowly as x .
However, if the function is extremely oscillatory in the region, high accuracy may not be attained.

The routine does not evaluate the integrand function on the boundary, therefore it is possible for the function to be infinite
on the boundaries. However, singularities must not be contained within the region.

fun
When the integration interval in the direction of an axis (say the i-th axis) is infinite, function values for large || ix are
required, therefore if the desired accuracy is high, the function fun needs to avoid overflows or underflows.

nmin and nmax
This routine limits the number of evaluations in , of the integrand function in the direction of each coordinate axis ix ,
such that

 nmaxnmin in .

This means that the integrand function is evaluated at least nmin times in the direction of each axis, but no more than
nmax times in each direction, regardless of the result of the convergence test. When the approximation does not converge

 c_daqme

 133

within nmax evaluations, this information is output to the last, second last, or third last digit of the argument icon,
corresponding to the axis 3x , 2x , 1x respectively.

When an extremely small value of nmax is given, for example nmax = 2, nmax is increased automatically to a value
which is determined by the behaviour of the integrand function.

s, epsa and epsr
Given the two error tolerances a and r , in arguments epra and epsr respectively, this routine determines an
approximation satisfying (1). When 0 r , the absolute error criterion is used, and when 0 a the relative error
criterion is used. When a and r are too small in comparison with the arithmetic precision of the function evaluation,
the effect of round-off error may become dominant before the maximum number of function evaluations nmax has been
reached. Depending upon the axis, this information is output to the last, second last, or third last digits of argument icon.

Generally speaking, even when the effect of round-off error on the integration is large in the direction of 2x or 3x , the
required accuracy may still be obtained, and the error estimate err should be checked.

As mentioned in the comments on nmin and nmax, sometimes the approximation does not converge within nmax
evaluations, and this information is output to icon. If this occurs in the direction of axis 2x or 3x , the obtained integral
approximation may still satisfy the required accuracy, and the error estimate err should be checked.

In addition, the approximation may not converge even though the smallest step-size defined in the routine is used.
Although this information is output to icon, if this event occurs when integrating in the direction of 2x or 3x , the
required accuracy may still be obtained, and the error estimate err should be checked.

err
This routine always outputs an estimate of the absolute error, in argument err, together with the integral approximation
in argument s.

4. Example program

The integral I is calculated in the following program. I is given by:

2 11 1

0
3

3210
2

0
1

x xx

dx
xxx

edxdxI (2)

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

/* function prototypes */
void lsub(int k, double x[], double *a, double *b);
double fun(double x[]);

MAIN__()
{
 int ierr, icon;
 int m, n, nmin, nmax, intv[3], isf;
 double epsa, epsr, err, s;

 /* initialize data */
 epsa = 1e-3;
 epsr = 1e-3;
 nmin = 20;
 nmax = 705;
 m = 3;
 intv[0] = 2;
 intv[1] = 1;

Description of the C-SSL II Routines

134

 intv[2] = 1;
 /* calculate integral */
 ierr = c_daqme(m, intv, lsub, fun, epsa, epsr,
 nmin, nmax, &s, &err, &n, &isf, &icon);
 printf("icon = %i s = %12.4e err = %12.4e isf = %i n = %i\n",
 icon, s, err, isf, n);
 return(0);
}

/* limits function */
void lsub(int k, double x[], double *a, double *b)
{
 *a = 0;
 switch (k) {
 case(1):
 break;
 case(2):
 *b = x[0];
 break;
 case(3):
 *b = 1-x[1];
 break;
 }
}

/* user function */
double fun(double x[])
{
 double y;
 y = x[1]+x[2];
 if (y < 1e-70) return 0;
 if (x[0] > 174) return 0;
 y = x[0]*sqrt(y);
 if (y < 1e-70) return 0;
 return exp(-x[0])/y;
}

5. Method

Consult the entry for AQME in the Fortran SSL II User's Guide.

 c_daqn9

 135

c_daqn9
Integration of a function (adaptive Newton-Cotes 9 point rule).
ierr = c_daqn9(a, b, fun, epsa, epsr, nmin,

nmax, &s, &err, &n, &icon);

1. Function

Given a function f x() and the constants aba ,, and r this subroutine obtains an approximation S that satisfies the
following:

b

a
ra

b

a
dxxfdxxfS)(,max)((1)

by the adaptive Newton-Cotes 9 point rule.

2. Arguments

The routine is called as follows:
ierr = c_daqn9(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);

where:
a double Input Lower limit a of the integral.
b double Input Upper limit b of the integral.
fun function Input User defined function that evaluates f x() . Its prototype is:

double fun(double x);

where:
x double Input Independent variable.

epsa double Input The absolute error tolerance a .
epsr double Input The relative error tolerance r .
nmin int Input Lower limit on the number of function evaluations, where

0 150 nmin . A suitable value is 21.
nmax int Input Upper limit on the number of function evaluations. A suitable value is

2000. nmax > nmin + 8.
s double Output Approximation to the integral.
err double Output An estimate of the absolute error in the approximation.
n int Output Number of function evaluations actually performed.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 to 13111 Irregular points such as singular points are found.

The last 4 digits have the following meanings:
The ‘thousands’ digit can contain a ‘1’, ‘2’, or ‘3’
which signify:

Processing completed. For logarithmic and
discontinuity points only, s will probably satisfy
the desired accuracy.

Description of the C-SSL II Routines

136

Code Meaning Processing
‘1’ Algebraic singularities have been found.
‘2’ Cauchy’s singularities have been found.
‘3’ Both algebraic and Cauchy’s singularities
found.
A ‘1’ in the ‘hundreds’ digit signifies that
logarithmic singularities have been found.
A ‘1’ in the ‘tens’ digit signifies that discontinuity
points are present.
A ‘1’ in the ‘units’ digit signifies that other
irregular points were found.

20000 to 23111 The desired accuracy has not been attained
although the upper limit on the number of
integrand evaluations nmax has been reached.
The last 4 digits have the same meanings as
above.

Processing stops. s is the approximation attained
so far, but is not accurate.

30000 One of the following has occurred:
 epsa<0.
 epsr<0.
 nmin<0.
 nmin 150.
 nmax nmin+8.

Bypassed.

3. Comments on use

General Comments
This routine may be used for a broad class of functions, and can successfully handle integrands that have peaks or
irregular points (such as algebraic singularities, logarithmic singularities, or discontinuities), which can be accessed in the
manner of bisection (such as the end points, midpoint and quartered points). Consequently, this routine should be tried
first on integrands of this type, and also for integrands whose properties are not well known. To improve the accuracy of
the solution, the limits of integration should be changed so that any irregular points only occur at the endpoints of the
integration.

It should be noted that c_daqmc8 is better suited (and more efficient) than c_daqn9 to oscillatory and smooth
functions, and c_daqe is better suited to functions which only have singularities at the endpoints of the integration.

If the value of f x() at a certain point within the integration interval, then the value of f x() at that point should
be replaced by a finite value, e.g. 0.

nmin and nmax
The number of evaluations of the integrand function actually performed is strictly controlled by the arguments nmin and
nmax, regardless of the convergance of the integral.

 nmaxnnmin

If an accurate solution is not reached after nmax evaluations, the library function aborts with icon = 20000 to 21111. See
the table of condition codes for details.

 c_daqn9

 137

 When the value of nmax is less than 21 the default value of 21 is used.

Accuracy and err
This routine approximates S (see equation (1)), given the two error tolerances a and r (in the arguments epsa and
epsr respectively). When a = 0 the relative error is used to test for convergence, and when r = 0 the absolute error is
used. Decreasing the size of these arguments means that this routine needs to perform a larger number of evaluations of
f x() to attain the required accuracy, which may then possibly exceed nmax, causing an error with a condition code

between 20000 and 23111. The argument err gives an estimate of the absolute error in the solution s.

4. Example program

This program computes an approximation to dxpxx p))sin((
1

0
 with p varying from 0.1 to 0.9 in increments of 0.1.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

double fun(double x); /* user function prototype */
double p;

MAIN__()
{
 int ierr, icon;
 int i, n, nmin, nmax;
 double a, b, epsa, epsr, err, s;

 /* initialize data */
 a = 0;
 b = 1;
 epsa = 1e-4;
 epsr = 1e-4;
 nmin = 21;
 nmax = 2000;
 printf("p icon s err n\n");
 for (i=1;i<10;i++) {
 p = (double)i/10;
 /* calculate integral */
 ierr = c_daqn9(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);
 printf("%3.1f %6i %12.4e %12.4e %4i\n", p, icon, s, err, n);
 }
 return(0);
}

/* user function */
double fun(double x)
{
 double res;
 res = 0;
 if (x > 0)
 res = pow(x,-p) + sin(p*x);
 return(res);
}

5. Method

For further information on adaptive integration using the Newton-Cotes 9 point rule consult the entry for AQN9 in the
Fortran SSL II User’s Guide and also [76].

Description of the C-SSL II Routines

138

c_dassm
Addition of two matrices (symmetric + symmetric).
ierr = c_dassm(a, b, c, n, &icon);

1. Function

This routine performs addition of two nn symmetric matrices, A and B.

 BAC (1)

In (1), the resultant matrix C is also an nn matrix (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dassm(a, b, c, n, &icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage

formats in the Introduction section for details. .2/)1(nnAlen
b double b[Blen] Input Matrix B. Stored in symmetric storage format. See Array storage formats

in the Introduction section for details. .2/)1(nnBlen
c double c[Clen] Input Matrix C. Stored in symmetric storage format. See Array storage

formats in the Introduction section for details. .2/)1(nnClen See
Comments on use.

n int Input The order n of matrices A, B and C.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 n < 1 Bypassed.

3. Comments on use

Efficient use of memory
Storing the solution matrix C in the same memory area as matrix A (or B) is permitted if the array contents of matrix A (or
B) can be discarded after computation. To take advantage of this efficient reuse of memory, the array arguments associated
with matrix A (or B) need to appear in the locations reserved for matrix C in the function argument list, as indicated below.

For A:

ierr = c_dassm(a, b, a, n, &icon);

For B:

ierr = c_dassm(a, b, b, n, &icon);

 c_dassm

 139

Note, if both matrices A and B are required after the solution then a separate array must be supplied for storing C.

4. Example program

This program adds two symmetric matrices together and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij;
 double eps, err;
 double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], c[NMAX*(NMAX+1)/2];

 /* initialize matrices*/
 n = NMAX;
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[ij] = i-j+1;
 b[ij++] = n-i+j-1;
 }
 /* add matrices */
 ierr = c_dassm(a, b, c, n, &icon);
 if (icon != 0) {
 printf("ERROR: c_dassm failed with icon = %d\n", icon);
 exit(1);
 }
 /* check matrix */
 eps = 1e-6;
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 err = fabs((c[ij++]-n)/n);
 if (err > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 }
 printf("Result OK\n");
 return(0);
}

Description of the C-SSL II Routines

140

c_dasvd1
Singular value decomposition of a real matrix (Householder and QR
methods).
ierr = c_dasvd1(a, ka, m, n, isw, sig, u, ku,

v, kv, vw, &icon);

1. Function

This function performs singular value decomposition of an m n real matrix A using the Householder and QR methods.

 A U V T (1)

In (1), U and V are matrices of m l and n l respectively, l = min (m, n).

When l = n (m n),

U U V V VV IT T T n

else l = m (m < n),

U U UU V V IT T T m

The variable is an l l diagonal matrix expressed by diag(i i), 0 and i is a singular value of A .
Singular values i are the positive square root of the eigenvalues of matrix A AT and the i-th row of V is the
eigenvector corresponding to the eigenvalue i)1,1(nm .

For dimensions of matrices A U V, , , , see Figure 29

U

A

 VT

A

 n

 m m
 n

 n n

 m

 n

 m m m

 n

VT

 m m

U

=

=

 n

 n
(m n)

(m < n)

Figure 29 Relationship of matrix dimensions

2. Arguments

The routine is called as follows:
ierr = c_dasvd1((double*)a, ka, m, n, isw, sig, (double*)u, ku, (double*)v,

kv, vw, &icon);

where:

 c_dasvd1

 141

a double

a[m][ka]

Input Matrix A. See Comments on use.

ka int Input C fixed dimension of array a (n).
m int Input The number of rows m in matrix A.
n int Input The number of columns n in matrix A.
isw int Input Control information.

isw = 10d1 + d0 with d0 and d1 are either 0 or 1, specified as follows:
d1 0 not to obtain matrix U.

1 to obtain matrix U.
d0 0 not to obtain matrix V.

1 to obtain matrix V.
sig double

sig[Slen]
Output Singular values of matrix A with Slen = l+1. See Comments on use.

u double

u[m][ku]

Output Matrix U. See Comments on use.

ku int Input C fixed dimension of array u (n).
v double

v[n][kv]

Output Matrix V. See Comments on use.

kv int Input C fixed dimension of array v (min(m+1, n)).
vw double

vw[n+1]

Work

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
15000 Some singular values cannot be obtained. Stopped.
29000 Memory allocation error. Bypassed.
30000 One of the following has occurred:

 m < 1
 n < 1
 ka < n
 ku < n
 kv < min(m+1, n)
 isw 0, 1, 10 or 11

Bypassed.

3. Comments on use

Matrix inverse or least squares
If users use the decomposition factors, U, and V, from singular value decomposition, for obtaining generalized matrix
inverse or least squares minimal norm solution of linear equations. They can do so but overall computation will not be as
efficient compares to using function c_dginv and c_dlaxlm, respectively.

Matrices U and V – u, v & isw
Although the singular value decomposition can be widely utilized, it requires a great amount of computation. Therefore,
U and V are only computed when required. The argument isw control such requests.

Description of the C-SSL II Routines

142

The function allows rewriting of either U or V on array a to reduce storage space. Only when A does not have to be
saved else separate arrays are needed.

sig
All singular values are non-negative and stored in descending order. When icon=15000, the unobtainable singular
values are set to –1 and the values are not arranged in any order.

Matrix A – a
In this function, there are no constraints on the number of columns m or rows n for matrix A, i.e. this function can perform
singular value decomposition when m is less than, equal to, or greater than n.

4. Example program

This program defines a matrix A, performs a single value decomposition, and displays the singular values and
eigenvectors.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define MMAX 7
#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int m, n, i, j, ka, ku, kv, isw;
 double a[MMAX][NMAX], sig[NMAX], u[MMAX][NMAX], v[NMAX][NMAX], vw[NMAX];

 /* initialize system */
 m = MMAX;
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=i;j<n;j++) {
 a[i][j] = n-j;
 a[j][i] = n-j;
 }
 for (i=n;i<m;i++)
 for (j=0;j<n;j++) {
 a[i][j] = 0;
 if (i%n == j) a[i][j] = 1;
 }
 ka = NMAX;
 ku = NMAX;
 kv = NMAX;
 isw = 11;
 /* singular value decomposition */
 ierr = c_dasvd1((double*)a, ka, m, n, isw, sig,
 (double*)u, ku, (double*)v, kv, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dasvd1 failed with icon = %d\n", icon);
 exit(1);
 }
 /* print singular values and eigenvectors */
 for (i=0;i<n;i++) {
 printf("singular value: %10.4f\n", sig[i]);
 printf("e-vector:");
 for (j=0;j<n;j++)
 printf("%7.4f ",v[i][j]);
 printf("\n");
 }
 return(0);
}

 c_dasvd1

 143

5. Method

The Householder and QR methods are used for the singular value decomposition. For further information consult the
entry for ASVD1 in the Fortran SSL II User’s Guide and [41].

Description of the C-SSL II Routines

144

c_dbi0
Modified zero-order Bessel function of the first kind I x0 () .
ierr = c_dbi0(x, &bi, &icon);

1. Function

This function computes the modified zero-order Bessel function of the first kind

I x
x
k

k

k
0

2

2
0

2
()

()
(!)

by polynomial approximations and the asymptotic expansion.

2. Arguments

The routine is called as follows:
ierr = c_dbi0(x, &bi, &icon);

where:
x double Input Independent variable x.
bi double Output Function value I x0 () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x log()maxfl bi is set to flmax .

3. Comments on use

x
The range of values of x is limited to avoid numerical overflow of e x in the computations. The table of condition codes
shows these limits. For details on the constant, flmax , see the Machine constants section of the Introduction.

4. Example program

This program evaluates a table of function values for x from 0 to 100 in increments of 1.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, bi;
 int i;

 for (i=0;i<=100;i++) {
 x = (double)i;
 /* calculate Bessel function */
 ierr = c_dbi0(x, &bi, &icon);

 c_dbi0

 145

 if (icon == 0)
 printf("x = %4.2f bi = %e\n", x, bi);
 else
 printf("ERROR: x = %4.2f bi = %e icon = %i\n", x, bi, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the modified zero-order Bessel function of the first kind,
I x0 () , is:

 Power series expansion using polynomial approximations when 0 8 x .
 Asymptotic expansion when 8 x fllog()max .

For further information consult the entry for BI0 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

146

c_dbi1
Modified first-order Bessel function of the first kind I x1 () .
ierr = c_dbi1(x, &bi, &icon);

1. Function

This function computes the modified first-order Bessel function of the first kind

I x
x

k k

k

k
1

2 1

0

2
1()

()
!()!

by polynomial approximations and the asymptotic expansion.

2. Arguments

The routine is called as follows:
ierr = c_dbi1(x, &bi, &icon);

where:
x double Input Independent variable x.
bi double Output Function value I x1() .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000)log(maxflx or)log(maxflx . bi is set to flmax or maxfl respectively..

3. Comments on use

x
The range of values of x is limited to avoid numerical overflow of e x in the computations. The table of condition codes
shows these limits. For details on the constant, flmax , see the Machine constants section of the Introduction.

4. Example program

This program evaluates a table of function values for x from 0 to 100 in increments of 1.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, bi;
 int i;

 for (i=0;i<=100;i++) {
 x = (double)i;
 /* calculate Bessel function */
 ierr = c_dbi1(x, &bi, &icon);

 c_dbi1

 147

 if (icon == 0)
 printf("x = %4.2f bi = %e\n", x, bi);
 else
 printf("ERROR: x = %4.2f bi = %e icon = %i\n", x, bi, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the modified zero-order Bessel function of the first kind,
I x1 () , is:

 Power series expansion using polynomial approximations when 0 8 x .
 Asymptotic expansion when 8 x fllog()max .

For further information consult the entry for BI1 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

148

c_dbic1
B-spline interpolation coefficient calculation (I).
ierr = c_dbic1(x, y, dy, n, m, c, vw, &icon);

1. Function

Given function values)(ii xfy for ni ,...,1 at discrete points nxxx ...21 and derivative values
)(1

)()(
1 xfy and)()()(

nn xfy for 2/)1(,...,1 m , this routine obtains the interpolation coefficients jc ,
1,...,2,1 nmmj , of the interpolating spline)(xS of degree m represented as a linear combination of B-splines

(1).

1

1
1,)()(

n

mj
mjj xNcxS (1)

The interpolating spline)(xS in (1) satisfies

1

1

)()(
1,

)(

1

1
1,

1

1

)(
11

)(
1,1

)(

0,...,12/)1(,2/)1(,)()(

1,...,3,2,)()(

2/)1(,...,1,0,)()(

n

mj
nnmjjn

n

mj
iimjji

n

mj
mjj

mmyxNcxS

niyxNcxS

myxNcxS

Here m is an odd integer and is the degree of the B-spline)(1, xN mj , with 3m and 2n .

2. Arguments

The routine is called as follows:
ierr = c_dbic1(x, y, (double*)dy, n, m, c, vw, &icon);

where:
x double x[n] Input Discrete points ix .
y double y[n] Input Function values iy .
dy double

dy[(m-1)/2][2]

Input Derivative values at end points 1x and nx .
dy[1][0] =)(

1
y , dy[1][1] =)(

ny , =1,2,...,(m-1)/2.

n int Input Number of discrete points n.
m int Input Degree m of the B-spline. See Comments on use.
c double

c[n+m-1]

Output Interpolating coefficients jc .

vw double

vw[Vwlen]
Work)1(2/)1()2(2 mmmnVwlen .

icon int Output Condition code. See below.
The complete list of condition codes is:

 c_dbic1

 149

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m is not an odd integer
 x[i] x[i+1] for some i
 m < 3
 n < 2

Bypassed.

3. Comments on use

Relationship with c_dbif1
The interpolated value, derivative value, or integral value based on the interpolating B-spline (1) may be determined by
the c_dbif1 routine. In which case, the values of arguments x, n, m, and c are input to the c_dbif1 routine.

m
The preferred degree m is 3 or 5. However, if the original function is smooth and the iy ’s are given with high accuracy,
the degree may be increased above 3 or 5 but not beyond 15.

4. Example program

This program interpolates the function 3)(xxf at 10 equally spaced points in the interval]1,0[with a B-spline. It then
computes approximations to the function value as well as an integral and several derivatives associated with a particular
point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, n, m, isw;
 double x[N], y[N], c[N+M-1], dy[1][2], vw[36];
 double p, h, v, f;

 /* initialize data */
 n = N;
 m = M;
 p = 0;
 h = 1.0/(n-1);
 /* set function values */
 for (i=0;i<n;i++) {
 x[i] = p+i*h;
 y[i] = x[i]*x[i]*x[i];
 }
 /* set derivative values at end-points */
 dy[0][0] = 3*x[0]*x[0];
 dy[0][1] = 3*x[n-1]*x[n-1];

 /* calculate B-spline interpolation coefficients */
 ierr = c_dbic1(x, y, (double*)dy, n, m, c, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dbic1 failed with icon = %d\n", icon);
 exit(1);
 }
 i = 4;

Description of the C-SSL II Routines

150

 v = 0.5;
 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbif1(x, n, m, c, isw, v, &i, &f, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbif1 failed with icon = %d\n", icon);
 exit(1);
 }
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);
}

5. Method

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using
an LU decomposition method the coefficients are obtained. For further information consult the entry for BIC1 in the
Fortran SSL II User's Guide.

 c_dbic2

 151

c_dbic2
B-spline interpolation coefficient calculation (II).
ierr = c_dbic2(x, y, dy, n, m, c, vw, &icon);

1. Function

Given function values)(ii xfy for ni ,...,1 at discrete points nxxx ...21 and derivative values
)(1

)()(
1 xfy and)()()(

nn xfy for 1,...,12/)1(,2/)1(mmm , this routine obtains the interpolation
coefficients jc , 1,...,2,1 nmmj , of the interpolating spline)(xS of degree m represented as a linear
combination of B-splines (1).

1

1
1,)()(

n

mj
mjj xNcxS (1)

The interpolating spline)(xS in (1) satisfies

1

1

)()(
1,

)(

1

1
1,

1

1

)(
11

)(
1,1

)(

2/)1(,...,2,1,)()(

,...,2,1,)()(

1,...,12/)1(,2/)1(,)()(

n

mj
nnmjjn

n

mj
iimjji

n

mj
mjj

mmmyxNcxS

niyxNcxS

mmmyxNcxS

.

Here m is an odd integer and is the degree of the B-spline)(1, xN mj , with 3m and 2/)1(mn .

2. Arguments

The routine is called as follows:
ierr = c_dbic2 (x, y, (double*)dy, n, m, c, vw, &icon);

where:
x double x[n] Input Discrete points ix .
y double y[n] Input Function values iy .
dy double

dy[(m-1)/2][2]

Input Derivative values at end points 1x and nx .
dy[-(m+1)/2][0] =)(

1
y , dy[-(m+1)/2][1] =)(

ny ,
1,...,12/)1(,2/)1(mmm .

n int Input Number of discrete points n.
m int Input Degree m of the B-spline. See Comments on use.
c double

c[n+m-1]

Output Interpolating coefficients jc .

vw double

vw[Vwlen]
Work)1(2)3(mmnmVwlen .

icon int Output Condition code. See below.
The complete list of condition codes is:

Description of the C-SSL II Routines

152

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m is not an odd integer
 x[i] x[i+1] for some i
 m < 3
 n < (m+1)/2

Bypassed.

3. Comments on use

Relationship with c_dbif2
The interpolated value, derivative value, or integral value based on the interpolating B-spline (1) may be determined by
the c_dbif2 routine. In which case, the values of arguments x, n, m, and c are input to the c_dbif2 routine.

m
The preferred degree m is 3 or 5. However, if the original function is smooth and the iy ’s are given with high accuracy,
the degree may be increased above 3 or 5 but not beyond 15.

4. Example program

This program interpolates the function 3)(xxf at 10 equally spaced points in the interval]1,0[with a B-spline. It then
computes approximations to the function value as well as an integral and several derivatives associated with a particular
point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, n, m, isw;
 double x[N], y[N], c[N+M-1], dy[1][2], vw[38];
 double p, h, v, f;

 /* initialize data */
 n = N;
 m = M;
 p = 0;
 h = 1.0/(n-1);
 /* set function values */
 for (i=0;i<n;i++) {
 x[i] = p+i*h;
 y[i] = x[i]*x[i]*x[i];
 }
 /* set derivative values at end-points */
 dy[0][0] = 3*x[0]*x[0];
 dy[0][1] = 3*x[n-1]*x[n-1];
 /* calculate B-spline interpolation coefficients */
 ierr = c_dbic2(x, y, (double*)dy, n, m, c, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dbic2 failed with icon = %d\n", icon);
 exit(1);
 }
 i = 4;
 v = 0.5;
 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbif2(x, n, m, c, isw, v, &i, &f, vw, &icon);

 c_dbic2

 153

 if (icon >= 20000) {
 printf("ERROR: c_dbif2 failed with icon = %d\n", icon);
 exit(1);
 }
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);
}

5. Method

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using
an LU decomposition method the coefficients are obtained. For further information consult the entry for BIC2 in the
Fortran SSL II User's Guide.

Description of the C-SSL II Routines

154

c_dbic3
B-spline interpolation coefficient calculation (III).
ierr = c_dbic3(x, y, n, m, c, xt, vw, &icon);

1. Function

Given discrete points x x xn1 2 and their corresponding function values y f xi i () for i n 1, , , this
function obtains the interpolating spline S x() of degree m represented as a linear combination of B-splines (1).

 S x c N xj j m
j m

n m

() (),

 1
1

 (1)

The knots of the spline are taken as:

1 1

1 2

1

2 3

x
x i n m

x
i i m

n m n

()/ , , ,for

Here, m is an odd integer greater than 2 and n m 2 .

2. Arguments

The routine is called as follows:
ierr = c_dbic3(x, y, n, m, c, xt, vw, &icon);

where:
x double x[n] Input Discrete points xi .
y double y[n] Input Function values yi .
n int Input Number of discrete points n.
m int Input Degree m of the B-spline. See Comments on use.
c double c[n] Output Interpolating coefficients c j .
xt double

xt[n-m+1]

Output The knots i .

vw double

vw[m*n+2]

Work

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m is not an odd number
 n < m + 2
 x[i] x[i+1] exists
 m < 3

Bypassed.

 c_dbic3

 155

3. Comments on use

Relationship with c_dbif3
The interpolated values or derivative or integrals based on the interpolating spline (1) may be determined by calling the
function c_dbif3 after this function. In that case, the values of arguments x, n, m, c and xt are input to the c_dbif3
function.

m
The preferred degree m is 3 or 5. However, if the original function is smooth and yi ’s are given with high accuracy, the
degree may be increased above 3 or 5 but not beyond 15.

4. Example program

This program interpolates the function xxxf)sin()(at 10 equally spaced points in the interval]1,0[with a cubic B-
spline. It then computes approximations to the function value as well as an integral and several derivatives associated with
a particular point.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, n, m, isw;
 double x[N], y[N], c[N], xt[N-M+1], vw[M*N+2];
 double p, h, v, f;

 /* initialize data */
 n = N;
 m = M;
 isw = 0;
 p = 0;
 h = 1.0/n;
 for (i=0;i<n;i++) {
 x[i] = p;
 y[i] = sin(p)*sqrt(p);
 p = p + h;
 }
 /* calculate B-spline interpolation coefficients */
 ierr = c_dbic3(x, y, n, m, c, xt, vw, &icon);
 i = n/2;
 v = x[i] + (x[i+1]-x[i])/2;
 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbif3(x, n, m, c, xt, isw, v, &i, &f, vw, &icon);
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);
}

5. Method

The interpolating condition for the B-spline derives a system of equations for its coefficients, by solving this system using
a LU decomposition method the coefficients are obtained. For further information consult the entry for BIC3 in the
Fortran SSL II User's Guide.

Description of the C-SSL II Routines

156

c_dbic4
B-spline interpolation coefficient calculation (IV).
ierr = c_dbic4 (x, y, n, m, c, vw, &icon);

1. Function

Given periodic function values)(ii xfy for ni ,...,1 , with nyy 1 , and period)(1xxn , at discrete points

nxxx ...21 , this routine obtains the interpolation coefficients jc , 1,...,2,1 nmmj , of the interpolating
spline)(xS of degree m represented as a linear combination of B-splines (1).

1

1
1,)()(

n

mj
mjj xNcxS (1)

The interpolating spline)(xS in (1) is a periodic function, with period)(1xxn , satisfying the boundary conditions
1,...,1,0),()()(

1
)(mxSxS n .

Here m is an odd integer and is the degree of the B-spline)(1, xN mj , with 3m and 2 mn .

2. Arguments

The routine is called as follows:
ierr = c_dbic4 (x, y, n, m, c, vw, &icon);

where:
x double x[n] Input Discrete points ix .
y double y[n] Input Function values iy , with nyy 1 .If nyy 1 , then 1y is set to ny .
n int Input Number of discrete points n.
m int Input Degree m of the B-spline. See Comments on use.
c double

c[n+m-1]

Output Interpolating coefficients jc .

vw double

vw[Vwlen]
Work 1)12)(1(mmnVwlen .

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m is not an odd integer
 x[i] x[i+1] for some i
 m < 3
 n < m+2

Bypassed.

 c_dbic4

 157

3. Comments on use

Relationship with c_dbif4
The interpolated value, derivative value, or integral value based on the interpolating B-spline (1) may be determined by
the c_dbif4 routine. In which case, the values of arguments x, n, m, and c are input to the c_dbif4 routine.

m
The preferred degree m is 3 or 5. However, if the original function is smooth and the iy ’s are given with high accuracy,
the degree may be increased above 3 or 5 but not beyond 15.

4. Example program

This program interpolates the function xxf sin)(at 10 equally spaced points in the interval]2,0[with a B-spline. It
then computes approximations to the function value as well as an integral and several derivatives associated with a
particular point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, n, m, isw;
 double x[N], y[N], c[N+M-1], vw[49];
 double p, h, v, f, pi;

 /* initialize data */
 n = N;
 m = M;
 p = 0;
 pi = 2*asin(1);
 h = 2*pi/(n-1);
 /* set function values */
 for (i=0;i<n;i++) {
 x[i] = p+i*h;
 y[i] = sin(x[i]);
 }
 /* calculate B-spline interpolation coefficients */
 ierr = c_dbic4(x, y, n, m, c, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dbic4 failed with icon = %d\n", icon);
 exit(1);
 }
 i = 4;
 v = pi;
 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbif4(x, n, m, c, isw, v, &i, &f, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbif4 failed with icon = %d\n", icon);
 exit(1);
 }
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);
}

Description of the C-SSL II Routines

158

5. Method

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using
an LU decomposition method the coefficients are obtained. For further information consult the entry for BIC4 in the
Fortran SSL II User's Guide.

 c_dbicd1

 159

c_dbicd1
Two-dimensional B-spline interpolation coefficient calculation (I-I).
ierr = c_dbicd1(x, nx, y, ny, fxy, k, m, c,

vw, &icon);

1. Function

Given function values),(jiij yxff at points),(ji yx for xni ,...,1 and ynj ,...,1 , where
xnxxx ...21

and
ynyyy ...21 on the xy-plane, and partial derivatives),(

,

jif , xni ,1 , ynj ,1 , 2/)1(,...,2,1 m ,

2/)1(,...,2,1 m at the boundary points, this routine obtains the coefficients ,c of the m-th degree two-
dimensional B-spline interpolation function (1).

1

1

1

1
1,1,,)()(),(

y xn

m

n

m
mm yNxNcyxS (1)

Here, m is an odd integer with 3m , 2xn , and 2yn .

2. Arguments

The routine is called as follows:
ierr = c_dbicd1(x, nx, y, ny, (double*)fxy, k, m, (double*)c, vw, &icon)

where:
x double x[nx] Input Discrete points in the x-direction ix .
nx int Input Number of discrete points in x-direction xn .
y double y[ny] Input Discrete points in the y-direction jy .
ny int Input Number of discrete points in y-direction yn .
fxy double

fxy[Fxylen][k]
Input Function values and partial derivatives jif ,

ˆ . 1 mnFxylen x .
See Comments on use.

k int Input C fixed dimension of arrays fxy and c (ny + m –1).
m int Input Degree m of B-spline. See Comments on use.
c double

c[Clen][k]
Output Interpolating coefficients ,c . 1 mnClen x .

vw double vw[Vwlen] Work 2/)1(3)2)(1),(max(2 mmnnVwlen yx .

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m is not an odd integer
 x[i] x[i+1]exists
 y[i] y[i+1]exists
 m < 3

Bypassed.

Description of the C-SSL II Routines

160

Code Meaning Processing
 nx < 2 or ny < 2

3. Comments on use

fxy
Array fxy contains function values and partial derivatives, jif ,

ˆ , as shown below with 2/)1(m ,

)1,1(
1,1,

ˆ ji
ji ff 1,...,2,1 i ; 1,...,2,1 j ;

)1,0(
1,,

ˆ j
iji ff

 1,...,3,2 xni ; 1,...,2,1 j ;

)1,(
1,,

ˆ jni
nji

x

x
ff xxx nnni 2,...,1, ; 1,...,2,1 j ;

)0,1(
,1,

ˆ i
jji ff

 1,...,2,1 i ; 1,...,3,2 ynj ;

 jiji ff ,,

ˆ 1,...,3,2 xni ; 1,...,3,2 ynj ;

)0,(
,,

ˆ x

x

ni
jnji ff

xxx nnni 2,...,1, ; 1,...,3,2 ynj ;

),1(
,1,

ˆ y

y

nji
nji ff

 1,...,2,1 i ; yyy nnnj 2,...,1, ;

),0(
,,

ˆ y

y

nj
niji ff

 1,...,3,2 xni ; yyy nnnj 2,...,1, ;

),(
,,

ˆ yx

yx

njni
nnji ff

xxx nnni 2,...,1, ; yyy nnnj 2,...,1, .

The matrix with jif ,

ˆ as elements has the following form:

 1j 1 j 2 j 1 ynj ynj ynj 2

1i
Function value and partial

derivatives at),(11 yx
Function value and partial
derivatives at),(1 jyx

Function value and partial
derivatives at),(1 ynyx

1 i
2 i

Function value and partial
derivatives at),(1yxi

Function value at),(ji yx

where 12 xni
and 12 ynj

Function value and partial
derivatives at),(

yni yx
1 xni

xni
Function value and partial
derivatives at),(1yx

xn
Function value and partial
derivatives at),(jn yx

x

Function value and partial
derivatives at),(

yx nn yx
xni 2

Relationship with c_dbifd1
By calling the routine c_dbifd1 after this routine, the interpolated values based on the B-spline interpolating function
(1), as well as derivatives and/or integrals, can be obtained. The values of the arguments x, nx, y, ny, k, m and c are
input to c_dbifd1.

 c_dbicd1

 161

m
The preferred degree m is 3 or 5. However, if the original function is smooth and the),(

,

jif are given with high
accuracy, the degree may be increased above 3 or 5 but not beyond 15.

4. Example program

This program interpolates the function 33),(yxyxf at 100 points in the region]1,0[]1,0[with a spline. It then
computes approximations to the function value as well as an integral and several partial derivatives associated with a
particular point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

/* function prototype for initializer */
void gen(double x[], double y[], int n, double fxy[][N+M-1]);

MAIN__()
{
 int ierr, icon;
 int i, j, nx, ny, m, k, ix, iy, iswx, iswy;
 double x[N], y[N], fxy[N+M-1][N+M-1], c[N+M-1][N+M-1];
 double vw[60];
 double hx, hy, px, py, vx, vy, f;

 /* initialize data */
 nx = N;
 ny = N;
 m = M;
 k = N+M-1;
 hx = 1.0/(nx-1);
 hy = 1.0/(ny-1);
 px = 0;
 for (i=0;i<nx;i++) {
 x[i] = px+i*hx;
 }
 py = 0;
 for (j=0;j<ny;j++) {
 y[j] = py+j*hy;
 }
 /* generate function and derivative values in fxy */
 gen(x, y, nx, fxy);

 /* calculate B-spline interpolation coefficients */
 ierr = c_dbicd1(x, nx, y, ny, (double*)fxy, k,
 m, (double*)c, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dbicd1 failed with icon = %d\n", icon);
 exit(1);
 }
 ix = 4;
 vx = 0.5;
 iy = 4;
 vy = 0.5;
 for (iswx=-1;iswx<=m;iswx++) {
 iswy = iswx;
 /* calculate value at point */
 ierr = c_dbifd1(x, nx, y, ny, m, (double*)c, k,
 iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbifd1 failed with icon = %d\n", icon);
 exit(1);
 }
 if (iswx == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (iswx == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
 }

Description of the C-SSL II Routines

162

 return(0);
}

/* generate function and derivative values for f=x^3y^3 */
void gen(double x[], double y[], int n, double fxy[][N+M-1])
{
 double y1, yn, x1, xn, fx, fy;
 int i, j;

 /* corner points; df/dxdy values */
 fxy[0][0] = 9*x[0]*x[0]*y[0]*y[0];
 fxy[n+1][0] = 9*x[n-1]*x[n-1]*y[0]*y[0];
 fxy[0][n+1] = 9*x[0]*x[0]*y[n-1]*y[n-1];
 fxy[n+1][n+1] = 9*x[n-1]*x[n-1]*y[n-1]*y[n-1];

 /* partial derivatives on edges: df/dx, df/dy */
 y1 = y[0]*y[0]*3;
 yn = y[n-1]*y[n-1]*3;
 x1 = x[0]*x[0]*3;
 xn = x[n-1]*x[n-1]*3;

 /* edges; fx.df/dy or fy.df/dx */
 for (i=0;i<n;i++) {
 fx = x[i]*x[i]*x[i];
 fy = y[i]*y[i]*y[i];
 fxy[i+1][0] = y1*fx;
 fxy[0][i+1] = x1*fy;
 fxy[n+1][i+1] = xn*fy;
 fxy[i+1][n+1] = yn*fx;
 }

 /* central area; function values */
 for (i=0;i<n;i++) {
 fx = x[i]*x[i]*x[i];
 for (j=0;j<n;j++) {
 fxy[i+1][j+1] = fx*y[j]*y[j]*y[j];
 }
 }
 return;
}

5. Method

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using
an LU decomposition method the coefficients are obtained. For further information consult the entry for BICD1 in the
Fortran SSL II User's Guide.

 c_dbicd3

 163

c_dbicd3
B-spline two-dimensional interpolation coefficient calculation (III-III).
ierr = c_dbicd3(x, nx, y, ny, fxy, k, m, c,

xt, vw, &icon);

1. Function

Given function values f f x yij i j (,) at points (,)x yi j where x x xnx1 2 for i nx 1, , and

y y yny1 2 for j ny 1, , , on the xy-plane, this function obtains the coefficients c , of the dual degree

m B-spline two-dimensional interpolation function (1).

 S x y c N x N ym m
m

n m

m

n m xy

(,) () (), , ,

1 1
11

 (1)

The knots of S x y(,) are given below, (2) for the x-direction and (3) for the y-direction.

 i i m x

n x

x i
x i n m
x i n m

x

1

1 2

1
2 3

1
()/ , , , (2)

 i j m y

n y

y j
y j n m
y j n m

y

1

1 2

1
2 3

1
()/ , , , (3)

Here, m is an odd integer with m 3, n mx 2 and n my 2 .

2. Arguments

The routine is called as follows:
ierr = c_dbicd3(x, nx, y, ny, (double*)fxy, k, m, (double*)c, xt, vw, &icon);

where:
x double x[nx] Input Discrete points in the x-direction xi .
nx int Input Number of discrete points in x-direction nx .
y double y[ny] Input Discrete points in the y-direction y j .
ny int Input Number of discrete points in y-direction ny .
fxy double

fxy[nx][k]

Input Function values f ij .

k int Input C fixed dimension of array fxy (ny).
m int Input Degree m of the B-spline. See Comments on use.
c double

c[nx][k]

Output Interpolating coefficients c , .

xt double

xt[Xtlen]
Output The knots i and j in x and y directions, respectively.

Xtlen = (nx-m+1)+(ny-m+1).
vw double Work Vwlen = (max(nx, ny)-2)*m + 2*(m+1)+2*max(nx, ny)

Description of the C-SSL II Routines

164

vw[Vwlen]
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
29000 Memory allocation error. Bypassed.
30000 One of the following has occurred:

 m is not an odd number
 nx < m + 2 or ny < m + 2
 x[i] x[i+1] exists
 y[j] y[j+1] exists
 m < 3

Bypassed.

3. Comments on use

Relationship with c_dbifd3
By calling the function c_dbifd3 after this function, the interpolated values based on the B-spline interpolating function
(1), as well as derivatives and/or integrals can be obtained. The argument values of x, nx, y, ny, k, m, c and xt are input
to c_dbifd3.

m
The preferred degree m is 3 or 5. However, if the original function is smooth and f ij ’s are given with high accuracy, the
degree may be increased above 3 or 5 but not beyond 15.

4. Example program

This program interpolates the function xyxyyxf)sin(),(at 100 points in the region]1,0[]1,0[with a bi-cubic
spline. It then computes approximations to the function value as well as an integral and several partial derivatives
associated with a particular point.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, j, nx, ny, m, k, ix, iy, iswx, iswy;
 double x[N], y[N], fxy[N][N], c[N][N], xt[2*(N-M+1)];
 double vw[(N-2)*M+2*(M+1)+2*N];
 double hx, hy, px, py, vx, vy, f;

 /* initialize data */
 nx = N;
 ny = N;
 m = M;
 hx = 1.0/(nx-1);
 hy = 1.0/(ny-1);
 px = 0;
 for (i=0;i<nx;i++) {
 x[i] = px;
 px = px + hx;
 }
 py = 0;

 c_dbicd3

 165

 for (j=0;j<ny;j++) {
 y[j] = py;
 py = py + hy;
 }
 for (i=0;i<nx;i++)
 for (j=0;j<ny;j++) {
 px = x[i];
 py = y[j];
 fxy[i][j] = sin(px*py)*sqrt(px*py);
 }
 k = N;
 /* calculate B-spline interpolation coefficients */
 ierr = c_dbicd3(x, nx, y, ny, (double*)fxy, k,
 m, (double*)c, xt, vw, &icon);
 ix = nx/2;
 vx = x[ix] + (x[ix+1]-x[ix])/2;
 iy = ny/2;
 vy = y[iy] + (y[iy+1]-y[iy])/2;
 for (iswx=-1;iswx<m;iswx++) {
 iswy = iswx;
 /* calculate value at point */
 ierr = c_dbifd3(x, nx, y, ny, m, (double*)c, k, xt,
 iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon);
 if (iswx == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (iswx == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
 }
 return(0);
}

5. Method

The interpolating condition for the B-spline derives a system of equations for its coefficients, by solving this system using
a LU decomposition method the coefficients are obtained.

For further information consult the entry for BICD3 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

166

c_dbif1
B-spline interpolation, differentiation and integration (I).
ierr = c_dbif1(x, n, m, c, isw, v, &i, &f, vw,

&icon);

1. Function

Given function values)(ii xfy for ni ,...,1 at discrete points nxxx ...21 and derivative values
)(1

)()(
1 xfy and)()()(

nn xfy for 2/)1(,...,1 m , this routine obtains the interpolated value or the
derivative value at x , or the integral over the interval 1x to , where nxx 1 .

Before using this routine, it is necessary that a sequence of interpolating coefficients jc , 1,...,2,1 nmmj , of the
B-spline interpolation (1) be computed by the c_dbic1 routine.

1

1
1,)()(

n

mj
mjj xNcxS (1)

where m is an odd integer and is the degree of the B-spline)(1, xN mj , with 3m and 2n .

2. Arguments

The routine is called as follows:
ierr = c_dbif1(x, n, m, c, isw, v, &i, &f, vw, &icon);

where:
x double x[n] Input Discrete points ix .
n int Input Number of discrete points n.
m int Input Degree m of the B-spline.
c double

c[n+m-1]

Input Interpolating coefficients jc (output from c_dbic1).

isw int Input Type of calculation.
 0 Interpolated value,)(SF .
 Derivative of order ,)()(SF , with m1 .
 -1 Integral value,

v

x
dxxSF

1

)(.

v double Input Interpolation point .
i int Input Value of i such that x[i] v < x[i+1].

If nx then i = 2n .
 Output Value of i such that x[i] v < x[i+1]. See Comments on use.
f double Output Interpolated value, or derivative of order , or integral value, depending

on isw. See isw.
vw double

vw[m+1]

Work

icon int Output Condition code. See below.
The complete list of condition codes is:

 c_dbif1

 167

Code Meaning Processing
0 No error. Completed.
10000 x[i] v < x[i+1] is not satisfied. An i satisfying the condition is sought to

continue processing.
30000 One of the following has occurred:

 v < x[0] or v > x[n-1]
 isw < -1 or isw > m

Bypassed.

3. Comments on use

Relationship with c_dbic1
This routine obtains the interpolated value, derivative value, or integral value based on B-spline interpolating functions
determined by the c_dbic1 routine. Therefore, c_dbic1 must be called to obtain the coefficients of the interpolating
function (1) before calling this routine to compute the required value. Arguments x, n, m, and c must be passed directly
from c_dbic1.

i
Argument i should satisfy the condition x[i] v < x[i+1]. If not, an i satisfying this condition is sought by the
routine to continue processing.

Note that the indexing of the standard mathematical notation and the corresponding array location in C differs by one, i.e.
the mathematics starts from 1 and C starts from 0.

4. Example program

This program interpolates the function 3)(xxf at 10 equally spaced points in the interval]1,0[with a B-spline. It then
computes approximations to the function value as well as an integral and several derivatives associated with a particular
point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, n, m, isw;
 double x[N], y[N], c[N+M-1], dy[1][2], vw[36];
 double p, h, v, f;

 /* initialize data */
 n = N;
 m = M;
 p = 0;
 h = 1.0/(n-1);
 /* set function values */
 for (i=0;i<n;i++) {
 x[i] = p+i*h;
 y[i] = x[i]*x[i]*x[i];
 }
 /* set derivative values at end-points */
 dy[0][0] = 3*x[0]*x[0];
 dy[0][1] = 3*x[n-1]*x[n-1];

Description of the C-SSL II Routines

168

 /* calculate B-spline interpolation coefficients */
 ierr = c_dbic1(x, y, (double*)dy, n, m, c, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dbic1 failed with icon = %d\n", icon);
 exit(1);
 }
 i = 4;
 v = 0.5;
 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbif1(x, n, m, c, isw, v, &i, &f, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbif1 failed with icon = %d\n", icon);
 exit(1);
 }
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);
}

5. Method

Consult the entry for BIF1 in the Fortran SSL II User's Guide.

 c_dbif2

 169

c_dbif2
B-spline interpolation, differentiation and integration (II).
ierr = c_dbif2 (x, n, m, c, isw, v, &i, &f,

vw, &icon);

1. Function

Given function values)(ii xfy for ni ,...,1 at discrete points nxxx ...21 and derivative values
)(1

)()(
1 xfy and)()()(

nn xfy for 1,...,12/)1(,2/)1(mmm , this routine obtains the interpolated
value or the derivative value at x , or the integral over the interval 1x to , where nxx 1 .

Before using this routine, it is necessary that a sequence of interpolating coefficients jc , 1,...,2,1 nmmj , of the
B-spline interpolation (1) be computed by the c_dbic2 routine.

1

1
1,)()(

n

mj
mjj xNcxS (1)

where m is an odd integer and is the degree of the B-spline)(1, xN mj , with 3m , and 2/)1(mn .

2. Arguments

The routine is called as follows:
ierr = c_dbif2 (x, n, m, c, isw, v, &i, &f, vw, &icon);

where:
x double x[n] Input Discrete points ix .
n int Input Number of discrete points n.
m int Input Degree m of the B-spline.
c double

c[n+m-1]

Input Interpolating coefficients jc (output from c_dbic2).

isw int Input Type of calculation.
 0 Interpolated value,)(SF .
 Derivative of order ,)()(SF , with m1 .
 -1 Integral value,

1

)(
x

dxxSF .

v double Input Interpolation point .
i int Input Value of i such that x[i] v < x[i+1].

If nx then i = 2n .
 Output Value of i such that x[i] v < x[i+1].See Comments on use.
f double Output Interpolated value, or derivative of order , or integral value, depending

on isw. See isw.
vw double

vw[m+1]

Work

icon int Output Condition code. See below.
The complete list of condition codes is:

Description of the C-SSL II Routines

170

Code Meaning Processing
0 No error. Completed.
10000 x[i] v < x[i+1] is not satisfied. An i satisfying the condition is sought for

processing to continue.
30000 One of the following has occurred:

 v < x[0] or v > x[n-1]
 isw < -1 or isw > m

Bypassed.

3. Comments on use

Relationship with c_dbic2
This routine obtains the interpolated value, derivative value, or integral value based on B-spline interpolating functions
determined by the c_dbic2 routine. Therefore, c_dbic2 must be called to obtain the coefficients of the interpolating
function (1) before calling this routine to compute the required value. Arguments x, n, m, and c must be passed directly
from c_dbic2.

i
Argument i should satisfy the condition x[i] v < x[i+1]. If not, an i satisfying this condition is sought by the
routine for processing to continue.

Note that the indexing of the standard mathematical notation and the corresponding array location in C differs by one, i.e.
the mathematics starts from 1 and C starts from 0.

4. Example program

This program interpolates the function 3)(xxf at 10 equally spaced points in the interval]1,0[with a B-spline. It then
computes approximations to the function value as well as an integral and several derivatives associated with a particular
point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, n, m, isw;
 double x[N], y[N], c[N+M-1], dy[1][2], vw[38];
 double p, h, v, f;

 /* initialize data */
 n = N;
 m = M;
 p = 0;
 h = 1.0/(n-1);
 /* set function values */
 for (i=0;i<n;i++) {
 x[i] = p+i*h;
 y[i] = x[i]*x[i]*x[i];
 }
 /* set derivative values at end-points */
 dy[0][0] = 3*x[0]*x[0];
 dy[0][1] = 3*x[n-1]*x[n-1];
 /* calculate B-spline interpolation coefficients */

 c_dbif2

 171

 ierr = c_dbic2(x, y, (double*)dy, n, m, c, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dbic2 failed with icon = %d\n", icon);
 exit(1);
 }
 i = 4;
 v = 0.5;
 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbif2(x, n, m, c, isw, v, &i, &f, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbif2 failed with icon = %d\n", icon);
 exit(1);
 }
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);
}

5. Method

Consult the entry for BIF2 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

172

c_dbif3
B-spline interpolation. (III)
ierr = c_dbif3(x, n, m, c, xt, isw, v, &i, &f,

vw, &icon);

1. Function

Given function values y f xi i () for i n 1, , at discrete points x x xn1 2 , this function obtains the
interpolated value, derivative at x v or integral over the interval x1 to v .

Before using this function, it is necessary that a sequence of knots i , i n m 1 2 1, , , , and interpolating coefficients
c j , j m m n m 1 2, , , , of the B-spline interpolation (1) be computed by the c_dbic3 function.

 S x c N xj j m
j m

n m

() (),

 1
1

 (1)

Here, m is an odd number that denotes the degree of B-spline N xj m, ()1 , with m 3, x v xn1 and n m 2 .

2. Arguments

The routine is called as follows:
ierr = c_dbif3(x, n, m, c, xt, isw, v, &i, &f, vw, &icon);

where:
x double x[n] Input Discrete points xi .
n int Input Number of discrete points n.
m int Input Degree m of the B-spline.
c double c[n] Input Interpolating coefficients c j (output from c_dbic3).
xt double

xt[n-m+1]

Input The knots i (output from c_dbic3).

isw int Input Type of calculation.
 0 Interpolated value, F S v () .

l The derivative of order l, F S vl () () , with ml 1 .

-1 Integral value,
v

x
dxxSF

1

)(.

v double Input Interpolation point v.
i int Input The i-th element that satisfies 1]x[ivx[i] .

When v xn then i = 2n .
 Output The i-th element that satisfies 1]x[ivx[i] . See Comments

on use.
f double Output Interpolated value or derivative of order l or integral value, depending on

isw. See isw.
vw double

[2*m+2]

Work

icon int Output Condition code. See below.

 c_dbif3

 173

The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 1]x[ivx[i] is not satisfied. An i satisfying the condition is searched for in

the function to continue the processing.
30000 One of the following has occurred:

 v < x[0] or v > x[n-1]
 isw < -1 or isw > m

Bypassed.

3. Comments on use

Relationship with c_dbic3
This function obtains interpolated value, derivative or integral based on B-spline interpolating functions determined by the
c_dbic3 function. Therefore, c_dbic3 must be called to obtain the interpolating function (1) before calling this
function to compute the required value. Arguments x, n, m, c and xt must be passed directly from c_dbic3.

i
Argument i should satisfy the condition 1]x[ivx[i] . If not, an i satisfying the condition is searched for to
continue the processing.

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by
one, i.e. C starts from 0 and the mathematics starts from 1.

4. Example program

This program interpolates the function xxxf)sin()(at 10 equally spaced points in the interval]1,0[with a cubic B-
spline. It then computes approximations to the function value as well as an integral and several derivatives associated with
a particular point.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, n, m, isw;
 double x[N], y[N], c[N], xt[N-M+1], vw[M*N+2];
 double p, h, v, f;

 /* initialize data */
 n = N;
 m = M;
 isw = 0;
 p = 0;
 h = 1.0/n;
 for (i=0;i<n;i++) {
 x[i] = p;
 y[i] = sin(p)*sqrt(p);
 p = p + h;
 }
 /* calculate B-spline interpolation coefficients */
 ierr = c_dbic3(x, y, n, m, c, xt, vw, &icon);
 i = n/2;
 v = x[i] + (x[i+1]-x[i])/2;

Description of the C-SSL II Routines

174

 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbif3(x, n, m, c, xt, isw, v, &i, &f, vw, &icon);
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);
}

5. Method

For further information consult the entry for BIF3 in the Fortran SSL II User's Guide.

 c_dbif4

 175

c_dbif4
B-spline interpolation, differentiation and integration (IV).
ierr = c_dbif4(x, n, m, c, isw, v, &i, &f, vw,

&icon);

1. Function

Given periodic function values)(ii xfy for ni ,...,1 with nyy 1 , and period)(1xxn , at discrete points

nxxx ...21 , this routine obtains the interpolated value or the derivative value at x , or the integral over the
interval 1x to , where nxx 1 .

Before using this routine, it is necessary that a sequence of interpolating coefficients jc , 1,...,2,1 nmmj , of the
B-spline interpolation (1) that satisfies the periodic condition, be computed by the c_dbic4 routine.

1

1
1,)()(

n

mj
mjj xNcxS (1)

where m is an odd integer and is the degree of the B-spline)(1, xN mj , with 3m and 2 mn .

2. Arguments

The routine is called as follows:
ierr = c_dbif4 (x, n, m, c, isw, v, &i, &f, vw, &icon);

where:
x double x[n] Input Discrete points ix .
n int Input Number of discrete points n.
m int Input Degree m of the B-spline.
c double

c[n+m-1]

Input Interpolating coefficients jc (output from c_dbic4).

isw int Input Type of calculation.
 0 Interpolated value,)(SF .
 Derivative of order ,)()(SF , with m1 .
 -1 Integral value,

1

)(
x

dxxSF .

v double Input Interpolation point .
i int Input Value of i such that x[i] v < x[i+1].

If nx then i = 2n .
 Output Value of i such that x[i] v < x[i+1].See Comments on use.
f double Output Interpolated value, or derivative of order , or integral value, depending

on isw. See isw.
vw double

vw[m+1]

Work

icon int Output Condition code. See below.
The complete list of condition codes is:

Description of the C-SSL II Routines

176

Code Meaning Processing
0 No error. Completed.
10000 x[i] v < x[i+1] is not satisfied. An i satisfying the condition is sought to

continue processing.
30000 One of the following has occurred:

 v < x[0] or v > x[n-1]
 isw < -1 or isw > m

Bypassed.

3. Comments on use

Relationship with c_dbic4
This routine obtains the interpolated value, derivative value, or integral value based on B-spline interpolating functions
determined by the c_dbic4 routine. Therefore, c_dbic4 must be called to obtain the coefficients of the interpolating
function (1) before calling this routine to compute the required value. Arguments x, n, m, and c must be passed directly
from c_dbic4.

i
Argument i should satisfy the condition x[i] v < x[i+1]. If not, an i satisfying this condition is sought by the
routine to continue processing.

Note that the indexing of the standard mathematical notation and the corresponding array location in C differs by one, i.e.
the mathematics starts from 1 and C starts from 0.

4. Example program

This program interpolates the function xxf sin)(at 10 equally spaced points in the interval]2,0[with a B-spline. It
then computes approximations to the function value as well as an integral and several derivatives associated with a
particular point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, n, m, isw;
 double x[N], y[N], c[N+M-1], vw[49];
 double p, h, v, f, pi;

 /* initialize data */
 n = N;
 m = M;
 p = 0;
 pi = 2*asin(1);
 h = 2*pi/(n-1);
 /* set function values */
 for (i=0;i<n;i++) {
 x[i] = p+i*h;
 y[i] = sin(x[i]);
 }
 /* calculate B-spline interpolation coefficients */
 ierr = c_dbic4(x, y, n, m, c, vw, &icon);
 if (icon != 0) {

 c_dbif4

 177

 printf("ERROR: c_dbic4 failed with icon = %d\n", icon);
 exit(1);
 }
 i = 4;
 v = pi;
 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbif4(x, n, m, c, isw, v, &i, &f, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbif4 failed with icon = %d\n", icon);
 exit(1);
 }
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);
}

5. Method

Consult the entry for BIF4 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

178

c_dbifd1
Two-dimensional B-spline interpolation, differentiation and integration
(I-I).
ierr = c_dbifd1(x, nx, y, ny, m, c, k, iswx,

vx, &ix, iswy, vy, &iy, &f, vw,

&icon);

1. Function

Given function values),(jiij yxff at points),(ji yx for xni ,...,1 and ynj ,...,1 , where
xnxxx ...21

and
ynyyy ...21 , on the xy-plane, and the following partial derivatives at the boundary points

),,(

),,(

),,(

),,(

1
),(),(

,1

11
),(),(

1,1

1
),0(),0(

1,

1
)0,()0,(

,1

yy nn

ii

jj

yxff

yxff

yxff

yxff

......

),(

),(

),(

),(

),(),(
,

1
),(),(

1,

),0(),0(
,

)0,()0,(
,

yxyx

xx

yy

xx

nnnn

nn

nini

jnjn

yxff

yxff

yxff

yxff

xni ,...,2,1 , ynj ,...,2,1 , 2/)1(,...,2,1 m , 2/)1(,...,2,1 m , this routine obtains an interpolated value
or a partial derivative at the point),(yx vvP , or a double integral over the area [,1 xvxx yvyy 1], where

xnx xvx 1 and
yny yvy 1 . Note that m is an odd integer and 3m , 2xn , 2yn .

Before using this routine, the interpolating coefficients ,c in the two-dimensional B-spline interpolating function
(1) must be computed by the c_dbicd1 routine.

1

1

1

1
1,1,,)()(),(

y xn

m

n

m
mm yNxNcyxS (1)

Here, m is the degree of B-spline)(1, xN m and)(1, yN m .

2. Arguments

The routine is called as follows:
ierr = c_dbifd1(x, nx, y, ny, m, (double*)c, k, iswx, vx, &ix, iswy, vy, &iy,

&f, vw, &icon);

where:
x double x[nx] Input Discrete points in the x-direction ix
nx int Input Number of discrete points in the x-direction xn .
y double y[ny] Input Discrete points in the y-direction jy .
ny int Input Number of discrete points in the y-direction yn .
m int Input Degree m of the B-spline.
c double

c[Clen][k]
Input Interpolating coefficients ,c (output from c_dbicd1).

1 mnClen x
k int Input C fixed dimension of array c (ny + m - 1).
iswx int Input Type of calculation associated with x-direction.

 c_dbifd1

 179

 -1 iswx m, see argument f.
vx double Input The x-coordinate of point),(yx vvP .
ix int Input Integer such that x[ix] vx < x[ix+1]. When

xnx xv then

ix = 2xn .

 Output Integer such that x[ix] vx < x[ix+1]. See Comments on use.
iswy int Input Type of calculation associated with y-direction.

-1 iswy m, see argument f.
vy double Input The y-coordinate of point),(yx vvP .
iy int Input Integer such that y[iy] vy < y[iy+1]. When

yny yv then

iy = 2yn .

 Output Integer such that y[iy] vy < y[iy+1]. See Comments on use.
f double Output Interpolated value, or partial derivative, or integral value.

By setting iswx = and iswy = µ, one of the following is returned
depending on the combination of and µ:

 when , µ 0

),(yx vvS
yx

f

 The interpolated value can be obtained by setting = µ = 0.
 when 1 , µ 0

xv

x
y dxvxS

y1

),(f

 when 0 , µ 1

yv

y
x dyyvS

x1

),(f

 when = µ = 1
 dydxyxS

y xv

y

v

x
1 1

),(f

vw double

vw[Vwlen]
Work 1),max()1(4 mnnmVwlen yx .

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Either x[ix] vx < x[ix+1]

 or y[iy] vy < y[iy+1] is not satisfied.
Either an ix or an iy satisfying the relationship
is sought to continue processing.

30000 One of the following has occurred:
 vx < x[0] or vx > x[nx-1]
 vy < y[0] or vy > y[ny-1]
 iswx < -1 or iswx > m
 iswy < -1 or iswy > m

Bypassed.

Description of the C-SSL II Routines

180

3. Comments on use

Relationship with c_dbicd1
This routine obtains an interpolated value, or a partial derivative, or a double integral based on the two-dimensional B-
spline interpolating function determined by the c_dbicd1 routine. Therefore, c_dbicd1 must be called to obtain the
interpolating function (1) before calling this routine to compute the required value. Also, arguments x, nx, y, ny, k, m,
and c must be passed directly from c_dbicd1.

ix and iy
Arguments ix and iy should satisfy the relationships x[ix] vx < x[ix+1] and y[iy] vy < y[iy+1]. If not,
ix and iy satisfying the relationships are sought by the routine to continue the processing.

Note that the indexing between standard mathematical notation and the corresponding array location in C differs by one,
i.e. the mathematics starts from 1 and C starts from 0.

4. Example program

This program interpolates the function 33),(yxyxf at 100 points in the region]1,0[]1,0[with a spline. It then
computes approximations to the function value as well as an integral and several partial derivatives associated with a
particular point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

/* function prototype for initializer */
void gen(double x[], double y[], int n, double fxy[][N+M-1]);

MAIN__()
{
 int ierr, icon;
 int i, j, nx, ny, m, k, ix, iy, iswx, iswy;
 double x[N], y[N], fxy[N+M-1][N+M-1], c[N+M-1][N+M-1];
 double vw[60];
 double hx, hy, px, py, vx, vy, f;

 /* initialize data */
 nx = N;
 ny = N;
 m = M;
 k = N+M-1;
 hx = 1.0/(nx-1);
 hy = 1.0/(ny-1);
 px = 0;
 for (i=0;i<nx;i++) {
 x[i] = px+i*hx;
 }
 py = 0;
 for (j=0;j<ny;j++) {
 y[j] = py+j*hy;
 }
 /* generate function and derivative values in fxy */
 gen(x, y, nx, fxy);

 /* calculate B-spline interpolation coefficients */
 ierr = c_dbicd1(x, nx, y, ny, (double*)fxy, k,
 m, (double*)c, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dbicd1 failed with icon = %d\n", icon);
 exit(1);
 }
 ix = 4;

 c_dbifd1

 181

 vx = 0.5;
 iy = 4;
 vy = 0.5;
 for (iswx=-1;iswx<=m;iswx++) {
 iswy = iswx;
 /* calculate value at point */
 ierr = c_dbifd1(x, nx, y, ny, m, (double*)c, k,
 iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbifd1 failed with icon = %d\n", icon);
 exit(1);
 }
 if (iswx == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (iswx == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
 }
 return(0);
}

/* generate function and derivative values for f=x^3y^3 */
void gen(double x[], double y[], int n, double fxy[][N+M-1])
{
 double y1, yn, x1, xn, fx, fy;
 int i, j;

 /* corner points; df/dxdy values */
 fxy[0][0] = 9*x[0]*x[0]*y[0]*y[0];
 fxy[n+1][0] = 9*x[n-1]*x[n-1]*y[0]*y[0];
 fxy[0][n+1] = 9*x[0]*x[0]*y[n-1]*y[n-1];
 fxy[n+1][n+1] = 9*x[n-1]*x[n-1]*y[n-1]*y[n-1];

 /* partial derivatives on edges: df/dx, df/dy */
 y1 = y[0]*y[0]*3;
 yn = y[n-1]*y[n-1]*3;
 x1 = x[0]*x[0]*3;
 xn = x[n-1]*x[n-1]*3;

 /* edges; fx.df/dy or fy.df/dx */
 for (i=0;i<n;i++) {
 fx = x[i]*x[i]*x[i];
 fy = y[i]*y[i]*y[i];
 fxy[i+1][0] = y1*fx;
 fxy[0][i+1] = x1*fy;
 fxy[n+1][i+1] = xn*fy;
 fxy[i+1][n+1] = yn*fx;
 }

 /* central area; function values */
 for (i=0;i<n;i++) {
 fx = x[i]*x[i]*x[i];
 for (j=0;j<n;j++) {
 fxy[i+1][j+1] = fx*y[j]*y[j]*y[j];
 }
 }
 return;
}

5. Method

Consult the entry BIFD1 for in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

182

c_dbifd3
B-spline two-dimensional interpolation (III-III).
ierr = c_dbifd3(x, nx, y, ny, m, c, k, xt,

iswx, vx, &ix, iswy, vy, &iy, &f,

vw, &icon);

1. Function

Given function values f f x yij i j (,) at points (,)x yi j where x x xnx1 2 for i nx 1, , and
y y yny1 2 for j ny 1, , , on the xy-plane, this function obtains an interpolated value or a partial derivative at

the point P v vx y(,) and/or a double integral over the area [x x v x1 , y y v y1], where
xnx xvx 1 and

yny yvy 1 . Note that 2 mnx and 2 mny , where 3m .

Before using this function, the knots i and j in both the respective x and y directions, and the interpolating
coefficients c , in the B-spline two-dimensional interpolating function (1) must be computed by the c_dbicd3
function.

 S x y c N x N ym m
m

n m

m

n m xy

(,) () (), , ,

1 1
11

 (1)

Here, m is an odd number that denotes the degree of B-spline N xm , ()1 and N ym , ()1 .

2. Arguments

The routine is called as follows:
ierr = c_dbifd3(x, nx, y, ny, m, (double*)c, k, xt, iswx, vx, &ix, iswy, vy,

&iy, &f, vw, &icon);

where:
x double x[nx] Input Discrete points in the x-direction xi .
nx int Input Number of discrete points in x-direction nx .
y double y[ny] Input Discrete points in the y-direction y j .
ny int Input Number of discrete points in y-direction ny .
m int Input Degree m of the B-spline.
c double

c[nx][k]

Input Interpolating coefficients c , (output from c_dbicd3).

k int Input C fixed dimension of array c (ny).
xt double

xt[Xtlen]
Input The knots i and j in x and y directions, respectively (output from

c_dbicd3).
Xtlen = (nx-m+1)+(ny-m+1).

iswx int Input Type of calculation associated with x-direction.
-1 iswx m, see argument f.

vx double Input The x-coordinate of point P v vx y(,) .
ix int Input The i-th element that satisfies x v xi x i 1 . Not that due to C

indexing 1 iix . When v xx nx
 then ix = 2xn .

 c_dbifd3

 183

 Output The i-th element that satisfies x v xi x i 1 . See Comments on use.
iswy int Input Type of calculation associated with y-direction.

-1 iswy m, see argument f.
vy double Input The y-coordinate of point P v vx y(,) .
iy int Input The j-th element that satisfies 1 jyj yvy . Note that due to C

indexing 1 jiy . When v yy ny
 then iy = 2yn .

 Output The j-th element that satisfies y v yj y j 1 . See Comments on use.
f double Output Interpolated value, partial derivative or integral value.

With setting iswx = and iswy = , one of the following is returned
depending on combination of and :
 when 0 ,

),(yx vvS
yx

F

The interpolated value can be obtained by setting 0 .

 when 1, 0

dxvxS
y

F y
v

x

x
),(

1

 when 0 , 1

dyyvS
x

F x
v

y

y
),(

1

 when 1

y xv

y

v

x
dxyxSdyF

1 1

),(

vw double

vw[Vwlen]
Work Vwlen = 4·(m+1)+max(nx, ny)

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 Either x[ix] vx < x[ix+1] or

y[iy] vy < y[iy+1] is not satisfied.
An ix or iy satisfying the relationship is
searched for in the function to continue the
processing.

29000 Memory allocation error. Bypassed.
30000 One of the following has occurred:

 vx < x[0] or vx > x[nx-1]
 vy < y[0] or vy > y[ny-1]
 iswx < -1 or iswx > m
 iswy < -1 or iswy > m

Bypassed.

Description of the C-SSL II Routines

184

3. Comments on use

Relationship with c_dbicd3
This function obtains interpolated value or partial derivative or double integral based on B-spline two-dimensional
interpolating functions determined by the c_dbicd3 function. Therefore, c_dbicd3 must be called to obtain the
interpolating function (1) before calling this function to compute the required value. Also arguments x, nx, y, ny, k, m, c
and xt must be passed directly from c_dbicd3.

ix and iy
Arguments ix and iy should satisfy the condition x[ix] vx < x[ix+1] and y[iy] vy < y[iy+1]. If not,
ix or iy satisfying the condition is searched for to continue the processing.

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by
one, i.e. C starts from 0 and the mathematics starts from 1.

4. Example program

This program interpolates the function xyxyyxf)sin(),(at 100 points in the region]1,0[]1,0[with a bi-cubic
spline. It then computes approximations to the function value as well as an integral and several partial derivatives
associated with a particular point.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, j, nx, ny, m, k, ix, iy, iswx, iswy;
 double x[N], y[N], fxy[N][N], c[N][N], xt[2*(N-M+1)];
 double vw[(N-2)*M+2*(M+1)+2*N];
 double hx, hy, px, py, vx, vy, f;

 /* initialize data */
 nx = N;
 ny = N;
 m = M;
 hx = 1.0/(nx-1);
 hy = 1.0/(ny-1);
 px = 0;
 for (i=0;i<nx;i++) {
 x[i] = px;
 px = px + hx;
 }
 py = 0;
 for (j=0;j<ny;j++) {
 y[j] = py;
 py = py + hy;
 }
 for (i=0;i<nx;i++)
 for (j=0;j<ny;j++) {
 px = x[i];
 py = y[j];
 fxy[i][j] = sin(px*py)*sqrt(px*py);
 }
 k = N;
 /* calculate B-spline interpolation coefficients */
 ierr = c_dbicd3(x, nx, y, ny, (double*)fxy, k,
 m, (double*)c, xt, vw, &icon);
 ix = nx/2;
 vx = x[ix] + (x[ix+1]-x[ix])/2;
 iy = ny/2;
 vy = y[iy] + (y[iy+1]-y[iy])/2;

 c_dbifd3

 185

 for (iswx=-1;iswx<m;iswx++) {
 iswy = iswx;
 /* calculate value at point */
 ierr = c_dbifd3(x, nx, y, ny, m, (double*)c, k, xt,
 iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon);
 if (iswx == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (iswx == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
 }
 return(0);
}

5. Method

For further information consult the entry for BIFD3 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

186

c_dbin
Modified nth-order Bessel function of the first kind I xn () .
ierr = c_dbin(x, n, &bi, &icon);

1. Function

This function computes the modified nth-order Bessel function of the first kind

I x
x

k n kn

k n

k

()
()

!()!

 2 2

0

by Taylor expansion and recurrence formula.

2. Arguments

The routine is called as follows:
ierr = c_dbin(x, n, &bi, &icon);

where:
x double Input Independent variable x.
n int Input Order n of I xn () .
bi double Output Function value I xn () .
icon int Output Condition code. See below.

When n=0 or 1, the icon values are same as in function c_dbi0 and
c_dbi1 respectively.

The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 One of the following has occurred:

 x 100
 1 8 1 x and n x 19 29
 1 10 x and n x 4 7 43.
 10 100 x and n x 183 71.

bi is set to zero.

3. Comments on use

x
The range of values of x and n is limited to avoid numerical overflow and underflow in the computations. The table of
condition codes shows these limits.

Zero- and first-order Bessel function
When computing either I x0 () or I x1 () , use the functions c_dbi0 or c_dbi1 respectively, as they are more efficient.

 c_dbin

 187

4. Example program

This program evaluates a table of function values for x from 0 to 10 in increments of 1 and n equal to 20 and 30.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, bi;
 int i, n;

 for (n=20;n<=30;n=n+10)
 for (i=0;i<=10;i++) {
 x = (double)i;
 /* calculate Bessel function */
 ierr = c_dbin(x, n, &bi, &icon);
 if (icon == 0)
 printf("x = %4.2f n = %i bi = %e\n", x, n, bi);
 else
 printf("ERROR: x = %4.2f n = %i bi = %e icon = %i\n",
 x, n, bi, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the modified nth-order Bessel function of the first kind, I xn () ,
is:

 Taylor expansion when 0 1 8 x .
 Recurrence formula when 1 8 100 x .

For further information consult the entry for BIN in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

188

c_dbir
Modified real-order Bessel function of the first kind I xv () .
ierr = c_dbir(x, v, &bi, &icon);

1. Function

This function computes the modified real-order Bessel function of the first kind (1) by power series expansion and
recurrence formula.

0

2

)1(!
4

2
)(

k

kv

v kvk
xxxI (1)

2. Arguments

The routine is called as follows:
ierr = c_dbir(x, v, &bi, &icon);

where:
x double Input Independent variable x.
v double Input Order v of I xv () .
bi double Output Function value I xv () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x log()maxfl bi is set to zero.
30000 x 0 or v 0 bi is set to zero.

3. Comments on use

x
The values of x and v are limited to avoid numerical overflow and underflow in the computations. The limits are shown
in the table of condition codes. For details on the constant, maxfl , see the Machine constants section of the Introduction.

Zero- and first-order Bessel function
When computing either I x0 () or I x1 () , use the function c_dbi0 or c_dbi1 respectively, as they are more efficient.

Evaluation sequence
When all the values of I x I x I x I xv v v v M(), (), (), , () 1 2 are required at the same time, it is more efficient to
compute them in the following way. First, compute the value of I xv M () and I xv M 1 () with this function, then the
others in the order of I x I x I xv M v M v 2 3(), (), , () by repeating the recurrence formula (see Method). Conversely,
computing values in the reverse order, i.e. I x I x I xv v v M 2 3(), (), , () by recurrence formula after I xv () and
I xv1 () , should be avoided because of instability.

 c_dbir

 189

4. Example program

This program evaluates a table of function values for x from 0 to 10 in increments of 1 and v equal to 0.4 and 0.6.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double v, x, bi;
 int nv, i;

 for (i=0;i<=10;i++) {
 x = (double)i;
 for (nv=40;nv<=60;nv=nv+20) {
 v = (double)nv/100;
 /* calculate Bessel function */
 ierr = c_dbir(v, x, &bi, &icon);
 if (icon == 0)
 printf("x = %5.2f v = %5.2f bi = %e\n", x, v, bi);
 else
 printf("ERROR: x = %5.2f v = %5.2f bi = %e icon = %i\n",
 x, v, bi, icon);
 }
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the modified real-order Bessel function of the first kind,
I xv () , is:

 Power series expansion, equation (1), when 0 1 x .
 Recurrence formula when 1 x fllog()max .

Suppose m is an appropriately large integer (depends upon the required precision of x and v) and an
appropriately small constant (smallest positive number allowed for the computer), and moreover that n and
are determined by

v n

where, n is an integer and 0 1 . With the initial values,

G x G xm m 1 0() , ()

and repeating the recurrence equation,

G x
k

x
G x G xk k k

1 1

2
()

()
() ()

for k m m , , ,1 1 . Then the value of)(xIv is obtained from

I x

x
e G x

k k
k G x

v

x
n

k
k

m()

()
() ()

() ()
! ()

1
2 2

2 1
1

2

0

.

For further information consult the entry for BIR in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

190

c_dbj0
Zero-order Bessel function of the first kind J x0 () .
ierr = c_dbj0(x, &bj, &icon);

1. Function

This function computes the zero-order Bessel function of the first kind

J x
x

k

k k

k
0

2

2
0

1 2
()

() ()
(!)

by rational approximations and asymptotic expansion.

2. Arguments

The routine is called as follows:
ierr = c_dbj0(x, &bj, &icon);

where:
x double Input Independent variable x.
bj double Output Function value J x0 () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x tmax bj is set to zero.

3. Comments on use

x
The values of x is limited to avoid loss of accuracy in the calculation of sin()x

4 and cos()x
4 which occurs when

x becomes too large. The limits are shown in the table of condition codes. For details on the constant, t max , see the
Machine constants section of the Introduction.

4. Example program

This program evaluates a table of function values for x from 0 to 100 in increments of 1.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, bj;
 int i;

 for (i=0;i<=100;i++) {
 x = (double)i;
 /* calculate Bessel function */

 c_dbj0

 191

 ierr = c_dbj0(x, &bj, &icon);
 if (icon == 0)
 printf("x = %4.2f bj = %f\n", x, bj);
 else
 printf("ERROR: x = %4.2f bj = %f icon = %i\n", x, bj, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the zero-order Bessel function of the first kind, J x0 () , is:

 Power series expansion when 0 8 x .
 Asymptotic expansion when x 8 .

For further information consult the entry for BJ0 in the Fortran SSL II User's Guide and [48].

Description of the C-SSL II Routines

192

c_dbj1
First-order Bessel function of the first kind J x1 () .
ierr = c_dbj1(x, &bj, &icon);

1. Function

This function computes the first-order Bessel function of the first kind

J x
x

k k

k k

k
1

2 1

0

1 2
1()

() ()
!()!

by rational approximations and asymptotic expansion.

2. Arguments

The routine is called as follows:
ierr = c_dbj1(x, &bj, &icon);

where:
x double Input Independent variable x.
bj double Output Function value J x1() .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x tmax bj is set to zero.

3. Comments on use

x
The range of x is limited as both sin()x 3

4
 and cos()x 3

4
 lose accuracy when x becomes too large. The limits are

shown in the table of condition codes. For details on the constant, t max , see the Machine constants section of the
Introduction.

4. Example program

This program evaluates a table of function values for x from 0 to 100 in increments of 1.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, bj;
 int i;

 for (i=0;i<=100;i++) {
 x = (double)i;
 /* calculate Bessel function */

 c_dbj1

 193

 ierr = c_dbj1(x, &bj, &icon);
 if (icon == 0)
 printf("x = %4.2f bj = %f\n", x, bj);
 else
 printf("ERROR: x = %4.2f bj = %f icon = %i\n", x, bj, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the first-order Bessel function of the first kind, J x1 () , is:

 Power series expansion using rational approximations when 0 8 x .
 Asymptotic expansion when x 8 .

For further information consult the entry for BJ1 in the Fortran SSL II User's Guide and [48].

Description of the C-SSL II Routines

194

c_dbjn
nth-order Bessel function of the first kind J xn () .
ierr = c_dbjn(x, n, &bj, &icon);

1. Function

This function computes the nth-order Bessel function of the first kind

J x
x

k n kn

k k n

k

()
() ()

!()!

 1 2 2

0

by Taylor expansion and recurrence formula.

2. Arguments

The routine is called as follows:
ierr = c_dbjn(x, n, &bj, &icon);

where:
x double Input Independent variable x.
n int Input Order n of J xn () .
bj double Output Function value J xn () .
icon int Output Condition code. See below.

When n=0 or 1, see icon of function c_dbj0 and c_dbj1
respectively.

The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 One of the following has occurred:

 x 100
 1 8 1 x and n x 19 29
 1 10 x and n x 4 7 43.
 10 100 x and n x 183 71.

bj is set to zero.

3. Comments on use

x
The ranges of x and n are limited to avoid numerical overflow and underflow in the computations. The limits are shown
in the table of condition codes.

Zero- and first-order Bessel function
When computing either J x0 () or J x1 () , use the function c_dbj0 or c_dbj1 respectively, as they are more efficient.

 c_dbjn

 195

4. Example program

This program evaluates a table of function values for x from 0 to 10 in increments of 1 and n equal to 20 and 30.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, bj;
 int i, n;

 for (n=20;n<=30;n=n+10)
 for (i=0;i<=10;i++) {
 x = (double)i;
 /* calculate Bessel function */
 ierr = c_dbjn(x, n, &bj, &icon);
 if (icon == 0)
 printf("x = %4.2f n = %i bj = %e\n", x, n, bj);
 else
 printf("ERROR: x = %4.2f n = %i bj = %e icon = %i\n",
 x, n, bj, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the nth-order Bessel function of the first kind, J xn () , is:

 Taylor expansion when 0 1 8 x .
 Recurrence formula when 1 8 100 x .

For further information consult the entry for BJN in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

196

c_dbjr
Real-order Bessel function of the first kind J xv () .
ierr = c_dbjr(x, v, &bj, &icon);

1. Function

This function computes the real-order Bessel function of the first kind (1) by power series expansion, recurrence formula
and asymptotic expansion (x 0 , v 0).

0

2

)1(!
4

2
)(

k

kv

v kvk
xxxJ (1)

2. Arguments

The routine is called as follows:
ierr = c_dbjr(x, v, &bj, &icon);

where:
x double Input Independent variable x.
v double Input Order v of J xv () .
bj double Output Function value J xv () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 One of the following has occurred:

 x 100 and v 15
 maxtx

bj is set to zero.

30000 x 0 or v 0 bj is set to zero.

3. Comments on use

x and v
Both x and v must be greater than or equal to zero. If 15v , then maxtx , but if 15v , then 100x , otherwise
cosine and sine terms in the asymptotic expansion method of the Bessel function will not be calculated accurately. See
Method.

Zero- and first-order Bessel function
When computing either J x0 () or J x1 () , use the function c_dbj0 or c_dbj1 respectively, as they are more efficient.

Evaluation sequence
When all the values of J x J x J x J xv v v v M(), (), (), , () 1 2 are required at the same time, it is more efficient to
compute them in the following way. First, compute the value of J xv M () and J xv M 1 () with this function, then the
others in the order of J x J x J xv M v M v 2 3(), (), , () by repeating the recurrence formula (see Method). Conversely,

 c_dbjr

 197

computing values in the reverse order, i.e. J x J x J xv v v M 2 3(), (), , () by recurrence formula after J xv () and
J xv1 () , should be avoided because of instability.

4. Example program

This program evaluates a table of function values for x from 0 to 10 in increments of 1 and v equal to 0.4 and 0.6.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double v, x, bj;
 int nv, i;

 for (i=0;i<=10;i++) {
 x = (double)i;
 for (nv=40;nv<=60;nv=nv+20) {
 v = (double)nv/100;
 /* calculate Bessel function */
 ierr = c_dbjr(v, x, &bj, &icon);
 if (icon == 0)
 printf("x = %5.2f v = %5.2f bj = %e\n", x, v, bj);
 else
 printf("ERROR: x = %5.2f v = %5.2f bj = %e icon = %i\n",
 x, v, bj, icon);
 }
 }
 return(0);
}

5. Method

Depending on the values of x and v, the method used to compute the real-order Bessel function of the first kind, J xv () ,
is:

 Power series expansion, equation (1), when 10 x .
 Recurrence formula when 1 30 x , or 30 100 x and v x 0115 4. .

Suppose m is an appropriately large integer (depends upon the required precision of x and v) and an
appropriately small constant (smallest positive number allowed for the computer), and moreover that n and
are determined by

v n

where, n is an integer and 0 1 . With the initial values,

F x F xm m 1 0() , ()

and repeating the recurrence equation,

F x
k

x F x F xk k k

1 1
2

()
()

() ()

for k m m , , ,1 1 . Then the value of)(xJv is obtained from

Description of the C-SSL II Routines

198

J x

x
F x

k k
k F x

v

n

k
k

m()
()

() ()
! ()

/

2

2
2

0

2

 Asymptotic expansion when 100 x tmax and v 15 , or 30 100 x and v x 0115 4. .

For further information consult the entry for BJR in the Fortran SSL II User's Guide.

 c_dbk0

 199

c_dbk0
Modified zero-order Bessel function of the second kind K x0 () .
ierr = c_dbk0(x, &bk, &icon);

1. Function

This function computes the modified zero-order Bessel function of the second kind (1) by polynomial approximations and
asymptotic expansion.

 K x
x
k m I x x

k

k m

k

0

2

2
1 1

0
2 1

2()
()
(!)

() log()

 (1)

In (1), I x0 () is the modified zero-order Bessel function of the first kind, is Euler’s constant and x 0 .

2. Arguments

The routine is called as follows:
ierr = c_dbk0(x, &bk, &icon);

where:
x double Input Independent variable x.
bk double Output Function value K x0 () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x log()maxfl bk is set to zero.
30000 x 0 bk is set to zero.

3. Comments on use

x
The range of values of x is limited to avoid numerical underflow of e x in the computations. The range of values is
shown in the table of condition codes. For details on the constant, flmax , see the Machine constants section of the
Introduction.

4. Example program

This program evaluates a table of function values for x from 1 to 100 in increments of 1.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, bk;
 int i;

Description of the C-SSL II Routines

200

 for (i=1;i<=100;i++) {
 x = (double)i;
 /* calculate Bessel function */
 ierr = c_dbk0(x, &bk, &icon);
 if (icon == 0)
 printf("x = %4.2f bk = %e\n", x, bk);
 else
 printf("ERROR: x = %4.2f bk = %e icon = %i\n", x, bk, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the modified zero-order Bessel function of the second kind,
K x0 () , is:

 Power series expansion using polynomial approximations when 0 2 x .
 Asymptotic expansion when 2 x fllog()max .

For further information consult the entry for BK0 in the Fortran SSL II User's Guide.

 c_dbk1

 201

c_dbk1
Modified first-order Bessel function of the second kind K x1 () .
ierr = c_dbk1(x, &bk, &icon);

1. Function

This function computes the modified first-order Bessel function of the second kind (1) by polynomial approximations and
asymptotic expansion.

 K x I x x x
x

k k m m

k

k m

k

m

k

1 1

2 1

0 1 1

1

2
1 1

2
2

1
1 1

() () log()
()

!()!

 (1)

In (1), I x1 () is the modified first-order Bessel function of the first kind, is Euler’s constant and x 0 .

2. Arguments

The routine is called as follows:
ierr = c_dbk1(x, &bk, &icon);

where:
x double Input Independent variable x.
bk double Output Function value K x1() .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x log()maxfl bk is set to zero.
30000 x 0 bk is set to zero.

3. Comments on use

x
The range of values of x is limited to avoid numerical underflow of e x in the computations. The limits are shown in the
table of condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction.

4. Example program

This program evaluates a table of function values for x from 1 to 100 in increments of 1.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, bk;
 int i;

 for (i=1;i<=100;i++) {

Description of the C-SSL II Routines

202

 x = (double)i;
 /* calculate Bessel function */
 ierr = c_dbk1(x, &bk, &icon);
 if (icon == 0)
 printf("x = %4.2f bk = %e\n", x, bk);
 else
 printf("ERROR: x = %4.2f bk = %e icon = %i\n", x, bk, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the modified first-order Bessel function of the second kind,
K x1() , is:

 Power series expansion using polynomial approximations when 0 2 x .
 Asymptotic expansion when 2 x fllog()max .

For further information consult the entry for BK1 in the Fortran SSL II User's Guide.

 c_dbkn

 203

c_dbkn
Modified nth-order Bessel function of the second kind K xn () .
ierr = c_dbkn(x, n, &bk, &icon);

1. Function

This function computes the modified nth-order Bessel function of the second kind (1) by recurrence formula for x 0 .

 nkk
k

knn

nk
n

k

k

n
n

n

knk
x

x
k

knxxIxK

0

2

2
1

0

1

)!(!
)2(

2
)1(

)2(
!

)!1()1(
2
1)2log()()1()(

 (1)

In (1), I xn () is the nth-order Bessel function of the first kind, is Euler’s constant and is given as:

)1(1

0

1

0

L
m

L

m
L

2. Arguments

The routine is called as follows:
ierr = c_dbkn(x, n, &bk, &icon);

where:
x double Input Independent variable x.
n int Input Order n of K xn () .
by double Output Function value K xn () .
icon int Output Condition code. See below.

When n=0 or 1, the icon values are same as in function c_dbk0 and
c_dbk1 respectively.

The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x log()maxfl bk is set to zero.
30000 x 0 bk is set to zero.

3. Comments on use

x
The range of values of x is limited to avoid numerical underflow of e x in the computations. The limits are shown in the
table of condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction.

Zero- and first-order Bessel function
When computing either K x0 () or K x1 () , use the function c_dbk0 or c_dbk1 respectively, as they are more efficient.

Description of the C-SSL II Routines

204

4. Example program

This program evaluates a table of function values for x from 1 to 10 in increments of 1 and n equal to 20 and 30.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, bk;
 int i, n;

 for (n=20;n<=30;n=n+10)
 for (i=1;i<=10;i++) {
 x = (double)i;
 /* calculate Bessel function */
 ierr = c_dbkn(x, n, &bk, &icon);
 if (icon == 0)
 printf("x = %4.2f n = %i bk = %e\n", x, n, bk);
 else
 printf("ERROR: x = %4.2f n = %i bk = %e icon = %i\n",
 x, n, bk, icon);
 }
 return(0);
}

5. Method

The recurrence formula is used to calculate the Bessel function K xn () of order n. For orders of 0 and 1, the Fortran
routines DBK0 and DBK1 are used to compute K x0 () and K x1 () . For further information consult the entry for BKN
in the Fortran SSL II User's Guide.

 c_dbkr

 205

c_dbkr
Modified real-order Bessel function of the second kind K xv () .
ierr = c_dbkr(x, v, &bk, &icon);

1. Function

This function computes the modified real-order Bessel function of the second kind (1) by Yoshida and Ninomiya's method.

K x
I x I x

vv
v v

()
() ()
sin()

2 (1)

In (1), I xv () is the modified real-order Bessel function of the first kind and x 0 .

2. Arguments

The routine is called as follows:
ierr = c_dbkr(x, v, &bk, &icon);

where:
x double Input Independent variable x.
v double Input Order v of K xv () .
bk double Output Function value K xv () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x 0 or bk was large enough to overflow. bk is returned with the maximum floating point

value.
30000 x 0 bk is set to zero.

3. Comments on use

Zero- and first-order Bessel function
When computing either K x0 () or K x1 () , use the function c_dbk0 or c_dbk1 respectively, as they are more efficient.

Evaluation sequence
When all the values of K x K x K x K xv v v v M(), (), (), , () 1 2 are required at the same time, it is more efficient to
compute them in the following way. First, compute the value of K xv () and K xv1 () with this function, then the others
in the order of K x K x K xv v v M 2 3(), (), , () .

When the function is called repeatedly with the same value of v but with various, large value of x in magnitude, the
function computes K xv () more efficiently by bypassing a common part of the computation.

Description of the C-SSL II Routines

206

4. Example program

This program evaluates a table of function values for x from 0 to 10 in increments of 1 and v equal to 0.4 and 0.6.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double v, x, bk;
 int nv, i;

 for (i=1;i<=10;i++) {
 x = (double)i;
 for (nv=40;nv<=60;nv=nv+20) {
 v = (double)nv/100;
 /* calculate Bessel function */
 ierr = c_dbkr(v, x, &bk, &icon);
 if (icon == 0)
 printf("x = %5.2f v = %5.2f bk = %e\n", x, v, bk);
 else
 printf("ERROR: x = %5.2f v = %5.2f bk = %e icon = %i\n",
 x, v, bk, icon);
 }
 }
 return(0);
}

5. Method

The method by Yoshida and Ninomiya is used to compute the modified real-order Bessel function of the second kind,
K xv () . For further information consult the entry for BKR in the Fortran SSL II User's Guide.

 c_dblnc

 207

c_dblnc
Balancing of a real matrix.
ierr = c_dblnc(a, k, n, dv, &icon);

1. Function

This routine applies the diagonal similarity transformation shown in (1) to an nn matrix A,

 ADDA 1~ , (1)

where D is a diagonal matrix. By this transformation, the sum of the norm of the elements in the i-th row and that
of the i-th column (i = 1,2,...,n) are almost equalized for the transformed real matrix A~ . Here, n 1.

2. Arguments

The routine is called as follows:
ierr = c_dblnc((double *) a, k, n, dv, &icon);

where:
a double Input Matrix A.
 a[n][k] Output Balanced matrix A~ .

k int Input C fixed dimension of array a (n).
n int Input Order n of matrices A and A~ .

dv double dv[n] Output Scaling factors (diagonal elements of D).
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 Balancing was not performed.
30000 One of the following has occurred:

 n < 1
 k < n

Bypassed.

3. Comments on use

If there are large differences in magnitude of the elements of a matrix, the precision of computed eigenvalues and
eigenvectors of that matrix can be adversely affected. This routine can be used before computing the eigenvalues and
eigenvectors to avoid loss of precision.

If each element of a matrix is nearly the same in magnitude, this routine performs no balancing and should not be used.

If all elements except the diagonal element of a row (or column) are zero, balancing of the row (or column) and the
corresponding column (or row) is bypassed.

In order to obtain the eigenvectors x of a matrix A which has been balanced by this routine, back transformation (2) must
be applied to the eigenvectors x~ of A~ .

Description of the C-SSL II Routines

208

 xDx ~ . (2)

The back transformation (2) can be performed using routine c_dhbk1.

4. Example program

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then
performs a back transformation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, m, mk, ind[NMAX];
 double a[NMAX][NMAX], pv[NMAX], aw[NMAX+4][NMAX];
 double er[NMAX], ei[NMAX], ev[NMAX][NMAX];
 double dv[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 mk = NMAX;
 for (i=0;i<n;i++) {
 a[i][i] = n-i;
 for (j=0;j<i;j++) {
 a[i][j] = n-i;
 a[j][i] = n-i;
 }
 }
 /* balance matrix A */
 ierr = c_dblnc((double*)a, k, n, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dblnc failed with icon = %i\n", icon);
 exit (1);
 }
 /* reduce matrix to Hessenberg form */
 ierr = c_dhes1((double*)a, k, n, pv, &icon);
 if (icon != 0) {
 printf("ERROR: c_dhes1 failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<n;i++)
 for (j=0;j<n;j++)
 aw[i][j] = a[i][j];
 /* find eigenvalues */
 ierr = c_dhsqr((double*)aw, k, n, er, ei, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dhsqr failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<m;i++) ind[i] = 1;
 /* find eigenvectors for given eigenvalues */
 ierr = c_dhvec((double*)a, k, n, er, ei,
 ind, m, (double*)ev, mk, (double*)aw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dhvec failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation to find e-vectors of A */
 ierr = c_dhbk1((double*)ev, k, n, ind, m, (double*)a, pv, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dhbk1 failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 i = 0;
 k = 0;
 while (i<m) {
 if (ind[i] == 0) i++;

 c_dblnc

 209

 else if (ei[i] == 0) {
 /* real eigenvector */
 printf("eigenvalue: %12.4f\n", er[i]);
 printf("eigenvector:");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[k][j]);
 printf("\n");
 i++;
 k++;
 }
 else {
 /* complex eigenvector pair */
 printf("eigenvalue: %7.4f+i*%7.4f\n", er[i], ei[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", ev[k][j], ev[k+1][j]);
 printf("\n");
 printf("eigenvalue: %7.4f+i*%7.4f\n", er[i+1], ei[i+1]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", ev[k][j], -ev[k+1][j]);
 printf("\n");
 i = i+2;
 k = k+2;
 }
 }
 return(0);
}

5. Method

Consult the entry for BLNC in the Fortran SSL II User's Guide and reference [119].

Description of the C-SSL II Routines

210

c_dbmdmx
Solution of a system of linear equations with an indefinite symmetric
band matrix in MDM T - decomposed form.
ierr = c_dbmdmx(b, fa, n, nh, mh, ip, ivw,

&icon);

1. Function

This routine solves a linear system of equations with an MDM T - decomposed nn indefinite symmetric band matrix

 bxPMDMP TT1 (1)

In (1), P is a permutation matrix (which performs row exchanges of the coefficient matrix based on the pivoting during
the MDM T - decomposition), M = (ijm) is a unit lower band matrix with bandwidth h

~
 (n> h

~
 0), and D = (ijd) is a

symmetric block diagonal matrix with blocks of order at most 2. b is a constant vector, and x is the solution vector. Both
vectors are of size n.

2. Arguments

The routine is called as follows:
ierr = c_dbmdmx(b, fa, n, nh, mh, ip, ivw, &icon);

where:
b double b[n] Input Constant vector b.
 Output Solution vector x.
fa double

fa[Falen]

Input Matrix I)(MD . Stored in symmetric band storage format. See
Array storage formats in the Introduction section for details. The matrix
must be stored as if it had bandwidth mh . See Comments on use.

.2/)1()1(mmm hhhnFalen
n int Input Order n of matrices M and D.
nh int Input Bandwidth h

~
 of matrix M. See Comments on use.

mh int Input Maximum bandwidth mh (n>mh nh) of matrix M. See Comments on
use.

ip int ip[n] Input Transposition vector that provides the row exchanges that occurred
during pivoting. See Comments on use.

ivw int ivw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Coefficient matrix was singular. Discontinued.
30000 One of the following has occurred:

 nh < 0
 mh < nh
 mh n

Bypassed.

 c_dbmdmx

 211

Code Meaning Processing
 error found in ip.

3. Comments on use

fa, nh, ip, mh and MDM T - decomposition
A system of linear equations with an indefinite symmetric band coefficient matrix can be solved by calling the routine
c_dsbmdm to MDM T - decompose the coefficient matrix prior to calling this routine. The input arguments fa, nh, ip
and mh of this routine are the same as the output arguments a, nh, ip and input argument mh of routine c_dsbmdm.
Alternatively, the system of linear equations can be solved by calling the single routine c_dlsbix.

Calculation of determinant
The determinant of matrix A is the same as the determinant of matrix D, that is the product of the determinants of the 11
and 22 blocks of D. See the example program with c_dsbmdm.

Eigenvalues
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program with c_dsbmdm.

4. Example program

This program decomposes and solves a system of linear equations using MDM T decomposition and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))

#define NMAX 100
#define NHMAX 50

MAIN__()
{
 int ierr, icon;
 int n, nh, mh, i, j, ij, jmin;
 double epsz, eps;
 double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], b[NMAX], x[NMAX];
 int ivw[NMAX], ip[NMAX];

 /* initialize matrix */
 n = NMAX;
 nh = 2;
 mh = NHMAX;
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-mh, 0);
 for (j=jmin;j<=i;j++)
 if (i-j == 0)
 a[ij++] = 10;
 else if (i-j == 1)
 a[ij++] = -3;
 else if (i-j == 2)
 a[ij++] = -6;
 else
 a[ij++] = 0;
 }
 epsz = 1e-6;
 /* initialize RHS vector */
 for (i=0;i<n;i++)
 x[i] = i+1;
 /* initialize constant vector b = a*x */
 ierr = c_dmsbv(a, n, mh, x, b, &icon);
 /* MDM decomposition of system */

Description of the C-SSL II Routines

212

 ierr = c_dsbmdm(a, n, &nh, mh, epsz, ip, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dsbmdm failed with icon = %d\n", icon);
 exit(1);
 }
 /* solve decomposed system of equations */
 ierr = c_dbmdmx(b, a, n, nh, mh, ip, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dbmdmx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for BMDMX in the Fortran SSL II User's Guide.

 c_dbsc1

 213

c_dbsc1
B-spline smoothing coefficient calculation.
ierr = c_dbsc1(x, y, w, n, m, xt, nt, c, r,

&rnor, vw, ivw, &icon);

1. Function

Given observed values nyyy ,,, 21 at points nxxx ,,, 21 with weighted function values)(ii xww for
ni ,,2,1 and the knots of the spline function

tn ,,, 21 for the degree m B-spline smoothing function (1), this
function obtains the smoothing coefficients jc that minimise the square sum of weighted residual (2).

1

1
1,)()(

tn

mk
mjj xNcxS (1)

n

i
iiim xSyw

1

22)((2)

The interval)]max(),[min(jjI spanned by the knots j does not always have to contain all of the n discrete
points. For example, as shown in Figure 30, the I can be specified as a part of the interval)]max(),[min(iix xxI
that is spanned by all of the discrete points. In such cases, the discrete points for)(xS , equation (1), contained in the
interval (whose number we say is en), then when taking the summation in (2) only the discrete points contained in the
interval I have to be taken into consideration.

Here, 0iw , 1m , 3tn , kj (kj) and 1 mnn te .

Interval I
Interval Ix

Figure 30 Section I for smoothing function

2. Arguments

The routine is called as follows:
ierr = c_dbsc1(x, y, w, n, m, xt, nt, c, r, &rnor, vw, ivw, &icon);

where:

Description of the C-SSL II Routines

214

x double x[n] Input Discrete points xi .
y double y[n] Input Observed data iy .
w double w[n] Input Weighted function values.
n int Input Number of discrete points n.
m int Input Degree m of the B-spline. See Comments on use.
xt double xt[nt] Input The knots j . See Comments on use.
 Output If on input 1]-xt[ntxt[1]xt[0] is not satisfied then on

output they will be realigned to the condition.
nt int Input Number of knots tn .
c double

c[nt+m-1]

Output Smoothing coefficients jc .

r double r[n] Output Residuals)(ii xSy .
rnor double Output Square sum of weighted residual 2

m .
vw double

vw[Vwlen]
Work Vwlen = (nt+m)*(m+1).

ivw int ivw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 At least one negative weight in w
 m < 1
 xt[i] = xt[j] where i j
 nt < 3
 en < nt + m - 1

Bypassed.

3. Comments on use

Calling function c_dbsf1
By calling the function c_dbsf1 after this one, the interpolated values as well as derivatives or integrals can be obtained
based on B-spline smoothing function (1). The argument values of m, xt, nt and c are input to c_dbsf1.

m
The degree m is preferably 3 but no greater than 5, because of the normal equation used when obtaining the smoothing
coefficients become ill-conditioned as m becomes large.

xt
It is important for the knots j to be located according to the behaviour of observed values. In general, a knot should be
assigned to the point at which the observed values have a peak or change rapidly. Knots should not be assigned to
intervals where the observed values change slowly. See Figure 31.

 c_dbsc1

 215

1 2 3 4 5 6
Figure 31 Knots j

4. Example program

This program evaluates the function 3)(xxf at 10 equally spaced points in the interval]1,0[. Using the cubic B-spline
function obtained by a least squares fit it then computes approximations to the function value as well as an integral and
several partial derivatives associated with a particular point.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3
#define NT 5

MAIN__()
{
 int ierr, icon;
 int i, n, m, nt, isw, ivw[N];
 double x[N], y[N], w[N], c[NT+M-1], xt[NT], r[N], vw[(NT+M)*(M+1)];
 double p, h, v, f, rnor;

 /* initialize data */
 n = N;
 m = M;
 nt = NT;
 isw = 0;
 p = 0;
 h = 1.0/n;
 for (i=0;i<n;i++) {
 w[i] = 10;
 x[i] = p;
 y[i] = pow(p,3);
 p = p + h;
 }
 p = 0;
 h = 1.0/nt;
 for (i=0;i<nt;i++) {
 xt[i] = p;
 p = p + h;
 }
 /* calculate B-spline smoothing coefficients */
 ierr = c_dbsc1(x, y, w, n, m, xt, nt, c, r, &rnor, vw, ivw, &icon);
 i = nt/2;
 v = xt[i] + (xt[i+1]-xt[i])/2;
 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, vw, &icon);
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);

Description of the C-SSL II Routines

216

}

5. Method

A system of linear equations is derived for the smoothing coefficients. Solving this system by a LLT decomposition
method, the coefficients are obtained.

For further information consult the entry for BSC1 in the Fortran SSL II User's Guide.

 c_dbsc2

 217

c_dbsc2
B-spline smoothing coefficient calculation (variable knots).
ierr = c_dbsc2(x, y, s, n, m, xt, &nt, nl,

rnot, c, rnor, vw, ivw, &icon);

1. Function

Given observed values nyyy ,...,, 21 at discrete points nxxx ,...,, 21 , observation errors n ,...,, 21 , a tolerance 2
t for

the sum of squares of residuals, and initial knots
sn ,...,, 21 , this routine obtains the smoothing coefficients for a degree

m B-spline smoothing function to the data, with knots being added so that the sum of squares of residuals becomes within
the tolerance.

Letting tn denote the number of knots finally used, and 2
tn the corresponding sum of squares of residuals, the

routine obtains the coefficients jc in the B-spline smoothing function (1), subject to (2).

1

1
1,)()(

tn

mj
mjj xNcxS (1)

 22

1
2

2)(1
tii

n

i i
n xSy

t

. (2)

This routine outputs final knots
tn ,...,, 21 , the sum of squares of residuals at each step in which knots are added (3),

 2

1
2

2)(1
ii

n

i i
n xSy

r

, (3)

(in which)(xS is a degree m B-spline smoothing function in which
rn ,...,, 21 are knots), and statistics (4) and (5),

)1(/22 mnn rnn rr
, (4)

)1(2log 2 mnnAICr rnr
. (5).

Here tssr nnnn ,...,1, , 0 i , 1m , 2sn and the initial knots i must satisfy)(min)(min iijj
x and

)(max)(max i
i

j
j

x .

2. Arguments

The routine is called as follows:
ierr = c_dbsc2(x, y, s, n, m, xt, &nt, nl, rnot, c, (double*)rnor, vw, ivw,

&icon);

where:
x double x[n] Input Discrete points ix .
y double y[n] Input Observed values iy .
s double s[n] Input Observation errors i . See Comments on use.
n int Input Number n of discrete points.

Description of the C-SSL II Routines

218

m int Input Degree m of B-spline. See Comments on use.
xt double xt[nl] Input Initial knots si ni ,...,2,1, . See Comments on use.
 Output Final knots ti ni ,...,2,1, , in order

tn ...21 .
nt int Input Number sn of initial knots.
 Output Number tn of final knots.
nl int Input Upper limit (sn) on number of knots. See Comments on use.
rnot double Input Tolerance 2

t for the sum of squares of residuals. An appropriate value is
nt 2 .

c double

c[nl+m-1]

Output Smoothing coefficients 1,...,2,1, tj nmmjc . Note that jc is
stored in c[j+m-1].

rnor double

rnor[Rlen][3]
Output Values of AICr

rr nn ,, 22 , for tssr nnnn ,...,1, .

2
rn is stored in rnor[sr nn][0]

2
rn is stored in rnor[sr nn][1]

AICr is stored in rnor[sr nn][2]

1 snRlen nl . See Comments on use.

vw double

vw[Vwlen]
Work))(2()1(mmmVwlen nl .

ivw int ivw[Ivwlen] Work mnIvwlen nl .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Number of knots reached the upper limit, but the

convergence criterion (2) was not satisfied.
Outputs the coefficients for the most recently
obtained smoothing function.

30000 One of the following has occurred:
 0 i for some i
 m < 1
 xt[i]=xt[j] for some i j
 2sn
 nl < sn
)(min)(min iijj

x or

)(max)(max i
i

j
j

x

Bypassed.

3. Comments on use

Calling routine c_dbsf1
By calling routine c_dbsf1 after this routine, an interpolated value, or derivative value, or integral can be obtained based
on the B-spline smoothing function (1). The argument values of m, xt, nt, and c are input to c_dbsf1.

 c_dbsc2

 219

s
The observation error i is an estimate for the error contained in the observed values iy . For example, if iy has id
significant decimal digits, the value i

d yi10 can be used as i . The observation error i is used to indicate how
closely)(xS should be fit to iy . The larger i is, the less closely)(xS is fit to iy .

m
An appropriate value for m is 3, but the value should not exceed 5 because the normal equations used when obtaining the
smoothing coefficients become ill-conditioned as m increases.

xt
Generally, initial knots sj nj ,...,2,1, can be given by 2sn ,)(min1 ii

x ,)(max i
i

n x
s
 .

nl
The upper limit nl on the number of knots should be given a value near 2/n (as the number of knots increases, the
normal equations become ill-conditioned). The routine terminates with icon = 10000 when the number of knots
reaches the upper limit even if the convergence criterion (2) has not been met.

rnor
The information output in rnor is the history of various statistics obtained in the process of adding knots at each step.
The history can be used for assessing the smoothing function.

4. Example program

This program evaluates the function 3)(xxf at 10 equally spaced points in the interval]1,0[. Using the cubic B-spline
function it then computes approximations to the function value as well as an integral and several derivatives associated
with a particular point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3
#define NTMAX 5
#define NT 3

MAIN__()
{
 int ierr, icon;
 int i, n, m, nt, nl, isw, ivw[N+NTMAX+M];
 double x[N], y[N], s[N], rnor[NTMAX-NT+1][3];
 double c[NTMAX+M-1], xt[NTMAX], vw[(M+1)+(M+2)*(NTMAX+M)];
 double p, h, v, f, rnot;

 /* initialize data */
 n = N;
 m = M;
 nt = NT;
 nl = NTMAX;
 rnot = n;
 p = 0.1;
 h = 0.8/(n-1);
 for (i=0;i<n;i++) {
 x[i] = p+i*h;
 y[i] = pow(x[i],3);
 s[i] = 1e-6*fabs(y[i]); /* make up some error values */
 }
 p = 0;
 h = 1.0/(nt-1);
 for (i=0;i<nt;i++) {
 xt[i] = p+i*h;

Description of the C-SSL II Routines

220

 }
 /* calculate B-spline smoothing coefficients */
 ierr = c_dbsc2(x, y, s, n, m, xt, &nt, nl, rnot,
 c, (double*)rnor, vw, ivw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbsc2 failed with icon = %d\n", icon);
 exit(1);
 }
 i = 1;
 v = 0.5;
 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbsf1 failed with icon = %d\n", icon);
 exit(1);
 }
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);
}

5. Method

Consult the entry for BSC2 in the Fortran SSL II User's Guide.

 c_dbscd2

 221

c_dbscd2
B-spline two-dimensional smoothing coefficient calculation (variable
knots)
ierr = c_dbscd2(x, nx, y, ny, fxy, kf, sx, sy,

m, xt, &nxt, yt, &nyt, nxl, nyl,

rnot, c, kc, rnor, vw, ivw,

&icon);

1. Function

Given observed values),(jiij yxff , observation errors
ji yxij , at the points),(ji yx , xni ,...,2,1 ,

ynj ,...,2,1 , a tolerance for the sum of squares of residual 2
t , and initial sequences of knots

sn ,...,, 21 ,

s
 ,...,, 21 , in the x- and y- directions respectively, this routine obtains a bivariate m-th degree B-spline smoothing

function to the data, in which the sum of the squares of residuals is within the tolerance, by adding knots appropriately in
the x- and y- directions.

Letting the number of knots in the x- and y- directions be tn and t , the routine obtains the coefficients ,c of the B-
spline smoothing function (1) subject to (2).

1

1

1

1
1,1,,)()(),(

t t

m

n

m
mm yNxNcyxS

, (1)

 22

1 1
2

2),(
)(

1
tjiij

n

j

n

i yx
n yxSf

y x

ji

tt

 (2)

This routine outputs final knots
tn ,...,, 21 in the x-direction, and

t
 ,...,, 21 , in the y-direction, the sum of squares

of residuals (3) at each step of adding knots, and statistics (4) and (5), along with coefficients ,c .

 2

1 1
2

2),(
)(

1
jiij

n

j

n

i yx
n yxSf

y x

ji

rr

 (3)

(where),(yxS denotes the m-th degree B-spline smoothing function with knots
rn ,...,, 21 and

r
 ,...,, 21),

)}1)(1({22 mmnnn rryxnn rrrr
 , (4)

)1)(1(2log 2 mmnnnAIC rrnyxr rr
 . (5)

Here, ttssssrr nnnn ,...,1, , 0
ix , 0

jy , 1m , 2sn , 2s , and the initial knots

sn ,...,, 21 in the x-direction must satisfy)(min)(min iijj
x and)(max)(max i

i
j

j
x , while the initial knots

s
 ,...,, 21 in the y-direction must satisfy)(min)(min iijj

y and)(max)(max i
i

j
j

y .

2. Arguments

The routine is called as follows:

Description of the C-SSL II Routines

222

ierr = c_dbscd2(x, nx, y, ny, (double*)fxy, kf, sx, sy, m, xt, &nxt, yt, &nyt,

nxl, nyl, rnot, (double*)c, kc, (double*)rnor, vw, ivw, &icon);

where:
x double x[nx] Input Discrete points ix in the x-direction..
nx int Input Number xn of discrete points in the x-direction.
y double y[ny] Input Discrete points jy in the y-direction.
ny int Input Number yn of discrete points in the y-direction.
fxy double

fxy[nx][kf]

Input Observed values ijf .

kf int Input C fixed dimension of array fxy (ny).
sx double sx[nx] Input Observation errors

ix in the x-direction.

sy double sy[ny] Input Observation errors
jy in the y-direction.

m int Input Degree m of the B-spline.See Comments on use.
xt double Input Initial knots i , sni ,...,2,1 in the x-direction. See Comments on use.
 xt[nxl] Output Final knots i , tni ,...,2,1 in the x-direction, in the order

tn ...21 .

nxt int Input Number sn (2) of initial knots in the x-direction.
 Output Number tn of final knots in the x-direction.
yt double Input Initial knots j , sj ,...,2,1 in the y-direction. See Comments on use.
 yt[nyl] Output Final knots j , tj ,...,2,1 in the y-direction, in the order

t
 ...21 .

nyt int Input Number s (2) of initial knots in the y-direction.
 Output Number t of final knots in the y-direction.
nxl int Input Upper limit)(sn on the number of knots in the x-direction. See

Comments on use.
nyl int Input Upper limit)(s on the number of knots in the y-direction. See

Comments on use.
rnot double Input Tolerance 2

t for the sum of squares of residuals. An appropriate

value is yxt nn 2 .

c double

c[Clen][kc]
Output Smoothing coefficients ,c , 1,...,2,1 tnmm ,

1,...,2,1 tmm , stored in c[1 m][]1 m .
Clen = nxl+m-1.

kc int Input C fixed dimension of array c (nyl+m-1).
rnor double

rnor[Rlen][3]
Output Values of 2

rrn , 2
rrn , and rAIC at each step of adding knots.

Letting ttssssrr nnnn ,...,1, and
)()(srsrr nnP , then

2
rrn is stored in rnor[rP][0],

2
rrn is stored in rnor[rP][1],

rAIC is stored in rnor[rP][2].

 c_dbscd2

 223

Rlen = (nxl - sn) + (nyl - s) +1.

vw double

vw[Vwlen]
Work),max(21 ssVwlen where

)1)(2(1 mmnns yx

)1)(,min(2),,max(max mmnmnmnmn yxyx ,

 yxyx nnmnns)1(3),min(2 2 nylnxl .

ivw int ivw[Ivwlen] Work mnnIvwlen yx)max(nylnxl, .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 The number of knots in the x-direction reached

the upper limit, but the convergence criterion was
not satisfied.

Outputs the coefficients for the most recently
obtained smoothing function.

11000 The number of knots in the y-direction reached
the upper limit, but the convergence criterion was
not satisfied.

Outputs the coefficients for the most recently
obtained smoothing function.

30000 One of the following has occurred:
 0

ix
 0

jy
 1m
 xt[i] = xt[j] or yt[i] = yt[j]
 when i j
 2sn or 2s
 snnxl or snyl
)(min)(min iiii

x or

)(max)(max i
i

i
i

x

)(min)(min jjjj
y or

)(max)(max j
j

j
j

y

Bypassed.

3. Comments on use

Relationship with c_dbsfd1
By calling routine c_dbsfd1 after this routine, an interpolated value, or partial derivative, or double integral can be
obtained based on the two-dimensional B-spline smoothing function (1). The argument values of m, xt, nxt, yt, nyt and
c are input to c_dbsfd1.

m
An appropriate value for degree m (either odd or even) is 3, but the value should not exceed 5 because the normal
equations used when obtaining the smoothing coefficients become ill-conditioned as m increases.

Description of the C-SSL II Routines

224

xt and yt
Generally, initial knots ji , , sni ,...,2,1 , sj ,...,2,1 can be given by 2 ssn ,)(min1 ii

x ,

)(max i
i

n x
s
 ,)(min1 jj

y ,)(max j
j

l y
s
 .

nxl and nyl
The upper limits nxl and nyl on the number of knots in the x- and y- directions should be given values near 2/xn and

2/yn respectively (as the number of knots increases, the normal equations become more ill-conditioned). The routine
terminates, with icon = 10000 (for the x-direction) and icon = 11000 (for the y-direction), when the number of knots
reaches either of the upper limits, and the convergence criterion has not been met.

rnor
The information output in rnor is the history of various statistics obtained in the process of adding knots at each
step. The history can be used to assess the smoothing function. Generally, the statistics converge with the addition
of knots. In particular, when 2

rrn and rAIC change slowly with the addition of knots, the smoothing function

is usually good.

4. Example program

This program interpolates the function 33),(yxyxf at 100 points in the region]9.0,1.0[]9.0,1.0[with a spline. It
then computes approximations to the function value as well as an integral and several partial derivatives associated with a
particular point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3
#define NTMAX 5
#define NT 3

MAIN__()
{
 int ierr, icon;
 int i, j, kf, kc, nx, ny, m, nxt, nyt, nxl, nyl, ivw[2*N+NTMAX*M];
 int iswx, iswy, ix, iy;
 double x[N], y[N], fxy[N][N], sx[N], sy[N], rnor[2*(NTMAX-NT)+1][3];
 double c[NTMAX+M-1][NTMAX+M-1], xt[NTMAX], yt[NTMAX];
 double vw[158];
 double p, h, vx, vy, f, fx, rnot;

 /* initialize data */
 nx = N;
 ny = N;
 m = M;
 nxt = NT;
 nyt = NT;
 nxl = NTMAX;
 nyl = NTMAX;
 rnot = nx*ny;
 kf = N;
 kc = NTMAX+M-1;
 p = 0.1;
 h = 0.8/(nx-1);
 for (i=0;i<nx;i++) {
 x[i] = p+i*h;
 y[i] = x[i];
 sx[i] = 1e-6; /* make up some error values */
 sy[i] = sx[i];
 }
 for (i=0;i<nx;i++) {
 fx = x[i]*x[i]*x[i];
 for (j=0;j<ny;j++) {
 fxy[i][j] = fx*y[j]*y[j]*y[j];

 c_dbscd2

 225

 }
 }
 p = 0;
 h = 1.0/(nxt-1);
 for (i=0;i<nxt;i++) {
 xt[i] = p+i*h;
 yt[i] = xt[i];
 }
 /* calculate B-spline smoothing coefficients */
 ierr = c_dbscd2(x, nx, y, ny, (double*)fxy, kf, sx, sy, m,
 xt, &nxt, yt, &nyt, nxl, nyl, rnot,
 (double*)c, kc, (double*)rnor, vw, ivw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbscd2 failed with icon = %d\n", icon);
 exit(1);
 }
 ix = 1;
 iy = ix;
 vx = 0.5;
 vy = vx;
 for (iswx=-1;iswx<=m;iswx++) {
 iswy = iswx;
 /* calculate value at point */
 ierr = c_dbsfd1(m, xt, nxt, yt, nyt, (double*)c, kc,
 iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbsfd1 failed with icon = %d\n", icon);
 exit(1);
 }
 if (iswx == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (iswx == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
 }
 return(0);
}

5. Method

For further information consult the entry for BSCD2 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

226

c_dbsct1
Selected eigenvalues of a symmetric tridiagonal matrix (bisection
method).
ierr = c_dbsct1 (d, sd, n, m, epst, e, vw,

&icon);

1. Function

This routine obtains the m largest or m smallest eigenvalues of an nn symmetric tridiagonal matrix T using the
bisection method. Here 1 m n.

2. Arguments

The routine is called as follows:
ierr = c_dbsct1 (d, sd, n, m, epst, e, vw, &icon);

where:
d double d[n] Input Diagonal elements of matrix T.
sd double sd[n] Input Subdiagonal elements of matrix T, stored in sd[i-1], i = 2,...,n, with

sd[0] set to 0.
n int Input Order n of matrix T.
m int Input Number of eigenvalues required (m 0).

m = m, when the m largest eigenvalues required;
m = -m, when the m smallest eigenvalues are required.

epst double Input Absolute error tolerance used to determine the accuracy of the
eigenvalues. When epst < 0 a standard value is used. See Comments on
use.

e double e[m] Output The m eigenvalues of matrix T. In descending order when m > 0 and
ascending order when m < 0.

vw double

vw[n+2m]

Work

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 e[0] = d[0].
30000 One of the following has occurred:

 n < |m|
 m = 0

Bypassed.

3. Comments on use

General comments
When approximately n/4 or more eigenvalues are required, it is generally faster to use routine c_dtrql.

 c_dbsct1

 227

When the eigenvectors of matrix T are also required, routine c_dteig2 should be used.

When eigenvalues of a symmetric matrix are required the matrix can be reduced to a tridiagonal matrix using the routine
c_dtrid1, before calling this routine or c_dtrql.

epst
If it is possible one of the eigenvalues is zero, the argument epst should be set accordingly. See the Method section for
BSCT1 in the Fortran SSL II User's Guide.

4. Example program

This program reduces the matrix to tridiagonal form, and calculates the eigenvalues using two different methods.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 15
#define NHMAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh, m, i, k, ij;
 double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX];
 double sd[NMAX], d[NMAX], vw[NMAX+2*NMAX], epst;

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 nh = NHMAX;
 a[0] = 10;
 a[1] = -3;
 a[2] = 10;
 ij = (nh+1)*nh/2;
 for (i=0;i<n-nh;i++) {
 a[ij] = -6;
 a[ij+1] = -3;
 a[ij+2] = 10;
 ij = ij+nh+1;
 }
 /* reduce to tridiagonal form */
 ierr = c_dbtrid(a, n, nh, d, sd, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dbtrid failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues using c_dbsct1 */
 m = n;
 epst = 1e-6;
 ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dbsct1 failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf("eigenvalues:\n");
 for (i=0;i<m;i++) {
 printf("%7.4f ", e[i]);
 }
 printf("\n");
 /* find eigenvalues using c_dtrql */
 ierr = c_dtrql(d, sd, n, e, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbtrql failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf("eigenvalues:\n");

Description of the C-SSL II Routines

228

 for (i=0;i<m;i++) {
 printf("%7.4f ", e[i]);
 }
 printf("\n");
 return(0);
}

5. Method

Consult the entry for BSCT1 in the Fortran SSL II User's Guide and references [80], [118] and [119].

 c_dbseg

 229

c_dbseg
Eigenvalues and corresponding eigenvectors of a real symmetric band
matrix (Rutishauser-Schwarz, bisection and inverse iteration methods).
ierr = c_dbseg(a, n, nh, m, nv, epst, e, ev,

k, vw, &icon);

1. Function

The m largest or smallest eigenvalues of an n order real symmetric band matrix A (bandwidth h, where nh 0) are
determined using the Rutishauser-Schwarz method and the bisection method, where nm 1 . The corresponding vn
eigenvectors are then obtained using the inverse iteration method, where mnv 0 . The eigenvectors are then
normalised such that 12 x .

2. Arguments

The routine is called as follows:
ierr = c_dbseg(a, n, nh, m, nv, epst, e, (double *)ev, k, vw, &icon);

where:
a double a[Alen] Input Matrix A. Stored in the original symmetric band storage format. See

Array storage formats in the Introduction section for details.
2/)1()1(hhhnAlen .

 Output When 0vn the contents of A are not altered on output, but if 0vn
the contents are altered.

n int Input The order n of matrix A.
nh int Input Bandwidth h.
m int Input The number of eigenvalues to be calculated. If m is positive, the m largest

eigenvalues are calculated. If m is negative, the m smallest eigenvalues
are calculated.

nv int Input The number of eigenvectors to be calculated. If nv is negative, its
absolute value is taken. If nv = 0, no eigenvectors are generated.

epst double Input Absolute error tolerance on the eigenvalues, used in the convergence
criterion. If epst < 0, a standard value is set.

e double e[m] Output Eigenvalues.
ev double

ev[nv][k]

Output Eigenvectors. Stored by rows.

k int Input C fixed dimension of ev. When 0vn , k is an arbitrary number.
vw double

vw[Vwlen]
Work))1(2,23max(hnmnVwlen . If 0vn , then mnVwlen 23 .

icon int Output Condition codes. See below.
The complete list of condition codes is.

Code Meaning Processing
0 No error. Completed.
10000 0nh Completed normally.

Description of the C-SSL II Routines

230

Code Meaning Processing
15000 After calculation of the eigenvalues, some of the

eigenvectors could not be determined.
The eigenvectors that were not obtained are set to
0.

20000 None of the eigenvectors could be determined. All the eigenvectors are set to 0.
30000 One of the following has occurred:

 0nh
 nnh
 nk
 0m
 nvm
 nm

Bypassed.

3. Comments on use

General Comments
This routine is suitable for obtaining the largest or smallest eigenvalues from a symmetric band matrix, provided that the
ratio of the bandwidth to the order of the matrix (i.e. h/n) is less than 1/6.

Eigenvectors
Although the eigenvectors corresponding to the obtained eigenvalues can be obtained at the same time, since the inverse
iteration method is applied to directly processing the input band matrix, rather than a symmetric tridiagonal matrix, this
method is relatively ineffective. Unnecessary eigenvectors should not be calculated. Therefore this method should only be
used when a small number of eigenvalues need to be calculated from the largest or smallest eigenvalues in a large order
symmetric band matrix.

4. Example program

This program uses the library routine to calculate all the eigenvalues and eigenvectors for a 5 by 5 symmetric band matrix
(in original symmetric band storage format).

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 15
#define HMAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh, m, nv, i, j, k, ij ;
 double a[NMAX*(HMAX+1)-HMAX*(HMAX+1)/2], e[NMAX], ev[NMAX][NMAX];
 double vw[2*NMAX*(HMAX+1)], epst;

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 nh = HMAX;
 a[0] = 10;
 a[1] = -3;
 a[2] = 10;
 ij = (nh+1)*nh/2;
 for (i=0;i<n-nh;i++) {
 a[ij] = -6;
 a[ij+1] = -3;
 a[ij+2] = 10;
 ij = ij+nh+1;
 }
 m = 1;
 nv = m;

 c_dbseg

 231

 epst = -1;
 /* find eigenvalues and eigenvectors */
 ierr = c_dbseg(a, n, nh, m, nv, epst, e, (double*)ev, k, vw, &icon);
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

For further information consult the entry for BSEG in the Fortran SSL II User's Guide and also [118] and [119].

Description of the C-SSL II Routines

232

c_dbsegj
Eigenvalues and corresponding eigenvectors of a symmetric band matrix
(Jennings’ method).
ierr = c_dbsegj(a, n, nh, m, epst, lm, e, ev,

k, &it, vw, &icon);

1. Function

This routine obtains m eigenvalues of an nn symmetric band matrix A with bandwidth h, starting with the eigenvalue
of the largest (or smallest) absolute value. When starting with the smallest absolute eigenvalue, matrix A must be positive
definite. Given m initial vectors, m eigenvectors corresponding to the eigenvalues are obtained. The routine uses the
Jennings’ simultaneous iteration method with Jennings’ acceleration. The eigenvectors are normalized such that 12 x .
Here, nm 1 and nh 0 .

2. Arguments

The routine is called as follows:
ierr = c_dbsegj(a, n, nh, m, epst, lm, e, (double *)ev, k, &it, vw, &icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric band storage format. See Array storage

formats in the Introduction section for details.
2/)1()1(hhhnAlen .

 Output When obtaining the eigenvalues of smallest absolute value first, the
contents of a are changed on output.

n int Input Order n of matrix A.
nh int Input Bandwidth h of matrix A.
m int Input Number of eigenvalues m to be obtained.

m > 0 if the m eigenvalues of largest absolute value are to be obtained.
m < 0 if the m eigenvalues of smallest absolute value are obtained. See
Comments on use.

epst double Input Absolute error tolerance for convergence criterion for the
eigenvectors. If 0 , a standard value is assumed. See Comments on
use.

lm int Input Upper limit for the number of iterations. If the number of iterations
exceeds lm, processing is stopped. See Comments on use.

e double e[m] Output The m eigenvalues of matrix A, stored in the sequence specified by
argument m.

ev double Input The m initial vectors, stored by rows. See Comments on use.
 ev[m+2][k] Output The m eigenvectors of matrix A, stored by rows.
k int Input C fixed dimension of array ev (n).
it int Output Number of iterations performed to obtain the eigenvalues and

eigenvectors.
vw double

vw[Vwlen]
Work 2/)13()2,max(mmmnVwlen .

 c_dbsegj

 233

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 The number of iterations exceeded the upper limit

lm.
Stopped. e and ev contain the approximations of
the eigenvalues and eigenvectors obtained so far.

28000 Orthogonalization of the eigenvectors at each
iteration cannot be attained.

Discontinued.

29000 Matrix A is not positive definite (when the
smallest eigenvalues are required) or A may be
singular.

Discontinued.

30000 One of the following has occurred:
 nh < 0 or nh n
 k < n
 m = 0 or |m| > n

Bypassed.

3. Comments on use

m
The number of eigenvalues and eigenvectors m, should be smaller than n such that m/n < 1/10. The numbering of
eigenvalues is from the largest (or smallest) absolute value of eigenvalue, m ,...,, 21 . If possible, m should be chosen
such that 1/1 mm (or 1/1 mm).

epst
When an eigenvector (normalized so that 12 x) converges for the convergence criterion constant , the

corresponding eigenvalue converges at least with accuracy 2A , and in most cases with greater accuracy. The

standard convergence criterion constant is 16 , where is the unit round-off. However, when the eigenvalues
are close together convergence may not be attained with this convergence criterion constant, and a more
appropriate value would be 100 .

lm
The upper limit lm for the number of iterations is used to stop the processing when convergence is not attained. The value
of lm should be chosen taking into account the required accuracy and how close together the eigenvalues are to each other.
With the standard convergence criterion constant and well-separated eigenvalues a value for lm between 500 and 1000
should be appropriate.

Initial eigenvectors
It is desirable for the initial vectors to be good approximations to the eigenvectors. However, if approximate eigenvectors
are not available as initial vectors, the standard way to choose intial vectors is to use the first m column vectors of the
identity matrix I.

c_dbseg and c_dbsegj
c_dbseg determines the eigenvalues and eigenvectors of a real symmetric band matrix using a direct method. In general,
c_dbseg will be faster than this routine, but c_dbseg needs more storage space than this routine.

Description of the C-SSL II Routines

234

4. Example program

This program finds the eigenvalues and corresponding eigenvectors of a symmetric band matrix and prints the results.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 15
#define NHMAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh, m, i, j, k, ij, it, lm;
 double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX], ev[NMAX+2][NMAX];
 double vw[2*NMAX+NMAX*(3*NMAX+1)/2], epst;

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 nh = NHMAX;
 a[0] = 10;
 a[1] = -3;
 a[2] = 10;
 ij = (nh+1)*nh/2;
 for (i=0;i<n-nh;i++) {
 a[ij] = -6;
 a[ij+1] = -3;
 a[ij+2] = 10;
 ij = ij+nh+1;
 }
 m = 1;
 /* initialize m eigenvectors */
 for (i=0;i<m;i++)
 for (j=0;j<n;j++)
 if (i == j) ev[i][j] = 1;
 else ev[i][j] = 0;
 lm = 1000;
 epst = 1e-6;
 /* find eigenvalues and eigenvectors */
 ierr = c_dbsegj(a, n, nh, m, epst, lm, e, (double*)ev, k, &it, vw, &icon);
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

Consult the entry for BSEGJ in the Fortran SSL II User's Guide and [61].

 c_dbsf1

 235

c_dbsf1
B-spline smoothing.
ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f,

vw, &icon);

1. Function

Given observed values nyyy ,,, 21 at points nxxx ,,, 21 with weighted function values)(ii xww for
ni ,,2,1 and the knots of the spline function

tn ,,, 21 (
tn 21), this function obtains a smoothed

value or derivative at],[1 tnvx or integral from 1 to v based on the degree B-spline smoothing function (1).

1

1
1,)()(

tn

mj
mjj xNcxS (1)

One condition is that the smoothing coefficients jc for 1,,2,1 tnmmj in (1) must be computed by the
c_dbsc1 function before using this function.

Here m is the degree of the B-spline)(1, xN mj , 1m , 3tn and
tnv 1 .

2. Arguments

The routine is called as follows:
ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, vw, &icon);

where:
m int Input Degree m of the B-spline.
xt double xt[nt] Input The knots i .
nt int Input Number of knots tn .
c double

c[nt+m-1]

Input Smoothing coefficients jc (output from c_dbsc1).

isw int Input Type of calculation.
 0 Smoothed value,)(vSF .

l The derivative of order l,)()(vSF l , with ml 1 .

-1 Integral value,
v

dxxSF
1

)(.

v double Input Point v at which the smoothing value etc are obtained.
i int Input The i-th element that satisfies 1]xt[ivxt[i] .

When
tnv then i = 2tn .

 Output The i-th element that satisfies 1]xt[ivxt[i] . See
Comments on use.

f double Output Smoothed value or derivative of order l or integral value, depending on
isw. See isw.

vw double

vw[m+1]

Work

Description of the C-SSL II Routines

236

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 xt[i] v < xt[i+1] is not satisfied. An i satisfying the relationship is searched for in

the function to continue the processing.
30000 One of the following has occurred:

 v < xt[0] or v > xt[nt-1]
 isw < -1 or isw > m

Bypassed.

3. Comments on use

Relationship with c_dbsc1
This function computes a smoothed value or derivative or integral value based on the B-spline smoothing function
determined by the c_dbsc1 function. Therefore, c_dbsc1 must be called to obtain the smoothing function (1) before
calling this function to compute the required data. Plus arguments m, xt, nt and c must be passed directly from
c_dbsc1.

i
Argument i should satisfy the condition 1]xt[ivxt[i] . If not, an i satisfying the condition is searched for to
continue the processing.

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by
one, i.e. C starts from 0 and the mathematics starts from 1.

4. Example program

This program evaluates the function 3)(xxf at 10 equally spaced points in the interval]1,0[. Then with a cubic B-
spline function obtained by a least squares fit, it then computes approximations to the function value as well as an integral
and several partial derivatives associated with a particular point.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3
#define NT 5

MAIN__()
{
 int ierr, icon;
 int i, n, m, nt, isw, ivw[N];
 double x[N], y[N], w[N], c[NT+M-1], xt[NT], r[N], vw[(NT+M)*(M+1)];
 double p, h, v, f, rnor;

 /* initialize data */
 n = N;
 m = M;
 nt = NT;
 isw = 0;
 p = 0;
 h = 1.0/n;
 for (i=0;i<n;i++) {
 w[i] = 10;
 x[i] = p;
 y[i] = pow(p,3);

 c_dbsf1

 237

 p = p + h;
 }
 p = 0;
 h = 1.0/nt;
 for (i=0;i<nt;i++) {
 xt[i] = p;
 p = p + h;
 }
 /* calculate B-spline smoothing coefficients */
 ierr = c_dbsc1(x, y, w, n, m, xt, nt, c, r, &rnor, vw, ivw, &icon);
 i = nt/2;
 v = xt[i] + (xt[i+1]-xt[i])/2;
 for (isw=-1;isw<=m;isw++) {
 /* calculate value at point */
 ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, vw, &icon);
 if (isw == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (isw == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
 }
 return(0);
}

5. Method

For further information consult the entry for BSF1 in the Fortran SSL II User's Guide

.

Description of the C-SSL II Routines

238

c_dbsfd1
B-spline two-dimensional smoothing.
ierr = c_dbsfd1(m, xt, nxt, yt, nyt, c, kc,

iswx, vx, &ix, iswy, vy, &iy, &f,

vw, &icon);

1. Function

Given observed values),(jiij yxff , observation errors
ji yxij at the points),(ji yx , xni ,...,2,1 ,

ynj ,...,2,1 , this routine obtains a smoothed value or a partial derivative at the point),(yx vvP , or a double

integral over the range],[11 yx vyvx , based on the bivariate m-th degree B-spline smoothing function,

(1), with knots
tn ,...,, 21 in the x-direction and knots

t
 ,...,, 21 in the y-direction, and

tnxv 1 ,

tyv 1 .

1

1

1

1
1,1,,)()(),(

t t

m

n

m
mm yNxNcyxS

. (1)

Before using this routine, the routine c_dbscd2 must be called to determine the knots i and j , and the smoothing
coefficients ,c . Here, 1m .

2. Arguments

The routine is called as follows:
ierr = c_dbsfd1(m, xt, nxt, yt, nyt, (double*)c, kc, iswx, vx, &ix, iswy, vy,

&iy, &f, vw, &icon);

where:
m int Input Degree m of the B-spline.
xt double xt[nxt] Input Knots i in the x-direction.
nxt int Input Number tn of knots in the x-direction.
yt double yt[nyt] Input Knots j in the y-direction.
nyt int Input Number t of knots in the y-direction.
c double

c[nxt+m-1][kc]

Input Smoothing coefficients ,c .

kc int Input C fixed dimension of array c (nyt + m – 1).
iswx int Input Type of calculation associated with x-direction, -1 iswx m. See

argument f.
vx double Input x-coordinate xv , of point),(yx vvP .
ix int Input Integer such that xt[ix] vx < xt[ix+1]. If

tnxv then ix =
2tn .

 Output Integer ix such that xt[ix] vx < xt[ix+1]. See Comments on
use.

iswy int Input Type of calculation associated with y-direction, -1 iswy m. See
argument f.

vy double Input y-coordinate yv , of point),(yx vvP .

 c_dbsfd1

 239

iy int Input Integer is such that yt[iy] vy < yt[iy+1]. If
tyv then iy

= 2t .
 Output Integer iy such that yt[iy] vy < yt[iy+1]. See Comments on

use.
f double Output Smoothed value, partial derivative, or double integral value. By setting

iswx = and iswy = µ, one of the following is returned depending
on the combination of and µ:

 when , µ 0

),(yx vvS
yx

f

 A smoothed value can be obtained by setting = µ = 0.
 when 1 , µ 0

xv
y dxvxS

y1

),(f

 when 0 , µ 1

yv
x dyyvS

x1

),(f

 when = µ = 1
 dydxyxS

y xv v

1 1

),(f

vw double vw[Vwlen] Work),max()1(5 ttnmVwlen .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 xt[ix] vx < xt[ix+1] or

yt[iy] vy < yt[iy+1] is not satisfied.
The ix or iy satisfying the relationship is sought
by the routine to continue the processing.

30000 One of the following has occurred:
 vx < xt[0] or vx > xt[nxt-1]
 vy < yt[0] or vy > yt[nyt-1]
 iswx < -1 or iswx > m
 iswy < -1 or iswy > m

Bypassed.

3. Comments on use

Relationship with c_dbscd2
This routine obtains the smoothed value, partial derivative, or double integral based upon the two-dimensional B-spline
smoothing function determined by the c_dbscd2 routine. Therefore, c_dbscd2 must be called to obtain the smoothing
function (1) before calling this routine to compute the required value. Also, the arguments m, xt, nxt, yt, nyt, c, and
kc must be passed directly from c_dbscd2.

ix and iy
Arguments ix and iy should satisfy the relationships xt[ix] vx < xt[ix+1] and yt[iy] vy < yt[iy+1].
If not, ix and iy satisfying the relationships are sought by the routine to continue the processing.

Description of the C-SSL II Routines

240

4. Example program

This program interpolates the function 33),(yxyxf at 100 points in the region]9.0,1.0[]9.0,1.0[with a spline. It
then computes approximations to the function value as well as an integral and several partial derivatives associated with a
particular point.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3
#define NTMAX 5
#define NT 3

MAIN__()
{
 int ierr, icon;
 int i, j, kf, kc, nx, ny, m, nxt, nyt, nxl, nyl, ivw[2*N+NTMAX*M];
 int iswx, iswy, ix, iy;
 double x[N], y[N], fxy[N][N], sx[N], sy[N], rnor[2*(NTMAX-NT)+1][3];
 double c[NTMAX+M-1][NTMAX+M-1], xt[NTMAX], yt[NTMAX];
 double vw[158];
 double p, h, vx, vy, f, fx, rnot;

 /* initialize data */
 nx = N;
 ny = N;
 m = M;
 nxt = NT;
 nyt = NT;
 nxl = NTMAX;
 nyl = NTMAX;
 rnot = nx*ny;
 kf = N;
 kc = NTMAX+M-1;
 p = 0.1;
 h = 0.8/(nx-1);
 for (i=0;i<nx;i++) {
 x[i] = p+i*h;
 y[i] = x[i];
 sx[i] = 1e-6; /* make up some error values */
 sy[i] = sx[i];
 }
 for (i=0;i<nx;i++) {
 fx = x[i]*x[i]*x[i];
 for (j=0;j<ny;j++) {
 fxy[i][j] = fx*y[j]*y[j]*y[j];
 }
 }
 p = 0;
 h = 1.0/(nxt-1);
 for (i=0;i<nxt;i++) {
 xt[i] = p+i*h;
 yt[i] = xt[i];
 }
 /* calculate B-spline smoothing coefficients */
 ierr = c_dbscd2(x, nx, y, ny, (double*)fxy, kf, sx, sy, m,
 xt, &nxt, yt, &nyt, nxl, nyl, rnot,
 (double*)c, kc, (double*)rnor, vw, ivw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbscd2 failed with icon = %d\n", icon);
 exit(1);
 }
 ix = 1;
 iy = ix;
 vx = 0.5;
 vy = vx;
 for (iswx=-1;iswx<=m;iswx++) {
 iswy = iswx;
 /* calculate value at point */
 ierr = c_dbsfd1(m, xt, nxt, yt, nyt, (double*)c, kc,
 iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbsfd1 failed with icon = %d\n", icon);
 exit(1);

 c_dbsfd1

 241

 }
 if (iswx == -1)
 printf("icon = %i integral = %12.6e\n", icon, f);
 else if (iswx == 0)
 printf("icon = %i value = %12.6e\n", icon, f);
 else
 printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
 }
 return(0);
}

5. Method

Consult the entry for BSFD1 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

242

c_dbsvec
Eigenvectors of a symmetric band matrix (inverse iteration method).
ierr = c_dbsvec(a, n, nh, nv, e, ev, k, vw,

&icon);

1. Function

This routine obtains the eigenvectors corresponding to vn given eigenvalues
vn ,...,, 21 of an nn symmetric

band matrix A with bandwidth h, using the inverse iteration method.

2. Arguments

The routine is called as follows:
ierr = c_dbsvec(a, n, nh, nv, e, (double *) ev, k, vw, &icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric band storage format. See Array storage

formats in the Introduction section for details.
2/)1()1(hhhnAlen .

n int Input Order n of matrix A.
nh int Input Bandwidth h of matrix A.
nv int Input Number of eigenvectors vn (0) to be obtained. If nv < 0, then |nv| is

used.
e double e[|nv|] Input Eigenvalues, with ev[i-1] = i , vni ,...,1 .
ev double

ev[|nv|][k]

Output Eigenvectors, stored by rows.

k int Input C fixed dimension of array ev (n).
vw double

vw[2n(h+1)]

Work

icon int Input Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 nh = 0 Completed.
15000 An eigenvector corresponding to a specified

eigenvalue could not be obtained.
The eigenvector is set to the zero vector.

20000 None of the eigenvectors could be obtained. All of the eigenvectors are set to the zero vector.
30000 One of the following has occured:

 nh < 0 or nh n
 k < n
 nv = 0 or |nv| > n

Bypassed.

 c_dbsvec

 243

3. Comments on use

If the eigenvalues are close to each other in a small range, the inverse iteration method used to obtain the corresponding
eigenvectors may not converge. If this happens icon is set to 15000 or 20000 and unobtained eigenvectors are set to the
zero vector.

This routine is for a real symmetric band matrix. To determine the eigenvalues and eigenvectors of a real symmetric
matrix, use routines c_dseig1 or c_dvseg2. For a real symmetric tridiagonal matrix use routines c_dteig1 or
c_dteig2.

4. Example program

This program finds the eigenvalues and eigenvectors of a symmetric band matrix and prints the results.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 15
#define NHMAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh, m, nv, i, j, k, ij;
 double e[NMAX], ev[NMAX][NMAX];
 double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2];
 double b[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2];
 double vw[2*NMAX*(NHMAX+1)], epst;

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 nh = NHMAX;
 a[0] = 10;
 a[1] = -3;
 a[2] = 10;
 ij = (nh+1)*nh/2;
 for (i=0;i<n-nh;i++) {
 a[ij] = -6;
 a[ij+1] = -3;
 a[ij+2] = 10;
 ij = ij+nh+1;
 }
 /* save copy of a */
 for (i=0;i<n*(nh+1)-nh*(nh+1)/2;i++) b[i] = a[i];
 /* find eigenvalues and eigenvectors */
 m = n;
 nv = 0;
 epst = -1;
 ierr = c_dbseg(b, n, nh, m, nv, epst, e, (double*)ev, k, vw, &icon);
 if (icon > 20000) {
 printf("ERROR: c_dbseg failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvectors using dbsvec */
 nv = m;
 ierr = c_dbsvec(a, n, nh, nv, e, (double*)ev, k, vw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dbsvec failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[i][j]);
 printf("\n");

Description of the C-SSL II Routines

244

 }
 return(0);
}

5. Method

Consult the entry for BSVEC in the Fortran SSL II User's Guide.

 c_dbtrid

 245

c_dbtrid
Reduction of a symmetric band matrix to a symmetric tridiagonal matrix
(Rutishauser-Schwarz method).
ierr = c_dbtrid(a, n, nh, d, sd, &icon);

1. Function

This routine reduces an nn symmetric band matrix A with bandwidth h, to a symmetric tridiagonal matrix T using the
Rutishauser-Schwarz orthogonal similarity transformation,

 ss AQQT T ,

where sQ is an orthogonal matrix. Here 0 h << n.

2. Arguments

The routine is called as follows:
ierr = c_dbtrid(a, n, nh, d, sd, &icon);

where:
a double

a[Alen]

Input Matrix A. Stored in symmetric band storage format. See Array storage
formats in the Introduction section for details.

2/)1()1(hhhnAlen .
 Output The contents of a are changed on output.
n int Input Order n of matrix A.
nh int Input Bandwidth h of matrix A.
d double d[n] Output Diagonal elements of tridiagonal matrix T.
sd double sd[n] Output Subdiagonal elements of tridiagonal matrix T, stored in sd[i-1],

i = 2,...,n, and sd[0] set to 0.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 nh = 0 or nh = 1 Reduction is not performed.
30000 nh < 0 or nh n Bypassed.

3. Comments on use

Compared with the Householder method which reduces a matrix to a symmetric tridiagonal matrix, the Rutishauser-
Schwarz method used in this routine is better both in terms of the amount of storage and the amount of computation, when
the ratio of the bandwidth to the order, nhr / , is small. If the ratio exceeds 1/6, the Householder method is better.

4. Example program

This program reduces the matrix to tridiagonal form, and calculates the eigenvalues using two different methods.

Description of the C-SSL II Routines

246

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 15
#define NHMAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh, m, i, k, ij;
 double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX];
 double sd[NMAX], d[NMAX], vw[NMAX+2*NMAX], epst;

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 nh = NHMAX;
 a[0] = 10;
 a[1] = -3;
 a[2] = 10;
 ij = (nh+1)*nh/2;
 for (i=0;i<n-nh;i++) {
 a[ij] = -6;
 a[ij+1] = -3;
 a[ij+2] = 10;
 ij = ij+nh+1;
 }
 /* reduce to tridiagonal form */
 ierr = c_dbtrid(a, n, nh, d, sd, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dbtrid failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues using c_dbsct1 */
 m = n;
 epst = 1e-6;
 ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dbsct1 failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf("eigenvalues:\n");
 for (i=0;i<m;i++) {
 printf("%7.4f ", e[i]);
 }
 printf("\n");
 /* find eigenvalues using c_dtrql */
 ierr = c_dtrql(d, sd, n, e, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbtrql failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf("eigenvalues:\n");
 for (i=0;i<m;i++) {
 printf("%7.4f ", e[i]);
 }
 printf("\n");
 return(0);
}

5. Method

Consult the entry for BTRID in the Fortran SSL II User's Guide.

 c_dby0

 247

c_dby0
Zero-order Bessel function of the second kind Y x0 () .
ierr = c_dby0(x, &by, &icon);

1. Function

This function computes the zero-order Bessel function of the second kind (1) by rational approximations and asymptotic
expansion.

 Y x J x x
x

k m

k k

k m

k

0 0

2

2
1 1

2
2

1 2 1
() () log

() ()
(!)

 (1)

In (1), J x0 () is the zero-order Bessel function of the first kind, is Euler’s constant and x 0 .

2. Arguments

The routine is called as follows:
ierr = c_dby0(x, &by, &icon);

where:
x double Input Independent variable x.
by double Output Function value Y x0 () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x tmax by is set to zero.
30000 x 0 by is set to zero.

3. Comments on use

x
The range of values of x is limited because both sin()x

4 and cos()x
4 lose accuracy when x becomes too large.

The limits are shown in the table of condition codes. For details on the constant, tmax , see the Machine constants section
of the Introduction.

4. Example program

This program evaluates a table of function values for x from 1 to 100 in increments of 1.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, by;
 int i;

Description of the C-SSL II Routines

248

 for (i=1;i<=100;i++) {
 x = (double)i;
 /* calculate Bessel function */
 ierr = c_dby0(x, &by, &icon);
 if (icon == 0)
 printf("x = %4.2f by = %f\n", x, by);
 else
 printf("ERROR: x = %4.2f by = %f icon = %i\n", x, by, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the zero-order Bessel function of the second kind, Y x0 () , is:

 Power series expansion using rational approximations when 0 8 x .
 Asymptotic expansion when x 8 .

For further information consult the entry for BY0 in the Fortran SSL II User's Guide and [48].

 c_dby1

 249

c_dby1
First-order Bessel function of the second kind Y x1 () .
ierr = c_dby1(x, &by, &icon);

1. Function

This function computes the first-order Bessel function of the second kind (1) by rational approximations and asymptotic
expansion.

 Y x J x x x
x

k k m m

k k

k m

k

m

k

1 1

2 1

1 1

1

1

2
2

1 1 1 2
1

1 1
() () log()

() ()
!()!

 (1)

In (1), J x1 () is the first-order Bessel function of the first kind, is Euler’s constant and x 0 .

2. Arguments

The routine is called as follows:
ierr = c_dby1(x, &by, &icon);

where:
x double Input Independent variable x.
by double Output Function value Y x1() .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x tmax by is set to zero.
30000 x 0 by is set to zero.

3. Comments on use

x
The range of values of x is limited here because both sin()x 3

4
 and cos()x 3

4
 lose accuracy when x becomes too

large. The limits are shown in the table of condition codes. For details on the constant, tmax , see the Machine constants
section of the Introduction.

4. Example program

This program evaluates a table of function values for x from 1 to 100 in increments of 1.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, by;
 int i;

Description of the C-SSL II Routines

250

 for (i=1;i<=100;i++) {
 x = (double)i;
 /* calculate Bessel function */
 ierr = c_dby1(x, &by, &icon);
 if (icon == 0)
 printf("x = %4.2f by = %f\n", x, by);
 else
 printf("ERROR: x = %4.2f by = %f icon = %i\n", x, by, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the first-order Bessel function of the second kind, Y x1 () , is:

 Power series expansion using rational approximations when 0 8 x .
 Asymptotic expansion when x 8 .

For further information consult the entry for BY1 in the Fortran SSL II User's Guide and [48].

 c_dbyn

 251

c_dbyn
nth-order Bessel function of the second kind)(xYn .
ierr = c_dbyn(x, n, &by, &icon);

1. Function

This function computes the nth-order Bessel function of the second kind (1) by recurrence formula for x 0 .

 nkk
nk

k

k

nk
n

k
nn

x
knk

x
k
knxxJxY

2

0

2
1

0

)2(
)!(!

)1(1

)2(
!

)!1(1)2log()(2)(

 (1)

In (1), J xn () is the nth-order Bessel function of the first kind, is Euler’s constant and is given as:

)1(1

0

1

0

L
m

L

m
L

2. Arguments

The routine is called as follows:
ierr = c_dbyn(x, n, &by, &icon);

where:
x double Input Independent variable x.
n int Input Order n of Y xn () .
by double Output Function value Y xn () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x tmax by is set to zero.
30000 x 0 by is set to zero.

3. Comments on use

x
The range of values of x is limited because both sin()x

4 and cos()x
4 lose accuracy when x becomes too large.

The limits are shown in the table of condition codes. For details on the constant, tmax , see the Machine constants section
of the Introduction.

Zero- and first-order Bessel function
When computing either Y x0 () or Y x1 () , use the function c_dby0 or c_dby1 respectively, as they are more efficient.

Description of the C-SSL II Routines

252

4. Example program

This program evaluates a table of function values for x from 1 to 10 in increments of 1 and n equal to 20 and 30.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, by;
 int i, n;

 for (n=20;n<=30;n=n+10)
 for (i=1;i<=10;i++) {
 x = (double)i;
 /* calculate Bessel function */
 ierr = c_dbyn(x, n, &by, &icon);
 if (icon == 0)
 printf("x = %4.2f n = %i by = %e\n", x, n, by);
 else
 printf("ERROR: x = %4.2f n = %i by = %e icon = %i\n",
 x, n, by, icon);
 }
 return(0);
}

5. Method

The recurrence formula is used to calculate the Bessel function Y xn () of order n. For orders of 0 and 1, the Fortran
routines DBY0 and DBY1 are used to compute Y x0 () and Y x1 () . For further information consult the entry for BYN in
the Fortran SSL II User's Guide.

 c_dbyr

 253

c_dbyr
Real-order Bessel function of the second kind Y xv () .
ierr = c_dbyr(x, v, &by, &icon);

1. Function

This function computes the real-order Bessel function of the second kind (1) by a modified series expansion and the -
method.

 Y x
J x v J x

vv
v v()

() cos() ()
sin()

 (1)

In (1), J xv () is the real-order Bessel function of the first kind, x 0 and v 0 .

2. Arguments

The routine is called as follows:
ierr = c_dbyr(x, v, &by, &icon);

where:
x double Input Independent variable x.
v double Input Order v of Y xv () .
by double Output Function value Y xv () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 One of the following has occurred:

 x 0 or by was large enough to overflow.

 x tmax

 by is returned with the negative infinite

floating point value.
 by is set to zero.

30000 x 0 or v 0 by is set to zero.

3. Comments on use

Zero- and first-order Bessel function
When calculating either Y x0 () or Y x1 () , use the function c_dby0 or c_dby1 respectively, as they are more efficient.

Evaluation sequence
When all the values of Y x Y x Y x Y xv v v v M(), (), (), , () 1 2 are required at the same time, it is more efficient to compute
them in the following way. First, compute the value of Y xv () and Y xv1 () with this function, then the others in the order
of Y x Y x Y xv v v M 2 3(), (), , () by the recurrence formula (see Method).

When the function is called repeatedly with the same value of v for large values of x, the common procedure is bypassed
to calculate the value of)(xYv effectively.

Description of the C-SSL II Routines

254

4. Example program

This program evaluates a table of function values for x from 1 to 10 in increments of 1 and v equal to 0.5 and 0.8.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double v, x, by;
 int nv, i;

 for (i=1;i<=10;i++) {
 x = (double)i;
 for (nv=50;nv<=80;nv=nv+30) {
 v = (double)nv/100;
 /* calculate Bessel function */
 ierr = c_dbyr(v, x, &by, &icon);
 if (icon == 0)
 printf("x = %5.2f v = %5.2f by = %e\n", x, v, by);
 else
 printf("ERROR: x = %5.2f v = %5.2f by = %e icon = %i\n",
 x, v, by, icon);
 }
 }
 return(0);
}

5. Method

A modified series expansion and the -method are used to compute the real-order Bessel function of the second kind,
Y xv () .

When 5.2v , the recurrence formula used for the computation is

Y x
x

Y x Y x

 1 1
2() () () .

For further information consult the entry for BYR in the Fortran SSL II User's Guide.

 c_dcbin

 255

c_dcbin
Modified nth-order Bessel function of the first kind with complex
variable I zn () .
ierr = c_dcbin(z, n, &zbi, &icon);

1. Function

This function computes the modified nth-order Bessel function of the first kind with complex variable (1) by power series
expansion and recurrence formula.

0

2

)!(!
4

2
)(

k

kn

n knk
zzzI (1)

2. Arguments

The routine is called as follows:
ierr = c_dcbin(z, n, &zbi, &icon);

where:
z dcomplex Input Independent variable z.
n int Input Order n of I zn () .
zbi dcomplex Output Function value I zn () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Re() log()maxz fl or Im() log()maxz fl zbi is set to zero.

3. Comments on use

z
The range of values of z is limited to avoid numerical underflow in the computations. The limits are shown in the table of
condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction.

Evaluation sequence
When all the values of I z I z I z I zn n n n M(), (), (), , () 1 2 are required at the same time, it is more efficient to compute
them in the following way. First, compute the value of I zn M () and I zn M 1 () with this function, then the others in
the order I z I z I zn M n M n 2 3(), (), , () by repeating the recurrence formula (see Method). Conversely, computing
these values in reverse order, i.e. I z I z I zn n n M 2 3(), (), , () by recurrence formula after I zn () and I zn1 () , should
be avoided because of instability.

4. Example program

This program evaluates the function for n=1 and 2 and z = 10+5i.

Description of the C-SSL II Routines

256

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 dcomplex z, zbi;
 int n;

 z.re = 10;
 z.im = 5;
 for (n=1;n<=2;n++) {
 /* calculate Bessel function */
 ierr = c_dcbin(z, n, &zbi, &icon);
 if (icon == 0)
 printf("z = {%4.2f, %4.2f} n = %i zbi = {%4.2f, %4.2f}\n",
 z, n, zbi);
 else
 printf("ERROR: z = {%4.2f, %4.2f} n = %i"
 "zbi = {%4.2f, %4.2f} icon = %i\n",
 z, n, zbi, icon);
 }
 return(0);
}

5. Method

Depending on the values of z, the method used to compute the modified nth-order Bessel function of the first kind with
complex variable, I zn () , is:

 Power series expansion, equation (1), when Re() Im()z z 1.
 Recurrence formula when Re() Im()z z 1.

Suppose m is an appropriately large integer (depends upon the required precision of z and n) and an
appropriately small constant (10 38). With the initial values,

G z G zm m 1 0() , ()

and repeating the recurrence equation,

G z k
z

G z G zk k k 1 1
2() () ()

for k m m , , ,1 1 . Then the value of I zn () is obtained from

I z
e G z

G z
n

z
n

k k
k

m()
()

()

0

 where, k
k
k

1 0
2 1

()
()

For further information consult the entry for CBIN in the Fortran SSL II User's Guide.

 c_dcbjn

 257

c_dcbjn
nth-order Bessel function of the first kind with complex variable J zn () .
ierr = c_dcbjn(z, n, &zbj, &icon);

1. Function

This function computes the nth-order Bessel function of the first kind with complex variable (1) by power series
expansion and recurrence formula.

0

2

)!(!
4

2
)(

k

kn

n knk
zzzJ (1)

2. Arguments

The routine is called as follows:
ierr = c_dcbjn(z, n, &zbj, &icon);

where:
z dcomplex Input Independent variable z.
n int Input Order n of J zn () .
zbj dcomplex Output Function value J zn () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Re() log()maxz fl or Im() log()maxz fl zbj is set to zero.

3. Comments on use

z
The range of values of z is limited to avoid numerical underflow in the computations. The limits are shown in the table of
condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction.

Evaluation sequence
When all the values of J z J z J z J zn n n n M(), (), (), , () 1 2 are required at the same time, it is more efficient to
compute them in the following way. First, compute the value of J zn M () and J zn M 1 () with this function, then the
others in the order J z J z J zn M n M n 2 3(), (), , () by repeating the recurrence formula (see Method). Conversely,
computing these values in the reverse order, i.e. J z J z J zn n n M 2 3(), (), , () by recurrence formula after J zn () and
J zn1 () , should be avoided because of instability.

4. Example program

This program evaluates the function for n=1 and 2 and z = 10+5i.

#include <stdio.h>

Description of the C-SSL II Routines

258

#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 dcomplex z, zbj;
 int n;

 z.re = 10;
 z.im = 5;
 for (n=1;n<=2;n++) {
 /* calculate Bessel function */
 ierr = c_dcbjn(z, n, &zbj, &icon);
 if (icon == 0)
 printf("z = {%4.2f, %4.2f} n = %i zbj = {%4.2f, %4.2f}\n",
 z, n, zbj);
 else
 printf("ERROR: z = {%4.2f, %4.2f} n = %i"
 "zbj = {%4.2f, %4.2f} icon = %i\n",
 z, n, zbj, icon);
 }
 return(0);
}

5. Method

Depending on the values of z, the method used to compute the nth-order Bessel function of the first kind with complex
variable, J zn () , is:

 Power series expansion, equation (1), when Re() Im()z z 1.
 Recurrence formula when Re() Im()z z 1.

Suppose m is an appropriately large integer (depends upon the required precision of z and n) and an
appropriately small constant (here 10 38). With the initial values,

F z F zm m 1 0() , ()

and repeating the recurrence equation,

F z k
z

F z F zk k k 1 1
2() () ()

for k m m , , ,1 1 . Then the value of J zn () is obtained from

J z
e F z

i F z
n

iz
n

k
k

k
k

m()
()

()

0

 where, k
k
k

1 0
2 1

()
()

For further information consult the entry for CBJN in the Fortran SSL II User's Guide.

 c_dcbjr

 259

c_dcbjr
Real-order Bessel function of the first kind with complex variable
J zv () .
ierr = c_dcbjr(z, v, &zbj, &icon);

1. Function

This function computes the real-order Bessel function of the first kind with complex variable (1) using power series
expansion and recurrence formula.

0

2

)1(!
4

2
)(

k

kv

v kvk
zzzJ (1)

2. Arguments

The routine is called as follows:
ierr = c_dcbjr(z, v, &zbj, &icon);

where:
z dcomplex Input Independent variable z.
v double Input Order v of J zv () .
zbj dcomplex Output Function value J zv () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Re() log()maxz fl or Im() log()maxz fl zbj is set to zero.
30000 v 0 zbj is set to zero.

3. Comments on use

z
The range of values of z and v are limited to avoid numerical underflow in the computations. The limits are shown in the
table of condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction.

Evaluation sequence
When all the values of J z J z J z J zv v v v M(), (), (), , () 1 2 are required at the same time, it is more efficient to
compute them in the following way. First, compute the value of J zv M () and J zv M 1 () with this function, then the
others in the order J z J z J zv M v M v 2 3(), (), , () by repeating the recurrence formula (see Method). Conversely,
computing these values in the reverse order, i.e. J z J z J zv v v M 2 3(), (), , () by recurrence formula after J zv () and
J zv1 () , should be avoided because of instability.

Description of the C-SSL II Routines

260

4. Example program

This program evaluates the function at z = 10+5i with v from 0.1 to 10 in increments of 0.1.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 dcomplex z, zbj;
 int n;
 double v;

 z.re = 10;
 z.im = 5;
 for (n=1;n<=100;n++) {
 v = (double)n/10;
 /* calculate Bessel function */
 ierr = c_dcbjr(z, v, &zbj, &icon);
 if (icon == 0)
 printf("z = {%4.2f, %4.2f} v = %5.2f zbj = {%4.2f, %4.2f}\n",
 z, v, zbj);
 else
 printf("ERROR: z = {%4.2f, %4.2f} v = %5.2f"
 "zbj = {%4.2f, %4.2f} icon = %i\n",
 z, v, zbj, icon);
 }
 return(0);
}

5. Method

Depending on the values of z, the method used to compute the real-order Bessel function of the first kind with complex
variable, J zv () , is:

 Power series expansion, equation (1), when Re() Im()z z 1.
 Recurrence formula when Re() Im()z z 1.

Suppose m is an appropriately large integer (depends upon the required precision of z and v) and an
appropriately small constant (10 38), and moreover that n and are determined by

v n

where, n is an integer and 0 1 . With the initial values,

F z F zm m 1 0() , ()

and repeating the recurrence equation,

F z
k

z F z F zk k k

1 1
2

()
()

() ()

for k m m , , ,1 1 . Then the value of J zv () is obtained from

 m

k
k

k

n
iz

v

zF
k

ikk

zFez

zJ

0

)(
!

)2()(

)(
)1(
)12(

22
1

)(

.

For further information consult the entry for CBJR in the Fortran SSL II User's Guide.

 c_dcbkn

 261

c_dcbkn
Modified nth-order Bessel function of the second kind with complex
variable K zn () .
ierr = c_dcbkn(z, n, &zbk, &icon);

1. Function

This function computes the modified nth-order Bessel function of the second kind with complex variable (1) by
recurrence formula and -method.

kn

k

n

nkk
k

knn

n
n

nn

z
k
knz

knk
zzzIz

zKzK

4!
)!1(

22
1

)(
)!(!

4
22

)1(
)()2log()1(

)()(

21

0

0

2
1 (1)

In (1), I zn () is the modified nth-order Bessel function of the first kind, is Euler’s constant, the last term is zero when
n 0 and is:

)1(1

0

1

0

L
m

L

m
L

2. Arguments

The routine is called as follows:
ierr = c_dcbkn(z, n, &zbk, &icon);

where:
z dcomplex Input Independent variable z.
n int Input Order n of K zn () .
zbk dcomplex Output Function value K zn () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 One of the following has occurred:

 Re() log()maxz fl
 Re()z 0 and Im() log()maxz fl
 Re()z 0 and Im() maxz t

zbk is set to zero.

30000 z 0 zbk is set to zero.

Description of the C-SSL II Routines

262

3. Comments on use

z
The range of values of z are limited to avoid numerical overflow and underflow in the computations. The limits are
shown in the table of condition codes.

Evaluation sequence
When Re()z 0 and all the values of K z K z K z K zn n n n M(), (), (), , () 1 2 are required at the same time, first
compute the value of K zn () and K zn1 () with this function, then the others in the order
K z K z K zn n n M 2 3(), (), , () by repeating the recurrence formula (see Method). When Re()z 0 , since this is
unstable, this function must be called for each required order.

4. Example program

This program evaluates the function for n=1 and 2,and z = 1+2i.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 dcomplex z, zbk;
 int n;

 z.re = 1;
 z.im = 2;
 for (n=1;n<=2;n++) {
 /* calculate Bessel function */
 ierr = c_dcbkn(z, n, &zbk, &icon);
 if (icon == 0)
 printf("z = {%4.2f, %4.2f} n = %i zbk = {%4.2f, %4.2f}\n",
 z, n, zbk);
 else
 printf("ERROR: z = {%4.2f, %4.2f} n = %i"
 "zbk = {%4.2f, %4.2f} icon = %i\n",
 z, n, zbk, icon);
 }
 return(0);
}

5. Method

The methods used to compute the modified nth-order Bessel function of the second kind with complex variable, K zn () ,
vary depending on the values of z.

When 0)Re(z , K zn () is computed by the recurrence formula,

K z k
z

K z K zk k k 1 1
2() () ()

for k n 1 2 1, , , with starting value of K z0 () and K z1 () computed depending on the value of)Im(z .

For details of the other methods used, and further information consult the entry for CBKN in the Fortran SSL II User's
Guide.

 c_dcblnc

 263

c_dcblnc
Balancing of a complex matrix.
ierr = c_dcblnc(za, k, n, dv, &icon);

1. Function

This routine applies the diagonal similarity transformation shown in (1) to an nn complex matrix A,

 ADDA 1
~ , (1)

where D is a real diagonal matrix. By this transformation, the sum of the norm of the elements in the i-th row and
that of the i-th column (i = 1,2,...,n) are almost equalized for the transformed complex matrix A~ . The norm of an
element is ||||1 yxz for the complex number iyxz . Here, n 1.

2. Arguments

The routine is called as follows:
ierr = c_dcblnc((dcomplex *) za, k, n, dv, &icon);

where:
za dcomplex Input Complex matrix A.
 za[n][k] Output Balanced complex matrix A~ .

k int Input C fixed dimension of array za (n).
n int Input Order n of matrices A and A~ .

dv double dv[n] Output Scaling factors (diagonal elements of D).
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 Balancing was not performed.
30000 One of the following has occurred:

 n < 1
 k < n

Bypassed.

3. Comments on use

If there are large differences in magnitude of the elements of a matrix, the precision of computed eigenvalues and
eigenvectors of that matrix can be adversely affected. This routine can be used before computing the eigenvalues and
eigenvectors to avoid loss of precision.

If each element of a matrix is nearly the same in magnitude, this routine performs no balancing and should not be used.

If all elements except the diagonal element of a row (or column) are zero, balancing of the row (or column) and
corresponding column (or row) is bypassed.

Description of the C-SSL II Routines

264

In order to obtain the eigenvectors x of a complex matrix A which has been balanced by this routine, back transformation
(2) must be applied to the eigenvectors x~ of A~ ,

 xDx ~ . (2)

The back transformation (2) can be performed using routine c_dchbk2.

4. Example program

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then
performs a back transformation and a normalisation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, m, mode, ip[NMAX], ind[NMAX];
 dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX], zaw[NMAX+1][NMAX];
 double dv[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 za[i][i].re = n-i;
 za[i][i].im = 0;
 for (j=0;j<i;j++) {
 za[i][j].re = n-i;
 za[j][i].re = n-i;
 za[i][j].im = 0;
 za[j][i].im = 0;
 }
 }
 /* balance matrix A */
 ierr = c_dcblnc((dcomplex*)za, k, n, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dcblnc failed with icon = %i\n", icon);
 exit (1);
 }
 /* reduce matrix to Hessenberg form */
 ierr = c_dches2((dcomplex*)za, k, n, ip, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dches2 failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<n;i++)
 for (j=0;j<n;j++) {
 zaw[i][j].re = za[i][j].re;
 zaw[i][j].im = za[i][j].im;
 }
 /* find eigenvalues */
 ierr = c_dchsqr((dcomplex*)zaw, k, n, ze, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dchsqr failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<m;i++) ind[i] = 1;
 /* find eigenvectors for given eigenvalues */
 ierr = c_dchvec((dcomplex*)za, k, n, ze,
 ind, m, (dcomplex*)zev, (dcomplex*)zaw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dchvec failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation to find e-vectors of A */
 ierr = c_dchbk2((dcomplex*)zev, k, n, ind, m,
 (dcomplex*)za, ip, dv, &icon);
 if (icon > 10000) {

 c_dcblnc

 265

 printf("ERROR: c_dchbk2 failed with icon = %i\n", icon);
 exit (1);
 }
 /* normalize e-vectors */
 mode = 2;
 ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dcnrml failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 if (ind[i] != 0) {
 printf("eigenvalue: %7.4f+i*%7.4f\n", ze[i].re, ze[i].im);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", zev[i][j].re, zev[i][j].im);
 printf("\n");
 }
 }
 return(0);
}

5. Method

Consult the entry for CBLNC in the Fortran SSL II User's Guide and reference [119].

Description of the C-SSL II Routines

266

c_dcbyn
nth-order Bessel function of the second kind with complex variable
Y zn () .
ierr = c_dcbyn(z, n, &zby, &icon);

1. Function

This function computes the nth-order Bessel function of the second kind with complex variable (1) by recurrence formula
and -method.

kn

k

n

nkk

k

k

n

n

n
n

n

z
k
knz

knk
zzzJz

zYzY

4!
)!1(

2
1

)(
)!(!

4
2

1)(
2

log2

)()1()(

21

0

0

2

 (1)

In (1), J zn () is the nth-order Bessel function of the second kind, is Euler’s constant, the last term is zero when n 0
and is:

)1(1

0

1

0

L
m

L

m
L

2. Arguments

The routine is called as follows:
ierr = c_dcbyn(z, n, &zby, &icon);

where:
z dcomplex Input Independent variable z.
n int Input Order n of Y zn () .
zby dcomplex Output Function value Y zn () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Re() log()maxz fl or Im() log()maxz fl zby is set to zero.
30000 z 0 zby is set to zero.

3. Comments on use

z
The range of values of z are limited to avoid numerical underflow in the computations. The limits are shown in the table
of condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction.

 c_dcbyn

 267

Evaluation sequence
When all the values of Y z Y z Y z Y zn n n n M(), (), (), , () 1 2 are required at the same time, the procedure provided in the
Method section is recommended.

4. Example program

This program evaluates the function for n=1 and 2 and z = 1+2i.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 dcomplex z, zby;
 int n;

 z.re = 1;
 z.im = 2;
 for (n=1;n<=2;n++) {
 /* calculate Bessel function */
 ierr = c_dcbyn(z, n, &zby, &icon);
 if (icon == 0)
 printf("z = {%4.2f, %4.2f} n = %i zby = {%4.2f, %4.2f}\n",
 z, n, zby);
 else
 printf("ERROR: z = {%4.2f, %4.2f} n = %i"
 "zby = {%4.2f, %4.2f} icon = %i\n",
 z, n, zby, icon);
 }
 return(0);
}

5. Method

The nth-order Bessel function of the second kind with complex variable, Y zn () , is computed using equation (2).

)()1(2)()(1 izKiizIizY n
nn

n
n

n

 (2)

In (2), the value of I izn () is computed by the Fortran SSL II routine DCBIN (c_dcbin) using the recurrence formula,
and similarly, K izn () is computed by DCBKN (c_dcbkn) using the recurrence formula and -method.

When all the values of Y z Y z Y z Y zn n n n M(), (), (), , () 1 2 are required at the same time, it is efficient to compute them
in the following way. First, compute the value of I izn M () and I izn M 1 () using function c_dcbin, then the
others I iz I iz I izn M n M n 2 3(), (), , () by repeating the recurrence formula, in the order listed. Similarly,
K izn () and K izn 1 () are first computed using the function c_dcbkn and then
K iz K iz K izn n n M 2 3(), (), , () by recurrence formula. And with equation (2), Y zn () is computed.

For further information consult the entry for CBYN in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

268

c_dceig2
Eigenvalues and corresponding eigenvectors of a complex matrix (QR
method).
ierr = c_dceig2(za, k, n, mode, ze, zev, vw,

ivw, &icon);

1. Function

All eigenvalues and corresponding eigenvectors for an order n complex matrix A are determined 1n . The eigenvalues
are normalised such that 12 x .

2. Arguments

The routine is called as follows:
ierr = c_dceig2((dcomplex *)za, k, n, mode, ze, (dcomplex *)zev, vw, ivw,

&icon);

where:
za dcomplex

za[n][k]

Input Matrix A.
Output The contents are altered on output.

k int Input C fixed dimension of matrix A (nk).
n int Input Order n of matrix A.
mode int Input mode = 1 specifies no balancing. 1mode specifies that balancing is

included. See Comments on use.
ze dcomplex

ze[n]

Output The eigenvalues of A.

zev dcomplex

zev[n][k]

Output Eigenvectors. They are stored in the rows of zev which correspond to
their eigenvalues.

vw double vw[n] Work
ivw int ivw[n] Work
icon int Output Condition codes. See below.
The complete list of condition codes is.

Code Meaning Processing
0 No error. Completed.
10000 1n ze[0] = za[0][0]

zev[0][0].re = 1

zev[0][0].im = 0

20000 Eigenvalues and eigenvectors could not be
calculated, as the matrix A could not be reduced
to a triangular form.

Discontinued

30000 One of the following has occurred:
 1n
 nk

Bypassed.

 c_dceig2

 269

3. Comments on use

Balancing and mode
If the elements of matrix A vary greatly in magnitude, a solution of greater precision can be obtained using
balancing, i.e. setting 1mode . If the magnitudes of the elements are similar, the balancing has little or no effect and
should be skipped using 1mode .

4. Example program

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 complex matrix.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, mode, ivw[NMAX];
 dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX];
 double vw[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 za[i][j].re = n-i;
 za[j][i].re = n-i;
 za[i][j].im = 0;
 za[j][i].im = 0;
 }
 mode = 0;
 /* find eigenvalues and eigenvectors */
 ierr = c_dceig2((dcomplex*)za, k, n, mode,
 ze, (dcomplex*)zev, vw, ivw, &icon);
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<n;i++) {
 printf("eigenvalue: {%7.4f, %7.4f}\n", ze[i].re, ze[i].im);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("{%7.4f, %7.4f} ", zev[i][j].re, zev[i][j].im);
 printf("\n");
 }
 return(0);
}

5. Method

For further information consult the entry for CEIG2 in the Fortran SSL II User's Guide, and also [118] and [119].

Description of the C-SSL II Routines

270

c_dceli1
Complete elliptic integral of the first kind K x()
ierr = c_dceli1(x, &celi, &icon);

1. Function

This function computes the complete elliptic integral of the first kind

K x
d

x
()

sin

1 20

2

using an approximation formula for 10 x .

2. Arguments

The routine is called as follows:
ierr = c_dceli1(x, &celi, &icon);

where:
x double Input Independent variable x.
celi double Output Function value K x() .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 0x
 1x

celi is set to zero.

3. Example program

This program evaluates a table of function values for x from 0.00 to 0.99 in increments of 0.01.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, celi;
 int i;

 for (i=0;i<100;i++) {
 x = (double)i/100;
 /* calculate complete elliptic integral */
 ierr = c_dceli1(x, &celi, &icon);
 if (icon == 0)
 printf("x = %4.2f celi = %f\n", x, celi);
 else
 printf("ERROR: x = %4.2f celi = %f icon = %i\n", x, celi, icon);
 }
 return(0);
}

 c_dceli1

 271

4. Method

For further information consult the entry for CELI1 in the Fortran SSL II User's Guide and [48].

Description of the C-SSL II Routines

272

c_dceli2
Complete elliptic integral of the second kind E x() .
ierr = c_dceli2(x, &celi, &icon);

1. Function

This function computes the complete elliptic integral of the second kind

dxxE
2

0

2sin1)(

using an approximation formula for 10 x .

2. Arguments

The routine is called as follows:
ierr = c_dceli2(x, &celi, &icon);

where:
x double Input Independent variable x.
celi double Output Function value E x() .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 x < 0
 x > 1

celi is set to zero.

3. Example program

This program evaluates a table of function values for x from 0.00 to 0.99 in increments of 0.01.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, celi;
 int i;

 for (i=0;i<100;i++) {
 x = (double)i/100;
 /* calculate complete elliptic integral */
 ierr = c_dceli2(x, &celi, &icon);
 if (icon == 0)
 printf("x = %4.2f celi = %f\n", x, celi);
 else
 printf("ERROR: x = %4.2f celi = %f icon = %i\n", x, celi, icon);
 }
 return(0);
}

 c_dceli2

 273

4. Method

For further information consult the entry for CELI2 in the Fortran SSL II User's Guide and [48].

Description of the C-SSL II Routines

274

c_dcfri
Cosine Fresnel integral)(xC .
ierr = c_dcfri(x, &cf, &icon);

1. Function

This routine computes the Cosine Fresnel integral

xx
dttdt

t
txC

2

0

2

0 2
cos)cos(

2
1)(,

where 0x , by series and asymptotic expansions.

2. Arguments

The routine is called as follows:
ierr = c_dcfri(x, &cf, &icon);

where:
x double Input Independent variable x. See Comments on use for range of x.
cf double Output Cosine Fresnel integral)(xC .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 x maxt cf is set to 0.5.
30000 x < 0 cf is set to 0.

3. Comments on use

Range of x
The valid range of argument x is 0 x < maxt .This is because accuracy is lost if x is outside this range. For details on

maxt see the Machine constants section of the Introduction.

4. Example program

This program generates a range of function values for 101 points in the the interval [0,100].

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, cf;
 int i;

 for (i=0;i<=100;i++) {
 x = i;

 c_dcfri

 275

 /* calculate Cosine Fresnel integral */
 ierr = c_dcfri(x, &cf, &icon);
 if (icon == 0)
 printf("x = %5.2f cf = %f\n", x, cf);
 else
 printf("ERROR: x = %5.2f cf = %f icon = %i\n", x, cf, icon);
 }
 return(0);
}

5. Method

Consult the entry for CFRI in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

276

c_dcgsbm
Storage format conversion of matrices (standard format to symmetric
band format).
ierr = c_dcgsbm(ag, k, n, asb, nh, &icon);

1. Function

This routine converts an nn symmetric band matrix with bandwidth h from standard 2-D array format to symmetric
band format (n>h 0).

2. Arguments

The routine is called as follows:
ierr = c_dcgsbm((double*)ag, k, n, asb, nh, &icon);

where:
ag double

ag[n][k]

Input Symmetric band matrix A stored in the standard storage format.

k int Input C fixed dimension of array ag (n).
n int Input The order n of matrix A.
asb double

asb[Asblen]
Output Symmetric band matrix A stored in symmetric band storage format. See

Array storage formats in the Introduction section for details.
.2/)1()1(hhhnAsblen

nh int Input The bandwidth h of matrix A.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 nh < 0
 n nh
 k < n

Bypassed.

3. Comments on use

The symmetric band matrix in the standard format
Only the elements of the diagonal and upper band portion need be assigned to array ag. The routine copies the upper
band portion to the lower band portion.

Saving on storage space
If there is no need to keep the contents of array ag, then saving on storage space is possible by specifying the same array
for argument asb. WARNING – make sure the array size is consistent with both arguments otherwise unpredictable
results can occur.

 c_dcgsbm

 277

4. Example program

This program converts a matrix from standard to symmetric band format and prints the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))
#define max(a,b) ((a) > (b) ? (a) : (b))

#define NMAX 5
#define NHMAX 2

/* print symmetric band matrix */
void prtsymbandmat(double a[], int n, int nh)
{
 int ij, i, j, jmin;
 printf("symmetric band matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh, 0);
 for (j=jmin;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
 int i, j;
 printf("general matrix format\n");
 for (i=0;i<n;i++) {
 for (j=0;j<m;j++)
 printf("%7.2f ",a[i*k+j]);
 printf("\n");
 }
}

MAIN__()
{
 int ierr, icon;
 int n, nh, i, j, k, jmax;
 double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], ag[NMAX][NMAX];

 /* zero matrix */
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<n;j++)
 ag[i][j] = 0;
 /* initialize symmetric band matrix
 in upper half of general matrix storage format */
 nh = NHMAX;
 for (i=0;i<n;i++) {
 jmax = min(i+nh, n-1);
 for (j=i;j<=jmax;j++)
 ag[i][j] = j-i+1;
 }
 k = NMAX;
 /* convert to symmetric band matrix storage format */
 ierr = c_dcgsbm((double*)ag, k, n, asb, nh, &icon);
 if (icon != 0) {
 printf("ERROR: c_dcgsbm failed with icon = %d\n", icon);
 exit(1);
 }
 /* print matrices */
 printf("ag: \n");
 prtgenmat((double*)ag, k, n, n);
 printf("asb: \n");
 prtsymbandmat(asb, n, nh);
 return(0);
}

Description of the C-SSL II Routines

278

5. Method

Consult the entry for CGSBM in Fortran SSL II User's Guide.

 c_dcgsm

 279

c_dcgsm
Storage format conversion of matrices (real standard format to
symmetric format).
ierr = c_dcgsm(ag, k, n, as, &icon);

1. Function

This function converts an n n real symmetric matrix from standard 2-D array format to the original symmetric storage
format (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dcgsm((double*)ag, k, n, as, &icon);

where:
ag double

ag[n][k]

Input Symmetric matrix A stored in the standard format.

k int Input C fixed dimension of array ag (n).
n int Input Order n of matrix A.
as double

as[Aslen]
Output Symmetric matrix A stored in the symmetric format. Aslen=n(n+1)/2.

See the Array storage formats section in the Introduction.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n < 1
 k < n

Bypassed.

3. Comments on use

The symmetric matrix in the standard format
Only the elements of the diagonal and upper triangular portions need be assigned to array ag. The function copies the
upper triangular portion to the lower one.

Saving on storage space
If there is no need to keep the contents of array ag, then saving on storage space is possible by specifying the same array
for both arguments. WARNING – make sure the array size is compliant for both arguments otherwise unpredictable
results can occur.

4. Example program

This example program converts a matrix from real standard format to symmetric format, and prints out both matrices.

Description of the C-SSL II Routines

280

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 5

/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
 int ij, i, j;
 printf("symmetric matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 for (j=0;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
 int i, j;
 printf("general matrix format\n");
 for (i=0;i<n;i++) {
 for (j=0;j<m;j++)
 printf("%7.2f ",a[i*k+j]);
 printf("\n");
 }
}

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij, k;
 double as[NMAX*(NMAX+1)/2], ag[NMAX][NMAX];

 /* initialize general matrix storage format */
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=i;j<n;j++) {
 ag[i][j] = n-i;
 }
 k = NMAX;
 /* convert to symmetric matrix storage format */
 ierr = c_dcgsm((double*)ag, k, n, as, &icon);
 if (icon != 0) {
 printf("ERROR: c_dcgsm failed with icon = %d\n", icon);
 exit(1);
 }
 /* print matrices */
 printf("ag: \n");
 prtgenmat((double*)ag, k, n, n);
 printf("as: \n");
 prtsymmat(as, n);
 return(0);
}

5. Method

The conversion process from standard format to symmetric format consists of two stages:

 With the diagonal as the axis of symmetry, the elements of the upper triangular portion are copied to the lower
triangular part, such that ag[i][j]=ag[j][i]. Here, i < j.

 The diagonal and lower triangular elements ag[i-1][j-1] are transferred to the i*(i-1)/2+j-1 position in
array as. Here, i j. Transfer begins with the first column of ag and continues column-by-column. The
correspondence between location is shown below, where NT=n(n+1)/2.

 c_dcgsm

 281

Elements in
standard format

Elements of
matrix

Elements in
symmetric format

ag[0][0]

ag[0][1]

ag[1][1]

:

ag[i-1][j-1]

:

ag[n-2][n-1]

ag[n-1][n-1]

a11

a21
a22

:

aji
:

ann-1
ann

as[0]

as[1]

as[2]

:

as[i*(i-1)/2+j-1]

:

as[NT-2]

as[NT-1]
For further information consult the entry for CGSM in the Fortran SSL II User’s Guide.

Description of the C-SSL II Routines

282

c_dchbk2
Back transformation of the eigenvectors of a complex Hessenberg matrix
to the eigenvectors of a complex matrix.
ierr = c_dchbk2(zev, k, n, ind, m, zp, ip, dv,

&icon);

1. Function

This routine performs back transformation on m eigenvectors of an nn complex Hessenberg matrix H to obtain the
eigenvectors of a complex matrix A. H is assumed to be obtained from A using the stabilized elementary similarity
transformation method. No eigenvectors of the complex matrix A are normalized. Here 1 m n.

2. Arguments

The routine is called as follows:
ierr = c_dchbk2((dcomplex *) zev, k, n, ind, m, (dcomplex *) zp, ip, dv,

&icon);

where:
zev dcomplex Input The m eigenvectors of the Hessenberg matrix H.
 zev[m][k] Output The lm eigenvectors of complex matrix A, where lm indicates the

number of elements of ind whose value is 1.
k int Input C fixed dimension of array zev and zp (n).
n int Input Order n of matrices A and H.
ind int ind[m] Input Indicates which eigenvectors are to be back transformed:

ind[j-1] = 0 if the eigenvector corresponding to the j-th eigenvalue is
 not to be back transformed.
ind[j-1] = 1 if the eigenvector corrsponding to the j-th eigenvalue is
 to be back transformed.

m int Input Number m of eigenvectors of the complex matrix A.
zp dcomplex

zp[n][k]

Input Transformation matrix from the reduction of complex matrix A to
complex Hessenberg matrix H. See Comments on use.

ip int ip[n] Input Transformation information from the reduction of complex matrix A to
complex Hessenberg matrix H. See Comments on use.

dv double dv[n] Input Scaling factors used for balancing the matrix A. If matrix A was not
balanced, set dv[0] = 0.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 zev[0][0] = (1,0).
30000 One of the following has occurred:

 m < 1 or m > n
 k < n

Bypassed.

 c_dchbk2

 283

3. Comments on use

zev, ind and m
The routine c_dchvec can be used to obtain the eigenvectors of a complex Hessenberg matrix. Input argument m and
output arguments zev and ind of c_dchvec are the same as input arguments zev, ind, and m for this routine.

zp and ip
The routine c_dches2 can be used to reduce a complex matrix to a complex Hessenberg matrix. Output arguments za
and ip of c_dches2 are the same as input arguments zp and ip of this routine.

dv
The output argument dv of c_dcblnc contains the scaling factors used for balancing the matrix A, and is the input
argument dv of this routine.

4. Example program

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then
performs a back transformation and a normalisation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, m, mode, ip[NMAX], ind[NMAX];
 dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX], zaw[NMAX+1][NMAX];
 double dv[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 za[i][i].re = n-i;
 za[i][i].im = 0;
 for (j=0;j<i;j++) {
 za[i][j].re = n-i;
 za[j][i].re = n-i;
 za[i][j].im = 0;
 za[j][i].im = 0;
 }
 }
 /* balance matrix A */
 ierr = c_dcblnc((dcomplex*)za, k, n, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dcblnc failed with icon = %i\n", icon);
 exit (1);
 }
 /* reduce matrix to Hessenberg form */
 ierr = c_dches2((dcomplex*)za, k, n, ip, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dches2 failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<n;i++)
 for (j=0;j<n;j++) {
 zaw[i][j].re = za[i][j].re;
 zaw[i][j].im = za[i][j].im;
 }
 /* find eigenvalues */
 ierr = c_dchsqr((dcomplex*)zaw, k, n, ze, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dchsqr failed with icon = %i\n", icon);
 exit (1);

Description of the C-SSL II Routines

284

 }
 for (i=0;i<m;i++) ind[i] = 1;
 /* find eigenvectors for given eigenvalues */
 ierr = c_dchvec((dcomplex*)za, k, n, ze,
 ind, m, (dcomplex*)zev, (dcomplex*)zaw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dchvec failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation to find e-vectors of A */
 ierr = c_dchbk2((dcomplex*)zev, k, n, ind, m,
 (dcomplex*)za, ip, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dchbk2 failed with icon = %i\n", icon);
 exit (1);
 }
 /* normalize e-vectors */
 mode = 2;
 ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dcnrml failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 if (ind[i] != 0) {
 printf("eigenvalue: %7.4f+i*%7.4f\n", ze[i].re, ze[i].im);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", zev[i][j].re, zev[i][j].im);
 printf("\n");
 }
 }
 return(0);
}

5. Method

Consult the entry for CHBK2 in the Fortran SSL II User's Guide and reference [119].

 c_dches2

 285

c_dches2
Reduction of a complex matrix to a complex Hessenberg matrix
(stabilized elementary similarity transformation).
ierr = c_dches2(za, k, n, ip, &icon);

1. Function

This routine reduces an nn complex matrix A to a complex Hessenberg matrix H using the stabilized elementary
similarity transformation method (Gaussian elimination method with partial pivoting)

 ASSH 1 ,

where S is a transformation matrix. Here, n 1.

2. Arguments

The routine is called as follows:
ierr = c_dches2((dcomplex *) za, k, n, ip, &icon);

where:
za dcomplex Input Complex matrix A.
 za[n][k] Output Complex upper Hessenberg matrix H. The remaining lower triangular

portion contains the transformation matrix S. See Comments on use.
k int Input C fixed dimension of array za (n).
n int Input Order n of matrix A.
ip int ip[n] Output Information regarding the transformation matrix S. See Comments on

use.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 or n = 2 Reduction is not performed.
30000 One of the following has occurred:

 n < 1
 k < n

Bypassed.

3. Comments on use

To determine eigenvalues of matrix H (and hence matrix A), output argument za of this routine is used as input argument
za of c_dchsqr.

To determine eigenvectors of matrix H, output argument za of this routine is used as input argument za of c_dchvec.

To back transform and normalize the eigenvectors of matrix H (obtained from c_dchvec) to obtain the eigenvectors of
matrix A, output arguments za and ip of this routine are used as input arguments zp and ip of c_dchbk2.

Description of the C-SSL II Routines

286

The precision of computed eigenvalues of a complex matrix A is determined in the Hessenberg matrix reduction process.
Therefore, this routine has been implimented so that the Hessenberg matrix is determined with as high a precision as
possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller
eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process.

4. Example program

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, m, i, j, k, ip[NMAX];
 dcomplex za[NMAX][NMAX], ze[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 za[i][i].re = n-i;
 za[i][i].im = 0;
 for (j=0;j<i;j++) {
 za[i][j].re = n-i;
 za[j][i].re = n-i;
 za[i][j].im = 0;
 za[j][i].im = 0;
 }
 }
 /* reduce matrix to Hessenberg form */
 ierr = c_dches2((dcomplex*)za, k, n, ip, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dches2 failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues */
 ierr = c_dchsqr((dcomplex*)za, k, n, ze, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dchsqr failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf("eigenvalues:\n");
 for (i=0;i<m;i++) {
 printf("%7.4f+i*%7.4f ", ze[i].re, ze[i].im);
 }
 printf("\n");
 return(0);
}

5. Method

Consult the entry for CHES2 in the Fortran SSL II User's Guide and reference [119].

 c_dchsqr

 287

c_dchsqr
Eigenvalues of a complex Hessenberg matrix (QR method).
ierr = c_dchsqr(za, k, n, ze, &m, &icon);

1. Function

This routine obtains the eigenvalues of an nn complex Hessenberg matrix A using the QR method. Here, n 1.

2. Arguments

The routine is called as follows:
ierr = c_dchsqr((dcomplex *) za, k, n, ze, &m, &icon);

where:
za dcomplex Input Matrix A.
 za[n][k] Output The contents of za are changed on output.
k int Input C fixed dimension of array za (n).
n int Input Order n of matrix A.
ze dcomplex

ze[n]

Output Eigenvalues of matrix A.

m int Output The number of eigenvalues obtained.
icon int Output Condition code.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 ze[0] =za[0][0].
15000 Some of the eigenvalues could not be obtained. Discontinued. m is set to the number of

eigenvalues obtained, 1 m < n.
20000 No eigenvalues could be obtained. Discontinued. m is set to 0.
30000 One of the following has occurred:

 n < 1
 k < n

Bypassed.

3. Comments on use

A complex matrix A can be reduced to a complex Hessenberg matrix using routine c_dches2, before calling this
routine to obtain the eigenvalues. The output argument za from c_dhes2 is the input argument za of this routine.

The contents of array za are changed on output by this routine. Therefore, if eigenvectors are also required, a copy of
array za should be made before calling this routine, so that the copy can be used later as input argument za of
c_dchvec.

Description of the C-SSL II Routines

288

4. Example program

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, m, i, j, k, ip[NMAX];
 dcomplex za[NMAX][NMAX], ze[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 za[i][i].re = n-i;
 za[i][i].im = 0;
 for (j=0;j<i;j++) {
 za[i][j].re = n-i;
 za[j][i].re = n-i;
 za[i][j].im = 0;
 za[j][i].im = 0;
 }
 }
 /* reduce matrix to Hessenberg form */
 ierr = c_dches2((dcomplex*)za, k, n, ip, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dches2 failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues */
 ierr = c_dchsqr((dcomplex*)za, k, n, ze, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dchsqr failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf("eigenvalues:\n");
 for (i=0;i<m;i++) {
 printf("%7.4f+i*%7.4f ", ze[i].re, ze[i].im);
 }
 printf("\n");
 return(0);
}

5. Method

Consult the entry for CHSQR in the Fortran SSL II User's Guide and references [118] and [119].

 c_dchvec

 289

c_dchvec
Eigenvectors of a complex Hessenberg matrix (inverse iteration method).
ierr = c_dchvec(za, k, n, ze, ind, m, zev,

zaw, &icon);

1. Function

This routine obtains eigenvectors jx corresponding to selected eigenvalues j of an nn complex Hessenberg matrix
A, using the inverse iteration method. The eigenvectors are not normalized. Here, n 1.

2. Arguments

The routine is called as follows:
ierr = c_dchvec((dcomplex *) za, k, n, ze, ind, m, (dcomplex *) zev,

(dcomplex *)zaw, &icon);

where:
za dcomplex

za[n][k]

Input Matrix A.

k int Input C fixed dimension of arrays za, ev, and zaw (n).
n int Input Order n of matrix A.
ze dcomplex

ze[m]

Input Eigenvalues, with ze[j-1] = j , mj ,...,1 .

ind int ind[m] Input Indicates which eigenvectors are to be obtained
ind[j-1] = 0 if an eigenvector corresponding to the j-th eigenvalue
 j is not to be obtained.
ind[j-1] = 1 if an eigenvector corresponding to the j-th eigenvalue
 j is to be obtained.
See Comments on use.

 Output The contents of array ind are changed on output. See Comments on use.
m int Input Number m (n) of eigenvalues stored in array ze.
zev dcomplex

zev[mk][k]
Output Eigenvectors, where mk indicates the number of eigenvectors to be

obtained. See Comments on use.
zaw dcomplex

zaw[n+1][k]

Work

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 zev[0][0] = (1,0).
15000 An eigenvector corresponding to a specified

eigenvalue cannot be determined.
The elements of ind corresponding to the
eigenvectors that could not be obtained are set to
0.

20000 No eigenvectors could be obtained. All elements of ind are set to 0.

Description of the C-SSL II Routines

290

Code Meaning Processing
30000 One of the following has occurred:

 m < 1 or m > n
 k < n

Bypassed.

3. Comments on use

ind and mk
The number of elements of ind whose value is 1 is the number of eigenvectors to be determined, mk.

If the j-th eigenvector cannot be determined, ind[j-1] is set to 0 and icon = 15000.

General comments
The eigenvalues used by this routine can be determined by routine c_dchsqr. The output arguments ze and m of
c_dchsqr are the same as the input arguments ze and m of this routine. The input argument za of c_dchsqr (not the
output argument za of c_dchsqr) is the same as the input argument za of this routine.

When selected eigenvectors of a complex matrix are to be determined:

 the complex matrix is first reduced to a complex Hessenberg matrix using c_dches2,

 eigenvalues of the Hessenberg matrix are determined using routine c_dchsqr,

 selected eigenvectors of the Hessenberg matrix are determined using this routine,

 back transformation is applied to the above eigenvectors using routine c_dchbk2 to obtain the eigenvectors of the
complex matrix.

Note that c_dceig2 can be used to obtain all the eigenvectors of a complex matrix.

The resulting eigenvectors of this routine have not been normalized. If necessary, routine c_dcnrml can be used to
normalize complex eigenvectors.

Output arguments ind, m and zev of this routine are the same as the input arguments ind, m and zev of routines
c_dchbk2 and c_dcnrml.

4. Example program

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then
performs a back transformation and a normalisation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, m, mode, ip[NMAX], ind[NMAX];
 dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX], zaw[NMAX+1][NMAX];
 double dv[NMAX];

 c_dchvec

 291

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 za[i][i].re = n-i;
 za[i][i].im = 0;
 for (j=0;j<i;j++) {
 za[i][j].re = n-i;
 za[j][i].re = n-i;
 za[i][j].im = 0;
 za[j][i].im = 0;
 }
 }
 /* balance matrix A */
 ierr = c_dcblnc((dcomplex*)za, k, n, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dcblnc failed with icon = %i\n", icon);
 exit (1);
 }
 /* reduce matrix to Hessenberg form */
 ierr = c_dches2((dcomplex*)za, k, n, ip, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dches2 failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<n;i++)
 for (j=0;j<n;j++) {
 zaw[i][j].re = za[i][j].re;
 zaw[i][j].im = za[i][j].im;
 }
 /* find eigenvalues */
 ierr = c_dchsqr((dcomplex*)zaw, k, n, ze, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dchsqr failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<m;i++) ind[i] = 1;
 /* find eigenvectors for given eigenvalues */
 ierr = c_dchvec((dcomplex*)za, k, n, ze,
 ind, m, (dcomplex*)zev, (dcomplex*)zaw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dchvec failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation to find e-vectors of A */
 ierr = c_dchbk2((dcomplex*)zev, k, n, ind, m,
 (dcomplex*)za, ip, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dchbk2 failed with icon = %i\n", icon);
 exit (1);
 }
 /* normalize e-vectors */
 mode = 2;
 ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dcnrml failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 if (ind[i] != 0) {
 printf("eigenvalue: %7.4f+i*%7.4f\n", ze[i].re, ze[i].im);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", zev[i][j].re, zev[i][j].im);
 printf("\n");
 }
 }
 return(0);
}

5. Method

Consult the entry for CHVEC in the Fortran SSL II User's Guide and reference [119].

Description of the C-SSL II Routines

292

c_dcjart
Roots of a polynomial with complex coefficients (Jarratt method).
ierr = c_dcjart(za, &n, z, &icon);

1. Function

This function finds the roots of a polynomial equation (1) with complex coefficients by the Jarratt method.

 a z a z an n
n0 1

1 0 (1)

In (1), ai are the complex coefficients, 00 a and n 1 .

2. Arguments

The routine is called as follows:
ierr = c_dcjart(za, &n, z, &icon);

where:
za dcomplex

za[n+1]

Input
Output

Coefficients of the polynomial equation, where za[i]= ai .
The contents of the array are altered on output.

n int Input Order n of the equation.
 Output Number of roots found. See Comments on use.
z dcomplex z[n] Output The n roots, returned in z[0] to z[n-1] and in the order they were

found.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 Not all the n roots could be found. The number of roots found is returned by the

argument n and the roots themselves are returned
in array z.

30000 One of the following has occurred:
 n < 1
 a0 = 0

Bypassed.

3. Comments on use

When the order of the equation, n, is 1 or 2, the root formula is used instead of the Jaratt method.

An nth degree polynomial equation has n roots. However, it is possible, though rare, that not all the roots can be found.
Therefore, it is good practice to check the arguments icon and n, to see whether or not all the roots have been found.

 c_dcjart

 293

4. Example program

This example program computes the roots of the polynomial 06116 23 zzz .

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 3

MAIN__()
{
 int ierr, icon;
 dcomplex z[N];
 dcomplex za[] = {{1, 0},
 {-6, 0},
 {11, 0},
 {-6, 0}};
 int n, i;

 /* initialize data */
 n = N;
 /* find roots of polynomial */
 ierr = c_dcjart(za, &n, z, &icon);
 printf("icon = %i n = %i\n", icon, n);
 for (i=0;i<n;i++)
 printf("z[%i] = {%12.4e, %12.4e}\n", i, z[i].re, z[i].im);
 printf("exact roots are: {1, 0}, {2, 0} and {3, 0}\n");
 return(0);
}

5. Method

This function uses a slightly modified version of the Garside-Jarratt-Mack method to obtain the roots. For further
information consult the entry for CJART in the Fortran SSL II User's Guide and [38].

Description of the C-SSL II Routines

294

c_dclu
LU-decomposition of a complex matrix (Crout’s method).
ierr = c_dclu(za, k, n, epsz, ip, &is, zvw,

&icon);

1. Function

This function LU-decomposes an n n general complex matrix A using Crout’s method:

 PA LU (1)

Where P is the permutation matrix that performs the row exchanges required in partial pivoting, L is a lower triangular
matrix and U is a unit upper triangular matrix (n1).

2. Arguments

The routine is called as follows:
ierr = c_dclu((dcomplex*)za, k, n, epsz, ip, &is, zvw, &icon);

where:
za dcomplex

za[n][k]

Input
Output

Matrix A.
Matrices L and U (suitable for input to the complex matrix inverse
function, c_dcluiv). See Comments on use.

k int Input C fixed dimension of array za (n).
n int Input Order n of matrix A.
epsn double Input Tolerance for relative zero test of pivots during the decomposition of A

(0). When epsz is zero, a standard value is used. See Comments on
use.

ip int ip[n] Output Transposition vector that provides the row exchanges which occurred
during partial pivoting (suitable for input to the complex matrix inverse
function, c_dcluiv). See Comments on use.

is int Output Information for obtaining the determinant of matrix A. When the n
elements of the calculated diagonal of array za are multiplied together,
and the result is then multiplied by is, the determinant is obtained.

zvw dcomplex

zvw[n]

Work

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Either all of the elements of some row were zero

or the pivot became relatively zero. It is highly
probable that the coefficient matrix is singular.

Discontinued.

 c_dclu

 295

Code Meaning Processing
30000 One of the following has occurred:

 k < n
 n < 1
 epsz < 0

Bypassed.

3. Comments on use

epsz
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If both the real and imaginary parts of the pivot value lose more than s significant digits during LU-decomposition by
Crout’s method, the pivot value is assumed to be zero and computation is discontinued with icon=20000.

The standard value of epsz is normally 16µ, where µ is the unit round off. If processing is to proceed at a low pivot
value, epsz will be given the minimum value but the result is not always guaranteed.

ip
The transposition vector corresponds to the permutation matrix P of LU-decomposition with partial pivoting. In this
function, the elements of the array za are actually exchanged in partial pivoting. In the J-th stage (J = 1, …, n) of
decomposition, if the I-th row has been selected as the pivotal row the elements of the I-th row and the elements of the J-
th row are exchanged. Then, in order to record the history of this exchange, I is stored in ip[j-1].

Matrix inverse
This function is the first stage in a two-stage process to compute the inverse of an n n complex general matrix. After
calling this function, calling c_dcluiv, will complete the task of matrix inversion.

4. Example program

This example program initialises A and x (from bAx), and then calculates b by multiplication. Matrix A is then
decomposed into LU factors using the library routine. 1A is then calculated and used to calculate x in the equation

xbA 1 and this resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, is;
 double epsz, eps;
 dcomplex za[NMAX][NMAX];
 dcomplex zb[NMAX], zx[NMAX], zy[NMAX], zvw[NMAX];
 int ip[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 for (j=i;j<n;j++) {
 za[i][j].re = n-j;
 za[i][j].im = n-j;
 za[j][i].re = n-j;
 za[j][i].im = n-j;

Description of the C-SSL II Routines

296

 }
 zx[i].re = i+1;
 zx[i].im = i+1;
 }
 /* initialize constant vector zb = za*zx */
 ierr = c_dmcv((dcomplex*)za, k, n, n, zx, zb, &icon);
 epsz = 1e-6;
 /* perform LU decomposition */
 ierr = c_dclu((dcomplex*)za, k, n, epsz, ip, &is, zvw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvclu failed with icon = %d\n", icon);
 exit(1);
 }
 /* find matrix inverse from LU factors */
 ierr = c_dcluiv((dcomplex*)za, k, n, ip, &icon);
 if (icon != 0) {
 printf("ERROR: c_dcluiv failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate zy = za*zb */
 ierr = c_dmcv((dcomplex*)za, k, n, n, zb, zy, &icon);
 /* compare zx and zy */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((zy[i].re-zx[i].re)/zx[i].re) > eps ||
 fabs((zy[i].im-zx[i].im)/zx[i].im) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Crout’s method with partial pivoting is used. For further information consult the entry for CLU in the Fortran SSL II
User’s Guide and [7], [34] and [83].

 c_dcluiv

 297

c_dcluiv
The inverse of a complex matrix decomposed into L and U factors.
ierr = c_dcluiv(zfa, k, n, ip, &icon);

1. Function

This function computes the inverse A 1 of an n n complex general matrix A given in decomposed form PA = LU.

 A U L P 1 1 1 (1)

Where L and U are the respective n n lower and unit upper triangular matrices, P is the permutation matrix that
performs the row exchanges in partial pivoting for LU-decomposition (n1).

2. Arguments

The routine is called as follows:
ierr = c_dcluiv((dcomplex*)zfa, k, n, ip, &icon);

where:
zfa dcomplex

zfa[n][k]

Input Matrices L and U (obtained from function c_dclu). See Comments on
use.

 Output Inverse A 1 .
k int Input C fixed dimension of array zfa (n).
n int Input Order n of matrices L and U.
ip int ip[n] Input Transposition vector that provides the row exchanges which occurred

during partial pivoting, obtained from function c_dclu. See Comments
on use.

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Singular matrix. Discontinued.
30000 One of the following has occurred:

 k < n
 n < 1
 an error in array ip.

Bypassed.

3. Comments on use

General comments
Prior to calling this function, the LU-decomposed matrix and transposition vector must be obtained by the function,
c_dclu, and passed into here via zfa and ip, to obtain the inverse. For solving linear equations use the c_dlcx
function. This is far more efficient than the inverse matrix route. Users should only use this function when calculating the
inverse matrix is unavoidable.

Description of the C-SSL II Routines

298

The transposition vector corresponds to the permutation matrix P, equation (1), for LU-decomposition with partial
pivoting, Please see the notes for the c_dclu function.

4. Example program

This example program initialises A and x (from bAx), and then calculates b by multiplication. Matrix A is then
decomposed into LU factors. The library routine is then called to calculate 1A which is then used in the equation

xbA 1 to calculate x, and this resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, is;
 double epsz, eps;
 dcomplex za[NMAX][NMAX];
 dcomplex zb[NMAX], zx[NMAX], zy[NMAX], zvw[NMAX];
 int ip[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 for (j=i;j<n;j++) {
 za[i][j].re = n-j;
 za[i][j].im = n-j;
 za[j][i].re = n-j;
 za[j][i].im = n-j;
 }
 zx[i].re = i+1;
 zx[i].im = i+1;
 }
 /* initialize constant vector zb = za*zx */
 ierr = c_dmcv((dcomplex*)za, k, n, n, zx, zb, &icon);
 epsz = 1e-6;
 /* perform LU decomposition */
 ierr = c_dclu((dcomplex*)za, k, n, epsz, ip, &is, zvw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvclu failed with icon = %d\n", icon);
 exit(1);
 }
 /* find matrix inverse from LU factors */
 ierr = c_dcluiv((dcomplex*)za, k, n, ip, &icon);
 if (icon != 0) {
 printf("ERROR: c_dcluiv failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate zy = za*zb */
 ierr = c_dmcv((dcomplex*)za, k, n, n, zb, zy, &icon);
 /* compare zx and zy */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((zy[i].re-zx[i].re)/zx[i].re) > eps ||
 fabs((zy[i].im-zx[i].im)/zx[i].im) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

 c_dcluiv

 299

5. Method

Given LU-decomposed matrices L, U and permutation matrix P that indicates row exchanges during partial pivoting then
the inverse of A is computed by calculating L1 and U 1 . For further information consult the entry for CLUIV in the
Fortran SSL II User’s Guide and [34].

Description of the C-SSL II Routines

300

c_dclux
Solution of a system of linear equations with a complex matrix in LU-
decomposed form.
ierr = c_dclux(zb, zfa, k, n, isw, ip, &icon);

1. Function

This routine solves a system of linear equations with an nn LU - decomposed complex matrix

 PbLUx (1)

In (1), P is a permutation matrix that performs row exchange required in partial pivoting for the LU - decomposition, L is
a lower triangular matrix, U is a unit upper triangular matrix, b is a complex constant vector, and x is the solution vector.
Both vectors are of size n (n 1).

One of the following equations can be solved instead of (1)

 PbLy (2)

 bUz (3)

2. Arguments

The routine is called as follows:
ierr = c_dclux(zb, (dcomplex*)zfa, k, n, isw, ip, &icon);

where:
zb dcomplex Input Constant vector b.
 zb[n] Output One of the solution vectors x, y, or z.
zfa dcomplex

zfa[n][k]

Input Matrix)(IUL . See Comments on use.

k int Input C fixed dimension of array zfa (n).
n int Input Order of matrices L and U.
isw int Input Control information.

 isw = 1 when solution x in (1) is required
 isw = 2 when solution y in (2) is required
 isw = 3 when solution z in (3) is required

ip int ip[n] Input Transposition vector that provides the row exchanges that occurred
during partial pivoting. See Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Coefficient matrix was singular. Discontinued.
30000 One of the following occurred:

 n < 1
Bypassed.

 c_dclux

 301

Code Meaning Processing
 k < n
 isw 1,2, or 3
 error found in ip

3. Comments on use

A system of linear equations with complex coefficient matrix can be solved by calling the routine c_dclu to LU-
decompose the coefficient matrix prior to calling this routine. The input arguments zfa and ip of this routine are the
same as the output arguments za and ip of routine c_dclu. Alternatively, the system of linear equations can be solved
by calling the single routine c_dlcx

4. Example program

This program solves a system of linear equations using LU decomposition and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, is, isw;
 double epsz, eps;
 dcomplex zfa[NMAX][NMAX];
 dcomplex zb[NMAX], zx[NMAX], zvw[NMAX];
 int ip[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 for (j=i;j<n;j++) {
 zfa[i][j].re = n-j;
 zfa[i][j].im = n-j;
 zfa[j][i].re = n-j;
 zfa[j][i].im = n-j;
 }
 zx[i].re = i+1;
 zx[i].im = i+1;
 }
 /* initialize constant vector zb = za*zx */
 ierr = c_dmcv((dcomplex*)zfa, k, n, n, zx, zb, &icon);
 epsz = 1e-6;
 /* perform LU decomposition */
 ierr = c_dclu((dcomplex*)zfa, k, n, epsz, ip, &is, zvw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dclu failed with icon = %d\n", icon);
 exit(1);
 }
 isw = 1;
 /* solve system of equations using LU factors */
 ierr = c_dclux(zb, (dcomplex*)zfa, k, n, isw, ip, &icon);
 if (icon != 0) {
 printf("ERROR: c_dclux failed with icon = %d\n", icon);
 exit(1);
 }
 /* check result */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((zb[i].re-zx[i].re)/zx[i].re) > eps ||
 fabs((zb[i].im-zx[i].im)/zx[i].im) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }

Description of the C-SSL II Routines

302

 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for CLUX in the Fortran SSL II User's Guide and [7], [34], and [83].

 c_dcnrml

 303

c_dcnrml
Normalization of the eigenvectors of a complex matrix.
ierr = c_dcnrml(zev, k, n, ind, m, mode,

&icon);

1. Function

This routine obtains eigenvectors jy by normalizing m eigenvectors jx , j=1,2,...,m of an nn complex matrix.

Either (1) or (2) is used in the normalization process,

 jjj xxy / , (1)

2

/ jjj xxy . (2)

Here n 1.

2. Arguments

The routine is called as follows:
ierr = c_dcnrml((dcomplex *) zev, k, n, ind, m, mode, &icon);

where:
zev dcomplex Input The m eigenvectors jx , mj ,...,1 , stored by row. See Comments on

use.
 zev[m][k] Output The m normalized eigenvectors jy , mj ,...,1 .
k int Input C fixed dimension of array zev (n).
n int Input Order n of the complex matrix.
ind int ind[m] Input Indicates which eigenvectors are to be normalized.

ind[j-1] = 0 if the eigenvector corresponding to the j-th eigenvalue is
 not to be normalized.
ind[j-1] = 1 if the eigenvector corresponding to the j-th eigenvalue is
 to be normalized.
See Comments on use.

m int Input Number m of eigenvectors. See Comments on use.
mode int Input Indicates method of normalization:

mode = 1 if (1) is to be used,
mode = 2 if (2) is to be used.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 zev[0][0] = (1,0).
30000 One of the following has occurred:

 m < 1 or m > n
 k < n

Bypassed.

Description of the C-SSL II Routines

304

Code Meaning Processing
 mode 1 or 2
 error found in ind

3. Comments on use

zev, ind and m
If routine c_dchvec is called before this routine, input arguments zev, ind and m of this routine are the same as output
arguments zev and ind and input argument m of c_dchvec.

If routine c_dchbk2 is called before this routine, input arguments zev, ind and m of this routine are the same as output
argument zev and input arguments ind and m of c_dchbk2.

4. Example program

This program finds the eigenvectors of a complex matrix, and then normalizes them such that 1

x .

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, mode, m, ind[NMAX], ivw[NMAX];
 dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX];
 double vw[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 za[i][i].re = n-i;
 za[i][i].im = 0;
 for (j=0;j<i;j++) {
 za[i][j].re = n-i;
 za[j][i].re = n-i;
 za[i][j].im = 0;
 za[j][i].im = 0;
 }
 }
 mode = 2;
 /* find eigenvalues and eigenvectors */
 ierr = c_dceig2((dcomplex*)za, k, n, mode,
 ze, (dcomplex*)zev, vw, ivw, &icon);
 /* initialize ind array */
 m = n;
 for (i=0;i<m;i++) ind[i] = 1;
 mode = 1;
 /* normalize eigenvectors */
 ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dcnrml failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<n;i++) {
 printf("eigenvalue: %7.4f+i*%7.4f\n", ze[i].re, ze[i].im);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", zev[i][j].re, zev[i][j].im);
 printf("\n");
 }
 return(0);
}

 c_dcnrml

 305

5. Method

Consult the entry for CNRML in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

306

c_dcosi
Cosine integral)(xCi .
ierr = c_dcosi(x, &ci, &icon);

1. Function

This routine computes the cosine integral

x

i dt
t

t
xC

)cos(
)(,

where 0x , by series and asymptotic expansions. If 0x , the cosine integral)(xCi is assumed to take a principal
value.

2. Arguments

The routine is called as follows:
ierr = c_dcosi(x, &ci, &icon);

where:
x double Input Independent variable x. See Comments on use fro range of x.
ci double Output Cosine integral)(xCi .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 |x| maxt ci is set to 0.
30000 x = 0 ci is set to 0.

3. Comments on use

Range of x
The valid range of argument x is |x| < maxt .This is because accuracy is lost if |x| exceeds this limit. For details on maxt
see the Machine constants section of the Introduction.

4. Example program

This program generates a range of function values for 100 points in the the interval [0.1,10.0].

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, ci;
 int i;

 for (i=1;i<=100;i++) {

 c_dcosi

 307

 x = (double)i/10;
 /* calculate integral */
 ierr = c_dcosi(x, &ci, &icon);
 if (icon == 0)
 printf("x = %5.2f ci = %f\n", x, ci);
 else
 printf("ERROR: x = %5.2f ci = %f icon = %i\n", x, ci, icon);
 }
 return(0);
}

5. Method

Consult the entry for COSI in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

308

c_dcqdr
Roots of a quadratic with complex coefficients.
ierr = c_dcqdr(z0, z1, z2, z, &icon);

1. Function

This function finds the roots of a quadratic equation with complex coefficients.

 021
2

0 azaza (1)

where a0 0 .

2. Arguments

The routine is called as follows:
ierr = c_dcqdr(z0, z1, z2, z, &icon);

where:
z0 dcomplex Input The zeroth coefficient 0a of quadratic equation.
z1 dcomplex Input The first coefficient 1a of quadratic equation.
z2 dcomplex Input The second coefficient 2a of quadratic equation.
z dcomplex z[2] Output Roots of quadratic equation.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 a0 0 a a2 1 is stored in z[0]. z[1] is undefined.
30000 a0 0 and a1 0 Bypassed.

3. Example program

This example program computes the roots of the quadratic 0652 zz .

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 dcomplex z[2];
 dcomplex z0 = {1, 0};
 dcomplex z1 = {-5, 0};
 dcomplex z2 = {6, 0};

 /* find roots of quadratic */
 ierr = c_dcqdr(z0, z1, z2, z, &icon);
 printf("icon = %i z[0] = {%12.4e, %12.4e} z[1] = {%12.4e, %12.4e}\n",
 icon, z[0].re, z[0].im, z[1].re, z[1].im);
 printf("exact roots are: {3, 0} and {2, 0}\n");
 return(0);
}

 c_dcqdr

 309

4. Method

For further information consult the entry for CQDR in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

310

c_dcsbgm
Storage format conversion of matrices (symmetric band format to
standard format).
ierr = c_dcsbgm (asb, n, nh, ag, k, &icon);

1. Function

This routine converts an nn symmetric band matrix with bandwidth h from symmetric band format to standard 2-D
array format. (n>h 0).

2. Arguments

The routine is called as follows:
ierr = c_dcsbgm(asb, n, nh, (double*)ag, k, &icon);

where:
asb double

asb[Asblen]
Input Symmetric band matrix A stored in symmetric band storage format. See

Array storage formats in the Introduction section for details.
.2/)1()1(hhhnAsblen

n int Input The order n of matrix A.
nh int Input The bandwidth h of matrix A.
ag double

ag[n][k]

Output Symmetric band matrix A stored in the standard storage format.

k int Input C fixed dimension of array ag (n).
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 nh < 0
 n nh
 k < n

Bypassed.

3. Comments on use

The symmetric band matrix in the standard format
The symmetric band matrix in the standard form produced by this routine contains not only the upper band and diagonal
portions but also the lower band portion and the zero elements.

Saving on storage space
If there is no need to keep the contents of array asb, then saving on storage space is possible by specifying the same array
for argument ag. WARNING – make sure the array size is consistent with both arguments otherwise unpredictable results
can occur.

 c_dcsbgm

 311

4. Example program

This program converts a matrix from symmetric band format to standard format and prints the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define NMAX 5
#define NHMAX 2

/* print symmetric band matrix */
void prtsymbandmat(double a[], int n, int nh)
{
 int ij, i, j, jmin;
 printf("symmetric band matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh, 0);
 for (j=jmin;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
 int i, j;
 printf("general matrix format\n");
 for (i=0;i<n;i++) {
 for (j=0;j<m;j++)
 printf("%7.2f ",a[i*k+j]);
 printf("\n");
 }
}

MAIN__()
{
 int ierr, icon;
 int n, nh, i, j, ij, k, jmin;
 double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], ag[NMAX][NMAX];

 n = NMAX;
 /* initialize symmetric band matrix */
 nh = NHMAX;
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh, 0);
 for (j=jmin;j<=i;j++)
 asb[ij++] = i-j+1;
 }
 k = NMAX;
 /* convert to general matrix storage format */
 ierr = c_dcsbgm(asb, n, nh, (double*)ag, k, &icon);
 if (icon != 0) {
 printf("ERROR: c_dcsbgm failed with icon = %d\n", icon);
 exit(1);
 }
 /* print matrices */
 printf("asb: \n");
 prtsymbandmat(asb, n, nh);
 printf("ag: \n");
 prtgenmat((double*)ag, k, n, n);
 return(0);
}

5. Method

Consult the entry for CSBGM in Fortran SSL II User's Guide.

Description of the C-SSL II Routines

312

c_dcsbsm
Storage format conversion of matrices (symmetric band format to
symmetric format).
ierr = c_dcsbsm(asb, n, nh, as, &icon);

1. Function

This routine converts an nn symmetric band matrix with bandwidth h from symmetric band format to symmetric
format (n>h 0).

2. Arguments

The routine is called as follows:
ierr = c_dcsbsm(asb, n, nh, as, &icon);

where:
asb double

asb[Asblen]
Input Symmetric band matrix A stored in symmetric band storage format. See

Array storage formats in the Introduction section for details.
.2/)1()1(hhhnAsblen

n int Input The order n of matrix A.
nh int Input The bandwidth h of matrix A.
as double

as[Aslen]
Output Symmetric band matrix A stored in symmetric storage format. See Array

storage formats in the Introduction section for details.
.2/)1(nnAslen

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 nh < 0
 n nh

Bypassed.

3. Comments on use

Saving on storage space
If there is no need to keep the contents of array asb, then saving on storage space is possible by specifying the same array
for argument as. WARNING – make sure the array size is consistent with both arguments otherwise unpredictable results
can occur.

4. Example program

This program converts a matrix from symmetric band format to symmetric format and prints the results.

#include <stdlib.h>
#include <stdio.h>

 c_dcsbsm

 313

#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define NMAX 5
#define NHMAX 2

/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
 int ij, i, j;
 printf("symmetric matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 for (j=0;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

/* print symmetric band matrix */
void prtsymbandmat(double a[], int n, int nh)
{
 int ij, i, j, jmin;
 printf("symmetric band matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh, 0);
 for (j=jmin;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

MAIN__()
{
 int ierr, icon;
 int n, nh, i, j, ij, k, jmin;
 double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], as[NMAX*(NMAX+1)/2];

 n = NMAX;
 /* initialize symmetric band matrix */
 nh = NHMAX;
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh, 0);
 for (j=jmin;j<=i;j++)
 asb[ij++] = i-j+1;
 }
 k = NMAX;
 /* convert to symmetric matrix storage format */
 ierr = c_dcsbsm(asb, n, nh, as, &icon);
 if (icon != 0) {
 printf("ERROR: c_dcsbsm failed with icon = %d\n", icon);
 exit(1);
 }
 /* print matrices */
 printf("asb: \n");
 prtsymbandmat(asb, n, nh);
 printf("as: \n");
 prtsymmat(as, n);
 return(0);
}

5. Method

Consult the entry for CSBSM in Fortran SSL II User's Guide.

Description of the C-SSL II Routines

314

c_dcsgm
Storage format conversion of matrices (real symmetric format to
standard format).
ierr = c_dcsgm(as, n, ag, k, &icon);

1. Function

This function converts an n n real symmetric matrix from the symmetric format to the standard 2-D array format (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dcsgm(as, n, (double*)ag, k, &icon);

where:
as double

as[Aslen]
Input Symmetric matrix A stored in the symmetric format. Aslen=n(n+1)/2.

See the Array storage formats section of the Introduction.
n int Input Order n of matrix A.
ag double

ag[n][k]

Output Symmetric matrix A stored in standard format.

k int Input C fixed dimension of array ag (n).
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n < 1
 k < n

Bypassed.

3. Comments on use

The symmetric matrix in the standard format
The symmetric matrix in the standard format produced by the function contains not only the upper triangular and diagonal
portions but also the lower triangular portion.

Saving on storage space
If there is no need to keep the contents of array, as, then saving on storage space is possible by specifying the same array
for argument ag. WARNING – make sure the array size is compliant for both arguments otherwise unpredictable results
can occur.

4. Example program

This example program converts a matrix from symmetric format to real standard format, and prints out both matrices.

#include <stdlib.h>

 c_dcsgm

 315

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 5

/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
 int ij, i, j;
 printf("symmetric matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 for (j=0;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
 int i, j;
 printf("general matrix format\n");
 for (i=0;i<n;i++) {
 for (j=0;j<m;j++)
 printf("%7.2f ",a[i*k+j]);
 printf("\n");
 }
}

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij, k;
 double as[NMAX*(NMAX+1)/2], ag[NMAX][NMAX];

 /* initialize symmetric matrix storage format */
 n = NMAX;
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 as[ij++] = n-i;
 }
 k = NMAX;
 /* convert to general matrix storage format */
 ierr = c_dcsgm(as, n, (double*)ag, k, &icon);
 if (icon != 0) {
 printf("ERROR: c_dcsgm failed with icon = %d\n", icon);
 exit(1);
 }
 /* print matrices */
 printf("as: \n");
 prtsymmat(as, n);
 printf("ag: \n");
 prtgenmat((double*)ag, k, n, n);
 return(0);
}

5. Method

The conversion process from the symmetic format to standard format consists of two stages:

 The elements stored in array as are transferred to the diagonal and lower triangular portions sequentially from the
highest address, i.e. the n-th column. The correspondence between locations is shown below, where NT=n(n+1)/2.

Elements in
symmetric format

Elements of
matrix

Elements in
standard format

as[NT-1]

as[NT-2]

:

ann

ann-1
:

ag[n-1][n-1]

ag[n-2][n-1]

:

Description of the C-SSL II Routines

316

as[i*(i-1)/2+j-1]

:

as[1]

as[0]

aij
:

a21
a11

ag[j-1][i-1]

:

ag[0][1]

ag[0][0]
 With the diagonal as the axis of symmetry, the elements of the lower triangular portion are copied to the upper

triangular part, such that ag[i][j]=ag[j][i]. Here, j > i.

For further information consult the entry for CSGM in the Fortran SSL II User’s Guide.

 c_dcssbm

 317

c_dcssbm
Storage format conversion of matrices (symmetric format to symmetric
band format).
ierr = c_dcssbm(as, n, asb, nh, &icon);

1. Function

This routine converts an nn symmetric band matrix with bandwidth h from symmetric format to symmetric band
format (n>h 0).

2. Arguments

The routine is called as follows:
ierr = c_dcssbm(as, n, asb, nh, &icon);

where:
as double

as[Aslen]
Input Symmetric band matrix A stored in symmetric stroage format. See Array

storage formats in the Introduction section for details.
.2/)1(nnAslen

n int Input The order n of matrix A.
asb double

asb[Asblen]
Output Symmetric band matrix A stored in symmetric band storage format. See

Array storage formats in the Introduction section for details.
.2/)1()1(hhhnAsblen

nh int Input The bandwidth h of matrix A.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 nh < 0
 n nh

Bypassed.

3. Comments on use

Saving on storage space
If there is no need to keep the contents of array as, then saving on storage space is possible by specifying the same array
for argument asb. WARNING – make sure the array size is consistent with both arguments otherwise unpredictable
results can occur.

4. Example program

This program converts a matrix from symmetric to symmetric band format and prints the results.

#include <stdlib.h>
#include <stdio.h>

Description of the C-SSL II Routines

318

#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define NMAX 5
#define NHMAX 2

/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
 int ij, i, j;
 printf("symmetric matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 for (j=0;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

/* print symmetric band matrix */
void prtsymbandmat(double a[], int n, int nh)
{
 int ij, i, j, jmin;
 printf("symmetric band matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh, 0);
 for (j=jmin;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

MAIN__()
{
 int ierr, icon;
 int n, nh, i, j, ij, k;
 double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], as[NMAX*(NMAX+1)/2];

 /* initialize band symmetric matrix in symmetric matrix storage format */
 n = NMAX;
 nh = NHMAX;
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 if (abs(i-j) <= nh)
 as[ij++] = i-j+1;
 else
 as[ij++] = 0;
 }
 k = NMAX;
 /* convert to symmetric band matrix storage format */
 ierr = c_dcssbm(as, n, asb, nh, &icon);
 if (icon != 0) {
 printf("ERROR: c_dcssbm failed with icon = %d\n", icon);
 exit(1);
 }
 /* print matrices */
 printf("as: \n");
 prtsymmat(as, n);
 printf("asb: \n");
 prtsymbandmat(asb, n, nh);
 return(0);
}

5. Method

Consult the entry for CSSBM in the Fortran SSL II User's Guide.

 c_dctsdm

 319

c_dctsdm
Root of a complex function (Muller’s method).
ierr = c_dctsdm(&z, zfun, isw, eps, eta, &m,

&icon);

1. Function

This function finds a root of a complex function (1) by Muller’s method.

 f z() 0 (1)

An initial approximation to the root must be given.

2. Arguments

The routine is called as follows:
ierr = c_dctsdm(&z, zfun, isw, eps, eta, &m, &icon);

where:
z dcomplex Input Initial value of the root to be obtained.
 Output Approximate root.
zfun function Input Name of the user defined function to evaluate f z() . Its prototype is:

dcomplex zfun(dcomplex z);

where:
 z dcomplex Input Independent variable.
isw int Input Control information.

Specify the convergence criterion for finding the root; isw must be one
of the following:

 1 Criterion I: when the condition f zi() eps is satisfied, zi
becomes the root.

2 Criterion II: when the condition z z zi i i 1 eta is satisfied,
zi becomes the root.

3 When either criterion I or II is satisfied, zi becomes the root.
 See Comments on use.
eps double Input The tolerance value (0) for Criterion I. (See argument isw.)
eta double Input The tolerance value (0) for Criterion II. (See argument isw.)
m int Input Upper limit of iterations. See Comments on use.
 Output Total number of iterations performed.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
1 The result satisfied convergence Criterion I. (See

the argument isw.)

Description of the C-SSL II Routines

320

Code Meaning Processing
2 The result satisfied convergence Criterion II. (See

the argument isw.)

10 Completed the m (m=-m) iterations.
11 The condition f zi() 0 was satisfied before

finishing all the iterations (m = -m), therefore the
iteration process was stopped and zi returned as
the root.

12 The condition z z zi i i 1 was satisfied
before finishing all the iterations (m = -m),
therefore the iteration process was stopped and zi
returned as the root.

10000 The specified convergence criterion was not
achieved after completing the given number of
iterations.

Return the last iteration value of zi in argument
z.

20000 The case f z f z f zi i i() () () 2 1 has
occurred and perturbation of zi2 , zi1 , and zi
was tried to overcome the problem. This proved
unsuccessful even when perturbation continued
more than five times.

Processing stopped.

30000 One of the following has occurred:
when m > 0:
isw = 1 and eps < 0
isw = 2 and eta < 0
isw = 3, eps < 0 or eta < 0
otherwise:
m = 0
isw 1, 2 or 3

Bypassed.

3. Comments on use

isw
This function will stop the iteration with icon=2 whenever z z zi i i 1 is satisfied (where µ is the unit round off)
even when isw=1 is given. Similarly with isw=2, it will stop the iteration with icon=1 whenever f zi() 0 is
satisfied.

Note, when the root is a multiple root or very close to another root, eta must be set sufficiently large. If 0 < eta < µ, the
function resets eta=µ.

m
Iterations are repeated m times when m is set as m=-m (m > 0). However, when either f zi() 0 or z z zi i i 1 is
satisfied before finishing m iterations, the iteration process is stopped and the result is output with icon=11 or 12.

4. Example program

This example program computes a root of the function iezf z)(with a initial approximation of 000 iz .

 c_dctsdm

 321

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

dcomplex zfun(dcomplex z); /* user function prototype */

MAIN__()
{
 int ierr, icon;
 dcomplex z;
 double eps, eta;
 int isw, m;

 z.re = 0;
 z.im = 0;
 isw = 3;
 eps = 0;
 eta = 1.0e-6;
 m = 100;
 /* find zero of complex function */
 ierr = c_dctsdm(&z, zfun, isw, eps, eta, &m, &icon);
 printf("icon = %i m = %i z = {%12.4e, %12.4e}\n", icon, m, z.re, z.im);
 return(0);
}

/* complex user function: zfun(z) = z*z - zm */
dcomplex zfun(dcomplex z)
{
 const dcomplex zm = {0, 1};
 dcomplex zres;
 zres.re = z.re*z.re - z.im*z.im - zm.re;
 zres.im = 2*z.re*z.im - zm.im;
 return(zres);
}

5. Method

This function uses Muller’s method for finding a root of a complex function. For further information consult the entry for
CTSDM in the Fortran SSL II User's Guide and [111].

Description of the C-SSL II Routines

322

c_decheb
Evaluation of a Chebyshev series.
ierr = c_decheb(a, b, c, n, v, &f, &icon);

1. Function

Given a truncated Chebyshev series (1) with n-terms, defined on the interval],[ba

1

0

)(2)('n

k
kk ab

abxTcxf , (1)

this routine obtains the value)(vf at an arbitrary value],[bav . ' denotes the sum in which the initial term

is multiplied by a factor ½. Here, 1n and ba .

2. Arguments

The routine is called as follows:
ierr = c_decheb(a, b, c, n, v, &f, &icon);

where:
a double Input Lower limit a of the interval for the Chebyshev series.
b double Input Upper limit b of the interval for the Chebyshev series.
c double c[n] Input Coefficients kc of the Chebyshev series, with c[k] = kc .
n int Input Number of terms n of the Chebyshev series.
v double Input Point v in the interval],[ba .
f double Output Value)(vf of the Chebyshev series.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n < 1
 a = b
 v],[ba

Bypassed.

3. Comments on use

This routine obtains the value)(vf of a Chebyshev series. The routine c_dfcheb can be called before this routine to
obtain the Chebyshev series expansion of an arbitrary smooth function)(xf .

4. Example program

This program evaluates xxf sin)(using Chebyshev series.

#include <stdio.h>

 c_decheb

 323

#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 257 /* default value */

double fun(double x); /* function prototype */

MAIN__()
{
 int ierr, icon;
 int i, n, nmin, nmax;
 double epsa, epsr, err, a, b, pi, v, f, h;
 double c[NMAX], tab[NMAX-2];

 /* initialize data */
 epsa = 5e-5;
 epsr = 0;
 nmin = 9; /* default value */
 nmax = NMAX;
 pi = 2*asin(1);
 a = 0;
 b = pi;
 /* expand function as Chebyshev series */
 ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, &n, &err, tab, &icon);
 if (icon >= 20000) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 /* now evaluate Chebyshev series at 32 points */
 h = pi/(2*32);
 printf(" v f error \n");
 for (i=0;i<32;i++) {
 v = b*pow(cos(i*h),2);
 ierr = c_decheb(a, b, c, n, v, &f, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 err = fun(v) - f;
 printf("%6.3f %12.5e %12.5e\n", v, f, err);
 }
 return(0);
}

/* function to expand */
double fun(double x)
{
 double sum, xn, xp, p, term, eps;
 int n;
 eps = 1e-7; /* approx. amach */
 sum = x;
 p = x*x;
 xp = x*p;
 xn = -6;
 n = 3;
 while (1) {
 term = xp/xn;
 sum = sum+term;
 if (fabs(term) <= eps) break;
 n = n+2;
 xp = xp*p;
 xn = -xn*n*(n-1);
 }
 return (sum);
}

5. Method

Consult the entry for ECHEB in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

324

c_decosp
Evaluation of a cosine series.
ierr = c_decosp(th, a, n, v, &f, &icon);

1. Function

Given a truncated cosine series (1) with n terms and period 2T,

1

1
0 ,cos

2
1)(

n

k
k kt

T
aatf (1)

this routine obtains the value)(vf , for an arbitrary point v . Here 0T , and 1n .

2. Arguments

The routine is called as follows:
ierr = c_decosp(th, a, n, v, &f, &icon);

where:
th double Input Half period T for the cosine series.
a double a[n] Input Coefficients ka of the cosine series, with a[k] = ka .
n int Input Number of terms n of the cosine series.
v double Input Point v.
f double Output Value)(vf of the cosine series.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n < 1
 th 0

Bypassed.

3. Comments on use

This routine evaluates the value)(vf of the cosine series. The routine c_dfcosf that determines the Fourier cosine
series expansion of a smooth even function)(tf with period 2T can be called before this one to determine the
coefficients ka of the cosine series.

4. Example program

This program integrates the function:

 c_decosp

 325

x

dt
t

txF
0

2sin1

sin)((2)

where , using series expansion.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 257 /* default value */

double truefun(double t); /* prototytpe for check function */
double fun(double t); /* integral function prototype */
double w; /* auxiliary variable for function fun */

MAIN__()
{
 int ierr, icon;
 int i, n, nmin, nmax;
 double epsa, epsr, err, th, pi, v, f, q, h;
 double a[NMAX], tab[(NMAX-3)/2];

 /* initialize data */
 epsa = 0.5e-4;
 epsr = epsa;
 nmin = 0; /* default value */
 nmax = NMAX;
 pi = 2*asin(1);
 w = pi/4;
 th = pi/w;
 /* expand integral function as sine series */
 ierr = c_dfsinf(th, fun, epsa, epsr, nmin, nmax, a, &n, &err, tab, &icon);
 if (icon >= 20000) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 /* integrate termwise */
 for (i=1;i<n;i++)
 a[i] = -a[i]/(i*w);
 /* evaluate cosine series at v=0 to find a0 value */
 v = 0;
 ierr = c_decosp(th, a, n, v, &f, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 a[0] = -f*2; /* notice factor of 2 */
 /* now evaluate cosine series to give integral */
 h = th/10;
 printf(" v f exact \n");
 for (i=1;i<=10;i++) {
 v = i*h;
 ierr = c_decosp(th, a, n, v, &f, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 q = truefun(v); /* exact integral */
 printf("%4.2f %12.6e %12.6e\n", v, f, q);
 }
 return(0);
}

/* function to integrate */
double fun(double t)
{
 double p;
 p = sin(w*t);
 return p/sqrt(1+p*p);
}

/* exact integral function */
double truefun(double t)
{
 double pi;
 pi = 2*asin(1);
 return (pi/4-asin(cos(w*t)*sqrt(0.5)))/w;

Description of the C-SSL II Routines

326

}

5. Method

Consult the entry for ECOSP in the Fortran SSL II User's Guide.

 c_deig1

 327

c_deig1
Eigenvalues and corresponding eigenvectors for a real matrix (double
QR method).
ierr = c_deig1(a, k, n, mode, er, ei, ev, vw,

&icon);

1. Function

All eigenvalues and corresponding eigenvectors for an n order real matrix A are determined 1n . The eigenvalues are
normalised such that 12 x .

2. Arguments

The routine is called as follows:
ierr = c_deig1((double *)a, k, n, mode, er, ei, (double *)ev, vw, &icon);

where:
a double

a[n][k]

Input Matrix A.
Output The contents are altered on output.

k int Input C fixed dimension of matrix A (nk).
n int Input Order n of matrix A.
mode int Input mode = 1 specifies no balancing. 1mode specifies that balancing is

included. See Comments on use.
er double er[n] Output The real parts of the eigenvalues.
ei double ei[n] Output The imaginary parts of the eigenvalues. If the jth eigenvalue is complex,

then its complex conjugate is stored in the (j + 1)th eigenvalue.
ev double

ev[n][k]

Output Eigenvectors. They are stored in the rows of ev which correspond to
their eigenvalues. When the jth eigenvalue is complex, its eigenvector is
also complex, with the real part being stored in the jth row, and its
imaginary part stored in the (j + 1)th row. See Comments on use.

vw double vw[n] Work Used during balancing and when reducing A to a real Hessenberg
matrix.

icon int Output Condition codes. See below.
The complete list of condition codes is.

Code Meaning Processing
0 No error. Completed.
10000 1n er[0] = a[0][0]

ev[0][0] = 1

20000 Eigenvalues and eigenvectors could not be
calculated, as the matrix A could not be reduced
to a triangular form.

Discontinued

30000 One of the following has occurred:
 1n
 nk

Bypassed.

Description of the C-SSL II Routines

328

3. Comments on use

Complex eigenvalues and corresponding eigenvectors
In general, real matrices can have real and/or complex eigenvalues, with the latter occurring in complex conjugate pairs.
In this routine, if the jth eigenvalue)(j is complex, then j and j are stored as follows:

 1]-ei[j1]-er[j ij

1]-ei[j1]-er[j

ei[j]er[j]

i

ij

If the eigenvalue j is complex, its corresponding eigenvector jx is also complex, and is stored in two parts which are
defined by:

 jjj i vux

where:

]ev[j][

]1][-ev[j

m

m

j

j

v

u

where m = 0,1,2, ,n-1. The eigenvector corresponding to the complex conjugate eigenvalue j (or 1 j) can be
obtained simply using:

 jjj i vux 1

Balancing and mode
If the elements of matrix A vary greatly in magnitude, a solution of greater precision can be obtained using
balancing, i.e. setting 1mode . If the magnitudes of the elements are similar, the balancing has little or no effect and
should be skipped using 1mode .

4. Example program

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 matrix.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, mode;
 double a[NMAX][NMAX], er[NMAX], ei[NMAX], ev[NMAX][NMAX], vw[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[i][j] = i-n;
 a[j][i] = n-i;
 }
 mode = 0;
 /* find eigenvalues and eigenvectors */
 ierr = c_deig1((double*)a, k, n, mode, er, ei, (double*)ev, vw, &icon);
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 i = 0;

 c_deig1

 329

 while (i<n) {
 if (ei[i] == 0) {
 /* real eigenvector */
 printf("eigenvalue: %12.4f\n", er[i]);
 printf("eigenvector:");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[i][j]);
 printf("\n");
 i++;
 }
 else {
 /* complex eigenvector pair */
 printf("eigenvalue: {%7.4f, %7.4f}\n", er[i], ei[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("{%7.4f, %7.4f} ", ev[i][j], ev[i+1][j]);
 printf("\n");
 printf("eigenvalue: {%7.4f, %7.4f}\n", er[i+1], ei[i+1]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("{%7.4f, %7.4f} ", ev[i][j], -ev[i+1][j]);
 printf("\n");
 i = i+2;
 }
 }
 return(0);
}

5. Method

For further information consult the entry for EIG1 in the Fortran SSL II User's Guide, and also [118] and [119].

Description of the C-SSL II Routines

330

c_desinp
Evaluation of a sine series.
ierr = c_desinp(th, b, n, v, &f, &icon);

1. Function

Given a truncated sine series (1) with n terms and period 2T,

1

0

,sin)(
n

k
k kt

T
btf (1)

with 00 b , this routine obtains the value)(vf , for an arbitrary point v . Here 0T , and 1n .

2. Arguments

The routine is called as follows:
ierr = c_desinp(th, b, n, v, &f, &icon);

where:
th double Input Half period T for the sine series.
b double b[n] Input Coefficients kb of the sine series, with

b[0] = 0, b[1] = 1b , ..., b[n-1] = 1nb .

n int Input Number of terms n of the sine series.
v double Input Point v.
f double Output Value)(vf of the sine series.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n < 1
 th 0

Bypassed.

3. Comments on use

This routine evaluates the value)(vf of the sine series. The routine c_dfsinf that determines the Fourier sine series
expansion of a smooth odd function)(tf of period 2T can be called before this one to determine the coefficients kb of
the sine series.

4. Example program

This program integrates the function:

 c_desinp

 331

x

dt
t

txF
0

2cos1

cos)((2)

where , using series expansion.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 257 /* default value */

double truefun(double t); /* prototytpe for check function */
double fun(double t); /* integral function prototype */
double w; /* auxiliary variable for function fun */

MAIN__()
{
 int ierr, icon;
 int i, n, nmin, nmax;
 double epsa, epsr, err, th, pi, v, f, q, h;
 double b[NMAX], tab[(NMAX-3)/2];

 /* initialize data */
 epsa = 0.5e-4;
 epsr = epsa;
 nmin = 0; /* default value */
 nmax = NMAX;
 pi = 2*asin(1);
 w = pi/4;
 th = pi/w;
 /* expand integral function as cosine series */
 ierr = c_dfcosf(th, fun, epsa, epsr, nmin, nmax, b, &n, &err, tab, &icon);
 if (icon >= 20000) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 /* integrate termwise */
 for (i=1;i<n;i++)
 b[i] = b[i]/(i*w);
 /* now evaluate cosine series to give integral */
 h = th/10;
 printf(" v f exact \n");
 for (i=1;i<=10;i++) {
 v = i*h;
 ierr = c_desinp(th, b, n, v, &f, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 q = truefun(v); /* exact integral */
 printf("%4.2f %12.6e %12.6e\n", v, f, q);
 }
 return(0);
}

/* function to integrate */
double fun(double t)
{
 double p;
 p = cos(w*t);
 return p/sqrt(1+p*p);
}

/* exact integral function */
double truefun(double t)
{
 return asin(sin(w*t)*sqrt(0.5))/w;
}

5. Method

Consult the entry for ESINP in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

332

c_dexpi
Exponential integrals)(xEi and)(xEi .
ierr = c_dexpi(x, &ei, &icon);

1. Function

This routine computes the exponential integrals)(xEi and)(xEi for 0x defined as follows using an approximation
formula.

For x < 0:

x

x tt

i dt
t

edt
t

exE)(.

For x > 0:

 dt
t

edt
t

exE
x t

x

t

i

 P.V..P.V)(.

Here, P.V. means the principal value is taken at 0t .

2. Arguments

The routine is called as follows:
ierr = c_dexpi(x, &ei, &icon);

where:
x double Input Independent variable x. See Comments on use for range of x.
ei double Output Function value)(xEi or)(xEi .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 x > log(maxfl) or x < -log(maxfl) ei is set to maxfl or ei is set to 0.
30000 x = 0 ei is set to 0.

3. Comments on use

Range of x
 x 0 as)(xEi and)(xEi are undefined for x = 0.

 |x| log(maxfl) since if |x| exceeds this limit,)(xEi and)(xEi would cause underflow and overflow respectively
in the calculation of xe . For details on the constant maxfl , see the Machine constants section of the Introduction.

 c_dexpi

 333

4. Example program

This program generates a range of function values for 100 points in the interval [0.01,1.0].

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, ei;
 int i;

 for (i=1;i<=100;i++) {
 x = (double)i/100;
 /* calculate integral */
 ierr = c_dexpi(x, &ei, &icon);
 if (icon == 0)
 printf("x = %5.2f ei = %f\n", x, ei);
 else
 printf("ERROR: x = %5.2f ei = %f icon = %i\n", x, ei, icon);
 }
 return(0);
}

5. Method

Consult the entry for EXPI in the Fortran SSL II User's Guide and [22] and [23].

Description of the C-SSL II Routines

334

c_dfcheb
Chebyshev series expansion of a function (fast cosine transform).
ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin,

nmax, c, &n, &err, tab, &icon);

1. Function

This routine performs the Chebyshev series expansion of a smooth function)(xf on the interval],[ba . It determines n
coefficients 1,10 ...,, nccc which satisfy (1)

 f
ab

abxTcxf ra

n

k
kk

,max)(2)(
1

0

' , (1)

where a (0) is an absolute error tolerance, r (0) is a relative error tolerance, and ' denotes the sum in

which the initial term is multiplied by a factor ½. The norm f of)(xf is defined by

)(max
10

j
nj

xff

 ,

using function values taken at sample points jx in the interval],[ba and given by

 j
n

abbax j 1
cos

22
, j = 0,1,…,n-1.

Here ba .

2. Arguments

The routine is called as follows:
ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, &n, &err, tab, &icon);

where:
a double Input Lower limit a of the interval.
b double Input Upper limit b of the interval.
fun function Input User defined function to evaluate)(xf on the interval],[ba .

Its prototype is:
double fun(double x);
where

 x double Input Independent variable

epsa double Input Absolute error tolerance a . See Comments on use.
epsr double Input Relative error tolerance r . See Comments on use.
nmin int Input Lower limit (0) on the number of terms of the Chebyshev series.

nmin = 12 k for some integer 0k . The default value is 9. See
Comments on use.

 c_dfcheb

 335

nmax int Input Upper limit (nmin) on the number of terms of the Chebyshev series.
nmax = 12 k for some integer 0k . The default value is 257. See
Comments on use.

c double

c[nmax]

Output Coefficients kc of the Chebyshev series, with
c[k] = kc , 1,...,1,0 nk .

n int Output Number of terms n (5) of the Chebyshev series.
n = 12 k for some integer 2k .

err double Output Estimate of the absolute error of the series. See Comments on use.
tab double

tab[Tablen]
Output A trigonometric function table used for the series expansion.

0a , 2/)3(,3max nmaxTablen ,
0a , 2,3max nmaxTablen . See Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 The required accuracy is too high and cannot be

satisfied due to round-off error.
c contains the resultant coefficients. The accuracy
of the series is the maximum attainable.

20000 The maximum number of terms was reached and
the required accuracy was not satisfied.

Stopped. c contains the resultant coefficients and
err contains an estimate of the absolute error.

30000 One of the following occurred:
 a = b
 epsa < 0
 epsr < 0
 nmin < 0
 nmax < nmin

Bypassed.

3. Comments on use

[a,b] and tab
This routine normally changes the interval from],[ba to [-1, 1], and then expands the function)(xf using the
Chebyshev polynomials. When the end point a of the interval is zero, the routine expands the function using shifted
Chebyshev polynomials to avoid loss of significant digits while making the change of variable. The coefficients }{ kc
using shifted Chebyshev polynomials are the same as those using the Chebyshev polynomials. However, the size of tab,
the array for the trigonometric function table, must be nmax – 2 when using the shifted Chebyshev polynomials, and

23()/-nmax when using the Chebyshev polynomials.

When the routine is called repeatedly, the trigonometic function table is produced only once. A new trigonometric
function table entry is made on an as-required basis. Therefore tab must remain unchanged whenever a repeat call of the
routine is made.

Accuracy
The accuracy of the expansion as the number of terms n increases, depends on the smoothness of)(xf and the
width of the interval],[ba . If)(xf is an analytic function, the error decreases according to an exponential

function)O(nr , 10 r , as n increases. If)(xf has up to k continuous derivatives, the error decreases

Description of the C-SSL II Routines

336

according to a rational function

k

n
ba , as n increases. When 0k or 1k , an estimate of the absolute

error is not usually accurate because the number of terms increases considerably, and so the routine should only be
used with a function)(xf that has at least continous second derivatives.

epsa and epsr
Given the two error tolerances a and r , in arguments epsa and epsr, this routine determines a Chebyshev series
satisfying (1). When 0 r , the absolute error criterion is used, and when 0 a the relative error criterion is used. In
all cases, care must be taken not to choose a and r too small in comparison with the arithmetic precision of)(xf , as
the effect of round-off error may become dominant before the maximum number of terms nmax in the expansion has
been reached. In such a case, the routine terminates with icon = 10000. At this time the accuracy of the Chebyshev series
has reached the attainable limit for the computer used.

If the maximum number of terms nmax, is reached before the error criterion has been satisfied, due to the characteristics
of the function)(xf , the routine terminates with icon = 20000, and the coefficents obtained so far are not accurate.

To determine the accuracy of the Chebyshev series, this routine outputs an estimate of the absolute error in err.

nmin and nmax
If the value of nmin or nmax is not of the form 12 k for some integer 0k , this routine assumes the maximum
number of the form 12 k that does not exceed the given value. Also, if nmax < 5, then the routine assumes nmax = 5.

4. Example program

This program evaluates xxf sin)(using Chebyshev series.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 257 /* default value */

double fun(double x); /* function prototype */

MAIN__()
{
 int ierr, icon;
 int i, n, nmin, nmax;
 double epsa, epsr, err, a, b, pi, v, f, h;
 double c[NMAX], tab[NMAX-2];

 /* initialize data */
 epsa = 5e-5;
 epsr = 0;
 nmin = 9; /* default value */
 nmax = NMAX;
 pi = 2*asin(1);
 a = 0;
 b = pi;
 /* expand function as Chebyshev series */
 ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, &n, &err, tab, &icon);
 if (icon >= 20000) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 /* now evaluate Chebyshev series at 32 points */
 h = pi/(2*32);
 printf(" v f error \n");
 for (i=0;i<32;i++) {
 v = b*pow(cos(i*h),2);
 ierr = c_decheb(a, b, c, n, v, &f, &icon);
 if (icon != 0) {

 c_dfcheb

 337

 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 err = fun(v) - f;
 printf("%6.3f %12.5e %12.5e\n", v, f, err);
 }
 return(0);
}

/* function to expand */
double fun(double x)
{
 double sum, xn, xp, p, term, eps;
 int n;
 eps = 1e-7; /* approx. amach */
 sum = x;
 p = x*x;
 xp = x*p;
 xn = -6;
 n = 3;
 while (1) {
 term = xp/xn;
 sum = sum+term;
 if (fabs(term) <= eps) break;
 n = n+2;
 xp = xp*p;
 xn = -xn*n*(n-1);
 }
 return (sum);
}

5. Method

Consult the entry for FCHEB in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

338

c_dfcosf
Cosine series expansion of an even function (fast cosine transform).
ierr = c_dfcosf(th, fun, epsa, epsr, nmin,

nmax, a, &n, &err, tab, &icon);

1. Function

This routine performs the cosine series expansion of a smooth even function)(tf with period 2T. It determines n
coefficients 1,10 ...,, naaa which satisfy (1)

 fkt
T

atf ra

n

k
k

,maxcos)(
1

0

' , (1)

where a (0) is an absolute error tolerance, r (0) is a relative error tolerance, and ' denotes the sum in

which the initial term is multiplied by a factor ½. The norm f of)(tf is defined by

)(max
10

j
nj

tff

 ,

using function values taken at sample points within the half period [0,T] and given by

 j
n
Tt j 1

 , j = 0,1,…,n-1.

Here T > 0.

2. Arguments

The routine is called as follows:
ierr = c_dfcosf(th, fun, epsa, epsr, nmin, nmax, a, &n, &err, tab, &icon);

where:
th double Input Half period T of the function)(tf .
fun function Input User defined function to evaluate)(tf over the interval [0,T].

Its prototype is:
double fun(double t);
where

 t double Input Independent variable

epsa double Input Absolute error tolerance a . See Comments on use.
epsr double Input Relative error tolerance r . See Comments on use.
nmin int Input Lower limit (0) on the number of terms of the cosine series.

nmin = 12 k for some integer 0k . The default value is 9. See
Comments on use.

nmax int Input Upper limit (nmin) on the number of terms of the cosine series.
nmax = 12 k for some integer 0k . The default value is 257. See
Comments on use.

 c_dfcosf

 339

a double

a[nmax]

Output Coefficients ka of the cosine series, with
a[k] = ka , 1,...,1,0 nk .

n int Output Number of terms n (5) of the cosine series.
n = 12 k for some integer 2k .

err double Output Estimate of the absolute error of the series. See Comments on use.
tab double

tab[Tablen]
Output A trigonometric function table used for the series expansion.

 2/)3(,3max nmaxTablen . See Comments on use.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 The required accuracy is too high and cannot be

satisfied due to round-off error.
a contains the resultant coefficients. The accuracy
of the series is the maximum attainable.

20000 The maximum number of terms was reached and
the required accuracy was not satisfied.

Stopped. a contains the resultant coefficients and
err contains an estimate of the absolute error.

30000 One of the following occurred:
 th 0
 epsa < 0
 epsr < 0
 nmin < 0
 nmax < nmin

Bypassed.

3. Comments on use

Accuracy
The accuracy of the expansion as the number of terms n increases, depends on the smoothness of)(tf over),(. If

)(tf is an analytic periodic function, the error decreases according to an exponential function)O(nr , 10 r , as n
increases. If)(tf has up to k continuous derivatives, the error decreases according to a rational function)(O kn , as n
increases. When 0k or 1k , an estimate of the absolute error is not usually accurate because the number of terms
increases considerably, and so the routine should only be used with a function)(tf that has at least continous second
derivatives.

epsa and epsr
Given the two error tolerances a and r , in arguments epsa and epsr, this routine determines a cosine series
satisfying (1). When 0 r , the absolute error criterion is used, and when 0 a the relative error criterion is used. In
all cases, care must be taken not to choose a and r too small in comparison with the arithmetic precision of)(tf , as
the effect of round-off error may become dominant before the maximum number of terms nmax in the expansion has
been reached. In such a case, the routine terminates with icon = 10000. At this time the accuracy of the cosine series has
reached the attainable limit for the computer used.

If the maximum number of terms nmax, is reached before the error criterion has been satisfied, due to the characteristics
of the function)(tf , the routine terminates with icon = 20000, and the coefficents obtained so far are not accurate.

To determine the accuracy of the cosine series, this routine outputs an estimate of the absolute error in err.

Description of the C-SSL II Routines

340

nmin and nmax
If the value of nmin or nmax is not of the form 12 k for some integer 0k , this routine assumes the maximum
number of the form 12 k that does not exceed the given value. Also, if nmax < 5, then the routine assumes nmax = 5.

tab
When the routine is called repeatedly, the trigonometic function table is produced only once. A new trigonometric
function table entry is made on an as-required basis.Therefore tab must remain unchanged whenever a repeat call of the
routine is made.

General comments
When)(tf is only periodic and not an even function, this routine can be used to perform cosine series expansion for the
even function 2/))()((tftf .

When)(tf has no period and is absolutely integrable, see FCOSF in Fortran SSL II User's Guide.

4. Example program

This program integrates the function:

x

dt
t

txF
0

2cos1

cos)((2)

where , using series expansion.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 257 /* default value */

double truefun(double t); /* prototytpe for check function */
double fun(double t); /* integral function prototype */
double w; /* auxiliary variable for function fun */

MAIN__()
{
 int ierr, icon;
 int i, n, nmin, nmax;
 double epsa, epsr, err, th, pi, v, f, q, h;
 double b[NMAX], tab[(NMAX-3)/2];

 /* initialize data */
 epsa = 0.5e-4;
 epsr = epsa;
 nmin = 0; /* default value */
 nmax = NMAX;
 pi = 2*asin(1);
 w = pi/4;
 th = pi/w;
 /* expand integral function as cosine series */
 ierr = c_dfcosf(th, fun, epsa, epsr, nmin, nmax, b, &n, &err, tab, &icon);
 if (icon >= 20000) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 /* integrate termwise */
 for (i=1;i<n;i++)
 b[i] = b[i]/(i*w);
 /* now evaluate cosine series to give integral */
 h = th/10;
 printf(" v f exact \n");
 for (i=1;i<=10;i++) {
 v = i*h;

 c_dfcosf

 341

 ierr = c_desinp(th, b, n, v, &f, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 q = truefun(v); /* exact integral */
 printf("%4.2f %12.6e %12.6e\n", v, f, q);
 }
 return(0);
}

/* function to integrate */
double fun(double t)
{
 double p;
 p = cos(w*t);
 return p/sqrt(1+p*p);
}

/* exact integral function */
double truefun(double t)
{
 return asin(sin(w*t)*sqrt(0.5))/w;
}

5. Method

Consult the entry for FCOSF in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

342

c_dfcosm
Discrete cosine transform (midpoint rule, radix 2 FFT).
ierr = c_dfcosm(a, n, isn, tab, &icon);

1. Function

Given n data points }{ 2/1jx , obtained by dividing the first half of a 2 period, even function)(tx such that

 1,...,1,0,
2
1

2/1

 njj

n
xx j ,

a discrete cosine transform or its inverse transform, based on the midpoint rule, is computed by a Fast Fourier
Transform (FFT) algorithm. Here, 2n , where is a non-negative integer.

Cosine transform
When }{ 2/1jx is input, the transform defined below is calculated to obtain }

2
{ kan .

1

0
2/1 1,...,1,0,

2
1cos

2

n

j
jk nkjk

n
xan .

Cosine inverse transform
When }{ ka is input, the transform defined below is calculated to obtain }{ 2/1jx .

1

0
2/1 1,...,1,0,

2
1cos'n

k
kj njjk

n
ax ,

where ' denotes the sum in which the initial term is multiplied by ½.

2. Arguments

The routine is called as follows:
ierr = c_dfcosm(a, n, isn, tab, &icon);

where:
a double a[n] Input }{ 2/1jx or }{ ka .
 Output }

2
{ kan or }{ 2/1jx .

n int Input Number n of data points.
isn int Input Control information.

isn = 1 for transform,
isn = -1 for inverse transform.

tab double

tab[n-1]

Output Trigonometrc function table used in the transform. See Comments on
use.

icon int Output Condition code.
The complete list of condition codes is:

 c_dfcosm

 343

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 isn 1 or –1
 n 2 with a non-negative integer.

Bypassed.

3. Comments on use

General definition of Fourier transform
The discrete cosine transform and its inverse transform based on the midpoint rule are generally defined by the following:

1

0
2/1 1,...,1,0,

2
1cos2 n

j
jk nkjk

n
x

n
a ,

1

0
2/1 1,...,1,0,

2
1cos'n

k
kj njjk

n
ax .

The routine obtains }
2

{ kan and }{ 2/1jx respectively, and if necessary the user must scale the results to obtain }{ ka .

tab
When the routine is called repeatedly for transforms of a fixed dimension, the trigonometric table is calculated and created
only once. Therefore, tab must remain unchanged between calls to the routine. Even when the dimension varies, the
trigonometric function table entry can be made on an as-required basis.

4. Example program

This program calculates the discrete Fourier coefficients for a set of random data, and checks the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 512

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps, cn;
 double a[NMAX], b[NMAX], tab[NMAX-1];
 int i, n, isn;

 /* generate initial data */
 n = NMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (i=0;i<n;i++) {
 ran = (i+1)*phai;
 a[i] = ran - (int)ran;
 }
 for (i=0;i<n;i++)
 b[i] = a[i];
 /* perform normal transform */
 isn = 1;
 ierr = c_dfcosm(a, n, isn, tab, &icon);
 if (icon != 0) {
 printf("ERROR: c_dfcosm failed with icon = %d\n", icon);
 exit(1);
 }
 /* normalize */
 cn = 2.0/n;
 for (i=0;i<n;i++)
 a[i] = cn*a[i];

Description of the C-SSL II Routines

344

 /* perform inverse transform */
 isn = -1;
 ierr = c_dfcosm(a, n, isn, tab, &icon);
 if (icon != 0) {
 printf("ERROR: c_dfcosm failed with icon = %d\n", icon);
 exit(1);
 }
 /* check results */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((a[i] - b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for FCOSM in the Fortran SSL II User's Guide.

 c_dfsinf

 345

c_dfsinf
Sine series expansion of an odd function (fast sine transform).
ierr = c_dfsinf(th, fun, epsa, epsr, nmin,

nmax, b, &n, &err, tab, &icon);

1. Function

This routine performs the sine series expansion of a smooth odd function)(tf with period 2T. It determines n coefficients

1,10 ...,, nbbb which satisfy (1)

 fkt
T

btf ra

n

k
k

,maxsin)(
1

0

 (1),

where a (0) is an absolute error tolerance and r (0) is a relative error tolerance. The norm f of)(tf is
defined by

)(max
10

j
nj

tff

 ,

using function values taken at sample points within the half period [0,T] and given by

 j
n
Tt j 1

 , j = 0,1,…,n-1.

Here T > 0.

2. Arguments

The routine is called as follows:
ierr = c_dfsinf(th, fun, epsa, epsr, nmin, nmax, b, &n, &err, tab, &icon);

where:
th double Input Half period T of the function)(tf .
fun function Input User defined function to evaluate)(tf over the interval [0,T].

Its prototype is:
double fun(double t);
where

 t double Input Independent variable

epsa double Input Absolute error tolerance a . See Comments on use.
epsr double Input Relative error tolerance r . See Comments on use.
nmin int Input Lower limit (0) on the number of terms of the sine series.

nmin = k2 for some integer 0k . The default value is 8. See
Comments on use.

nmax int Input Upper limit (nmin) on the number of terms of the sine series.
nmax = k2 for some integer 0k . The default value is 256. See
Comments on use.

Description of the C-SSL II Routines

346

b double

b[nmax]

Output Coefficients kb of the sine series, with
b[k] = kb , 1,...,1,0 nk .

n int Output Number of terms n (4) of the sine series. n = k2 for some integer
2k .

err double Output Estimate of the absolute error of the series. See Comments on use.
tab double

tab[Tablen]
Output A trigonometric function table used for the series expansion.

 12,3max nmax/Tablen . See Comments on use.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 The required accuracy is too high and cannot be

satisfied due to round-off error.
b contains the resultant coefficients. The accuracy
of the series is the maximum attainable.

20000 The maximum number of terms was reached and
the required accuracy was not satisfied.

Stopped. b contains the resultant coefficients and
err contains an estimate of the absolute error.

30000 One of the following occurred:
 th 0
 epsa < 0
 epsr < 0
 nmin < 0
 nmax < nmin

Bypassed.

3. Comments on use

Accuracy
The accuracy of the expansion as the number of terms n increases, depends on the smoothness of)(tf over),(. If

)(tf is an analytic periodic function, the error decreases according to an exponential function)O(nr , 10 r , as n
increases. If)(tf has up to k continuous derivatives, the error decreases according to a rational function)(O kn , as n
increases. When 0k or 1k , an estimate of the absolute error is not usually accurate because the number of terms
increases considerably, and so the routine should only be used with a function)(tf that has at least continous second
derivatives.

epsa and epsr
Given the two error tolerances a and r , in arguments epsa and epsr, this routine determines a sine series satisfying
(1). When 0 r , the absolute error criterion is used, and when 0 a the relative error criterion is used. In all cases,
care must be taken not to choose a and r too small in comparison with the arithmetic precision of)(tf , as the effect
of round-off error may become dominant before the maximum number of terms nmax in the expansion has been reached.
In such a case, the routine terminates with icon = 10000. At this time the accuracy of the sine series has reached the
attainable limit for the computer used.

If the maximum number of terms nmax, is reached before the error criterion has been satisfied, due to the characteristics
of the function)(tf , the routine terminates with icon = 20000, and the coefficents obtained so far are not accurate.

To determine the accuracy of the sine series, this routine outputs an estimate of the absolute error in err.

 c_dfsinf

 347

nmin and nmax
If the value of nmin or nmax is not of the form k2 for some integer 0k , this routine assumes the maximum number
of the form k2 that does not exceed the given value. Also, if nmax < 4, then the routine assumes nmax = 4.

tab
When the routine is called repeatedly, the trigonometic function table is produced only once. A new trigonometric
function table entry is made on an as-required basis.Therefore tab must remain unchanged whenever a repeat call of the
routine is made.

General comments
When)(tf is only periodic and not an odd function, this routine can be used to perform sine series expansion for the odd
function 2/))()((tftf .

When)(tf has no period and is absolutely integrable, see FSINF in Fortran SSL II User's Guide.

4. Example program

This program integrates the function:

x

dt
t

txF
0

2sin1

sin)((2)

where , using series expansion.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 257 /* default value */

double truefun(double t); /* prototytpe for check function */
double fun(double t); /* integral function prototype */
double w; /* auxiliary variable for function fun */

MAIN__()
{
 int ierr, icon;
 int i, n, nmin, nmax;
 double epsa, epsr, err, th, pi, v, f, q, h;
 double a[NMAX], tab[(NMAX-3)/2];

 /* initialize data */
 epsa = 0.5e-4;
 epsr = epsa;
 nmin = 0; /* default value */
 nmax = NMAX;
 pi = 2*asin(1);
 w = pi/4;
 th = pi/w;
 /* expand integral function as sine series */
 ierr = c_dfsinf(th, fun, epsa, epsr, nmin, nmax, a, &n, &err, tab, &icon);
 if (icon >= 20000) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 /* integrate termwise */
 for (i=1;i<n;i++)
 a[i] = -a[i]/(i*w);
 /* evaluate cosine series at v=0 to find a0 value */
 v = 0;
 ierr = c_decosp(th, a, n, v, &f, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);

Description of the C-SSL II Routines

348

 exit(1);
 }
 a[0] = -f*2; /* notice factor of 2 */
 /* now evaluate cosine series to give integral */
 h = th/10;
 printf(" v f exact \n");
 for (i=1;i<=10;i++) {
 v = i*h;
 ierr = c_decosp(th, a, n, v, &f, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 q = truefun(v); /* exact integral */
 printf("%4.2f %12.6e %12.6e\n", v, f, q);
 }
 return(0);
}

/* function to integrate */
double fun(double t)
{
 double p;
 p = sin(w*t);
 return p/sqrt(1+p*p);
}

/* exact integral function */
double truefun(double t)
{
 double pi;
 pi = 2*asin(1);
 return (pi/4-asin(cos(w*t)*sqrt(0.5)))/w;
}

5. Method

Consult the entry for FSINF in the Fortran SSL II User's Guide.

 c_dfsinm

 349

c_dfsinm
Discrete sine transform (midpoint rule, radix 2 FFT).
ierr = c_dfsinm(a, n, isn, tab, &icon);

1. Function

Given n data points }{ 2/1jx , obtained by dividing the first half of a 2 period, odd function)(tx such that

 1,...,1,0,
2
1

22/1

 njjxx j ,

a discrete sine transform or its inverse transform, based on the midpoint rule, is computed by a Fast Fourier
Transform (FFT) algorithm. Here, 2n , where is a non-negative integer.

Sine transform
When }{ 2/1jx is input, the transform defined below is calculated to obtain }

2
{ kbn .

1

0
2/1 ,...,2,1,

2
1sin

2

n

j
jk nkjk

n
xbn .

Sine inverse transform
When }{ kb is input, the transform defined below is calculated to obtain }{ 2/1jx .

1

1
2/1 1,...,1,0,

2
1sin

2
1

2
1sin

n

k
nkj njjbjk

n
bx .

2. Arguments

The routine is called as follows:
ierr = c_dfsinm(a, n, isn, tab, &icon);

where:
a double a[n] Input }{ 2/1jx or }{ kb .
 Output }

2
{ kbn or }{ 2/1jx .

n int Input Number n of data points.
isn int Input Control information.

isn = 1 for transform,
isn = -1 for inverse transform.

tab double

tab[n-1]

Output Trigonometrc function table used in the transform. See Comments on
use.

icon int Output Condition code.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred: Bypassed.

Description of the C-SSL II Routines

350

Code Meaning Processing
 isn 1 or –1
 n 2 with a non-negative integer.

3. Comments on use

General definition of Fourier transform
The discrete sine transform and its inverse transform based on the midpoint rule are generally defined by the following:

1

0
2/1 ,...,2,1,

2
1sin2 n

j
jk nkjk

n
x

n
b ,

1

1
2/1 1,...,1,0,

2
1sin

2
1

2
1sin

n

k
nkj njjbjk

n
bx .

The routine obtains }
2

{ kbn and }{ 2/1jx respectively, and if necessary the user must scale the results to obtain }{ kb .

Calculation of the trigonometric polynomial

When obtaining the values

2
1j

n
x of the n-th order polynomial

 ntbtbtbtx n sin...2sinsin)(21

by using the inverse transform, the highest order coefficient nb must be doubled in advance.

tab
When the routine is called repeatedly for transforms of a fixed dimension, the trigonometric table is calculated and created
only once. Therefore, tab must remain unchanged between calls to the routine. Even when the dimension varies, the
trigonometric function table entry can be made on an as-required basis.

4. Example program

This program calculates the discrete Fourier coefficients for a set of random data, and checks the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 512

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps, cn;
 double a[NMAX], b[NMAX], tab[NMAX-1];
 int i, n, isn;

 /* generate initial data */
 n = NMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (i=0;i<n;i++) {
 ran = (i+1)*phai;
 a[i] = ran - (int)ran;
 }
 for (i=0;i<n;i++)
 b[i] = a[i];
 /* perform normal transform */
 isn = 1;

 c_dfsinm

 351

 ierr = c_dfsinm(a, n, isn, tab, &icon);
 if (icon != 0) {
 printf("ERROR: c_dfsinm failed with icon = %d\n", icon);
 exit(1);
 }
 /* normalize */
 cn = 2.0/n;
 for (i=0;i<n;i++)
 a[i] = cn*a[i];
 /* perform inverse transform */
 isn = -1;
 ierr = c_dfsinm(a, n, isn, tab, &icon);
 if (icon != 0) {
 printf("ERROR: c_dfsinm failed with icon = %d\n", icon);
 exit(1);
 }
 /* check results */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((a[i] - b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for FSINM in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

352

c_dgbseg
Eigenvalues and corresponding eigenvectors of a symmetric band
generalised eigenproblem (Jennings’ method).
ierr = c_dgbseg(a, b, n, nh, m, epsz, epst,

lm, e, ev, k, &it, vw, &icon);

1. Function

This routine obtains m eigenvalues, in descending (or ascending) order of absolute values, for the generalized
eigenproblem (1),

 BxAx , (1)

where A and B are nn symmetric band matrices with n 1 and bandwidth h. When starting with the eigenvalue of
smallest (or largest) absolute value, matrix A (or B) must be positive definite. Given m initial vectors, this routine also
obtains m eigenvectors corresponding to the eigenvalues, usign Jennings’ simultaneous iteration method with Jennings’
acceleration. The eigenvectors mxxx ...,, ,21 . are normalized such that

 IBXX T

or

 IAXX T .

Here, nm 1 and nh 0 .

2. Arguments

The routine is called as follows:
ierr = c_dgbseg(a, b, n, nh, m, epsz, epst, lm, e, (double *)ev, k, &it, vw,

&icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric band storage format. See the Array

storage formats of the Introduction section for details.
2/)1()1(hhhnAlen .

 Output When eigenvalues are obtained in ascending order of absolute value, the
contents of a are changed on output. See Comments on use.

b double b[Blen] Input Matrix B. Stored in symmetric band storage format. See the Array
storage formats section of the Introduction section for details.

2/)1()1(hhhnBlen .
 Output The contents of b are changed on output. See Comments on use.
n int Input Order n of matrices A and B.
nh int Input Bandwidth h of matrices A and B. See Comments on use.
m int Input Number m of eigenvalues and eigenvectors to be obtained.

m > 0 if the m eigenvalues are obtained in descending order of absolute
 value.

 c_dgbseg

 353

m <0 if the m eigenvalues are obtained in ascending order of absolute
 value. See Comments on use.

epsz double Input Tolerance for relative zero test of pivots in decomposition process of
matrix A or B. When epsz 0, a standard value is used. See
Comments on use.

epst double Input Constant used for convergence criterion of eigenvectors. When
epst 0, a standard value is used. See Comments on use.

lm int Input Upper limit for the number of iterations. If the number of iterations
exceeds the limit, processing is stopped. See Comments on use.

e double e[m] Output Eigenvalues, stored in descending or ascending order as specified by
argument m.

ev double

ev[m+2][k]

Input Initial vectors, stored by rows. See Comments on use.

 Output Eigenvectors, stored by rows. See Comments on use.
k int Input C fixed dimension of array ev (n).
it int Output Number of iterations performed to obtain the eigenvalues and

eigenvectors.
vw double

vw[Vwlen]
Work 2/)13(2 mmnVwlen .

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 The number of iterations exceeded the upper limit

lm.
Stopped. e and ev contain the eigenvalues and
eigenvectors obtained so far.

25000 Orthogonalization of eigenvectors at each
iteration cannot be attained.

Discontinued.

28000 Matrix A or B is not positive definite. Discontinued.
29000 Matrix A or B is singular. Discontinued.
30000 One of the following has occurred:

 nh < 0 or nh n
 k < n
 m = 0 or |m| > n

Bypassed.

3. Comments on use

a and b
When eigenvalues are obtained in ascending order of absolute value, the contents of b are saved into array a. When
several eigenproblems with the same matrix B are to be solved, this routine can utilize the contents of matrix B stored in
array a.

nh
The bandwidth of matrix A must be equal to the bandwidth of matrix B. If the bandwidths are not the same, the greater
bandwidth is assumed and zeros are added to the matrix of smaller bandwidth as required.

Description of the C-SSL II Routines

354

m
The number of eigenvalues and eigenvectors m should be smaller than n such that m/n < 1/10. The numbering of
eigenvalues is from the smallest (or largest) absolute value of eigenvalue, m ,...,, 21 . If possible, m should be chosen
such that 1/1 mm (or 1/1 mm) to achieve faster convergence.

epsz
The standard value for epsz is 16 , where is the unit round-off.

If a pivot fails the relative zero test during decomposition of matrix A or B, the matrix is considered to be singular and
processing is discontinued with icon = 29000. Processing may proceed with a smaller value for epsz, but the accuracy
of the result cannot be guaranteed.

If a pivot is negative during the decomposition of matrix A or B, the matrix is regarded as not positive definite and
processing is discontinued with icon = 28000.

epst
When an eigenvector (normalized so that 12 x) converges for the convergence criterion constant , the

corresponding eigenvalue converges at least with accuracy 2A , and in most cases with greater accuracy. The

standard convergence criterion constant is 16 , where is the unit round-off. However, when the eigenvalues
are close together convergence may not be attained with this convergence criterion constant, and a more
appropriate value would be 100 .

lm
The upper limit lm for the number of iterations is used to stop the processing when convergence is not attained. The value
of lm should be chosen taking into account the required accuracy and how close together the eigenvalues are to each other.
With the standard convergence criterion constant and well-separated eigenvalues a value for lm between 500 and 1000
should be appropriate.

Initial eigenvectors
It is desirable for the initial vectors to be good approximations to the eigenvectors. However, if approximate eigenvectors
are not available as initial vectors, the standard way to choose intial vectors is to use the first m column vectors of the
identity matrix I.

4. Example program

This program finds the eigenvalues and corresponding eigenvectors of a symmetric band generalised eigenproblem

#include <stdlib.h>
#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define NMAX 5
#define NHMAX 2

MAIN__()
{
 int ierr, icon;
 int n, m, nh, i, j, k, ij, lm, it, jmin;
 double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2];
 double b[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2];
 double e[NMAX], ev[NMAX+2][NMAX], vw[2*NMAX+NMAX*(3*NMAX+1)/2], epsz, epst;

 /* initialize matrix */
 n = NMAX;

 c_dgbseg

 355

 nh = NHMAX;
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh, 0);
 for (j=jmin;j<i;j++) {
 a[ij] = n-i;
 b[ij++] = 0;
 }
 a[ij] = n-i;
 b[ij++] = 1;
 }
 k = NMAX;
 m = n;
 /* initialize m eigenvectors */
 for (i=0;i<m;i++)
 for (j=0;j<n;j++)
 if (i == j) ev[i][j] = 1;
 else ev[i][j] = 0;
 lm = 1000;
 epsz = 0;
 epst = 0;
 /* find eigenvalues and eigenvectors */
 ierr = c_dgbseg(a, b, n, nh, m, epsz, epst, lm,
 e, (double*)ev, k, &it, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dgbseg failed with icon = %d\n", icon);
 exit(1);
 }
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("e-value %d: %10.4f\n",i+1,e[i]);
 printf("e-vector:");
 for (j=0;j<n;j++)
 printf("%7.4f ",ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

Consult the entry for GBSEG in the Fortran SSL II User's Guide and [61].

Description of the C-SSL II Routines

356

c_dgcheb
Differentiation of a Chebyshev series.
ierr = c_dgcheb(a, b, c, &n, &icon);

1. Function

Given a truncated Chebyshev series (1) with n-terms, defined on the interval],[ba

1

0

)(2)('n

k
kk ab

abxTcxf , (1)

this routine obtains its derivative in a Chebyshev series (2)

2

0

)(2
)('n

k
kk ab

abx
Tcxf , (2)

where kc 2,...,1,0 nk are its Chebyshev coefficients. ' denotes the sum in which the initial term is

multiplied by a factor ½. Here, 1n and ba .

2. Arguments

The routine is called as follows:
ierr = c_dgcheb(a, b, c, &n, &icon);

where:
a double Input Lower limit a of the interval for the Chebyshev series.
b double Input Upper limit b of the interval for the Chebyshev series.
c double c[n] Input Coefficients kc of the Chebyshev series, with

c[k] = kc , 1,...,1,0 nk .
 Output Coefficients kc for the derivative, with

c[k] = kc , 2,...,1,0 nk .
n int Input Number of terms n of the Chebyshev series.
 Output Number of terms n-1 of the derivative Chebyshev series.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n < 1
 a = b

Bypassed.

3. Comments on use

When the derivative of an arbitrary function is required, the routine c_dfcheb can be called before this one to obtain the
Chebyshev series expansion for the function.

 c_dgcheb

 357

The routine c_decheb can be called after this routine to evaluate the derivative Chebyshev series at an arbitrary point
],[bav . See example.

This routine can be called repeatedly to obtain derivatives of higher order.

The error of a derivative can be estimated from the absolute sum of the last two terms of the series. Note that the error of a
derivative increases as the order increases.

4. Example program

This program evaluates and differentiates the function xexf)(using Chebyshev series.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 257 /* default value */

double fun(double x); /* function prototype */

MAIN__()
{
 int ierr, icon;
 int i, n, nmin, nmax;
 double epsa, epsr, err, a, b, pi, v, f, h;
 double c[NMAX], tab[(NMAX-3)/2];

 /* initialize data */
 epsr = 5e-5;
 epsa = 0;
 nmin = 9; /* default value */
 nmax = NMAX;
 pi = 2*asin(1);
 a = -2;
 b = 2;
 /* expand function as Chebyshev series */
 ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, &n, &err, tab, &icon);
 if (icon >= 20000) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 /* now calculate derivative */
 ierr = c_dgcheb(a, b, c, &n, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 /* now evaluate Chebyshev series at points */
 h = 0.05;
 printf(" v differential error \n");
 for (i=0;i<=80;i++) {
 v = a+i*h;
 ierr = c_decheb(a, b, c, n, v, &f, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 err = fun(v) - f;
 printf("%5.2f %12.5e %12.5e\n", v, f, err);
 }
 return(0);
}

/* function to expand */
double fun(double x)
{
 double sum, xn, xp, term, eps;
 int n;
 eps = 1e-7; /* approx. amach */
 sum = 1;
 xp = x;

Description of the C-SSL II Routines

358

 xn = 1;
 n = 1;
 while (1) {
 term = xp/xn;
 sum = sum+term;
 if (fabs(term) <= fabs(sum)*eps) break;
 n = n+1;
 xp = xp*x;
 xn = xn*n;
 }
 return (sum);
}

5. Method

Consult the entry for GCHEB in the Fortran SSL II User's Guide.

 c_dginv

 359

c_dginv
Generalized inverse of a real matrix (singular value decomposition
method).
ierr = c_dginv(a, ka, m, n, sig, v, kv, eps,

vw, &icon);

1. Function

This function computes the generalized inverse A of an m n real matrix A using the singular value decomposition
method (m 1 and n 1).

2. Arguments

The routine is called as follows:
ierr = c_dginv((double*)a, ka, m, n, sig, (double*)v, kv, eps, vw, &icon);

where:
a double

a[m][ka]

Input
Output

Matrix A.
Transposed matrix A . See Comments on use.

ka int Input C fixed dimension of array a (n).
m int Input The number of rows m in matrix A.
n int Input The number of columns n in matrix A.
sig double sig[n] Output Singular values of matrix A. See Comments on use.
v double

v[n][kv]

Output Orthogonal transformation matrix produced by the singular value
decomposition.

kv int Input C fixed dimension of array v (min(m+1,n)).
eps double Input Tolerance for relative zero test of the singular value. When eps is zero,

a standard value is used (0). See Comments on use.
vw double vw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
15000 Some singular values could not be obtained. Stopped.
29000 Memory allocation error. Bypassed.
30000 One of the following has occurred:

 ka < n
 m < 1
 n < 1
 kv < min(n, m + 1)
 eps < 0

Bypassed.

Description of the C-SSL II Routines

360

3. Comments on use

a
Note that the transposed matrix ()A T instead of the generalized inverse A is placed in the a array.

sig
All singular values are non-negative and stored in descending order. When icon=15000, the unobtainable singular
values are set to –1 and the values are not arranged in any order.

eps
eps has a direct effect on the determination of the rank of A and must be specified carefully.

When a singular value is less than the tolerance, eps, it is assumed to be zero. The standard value of eps is 16µ, where
µ is the unit round-off. A value less than zero results in icon=30000.

Least squares solution
The least squares minimal norm solution of a system of linear equations, Ax b , can be expressed as x A b by using
the generalized inverse A . However, this function should not be used except when generalized inverse A is required.
The function c_dlaxlm, is provided by the C-SSL II library for this purpose.

4. Example program

This example program initializes the matrix A, finds the generalized inverse, and displays the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define MMAX 7
#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int m, n, i, j, ka, kv;
 double a[MMAX][NMAX], sig[NMAX], v[NMAX][NMAX], vw[NMAX], eps;

 /* initialize system */
 m = MMAX;
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=i;j<n;j++) {
 a[i][j] = n-j;
 a[j][i] = n-j;
 }
 for (i=n;i<m;i++)
 for (j=0;j<n;j++) {
 a[i][j] = 0;
 if (i%n == j) a[i][j] = 1;
 }
 ka = NMAX;
 kv = NMAX;
 eps = 0;
 /* generalized inverse */
 ierr = c_dginv((double*)a, ka, m, n, sig, (double*)v, kv, eps, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dginv failed with icon = %d\n", icon);
 exit(1);
 }
 /* print transposed generalized inverse */
 for (i=0;i<m;i++) {
 for (j=0;j<n;j++)
 printf("%7.4f ",a[i][j]);
 printf("\n");

 c_dginv

 361

 }
 return(0);
}

5. Method

The singular value decomposition method is used to compute the Moore-Penrose generalized inverse A of a given
matrix A. For further information consult the entry for GINV in the Fortran SSL II User’s Guide and Reference [41].

Description of the C-SSL II Routines

362

c_dgsbk
Back transformation of the eigenvectors of the standard form
eigenproblem to the eigenvectors of the symmetric generalized
eigenproblem.
ierr = c_dgsbk(ev, k, n, m, b, &icon);

1. Function

This routine performs back transformation on m eigenvectors jy , j = 1,2...,m of an nn symmetric matrix S to

obtain the eigenvectors jx , j = 1,2,...,m for the generalized eigenproblem

 BxAx ,

where S is given by

 T1 ALLS ,

with TLLB , where L is a lower triangular matrix, and n 1.

2. Arguments

The routine is called as follows:
ierr = c_dgsbk((double *)ev, k, n, m, b, &icon);

where:
ev double Input The m eigenvectors jy of matrix S.
 ev[|m|][k] Output Eigenvectors jx for the generalized eigenproblem BxAx . See

Comments on use.
k int Input C fixed dimension of array ev (n).
n int Input Order n of the matrices.
m int Input Number m of eigenvectors. If m < 0, then the absolute value of m is

assumed.
b double

b[n(n+1)/2]

Input Matrix L. Stored in symmetric storage format. See Array storage formats
in the Introduction section for details. See Comments on use.

The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 ev[0][0] = 1/b[0].
30000 One of the following has occurred:

 m = 0 or |m| > n
 k < n

Bypassed.

3. Comments on use

If input eigenvectors jy , j=1,2,...,m are normalized such that IYY T , then output eigenvectors jx , j = 1,2,...,m are
such that IBXX T , where],...,,[21 myyyY and],...,,[21 mxxxX .

 c_dgsbk

 363

b
Output argument b of routine c_dgschl which reduces the symmetric eigenproblem to standard form, can be used as
input argument b of this routine.

4. Example program

This program reduces a matrix to a standard form, finds the eigenvalues and eigenvectors, and then performs a back
transformation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, ij, m;
 double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], vw[2*NMAX];
 double e[NMAX], ev[NMAX][NMAX], epsz;

 /* initialize matrix */
 n = NMAX;
 ij = 0;
 for (i=0;i<n;i++) {
 for (j=0;j<i;j++) {
 a[ij] = n-i;
 b[ij++] = 0;
 }
 a[ij] = n-i;
 b[ij++] = 1;
 }
 /* reduce to standard form */
 epsz = 0;
 ierr = c_dgschl(a, b, n, epsz, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dgschl failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues and eigenvectors */
 k = NMAX;
 ierr = c_dseig1(a, n, e, (double*)ev, k, &m, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dseig1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation */
 ierr = c_dgsbk((double*)ev, k, n, m, b, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dgsbk failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

Consult the entry for GSBK in the Fortran SSL II User's Guide and reference [119].

Description of the C-SSL II Routines

364

c_dgschl
Reduction of a symmetric matrix system BxAx to a standard form.
ierr = c_dgschl(a, b, n, epsz, &icon);

1. Function

For an nn symmetric matrix A and an nn positive definite symmetric matrix B, the generalized eigenvalue problem

 BxAx ,

is reduced to the standard form

 ySy ,

where S is a symmetric matrix and n 1.

2. Arguments

The routine is called as follows:
ierr = c_dgschl(a, b, n, epsz, &icon);

where:
a double

a[n(n+1)/2]

Input Matrix A. Stored in symmetric storage format. See Array storage
formats in the Introduction section for details.

 Output Matrix S. Stored in symmetric storage format. See Array storage formats
in the Introduction section for details.

b double

b[n(n+1)/2]

Input Matrix B. Stored in symmetric storage format. See Array storage formats
in the Introduction section for details.

 Output Lower triangular matrix L, such that TLLB . Stored in symmetric
storage format. See Array storage formats in the Introduction section for
details.

n int Input Order n of the matrices.
epsz double Input Tolerance (0) for relative zero test of pivots in the TLL decomposition

of matrix B. When epsz 0, a standard value is used. See Comments
on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 a[0] = a[0]/b[0],

b[0] = b[0].
28000 A pivot was negative in the TLL decomposition

of matrix B. Input matrix B is not positive
definite.

Discontinued.

29000 A pivot was relatively zero in the TLL
decomposition of matrix B. Input matrix B is

Discontinued.

 c_dgschl

 365

Code Meaning Processing
possibly singular.

30000 n < 1 Bypassed.

3. Comments on use

epsz
The standard value of epsz is 16µ, where µ is the unit round-off. If, during the TLL decomposition of matrix B, a pivot
value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=29000.
Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the
required accuracy.

If a pivot becomes negative during the TLL decomposition of matrix B, matrix B is considered not to be positive definite,
and processing is discontinued with icon = 28000.

4. Example program

This program reduces a matrix to a standard form, finds the eigenvalues and eigenvectors, and then performs a back
transformation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, ij, m;
 double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], vw[2*NMAX];
 double e[NMAX], ev[NMAX][NMAX], epsz;

 /* initialize matrix */
 n = NMAX;
 ij = 0;
 for (i=0;i<n;i++) {
 for (j=0;j<i;j++) {
 a[ij] = n-i;
 b[ij++] = 0;
 }
 a[ij] = n-i;
 b[ij++] = 1;
 }
 /* reduce to standard form */
 epsz = 0;
 ierr = c_dgschl(a, b, n, epsz, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dgschl failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues and eigenvectors */
 k = NMAX;
 ierr = c_dseig1(a, n, e, (double*)ev, k, &m, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dseig1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation */
 ierr = c_dgsbk((double*)ev, k, n, m, b, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dgsbk failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */

Description of the C-SSL II Routines

366

 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

Consult the entry for GSCHL in the Fortran SSL II User's Guide and reference [119].

 c_dhbk1

 367

c_dhbk1
Back transformation and normalization of the eigenvectors of a
Hessenberg matrix.
ierr = c_dhbk1(ev, k, n, ind, m, p, pv, dv,

&icon);

1. Function

This routine performs back transformation on m eigenvectors of an nn Hessenberg matrix H to obtain the
eigenvectors of a real matrix A. The resulting eigenvectors are then normalized such that 12 x . H is obtained

from A using the Householder method. Here 1 m n.

2. Arguments

The routine is called as follows:
ierr = c_dhbk1((double *)ev, k, n, ind, m, (double *)p, pv, dv, &icon);

where:
ev double

ev[m][k]

Input The m eigenvectors of the Hessenberg matrix H.

 Output The m eigenvectors of matrix A.
k int Input C fixed dimension of array ev and p (n).
n int Input Order n of matrices A and H.
ind int ind[m] Input Indicates the type of each eigenvector:

ind[j-1] = 1 if the j-1-st row of ev is a real eigenvector
ind[j-1] = -1 if the j-1-st row of ev is the real part of a complex
 eigenvector
ind[j-1] = 0 if the j-1-st row of ev is the imaginary part of a
 complex eigenvector.
j = 1,...,m.

m int Input Number m of eigenvectors.
p double

p[n][k]

Input Transformation matrix provided by the Householder method. See
Comments on use.

pv double pv[n] Input Transformation matrix provided by the Householder method. See
Comments on use.

dv double dv[n] Input Scaling factors used for balancing the matrix A. If matrix A was not
balanced, set dv[0] = 0.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 ev[0][0] = 1.
30000 One of the following has occurred:

 m < 1 or m > n
Bypassed.

Description of the C-SSL II Routines

368

Code Meaning Processing
 k < n

3. Comments on use

ev, ind and m
The eigenvectors are stored in ev such that each real eigenvector occupies one row and each complex eigenvector
occupies two rows (one for the real part and one for the imaginary part).

The routine c_dhvec can be used to obtain the eigenvectors of a Hessenberg matrix. Input argument m and output
arguments ev and ind of c_dhvec are the same as input arguments m, ev, and ind for this routine.

p and pv
The routine c_dhes1 can be used to reduce a matrix to a Hessenberg matrix. Output arguments a and pv of c_dhes1
are the same as input arguments p and pv of this routine.

dv
The output argument dv of c_dblnc contains the scaling factors used for balancing the matrix A, and is the input
argument dv of this routine.

4. Example program

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then
performs a back transformation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, m, mk, ind[NMAX];
 double a[NMAX][NMAX], pv[NMAX], aw[NMAX+4][NMAX];
 double er[NMAX], ei[NMAX], ev[NMAX][NMAX];
 double dv[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 mk = NMAX;
 for (i=0;i<n;i++) {
 a[i][i] = n-i;
 for (j=0;j<i;j++) {
 a[i][j] = n-i;
 a[j][i] = n-i;
 }
 }
 /* balance matrix A */
 ierr = c_dblnc((double*)a, k, n, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dblnc failed with icon = %i\n", icon);
 exit (1);
 }
 /* reduce matrix to Hessenberg form */
 ierr = c_dhes1((double*)a, k, n, pv, &icon);
 if (icon != 0) {
 printf("ERROR: c_dhes1 failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<n;i++)

 c_dhbk1

 369

 for (j=0;j<n;j++)
 aw[i][j] = a[i][j];
 /* find eigenvalues */
 ierr = c_dhsqr((double*)aw, k, n, er, ei, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dhsqr failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<m;i++) ind[i] = 1;
 /* find eigenvectors for given eigenvalues */
 ierr = c_dhvec((double*)a, k, n, er, ei,
 ind, m, (double*)ev, mk, (double*)aw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dhvec failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation to find e-vectors of A */
 ierr = c_dhbk1((double*)ev, k, n, ind, m, (double*)a, pv, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dhbk1 failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 i = 0;
 k = 0;
 while (i<m) {
 if (ind[i] == 0) i++;
 else if (ei[i] == 0) {
 /* real eigenvector */
 printf("eigenvalue: %12.4f\n", er[i]);
 printf("eigenvector:");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[k][j]);
 printf("\n");
 i++;
 k++;
 }
 else {
 /* complex eigenvector pair */
 printf("eigenvalue: %7.4f+i*%7.4f\n", er[i], ei[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", ev[k][j], ev[k+1][j]);
 printf("\n");
 printf("eigenvalue: %7.4f+i*%7.4f\n", er[i+1], ei[i+1]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", ev[k][j], -ev[k+1][j]);
 printf("\n");
 i = i+2;
 k = k+2;
 }
 }
 return(0);
}

5. Method

Consult the entries for HES1, BLNC, NRML, and HBK1 in the Fortran SSL II User's Guide and reference [119].

Description of the C-SSL II Routines

370

c_dheig2
Eigenvalues and corresponding eigenvectors for a Hermitian matrix
(Householder, bisection and inverse iteration methods).
ierr = c_dheig2(a, k, n, m, e, evr, evi, vw,

&icon);

1. Function

The m largest (or smallest) eigenvalues and corresponding eigenvectors for an n order Hermitian matrix A are determined
using the bisection method where nm 1 . The corresponding eigenvectors are then obtained using the inverse iteration
method. The eigenvectors are then normalised such that 12 x .

2. Arguments

The routine is called as follows:
ierr = c_dheig2((double *)a, k, n, m, e, (double *)evr, (double *)evi, vw,

&icon);

where:
a double

a[n][k]

Input Hermitian matrix A, stored in the Hermitian storage format. See Array
storage formats in the Introduction section.

Output The contents are altered on output.
k int Input C fixed dimension of matrix A (nk).
n int Input Order n of matrix A.
m int Input If m is positive, the m largest eigenvalues are calculated. If m is negative,

the m smallest eigenvalues are calculated.
e double e[|m|] Output The eigenvalues.
evr double

evr[|m|][k]

Output The real parts of the eigenvectors. They are stored in the rows
corresponding to the relevant eigenvalue.

evi double

evi[|m|][k]

Output The imaginary parts of the eigenvectors. They are stored in the rows
corresponding to the relevant eigenvalue.

vw double vw[9n] Work
icon int Output Condition codes. See below.
The complete list of condition codes is.

Code Meaning Processing
0 No error. Completed.
10000 1n e[0] = a[0][0]

evr[0][0] = 1

evi[0][0] = 0

15000 Some of the eigenvectors could not be calculated. The relevant rows of evr and evi are set to 0.
20000 None of the eigenvectors could be calculated. evr and evi are set completely to 0.
30000 One of the following has occurred:

 mn
 nk

Bypassed.

 c_dheig2

 371

Code Meaning Processing
 0m

3. Comments on use

General Comments
This routine is provided for Hermitian matrices only, and not for a general complex matrix where c_dceig2 should be
used.

4. Example program

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 Hermitian matrix.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, m, i, j, k;
 double a[NMAX][NMAX], e[NMAX], evr[NMAX][NMAX], evi[NMAX][NMAX], vw[9*NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[i][j] = n-i;
 a[j][i] = n-i;
 }
 m = n;
 /* find eigenvalues and eigenvectors */
 ierr = c_dheig2((double*)a, k, n, m, e,
 (double*)evr, (double*)evi, vw, &icon);
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("{%7.4f, %7.4f} ", evr[i][j], evi[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

For further information consult the entry for HEIG2 in the Fortran SSL II User's Guide, and also [74], [118] and [119].

Description of the C-SSL II Routines

372

c_dhes1
Reduction of a matrix to a Hessenberg matrix (Householder method).
ierr = c_dhes1(a, k, n, pv, &icon);

1. Function

This routine reduces an nn matrix A to a Hessenberg matrix H using the Householder method (orthogonal similarity
method)

 APPH T ,

where P is the transformation matrix. Here, n 1.

2. Arguments

The routine is called as follows:
ierr = c_dhes1((double *) a, k, n, pv, &icon);

where:
a double Input Matrix A.
 a[n][k] Output Upper Hessenberg matrix H. The remaining lower triangular portion

contains part of the transformation matrix P. See Comments on use.
k int Input C fixed dimension of array a (n).
n int Input Order n of matrix A.
pv double pv[n] Output Part of transformation matrix P. See Comments on use.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 or n = 2 Reduction is not performed.
30000 One of the following has occurred:

 n < 1
 k < n

Bypassed.

3. Comments on use

To determine eigenvalues of matrix H, and hence of matrix A, output argument a of this routine is used as input argument
a of c_dhsqr.

To determine eigenvectors of matrix H, output argument a of this routine is used as input argument a of c_dhvec.

To back transform and normalize the eigenvectors of matrix H (obtained from c_dhvec) to obtain the eigenvectors of
matrix A, output arguments a and pv of this routine are used as input arguments p and pv of c_dhbk1.

The precision of computed eigenvalues of a real matrix A is determined in the Hessenberg matrix reduction process.
Therefore, this routine has been implimented so that the Hessenberg matrix is determined with as high a precision as

 c_dhes1

 373

possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller
eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process.

4. Example program

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, m;
 double a[NMAX][NMAX], er[NMAX], ei[NMAX], pv[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[i][j] = i-n;
 a[j][i] = n-i;
 }

 /* reduce matrix to Hessenberg form */
 ierr = c_dhes1((double*)a, k, n, pv, &icon);
 if (icon != 0) {
 printf("ERROR: c_dhes1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues of Hessenberg matrix */
 ierr = c_dhsqr((double*)a, k, n, er, ei, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dhsqr failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 for (i=0;i<m;i++) {
 printf("%7.4f+i*%7.4f \n", er[i], ei[i]);
 }
 return(0);
}

5. Method

Consult the entry for HES1 in the Fortran SSL II User's Guide and reference [119].

Description of the C-SSL II Routines

374

c_dhrwiz
Assessment of Hurwitz polynomials.
ierr = c_dhrwiz(a, na, isw, &iflg, &sa, vw,

&icon);

1. Function

This routine assesses whether the polynomial in (1) of degree n)1(with real coefficients is a Hurwitz polynomial (all
zeros lying in the left-half plane Re(s) < 0).

 1
1

21 ...)(
 nn

nn asasasasP (1)

If)(sP is not a Hurwitz polynomial, the routine searches for 0 ()0 such that)(sP is a Hurwitz polynomial for

0 .

2. Arguments

The routine is called as follows:
ierr = c_dhrwiz(a, na, isw, &iflg, &sa, vw, &icon);

where:
a double a[n+1] Input Coefficients ia of)(sP , with a[i-1] = ia , 1,...,1 ni .
na int Input Degree n of)(sP .
isw int Input Control information.

isw = 0: routine only judges whether)(sP is a Hurwitz polynomial,
isw = 1: routine judges whether)(sP is a Hurwitz polynomial,
 and if is not, searches for 0 ,
otherwise: 1 is assumed.

iflg int Output Result of judgement.
iflg = 0:)(sP is a Hurwitz polynomial,
iflg = 1:)(sP is not a Hurwitz polynomial.

sa double Output Value of 0 . sa = 0 when)(sP is a Hurwitz polynomial.
vw double

vw[n+1]

Work

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Value 0 has not been found. Bypassed.
30000 One of the following has occurred:

 na < 1
 a[0] = 0

Bypassed.

 c_dhrwiz

 375

3. Comments on use

Since the function of this routine relates to obtaining the inverse Laplace transform)(tf of a rational function
)(/)()(sPsQsF , it can also be used to check roughly the characteristics of)(tf . This means that)(sF has

singularities in the domain of 0)(Re s if)(sP is not a Hurwitz polynomial, and the value of the inverse transform
function)(tf increases exponentially as the value of t approaches infinity.

To obtain the inverse Laplace transform)(tf of a rational function)(sF known to be regular in the domain Re(s) > 0,
use routine c_dlaps1, and when)(sF is a general rational function use c_dlaps2.

4. Example program

Given the polynomial 811085412)(234 sssssP , the following program determines whether or not it is a
Hurwitz polynomial.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double sa, a[5], vw[5];
 int isw, na, iflg, neps[9];

 /* generate initial data */
 na = 4;
 a[0] = 1;
 a[1] = -12;
 a[2] = 54;
 a[3] = -108;
 a[4] = 81;
 isw = 1;
 /* is it a Hurwitz polynomial ? */
 ierr = c_dhrwiz(a, na, isw, &iflg, &sa, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dhrwiz failed with icon = %d\n", icon);
 exit(1);
 }
 printf("iflg = %i sa = %12.5e\n", iflg, sa);
 return(0);
}

5. Method

Consult the entry for HRWIZ and Chapter 8 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

376

c_dhsqr
Eigenvalues of a Hessenberg matrix (double QR method).
ierr = c_dhsqr(a, k, n, er, ei, &m, &icon);

1. Function

This routine obtains the eigenvalues of an nn Hessenberg matrix A using the double QR method. Here, n 1.

2. Arguments

The routine is called as follows:
ierr = c_dhsqr((double *) a, k, n, er, ei, &m, &icon);

where:
a double Input Matrix A.
 a[n][k] Output The contents of a are changed on output.
k int Input C fixed dimension of array a (n).
n int Input Order n of matrix A.
er double er[n] Output Real part of the eigenvalues of matrix A.
ei double ei[n] Output Imaginary part of the eigenvalues of matrix A.
m int Output The number of eigenvalues obtained.
icon int Output Condition code.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 er[0] = a[0][0] and ei[0] = 0.
15000 Some of the eigenvalues could not be obtained. Discontinued. m is set to the number of

eigenvalues obtained, 1 m < n.
20000 No eigenvalues could be obtained. Discontinued. m is set to 0.
30000 One of the following has occurred:

 n < 1
 k < n

Bypassed.

3. Comments on use

A real matrix A can be reduced to a real Hessenberg matrix using routine c_dhes1, before calling this routine to obtain
the eigenvalues. The output argument a from c_dhes1 is the input argument a of this routine.

The contents of array a are changed on output by this routine. Therefore, if eigenvectors are also required, a copy of array
a should be made before calling this routine, so that the copy can be used later as input argument a of c_dhvec.

4. Example program

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results.

 c_dhsqr

 377

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, m;
 double a[NMAX][NMAX], er[NMAX], ei[NMAX], pv[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[i][j] = i-n;
 a[j][i] = n-i;
 }

 /* reduce matrix to Hessenberg form */
 ierr = c_dhes1((double*)a, k, n, pv, &icon);
 if (icon != 0) {
 printf("ERROR: c_dhes1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues of Hessenberg matrix */
 ierr = c_dhsqr((double*)a, k, n, er, ei, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dhsqr failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 for (i=0;i<m;i++) {
 printf("%7.4f+i*%7.4f \n", er[i], ei[i]);
 }
 return(0);
}

5. Method

Consult the entry for HSQR in the Fortran SSL II User's Guide and references [118] and [119].

Description of the C-SSL II Routines

378

c_dhvec
Eigenvectors of a Hessenberg matrix (inverse iteration method).
ierr = c_dhvec(a, k, n, er, ei, ind, m, ev,

mk, aw, &icon);

1. Function

This routine obtains eigenvectors jx corresponding to selected eigenvalues j of an nn Hessenberg matrix A, using
the inverse iteration method. The eigenvectors are not normalized. Here, n 1.

2. Arguments

The routine is called as follows:
ierr = c_dhvec((double *)a, k, n, er, ei, ind, m, (double *)ev, mk, (double

*)aw, &icon);

where:
a double

a[n][k]

Input Matrix A.

k int Input C fixed dimension of arrays a, ev and aw (n).
n int Input Order n of matrix A.
er double er[m] Input The real parts of the eigenvalues er[j-1] = Re(j), mj ,...,1 of

matrix A. See Comments on use.
ei double ei[m] Input The imaginary parts of the eigenvalues ei[j-1] = Im(j), mj ,...,1

of matrix A. See Comments on use.
ind int ind[m] Input Indicates which eigenvectors are to be obtained

ind[j-1] = 0 if an eigenvector corresponding to the j-th eigenvalue
 j is not to be obtained.
ind[j-1] = 1 if an eigenvector corresponding to the j-th eigenvalue
 j is to be obtained.
j = 1,...,m. See Comments on use.

 Output Indicates the type of each eigenvector.
ind[j-1] = 1 if the j-1-st row of ev is a real eigenvector
ind[j-1] = -1 if the j-1-st row of ev is the real part of a complex
 eigenvector
ind[j-1] = 0 if the j-1-st row of ev is the imaginary part of a
 complex eigenvector.
j = 1,...,mk.

m int Input Number of eigenvalues m of matrix A stored in arrays er and ei.
ev double

ev[mk][k]

Output Eigenvectors x corresponding to eigenvalues of matrix A. Real
eigenvectors of real eigenvalues are stored in one row of array ev,
complex eigenvectors of complex eigenvalues are split into real and
imaginary parts and stored in two consecutive rows. See Comments on
use.

mk int Input The number of rows of array ev. See Comments on use.

 c_dhvec

 379

aw double

aw[n+4][k]

Work

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 ev[0][0] = 1.
15000 An eigenvector corresponding to a specified

eigenvalue could not be obtained.
The elements of ind corresponding to the
eigenvectors that could not be obtained are set to
0.

16000 There are not enough rows in array ev to store all
the eigenvectors that are requested.

Only as many eigenvectors as can be contained in
array ev are computed. The elements of ind
corresponding to the eigenvectors that could not
be computed are set to 0.

20000 No eigenvectors could be obtained. All elements of ind are set to 0.
30000 One of the following has occurred:

 m < 1 or m > n
 k < n

Bypassed.

3. Comments on use

ind, er, ei, ev and mk
If the j-th eigenvalue, j , is complex, then j and 1 j should be a pair of complex conjugate eigenvalues, stored in er
and ei.

The eigenvectors are stored successively in array ev from the first row. For example, if eigenvectors corresponding to the
first two eigenvalues are not required, but the one corresponding to the third eigenvalue is, then the real part of that
eigenvector is stored in ev[0][i], and the imaginary part (if it exists) is stored in ev[1][i], i = 0,...,n-1.

Based on the eigenvector storage described above, argument mk should be set to the number of rows required to contain
the eigenvectors. If the actual number of rows required for the eigenvectors is larger that the number specified in mk, as
many eigenvectors as can be stored in the number of rows specified in mk are computed, the rest are ignored and icon is
set to 16000.

General comments
The eigenvalues used by this routine can be determined by routine c_dhsqr. The output arguments er, ei, and m of
c_dhsqr are the same as the input arguments er, ei, and m of this routine. The input argument a of c_dhsqr (not the
output argument a of c_dhsqr) is the same as the input argument a of this routine.

When selected eigenvectors of a real matrix are to be determined:

 the real matrix is first reduced to a real Hessenberg matrix using c_dhes1,

 eigenvalues of the Hessenberg matrix are determined using routine c_dhsqr,

 selected eigenvectors of the Hessenberg matrix are determined using this routine,

Description of the C-SSL II Routines

380

 back transformation is applied to the above eigenvectors using routine c_dhbk1 to obtain the eigenvectors of the
real matrix.

Note that c_deig1 can be used to obtain all the eigenvectors of a real matrix.

The resulting eigenvectors of this routine have not been normalized. If necessary, routine c_dnrml can be used to
normalize eigenvectors.

Output arguments ind, m and ev of this routine are the same as the input arguments ind, m and ev of routines
c_dhbk1 and c_dnrml.

4. Example program

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then
performs a back transformation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, m, mk, ind[NMAX];
 double a[NMAX][NMAX], pv[NMAX], aw[NMAX+4][NMAX];
 double er[NMAX], ei[NMAX], ev[NMAX][NMAX];
 double dv[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 mk = NMAX;
 for (i=0;i<n;i++) {
 a[i][i] = n-i;
 for (j=0;j<i;j++) {
 a[i][j] = n-i;
 a[j][i] = n-i;
 }
 }
 /* balance matrix A */
 ierr = c_dblnc((double*)a, k, n, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dblnc failed with icon = %i\n", icon);
 exit (1);
 }
 /* reduce matrix to Hessenberg form */
 ierr = c_dhes1((double*)a, k, n, pv, &icon);
 if (icon != 0) {
 printf("ERROR: c_dhes1 failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<n;i++)
 for (j=0;j<n;j++)
 aw[i][j] = a[i][j];
 /* find eigenvalues */
 ierr = c_dhsqr((double*)aw, k, n, er, ei, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dhsqr failed with icon = %i\n", icon);
 exit (1);
 }
 for (i=0;i<m;i++) ind[i] = 1;
 /* find eigenvectors for given eigenvalues */
 ierr = c_dhvec((double*)a, k, n, er, ei,
 ind, m, (double*)ev, mk, (double*)aw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dhvec failed with icon = %i\n", icon);
 exit (1);

 c_dhvec

 381

 }
 /* back transformation to find e-vectors of A */
 ierr = c_dhbk1((double*)ev, k, n, ind, m, (double*)a, pv, dv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dhbk1 failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 i = 0;
 k = 0;
 while (i<m) {
 if (ind[i] == 0) i++;
 else if (ei[i] == 0) {
 /* real eigenvector */
 printf("eigenvalue: %12.4f\n", er[i]);
 printf("eigenvector:");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[k][j]);
 printf("\n");
 i++;
 k++;
 }
 else {
 /* complex eigenvector pair */
 printf("eigenvalue: %7.4f+i*%7.4f\n", er[i], ei[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", ev[k][j], ev[k+1][j]);
 printf("\n");
 printf("eigenvalue: %7.4f+i*%7.4f\n", er[i+1], ei[i+1]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", ev[k][j], -ev[k+1][j]);
 printf("\n");
 i = i+2;
 k = k+2;
 }
 }
 return(0);
}

5. Method

Consult the entry for HVEC in the Fortran SSL II User's Guide and references [118] and [119].

Description of the C-SSL II Routines

382

c_dicheb
Indefinite integral of a Chebyshev series.
ierr = c_dicheb(a, b, c, &n, &icon);

1. Function

Given a truncated Chebyshev series (1) with n-terms, defined on the interval],[ba

1

0

)(2)('n

k
kk ab

abxTcxf , (1)

this routine obtains the indefinite integral in a Chebyshev series (2)

n

k
kk ab

abx
Tcdxxf

0

)(2
)(' , (2)

where kc nk ,...,1,0 are its Chebyshev coefficients with arbitrary constant 0c assumed to be zero. ' denotes

the sum in which the initial term is multiplied by a factor ½. Here, 1n and ba .

2. Arguments

The routine is called as follows:
ierr = c_dicheb(a, b, c, &n, &icon);

where:
a double Input Lower limit a of the interval for the Chebyshev series.
b double Input Upper limit b of the interval for the Chebyshev series.
c double c[n+1] Input Coefficients kc of the Chebyshev series, with

c[k] = kc , 1,...,1,0 nk .
 Output Coefficients kc for the indefinite integral, with

c[0] = 0, c[k] = kc , nk ,...,2,1 .
n int Input Number of terms n of the Chebyshev series.
 Output Number of terms n+1 of the indefinite integral Chebyshev series.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n < 1
 a = b

Bypassed.

3. Comments on use

When the indefinite integral of an arbitrary function is required, the routine c_dfcheb can be called before this one to
obtain the Chebyshev series for the function.

 c_dicheb

 383

The routine c_decheb can be called after this routine to evaluate the Chebyshev series of the indefinite integral at an
arbitrary point],[bav . See example.

Arbitrary constant
This routine outputs zero as the arbitrary constant 0c of the Chebyshev series for the indefinite integral. If the constant is
to be defined so that the indefinite integral at a point],[bav takes the value vy , then it should be computed as

)(20 y]c[vy

where y is the value of the Chebyshev series for the indefinite integral evaluated at the point v using routine c_decheb.

Definite integral
To obtain the definite integral

ix

a
dttf)(,],[baxi , mi ,...,2,1 ,

the value of the arbitrary constant 0c is determined first, such that the value of the indefinite integral at the end point a is
zero. Then the routine c_decheb is called m times repeatedly. See example.

Error
 The error of an indefinite integral can be estimated from the absolute sum of the last two terms of the series.

4. Example program

This program evaluates the Chebyshev sreies, and its integral, for the function:

]1,0[,
10014

1)(
0

2

 x

t
dtxf

x

 (3)

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 257 /* default value */

double fun(double x); /* function prototype */
double truefun(double x);

MAIN__()
{
 int ierr, icon;
 int i, n, nmin, nmax;
 double epsa, epsr, err, a, b, v, f, h;
 double c[NMAX], tab[NMAX-2];

 /* initialize data */
 epsr = 5e-5;
 epsa = epsr;
 nmin = 9; /* default value */
 nmax = NMAX;
 a = 0;
 b = 1;
 /* expand function as Chebyshev series */
 ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, &n, &err, tab, &icon);
 if (icon >= 20000) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 /* now calculate integral */
 ierr = c_dicheb(a, b, c, &n, &icon);
 if (icon != 0) {

Description of the C-SSL II Routines

384

 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 /* set constant term c0 */
 ierr = c_decheb(a, b, c, n, a, &f, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 c[0] = (0.25-f)*2;
 /* now evaluate Chebyshev series at points */
 h = 0.05;
 printf(" v integral error \n");
 for (i=0;i<=20;i++) {
 v = a+i*h;
 ierr = c_decheb(a, b, c, n, v, &f, &icon);
 if (icon != 0) {
 printf("ERROR: icon = %4i\n", icon);
 exit(1);
 }
 err = truefun(v) - f;
 printf("%4.2f %12.5e %12.5e\n", v, f, err);
 }
 return(0);
}

/* function to expand */
double fun(double x)
{
 return 1/(1+100*x*x);
}

/* true integral function */
double truefun(double x)
{
 return 0.25+atan(10*x)/10;
}

5. Method

Consult the entry for ICHEB in the Fortran SSL II User's Guide.

 c_dierf

 385

c_dierf
Inverse error function)(erf 1 x .
ierr = c_dierf(x, &f, &icon);

1. Function

This routine evaluates the inverse function,)(erf 1 x , of the error function

x t dtex
0

22)(erf , using the

minimax approximation formulas in the form of the polynomial and rational functions. Here 1|| x .

2. Arguments

The routine is called as follows:
ierr = c_dierf(x, &f, &icon);

where:
x double Input Independent variable x. See Comments on use for range of x.
f double Output Function value)(erf 1 x .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 |x| 1. f is set to 0.

3. Comments on use

Range of x
The valid range of argument x is |x| < 1.

c_dierf and c_dierfc
Through the relationship

)1(erfc (x)erf 11 x

the inverse error function can be evaluated by the routine c_dierfc which caluclates the inverse complimentary error
function)(erfc 1 x . However, if values of x are in the range |x| 0.8, this routine is more accurate and efficient than
c_dierfc.

4. Example program

This program generates a range of function values for 101 points in the the interval [0,1].

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;

Description of the C-SSL II Routines

386

 double x, f;
 int i;

 for (i=0;i<100;i++) {
 x = (double)i/100;
 /* calculate inverse error function */
 ierr = c_dierf(x, &f, &icon);
 if (icon == 0)
 printf("x = %5.2f f = %f\n", x, f);
 else
 printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
 }
 return(0);
}

5. Method

Consult the entry for IERF in the Fortran SSL II User's Guide.

 c_dierfc

 387

c_dierfc
Inverse complimentary error function)(erfc 1 x .
ierr = c_dierfc(x, &f, &icon);

1. Function

This routine evaluates the inverse function,)(erfc 1 x , of the complimentary error function

x

t dtex
22)(erfc , using the minimax approximation formulas in the form of the polynomial and rational

functions. Here 20 x .

2. Arguments

The routine is called as follows:
ierr = c_dierfc(x, &f, &icon);

where:
x double Input Independent variable x. See Comments on use for range of x.
f double Output Function value)(erfc 1 x .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 x 0 or x 2. f is set to 0.

3. Comments on use

Range of x
The valid range of argument x is 0 < x < 2.

c_dierfc and c_dierf
Through the relationship

)1(erf)(erfc 11 xx

the inverse complimentary error function can be evaluated by the routine c_dierf which calculates the inverse error
function)(erf 1 x . However, if values of x are in the range 0 < x < 0.2, this routine is more accurate and efficient than
c_dierf.

4. Example program

This program generates a range of function values for 101 points in the the interval [0,1].

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()

Description of the C-SSL II Routines

388

{
 int ierr, icon;
 double x, f;
 int i;

 for (i=1;i<=100;i++) {
 x = (double)i/100;
 /* calculate inverse complementary error function */
 ierr = c_dierfc(x, &f, &icon);
 if (icon == 0)
 printf("x = %5.2f f = %f\n", x, f);
 else
 printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
 }
 return(0);
}

5. Method

Consult the entry for IERFC in the Fortran SSL II User's Guide.

 c_digam1

 389

c_digam1
Incomplete Gamma function of the first kind (,)x .
ierr = c_digam1(v, x, &f, &icon);

1. Function

This function computes the incomplete Gamma function of the first kind

 (,)x e t dtt
x

 1

0

by series expansion, asymptotic expansion and numerical integration, where 0 and x 0 .

2. Arguments

The routine is called as follows:
ierr = c_digam1(v, x, &f, &icon);

where:
v double Input Independent variable .
x double Input Independent variable x.
f double Output Function value (,)x .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 v ≤ 0
 x < 0

f is set to zero.

3. Comments on use

When x ≥ 46.0, the value of (,)x may be obtained by the complete GAMMA() function, () , in Fortran’s basic
functions, because (,) ()x in the above ranges.

4. Example program

This program evaluates a table of function values for a range of x and v values.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double v, x, f;
 int iv, ix;

 for (iv=1;iv<10;iv++) {
 v = (iv+7*(iv-1.0)/3)/10;

Description of the C-SSL II Routines

390

 for (ix=1;ix<10;ix++) {
 x = (ix+7*(ix-1.0)/3)/10;
 /* calculate incomplete gamma function */
 ierr = c_digam1(v, x, &f, &icon);
 if (icon == 0)
 printf("v = %5.2f x = %5.2f f = %f\n", v, x, f);
 else
 printf("ERROR: v = %5.2f x = %5.2f f = %f icon = %i\n",
 v, x, f, icon);
 }
 }
 return(0);
}

5. Method

Depending on the values for x and , the method used to compute the function (,)x with x1 55 . is:

 Power series expansion when x 2 1() or 1xx .
 The routine c_digam2 (asymptotic expansion and numerical integration) when x 2 1() and 1xx .

For further information consult the entry for IGAM1 in the Fortran SSL II User's Guide.

 c_digam2

 391

c_digam2
Incomplete Gamma function of the second kind (,) x .
ierr = c_digam2(v, x, &f, &icon);

1. Function

This function computes the incomplete Gamma function of the second kind

(,) () x e t dt e e x t dtt x t

 1 1

00

by series expansion, asymptotic expansion and numerical integration, where 0 and x 0 (x 0 when 0).

2. Arguments

The routine is called as follows:
ierr = c_digam2(v, x, &f, &icon);

where:
v double Input Independent variable .
x double Input Independent variable x.
f double Output Function value (,) x .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 xv x 1e flmax f is set to flmax
30000 One of the following has occurred:

 v < 0
 x < 0
 v = 0 and x = 0

f is set to zero.

3. Comments on use

Numerical overflow/underflow
For x log()maxfl , numerical underflow occurs in computing the value of (,) x . Similarly, numerical overflow
occurs when max

1 flex x with x 1 and very large. For details on the constant flmax , see the Machine
constants section of the Introduction.

4. Example program

This program evaluates a table of function values for a range of x and v values.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()

Description of the C-SSL II Routines

392

{
 int ierr, icon;
 double v, x, f;
 int iv, ix;

 for (iv=1;iv<10;iv++) {
 v = (iv+7*(iv-1.0)/3)/10;
 for (ix=1;ix<10;ix++) {
 x = (ix+7*(ix-1.0)/3)/10;
 /* calculate incomplete gamma function */
 ierr = c_digam2(v, x, &f, &icon);
 if (icon == 0)
 printf("v = %5.2f x = %5.2f f = %f\n", v, x, f);
 else
 printf("ERROR: v = %5.2f x = %5.2f f = %f icon = %i\n",
 v, x, f, icon);
 }
 }
 return(0);
}

5. Method

Depending on the values for x and , the method used to compute the function (,) x is:

 The Fortran routine DEXPI when 0 and x 0 .
 Fortran’s basic function GAMMA when 0 and x 0 .
 When 0 and x 0 , the approximation used with x1 40 0 . are:

 Asymptotic expansion when integer or x x 1 .
 Numerical integration when integer and x x 1 .

For further information consult the entry for IGAM2 in the Fortran SSL II User's Guide.

 c_dindf

 393

c_dindf
Inverse normal distribution function)(1 x .
ierr = c_dindf(x, &f, &icon);

1. Function

This routine computes the value of the inverse function,)(1 x , of the normal distribution function

 dtex
x t

0
2

2

2
1)(,

by the relation

 xerfx 22)(11 ,

where | x | < ½.

2. Arguments

The routine is called as follows:
ierr = c_dindf(x, &f, &icon);

where:
x double Input Independent variable x. See Comments on use for range of x.
f double Output Function value)(1 x .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 | x | 1/2 f is set to 0.

3. Comments on use

Range of x
The valid range of argument x is | x | < ½.

c_dindf and c_dindfc
Using the relationship between the inverse normal distribution function)(1 x and the inverse complimentary normal
distribution function)(1 x

)2/1()(11 xx ,

the value of)(1 x can be computed using the routine c_dindfc. However, in the range || x 0.4 this leads to less
accuracy and less efficient computation than using this routine.

Description of the C-SSL II Routines

394

4. Example program

This program generates a range of function values for 50 points in the the interval [0,0.49].

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, f;
 int i;

 for (i=0;i<50;i++) {
 x = (double)i/100;
 /* calculate inverse normal distribution function */
 ierr = c_dindf(x, &f, &icon);
 if (icon == 0)
 printf("x = %5.2f f = %f\n", x, f);
 else
 printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
 }
 return(0);
}

5. Method

Consult the entry for INDF in the Fortran SSL II User's Guide.

 c_dindfc

 395

c_dindfc
Inverse complimentary normal distribution function)(1 x .
ierr = c_dindfc(x, &f, &icon);

1. Function

This routine computes the value of the inverse function,)(1 x , of the complimentary normal distribution function

 dtex
x

t

 2

2

2
1)(,

by the relation

 xerfcx 22)(11 ,

where 0 < x < 1.

2. Arguments

The routine is called as follows:
ierr = c_dindfc(x, &f, &icon);

where:
x double Input Independent variable x. See Comments on use for range of x.
f double Output Function value)(1 x .
icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 x 0 or x 1 f is set to 0.

3. Comments on use

Range of x
The valid range of argument x is 0 < x < 1.

c_dindfc and c_dindf
Using the relationship between the inverse complimentary normal distribution function)(1 x and the inverse normal
distribution function)(1 x

)2/1()(11 xx ,

the value of)(1 x can be computed using the routine c_dindf. However, in the range 0 < x < 0.1 this leads to less
accuracy and less efficient computation than using this routine.

Description of the C-SSL II Routines

396

4. Example program

This program generates a range of function values for 50 points in the the interval [0,0.49].

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, f;
 int i;

 for (i=1;i<=50;i++) {
 x = (double)i/100;
 /* calculate inverse complementary normal distribution function */
 ierr = c_dindfc(x, &f, &icon);
 if (icon == 0)
 printf("x = %5.2f f = %f\n", x, f);
 else
 printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
 }
 return(0);
}

5. Method

Consult the entry for INDFC in the Fortran SSL II User's Guide.

 c_dlaps1

 397

c_dlaps1
Inversion of Laplace transform of a rational function (regular in the
right-half plane).
ierr = c_dlaps1(a, na, b, nb, t, delt, np,

epsr, ft, t1, neps, errv, &icon);

1. Function

Given a rational function)(sF expressed by (1), that is regular in the domain Re(s) > 0, this routine calculates values of
the inverse Laplace transform))1((),...,(),(000 ttfttftf .

)(
)()(

sP
sQsF , (1)

where

 1
1

21 ...)(
 mm

mm bsbsbsbsQ ,

 1
1

21 ...)(
 nn

nn asasasasP ,

with real coefficents 1,...,1, niai and 1,...,1, mjb j , and mn .

2. Arguments

The routine is called as follows:
ierr = c_dlaps1(a, na, b, nb, t, delt, np, epsr, ft, t1, neps, errv, &icon);

where:
a double a[n+1] Input Coefficients ia of)(sP , with a[i-1] = ia , 1,...,1 ni .
na int Input Degree n of)(sP .
b double b[m+1] Input Coefficients jb of)(sQ , with b[j-1] = jb , 1,..,.1 mj .
nb int Input Degree m of)(sQ .
t double Input Initial value 0t (0) from which the values of)(tf are required.
delt double Input Increment t (0) of variable t. If delt = 0, only)(0tf is

calculated.
np int Input Number of points (1) at which values of)(tf are required.
epsr double Input Relative error tolerance (0) for the values)(tf .Values of epsr

between 210 and 710 are typical. If epsr = 0, the default value of
410 is used.

ft double ft[np] Output Values)(0 titf , with ft[i] =)(0 titf .
t1 double t1[np] Output Values tit 0 with t1[i] = tito .
neps int neps[np] Output Number of terms in the truncated expansions. The number of terms iN

used to calculate ft[i] is stored in neps[i].
errv double

errv[np]

Output Estimates of the relative error. The estimate of the relative error in
ft[i] is stored in errv[i].

icon int Output Condition code. See below.
The complete list of condition codes is:

Description of the C-SSL II Routines

398

Code Meaning Processing
0 No error. Completed.
10000 Some of the results did not meet the required

accuracy.
Continued. Values representing accuracy for

)(0 titf , 1,...,1,0 i are output in errv.
30000 One of the following has occurred:

 nb < 0 or nb > na
 t < 0 or delt < 0
 np < 1
 epsr < 0
 a[0] = 0

Bypassed.

3. Comments on use

The function)(sF must be regular in the domain Re(s) > 0 . If)(sF is singular or if its regularity is not known, the
routine c_dlaps2 should be used.

Initial value
If 00 t , the value of)0(f is calculated as

0

/
)0(11 ab

f
)1(
)1(

mn
mn

 .

n = m
When n = m, (1) can be written as

)()(
)(
)()(21 sFsF

sP
sQsF

where

1
1

21

1
2

3
1

2
2

111

...
...

)(

/)(

n
nn

n
nn

asasa
cscsc

sF

absF

.

The inverse transform)(1 tf of)(1 sF is given as

)()(
1

1
1 t

a
b

tf

where)(t is the delta function, and the inverse Laplace transform of)(2 sF for 0t can be calculated using this
routine. When 0t , the maximum value of the floating point numbers maxfl is returned, see the Machine constants
section in the Introduction.

4. Example program

For a rational function)(sF is non-singular for real 0s , the inverse Laplace transform is obtained at certain points by
the following program.)(sF is given by:

 c_dlaps1

 399

811085412

4)(
234

2

ssss
ssF (2)

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double t, delt, epsr;
 double a[5], b[3], t1[9], ft[9], errv[9];
 int i, l, na, nb, neps[9];

 /* generate initial data */
 nb = 2;
 b[0] = 1;
 b[1] = 0;
 b[2] = 4;
 na = 4;
 a[0] = 1;
 a[1] = 12;
 a[2] = 54;
 a[3] = 108;
 a[4] = 81;
 t = 0.2;
 delt = 0.2;
 l = 9;
 epsr = 1e-4;
 /* calculate inverse Laplace transform */
 ierr = c_dlaps1(a, na, b, nb, t, delt, l, epsr, ft, t1, neps, errv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dlaps1 failed with icon = %d\n", icon);
 exit(1);
 }
 printf("icon = %i\n", icon);
 printf(" t1 ft errv neps \n");
 for (i=0;i<l;i++) {
 printf("%4.2f %12.5e %12.5e %4i\n",
 t1[i], ft[i], errv[i], neps[i]);
 }
 return(0);
}

5. Method

Consult the entry for LAPS1 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

400

c_dlaps2
Inversion of Laplace transform of a general rational function.
ierr = c_dlaps2(a, na, b, nb, t, delt, np,

epsr, ft, t1, neps, errv, &iflg,

vw, &icon);

1. Function

Given a rational function)(sF expressed by (1), this routine calculates values of the inverse Laplace transform
))1((),...,(),(000 ttfttftf .

)(
)()(

sP
sQsF , (1)

where

 1
1

21 ...)(
 mm

mm bsbsbsbsQ ,

 1
1

21 ...)(
 nn

nn asasasasP ,

with real coefficents 1,...,1, niai and 1,...,1, mjb j , and mn . In this case,)(sF need not be regular in the
domain Re(s) > 0.

2. Arguments

The routine is called as follows:
ierr = c_dlaps2(a, na, b, nb, t, delt, np, epsr, ft, t1, neps, errv, &iflg,

vw, &icon);

where:
a double a[n+1] Input Coefficients ia of)(sP , with a[i-1] = ia , 1,...,1 ni .
na int Input Degree n of)(sP .
b double b[m+1] Input Coefficients jb of)(sQ , with b[j-1] = jb , 1,...,1 mj .
nb int Input Degree m of)(sQ .
t double Input Initial value 0t (0) from which the values of)(tf are required.
delt double Input Increment t (0) of variable t. If delt = 0, only)(0tf is

calculated.
np int Input Number of points (1) at which values of)(tf are required.
epsr double Input Relative error tolerance (0) for the values)(tf .Values of epsr

between 210 and 710 are typical. If epsr = 0, the default value of
410 is used.

ft double ft[np] Output Values)(0 titf , with ft[i] =)(0 titf .
t1 double t1[np] Output Values tit 0 with t1[i] = tito .
neps int neps[np] Output Number of terms in the truncated expansions. The number of terms iN

used to calculate ft[i] is stored in neps[i].
errv double

errv[np]

Output Estimates of the relative error.The estimate of the relative error in
ft[i] is stored in errv[i].

 c_dlaps2

 401

iflg int Output iflg = 0 if)(sF is regular in the domain Re(s) > 0,
iflg = 1 otherwise. See Comments on use.

vw double

vw[na+nb+2]

Work

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Some of the results did not meet the required

accuracy.
Continued. Values representing accuracy for

)(0 titf , 1,...,1,0 i are output in errv.
20000 The subroutine failed to obtain a real value

00 such that)(sF is regular in the domain
Re(s) > 0 .

Bypassed.

30000 One of the following has occurred:
 nb < 0 or nb > na
 t < 0 or delt < 0
 np < 1
 epsr < 0
 a[0] = 0

Bypassed.

3. Comments on use

The rational function)(sF need not be regular in the domain Re(s) > 0 . However, if it is known that)(sF is regular
routine c_dlaps1 should be used for efficiency.

Initial value
If 00 t , the value of)0(f is calculated as

0

/
)0(11 ab

f
)1(
)1(

mn
mn

 .

iflg
If iflg= 1 is output,)(sF is not regular in the domain Re(s) > 0. This means that)(tf increases exponentially as t
approaches infinity.

n = m
When n = m, (1) can be written as

)()(
)(
)()(21 sFsF

sP
sQsF

where

1
1

21

1
2

3
1

2
2

111

...
...

)(

/)(

n
nn

n
nn

asasa
cscsc

sF

absF

.

The inverse transform)(1 tf of)(1 sF is given as

Description of the C-SSL II Routines

402

)()(
1

1
1 t

a
b

tf

where)(t is the delta function, and the inverse transform of)(2 sF for 0t can be calculated by this routine When
0t , the maximum value of the floating point numbers maxfl is returned, see the Machine constants section in the

Introduction.

4. Example program

For a rational function)(sF the inverse Laplace transform is calculated by the following program at certain points.
)(sF is given by:

811085412

4)(
234

2

ssss
ssF (2)

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double t, delt, epsr;
 double a[5], b[3], t1[9], ft[9], errv[9], vw[8];
 int i, l, na, nb, iflg, neps[9];

 /* generate initial data */
 nb = 2;
 b[0] = 1;
 b[1] = 0;
 b[2] = 4;
 na = 4;
 a[0] = 1;
 a[1] = -12;
 a[2] = 54;
 a[3] = -108;
 a[4] = 81;
 t = 0.2;
 delt = 0.2;
 l = 9;
 epsr = 1e-4;
 /* calculate inverse Laplace transform */
 ierr = c_dlaps2(a, na, b, nb, t, delt, l, epsr, ft, t1,
 neps, errv, &iflg, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dlaps2 failed with icon = %d\n", icon);
 exit(1);
 }
 printf("icon = %i iflg = %i\n", icon, iflg);
 printf(" t1 ft errv neps \n");
 for (i=0;i<l;i++) {
 printf("%4.2f %12.5e %12.5e %4i\n",
 t1[i], ft[i], errv[i], neps[i]);
 }
 return(0);
}

5. Method

Consult the entry for LAPS2 in the Fortran SSL II User's Guide.

 c_dlaps3

 403

c_dlaps3
Inversion of Laplace transform of a general function.
ierr = c_dlaps3(fun, t, delt, np, epsr, r0,

ft, t1, neps, errv, &icon);

1. Function

Given a function)(sF (including non-rational functions), this routine calculates values of the inverse Laplace transform
))1((),...,(),(000 ttfttftf .In this case,)(sF must be regular in the domain Re(s) > 0 .

2. Arguments

The routine is called as follows:
ierr = c_dlaps3(fun, t, delt, np, epsr, r0, ft, t1, neps, errv, &icon);

where:
fun function Input Name of user defined function which calculates the imaginary part of

)(sF for complex variable s. Its prototype is:
double fun(dcomplex s);

where
 s dcomplex Input Complex independent variable s.
t double Input Initial value 0t (> 0) from which the values of)(tf are required.
delt double Input Increment t (0) of variable t. If delt = 0, only)(0tf is

calculated.
np int Input Number of points (1) at which values of)(tf are required.
epsr double Input Relative error tolerance (0) for the values)(tf .Values of epsr

between 410 and 710 are typical. If epsr = 0 or epsr 1, the
default value of 410 is used.

r0 double Input Value of which satisfies 0 when the function)(sF is regular in a
domain Re(s) > 0 . If a negative value is input, r0 =0 is assumed.

ft double ft[np] Output Values)(0 titf , with ft[i] =)(0 titf .
t1 double t1[np] Output Values tit 0 with t1[i] = tito .
neps int neps[np] Output Number of terms in the truncated expansions. The number of terms iN

used to calculate ft[i] is stored in neps[i].
errv double

errv[np]

Output Estimates of the relative error.The estimate of the relative error in
ft[i] is stored in errv[i].

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Some of the results did not meet the required

accuracy.
Continued. Values representing accuracy for

)(0 titf , 1,...,1,0 i are output in errv.
20000 The value of

exp(r0*t1[np]+0)/t1[np], where
Bypassed. The result may not be accurate.

Description of the C-SSL II Routines

404

Code Meaning Processing

2
2

)epsrlog(
0

 , may overflow for a

certain value of np.

30000 One of the following has occurred:
 t 0 or delt < 0
 np < 1

Bypassed.

3. Comments on use

When)(sF is a rational function, routine c_dlaps2 should be used for efficiency.

When)(sF is regular in the domain Re(s) > 0 , input 0 as argument r0.

When 00 specify r0 = 0. If a negative value is input as argument r0, r0 = 0 is assumed in the routine.

If the function)(tf for r0 = 0 and the function)(tf for r0 > 0 are significantly different, it is possible, because 0 > 0,
to estimate the value 0 using this routine. Consult the entry for LAPS3 in the Fortran SSL II User's Guide.

4. Example program

This finds the inverse Laplace transform for the function)Im()(ssF (where s is complex) at certain points.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define L 10

double fun(dcomplex s); /* function prototype */

MAIN__()
{
 int ierr, icon;
 double t, delt, epsr, r0;
 double t1[L], ft[L], errv[L];
 int i, l, neps[L];

 /* generate initial data */
 t = 0.2;
 delt = 0.2;
 l = L;
 epsr = 1e-4;
 r0 = 0;
 /* calculate inverse Laplace transform */
 ierr = c_dlaps3(fun, t, delt, l, epsr, r0, ft, t1,
 neps, errv, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dlaps3 failed with icon = %d\n", icon);
 exit(1);
 }
 printf("icon = %i\n", icon);
 printf(" t1 ft errv neps \n");
 for (i=0;i<l;i++) {
 printf("%4.2f %12.5e %12.5e %4i\n",
 t1[i], ft[i], errv[i], neps[i]);
 }
 return(0);
}

/* user function */
double fun(dcomplex s)
{

 c_dlaps3

 405

 return s.im;
}

5. Method

Consult the entry for LAPS3 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

406

c_dlaxl
Least squares solution with a real matrix (Householder transformation).
ierr = c_dlaxl(a, k, m, n, b, isw, vw, ivw,

&icon);

1. Function

This function solves the over determined system of linear equation (1) for the least squares solution ~x using Householder
transformations.

 Ax b (1)

In (1), A is an m n real matrix of rank n and b is a real constant vector of size m, where m is not less than n.

 b Ax 2 (2)

The function determines the real solution vector x, such that equation (2) is minimized (n1).

2. Arguments

The routine is called as follows:
ierr = c_dlaxl((double*)a, k, m, n, b, isw, vw, ivw, &icon);

where:
a double

a[m][k]

Input Matrix A.
The contents of the array are altered on output.

k int Input C fixed dimension of array a (n).
m int Input The number of rows m in matrix A.
n int Input The number of columns n in matrix A.
b double b[m] Input Constant vector b.
 Output Least squares solution vector ~x . See Comments on use.
isw int Input Control information.

When solving several sets of equations that have the same coefficient
matrix, set isw=1 for the first set, and isw=2 for the second and
subsequent sets. Only argument b is assigned a new constant vector b
and the others are unchanged. See Comments on use.

vw double vw[2n] Work
ivw int ivw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Rank (A) < n Stopped.
29000 Memory allocation error. Bypassed.

 c_dlaxl

 407

Code Meaning Processing
30000 One of the following has occurred:

 k < n
 m < n
 n < 1
 isw 1 or 2

Bypassed.

3. Comments on use

Least squares solution – b
The least squares solution ~x is stored in the first n elements of array b.

isw
When solving several sets of linear equations with same coefficient matrix, specify isw=2 for the second and subsequent
sets after successfully completing the first with isw=1. This will bypass the Householder transformation section and go
directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise.

4. Example program

This example program initializes A and x (from the overdetermined system bAx), and then calculates b by
multiplication. A solution y is then obtained using the library routine, and this is then checked using the equation bAy .

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define MMAX 110
#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int m, n, i, j, k, isw;
 double eps;
 double a[MMAX][NMAX], aa[MMAX][NMAX], b[MMAX], bb[MMAX];
 double x[MMAX], vw[2*NMAX];
 int ivw[NMAX];

 /* initialize overdetermined system */
 m = MMAX;
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=i;j<n;j++) {
 a[i][j] = n-j;
 a[j][i] = n-j;
 }
 for (i=n;i<m;i++)
 for (j=0;j<n;j++) {
 a[i][j] = 0;
 if (i%n == j) a[i][j] = 1;
 }
 for (i=0;i<m;i++)
 for (j=0;j<n;j++)
 aa[i][j] = a[i][j];
 for (i=0;i<n;i++)
 x[i] = 1;
 k = NMAX;
 /* initialize constant vector b = a*x */
 ierr = c_dmav((double*)a, k, m, n, x, b, &icon);
 for (i=0;i<m;i++)
 bb[i] = b[i];
 isw = 1;
 /* solve overdetermined system of equations */
 ierr = c_dlaxl((double*)a, k, m, n, b, isw, vw, ivw, &icon);

Description of the C-SSL II Routines

408

 if (icon != 0) {
 printf("ERROR: c_dlaxl failed with icon = %d\n", icon);
 exit(1);
 }
 /* check least squares solution */
 ierr = c_dmav((double*)aa, k, m, n, b, x, &icon);
 eps = 1e-6;
 for (i=0;i<m;i++)
 if (fabs((x[i]-bb[i])/bb[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

The Householder transformation method is used. For further information consult the entry for LAXL in the Fortran SSL
II User’s Guide and [18].

 c_dlaxlm

 409

c_dlaxlm
Least squares minimal norm solution with a real matrix (singular value
decomposition method).
ierr = c_dlaxlm(a, ka, m, n, b, isw, eps, sig,

v, kv, vw, &icon);

1. Function

This function finds the least squares minimal norm solution x for a system of linear equations (1).

 Ax b (1)

In (1), A is an m n real matrix and b is a real constant vector of size m. The n-order real solution vector x is determined
by minimizing equations (2) and (3).

 x 2 (2)

 b Ax 2 (3)

2. Arguments

The routine is called as follows:
ierr = c_dlaxlm((double*)a, ka, m, n, b, isw, eps, sig, (double*)v, kv, vw,

&icon);

where:
a double

a[m][ka]

Input
Output

Matrix A.
The contents of the array are altered on output.

ka int Input C fixed dimension of array a (n).
m int Input The number of rows m in matrix A.
n int Input The number of columns n in matrix A.
b double b[Blen] Input Constant vector b, with Blen=max(m,n). See Comments on use.
 Output Least squares minimal norm solution vector x .
isw int Input Control information.

When solving several sets of equations that have the same coefficient
matrix, set isw=1 for the first set, and isw=2 for the second and
subsequent sets. Only argument b is assigned a new constant vector b
and the others are unchanged. Otherwise set isw=0 when there is only
one system to solve. See See Comments on use.

eps double Input Tolerance for relative zero test of singular values (0). When eps is
zero, a standard value is used. See Comments on use.

sig double sig[n] Output Singular values of matrix A. See Comments on use.
v double

v[n][kv]

Work Working space for matrices U and V in the singular value
decomposition, A U V T .

kv int Input C fixed dimension of array v (min(m+1,n)).
vw double vw[n] Work

Description of the C-SSL II Routines

410

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
15000 Some singular values could not be obtained. Stopped.
29000 Memory allocation error. Bypassed.
30000 One of the following has occurred:

 ka < n
 m < 1
 n < 1
 kv < min(n, m + 1)
 eps <0
 isw 0, 1, or 2

Bypassed.

3. Comments on use

Least squares solution – b
The least squares minimal norm solution x is stored in the first n elements of array b.

isw
When only one least squares minimal norm solution is required, if isw=0 is specified, this function does not compute the
transformation by singular value decomposition. Consequently, it is computationally more efficient than otherwise.

When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for the second and
subsequent sets after successfully completing the first with isw=1. This will bypass the singular value decomposition
section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient
than otherwise.

sig
All singular values are non-negative and stored in descending order. When icon=15000, the unobtainable singular
values are set to –1 and the values are not arranged in any order.

eps
The argument eps is used for determining the rank of A. It must be carefully specified.

When a singular value is less than the tolerance, eps, it is assumed to be zero. The standard value of eps is 16µ, where
µ is the unit round-off. A value less than zero results in icon=30000.

When to use the function
This function should be used when rank deficiency of A is or may be found (rank(A) in (m, n)). When rank(A) = min(m,
n) then the function c_dlaxl should be used.

4. Example program

This example program initializes A and x (from the overdetermined system bAx), and then calculates b by
multiplication. A solution y is then obtained using the library routine, and this is then checked using the equation bAy .

 c_dlaxlm

 411

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define MMAX 110
#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int m, n, i, j, ka, kv, isw;
 double eps;
 double a[MMAX][NMAX], aa[MMAX][NMAX], b[MMAX], bb[MMAX];
 double x[MMAX], sig[NMAX], v[NMAX][NMAX], vw[NMAX];

 /* initialize overdetermined system */
 m = MMAX;
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=i;j<n;j++) {
 a[i][j] = n-j;
 a[j][i] = n-j;
 }
 for (i=n;i<m;i++)
 for (j=0;j<n;j++) {
 a[i][j] = 0;
 if (i%n == j) a[i][j] = 1;
 }
 for (i=0;i<m;i++)
 for (j=0;j<n;j++)
 aa[i][j] = a[i][j];
 for (i=0;i<n;i++)
 x[i] = 1;
 ka = NMAX;
 kv = NMAX;
 /* initialize constant vector b = a*x */
 ierr = c_dmav((double*)a, ka, m, n, x, b, &icon);
 for (i=0;i<m;i++)
 bb[i] = b[i];
 isw = 0;
 eps = 0;
 /* solve overdetermined system of equations */
 ierr = c_dlaxlm((double*)a, ka, m, n, b, isw,
 eps, sig, (double*)v, kv, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dlaxlm failed with icon = %d\n", icon);
 exit(1);
 }
 /* check least squares solution */
 ierr = c_dmav((double*)aa, ka, m, n, b, x, &icon);
 eps = 1e-6;
 for (i=0;i<m;i++)
 if (fabs((x[i]-bb[i])/bb[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

The singular value decomposition method is used. For further information consult the entry for LAXLM in the Fortran
SSL II User’s Guide and [41].

Description of the C-SSL II Routines

412

c_dlcx
Solution of a system of linear equations with a complex matrix (Crout’s
method).
ierr = c_dlcx(za, k, n, zb, epsz, isw, &is,

zvw, ip, &icon);

1. Function

This function solves a system of linear equations (1) in complex numbers by Crout’s method.

 Ax b (1)

In (1), A is an n n non-singular complex matrix, b is a complex constant vector and x is the complex solution vector.
Both the complex vectors are of size n (n1).

2. Arguments

The routine is called as follows:
ierr = c_dlcx((dcomplex*)za, k, n, zb, epsz, isw, &is, zvw, ip, &icon);

where:
za dcomplex

za[n][k]

Input
Output

Matrix A.
The contents of the array are altered on output.

k int Input C fixed dimension of array za (n).
n int Input Order n of matrix A.
zb dcomplex

zb[n]

Input Constant vector b.

 Output Solution vector x.
epsz double Input Tolerance for relative zero test of pivots in decomposition process of A

(0). When epsz is zero, a standard value is used. See Comments on
use.

isw int Input Control information.
When solving several sets of equations that have the same coefficient
matrix, set isw=1 for the first set, and isw=2 for the second and
subsequent sets. Only argument b is assigned a new constant vector b
and the others are unchanged. See Comments on use.

is int Output Information for obtaining the determinant of matrix A. When the n
elements of the calculated diagonal of array za are multiplied together,
and the result multiplied by is, the determinant is obtained.

zvw dcomplex

zvw[n]

Work

ip int ip[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is given below.

 c_dlcx

 413

Code Meaning Processing
0 No error. Completed.
20000 Either all of the elements of some row are zero or

the pivot became relatively zero. It is highly
probable that the coefficient matrix is singular.

Stopped.

30000 One of the following has occurred:
 k < n
 n < 1
 epsz < 0
 isw 1 or 2

Bypassed.

3. Comments on use

epsz
If the value 10-s is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If both the real and imaginary parts of the pivot value lose more than s significant digits during LU-decomposition by
Crout’s method, the pivot value is assumed to be zero and computation is discontinued with icon=20000.

The standard value of epsz is normally 16µ, where µ is the unit round-off. If processing is to proceed at a low pivot
value, epsz will be given the minimum value but the result is not always guaranteed.

isw
When solving several sets of linear equations with same coefficient matrix, specify isw=2 for the second and subsequent
sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and go directly to
solution stage. Consequently, the computation for these subsequent sets is far more efficient then otherwise. The value of
is is identical for all sets and any valid isw.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, is, isw;
 double epsz, eps;
 dcomplex za[NMAX][NMAX];
 dcomplex zb[NMAX], zx[NMAX], zvw[NMAX];
 int ip[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 for (j=i;j<n;j++) {
 za[i][j].re = n-j;
 za[i][j].im = n-j;
 za[j][i].re = n-j;

Description of the C-SSL II Routines

414

 za[j][i].im = n-j;
 }
 zx[i].re = i+1;
 zx[i].im = i+1;
 }
 /* initialize constant vector zb = za*zx */
 ierr = c_dmcv((dcomplex*)za, k, n, n, zx, zb, &icon);
 epsz = 1e-6;
 isw = 1;
 /* solve system of equations */
 ierr = c_dlcx((dcomplex*)za, k, n, zb, epsz, isw, &is, zvw, ip, &icon);
 if (icon != 0) {
 printf("ERROR: c_dlcx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check result */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((zb[i].re-zx[i].re)/zx[i].re) > eps ||
 fabs((zb[i].im-zx[i].im)/zx[i].im) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Crout’s method is used for matrix LU-decomposition before solving the system of linear equations by forward and
backward substitutions. For further information consult the entry for LCX in the Fortran SSL II User’s Guide and see [7],
[34] and [83].

 c_dlesq1

 415

c_dlesq1
Polynomial least squares approximation.
ierr = c_dlesq1(x, y, n, &m, w, c, vw, &icon);

1. Function

Given n observed data),(,),,(),,(2211 nn yxyxyx and weighted function)(ixw for ni ,,2,1 , this function
obtains the polynomial least squares approximation of degree m, equation (1), by determining the coefficients

mccc ,,, 10 such that (2) is minimized.

 m
mm xcxccxy 10)((1)

n

i
imiim xyyxw

1

22)()((2)

The degree m is selected so as to minimize (3) in the range km 0 . When (3) is minimized, m is considered the
optimum degree for the least squares approximation.

 mn m 2logAIC 2 (3)

Here, 10 nk , the weight function must satisfy 0)(ixw and 2n .

2. Arguments

The routine is called as follows:
ierr = c_dlesq1(x, y, n, &m, w, c, vw, &icon);

where:
x double x[n] Input Discrete points xi .
y double y[n] Input Observed data iy .
n int Input Number of discrete points n.
m int Input Upper limit k of degree of the approximation polynomial to be

determined. If m = -k (k>0) then degree k is unconditionally obtained.
 Output Degree k of the approximation polynomial. When m = -k, the output for

m is k.
w double w[n] Input Weighted function values)(ixw .
c double c[Clen] Output Coefficients ic of approximation polynomial with Clen = k+1. If the

output value of m is m for km 0 , the coefficients are stored in the
following order: mccc ,,, 10 . For m < k, all elements of c from m+1to
k are set to zero.

vw double

vw[7*n]

Work

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Description of the C-SSL II Routines

416

Code Meaning Processing
0 No error. Completed.
10000 When km ,)0(k the polynomial of order

k could not be determined uniquely.
A uniquely determined polynomial of order less
than k is output.

30000 One of the following has occurred:
 n < 2
 1-nk
 At least one negative weight in w

Bypassed.

3. Comments on use

Specifying weighted function values
When observed data have nearly the same order, 1)(ixw for ni ,,2,1 may be used. But when they are ordered
irregularly, the weights for the function should be specified as 21)(ii yxw (specify 1)(ixw when 0iy).

The number of discrete points, n, should be as high as possible compared to the upper limit k. Theoretically, n is
recommended to be equal to or greater than 10k.

4. Example program

This program approximates the function xxxf)sin()(with a fifth order polynomial obtained by a least squares fit.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10
#define MMAX 5

MAIN__()
{
 int ierr, icon;
 int i, n, m;
 double x[NMAX], y[NMAX], w[NMAX], c[MMAX+1], vw[7*NMAX];
 double h, p;

 /* initialize data */
 n = NMAX;
 p = 0;
 h = 1.0/n;
 for (i=0;i<n;i++) {
 w[i] = 1;
 x[i] = p;
 y[i] = sin(p)*sqrt(p);
 p = p + h;
 }
 m = MMAX;
 /* calculate polynomial least squares coefficients */
 ierr = c_dlesq1(x, y, n, &m, w, c, vw, &icon);
 printf("icon = %i m = %i\n", icon, m);
 for (i=0;i<m;i++)
 printf("%12.4e ", c[i]);
 printf("\n");
 return(0);
}

5. Method

For further information consult the entry for LESQ1 in the Fortran SSL II User's Guide and see [89].

 c_dlminf

 417

c_dlminf
Minimization of a function with a single variable (quadratic interpolation
using function values only).
ierr = c_dlminf(&a, b, fun, epsr, &max, &f,

&icon);

1. Function

Given a real function)(xf of a single variable, the point x that gives a local minimum of)(xf and its function value
)(xf are obtained in the interval],[ba .

The function)(xf is assumed to have at least continuous second derivatives.

2. Arguments

The routine is called as follows:
ierr = c_dlminf(&a, b, fun, epsr, &max, &f, &icon);

where:
a double Input Left hand side of interval in which to find local minimum.
 Output Point x .
b double Input Right hand side of interval in which to find local minimum.
fun function Input User defined function to evaluate)(xf . Its prototype is:

double fun(double x);

where:
 x double Input Independent variable.
epsr double Input Convergence criteria. A default value is used when epsr = 0. See

Comments on use.
max int Input Upper limit on the number of evaluations of fun. max may be negative.

See Comments on use.
 Output Number of times actually evaluated.
f double Output Value of)(xf .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Convergence condition was not satisfied within

the specified number of function evaluations.
Stopped. Arguments a and f contain the last
value obtained.

30000 One of the following has occurred:
 epsr < 0
 max = 0

Bypassed.

Description of the C-SSL II Routines

418

3. Comments on use

epsr
The function tests for

epsr)~,1max(21 xxx

for two points 1x and 2x that surround x . When the condition is satisfied, x~ is assumed to be the minimum point x
and the iteration is stopped with 1

~ xx for)()(21 xfxf and 2
~ xx otherwise.

This routine assumes that)(xf is approximately quadratic in the vicinity of x . To obtain)(*xf as accurately as the
unit round-off, a value of epsr is appropriate. The default value of epsr is 2 .

max and recalling c_dlminf when icon=10000
The number of function evaluations is calculated as the number of calls to the user defined function fun.

The number of function evaluations required depends upon the characteristics of the function as well as the initial interval
],[ba and the convergence criterion. Generally, from a good initial interval and the default convergence criteria, a value

of max 400 is appropriate.

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon
= 10000, the iteration can be continued by calling c_dlminf again. In this case, max must be given a negative value,
where its absolute value indicates the number of additional function evaluations to perform, and the value of the other
arguments must remain unaltered.

a and b
If there is only one minimum point of)(xf in the interval],[ba , then this function will obtain the value of this point to
within the specified error tolerance. If there are several minimum points, it is not certain which point the iteration will
converge to. This means that it is desirable to use values of a and b that are as near to x as possible.

4. Example program

A minimum of the function 41664)(234 xxxxxf is found in the interval]5,5[. The computed solution is
output together with an accuracy check.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

double fun(double x); /* user function prototype */

MAIN__()
{
 int ierr, icon;
 double a, b, f, epsr, eps, exact;
 int max;

 /* initialize data */
 a = -5;
 b = 5;
 epsr = 0;
 max = 400;
 /* find minimum of function */
 ierr = c_dlminf(&a, b, fun, epsr, &max, &f, &icon);
 printf("icon = %i max = %i a = %12.4e f = %12.4e\n", icon, max, a, f);
 /* check result */
 exact = 4;

 c_dlminf

 419

 eps = 1e-6;
 if (fabs((a-exact)/exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

/* user function */
double fun(double x)
{
 return((((x-4)*x-6)*x-16)*x+4);
}

5. Method

For further information consult the entry for LMINF in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

420

c_dlming
Minimization of a function with a single variable (cubic interpolation
using function values and derivatives).
ierr = c_dlming(&a, b, fun, grad, epsr, &max,

&f, &icon);

1. Function

Given a real function)(xf of a single variable and its derivative)(xg , the point *x that gives a local minimum of)(xf
in the interval [a,b], and its function value)(*xf are obtained.

The function)(xf is assumed to have at least continuous third derivatives.

2. Arguments

The routine is called as follows:
ierr = c_dlming(&a, b, fun, grad, epsr, &max, &f, &icon);

where:
a double Input Left hand side of interval [a,b].
 Output Point *x .
b double Input Right hand side of interval [a,b].
fun function Input User defined function to evaluate)(xf . Its protoytpe is:

double fun(double x);
where:

 x double Input Independent variable.
grad function Input User defined function to evaluate)(xg . Its prototype is:

double grad(double x);
where:

 x double Input Independent variable.
epsr double Input Convergence criterion (0). A default value is used when epsr=0. See

Comments on use.
max int Input Upper limit on the number of evaluations of fun and grad. max may

be negative. See Comments on use.
 Output Number of times fun and grad were actually evaluated.
f double Output Value of)(*xf .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Convergence condition was not satisfied within

the specified number of function evaluations.
Stopped. Arguments a and f contain the last
values obtained.

20000 The value of epsr is too small. Bypassed. Arguments a and f contain the last
values obtained.

 c_dlming

 421

Code Meaning Processing
30000 One of the following has occurred:

 epsr < 0
 max = 0

Bypassed.

3. Comments on use

epsr
The routine tests for

 epsr)|~|,1(max || 21 xxx

for two points 1x and 2x that surround *x , where 1
~ xx if)()(21 xfxf otherwise 2

~ xx . When the condition is
satisfied, x~ is assumed to be the minimum point *x and the iteration is stopped.

This routine assumes that)(xf is approximately a cubic function in the vicinity of *x . To obtain)(*xf as accurately as
the unit round-off µ, a value of epsr µ 2/1 is appropriate. The default value of epsr is 2µ 2/1 .

max and recalling c_dlming when icon=10000
The number of function evaluations is calculated as the total number of calls to the user defined functions (fun and
grad).

The number of function evaluations required depends upon the characteristics of the functions)(xf and)(xg as well as
the initial interval [a,b] and the convergence criterion. Generally, from a good initial interval and with the default
convergence criterion, a value of max = 400 is appropriate.

If the convergence criterion is not satisfied within the specified number of evaluations and the routine returns with icon
= 10000, the iteration can be continued by calling c_dlming again. In this case, max must be given a negative value,
where its absolute value indicates the number of additional function evaluations to perform, and the values of the other
arguments must remain unaltered.

a and b
If there is only one minimum point of)(xf in the interval [a,b], then this routine will obtain the value of this point to
within the specified error tolerance. If there are several minimum points, the point to which the iteration will converge is
not certain. This means that it is desirable to use values of a and b that are as near to *x as possible.

4. Example program

This program finds the minimum value of the function 41664)(234 xxxxxf in the interval [-5,5].

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

double fun(double x); /* user function prototype */
double grad(double x); /* derivative prototype */

MAIN__()
{
 int ierr, icon;
 double a, b, f, epsr, eps, exact;
 int max;

 /* initialize data */

Description of the C-SSL II Routines

422

 a = -5;
 b = 5;
 epsr = 0;
 max = 400;
 /* find minimum of function */
 ierr = c_dlming(&a, b, fun, grad, epsr, &max, &f, &icon);
 printf("icon = %i max = %i a = %12.4e f = %12.4e\n", icon, max, a, f);
 /* check result */
 exact = 4;
 eps = 1e-6;
 if (fabs((a-exact)/exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

/* user function */
double fun(double x)
{
 return((((x-4)*x-6)*x-16)*x+4);
}

/* derivative function */
double grad(double x)
{
 return ((4*x-12)*x-12)*x-16;
}

5. Method

Consult the entry for LMING in the Fortran SSL II User's Guide.

 c_dlowp

 423

c_dlowp
Roots of a low degree polynomial with real coefficients (fifth degree or
lower).
ierr = c_dlowp(a, n, z, &icon);

1. Function

This function finds the roots of a fifth or lower degree polynomial with real coefficients (1) by the successive substitution
method, Newton method, Ferrari method, Bairstow method and the root formula for quadratic equations.

 a x a x an n
n0 1

1 0 (1)

where n 5 and a0 0 .

2. Arguments

The routine is called as follows:
ierr = c_dlowp(a, n, z, &icon);

where:
a double a[n+1] Input Coefficients of the polynomial equation with a[i]= ai , where

i=0,…,n.
n int Input Degree n of polynomial equation.
z dcomplex z[n] Output The n roots of polynomial equation.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 When determining a real root of a fifth degree

equation, f x f xk k() () 1 0 was not satisfied
after 50 successive substitutions.

Processing continues by using the last xk1 as
the initial value in the Newton method.

30000 One of the following has occurred:
 a0 = 0
 0n
 n > 5

Bypassed.

3. Example program

This example program computes the roots of the cubic polynomial 06116 23 zzz .

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 dcomplex z[NMAX];

Description of the C-SSL II Routines

424

 double a[NMAX+1];
 int n, i;

 /* initialize data */
 n = 3;
 a[0] = 1;
 a[1] = -6;
 a[2] = 11;
 a[3] = -6;
 /* find roots of polynomial */
 ierr = c_dlowp(a, n, z, &icon);
 printf("icon = %i\n", icon);
 for (i=0;i<n;i++)
 printf("z[%i] = {%12.4e, %12.4e}\n", i, z[i].re, z[i].im);
 printf("exact roots are: {1, 0}, {2, 0} and {3, 0}\n");
 return(0);
}

4. Method

Below are the methods used to find the roots for the different degrees (5) of a polynomial equation with real coefficients.

Degree 1: by directly evaluation.

Degree 2: by root formula for quadratic equation (See function c_drqdr).

Degree 3: by Newton method and root formula.

Degree 4: by Ferrari and Bairstow methods.

Degree 5: by Newton and successive substitution methods.

For further information consult the entry for LOWP in the Fortran SSL II User's Guide.

 c_dlprs1

 425

c_dlprs1
Solution of a linear programming problem (revised simplex method).
ierr = c_dlprs1(a, k, m, n, epsz, &imax, &isw,

nbv, b, kb, vw, ivw, &icon);

1. Function

This function solves the linear programming problem below by the revised simplex method:

Minimize (or maximize) 0
T

0
1

ccxcz j

n

j
j

xc

Subject to:

njx

mmmmmmmidxa

mmmmidxa

midxa

j

eglglgl

n

j
ijij

glll

n

j
ijij

l

n

j
ijij

,,2,1,0

,,2,1

,,2,1

,,2,1

1

1

1

The problem is solved in two phases:
 Phase 1: obtain basic feasible solution,
 Phase 2: obtain the optimal solution.
This function allows the user to provide an initial feasible basis, bypassing Phase 1. There is no sign constraint on id .

The following are input components:
 egl mmmm

.

}{ ijaA
 is the nm coefficient matrix.

T

21),...,,(mdddd is the constant vector.

T
21),...,,(ncccc is the coefficient vector.

 0c is the constant term.
This input data is passed into the routine via the array a, as shown in Figure 32 in Comments on use.

On successful completion, the relevant components are:
 B, the mm sub-matrix of A whose columns form a basis for the solution.
 dBx 1B , the final m basic variables.

},,1|{ mjk j k
, the indices of the m basic variables, which also correspond to the column indices of A

contained in B.

T),,(
1 mkkB cc c

, the sub-vector of elements of c that corresponds to Bx .

1 BcB , the simplex multipliers, whose values determine when an optimal solution has been achieved.
 0

T cq BB xc , the associated objective function value.

Description of the C-SSL II Routines

426

In the following descriptions, it is assumed that: 1n , 0lm , 0gm , 0em and 1m .

2. Arguments

The routine is called as follows:
ierr = c_dlprs1((double *)a, k, m, n, epsz, &imax, &isw, nbv, (double *)b, kb,

vw, ivw, &icon);

where:
a double

a[m+1][k]

Input Simplex tableaux containing coefficient matrix A, constant vector d,
coefficient vector c and constant term 0c . See Figure 32 in Comments
on use.

k int Input The C fixed dimension of a, (k > n).
m int m[3] Input Number of constraints, where m[0], m[1], m[2] contain lm , gm and

em respectively.
n int Input Number of variables n.
epsz double Input Relative zero criterion for

 elements (coefficient and constant term) to be used during iteration,
 the pivot to be used when the basic inverse matrix 1B is obtained.
A default value is used when it equals zero. See Comments on use.

imax int Input Maximum number of iterations in Phase 2. imax can be negative. See
Comments on use.

 Output Number of iterations performed in Phase 2.
isw int Input Controls whether the objective function is to be minimized or maximized

and whether an initial basic feasible solution is provided.
isw 0110 dd , where 0d and 1d are specified as follows:

 0d Specifies whether the objective function is to be maximized or
minimized.

 0 Objective function minimized.
 1 Objective function maximized.
 1d Specifies whether an initial feasible basis is provided.
 0 Basis not provided.
 1 Basis provided.
 Output When an optimal solution or basic feasible solution is obtained, isw has

a value of 10 or 11 (depending on whether 0d was 0 or 1 on input).
nbv int nbv[m] Input Initial feasible basis (when isw=10 or isw=11). See Comments on

use.
 Output Optimal or feasible basis. This corresponds to k defined in Function.
b double

b[m+1][kb]

Output Basic inverse matrix 1B for an optimal solution or basic feasible
solution, basic variables xB, simplex multipliers and objective function
value q. See Figure 33 in Comments on use.

kb int Input C fixed dimension of b, (kb 1 m).

vw double

vw[Rlen]
Work 12 gl mmmnRlen

ivw int ivw[Ilen] Work gl mmnIlen
icon int Output Condition code. See below.
The complete list of condition codes is:

 c_dlprs1

 427

Code Meaning Processing
0 No error. Completed.
10000 A basic feasible solution was obtained, but the

problem has no optimal solution.
Stopped. A basic feasible solution and the
corresponding basic inverse matrix, simplex
multiplier and objective function value are stored
in b. The index set of the basic feasible solution is
stored in nbv.

11000 The number of iterations required exceeded the
maximum specified during Phase 2. A basic
feasible solution was obtained.

20000 The problem is infeasible. The value of epsz
may not be appropriate.

Stopped.

21000 isw = 10 or isw = 11, but the set of
variables specifed by nbv is not a basis.

22000 isw = 10 or isw = 11, but the set of
variables specifed by nbv is infeasible.

23000 A basic variable could not be interchanged during
Phase 1. The value of epsz may not be
appropriate.

24000 The number of iterations required exceeded the
maximum specified during Phase 1.

29000 Memory allocation error. Bypassed.
30000 One of the following has occurred:

 m[0], m[1] or m[2] contained a negative
value,

 n < 1,
 imax = 0,
 epsz < 0,
 m[0]+m[1]+m[2] < 1,
 m[0]+m[1]+m[2] k,
 An element of nbv is smaller than 1 or larger

than n+m[0]+m[2],
 Two or more elements of nbv have the same

value.
 isw was incorrectly given.

Bypassed.

3. Comments on use

nbv
nbv is only defined on input if isw = 10 or 11 and on output if icon = 0, 10000 or 11000. Both input and output values
are indices relating to the problem matrices and therefore output values need to be reduced by one if the user is accessing
elements from the associated arrays.

Exactly m variables are in the basis at any time. These may include slack variables, which are introduced by the routine to
convert the gl mm inequality constraints to equality constraints. When isw = 10 or 11, the index of the slack variable
that corresponds to the ith inequality constraint (gl mmi) must be n+i. On output, if the computed xB contains the ith
slack variable, then the corresponding index value will be n+i.

Description of the C-SSL II Routines

428

On output, when a basic feasible solution has been obtained, but no optimal solution exists (icon = 10000) then nbv[i-
1] = 0 indicates that a nonsingular mm basis matrix could not be found. The matrix B may be singular or too large a
value for epsz was specified.

If icon = 0 or 11000, and nbv[i-1] = 0 for some value of i, then it suggests that the ith constraint was redundant. In
other words, one of the original constraints was just a linear combination of the other constaints. It might be useful to
remove the ith constraint by altering the input arguments to the function and repeating the library call.

a
The required structure for array a on input to the routine is shown in Figure 32. Notice that it is necessary to provide the
negative of the vector constraint values.

 c0

d

-cT

A

n+1
n

 m
 m+1

k

Figure 32 Layout of input array a

b
The arrangement of the output array b is shown in Figure 33.

 q

xB

B

m+1
m

 m
 m+1

kb

Figure 33 Layout of output array b

 c_dlprs1

 429

imax
In Phase 1 of the computation, the number of iterations required is associated with moving from an artificial basis to a
basic feasible solution by solving a special linear programming problem. The number of iterations required has a
predetermined upper bound and imax is not used. In Phase 2, the number of iterations required is almost always linear
with the number of constraints. However, it is theoretically possible for the simplex method to require far more iterations
than this, so imax is useful. A standard value of imax to use is imax = 10 m.

If the optimal solution could not be obtained in imax iterations, and if icon = 11000 on return, then the routine can be
called again to continue with more iterations. In this case, imax must be reset to the negative of the number of additional
iterations to be allowed, while other arguments remain unchanged.

epsz
epsz serves two functions within this routine. Firstly, it is used to define a threshold below which values of A are
assumed to be zero and secondly it is used during the factorization of matrix B as the relative zero criterion value.

In the first case, if njmiaa ij ,,1,,,1),|max(|max , then a value smaller than maxaepsr would be treated
as zero. Scaling of rows or columns may be necessary if A contains elements that differ widely in magnitude.

In the second case, a relative error criterion is needed to estimate when a pivot is numerically zero during LU-
decomposition, suggesting that the matrix is singular. More detail is provided in the Comments on use section for the
function c_dvlax.

The default value for epsz, is 16 , where is the unit round-off.

If the routine terminates with icon = 20000 or 23000, then the value of epsz may not be appropriate, in which case
retrying the routine with the default value is recommended.

Using c_dlprs1 when a variable is negative
Variables are constrained to be non-negative, however users can still solve their linear programming problem with
variables that may be negative by reformulating these variables. Assume that jx in the user’s original problem can be
negative, then replace jx with

jx and
jx where jjj xxx with the implicit constraints that both

jx and
jx are

non-negative. The routine can now be used, although some post-processing will be required on the user’s part to obtain
the values of the original problem variables.

4. Example program

A linear programming problem with 3 variables and 5 constraints is solved. The final value of the objective function is
output along with an accuracy check.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define ML 2
#define MG 2
#define ME 1
#define M ML+MG+ME
#define N 3

MAIN__()
{
 int ierr, icon;
 double a[M+1][N+1] = {{ 2, 3, -3, 210},
 { -1, -3, 1, -40},

Description of the C-SSL II Routines

430

 { 2.5, 0, 5, 50},
 {-1.5, -0.5, 1.5, -120},
 { 1, 1, 1, 80},
 { -3, -4, 1, -70}};
 double epsz, b[M+1][M+1], vw[2*N+M+ML+MG+1], eps;
 int k, n, imax, isw, kb, ivw[N+ML+MG], nbv[M];
 int m[] = {ML, MG, ME};
 const double minval = 222.5;

 /* initialize data */
 n = N;
 k = N+1;
 kb = M+1;
 isw = 1;
 imax = 20;
 epsz = 0;
 /* minimize */
 ierr = c_dlprs1((double*)a, k, m, n, epsz, &imax, &isw,
 nbv, (double*)b, kb, vw, ivw, &icon);
 printf("icon = %i imax = %i isw = %i obj. fun. value = %f\n",
 icon, imax, isw, b[M][M]);
 /* check result */
 eps = 1e-6;
 if (fabs((b[M][M]-minval)/minval) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

5. Method

For further information consult the entry for LPRS1 in the Fortran SSL II User's Guide or [26].

 c_dlsbix

 431

c_dlsbix
Solution of a system of linear equations with an indefinite symmetric
band matrix (block diagonal pivoting method).
ierr = c_dlsbix(a, n, nh, mh, b, epsz, isw,

vw, ivw, &icon);

1. Function

This routine solves a system of linear equations (1) using the Gaussian-like block diagonal pivoting method.

 bAx (1)

In (1), A is an nn indefinite symmetric band matrix with bandwidth h, b is a constant vector, and x is the solution
vector. Both the vectors are of size n (n > h 0).

2. Arguments

The routine is called as follows:
ierr = c_dlsbix(a, n, nh, mh, b, epsz, isw, vw, ivw, &icon);

where:
a double

a[Alen]

Input Matrix A. Stored in symmetric band storage format. See Array storage
formats in the Introduction section for details.

2/)1()1(hhhnAlen .
n int Input Order n of matrix A.
nh int Input Bandwidth h of matrix A.
 Output Content altered on completion.
mh int Input Maximum tolerable bandwidth mh (n > mh nh). See Comments on

use.
b double b[n] Input Constant vector b.
 Output Solution vector x.
epsz double Input Tolerance (0) for relative zero test of pivots in decomposition process

of matrix A. When epsz is zero a standard value is used. See Comments
on use.

isw int Input Control information.
isw=1, except when solving several sets of equations that have the same
coefficient matrix, then isw=1 for the first set, and isw=2 for the
second and subsequent sets. Only argument b is assigned a new constant
vector b, the others are unchanged. See Comments on use.

vw double

vw[Vwlen]

Work .2/)1()1(mmm hhhnVwlen

ivw int ivw[2n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Description of the C-SSL II Routines

432

Code Meaning Processing
0 No error. Completed.
20000 Either all of the elements of some row are zero or

a pivot is relatively zero. It is probable that the
coefficient matrix is singular.

Discontinued.

25000 The maximum bandwidth was exceeded during
decomposition.

Discontinued.

30000 One of the following has occurred:
 nh < 0
 mh < nh
 mh n
 epsz < 0
 isw 1 or 2

Bypassed.

3. Comments on use

mh
Generally, the matrix bandwidth increases when rows and columns are exchanged in the pivoting operation of the
decomposition. Therefore, it is necessary to specify a maximum bandwidth mh greater than or equal to the actual
bandwidth h of A. If the maximum bandwidth is exceeded during decomposition, processing is discontinued with
icon=25000.

epsz
The standard value of epsz is 16µ, where µ is the unit round-off. If, during the block diagonal pivoting decomposition, a
pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000.
Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the
required accuracy.

isw
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution
stage, thereby reducing the computation time.

Saving on storage space
Saving on storage space is possible by specifying the same array for arguments a and vw. WARNING – make sure the
array size is consistent with both arguments otherwise unpredictable results can occur.

c_dsbmdm and c_dbmdmx
This routine is an interface to the routines c_dsbmdm, which MDM T - decomposes the matrix A, and c_dbmdmx,
which then solves the equations.

Calculation of determinant
To calculate the determinant of matrix A, see the example program with c_dsbmdm.

Eigenvalues
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program with c_dsbmdm.

 c_dlsbix

 433

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))
#define max(a,b) ((a) > (b) ? (a) : (b))

#define NMAX 100
#define NHMAX 50
#define NRHS 2

MAIN__()
{
 int ierr, icon;
 int n, nh, mh, i, j, ij, jj, isw, jmin, cnt;
 double epsz, eps;
 double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], b[NRHS][NMAX], x[NRHS][NMAX];
 double vw[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2];
 int ivw[2*NMAX];

 /* initialize matrix */
 n = NMAX;
 nh = 2;
 mh = NHMAX;
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh, 0);
 for (j=jmin;j<=i;j++)
 if (i-j == 0)
 a[ij++] = 10;
 else if (i-j == 1)
 a[ij++] = -3;
 else
 a[ij++] = -6;
 }
 /* initialize RHS vectors */
 for (cnt=0;cnt<NRHS;cnt++) {
 for (i=0;i<n;i++)
 x[cnt][i] = (cnt+1)*(i+1);
 /* initialize constant vector b = a*x */
 ierr = c_dmsbv(a, n, nh, &x[cnt][0], &b[cnt][0], &icon);
 }
 isw = 1;
 epsz = 1e-6;
 /* solve systems of equations */
 for (cnt=0;cnt<NRHS;cnt++) {
 ierr = c_dlsbix(a, n, &nh, mh, &b[cnt][0], epsz, isw, vw, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dlsbix failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[cnt][i]-b[cnt][i])/b[cnt][i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 if (cnt == 0) isw = 2;
 }
 return(0);
}

5. Method

The block diagonal pivoting method is used for matrix decomposition before solving the system of linear equations using
forward and backward substitutions. For further information consult the entry for LSBIX in the Fortran SSL II User's
Guide and references [15].

Description of the C-SSL II Routines

434

c_dlsix
Solution of a system of linear equations with an indefinite symmetric
matrix (block diagonal pivoting method).
ierr = c_dlsix(a, n, b, epsz, isw, vw, ip,

ivw, &icon);

1. Function

This routine solves a system of linear equations (1) using the Crout-like block diagonal pivoting method.

 bAx (1)

In (1), A is an nn indefinite symmetric matrix, b is a constant vector, and x is the solution vector. Both the vectors are
of size n (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dlsix(a, n, b, epsz, isw, vw, ip, ivw, &icon);

where:
a double

a[Alen]

Input Matrix A. Stored in symmetric storage format. See Array storage
formats in the Introduction section for details. 2/)1(nnAlen .

 Output The contents of the array are altered on completion.
n int Input Order n of matrix A.
b double b[n] Input Constant vector b.
 Output Solution vector x.
epsz double Input Tolerance (0) for relative zero test of pivots in decomposition process

of matrix A. When epsz is zero a standard value is used. See Comments
on use.

isw int Input Control information.
isw=1, except when solving several sets of equations that have the same
coefficient matrix, then isw=1 for the first set, and isw=2 for the
second and subsequent sets. Only argument b is assigned a new constant
vector b, the other arguments must not be altered. See Comments on use.

vw double vw[2n] Work
ip int ip[n] Work
ivw int ivw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Either all of the elements of some row are zero or

a pivot is relatively zero. It is probable that the
coefficient matrix is singular.

Discontinued.

 c_dlsix

 435

Code Meaning Processing
30000 One of the following has occurred:

 n < 1
 epsz < 0
 isw 1 or 2

Bypassed.

3. Comments on use

epsz
The standard value of epsz is 16µ, where µ is the unit round-off. If, during the block diagonal pivoting decomposition, a
pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000.
Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the
required accuracy.

isw
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution
stage, thereby reducing the computation time.

c_dsmdm and c_dmdmx
This routine is an interface to the routines c_dsmdm, which MDM T - decomposes the matrix A, and c_dmdmx, which
then solves the equations.

Calculation of determinant
To calculate the determinant of matrix A, see the example program with c_dsmdm.

Eigenvalues
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program with c_dsmdm.

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define NRHS 2

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij, isw, cnt;
 double epsz, eps, pi, an, ar;
 double a[NMAX*(NMAX+1)/2], b[NRHS][NMAX], x[NRHS][NMAX], vw[2*NMAX];
 int ip[NMAX], ivw[NMAX];

 /* initialize matrix */
 n = NMAX;
 ij = 0;
 pi = 2*asin(1);
 an = 1.0/(n+1);
 ar = pi*an;
 an = sqrt(2*an);
 for (i=1;i<=n;i++)

Description of the C-SSL II Routines

436

 for (j=1;j<=i;j++) {
 a[ij++] = an*sin(i*j*ar);
 }
 isw = 1;
 epsz = 1e-6;
 /* initialize RHS vectors */
 for (cnt=0;cnt<NRHS;cnt++) {
 for (i=0;i<n;i++)
 x[cnt][i] = (cnt+1)*(i+1);
 /* initialize constant vector b = a*x */
 ierr = c_dmsv(a, n, &x[cnt][0], &b[cnt][0], &icon);
 }
 /* solve systems of equations */
 for (cnt=0;cnt<NRHS;cnt++) {
 ierr = c_dlsix(a, n, &b[cnt][0], epsz, isw, vw, ip, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dlsix failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[cnt][i]-b[cnt][i])/b[cnt][i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 if (cnt == 0) isw = 2;
 }
 return(0);
}

5. Method

The block diagonal pivoting method is used for matrix decomposition before solving the systerm of linear equations using
forward and backward substitutions. For further information consult the entry for LSIX in the Fortran SSL II User's Guide
and references [15].

 c_dlstx

 437

c_dlstx
Solution of a system of linear equations with a symmetric positive
definite tridiagonal matrix (Modified Cholesky’s method).
ierr = c_dlstx(d, sd, n, b, epsz, isw, &icon);

1. Function

This function solves a system of linear equations (1) using the modified Cholesky’s method.

 Ax b (1)

In (1), A is an n n positive definite symmetric real tridiagonal matrix, b is a real constant vector and x is the real solution
vector. Both the real vectors are of size n (n1).

2. Arguments

The routine is called as follows:
ierr = c_dlstx(d, sd, n, b, epsz, isw, &icon);

where:
d double d[n] Input

Output
Diagonal elements of matrix A.
The contents of the array are altered on output.

sd double

sd[n-1]

Input
Output

Sub-diagonal elements of matrix A.
The contents of the array are altered on output.

n int Input Order n of matrix A.
b double b[n] Input Constant vector b.
 Output Solution vector x.
epsz double Input Tolerance for relative zero test of pivots (0).

When epsz is zero, a standard value is assigned. See Comments on use.
isw int Input Control information.

When solving several sets of equations that have the same coefficient
matrix, set isw=1 for the first set, and isw=2 for the second and
subsequent sets. Only argument b is assigned a new constant vector b
and the others are unchanged. See Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 A negative pivot occurred.

The coefficient matrix is not positive definite.
Processing continues.

20000 Either all of the elements of some row are zero or
the pivot became relatively zero. It is highly
probable that the coefficient matrix is singular.

Discontinued.

Description of the C-SSL II Routines

438

Code Meaning Processing
30000 One of the following has occurred:

 n < 1
 epsz < 0
 isw 1 or 2

Bypassed.

3. Comments on use

epsz
If the value 10-s is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the pivot value loses more than s significant digits during LDLT decomposition in the modified Cholesky’s method, the
value is assumed to be zero and decomposition is discontinued with icon=20000.

The standard value of epsz is normally 16µ, where µ is the unit round-off. If processing is to proceed at a low pivot
value, epsz will be given the minimum value but the result is not always guaranteed.

isw
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and
subsequent sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and
go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than
otherwise.

Calculation of determinant
To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of the array d together.

Negative pivot during the solution
When a negative pivot occurs in the decomposition, the calculation error may possibly be large since no pivoting is
performed in the function. The function takes advantage of the characteristics in a positive definite symmetric tridiagonal
matrix when performing the computation. As a result, it is computationally more efficient compared to the standard
modified Cholesky’s method that performs the same operations.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, isw;
 double epsz, eps;
 double d[NMAX], sd[NMAX-1], b[NMAX], x[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 for (i=0;i<n-1;i++) {
 sd[i] = -1;

 c_dlstx

 439

 d[i] = 10;
 }
 d[n-1] = 10;
 for (i=0;i<n;i++)
 x[i] = i+1;
 /* initialize constant vector b */
 b[0] = d[0]*x[0] + sd[0]*x[1];
 for (i=1;i<n-1;i++) {
 b[i] = sd[i-1]*x[i-1] + d[i]*x[i] + sd[i]*x[i+1];
 }
 b[n-1] = sd[n-2]*x[n-2] + d[n-1]*x[n-1];
 epsz = 1e-6;
 isw = 1;
 /* solve system of equations */
 ierr = c_dlstx(d, sd, n, b, epsz, isw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dlstx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

The modified Cholesky’s method is used. For further information consult the entry for LSTX in the Fortran SSL II User’s
Guide.

Description of the C-SSL II Routines

440

c_dltx
Solution of a system of linear equations with a tridiagonal matrix
(Gaussian elimination method).
ierr = c_dltx(sbd, d, spd, n, b, epsz, isw,

&is, ip, vw, &icon);

1. Function

This function solves a system of linear equations (1) using the Gaussian elimination method.

 Ax b (1)

In (1), A is an n n real tridiagonal matrix, b is a real constant vector and x is the real solution vector. Both the real
vectors are of size n (n1).

2. Arguments

The routine is called as follows:
ierr = c_dltx(sbd, d, spd, n, b, epsz, isw, &is, ip, vw, &icon);

where:
sbd double

sbd[n-1]

Input
Output

Lower sub-diagonal elements of matrix A.
The contents of the array are altered on output.

d double d[n] Input
Output

Diagonal elements of matrix A.
The contents of the array are altered on output.

spd double

spd[n-1]

Input
Output

Upper sub-diagonal elements of matrix A.
The contents of the array are altered on output.

n int Input Order n of matrix A.
b double b[n] Input Constant vector b.
 Output Solution vector x.
epsz double Input Tolerance for relative zero test of pivots (0).

When epsz is zero, a standard value is assigned. See Comments on use.
isw int Input Control information.

When solving several sets of equations that have the same coefficient
matrix, set isw=1 for the first set, and isw=2 for the second and
subsequent sets. Only argument b is assigned a new constant vector b
and the others are unchanged. See Comments on use.

is int Output Information for obtaining the determinant of matrix A. See Comments
on use.

ip int ip[n] Work
vw double vw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is given below.

 c_dltx

 441

Code Meaning Processing
0 No error. Completed.
20000 Either all of the elements of some row are zero or

the pivot became relatively zero. It is highly
probable that the coefficient matrix is singular.

Discontinued.

30000 One of the following has occurred:
 n < 1
 epsz < 0
 isw 1 or 2

Bypassed.

3. Comments on use

epsz
If the value 10-s is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the pivot value loses more than s significant digits during LU-decomposition, the value is assumed to be zero and
decomposition is discontinued with icon=20000.

The standard value of epsz is normally 16µ, where µ is the unit round-off. If processing is to proceed at a low pivot
value, epsz will be given the minimum value but the result is not always guaranteed.

isw
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for the second and
subsequent sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and
go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than
otherwise.

Calculation of determinant
To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of the array d together, and
then multiply by the value of is.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, isw, is;
 double epsz, eps;
 double sbd[NMAX-1], d[NMAX], spd[NMAX-1], b[NMAX], x[NMAX], vw[NMAX];
 int ip[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 for (i=0;i<n-1;i++) {
 sbd[i] = -1;
 spd[i] = -1;

Description of the C-SSL II Routines

442

 d[i] = 10;
 }
 d[n-1] = 10;
 for (i=0;i<n;i++)
 x[i] = i+1;
 /* initialize constant vector b */
 b[0] = d[0]*x[0] + spd[0]*x[1];
 for (i=1;i<n-1;i++) {
 b[i] = sbd[i-1]*x[i-1] + d[i]*x[i] + spd[i]*x[i+1];
 }
 b[n-1] = sbd[n-2]*x[n-2] + d[n-1]*x[n-1];
 epsz = 1.0e-6;
 isw = 1;
 /* solve system of equations */
 ierr = c_dltx(sbd, d, spd, n, b, epsz, isw, &is, ip, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dltx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

The Gaussian elimination method with partial pivoting is used. For further information consult the entry for LTX in the
Fortran SSL II User’s Guide.

 c_dclux

 443

c_dlux
Solution of a system of linear equations with a real matrix in LU-
decomposed form.
ierr = c_dlux(b, fa, k, n, isw, ip, &icon);

1. Function

This routine solves a system of linear equations with an nn LU - decomposed matrix

 PbLUx (1)

In (1), P is a permutation matrix that performs the row exchanges required in partial pivoting for the LU - decomposition,
L is a lower triangular matrix, U is a unit upper triangular matrix, b is a real constant vector, and x is the solution vector.
Both vectors are of size n (n 1).

One of the following equations can be solved instead of (1)

 PbLy (2)

 bUz (3)

2. Arguments

The routine is called as follows:
ierr = c_dlux(b, (double*)fa, k, n, isw, ip, &icon);

where:
b double b[n] Input Constant vector b.
 Output One of the solution vectors x, y, or z.
fa double

fa[n][k]

Input Matrix)(IUL . See Comments on use.

k int Input C fixed dimension of array fa (n).
n int Input Order of matrices L and U.
isw int Input Control information.

 isw = 1 when solution x in (1)is required
 isw = 2 when solution y in (2) is required
 isw = 3 when solution z in (3) is required

ip int ip[n] Input Transposition vector that provides the row exchanges that occurred
during partial pivoting. See Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Coefficient matrix was singular. Discontinued.
30000 One of the following occurred:

 n < 1
Bypassed.

Description of the C-SSL II Routines

444

Code Meaning Processing
 k < n
 isw 1,2, or 3
 error found in ip

3. Comments on use

A system of linear equations with a real coefficient matrix can be solved by calling the routine c_dvalu to LU-
decompose the coefficient matrix prior to calling this routine. The input arguments fa and ip of this routine are the same
as the output arguments a and ip of routine c_dvalu. Alternatively, the system of linear equations can be solved by
calling the single routine c_dvlax

4. Example program

This program solves a system of linear equations using LU decomposition and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, is, isw;
 double epsz, eps;
 double fa[NMAX][NMAX];
 double b[NMAX], x[NMAX], vw[NMAX];
 int ip[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 for (j=i;j<n;j++) {
 fa[i][j] = n-j;
 fa[j][i] = n-j;
 }
 x[i] = i+1;
 }
 /* initialize constant vector zb = za*zx */
 ierr = c_dmav((double*)fa, k, n, n, x, b, &icon);
 epsz = 1e-6;
 /* perform LU decomposition */
 ierr = c_dvalu((double*)fa, k, n, epsz, ip, &is, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dlu failed with icon = %d\n", icon);
 exit(1);
 }
 isw = 1;
 /* solve system of equations using LU factors */
 ierr = c_dlux(b, (double*)fa, k, n, isw, ip, &icon);
 if (icon != 0) {
 printf("ERROR: c_dlux failed with icon = %d\n", icon);
 exit(1);
 }
 /* check result */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((b[i]-x[i])/x[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

 c_dclux

 445

5. Method

Consult the entry for LUX in the Fortran SSL II User's Guide and [7], [34] and [83].

Description of the C-SSL II Routines

446

c_dmav
Multiplication of a real matrix by a real vector.
ierr = c_dmav(a, k, m, n, x, y, &icon);

1. Function

This function calculates the matrix-vector product of an m n real matrix A with a real vector x of size n.

 y Ax (1)

The solution y is a real vector of size m (m and n 1).

2. Arguments

The routine is called as follows:
ierr = c_dmav((double*)a, k, m, n, x, y, &icon);

where:
a double

a[m][k]

Input Matrix A.

k int Input C fixed dimension of array a (n).
m int Input The number of rows m for matrices A.
n int Input The number of columns n for matrices A.

See Comments on use.
x double x[n] Input Vector x.
y double y[m] Input Vector y.

Only applies to equation (2). See Comments on use.
 Output Solution vector of multiplication.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m < 1
 n = 0
 k < n

Bypassed.

3. Comments on use

General Comments
The function primarily performs computation for equation (1) but it can also manage to do equation (2) that is very much
like (1).

 c_dmav

 447

 y y Ax (2)

To tell the function to perform (2), specify argument n=-n and either copy or set the contents of the initial vector y into y
before calling the function. Equation (2) is commonly use to compute the residual vector r of linear equations (3) with a
right-hand-side vector b.

 r b Ax (3)

4. Example program

This example program performs a matrix-vector multiplication.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int m, n, i, j, k;
 double eps;
 double a[NMAX][NMAX], x[NMAX], y[NMAX];

 /* initialize matrix and vector */
 m = NMAX;
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 for (j=0;j<n;j++)
 a[i][j] = 1.0/(j+1);
 x[i] = i+1;
 }
 /* perform matrix vector multiply */
 ierr = c_dmav((double*)a, k, m, n, x, y, &icon);
 if (icon != 0) {
 printf("ERROR: c_dmav failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((y[i]-n)/n) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For further information consult the entry for MAV in the Fortran SSL II User’s Guide.

Description of the C-SSL II Routines

448

c_dmcv
Multiplication of a complex matrix by a complex vector.
ierr = c_dmcv(za, k, m, n, zx, zy, &icon);

1. Function

This function calculates the matrix-vector product of an m n complex matrix A with a complex vector x of size n.

 y Ax (1)

The solution y is a complex vector of size m (m and n 1).

2. Arguments

The routine is called as follows:
ierr = c_dmcv((dcomplex*)za, k, m, n, zx, zy, &icon);

where:
za dcomplex

za[m][k]

Input Matrix A.

k int Input C fixed dimension of array za (n).
m int Input The number of rows m for matrices A.
n int Input The number of columns n for matrices A.

See Comments on use.
zx dcomplex

zx[n]

Input Vector x.

zy dcomplex

zy[m]

Input Vector y.
Only applies to equation (2). See Comments on use.

 Output Solution vector of multiplication.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m < 1
 n = 0
 k < n

Bypassed.

3. Comments on use

General comments
The function primarily performs computation for equation (1) but it can also manage to do equation (2) that is very much
like (1).

 c_dmcv

 449

 y y Ax (2)

To tell the function to perform (2), specify argument n=-n and either copy or set the contents of the initial vector y into
y before calling the function. Equation (2) is commonly use to compute the residual vector r of linear equations (3) with a
right-hand-side vector b.

 r b Ax (3)

4. Example program

This example program performs a complex matrix-vector multiplication.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int m, n, i, j, k;
 double eps;
 dcomplex za[NMAX][NMAX], zx[NMAX], zy[NMAX], sum;

 /* initialize matrix and vector */
 m = NMAX;
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 for (j=0;j<n;j++) {
 za[i][j].re = 1.0/(j+1);
 za[i][j].im = 1.0/(j+1);
 }
 zx[i].re = i+1;
 zx[i].im = i+1;
 }
 /* perform complex matrix vector multiply */
 ierr = c_dmcv((dcomplex*)za, k, m, n, zx, zy, &icon);
 if (icon != 0) {
 printf("ERROR: c_dmcv failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 eps = 1e-6;
 for (i=0;i<n;i++) {
 sum.re = 0;
 sum.im = 0;
 for (j=0;j<n;j++) {
 sum.re = sum.re + za[i][j].re*zx[j].re-za[i][j].im*zx[j].im;
 sum.im = sum.im + za[i][j].im*zx[j].re+za[i][j].re*zx[j].im;
 }
 if (fabs((zy[i].re-sum.re)) > eps ||
 fabs((zy[i].im-sum.im)) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For further information consult the entry for MCV in the Fortran SSL II User’s Guide.

Description of the C-SSL II Routines

450

c_dmdmx
Solution of a system of linear equations with an indefinite symmetric
matrix in MDM T - decomposed form.
ierr = c_dmdmx(b, fa, n, ip, &icon);

1. Function

This routine solves a linear system of equations with an MDM T - decomposed nn indefinite symmetric matrix

 bxPMDMP TT1 (1)

In (1), P is a permutation matrix (which performs row exchanges of the coefficient matrix based on the pivoting during
the MDM T - decomposition), M = (ijm) is a unit lower triangular matrix, and D = (ijd) is a symmetric block diagonal
matrix with blocks of order at most 2, b is a constant vector, and x is the solution vector. Both vectors are of size n (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dmdmx(b, fa, n, ip, &icon);

where:
b double b[n] Input Constant vector b.
 Output Solution vector x.
fa double

fa[Falen]
Input Matrix I)(MD . Stored in symmetric storage format. See Array

storage formats in the Introduction section for details, and Comments on
use. .2/)1(nnFalen

n int Input Order n of matrices M and D, constant vector b and solution vector x.
ip int ip[n] Input Transposition vector that provides the row exchanges that occurred

during pivoting. See Comments on use.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Coefficient matrix was singular. Discontinued.
30000 One of the following has occurred:

 n < 1
 error found in ip.

Bypassed.

3. Comments on use

fa, ip and MDM T - decomposition
A system of linear equations with an indefinite symmetric coefficient matrix A can be solved by calling the routine
c_dsmdm to MDM T - decompose the coefficient matrix prior to calling this routine. The input arguments fa and ip of
this routine are the same as the output arguments a and ip of routine c_dsmdm. Alternatively, the system of linear
equations can be solved by calling the single routine c_dlsix.

 c_dmdmx

 451

Calculation of determinant
The determinant of matrix A is the same as the determinant of matrix D, that is the product of the determinants of the 11
and 22 blocks of D. See the example program with c_dsmdm.

Eigenvalues
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program with c_dsmdm.

4. Example program

This example program decomposes and solves a system of linear equations using MDM T decomposition and checks the
result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij;
 double epsz, eps, pi, an, ar;
 double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX];
 int ip[NMAX], ivw[NMAX];

 /* initialize matrix */
 n = NMAX;
 ij = 0;
 pi = 2*asin(1);
 an = 1.0/(n+1);
 ar = pi*an;
 an = sqrt(2*an);
 for (i=1;i<=n;i++)
 for (j=1;j<=i;j++) {
 a[ij++] = an*sin(i*j*ar);
 }
 epsz = 1e-6;
 /* initialize RHS vector */
 for (i=0;i<n;i++)
 x[i] = i+1;
 /* initialize constant vector b = a*x */
 ierr = c_dmsv(a, n, x, b, &icon);
 /* MDM decomposition of system */
 ierr = c_dsmdm(a, n, epsz, ip, vw, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dsmdm failed with icon = %d\n", icon);
 exit(1);
 }
 /* solve decomposed system of equations */
 ierr = c_dmdmx(b, a, n, ip, &icon);
 if (icon != 0) {
 printf("ERROR: c_dmdmx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

Description of the C-SSL II Routines

452

5. Method

Consult the entry for MDMX in the Fortran SSL II User's Guide.

 c_dmgsm

 453

c_dmgsm
Multiplication of two matrices (general by symmetric).
ierr = c_dmgsm(a, ka, b, c, kc, n, vw, &icon);

1. Function

This routine performs multiplication of an nn general matrix A by an nn symmetric matrix B.

 ABC (1)

In (1), the resultant C is also an nn matrix (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dmgsm((double*)a, ka, b, (double*)c, kc, n, vw, &icon);

where:
a double

a[n][ka]

Input Matrix A.

ka int Input C fixed dimension of array a (n).
b double b[Blen] Input Matrix B. Stored in symmetric storage format. See Array storage formats

in the Introduction section for details. .2/)1(nnBlen
c double

c[n][kc]

Output Matrix C. See Comments on use.

kc int Input C fixed dimension of array c (n).
n int Input The order n of matrices A, B and C.
vw double vw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n < 1
 ka < n
 kc < n

Bypassed.

3. Comments on use

Efficient use of memory
Storing the solution matrix C in the same memory area as matrix A is permitted if the array contents of matrix A can be
discarded after computation. To take advantage of this efficient reuse of memory, the array and dimension arguments
associated with matrix A need to appear in the locations reserved for matrix C in the function argument list, as indicated
below.

Description of the C-SSL II Routines

454

ierr = c_dmgsm(a, ka, b, a, ka, n, vw, &icon);

Note, if matrix A is required after the solution then a separate array must be supplied for storing matrix C.

4. Example program

This program multiplies a standard matrix by a symmetric matrix.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 5

/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
 int ij, i, j;
 printf("symmetric matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 for (j=0;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
 int i, j;
 printf("general matrix format\n");
 for (i=0;i<n;i++) {
 for (j=0;j<m;j++)
 printf("%7.2f ",a[i*k+j]);
 printf("\n");
 }
}

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij, ka, kc;
 double a[NMAX][NMAX], b[NMAX*(NMAX+1)/2], c[NMAX][NMAX], vw[NMAX];

 n = NMAX;
 /* initialize symmetric matrix */
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 b[ij++] = i-j+1;
 }
 /* initialize general matrix */
 for (i=0;i<n;i++)
 for (j=0;j<n;j++) {
 a[i][j] = j+1;
 }
 ka = NMAX;
 kc = NMAX;
 /* matrix matrix multiply */
 ierr = c_dmgsm((double*)a, ka, b, (double*)c, kc, n, vw, &icon);
 /* print matrices */
 printf("a: \n");
 prtgenmat((double*)a, ka, n, n);
 printf("b: \n");
 prtsymmat(b, n);
 printf("c: \n");
 prtgenmat((double*)c, kc, n, n);
 return(0);
}

 c_dminf1

 455

c_dminf1
Minimization of a function of several variables (revised quasi-Newton
method using function values only).
ierr = c_dminf1(x, n, fun, epsr, &max, &f, g,

h, vw, &icon);

1. Function

Given a real function)(xf of n variables and an initial vector 0x , the vector x that gives a local minimum of)(xf and
its function value)(xf are obtained by using the revised quasi-Newton method.

The function)(xf is assumed to have at least continuous second partial derivatives.

2. Arguments

The routine is called as follows:
ierr = c_dminf1(x, n, fun, epsr, &max, &f, g, h, vw, &icon);

where:
x double x[n] Input Initial vector 0x .
 Output Vector x .
n int Input Number of variables n.
fun function Input User defined function to evaluate)(xf . Its prototype is:

double fun(double x[]);

where:
 x double

x[n]

Input Independent variable.

epsr double Input Convergence criteria. A default value is used when epsr = 0. See
Comments on use.

max int Input Upper limit on the number of evaluations of fun. max may be negative.
See Comments on use.

 Output Number of times actually evaluated.
f double Output Value of)(xf .
g double g[n] Output Gradient vector at x .
h double h[Hlen] Output Hessian matrix at x . Hlen 2/)1(nn . This array is only used if

c_dminf1 is called again after a value of 10000 has been returned in
icon. See Comments on use.

vw double

vw[3n+1]

Work This array must not be changed if c_dminf1 is called again. See
Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Convergence condition was not satisfied within Stopped. Arguments x, f, g and h each contain

Description of the C-SSL II Routines

456

Code Meaning Processing
the specified number of function evaluations. the last value obtained.

20000 A descent direction could not be found so that no
decrease in function value could be obtained.
epsr was too small or the error in difference
approximation for a gradient vector was too large.

Stopped. Arguments x and f contain the last
value obtained.

30000 One of the following has occurred:
 n < 1
 epsr < 0
 max = 0

Bypassed.

3. Comments on use

epsr
The function tests for

epsr
),1max(1 kkk xxx

for the iteration vector kx and if the above condition is satisfied, 1kx is taken as the local minimum point x . If the
function value)(xf is to be obtained as accurate as unit round-off, µ, then a value of epsr is satisfactory. The
default value of epsr is 2 .

max and recalling c_dminf1 when icon=10000
The number of function evaluations is calculated as the number of calls to the user defined function fun.

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector
and the convergence criterion. Generally, from a good initial vector, a value of max n 400 is appropriate.

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon
= 10000, the iteration can be continued by calling c_dminf1 again. In this case, max must be given a negative value,
where its absolute value indicates the number of additional function evaluations to perform and the value of the other
arguments must remain unaltered.

4. Example program

A minimum of the function 22
12

2
1)(100)1()(xxxf x is found from an initial starting guess of Tx)0.1,2.1(0

The computed solution is output together with an accuracy check.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2

double fun(double x[]); /* user function prototype */

MAIN__()
{
 int ierr, icon;
 double f, x[N], g[N], h[N*(N+1)/2], vw[3*N+1], epsr, eps, exact;
 int max, n;

 /* initialize data */
 x[0] = -1.2;

 c_dminf1

 457

 x[1] = 1;
 n = N;
 epsr = 1e-3;
 max = 400*n;
 /* find minimum of function */
 ierr = c_dminf1(x, n, fun, epsr, &max, &f, g, h, vw, &icon);
 printf("icon = %i max = %i x = (%12.4e, %12.4e) f = %12.4e\n",
 icon, max, x[0], x[1], f);
 /* check result */
 exact = 0;
 eps = 1e-6;
 if (fabs(f-exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

/* user function */
double fun(double x[])
{
 return(pow(1-x[0],2)+100*pow((x[1]-x[0]*x[0]),2));
}

5. Method

For further information consult the entry for MINF1 in the Fortran SSL II User’s Guide and [33].

Description of the C-SSL II Routines

458

c_dming1
Minimization of a function of several variables (quasi-Newton method
using function values and derivatives).
ierr = c_dming1(x, n, fun, grad, epsr, &max,

&f, g, h, vw, &icon);

1. Function

Given a real function)(xf of n variables (n 1), its derivative)(xg , and an initial vector 0x , the vector *x that gives a
local minimum of)(xf and its function value)(*xf are obtained using the quasi-Newton method.

The function)(xf is assumed to have at least continuous second partial derivatives.

2. Arguments

The routine is called as follows:
ierr = c_dming1(x, n, fun, grad, epsr, &max, &f, g, h, vw, &icon);

where:
x double x[n] Input Initial vector 0x .
 Output Vector *x .
n int Input Number of variables n.
fun function Input User defined function to evaluate)(xf . Its prototype is:

double fun(double x[]);

where
 x double

x[n]

Input Independent variable.

grad function Input User defined function to evaluate)(xg , that is ixf / , i=1,...,n. Its
prototype is
void grad(double x[], double g[]);

where
 x double

x[n]

Input Independent variable.

 g double

g[n]

Output Gradient vector, where
g[i-1]= ixf / , i=1,...,n.

epsr double Input Convergence criterion (0). A default value is used when epsr = 0.
See Comments on use.

max int Input Upper limit on the number of evaluations of fun and grad. max may
be negative. See Comments on use.

 Output Number of times fun and grad were actually evaluated.
f double Output Value of)(*xf .

g double g[n] Output Gradient vector at *x .

 c_dming1

 459

h double h[Hlen] Output Inverse of the Hessian matrix at *x stored in symmetric storage format.
See Array storage formats in the Introduction section for details.

2/)1(nnHlen . This array is only used if c_dming1 is called
again after a value of 10000 has been returned in icon. See Comments
on use.

vw double

vw[3n+1]

Work This array must not be changed if c_dming1 is called again after a
value of 10000 has been returned in icon. See Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Convergence criterion was not satisfied within the

specified number of function evaluations.
Stopped. Arguments x, f, g and h contain the last
values obtained.

20000 A descent direction could not be found such that a
decrease in function value could be obtained.
epsr was too small.

Discontinued. Arguments x and f contain the last
values obtained.

25000 The function is monotonically decreasing along
the search direction.

Discontinued.

30000 One of the following has occurred:
 n < 1
 epsr < 0
 max = 0

Bypassed.

3. Comments on use

epsr
The routine tests for

 epsr)||||,1(max|||| 1 kkk xxx

for the iteration vector kx , and if the above condition is satisfied, 1kx is taken as the local minimum point *x . If the
function value)(*xf is to be obtained as accurate as unit round-off, µ, then a value of epsrµ 2/1 is satisfactory. The
default value of epsr is µ 8/2/1 .

max and recalling c_dming1 when icon = 10000
The number of function evaluations is calculated as 1 for each call to the user defined function fun and n for each call to
the user defined function grad.

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector
and the convergence criterion. Generally, from a good initial vector, a value of max = n400 is appropriate.

If the convergence criterion is not satisfied within the specified number of evaluations and the routine returns with icon
= 10000, the iteration can be continued by calling c_dming1 again. In this case, max must be given a negative value,
where its absolute value indicates the number of additional function evaluations to perform, and the values of the other
arguments must remain unaltered.

Description of the C-SSL II Routines

460

4. Example program

The global minimum point x for 22
12

2
1)(100)1()(xxxf x is obtained with the initial vector

T)0.1,2.1(0x .

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2

double fun(double x[]); /* user function prototype */
void grad(double x[], double g[]); /* derivative prototype */

MAIN__()
{
 int ierr, icon;
 double x[N], g[N], h[N*(N+1)/2], vw[3*N+1], f, epsr;
 int i, n, max;

 /* initialize data */
 n = N;
 x[0] = -1.2;
 x[1] = 1;
 epsr = 1e-4;
 max = 400*n;
 /* find minimum of function */
 ierr = c_dming1(x, n, fun, grad, epsr, &max, &f, g, h, vw, &icon);
 if (icon >= 20000) {
 printf("ERROR in c_dming1. icon = %i", icon);
 exit(1);
 }
 printf("icon = %i max = %i f = %12.4e\n", icon, max, f);
 printf("x: ");
 for (i=0;i<n;i++) printf("%12.4e ",x[i]);
 printf("\n");
 return(0);
}

/* user function */
double fun(double x[])
{
 return pow(1-x[0],2)+100*pow(x[1]-x[0]*x[0],2);
}

/* derivative function */
void grad(double x[], double g[])
{
 g[0] = -2*(1-x[0])-400*x[0]*(x[1]-x[0]*x[0]);
 g[1] = 200*(x[1]-x[0]*x[0]);
}

5. Method

Consult the entry for MING1 in the Fortran SSL II User's Guide. and [95].

 c_dmsbv

 461

c_dmsbv
Multiplication of a symmetric band matrix by a vector.
ierr = c_dmsbv(a, n, nh, x, y, &icon);

1. Function

This routine calculates the matrix-vector product of an nn symmetric band matrix A, with upper and lower bandwidths
h, and a vector x of size n.

 Axy (1)

The solution y is a real vector of size n. (n>h 0).

2. Arguments

The routine is called as follows:
ierr = c_dmsbv(a, n, nh, x, y, &icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric band storage format. See Array storage

formats in the Introduction section for details.
.2/)1()1(hhhnAlen

n int Input The order n of matrix A.
nh int Input The upper and lower bandwidths h of matrix A.
x double x[n] Input Vector x.
y double y[n] Output Solution vector y.
 Input Vector y . Only applies to equation (2). See Comments on use.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n = 0
 nh < 0
 nh |n|

Bypassed.

3. Comments on use

General Comments
The routine is used primarily for the computation of equation (1) but it can also be used for equation (2)

 Axyy (2)

by assigning –n to n and y to y before calling the routine. Equation (2) is commonly used to compute a residual vector
Axbr of the linear equation Ax = b.

Description of the C-SSL II Routines

462

4. Example program

This program multiplies a symmetric band matrix by a vector and prints the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define NMAX 5
#define NHMAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh, i, j, ij, jmin;
 double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], x[NMAX], y[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 nh = NHMAX;
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh, 0);
 for (j=jmin;j<=i;j++)
 a[ij++] = i-j+1;
 }
 for (i=0;i<n;i++)
 x[i] = i;
 /* perform matrix vector multiply */
 ierr = c_dmsbv(a, n, nh, x, y, &icon);
 if (icon != 0) {
 printf("ERROR: c_dmsbv failed with icon = %d\n", icon);
 exit(1);
 }
 /* print result */
 for (i=0;i<n;i++)
 printf("%7.2f ",y[i]);
 printf("\n");
 return(0);
}

5. Method

Consult the entry for MSBV in the Fortran SSL II User's Guide.

 c_dmsgm

 463

c_dmsgm
Multiplication of two matrices (symmetric by general).
ierr = c_dmsgm(a, b, kb, c, kc, n, vw, &icon);

1. Function

This routine performs multiplication of an nn symmetric matrix A by an nn general matrix B

 ABC (1)

In (1), the resultant C is an nn matrix (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dmsgm(a, (double*)b, kb, (double*)c, kc, n, vw, &icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage

formats in the Introduction section for details. .2/)1(nnAlen
b double

b[n][kb]

Input Matrix B.

kb int Input C fixed dimension of array b (n).
c double

c[n][kc]

Output Matrix C. See Comments on use.

kc int Input C fixed dimension of array c (n).
n int Input The order n of matrices A, B and C.
vw double vw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n < 1
 kb < n
 kc < n

Bypassed.

3. Comments on use

Saving on storage space
If there is no need to keep the contents of array, as, then saving on storage space is possible by specifying the same array
for argument c. WARNING – make sure the array size is compliant for both arguments otherwise unpredictable results
can occur.

Description of the C-SSL II Routines

464

4. Example program

This program multiplies a symmetric matrix by a standard matrix.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 5

/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
 int ij, i, j;
 printf("symmetric matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 for (j=0;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
 int i, j;
 printf("general matrix format\n");
 for (i=0;i<n;i++) {
 for (j=0;j<m;j++)
 printf("%7.2f ",a[i*k+j]);
 printf("\n");
 }
}

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij, kb, kc;
 double b[NMAX][NMAX], a[NMAX*(NMAX+1)/2], c[NMAX][NMAX], vw[NMAX];

 n = NMAX;
 /* initialize symmetric matrix */
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[ij++] = i-j+1;
 }
 /* initialize general matrix */
 for (i=0;i<n;i++)
 for (j=0;j<n;j++) {
 b[i][j] = i+1;
 }
 kb = NMAX;
 kc = NMAX;
 /* matrix matrix multiply */
 ierr = c_dmsgm(a, (double*)b, kb, (double*)c, kc, n, vw, &icon);
 /* print matrices */
 printf("a: \n");
 prtsymmat(a, n);
 printf("b: \n");
 prtgenmat((double*)b, kb, n, n);
 printf("c: \n");
 prtgenmat((double*)c, kc, n, n);
 return(0);
}

 c_dmssm

 465

c_dmssm
Multiplication of two matrices (symmetric by symmetric).
ierr = c_dmssm(a, b, c, kc, n, vw, &icon);

1. Function

This routine performs multiplication of two nn symmetric matrices, A and B.

 ABC (1)

In (1), the resultant matrix C is also an nn matrix (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dmssm(a, b, (double *)c, kc, n, vw, &icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage

formats in the Introduction section for details. .2/)1(nnAlen
b double b[Blen] Input Matrix B. Stored in symmetric storage format. See Array storage formats

in the Introduction section for details. .2/)1(nnBlen
c double

c[n][kc]

Output Matrix C. See Comments on use.

kc int Input C fixed dimension of array c (n).
n int Input The order n of matrices A, B and C.
vw double vw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n < 1
 kc < n

Bypassed.

3. Comments on use

Saving on storage space
If there is no need to keep the contents of array, a, then saving on storage space is possible by specifying the same array
for argument c. WARNING – make sure the array size is compliant for both arguments otherwise unpredictable results
can occur.

4. Example program

This program multiplies two symmetric matrices together.

Description of the C-SSL II Routines

466

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 5

/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
 int ij, i, j;
 printf("symmetric matrix format\n");
 ij = 0;
 for (i=0;i<n;i++) {
 for (j=0;j<=i;j++)
 printf("%7.2f ",a[ij++]);
 printf("\n");
 }
}

/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
 int i, j;
 printf("general matrix format\n");
 for (i=0;i<n;i++) {
 for (j=0;j<m;j++)
 printf("%7.2f ",a[i*k+j]);
 printf("\n");
 }
}

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij, kc;
 double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], c[NMAX][NMAX], vw[NMAX];

 n = NMAX;
 /* initialize symmetric matrices */
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[ij] = i-j+1;
 b[ij++] = i-j+1;
 }
 kc = NMAX;
 /* matrix matrix multiply */
 ierr = c_dmssm(a, b, (double*)c, kc, n, vw, &icon);
 /* print matrices */
 printf("a: \n");
 prtsymmat(a, n);
 printf("b: \n");
 prtsymmat(b, n);
 printf("c: \n");
 prtgenmat((double*)c, kc, n, n);
 return(0);
}

 c_dmsv

 467

c_dmsv
Multiplication of a symmetric matrix and a vector.
ierr = c_dmsv(a, n, x, y, &icon);

1. Function

This routine calculates the matrix-vector product of an nn symmetric matrix A and a vector x of size n.

 Axy (1)

The solution y is a real vector of size n (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dmsv(a, n, x, y, &icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage

formats in the Introduction section for details. .2/)1(nnAlen
n int Input The order n of matrix A.
x double x[n] Input Vector x.
y double y[n] Output

Input
Solution vector y.
Vector y . Only applies to equation (2). See Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 n = 0 Bypassed.

3. Comments on use

General Comments
The routine is used primarily for the computation of equation (1) but it can also be used for equation (2)

 Axyy (2)

by assigning –n to n and y to y before calling the routine. Equation (2) is commonly used to compute a residual vector
Axbr of the linear equation Ax = b.

4. Example program

This program multiplies a symmetric matrix by a vector and prints the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

Description of the C-SSL II Routines

468

#include "cssl.h" /* standard C-SSL header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij;
 double a[NMAX*(NMAX+1)/2], x[NMAX], y[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[ij++] = i-j+1;
 }
 for (i=0;i<n;i++)
 x[i] = i;
 /* perform matrix vector multiply */
 ierr = c_dmsv(a, n, x, y, &icon);
 if (icon != 0) {
 printf("ERROR: c_dmsv failed with icon = %d\n", icon);
 exit(1);
 }
 /* print result */
 for (i=0;i<n;i++)
 printf("%7.2f ",y[i]);
 printf("\n");
 return(0);
}

5. Method

Consult the entry for MSV in the Fortran SSL II User's Guide.

 c_dndf

 469

c_dndf
Normal distribution function)(x .
ierr = c_dndf(x, &f, &icon);

1. Function

This routine computes the value of the normal distribution function

 dtex
x t

0
2

2

2
1)(,

by the relation

 2/2/)(xerfx .

2. Arguments

The routine is called as follows:
ierr = c_dndf(x, &f, &icon);

where:
x double Input Independent variable x.
f double Output Function value)(x .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.

3. Comments on use

Range of x
There is no restriction with respect to the range of argument x.

c_dndf and c_dndfc
Using the relationship between the normal distribution function)(x and the complimentary normal distribution function

)(x

)(2/1)(xx ,

the value of)(x can be computed using the routine c_dndfc. However, in the range || x < 2 this leads to less
accuracy and less efficient computation than using this routine.

4. Example program

This program generates a range of function values for 101 points in the the interval [0,10].

Description of the C-SSL II Routines

470

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, f;
 int i;

 for (i=0;i<=100;i++) {
 x = (double)i/10;
 /* calculate normal distribution function */
 ierr = c_dndf(x, &f, &icon);
 if (icon == 0)
 printf("x = %5.2f f = %f\n", x, f);
 else
 printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
 }
 return(0);
}

5. Method

Consult the entry for NDF in the Fortran SSL II User's Guide.

 c_dndfc

 471

c_dndfc
Complimentary normal distribution function)(x .
ierr = c_dndfc(x, &f, &icon);

1. Function

This routine computes the value of the complimentary normal distribution function

 dtex
x

t

 2

2

2
1)(,

by the relationship

 2/2/)(xerfcx .

2. Arguments

The routine is called as follows:
ierr = c_dndfc(x, &f, &icon);

where:
x double Input Independent variable x.
f double Output Function value)(x .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.

3. Comments on use

Range of x
There is no restriction with respect to the range of argument x.

c_dndfc and c_dndf
Using the relationship between the complimentary normal distribution function)(x and the normal distribution
function)(x ,

)(2/1)(xx ,

the value of)(x can be computed using the routine c_dndf. However, in the range || x > 2 this leads to less accuracy
and less efficient computation than using this routine.

4. Example program

This program generates a range of function values for 101 points in the the interval [0,10].

Description of the C-SSL II Routines

472

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, f;
 int i;

 for (i=0;i<=100;i++) {
 x = (double)i/10;
 /* calculate complementary normal distribution function */
 ierr = c_dndfc(x, &f, &icon);
 if (icon == 0)
 printf("x = %5.2f f = %f\n", x, f);
 else
 printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
 }
 return(0);
}

5. Method

Consult the entry for NDFC in the Fortran SSL II User's Guide.

 c_dnlpg1

 473

c_dnlpg1
Nonlinear programming (Powell’s method using function values and
derivatives).
ierr = c_dnlpg1(x, n, fun, grad, func, jac, m,

epsr, &max, &f, vw, k, ivw,

&icon);

1. Function

Given a real function)(xf of n variables, its gradient vector)(xg and an initial vector 0x , the vector x that gives a
local minimum of)(xf and its function value)(xf are obtained subject to the constraints:

2111

1

,...,2,1,0)(
,...,2,1,0)(

mmmmic
mic

i

i

x
x

The Jacobian matrix)(xJ of)}({ xic must be provided as a procedure and the function)(xf is assumed to have at least
continuous second partial derivatives.

Furthermore, if we define 21 mmm , where 1m is the number of equality constraints and 2m is the number of
inequality constraints, then 01 m , 02 m and 1m .

2. Arguments

The routine is called as follows:
ierr = c_dnlpg1(x, n, fun, grad, func, jac, m, epsr, &max, &f, vw, k, ivw,

&icon);

where:
x double x[n] Input Initial vector 0x .
 Output Vector x .
n int Input Number of variables n.
fun function Input User defined function to evaluate)(xf . Its prototype is:

double fun(double x[]);

where:
 x double

x[n]

Input Independent variable.

grad function Input User defined function to evaluate)(xg , that is nixf i ,...,1},/{ . Its
prototype is:
void grad(double x[], double g[]);

where:
 x double

x[n]

Input Independent variable.

 g double

g[n]

Output Gradient vector, where:
},/{ ixf 1]-g[i i=1,...,

n.

Description of the C-SSL II Routines

474

func function Input Name of the user defined function to evaluate)}({ xic . Its prototype is:
void func(double x[], double c[]);

where:

 x double

x[n]

Input Independent variable.

 c double

c[m]

Output Vector of constraint values.

jac function Input The name of the function that evaluates the analytical Jacobian matrix:

n

mmm

n

n

x
c

x
c

x
c

x
c

x
c

x
c

x
c

x
c

x
c

21

2

2

2

1

2

1

2

1

1

1

J

The function prototype as:
void jac(double x[],double cj[], int k);

where:
 x double

x[n]

Input The independent variable.

 cj double

cj[m*k]

Output The Jacobian matrix. Stored by
rows, i.e.

ji xc
ji

)]1(*)1[(k cj

where mi 1 and
nj 1 .

 k int Input The declared storage for each
“row” of cj. The user must
use the parameter passed by
the library routine, as it may
not be as expected.

m int m[2] Input The number of constraints. m[0] = 1m and m[1] = 2m .
epsr double Input Convergence criteria. A default value is used when epsr = 0. See

Comments on use.
max int Input Upper limit on the number of function evaluations (fun, grad, func

and jac). max may be negative. See Comments on use.
 Output Number of times actually evaluated.
f double Output Value of)(xf .
vw double

vw[Rlen]
Work Rlen = k*(m[0]+m[1]+2*n+12).

k int Input Control on size of vw, where k m[0]+m[1]+n+4.
ivw int ivw[Ilen] Work Ilen = 2*(m[0]+m[1]+n+4).
icon int Output Condition code. See below.
The complete list of condition codes is given below:

 c_dnlpg1

 475

Code Meaning Processing
0 No error. Completed.
10000 Convergence condition was not satisfied within

the specified number of function evaluations.
Stopped. Arguments x and f, each contain the
last value obtained.

20000 A descent direction could not be found so that no
decrease in function value could be obtained.
epsr may have been too small.

21000 There may not be a solution that satisfies the
constraints, or 0x may not be appropriate. Retry
with a different initial value.

Stopped.

29000 Memory allocation error. Bypassed.
30000 One of the following has occurred:

 n < 1
 epsr < 0
 k < m[0]+m[1]+n+4
 max = 0
 0m[0]
 0m[1]
 1 m[i]m[0]

Bypassed.

3. Comments on use

epsr
The function tests for

epsr
),1max(1 kkk xxx

for the iteration vector kx and if the above condition is satisfied, 1kx is taken as the local minimum point x . If the
function value)(xf is to be obtained as accurate as unit round-off, , then a value of epsr is satisfactory. The
default value of epsr is 2 .

max and recalling c_dnlpg1 when icon=10000
The number of function evaluations is incremented by one every time fun is called, by n every time grad is called, by m
every time func is called and by n*m every time jac is called.

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector
and the convergence criterion. Generally, from a good initial vector, a value of max mn 800 is appropriate.

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon
= 10000, the iteration can be continued by calling c_dnlpg1 again. In this case, max must be given a negative value,
where its absolute value indicates the number of additional function evaluations to perform and the value of the other
arguments must remain unaltered.

4. Example program

A minimum of the function 21
2
221

2
121 1022),(xxxxxxxxf , subject to the constraints

Description of the C-SSL II Routines

476

0),(

025.15.0),(

12212

2
2

2
1211

xxxxc
xxxxc

is found from an initial starting guess of Tx)2,2(0 The computed solution is output together with an accuracy check.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2
#define M1 1
#define M2 1

double fun(double x[]);
void grad(double x[], double g[]);
void func(double x[], double c[]);
void jac(double x[], double *cj, int k);

MAIN__()
{
 int ierr, icon;
 double x[N], epsr, f, vw[M1+M2+2*N+12][M1+M2+N+4], eps;
 int n, m[2], max, k, ivw[2*(M1+M2+N+4)];

 /* initialize data */
 x[0] = -2;
 x[1] = 2;
 n = N;
 m[0] = M1;
 m[1] = M2;
 epsr = 1e-3;
 max = 800*(M1+M2)*N;
 k = M1+M2+N+4;
 /* minimize */
 ierr = c_dnlpg1(x, n, fun, grad, func, jac,
 m, epsr, &max, &f, (double*)vw, k, ivw, &icon);
 printf("icon = %i max = %i f = %f\n", icon, max, f);
 printf("x[0] = %f x[1] = %f\n", x[0], x[1]);
 /* check result */
 eps = 1e-5;
 if (fabs((f+8)/8) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

/* objective function */
double fun(double x[])
{
 return((x[0]-2*x[1]-10)*x[0] + (2*x[1]+1)*x[1]);
}

/* gradient function */
void grad(double x[], double g[])
{
 g[0] = 2*x[0]-2*x[1]-10;
 g[1] = -2*x[0]+4*x[1]+1;
 return;
}

/* constraint function */
void func(double x[], double c[])
{
 c[0] = 0.5*x[0]*x[0]+1.5*x[1]*x[1]-2;
 c[1] = -x[0]+x[1];
 return;
}

/* Jacobian function */
void jac(double x[], double *cj, int k)
{
 cj[0] = x[0]; /* [0][0] */
 cj[1] = 3*x[1]; /* [0][1] */
 cj[k] = -1; /* [1][0] */
 cj[k+1] = 1; /* [1][1] */
 return;
}

 c_dnlpg1

 477

5. Method

For further information consult the entry for NLPG1 in the Fortran SSL II User’s Guide and also [86] or [87].

Description of the C-SSL II Routines

478

c_dnolbr
Solution of a system of nonlinear equations (Brent’s method).
ierr = c_dnolbr(x, n, fun, epsz, epst, fc, &m,

&fnor, vw, &icon);

1. Function

This function solves a system of nonlinear equations (1) by Brent’s method.

f x x x
f x x x

f x x x

n

n

n n

1 1 2

2 1 2

1 2

0
0

0

(, , ,)
(, , ,)

(, , ,)

 (1)

If we let f x f f f n() ((), (), , ()) 1 2x x x T and x (, , ,)x x xn1 2 T then equation (2) is solved with the initial vector,
x0 , and a zero right-hand-side vector, 0 , of order n.

 f ()x 0 (2)

2. Arguments

The routine is called as follows:
ierr = c_dnolbr(x, n, fun, epsz, epst, fc, &m, &fnor, vw, &icon);

where:
x double x[n] Input An initial vector x0 to solve equation (2).
 Output Solution vector.
n int Input Dimension n of the system.
fun function Input Name of the user defined function to evaluate f k ()x . Its prototype is:

double fun(double x[], int k);

where:
 x double

x[n]

Input Vector x .

 k int Input Evaluate the kth equation,
f k ()x .

epsz double Input The tolerance (0). The search for a solution vector is terminated when
f ()x i

 epsz . See Comments on use.
epst double Input The tolerance (0). The iteration is considered to have converged when

x x xi i i 1 epst . See Comments on use.
fc double Input A value to indicate the range of search for the solution vector (> 0). The

search is terminated when x xi
 fc max(,)0 1 . See Comments on

use.
m int Input Upper limit of iterations (>0). See Comments on use.
 Output Total number of iterations performed.
fnor double Output The value of f ()x i

 for the solution vector obtained.
vw double Work Vwlen = n*(n+3)

 c_dnolbr

 479

vw[Vwlen]
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
1 Satisfied the convergence criterion,

f ()x i
 epsz .

2 Satisfied the convergence criterion,
x x xi i i 1 epst .

10000 The specified convergence conditions were not
satisfied for the given number of iterations.

The last x i is returned in x.

20000 A solution vector was not found within the search
range, see argument fc.

25000 The Jacobian of f ()x reduced to 0 during
iterations (singularity).

30000 One of the following has occurred:
n 0
epsz < 0
epst < 0
fc 0
m 0

Bypassed.

3. Comments on use

epsz and epst
Two convergence criteria are used in this function. When either one is met, the iteration terminates. if the user wishes to
cancel one of the criteria then he needs to set the corresponding tolerance variable to zero. Below are all the possible
options.

epsz A (>0) and epst 0

Unless x xi i 1 0 is satisfied, the iteration continues until f ()x i A
 is satisfied or the upper limit

on the number of iterations has been reached.

epsz 0 and epst B (>0)

Unless f ()x i
 0 is satisfied, the iteration continues until x x xi i B i 1 is satisfied or the

upper limit on the number of iterations has been reached.

epsz 0 and epst 0

Unless f ()x i
 0 or x xi i 1 0 , the iteration continues until arriving at the set upper limit of

iterations.

This setting is useful for executing all the iterations, m.

Description of the C-SSL II Routines

480

fc
Sometimes a solution vector cannot be found in the neighbourhood of the initial vector x0 . When this happens, x i
diverges from x0 and numerical difficulties such as overflows may occur in evaluating f ()x . The argument, fc, is set
to make sure these anomalies don’t occur by limiting the range of search for solution. A standard value for fc is around
100.

m
The number of iterations needed for convergence to the solution vector depends on the nature of the equation and the
magnitude of tolerances. When the initial vector is improperly set or the tolerances are set too small, the argument m
should be set to a large number. As a rule of thumb, m should be set to around 50 for n = 10.

4. Example program

A root of the system of nonlinear equations:

625.2)1(
25.2)1(

3
21

2
21

xx
xx

is computed from a starting guess of T)8.0,0.5(
0
x . The solutions are Tx)5.0,0.3(and Tx)3/1,32/81(.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2

double fun(double x[], int k); /* user function prototype */

MAIN__()
{
 int ierr, icon;
 double x[N], epsz, epst, fc, fnor, vw[N*(N+3)];
 int m, n;

 n = N;
 x[0] = 5.0;
 x[1] = 0.8;
 epsz = 1e-5;
 epst = 0;
 fc = 100;
 m = 20;
 /* solve equations */
 ierr = c_dnolbr(x, n, fun, epsz, epst, fc, &m, &fnor, vw, &icon);
 printf("icon = %i m = %i fnor = %f x[0] = %12.4e x[1] = %12.4e\n",
 icon, m, fnor, x[0], x[1]);
 return(0);
}

/* user function */
double fun(double x[], int k)
{
 double res;
 switch (k) {
 case (1):
 res = x[0]*(1-x[1]*x[1])-2.25;
 break;
 case (2):
 res = x[0]*(1-x[1]*x[1]*x[1])-2.625;
 break;
 }
 return(res);
}

 c_dnolbr

 481

5. Method

A system of nonlinear equations (1) is solved using Brent’s method. For further information consult the entry for NOLBR
in the Fortran SSL II User's Guide and [24].

Description of the C-SSL II Routines

482

c_dnolf1
Minimization of the sum of squares of functions of several variables
(revised Marquardt method using function values only).
ierr = c_dnolf1(x, n, fun, m, epsr, &max, f,

&sums, vw, k, &icon);

1. Function

Given m real functions)(1 xf ,)(2 xf , …,)(xmf of n variables and an initial vector 0x , the vector x that gives a local
minimum of

 2

1

))(()(xx

m

i
ifF

and its function value)(xF are obtained by using the revised Marquardt method (Levenberg-Marquardt-Morrison or
LMM method).

This routine does not require the derivative of)(xF , but the functions)(xif are assumed to have at least continuous first
partial derivatives and 1 nm .

2. Arguments

The routine is called as follows:
ierr = c_dnolf1(x, n, fun, m, epsr, &max, f, &sums, vw, k, &icon);

where:
x double x[n] Input Initial vector 0x .
 Output Vector x .
n int Input Number of variables n.
fun function Input User defined function to evaluate)(xif . Its prototype is:

void fun(double x[], double f[]);

where:
 x double

x[n]

Input Independent variable.

 f double

f[m]

Output Function values)(xif , where
)(xif1]-f[i ,

i=1, 2, …, m.
m int Input Number of functions m.
epsr double Input Convergence criteria. A default value is used when epsr = 0. See

Comments on use.
max int Input Upper limit on the number of evaluations of fun. max may be negative.

See Comments on use.
 Output Number of times actually evaluated.
f double f[m] Output Value of)(xf .
sums double Output)(xF , the sums of squares of the)(xif

 c_dnolf1

 483

vw double

vw[Rlen]
Work Rlen =)2(nk .

k int Input Control on size of vw, where mnk .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Convergence condition was not satisfied within

the specified number of function evaluations.
Stopped. Arguments x, f and sums each contain
the last value obtained.

20000 Computation broke down and was not able to
proceed further. epsr was too small or the error
in the difference approximation to the Jacobian
was too large.

Stopped. Arguments x, f and sums contain the
last value obtained.

30000 One of the following occurred:
 n < 1
 epsr < 0
 max = 0
 k < n+m
 nm

Bypassed.

3. Comments on use

epsr
The function tests for

epsr
),1max(1 kkk xxx

for the iteration vector kx and if the above condition is satisfied, 1kx is taken as the local minimum point x .

This routine assumes that)(xF is approximately quadratic in the neighbourhood of x , the local minimum. To obtain
)(xF as accurately as the unit round-off, then a value of epsr is appropriate, where is the unit round-off. The

default value of epsr is 2 .

max and recalling c_dnolf1 when icon=10000
The number of function evaluations is calculated as the number of calls to the user defined function fun.

The number of function evaluations required depends upon the characteristics of the)(xif as well as the initial vector
and the convergence criterion. Generally, with a good initial vector, a value of max nm 100 is appropriate.

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon
= 10000, the iteration can be continued by calling c_dnolf1 again. In this case, max must be given a negative value,
where its absolute value indicates the number of additional function evaluations to perform and the value of the other
arguments must remain unaltered.

Description of the C-SSL II Routines

484

4. Example program

A minimum of the function),(),(),(21
2

221
2

121 xxfxxfxxF , where:

)(10),(

1),(
2
12212

1211

xxxxf
xxxf

is found from an initial starting guess of Tx)0.1,2.1(0 The computed solution is output together with an accuracy
check.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2
#define M 2

void fun(double x[], double y[]); /* user function prototype */

MAIN__()
{
 int ierr, icon;
 double f[N], x[N], vw[N+2][M+N], epsr, sums, eps, exact;
 int max, n, m, k;

 /* initialize data */
 x[0] = -1.2;
 x[1] = 1;
 n = N;
 m= M;
 epsr = 1e-3;
 max = 100*n*m;
 k = m+n;
 /* find minimum of sum of squares */
 ierr = c_dnolf1(x, n, fun, m, epsr, &max, f, &sums, (double*)vw, k, &icon);
 printf("icon = %i max = %i sums = %12.4e\n", icon, max, sums);
 printf("x = (%12.4e, %12.4e) f = (%12.4e, %12.4e)\n",
 x[0], x[1], f[0], f[1]);
 /* check result */
 exact = 0;
 eps = 1e-6;
 if (fabs(sums-exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

/* user function */
void fun(double x[], double y[])
{
 y[0] = 1 - x[0];
 y[1] = (x[1] - x[0]*x[0])*10;
 return;
}

5. Method

For further information consult the entry for NOLF1 in the Fortran SSL II User’s Guide, [69] or [82].

 c_dnolg1

 485

c_dnolg1
Minimization of the sum of squares of functions of several variables
(revised Marquardt method using function values and derivatives).
ierr = c_dnolg1(x, n, fun, jac, m, epsr, &max,

f, &sums, vw, k, &icon);

1. Function

Given m functions)(),...,(),(21 xxx mfff of n variables, the Jacobian J(x), and an initial vector 0x , the vector x that
gives a local minimum of

m

i
ifF

1

2))(()(xx

and its function value)(xF are obtained using the revised Marquardt method (Levenberg-Marquardt-Morrison or
LMM method).

The functions mif i ,...,1),(x are assumed to have at least continuous first partial derivatives and m n 1.

2. Arguments

The routine is called as follows:
ierr = c_dnolg1(x, n, fun, jac, m, epsr, &max, f, &sums, vw, k, &icon);

where:
x double x[n] Input Initial vector 0x .
 Output Vector x .
n int Input Number of variables n.
fun function Input User defined function to evaluate)(xif . Its prototype is:

void fun(double x[], double f[]);

where

 x double

x[n]

Input Independent variable.

 f double

f[m]

Output Function values)(xif , where
f[i-1] =)(xif ,i=1,2,...,m.

Description of the C-SSL II Routines

486

jac function Input The name of the function that evaluates the analytical Jacobian matrix:

n

mmm

n

n

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

x
f

21

2

2

2

1

2

1

2

1

1

1

J

The function prototype is:
void jac(double x[],double g[], long k);

where:
 x double

x[n]

Input The independent variable, x.

 g double

g[m*k]

Output The Jacobian matrix, J(x).
Stored by rows, i.e.
g[(i-1)*k+(j-1)]

 = ji xf / ,
where mi ,...,1 and

nj ,...,1 .
 k int Input The declared storage for each

“row” of g. The user must use
the parameter passed by the
library routine, as it may not
be as expected.

m int Number m of functions.
epsr double Input Convergence criterion (0). A default value is used when epsr = 0.

See Comments on use.
max int Input Upper limit (0) on the number of evaluations of fun and jac. max

may be negative. See Comments on use.
 Output Actual number of evaluations.
f double f[m] Output Value of)(xf .
sums double Output)(xF , the sum of squares of)(xif , mi ,...,2,1 .
vw double

vw[Vwlen]
Work)2(nkVwlen .

k int Input Control on size of array vw, where nmk .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Convergence criterion was not satisfied within the

specified number of function evaluations.
Stopped. Arguments x, f and sums contain the
last values obtained.

20000 Computation broke down and was not able to
proceed further. epsr was too small or the error
in the difference approximation to the Jacobian
was too large.

Stopped. Arguments x, f and sums contain the
last values obtained.

 c_dnolg1

 487

Code Meaning Processing
30000 One of the following has occurred:

 n < 1
 m < n
 epsr < 0
 max = 0
 k < m+n

Bypassed.

3. Comments on use

epsr
The routine tests for

 epsr
),1max(1 kkk xxx

for the iteration vector kx . When the above condition is satisfied, kx is taken as the local minimum point x if
)()(1 kk FF xx , and 1kx is taken as x if)()(1 kk FF xx .

This routine assumes that)(xF is approximately quadratic in the neighbourhood of x , the local minimum. To obtain
)(xF as accurately as the unit round-off a value of epsr = µ 2/1 is appropriate, where µ is the unit round-off. The

default value for epsr is 2µ 2/1 .

max and recalling c_dnolg1 when icon = 10000
The number of function evaluations is calculated as 1 for each call to the user defined function fun and n for each call to
the user defined function jac.

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector
and the convergence criterion. Generally, from a good initial vector, a value of max = mn 100 is appropriate.

If the convergence criterion is not satisfied within the specified number of evaluations and the routine returns with icon
= 10000, the iteration can be continued by calling c_dnolg1 again. In this case, max must be given a negative value,
where its absolute value indicates the number of additional function evaluations to perform, and the values of the other
arguments must remain unaltered.

4. Example program

Given the function),(),(),(21
2

221
2

121 xxfxxfxxF , where 1211 1),(xxxf and)(10),(2
12212 xxxxf ,

the global minimum point x is obtained with the initial vector T)0.1,2.1(0x .

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2
#define M 2

void fun(double x[], double y[]); /* user function prototype */
void jac(double x[], double *g, int k); /* derivative prototype */

MAIN__()
{
 int ierr, icon;
 double x[N], f[M], sums, epsr, vw[N+2][M+N];

Description of the C-SSL II Routines

488

 int i, n, m, k, max;

 /* initialize data */
 n = N;
 m = M;
 k = M+N;
 x[0] = -1.2;
 x[1] = 1;
 epsr = 1e-3;
 max = 100*n*m;
 /* find minimum of function */
 ierr = c_dnolg1(x, n, fun, jac, m, epsr, &max,
 f, &sums, (double*)vw, k, &icon);
 if (icon >= 20000) {
 printf("ERROR in c_dnolg1. icon = %i", icon);
 exit(1);
 }
 printf("icon = %i max = %i sums = %12.4e\n", icon, max, sums);
 printf("x: ");
 for (i=0;i<n;i++) printf("%12.4e ",x[i]);
 printf("\n");
 printf("f: ");
 for (i=0;i<m;i++) printf("%12.4e ",f[i]);
 printf("\n");
 return(0);
}

/* user function */
void fun(double x[], double y[])
{
 y[0] = 1-x[0];
 y[1] = 10*(x[1]-x[0]*x[0]);
 return;
}

/* derivative function */
void jac(double x[], double *g, int k)
{
 g[0] = -1;
 g[1] = 0;
 g[k] = -20*x[0];
 g[k+1] = 10;
 return;
}

5. Method

Consult the entry for NOLG1in the Fortran SSL II User's Guide and references [69], and [82].

 c_dnrml

 489

c_dnrml
Normalization of the eigenvectors of a real matrix.
ierr = c_dnrml(ev, k, n, ind, m, mode, &icon);

1. Function

This routine obtains eigenvectors jy by normalizing m eigenvectors jx , j=1,2,...,m of an nn real matrix. Either
(1) or (2) is used in the normalization process,

 jjj xxy / , (1)

2

/ jjj xxy . (2)

Here n 1.

2. Arguments

The routine is called as follows:
ierr = c_dnrml((double *) ev, k, n, ind, m, mode, &icon);

where:
ev double Input The m eigenvectors jx , mj ,...,1 . See Comments on use.
 ev[m][k] Output The m normalized eigenvectors jy , mj ,...,1 .
k int Input C fixed dimension of array ev (n).
n int Input Order n of the matrix.
ind int ind[m] Input Indicates the type of each eigenvector:

ind[j-1] = 1 if the j-th row of ev is a real eigenvector
ind[j-1] = -1 if the j-th row of ev is the real part of a complex
 eigenvector
ind[j-1] = 0 if the j-th row of ev is the imaginary part of a complex
 eigenvector.
j = 1,2,...,m.

m int Input Number m of eigenvectors.
mode int Input Indicates method of normalization:

mode = 1 if (1) is to be used,
mode = 2 if (2) is to be used.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 ev[0][0] = 1.
30000 One of the following has occurred:

 m < 1 or m > n
 k < n
 mode 1 or 2

Bypassed.

Description of the C-SSL II Routines

490

Code Meaning Processing
 error found in ind

3. Comments on use

ev, ind and m
The eigenvectors are stored in ev such that each real eigenvector occupies one row and each row eigenvector occupied
two columns (one for the real part and one for the imaginary part).

When the eigenvectors of a symmetrix matrix are to be normalized, all of the elements of ind are set to 1.

If routine c_dhvec is called before this routine, input arguments ev, ind and m of this routine are the same as output
arguments ev and ind and input argument m of c_dhvec.

If routine c_dhbk1 is called before this routine, input arguments ev, ind and m of this routine are the same as output
argument ev and input arguments ind and m of c_dhbk1.

4. Example program

This program finds the eigenvectors of a real matrix, and then such that 1

x .

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, mode, m, ind[NMAX];
 double a[NMAX][NMAX], er[NMAX], ei[NMAX], ev[NMAX][NMAX], vw[NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 a[i][i] = n-i;
 for (j=0;j<i;j++) {
 a[i][j] = n-i;
 a[j][i] = n-i;
 }
 }
 mode = 0;
 /* find eigenvalues and eigenvectors */
 ierr = c_deig1((double*)a, k, n, mode, er, ei, (double*)ev, vw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_deig1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* initialize ind array */
 m = n;
 mode = 1;
 i = 0;
 while (i<m) {
 if (ei[i] == 0) ind[i++] = 1;
 else {
 ind[i++] = -1;
 ind[i++] = 0;
 }
 }
 /* normalize eigenvectors */
 ierr = c_dnrml((double*)ev, k, n, ind, m, mode, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dnrml failed with icon = %i\n", icon);
 exit (1);

 c_dnrml

 491

 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 i = 0;
 k = 0;
 while (i<m) {
 if (ind[i] == 0) i++;
 else if (ei[i] == 0) {
 /* real eigenvector */
 printf("eigenvalue: %12.4f\n", er[i]);
 printf("eigenvector:");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[k][j]);
 printf("\n");
 i++;
 k++;
 }
 else {
 /* complex eigenvector pair */
 printf("eigenvalue: %7.4f+i*%7.4f\n", er[i], ei[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", ev[k][j], ev[k+1][j]);
 printf("\n");
 printf("eigenvalue: %7.4f+i*%7.4f\n", er[i+1], ei[i+1]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", ev[k][j], -ev[k+1][j]);
 printf("\n");
 i = i+2;
 k = k+2;
 }
 }
 return(0);
}

5. Method

Consult the entry for NRML in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

492

c_dodam
Solution of a non-stiff system of first order initial value ordinary
differential equations (Adams method).
ierr = c_dodam(&x, y, fun, n, xend, &isw,

&epsa, &epsr, vw, ivw, &icon);

1. Function

This subroutine solves a system of non-stiff first order ordinary differential equations of the form:

 y f y = (x,) , y y()x0 0 (1)

when written in vector notation, or in scalar notation:

0021

10012111

)(),,,,,(

)(),,,,,(

nnnnn

n

yxyyyyxfy

yxyyyyxfy

by Adams method, given

 The function f .
 the initial values x0 and y y()x0 0 .
 and the final value of x, namely xe .

That is, it obtains approximations (, , ,)y y ym m nm1 2 T to the solution y()xm at points:

 x x h m em j
j

m

0

1
1 2, , , ,

Where the step size hj is modified to give the required accuracy. This function provides two types of output mode that
the user can choose between. These are:

1. Final value output: the function returns to the user when the solution at the final value xe has been
obtained.

2. Step output: the function returns to the user at the end of each successful step as solutions at x x xe1 2, , ,
are obtained.

2. Arguments

The routine is called as follows:
ierr = c_dodam(&x, y, fun, n, xend, &isw, &epsa, &epsr, vw, ivw, &icon);

where:
x double Input Starting value x0 .

Output Final value xe . When the step output is specified, an interim point to
which the solution is advanced by a single step.

y double y[n] Input Initial values y y yn10 20 0, , , , which are specified in the obvious order:
y[0],y[1],…,y[n-1].

 c_dodam

 493

Output Solution vector at final value xe . When the step output is specified, y
contains the solution vector at the returned value of x.

fun function Input A user defined function that evaluates f i ni : , , , 1 2 in equation (1).
Its prototype is:
void fun(double x, double y[], double yp[]);

where:
 x double Input Independent variable x.

y double

y[n]
Input Solution vector y associated

with x. y[0] contains the
first value and so on.

yp double

yp[n]
Output The result of the mathematical

function y f y = (x,) . In other
words, yp[0] contains the
first value of the derivative.

n int Input The number of equations in the system.
xend double Input The final point xe to which the system should be solved. See Comments

on use.
isw int Input Variable to specify conditions in integration. isw is a non-negative

integer with 3 digits that can be expressed as:
isw= d d d100 103 2 1
where each di should be specified as follows:

 d1 Specifies whether or not this is the first call.

0 First call.

1 Successive calls.

The first call means that c_dodam is called for the first time for
this particular system of differential equations.

d2 Specifies the output mode.
0 Final value output.
1 Step output.

d3 Indicates whether or not the derivative function f can be
evaluated beyond the final point xe .
0 Permissible.
1 Not permissible. This value is specified when the derivatives

are not defined beyond xe or there is a discontinuity there.
However, setting this value to 1 may lead to unexpected
computational inefficiencies.

Output When the solutions at xe or at an interim point are returned to the user
program, the individual digits of isw are altered as follows:

 d1 Set to 1. On subsequent calls d1 should not be altered by the user.
Resetting d1 to zero is only needed when the user starts solving
another system of equations.

d3 When d3 =1 on input, change it to d3 =0 when the solution at
xe is obtained.

Description of the C-SSL II Routines

494

epsa double Input
Output

Absolute error tolerance.
If epsa is too small, it is set to an appropriate value. See Comments on
use.

epsr double Input Relative error tolerance.
 Output If epsr is too small, it is set to an appropriate value. See Comments on

use.
vw double

vw[RelLen]
Work RelLen must be at least 21n+110. The contents of vw must not be altered

on subsequent calls.
ivw int ivw[IntLen] Work IntLen must be at least 11. The contents of ivw must not be altered on

subsequent calls.
icon int Output Condition code. See below.
The complete list of condition codes:

Code Meaning Processing
0 When in step output mode, a single step has been

completed.
Subsequent calls are possible.

10 Solution at xend was obtained. Subsequent calls are possible after altering xend.
100 A single step has been taken. It has been

calculated that more than 500 steps will be
required to reach xend.

To continue, simply recall the routine. The
function evaluation counter will be reset to 0.

200 A single step has been completed, but it has been
calculated that the given equations exhibit strong
stiffness.

Though subsequent calls are possible, it is
advisable to use the C-SSL II routine c_dodge
which is designed for stiff equations.

10000 epsa and epsr were too small for the arithmetic
precision.

epsa and epsr are set to appropriate values
(which should be checked by the user).
Subsequent calls are possible.

30000 One of the following has occurred:
 0n .
 xendx .
 isw specification error.
 epsr < 0, or epsa < 0.
 ivw was changed between calls.

Bypassed.

3. Comments on use

General comments
This routine solves a system of non-stiff or partially stiff ordinary differential equations. If the equations are known to be
stiff the C-SSL II routine c_dodge should be used instead.

This routine is most effective when:

 evaluating the functions takes a long time.
 a sequence of solutions is required.
 the derivatives of the functions have discontinuities.
 a highly accurate solution is required.

 c_dodam

 495

icon
When the user specifies the final value output mode by setting the second digit of isw to 0, he can obtain the solution at
xe only when icon = 10. However the subroutine may return control to the user when icon = 100, 200, or 10000
before xe is reached.

When the step output mode is specified by setting the second digit of isw to 1, the user can receive the output at each step
not only when icon = 0, but also when icon = 100 or 200. When icon = 10, the final solution at xe has been reached.

epsa and epsr
If y[]L is the Lth component of the solution vector, and l Le[] is its local error, then c_dodam produces the solution
vector such that:

 l L Le[] [] epsr y epsa

where L 0 1 2 1, , , , n . Note that when epsa is set to zero, the relative error is used, and when epsr is set to zero,
the absolute error is used.

The relative error test is suitable when the magnitude of the components of the solution vary greatly, whereas the absolute
error is suitable for components with similar magnitudes, or are too small to be of interest. It is most stable however, to set
neither error argument to zero, so that large components are tested against the relative error, and small components against
the absolute error. When both epsa and epsr are set to zero, c_dodam sets the value of epsr to 16 , where μ is the
unit round-off.

xend
If a sequence of solutions is required, the library function should be called repeatedly, with xend changed each time. The
library routine is designed to be called repeatedly, and so sets the arguments necessary for subsequent calls on returning to
the user program. The user simply has to change xend. Note that epsa and epsr can be changed between calls.

Discontinuities
If there are discontinuities in the solution or its derivatives, these need to be detected to produce an accurate solution. This
library function will detect these points automatically, and perform any appropriate calculations. However, if the user
specifies the location of any discontinuities using the method described below, the computation time can be reduced and
the accuracy of the solution improved.

To specify a discontinuity, firstly call the routine with xend set to the discontinuous point with d3 in isw (See
Arguments) set to 1. Once the solution at xend has been reached, c_dodam returns to the user’s program with d3 set to
0. Then recall c_dodam after advancing xend and setting d1 to 0. Setting isw in this way causes c_dodam to treat the
solution at the discontinuity as a new initial value, with new equations to solve.

4. Example program

This program produces an approximate solution to the initial value ordinary differential equation problem:

Description of the C-SSL II Routines

496

1)0(
,

)(

0)0(,
)(

0)0(,
1)0(,

4
2/32

2
2
1

2
4

32/32
2

2
1

1
3

242

131

y
yy

yy

y
yy

yy

yyy
yyy

over the interval]2,0[with output at the points:

 64,,2,1,
64
2

 iix

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 4 /* order of system */

/* user function prototypes */
void fun(double x, double y[], double yp[]);

MAIN__()
{
 int ierr, icon;
 int i, n, isw, ivw[11];
 double x, y[N], pi, dx, xend, epsa, epsr, vw[21*N+110];

 x = 0;
 y[0] = 1;
 y[1] = 0;
 y[2] = 0;
 y[3] = 1;
 n = N;
 epsa = 1e-8;
 epsr = 1e-5;
 isw = 0;
 pi = 4*atan(1);
 dx = pi/32;
 printf(" x y[0] y[1] y[2] y[3]\n");
 for (i=1;i<65;i++) {
 xend = dx*(double)i;
 while(1) {
 /* solve system */
 ierr = c_dodam(&x, y, fun, n, xend, &isw, &epsa, &epsr,
 vw, ivw, &icon);
 if (icon == 10) break;
 if (icon == 100) printf("too many steps\n");
 if (icon == 200) printf("the equations appear to be stiff\n");
 if (icon == 10000)
 printf("tolerance reset; epsa = %12.4e epsr = %12.4e\n", epsa, epsr);
 if (icon == 30000) {
 printf("invalid input\n");
 exit(1);
 }
 }
 printf("%12.4e %12.4e %12.4e %12.4e %12.4e\n",
 x, y[0], y[1], y[2], y[3]);
 }
 return(0);
}

/* user function */
void fun(double x, double y[], double yp[])
{
 double r3;
 r3 = pow((y[0]*y[0]+y[1]*y[1]),1.5);
 yp[0] = y[2];
 yp[1] = y[3];
 yp[2] = -y[0]/r3;
 yp[3] = -y[1]/r3;
 return;
}

 c_dodam

 497

5. Method

For further information on Adams method, consult the entry for ODAM in the Fortran SSL II User’s Guide, and also [94].

Description of the C-SSL II Routines

498

c_dodge
Solution of a stiff or non-stiff system of first order initial value ordinary
differential equations (Gear’s or Adams method).
ierr = c_dodge(&x, y, fun, n, xend, &isw,

epsv, &epsr, mf, &h, jac, vw, ivw,

&icon);

1. Function

This function solves a system of first order ordinary differential equations of the form:

 y f y = (x,) , y y()x0 0 (1)

when written in vector notation, or in scalar notation:

0021

10012111

)(),,,,,(

)(),,,,,(

nnnnn

n

yxyyyyxfy

yxyyyyxfy

by Gear’s method or Adams method, given

 the function f .
 the initial values x0 and y y()x0 0 .
 and the final value of x, namely xe .

That is, it obtains approximations, (, , ,)y y ym m nm1 2 T to the solution y()xm at points:

 x x h m em j
j

m

0

1
1 2, , , ,

The step size is controlled so that solutions satisfy the desired accuracy.

Gear’s method is suitable for stiff equations, whereas Adams method is suitable for non-stiff equations. The user may
select either of these methods depending on the stiffness of the equations. This function provides two types of output
mode, which the user can choose between according to his need. These are:

1. Final value output: the function returns to the user when the solution at the final value xe has been
obtained.

2. Step output: the function returns to the user at the end of each successful step as solutions at x x xe1 2, , ,
are obtained.

2. Arguments

The routine is called as follows:
ierr = c_dodge(&x, y, fun, n, xend, &isw, epsv, &epsr, mf, &h, jac, vw, ivw,

&icon);

where:

 c_dodge

 499

x double Input Starting value x0 .
Output Final value xe . When the step output is specified, an interim point to

which the solution is advanced by a single step.
y double y[n] Input Initial values y y yn10 20 0, , , , which are specified in the obvious order:

y[0],y[1],…,y[n-1].
Output Solution vector at final value xe . When the step output is specified, y

contains the solution vector at the returned value of x.
fun function Input A user defined function that evaluates f in equation (1). Its prototype is:

void fun(double x, double y[], double yp[]);

where:
 x double Input Independent variable x.

y double

y[n]
Input Solution vector y associated

with x. y[0] contains the first
value and so on.

yp double

yp[n]
Output The result of the mathematical

function y f y = (x,) . In other
words, yp[0] contains the
first value of the derivative.

n int Input The number of equations in the system.
xend double Input The final point xe to which the system should be solved. See Comments

on use.
isw int Input

Variable to specify conditions in integration. isw is a non-negative
integer with 4 digits that can be expressed as:
isw= d d d d1000 100 104 3 2 1
where each di should be specified as follows:

 d1 Specifies whether or not this is the first call.
0 First call.
1 Successive calls.
The first call means that c_dodge is called for the first time for
this particular system of differential equations.

d2 Specifies the output mode.
0 Final value output.
1 Step output.

d3 Indicates whether or not the derivative function f can be
evaluated beyond the final point xe .
0 Permissible.
1 Not permissible. This value is specified when the derivatives

are not defined beyond xe or there is a discontinuity there.
However, setting this value to 1 may lead to unexpected
computational inefficiencies.

d4 Indicates whether or not the user has altered some of the values of
mf, epsv, epsr or n:
0 Not altered.
1 Altered.
See Comments on use.

Description of the C-SSL II Routines

500

Output When the solutions at xe or at an interim point are returned to the user
program, the individual digits of isw are altered as follows:

 d1 Set to 1. On subsequent calls, d1 should not be altered by the
user. Resetting d1 to zero is only needed when the user starts
solving another system of equations.

d3 When d3 =1 on input, change it to d3 = 0 when the solution at
xe is obtained.

d4 When d4 =1 on input, change it to d4 = 0.
epsv double

epsv[n]

Input
Output

Absolute error tolerances.
If epsv is too small, it is set to an appropriate value. See Comments on
use.

epsr double Input Relative error tolerance.
 Output If epsr is too small, it is set to an appropriate value. See Comments on

use.
mf int Input Method indicator. mf is an input only argument. It is a 2-digit integer

comprised as follows:
mf 10meth iter
where:

 meth This is the basic method indicator, which can take the following
values:
1 Gear’s method, suitable for stiff equations.
2 Adams method, suitable for non-stiff equations.

iter This is the corrector iteration method indicator, which can take
the following values:
0 Newton method in which the analytical Jacobian matrix

calculated in the jac function. This is the most suitable
value for stiff equations.

1 Newton method in which the Jacobian matrix is internally
approximated by finite differences. Used for stiff equations
where the analytical Jacobian matrix cannot be prepared.

2 Same as iter = 1 except that the Jacobian matrix is
approximated by a diagonal matrix. Used for stiff equations
where the Jacobian is known to be a diagonally dominant
matrix.

3 Function iteration in which the Jacobian matrix is not used.
Used for non-stiff equations.

h double Input Initial step size h 0 to be attempted for the first step of the first call.
The sign of h must be the same as that of x xe 0 . A typical value of the
modulus of h is given by: h min(, max(,))10 105 4

0 0x x xe
The value of h is controlled to satisfy the required accuracy.

 Output The step size last used.

 c_dodge

 501

jac function Input The name of the function that evaluates the analytical Jacobian matrix:

n

nnn

n

n

y
f

y
f

y
f

y
f

y
f

y
f

y
f

y
f

y
f

J

21

2

2

2

1

2

1

2

1

1

1

The function prototype is:
void jac(double x, double y[], double pd[],

int k);

where:
 x double Input The independent variable.

y double

y[n]

Input Vector containing

nyyy ,,, 21 in the obvious
order.

pd double

pd[k*k]

Output The Jacobian matrix. Stored by
rows, i.e.

ji yf
ji

)]1(*)1[(kpd

where ni 1 and nj 1 .
k int Input The number of equations in the

original system (if n is reduced
on subsequent calls).

vw double

vw[RelLen]
Work RelLen must be at least n*(n+17)+70. The contents of vw must not be

altered on subsequent calls.
ivw int ivw[IntLen] Work IntLen must be at least n+25. The contents of ivw must not be altered on

subsequent calls.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Single step completed. Further calls are possible.

See Comments on use.
10 No error. Solution completed. Further calls are possible if

xend is changed. See Comments on use.
10000 epsr and epsv[l] : l = 0, 1, 2, … n-1 are too

small for the arithmetic precision.
epsr and epsv[l] : l = 0, 1, 2, … n-1 were
increased to suitable values.

15000 The requested accuracy could not be achieved
with a step size of 10 10 times the initial step size.

16000 The corrector iteration did not converge even
when the step size was 10 10 times the initial step
size.

The methods specified by argument mf may not
be appropriate for the given equations. Alter mf
and retry.

30000 One of the following has occurred:
 n 0 .
 x xend .

Bypassed.

Description of the C-SSL II Routines

502

Code Meaning Processing
 isw specification error.
 epsr < 0, or there exists a value of l for

which epsv[l] < 0.
 () *xend x h 0 .
 ivw was changed between calls.

3. Comments on use

c_dodge can be used for stiff equations, or those that are initially non-stiff, but which become stiff within the integration
interval. For purely non-stiff equations c_dodam should be used for efficiency.

icon
When the user specifies the final value output mode, using the isw argument, he can obtain the solution at xe only when
icon = 10. When the step output mode is specified, a solution after each step can be obtained when icon = 0. When
icon = 10, the final solution at xe has been obtained.

The error arguments epsv and epsr
If y[]L is the Lth component of the solution vector, and l Le[] is its local error, then c_dodge produces the solution
vector such that:

 l L L Le[] [] [] epsr y epsv

where L 0 1 2 1, , , , n . Note that when the relevant component of epsv is set to zero, the relative error is used, and
when epsr is set to zero, the absolute error vector is used.

The relative error test is suitable for components that range over several orders of magnitude over the integration interval,
whereas the absolute error is suitable for components with similar orders of magnitude, or are too small to be of interest. It
is most stable however, to set neither error argument to zero, so that large components are tested against the relative error,
and small components against the absolute error. Also, for stiff equations, the components of the solution may be greatly
different in magnitude, and therefore setting different values to the absolute error arguments may be advisable. When both
epsv and epsr are set entirely to zero, c_dodge sets the value of epsr to 16 , where μ is the unit round-off .

Note that changing epsv and epsr between calls to c_dodge (during the solution) is also possible.

xend
If a sequence of solutions is required at several values of the independent variable, the routine automatically retains the
arguments required for the second and subsequent calls. Therefore the user simply has to change xend and recall the
routine.

Changing mf during the solution
If the given equations are non-stiff initially, but become stiff during the integration integral, it is desirable to change the
value of mf from 23 to 10 (or 11 or 12). This is achieved by setting the value of d4 in isw to 1 (see above), resetting the
mf argument to the desired value, setting xend to the value of the next required output, and recalling c_dodge. If this is
accomplished successfully, the value of d4 is reset to 0 on output.

If the solution at xend can be obtained without changing mf, then the routine will execute normally.

 c_dodge

 503

Changing n during the solution
In the solution of stiff equations, some components of the solution will vary very little compared to others, or will become
small enough to be neglected. If these values are of no interest to the user, he can reduce the value of n between the
different calls to the subroutine to reduce the number of calculations. If n is reduced to cn , then the solution is stored in
the first cn elements of vector y, with the remaining elements being unaltered on output. The responsibility for the
modification of fun and jac to accommodate the new value of n is left to the user.

4. Example program

This program produces an approximate solution to the initial value ordinary differential equation problem:

1)0(,1011

1)0(,

2122

121

yyyy
yyy

over the interval]100,0[, with output at 5,,2,1,10 3 ix i . Options to solve a stiff problem with an explicit
Jacobian matrix are used.

#include <stdlib.h>
#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2 /* order of system */

/* user function prototypes */
void fun(double x, double y[], double yp[]);
void jac(double x, double y[], double *pd, int k);

MAIN__()
{
 int ierr, icon;
 int i, n, isw, mf, ivw[N+25];
 double x, y[N], xend, epsv[N], epsr, h, vw[N*(N+17)+70];

 mf = 10;
 n = N;
 x = 0;
 h = 1.0e-5;
 y[0] = 1;
 y[1] = -1;
 isw = 0;
 epsv[0] = 0;
 epsv[1] = 0;
 epsr = 1.0e-6;
 xend = 1.0e-3;
 printf(" x y[0] y[1]\n");
 for (i=0;i<5;i++) {
 xend = xend*10;
 while(1) {
 /* solve system */
 ierr = c_dodge(&x, y, fun, n, xend, &isw, epsv, &epsr,
 mf, &h, jac, vw, ivw, &icon);
 if (icon == 10) break;
 if (icon == 16000){
 printf("ERROR: no convergence\n");
 exit(1);
 }
 if (icon == 10000 || icon == 15000){
 /* repeat with new tolerances */
 printf("WARNING: tolerance reset\n");
 printf("epsr = %12.4e epsv[0] = %12.4e epsv[1] = %12.4e\n",
 epsr, epsv[0], epsv[1]);
 }
 }
 printf("%12.4e %12.4e %12.4e\n", x, y[0], y[1]);
 }
 return(0);
}

Description of the C-SSL II Routines

504

/* user function */
void fun(double x, double y[], double yp[])
{
 yp[0] = y[1];
 yp[1] = -11*y[1]-10*y[0];
 return;
}

/* user Jacobian function */
void jac(double x, double y[], double *pd, int k)
{
 pd[0] = 0; /* [0][0] */
 pd[1] = 1; /* [0][1] */
 pd[2] = -10; /* [1][0] */
 pd[3] = -11; /* [1][1] */
 return;
}

5. Method

This routine uses Gear’s or Adams methods with step size and order controls. For further information consult the entry for
ODGE in the Fortran SSL II User’s Guide, and also [19], [39], and [55].

 c_dodrk1

 505

c_dodrk1
Solution of a system of first order ordinary differential equations
(Runge-Kutta-Verner method).
ierr = c_dodrk1(&x, y, fun, n, xend, &isw,

epsa, &epsr, vw, ivw, &icon);

1. Function

This routine solves a system of first order ordinary differential equations of the form:

 y f y = (x,) , y y()x0 0 , (1)

when written in vector notation, or in scalar notation:

0021

10012111

)(),,,,,(

)(),,,,,(

nnnnn

n

yxyyyyxfy

yxyyyyxfy

,

by the Runge-Kutta-Verner method, given

 the function f ,
 the initial values x0 and y y()x0 0 ,
 and the final value of x, namely xe .
The routine obtains approximations, (, , ,)y y ym m nm1 2 T to the solution y()xm at points

 x x h m em j
j

m

0

1
1 2, , , , .

The step size is controlled so that solutions satisfy the desired accuracy.

This routine provides two types of output mode. These are:

1. Final value output: the routine returns to the user when the solution at the final value xe has been
obtained.

2. Step output: the routine returns to the user at the end of each successful step as solutions at x x xe1 2, , ,
are obtained.

2. Arguments

The routine is called as follows:
ierr = c_dodrk1(&x, y, fun, n, xend, &isw, epsa, &epsr, vw, ivw, &icon);

where:
x double Input Starting value x0 .
 Output Final value xe . When the step output is specified, an interim point mx to

which the solution is advanced by a single step.

Description of the C-SSL II Routines

506

y double y[n] Input Initial values y y yn10 20 0, , , , with y[i-1] = 0iy , i=1,2,...,n.

 Output Solution vector at final value xe . When the step output is specified, y
contains the solution vector at the returned value of x.

fun function Input User defined function that evaluates f in equation (1). Its prototype is:
void fun(double x, double y[], double yp[]);

where:
 x double Input Independent variable x.
 y double

y[n]
Input Solution vector y associated with

x.
y[i-1] = iy , i=1,2,...,n

 yp double

yp[n]
Output Derivative vector f associated

with x.
yp[i-1]=),...,,,(21 ni yyyxf
i=1,2,...,n.

n int Input Number of equations n in the system.
xend double Input Final point xe to which the system should be solved. See Comments on

use.
isw int Input

Variable to specify conditions in integration. isw is a non-negative integer
with 2 digits that can be expressed as:

1210 dd= isw
where

 d1 Specifies whether or not this is the first call.
 0 First call.
 1 Subsequent calls.
 The first call means that c_dodrk1 is called for the first time for

this particular system of differential equations.
 d2 Specifies the output mode.
 0 Final value output.
 1 Step output.
 Output When the solution vector at xe or at an interim point is returned to the

user program, the digit d1 is set to 1. On subsequent calls, d1 should not
be altered by the user. Resetting d1 to zero is only needed when the user
starts solving another system of equations.

epsa double Input Absolute error tolerances. See Comments on use.
epsr double Input Relative error tolerance. See Comments on use.
 Output If epsr is too small, it is set to an appropriate value.
vw double

vw[9n+40]

Work When calling this routine repeatedly, the contents of vw should not be
changed.

ivw int ivw[5] Work When calling this routine repeatedly, the contents of ivw should not be
changed.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 A single step has been taken. Normal. Subsequent calls are possible.

 c_dodrk1

 507

Code Meaning Processing
10 Solution at xend obtained. Normal. Subsequent calls are possible after

changing xend.
10000 Integration was not completed because epsr was

too small in comparison with the arithmetic
precision of the computer used. See Comments on
use.

Returns to user program. Subsequent calls are
possible.

11000 Integration was not completed because more than
4000 derivative evaluations were needed to reach
xend.

Returns to user program. The function counter
willl be reset to 0 on subsequent calls.

15000 Integration was not completed because the
requested accuracy could not be achieved using
the smallest allowable stepsize, minh . See
Comments on use.

Returns to user program. The user must increase
epsa or epsr before calling the routine again.

16000 (When epsa = 0) Integration was not completed
because the solution vanished, making a pure
relative error test impossible.

Returns to user program. The user must increase
epsa before calling the routine again.

30000 One of the following has occurred:
 n 0
 x = xend
 isw was set to an invalid value
 epsa < 0 or epsr < 0
 After icon = 15000 or 16000, subsequent

calling is done without changing epsa or
epsr.

Bypassed.

3. Comments on use

This routine may be used to solve non-stiff and mildly stiff differential equations when derivative evaluations are
inexpensive, but it cannot be used if high accuracy is desired.

icon
Solutions may be acceptable only when icon is 0 or 10. When icon = 10000 to 11000, the routine returns control to the
user program, and the user can call this routine sucessively after identifying the event that has occurred. When icon =
15000 to 16000 the routine returns control to the user program, but in these cases the user must increase epsa or epsr
before calling the routine subsequently.

espr and epsa
The relative error tolerance espr is required to satisfy

 210 12
minrespr , (2)

where is the unit round-off. When epsr does not satisfy (2), the routine increases epsr so that epsr = minr , and
returns control to the user program with icon = 10000. The user may call the routine subsequently to continue the
integration.

Smallest stepsize
In this routine, the smallest stepsize minh is defined to satisfy

Description of the C-SSL II Routines

508

 |||,|max26min dxh ,

where x is the independent variable, and 100/)(0xxd e . When the desired accuracy is not achieved using the
smallest stepsize, the routine returns control to the user program with icon = 15000. To continue the integration, the user
may call the routine again after increasing epsa or epsr to an appropriate value.

4. Example program

A system of ODE's:

0.1)0(,1
0.1)0(,

212

12
2
11

yyy
yyyy (2)

is integrated from 0.00 x to 0.4ex . Results are output at each step.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2 /* order of system */

/* user function prototypes */
void fun(double x, double y[], double yp[]);

MAIN__()
{
 int ierr, icon;
 int n, isw, ivw[5];
 double x, y[N], xend, epsa, epsr, vw[9*N+40];

 x = 0;
 y[0] = 1;
 y[1] = 1;
 n = N;
 xend = 4;
 epsa = 0;
 epsr = 1e-5;
 isw = 10;
 while(1) {
 /* solve system */
 ierr = c_dodrk1(&x, y, fun, n, xend, &isw, epsa, &epsr,
 vw, ivw, &icon);
 if (icon == 0 || icon == 10) {
 printf("x = %12.4e y[0] = %12.4e y[1] = %12.4e \n",
 x, y[0], y[1]);
 if (icon == 10) break;
 }
 else if (icon == 10000)
 printf("relative error tolerance too small\n");
 else if (icon == 11000)
 printf("too many steps\n");
 else if (icon == 15000) {
 printf("tolerance reset\n");
 epsr = 10*epsr;
 }
 else if (icon == 16000) {
 printf("tolerance reset\n");
 epsa = 1e-5;
 }
 else if (icon == 30000) {
 printf("invalid input\n");
 exit(1);
 }
 }
 return(0);
}

/* user function */
void fun(double x, double y[], double yp[])
{

 c_dodrk1

 509

 yp[0] = y[0]*y[0]*y[1];
 yp[1] = -1/y[0];
 return;
}

5. Method

Consult the entry for ODRK1 in the Fortran SSL II User's Guide and [57] and [114].

Description of the C-SSL II Routines

510

c_drjetr
Roots of a polynomial with real coefficients (Jenkins-Traub method).
ierr = c_drjetr(a, &n, z, vw, &icon);

1. Function

This function finds the roots of a polynomial equation (1) with real coefficients by the Jenkins-Traub three-stage
algorithm.

 a x a x an n
n0 1

1 0 (1)

In (1), ai are the real coefficients, a0 0 and n 1 .

2. Arguments

The routine is called as follows:
ierr = c_drjetr(a, &n, z, vw, &icon);

where:
a double a[n+1] Input

Output
Coefficients of the polynomial equation, where a[i]= ai .
The contents of the array are altered on output.

n int Input Order n of the equation.
 Output Number of roots found. See Comments on use.
z dcomplex z[n] Output The n roots, returned in z[0] to z[n-1].
vw double

vw[Vwlen]
Work Vwlen = 6*(n+1).

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 Not all the n roots could be found. The number of roots found is returned by the

argument n and the roots themselves are returned
in array z.

30000 One of the following has occurred:
 n < 1
 a0 = 0

Bypassed.

3. Comments on use

An n-th degree polynomial equation has n roots. However, it is possible, though rare, that not all the roots can be found.
Therefore, it is good practice to check the arguments icon and n, to see whether or not all the roots have been found.

 c_drjetr

 511

4. Example program

This example program computes the roots of the polynomial 06116 23 xxx .

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 3

MAIN__()
{
 int ierr, icon;
 dcomplex z[N];
 double a[N+1], vw[6*(N+1)];
 int n, i;

 /* initialize data */
 n = N;
 a[0] = 1;
 a[1] = -6;
 a[2] = 11;
 a[3] = -6;
 /* find roots of polynomial */
 ierr = c_drjetr(a, &n, z, vw, &icon);
 printf("icon = %i n = %i\n", icon, n);
 for (i=0;i<n;i++)
 printf("z[%i] = {%12.4e, %12.4e}\n", i, z[i].re, z[i].im);
 printf("exact roots are: {1, 0}, {2, 0} and {3, 0}\n");
 return(0);
}

5. Method

This function uses the Jenkins-Traub three-stage algorithm to find the roots of the polynomial equation. For further
information consult the entry for RJETR in the Fortran SSL II User's Guide and [59] and [60].

Description of the C-SSL II Routines

512

c_drqdr
Roots of a quadratic with real coefficients.
ierr = c_drqdr(a0, a1, a2, z, &icon);

1. Function

This function finds the roots of a quadratic equation with real coefficients.

 a x a x a0
2

1 2 0 (1)

where a0 0 .

2. Arguments

The routine is called as follows:
ierr = c_drqdr(a0, a1, a2, z, &icon);

where:
a0 double Input The zeroth coefficient 0a of quadratic equation.
a1 double Input The first coefficient 1a of quadratic equation.
a2 double Input The second coefficient 2a of quadratic equation.
z dcomplex z[2] Output Roots (both the real and imaginary parts) of quadratic equation.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 a0 0 a a2 1 is stored in the real part of z[0], and 0

in the imaginary part.
z[1] is undefined.

30000 a0 0 and a1 0 Bypassed.

3. Example program

This example program computes the roots of the quadratic 0652 xx .

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 dcomplex z[2];
 double a0, a1, a2;

 /* initialize data */
 a0 = 1;
 a1 = -5;
 a2 = 6;
 /* find roots of quadratic */
 ierr = c_drqdr(a0, a1, a2, z, &icon);
 printf("icon = %i z[0] = {%12.4e, %12.4e} z[1] = {%12.4e, %12.4e}\n",
 icon, z[0].re, z[0].im, z[1].re, z[1].im);
 printf("exact roots are: {3, 0} and {2, 0}\n");
 return(0);

 c_drqdr

 513

}

4. Method

The roots of a quadratic equation (1) are obtained by the root formula. For further information consult the entry for RQDR
in the Fortran SSL II User's Guide or [16].

Description of the C-SSL II Routines

514

c_dsbmdm
MDM T - decomposition of an indefinite symmetric band matrix (block
diagonal pivoting method).
ierr = c_dsbmdm(a, n, &nh, mh, epsz, ip, ivw,

&icon);

1. Function

This routine performs MDM T -decomposition of an nn indefinite symmetric band matrix A with bandwidth h
(n>h 0), using the Gaussian-like block diagonal pivoting method.

 TT MDMPAP (1)

In (1), P is a permutation matrix that performs the row exchanges of the matrix A required during pivoting, M = (ijm) is
a unit lower band matrix, and D = (ijd) is a symmetric block diagonal matrix with blocks of order at most 2.

2. Arguments

The routine is called as follows:
ierr = c_dsbmdm(a, n, &nh, mh, epsz, ip, ivw, &icon);

where:
a double

a[Alen]

Input Matrix A. Stored in symmetric band storage format. See Array storage
formats in the Introduction section for details. A must be stored as if it
had bandwidth mh . See Comments on use.

2/)1()1(mmm hhhnAlen .
 Output Matrix I)(MD . Stored in symmetric band storage format. (Suitable

for input to the linear equations routine c_dbmdmx.) See Comments on
use.

n int Input Order n of matrix A.
nh int Input Bandwidth h of matrix A.
 Output Bandwidth h

~
of matrix M. See Comments on use.

mh int Input Maximum bandwidth mh (n > mh nh). See Comments on use.
epsz double Input Tolerance (0) for relative zero test of pivots in decomposition process

of matrix A. When epsz is zero a standard value is used. See Comments
on use.

ip int ip[n] Output Transposition vector that provides the row exchanges that occurred
during pivoting. (Suitable for input to the linear equations routine
c_dbmdmx.) See Comments on use.

ivw int ivw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Either all of the elements of some row are zero or Discontinued.

 c_dsbmdm

 515

Code Meaning Processing
a pivot is relatively zero. It is probable that matrix
A is singular.

25000 The maximum bandwidth was exceeded during
decomposition.

Discontinued.

30000 One of the following has occurred:
 nh < 0
 mh < nh
 mh n
 epsz < 0

Bypassed.

3. Comments on use

a, nh and mh
Generally, the matrix bandwidth increases when rows and columns are exchanged in the pivoting operation of the
decomposition. Therefore, it is necessary to specify a maximum bandwidth mh greater than or equal to the actual
bandwidth h of A, and to store A in symmetric band storage format assuming A has bandwidth mh . The output of nh is
the actual bandwidth h

~
of matrix M. If the maximum bandwidth is exceeded during decomposition, processing is

discontinued with icon=25000.

epsz
The standard value of epsz is 16µ. where µ is the unit round-off. If, during the block diagonal pivoting decomposition, a
pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000.
Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the
required accuracy.

ip
The transposition vector corresponds to the permutation matrix P of the MDM T - decomposition with pivoting. In this
routine the elements of the array a are exchanged in the pivoting and the history of the exchanges is recorded in ip. At
the k-th step of the decomposition, for a 11 pivot, no row is exchanged and k is stored in ip[k-1], and for a 22
pivot, -k is stored in ip[k-1] and the negative value of the row (and column) number s (k+1) that is exchanged
with the (k+1)-st row (and column) is stored in ip[k], i.e. -k is stored in ip[k-1] and –s is stored in ip[k].

Solution of linear equations
To solve a system of linear equations with an indefinite symmetric band matrix A, c_dsbmdm can be called to perform
the decomposition, followed by c_dbmdmx to solve the equations. Alternatively, the system of linear equations can be
solved by calling the single routine c_dlsbix.

 Eigenvalues
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program below.

Calculation of determinant
The determinant of matrix A is the same as the determinant of matrix D, that is the product of the determinants of the 11
and 22 blocks of D. See the example program below.

Description of the C-SSL II Routines

516

4. Example program

This example program decomposes the matrix, calculates the number of positive and negative eigenvalues, and the
determinant.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))

#define NMAX 100
#define NHMAX 50

MAIN__()
{
 int ierr, icon;
 int n, nh, mh, i, j, ij, jj, jmin, peig, neig;
 double epsz, det;
 double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2];
 int ivw[NMAX], ip[NMAX];

 /* initialize matrix */
 n = NMAX;
 nh = 2;
 mh = NHMAX;
 ij = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-mh, 0);
 for (j=jmin;j<=i;j++)
 if (i-j == 0)
 a[ij++] = 10;
 else if (i-j == 1)
 a[ij++] = -3;
 else if (i-j == 2)
 a[ij++] = -6;
 else
 a[ij++] = 0;
 }
 epsz = 1e-6;
 /* MDM decomposition of system */
 ierr = c_dsbmdm(a, n, &nh, mh, epsz, ip, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dsbmdm failed with icon = %d\n", icon);
 exit(1);
 }
 /* find number of positive and negative eigenvalues */
 peig = 0;
 neig = 0;
 i = 1;
 j = 1;
 while (j<=n) {
 if (ip[j-1] != j) {
 peig++;
 neig++;
 i = min(mh,j)+min(mh,j+1)+2+i;
 j = j+2;
 }
 else {
 if (a[i-1] > 0) peig++;
 else if (a[i-1] < 0) neig++;
 i = min(mh,j)+1+i;
 j++;
 }
 }
 printf("Positive e-values: %i\n", peig);
 printf("Negative e-values: %i\n", neig);
 /* calculate determinant */
 det = 1;
 i = 1;
 j = 1;
 while (i<=n) {
 if (ivw[i-1] == i) {
 det = det*a[j-1];
 j = min(mh, i)+1+j;
 i++;

 c_dsbmdm

 517

 }
 else {
 jj = min(mh, i)+1+j;
 det = det*(a[j-1]*a[jj-1]-a[jj-2]*a[jj-2]);
 j = min(mh,i+1)+1+jj;
 i = i+2;
 }
 }
 printf("Determinant: %12.5e\n", det);
 return(0);
}

5. Method

Consult the entry for SBMDM in the Fortran SSL II User's Guide and references [15].

Description of the C-SSL II Routines

518

c_dseig1
Eigenvalues and corresponding eigenvectors of a real symmetric matrix
(QL method).
ierr = c_dseig1(a, n, e, ev, k, &m, vw,

&icon);

1. Function

All eigenvalues and corresponding eigenvectors for an n order real symmetric matrix A are determined 1n . The
eigenvalues are normalised such that 12 x .

2. Arguments

The routine is called as follows:
ierr = c_dseig1(a, n, e, (double *)ev, k, &m, vw, &icon);

where:
a double a[Alen] Input Matrix A, stored in the symmetric storage format. See Array storage

formats in the Introduction section. Alen is defined as n(n+1)/2.
 Output The contents are altered on output.
n int Input Order n of matrix A.
e double e[n] Output The eigenvalues.
ev double

ev[n][k]

Output Eigenvectors. They are stored in the rows of ev that correspond to their
eigenvalues.

k int Input C fixed dimension of matrix ev. (nk).
m int Output Number of eigenvalues/eigenvectors obtained.
vw double vw[2n] Work
icon int Output Condition codes. See below.
The complete list of condition codes is.

Code Meaning Processing
0 No error. Completed.
10000 1n e[0] = a[0][0]

ev[0][0] = 1

15000 Some of the eigenvalues and eigenvectors could
not be determined.

m is set to the number of eigenvalues/eigenvectors
that were obtained.

20000 None of the eigenvalues and eigenvectors could
be determined.

m = 0

30000 One of the following has occurred:
 1n
 nk

Bypassed.

 c_dseig1

 519

3. Comments on use

General Comments
The eigenvalues and eigenvectors are stored in the order that they are determined.

m
The argument m is set to n when the routine completes successfully, i.e. icon = 0. When icon = 15000, m is set to the
number of eigenvalues and eigenvectors that were obtained.

4. Example program

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 matrix in the symmetric storage format.

#include <stdlib.h>
#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, m, i, j, k;
 double a[NMAX*(NMAX+1)/2], e[NMAX], ev[NMAX][NMAX], vw[2*NMAX];

 /* initialize matrix */
 n = NMAX;
 k = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[k] = n-i;
 k = k+1;
 }
 k = NMAX;
 /* find eigenvalues and eigenvectors */
 ierr = c_dseig1(a, n, e, (double*)ev, k, &m, vw, &icon);
 if (icon == 10000 || icon == 30000) {
 printf("ERROR: c_dseig1 failed with icon = %d\n", icon);
 exit(1);
 }
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("e-value %d: %10.4f\n",i+1,e[i]);
 printf("e-vector:");
 for (j=0;j<n;j++)
 printf("%7.4f ",ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

For further information consult the entry for SEIG1 in the Fortran SSL II User's Guide, and also [118] and [119].

Description of the C-SSL II Routines

520

c_dsfri
Sine Fresnel integral)(xS .
ierr = c_dsfri(x, &sf, &icon);

1. Function

This routine computes the Sine Fresnel integral

xx
dttdt

t
txS

2

0

2

0 2
sin)sin(

2
1)(,

where 0x , by series and asymptotic expansions.

2. Arguments

The routine is called as follows:
ierr = c_dsfri(x, &sf, &icon);

where:
x double Input Independent variable x. See Comments on use for range of x.
sf double Output Sine Fresnel integral)(xS .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 x maxt sf is set to 0.5.
30000 x < 0 sf is set to 0.

3. Comments on use

range of x
The valid range of argument x is 0 x < maxt .This is because accuracy is lost if x is outside this range. For details on

maxt see the Machine constants section of the Introduction.

4. Example program

This program generates a range of function values for 101 points in the the interval [0,100].

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, sf;
 int i;

 for (i=0;i<=100;i++) {
 x = i;

 c_dsfri

 521

 /* calculate Sine Fresnel integral */
 ierr = c_dsfri(x, &sf, &icon);
 if (icon == 0)
 printf("x = %5.2f sf = %f\n", x, sf);
 else
 printf("ERROR: x = %5.2f sf = %f icon = %i\n", x, sf, icon);
 }
 return(0);
}

5. Method

Consult the entry for SFRI in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

522

c_dsggm
Subtraction of two matrices (real – real).
ierr = c_dsggm(a, ka, b, kb, c, kc, m, n,

&icon);

1. Function

This function performs subtraction of two m n general real matrices, A and B.

 C A B (1)

In (1), the resultant C is also an m n matrix (m,n 1).

2. Arguments

The routine is called as follows:
ierr = c_dsggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, &icon);

where:
a double

a[m][ka]

Input Matrix A.

ka int Input C fixed dimension of array a (n).
b double

b[m][kb]

Input Matrix B.

kb int Input C fixed dimension of array b (n).
c double

c[m][kc]

Output Matrix C. See Comments on use.

kc int Input C fixed dimension of array c (n).
m int Input The number of rows m for matrices A, B and C.
n int Input The number of columns n for matrices A, B and C.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m < 1
 n < 1
 ka < n
 kb < n
 kc < n

Bypassed.

 c_dsggm

 523

3. Comments on use

Efficient use of memory
Storing the solution matrix C in the same memory area as matrix A (or B) is permitted if the array contents of matrix A (or
B) can be discarded after computation. To take advantage of this efficient reuse of memory, the array and dimension
arguments associated for matrix A need to appear in the locations reserved for C in the function argument list, as indicated
below.

For A:

ierr = c_dsggm(a, ka, b, kb, a, ka, m, n, &icon);

And for B:

ierr = c_dsggm(a, ka, b, kb, b, kb, m, n, &icon);

Note, if both matrices A and B are required after the solution then a separate array must be supplied for storing matrix C.

4. Example program

This example program performs a matrix subtraction and checks the results. Each matrix is 100 by 100 elements.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, m, ka, kb, kc, i, j;
 double eps;
 double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX];

 /* initialize matrices*/
 m = NMAX;
 n = NMAX;
 ka = NMAX;
 kb = NMAX;
 kc = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<n;j++) {
 a[i][j] = n+i+j;
 b[i][j] = i+j;
 }
 /* subtract matrices */
 ierr = c_dsggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, &icon);
 if (icon != 0) {
 printf("ERROR: c_dsggm failed with icon = %d\n", icon);
 exit(1);
 }
 /* check matrix */
 eps = 1e-6;
 for (i=0;i<n;i++)
 for (j=0;j<n;j++)
 if (fabs((c[i][j]-n)/n) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

Description of the C-SSL II Routines

524

c_dsimp1
Integration of a tabulated function (Simpson’s rule, equally spaced
points).
ierr = c_dsimp1(y, n, h, &s, &icon);

1. Function

Given function values y f xi i () at equally spaced points x x i h i ni 1 1 1 2() , , , , , this function obtains the
integral:

 S f x dx n h
x

xn

 () ,
1

2 0

by Simpson’s rule, where h is the increment, as defined above.

2. Arguments

The routine is called as follows:
ierr = c_dsimp1(y, n, h, &s, &icon);

where:
y double y[n] Input Function values yi .
n int Input Number of points n.
h double Input Distance between successive points on the x axis.
s double Output Approximation to the integral S.
icon int Output Condition codes. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 2. Calculation is based on the trapezoidal rule. See

Method.
30000 n < 2 or h ≤ 0. Bypassed. s is set to 0.

3. Example program

This program produces an integral approximation from 100 equally spaced points and compares the result with the true
integral of the underlying function.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int i, n;
 double x, h, y[NMAX], s, eps, exact;

 c_dsimp1

 525

 /* initialize data */
 n = NMAX;
 x = 0;
 h = 1.0/(n-1);
 for (i=0;i<n;i++) {
 y[i] = x*x;
 x = x + h;
 }
 /* calculate integral */
 ierr = c_dsimp1(y, n, h, &s, &icon);
 printf("icon = %i integral = %12.4e\n", icon, s);
 /* check result */
 eps = 1e-6;
 exact = 1.0/3.0;
 if (fabs((s-exact)/exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

4. Method

In Simpson’s rule, the first 3 points are approximated using a second degree interpolating polynomial and the integration
over this interval is approximated by:

 f x dx
h

y y y
x

x

() ()
1

3

3
41 2 3

This is repeated over successive sets of points, with the results summed to give:

 f x dx
h

y y y y y y y
x

x

n n

n

() ()
1

3
4 2 4 2 41 2 3 4 5 1

This calculation can only be completed if the number of points is odd. If there are an even number of points, the above
formula is used over the interval x1 to xn3 , and the Newton-Cotes 3/8 rule is used over the remaining interval xn3 to xn
given by:

 f x dx
h

y y y y
x

x

n n n n

n

n

() ()

3

3
8

3 33 2 1

When n = 2 the trapezoidal rule is used (as Simpson’s rule requires at least 3 points). This is given by:

)(
2

)(21

2

1

yyhdxxf
x

x

For further information, see [89].

Description of the C-SSL II Routines

526

c_dsini
Sine integral S xi () .
ierr = c_dsini(x, &si, &icon);

1. Function

This function computes the Sine integral

S x t
t

dti

x
() sin()

 0

by series and asymptotic expansions.

2. Arguments

The routine is called as follows:
ierr = c_dsini(x, &si, &icon);

where:
x double Input Independent variable x. See Comments on use.
si double Output Function value of S xi () .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 x tmax . 2/)sign(xsi .

3. Comments on use

x
The range of values of x is limited because both sin()x and cos()x lose accuracy when x exceeds maxt . For details on
the constant, tmax , see the Machine constants section of the Introduction.

4. Example program

This program evaluates a table of function values for x from 0.0 to 10.0 in increments of 0.1.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

MAIN__()
{
 int ierr, icon;
 double x, si;
 int i;

 for (i=0;i<100;i++) {
 x = (double)i/10;
 /* calculate complete elliptic integral */
 ierr = c_dsini(x, &si, &icon);
 if (icon == 0)
 printf("x = %5.2f si = %f\n", x, si);

 c_dsini

 527

 else
 printf("ERROR: x = %5.2f si = %f icon = %i\n", x, si, icon);
 }
 return(0);
}

5. Method

Depending on the values of x, the method used to compute the Sine integral, S xi () , is:

 Power series expansion when 0 4 x .
 Asymptotic expansion when x 4 .

For further information consult the entry for SINI in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

528

c_dsmdm
MDM T - decomposition of an indefinite symmetric matrix (block
diagonal pivoting method).
ierr = c_dsmdm(a, n, epsz, ip, vw, ivw,

&icon);

1. Function

This routine performs MDM T - decomposition of an nn indefinite symmetric matrix A (n 1), using the Crout-like
block diagonal pivoting method.

 TT MDMPAP (1)

In (1), P is a permutation matrix that performs the row exchanges of the matrix A required during pivoting, M = (ijm) is
a unit lower triangular matrix, and D = (ijd) is a symmetric block diagonal matrix with blocks of order at most 2.

2. Arguments

The routine is called as follows:
ierr = c_dsmdm(a, n, epsz, ip, vw, ivw, &icon);

where:
a double

a[Alen]

Input Matrix A. Stored in symmetric storage format. See Array storage
formats in the Introduction section for details. 2/)1(nnAlen .

 Output Matrix I)(MD . Stored in symmetric storage format. (Suitable for
input to the linear equations routine c_dmdmx.) See Comments on use.

n int Input Order n of matrix A.
epsz double Input Tolerance (0) for relative zero test of pivots in decomposition process

of matrix A. When epsz is zero a standard value is used. See Comments
on use.

ip int ip[n] Output Transposition vector that provides the row exchanges that occurred
during pivoting. (Suitable for input to the linear equations routine
c_dmdmx.) See Comments on use.

vw double vw[2n] Work
ivw int ivw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Either all of the elements of some row are zero or

a pivot is relatively zero. It is probable that matrix
A is singular.

Discontinued.

30000 One of the following has occurred:
 n < 1
 epsz < 0

Bypassed.

 c_dsmdm

 529

3. Comments on use

epsz
The standard value of epsz is 16µ. where µ is the unit round-off. If, during the block diagonal pivoting decomposition, a
pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000.
Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the
required accuracy.

ip
The transposition vector corresponds to the permutation matrix P of the MDM T - decomposition with pivoting. In this
routine the elements of the array a are exchanged in the pivoting and the history of the exchanges is recorded in ip. At
the k-th step of the decomposition, for a 11 pivot, the row (and column) number r (k) that is exchanged with the k-th
row (and column) is stored in ip[k-1], and for a 22 pivot, the negative value of the row (and column) number s
(k+1) that is exchanged with the (k+1)-st row (and column) is also stored in ip[k], i.e. r is stored in ip[k-1] and
–s is stored in ip[k].

Solution of linear equations
To solve a system of linear equations with an indefinite symmetric matrix A, c_dsmdm can be called to perform the
decomposition, followed by c_dmdmx to solve the equations. Alternatively, the system of linear equations can be solved
by calling the single routine c_dlsix.

 Eigenvalues
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program below.

Calculation of determinant
The determinant of matrix A is the same as the determinant of matrix D, that is the product of the determinants of the 11
and 22 blocks of D. See the example program below.

4. Example program

This example program decomposes the matrix, calculates the number of positive and negative eigenvalues, and the
determinant.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij, cnt, peig, neig;
 double epsz, eps, pi, an, ar, det;
 double a[NMAX*(NMAX+1)/2], vw[2*NMAX];
 int ip[NMAX], ivw[NMAX];

 /* initialize matrix */
 n = NMAX;
 ij = 0;
 pi = 2*asin(1);
 an = 1.0/(n+1);
 ar = pi*an;
 an = sqrt(2*an);
 for (i=1;i<=n;i++)
 for (j=1;j<=i;j++) {

Description of the C-SSL II Routines

530

 a[ij++] = an*sin(i*j*ar);
 }
 epsz = 1e-6;
 /* MDM decomposition of system */
 ierr = c_dsmdm(a, n, epsz, ip, vw, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dsmdm failed with icon = %d\n", icon);
 exit(1);
 }
 /* find number of positive and negative eigenvalues */
 peig = 0;
 neig = 0;
 i = 1;
 j = 1;
 while (j<n) {
 if (ip[j] <= 0) {
 peig++;
 neig++;
 j = j+2;
 i = i+j-1+j;
 }
 else {
 if (a[i-1] > 0) peig++;
 else if (a[i-1] < 0) neig++;
 j++;
 i = i+j;
 }
 }
 if (j == n) {
 if (a[i-1] > 0) peig++;
 else if (a[i-1] < 0) neig++;
 }
 printf("Positive e-values: %i\n", peig);
 printf("Negative e-values: %i\n", neig);
 /* calculate determinant */
 det = 1;
 i = 1;
 j = 1;
 while (j<n) {
 if (ip[j] <= 0) {
 det = det*(a[i-1]*a[i+j]-a[i+j-1]*a[i+j-1]);
 j = j+2;
 i = i+j-1+j;
 }
 else {
 det = det*a[i-1];
 j++;
 i = i+j;
 }
 }
 printf("Determinant: %12.5e\n", det);
 return(0);
}

5. Method

Consult the entry for SMDM in the Fortran SSL II User's Guide and reference [15].

 c_dsmle1

 531

c_dsmle1
Data smoothing by local least squares polynomials (equally spaced
points).
ierr = c_dsmle1(y, n, m, l, f, &icon);

1. Function

Given a set of observed data at equally spaced points, this function obtains the smoothed values based on polynomial local
least squares fit.

Each of the data is smoothed by a fitting a least squares polynomial of specified degree, not over all data, but over a
subrange of specified data points centred at the point to be smoothed. This process is applied to all observed values. A
limitation exists concerning the degree m (either 1 or 3) and the number of observed values l, that can only be 3 or 5 when
m = 1, and 5 or 7 when m = 3.

2. Arguments

The routine is called as follows:
ierr = c_dsmle1(y, n, m, l, f, &icon);

where:
y double y[n] Input Observed data iy .
n int Input Number of observed data n.
m int Input Degree of local least squares polynomial m.
l int Input Number of observed data to fit.
f double f[n] Output Smoothed values.
Icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m 1 or 3
 with m = 1, l 3 or 5
 with m = 3, l 5 or 7
 n < l

Bypassed.

3. Comments on use

This function presupposes that the original function cannot be approximated by a single polynomial, but can be
approximated locally by a certain degree of polynomial.

The choice of m and l should be done carefully after considering the scientific information of the observed data and the
experience of the user.

Description of the C-SSL II Routines

532

It is possible to repeat calling this function, that is, to apply the mth degree least squares polynomial relevant to l points to
the smoothed values. But if repeated too many times, the result tends to approach to one that is produced by applying the
mth degree least squares polynomial over all observed data. So, when it is repeated, the user must decide when to stop.

4. Example program

This program approximates the function xxxf)sin()(at 10 equally spaced points in the interval]1,0[with a
piecewise-linear function obtained by a least squares fit.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10

MAIN__()
{
 int ierr, icon;
 int i, n, m, l;
 double y[NMAX], f[NMAX];
 double h, p;

 /* initialize data */
 n = NMAX;
 p = 0;
 h = 1.0/n;
 for (i=0;i<n;i++) {
 y[i] = sin(p)*sqrt(p);
 p = p + h;
 }
 m = 1;
 l = 5;
 /* smooth data */
 ierr = c_dsmle1(y, n, m, l, f, &icon);
 if (icon != 0) {
 printf("ERROR: c_dsmle1 failed with icon = %d\n", icon);
 exit(1);
 }
 for (i=0;i<n;i++)
 printf("%12.4e %12.4e \n", y[i], f[i]);
 return(0);
}

5. Method

For further information consult the entry for SMLE1 in the Fortran SSL II User's Guide and see [54] and [89].

 c_dsmle2

 533

c_dsmle2
Data smoothing by local least squares polynomials (unequally spaced
data points).
ierr = c_dsmle2(x, y, n, m, l, w, f, vw,

&icon);

1. Function

Given a set of observed data iy , ni ,...,2,1 at unequally spaced data points nxxx ...21 , and corresponding
weights)(ixw 0 , ni ,...,2,1 , this routine obtains the smoothed data values based on a polynomial local least squares
fit.

Each data value is smoothed by fitting the least squares polynomial of a specified degree m (1), not over all the data,
but over a subrange of (n) data points centered at the point to be smoothed, where is an odd integer such that

2 m .

2. Arguments

The routine is called as follows:
ierr = c_dsmle2(x, y, n, m, l, w, f, vw, &icon);

where:
x double x[n] Input Discrete points ix .
y double y[n] Input Observed data iy .
n int Input Number n of observed values.
m int Input Degree m of local least squares poynomials.
l int Input Number of observed values to which least squares polynomial is to fit.
w double w[n] Input Weights)(ixw . Normally, 1)(ixw .
f double f[n] Output Smoothed data.
vw double vw[2l] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 x[0]< x[1]<...< x[n-1] is not satisfied
 l is even or l > n
 m < 1 or l < m+2
 w[i] < 0 for some i

Bypassed.

Description of the C-SSL II Routines

534

3. Comments on use

It is assumed that the original function cannot be approximated by a single polynomial, but can be approximated locally
by a certain degree of polynomial.

The values of m and should be chosen carefully based on scientific information about the observed data and the
experience of the user.

Note that the extent of smoothing increases as increases, but decreases as m increases.

It is possible to repeat the calling of this routine, that is, to apply the m-th degree least squares polynomial over points to
the smoothed data. However, if repeated too many times, the result tends to one that is produced by applying the m-th
degree least squares polynomial over all the observed data. Therefore, the user must decide when it is appropriate to stop
repeating.

4. Example program

This program approximates the function xxxf)sin()(at 10 equally spaced points in the interval]1,0[using a
quadratic polynomial.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10
#define M 3

MAIN__()
{
 int ierr, icon;
 int i, n, m, l;
 double x[N], y[N], w[N], f[N], vw[21];
 double p, h;

 /* initialize data */
 n = N;
 p = 0;
 h = 1.0/(n-1);
 for (i=0;i<n;i++) {
 w[i] = 1;
 x[i] = p+i*h;
 y[i] = sin(x[i])*sqrt(x[i]);
 }
 l = 5;
 m = 2;

 /* smooth data */
 ierr = c_dsmle2(x, y, n, m, l, w, f, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dsmle2 failed with icon = %d\n", icon);
 exit(1);
 }
 for (i=0;i<n;i++)
 printf("%12.4e %12.4e \n", y[i], f[i]);
 return(0);
}

5. Method

Consult the entry for SMLE2 in the Fortran SSL II User's Guide, and [89] and [54].

 c_dsssm

 535

c_dsssm
Subtraction of two matrices (symmetric - symmetric).
ierr = c_dsssm(a, b, c, n, &icon);

1. Function

This routine performs the subtraction of two nn symmetric matrices, A and B.

 BAC (1)

In (1), the resultant matrix C is also an nn matrix (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dsssm(a, b, c, n, &icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage

formats in the Introduction section for details. .2/)1(nnAlen
b double b[Blen] Input Matrix B. Stored in symmetric storage format. See Array storage formats

in the Introduction section for details. .2/)1(nnBlen
c double c[Clen] Input Matrix C. Stored in symmetric storage format. See Array storage

formats in the Introduction section for details. .2/)1(nnClen
See Comments on use.

n int Input The order n of matrices A, B and C.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 n < 1 Bypassed.

3. Comments on use

Efficient use of memory
Storing the solution matrix C in the same memory area as matrix A (or B) is permitted if the array contents of matrix A (or
B) can be discarded after computation. To take advantage of this efficient reuse of memory, the array arguments associated
with matrix A (or B) need to appear in the locations reserved for matrix C in the function argument list, as indicated below.

For A:

ierr = c_dsssm(a, b, a, n, &icon);

For B:

ierr = c_dsssm(a, b, b, n, &icon);

Description of the C-SSL II Routines

536

Note, if both matrices A and B are required after the solution then a separate array must be supplied for storing C.

4. Example program

This program performs the subtraction of two symmetric matrices and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij;
 double eps, err;
 double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], c[NMAX*(NMAX+1)/2];

 /* initialize matrices*/
 n = NMAX;
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[ij] = n+i-j+1;
 b[ij++] = i-j+1;
 }
 /* add matrices */
 ierr = c_dsssm(a, b, c, n, &icon);
 if (icon != 0) {
 printf("ERROR: c_dsssm failed with icon = %d\n", icon);
 exit(1);
 }
 /* check matrix */
 eps = 1e-6;
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 err = fabs((c[ij++]-n)/n);
 if (err > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 }
 printf("Result OK\n");
 return(0);
}

 c_dteig1

 537

c_dteig1
Eigenvalues and corresponding eigenvectors of a symmetric tridiagonal
matrix (QL method).
ierr = c_dteig1(d, sd, n, e, ev, k, &m,

&icon);

1. Function

This routine obtains the eigenvalues and corresponding eigenvectors of an nn symmetric tridiagonal matrix T, using
the QL method. The eigenvectors are normalized such that 12 x . Here, 1n .

2. Arguments

The routine is called as follows:
ierr = c_dteig1(d, sd, n, e, (double *)ev, k, &m, &icon);

where:
d double d[n] Input Diagonal elements of matrix T.
 Output The contents of d are changed on output.
sd double sd[n] Input Subdiagonal elements of matrix T, stored in sd[i-1], i = 2,...,n, with

sd[0] set to 0.
 Output The contents of sd are changed on output.
n int Input Order n of matrix T.
e double e[n] Output Eigenvalues, stored in the order determined.
ev double

ev[n][k]

Output Eigenvectors, stored by row, in the order the eigenvalues are determined.

k int Input C fixed dimension of array ev (n).
m int Output Number of eigenvalues/eigenvectors that were determined. See

Comments on use.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 e[0] = d[0], ev[0][0] = 1
15000 Some eigenvalues/eigenvectors could not be

determined.
m is set to the number of eigenvalues/eigenvectors
that were determined.

20000 None of the eigenvalues/eigenvectors could be
determined.

m = 0.

30000 One of the following has occurred:
 n < 1
 k < n

Bypassed.

Description of the C-SSL II Routines

538

3. Comments on use

m
Argument m is set to n when icon = 0, and is set to the number of eigenvalues/eigenvectors that were determined when
icon = 15000.

General comments
This routine is used to determine all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix. To
determine all eigenvalues and corresponding eigenvectors of a symmetric matrix, routine c_dseig1 should be used. To
determine all eigenvalues of a symmetric tridiagonal matrix, c_dtrql should be used.

4. Example program

This program finds the eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix and prints the
results.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, m, i, j, k;
 double d[NMAX], sd[NMAX], e[NMAX], ev[NMAX][NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 d[i] = n-i;
 }
 for (i=1;i<n;i++) {
 sd[i] = (double)(n-i)/2;
 }
 /* find eigenvalues and eigenvectors */
 ierr = c_dteig1(d, sd, n, e, (double*)ev, k, &m, &icon);
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

Consult the entry for TEIG1 in the Fortran SSL II User's Guide and references [118] and [119].

 c_dteig2

 539

c_dteig2
Selected eigenvalues and corresponding eigenvectors of a real symmetric
tridiagonal matrix (bisection and inverse iteration methods).
ierr = c_dteig2(d, sd, n, m, e, ev, k, vw,

&icon);

1. Function

The m largest (or smallest) eigenvalues and corresponding eigenvectors for an n order real symmetric tridiagonal matrix T
are determined using the bisection method where nm 1 . The corresponding eigenvectors are then obtained using the
inverse iteration method. The eigenvectors are then normalised such that 12 x .

2. Arguments

The routine is called as follows:
ierr = c_dteig2(d, sd, n, m, e, (double *)ev, k, vw, &icon);

where:
d double d[n] Input The diagonal elements of T.
sd double sd[n] Input The subdiagonal elements of T, stored in sd[1] to sd[n-1].
n int Input The order n of matrix T.
m int Input If m is positive, the m largest eigenvalues are calculated. If m is negative,

the m smallest eigenvalues are calculated.
e double e[|m|] Output Eigenvalues.
ev double

ev[|m|][k]

Output Eigenvectors. They are stored in the rows of ev that correspond to their
eigenvalues.

k int Input C fixed dimension of array ev. (nk).
vw double vw[5n] Work
icon int Output Condition codes. See below.
The complete list of condition codes is.

Code Meaning Processing
0 No error. Completed.
10000 1n e[0] = d[0]

ev[0][0] = 1

15000 After calculation of the eigenvalues, some of the
eigenvectors could not be determined.

The eigenvectors that were not obtained are set to
0.

20000 None of the eigenvectors could be determined. All the eigenvectors are set to 0.
30000 One of the following has occurred:

 mn
 nk
 0m

Bypassed.

Description of the C-SSL II Routines

540

3. Example program

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 symmetric tridiagonal matrix.

#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, m, i, j, k;
 double d[NMAX], sd[NMAX], e[NMAX], ev[NMAX][NMAX], vw[5*NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 d[i] = n-i;
 }
 for (i=1;i<n;i++) {
 sd[i] = (double)(n-i)/2;
 }
 m = n;
 /* find eigenvalues and eigenvectors */
 ierr = c_dteig2(d, sd, n, m, e, (double*)ev, k, vw, &icon);
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[i][j]);
 printf("\n");
 }
 return(0);
}

4. Method

For further information consult the entry for TEIG2 in the Fortran SSL II User's Guide, and also [118] and [119].

 c_dtrap

 541

c_dtrap
Integration of a tabulated function (trapezoidal rule, unequally spaced
points).
ierr = c_dtrap(x, y, n, &s, &icon);

1. Function

Given unequally spaced points x x xn1 2, , , , where x x xn1 2 , and the corresponding function values,
y f x i ni i () , , , ,1 2 , then this library function calculates:

 S f x dx
x

xn

 ()
1

2. Arguments

The routine is called as follows:
ierr = c_dtrap(x, y, n, &s, &icon);

where:
x double x[n] Input Discrete points x.
y double y[n] Input Function values y.
n int Input Number of points n.
s double Output The result of the integration S.
icon int Output Condition Code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 Either n < 2 or x xi i 1 . Bypassed. s is set to 0.

3. Comments on use

When the discrete points are equally spaced, this routine can be used, although it is preferable to use Simpson’s rule, i.e.
library function c_dsimp1.

4. Example program

This program produces an integral approximation from 100 equally spaced points and compares the result with the true
integral of the underlying function.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;

Description of the C-SSL II Routines

542

 int i, n;
 double h, p, x[NMAX], y[NMAX], s, eps, exact;

 /* initialize data */
 n = NMAX;
 p = 0;
 h = 1.0/(n-1);
 for (i=0;i<n;i++) {
 x[i] = p;
 y[i] = p*p;
 p = p + h;
 }
 /* calculate integral */
 ierr = c_dtrap(x, y, n, &s, &icon);
 printf("icon = %i integral = %12.4e\n", icon, s);
 /* check result */
 eps = 1e-4;
 exact = 1.0/3.0;
 if (fabs((s-exact)/exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

5. Method

The integral is approximated in this library function using the trapezoidal rule given below:

f x dx x x f x f x x x f x f x x x f x f x

x x f x x x f x x x f x x x f x

x

x

n n n n

n n n n n n

n

() ()(() ()) ()(() ()) ()(() ())

() () () () () () () ()

1

1
2

1
2

2 1 1 2 3 2 2 3 1 1

2 1 1 3 1 2 2 1 1

For further information, see [89].

 c_dtrbk

 543

c_dtrbk
Back transformation of the eigenvectors of a symmetric tridiagonal
matrix to the eigenvectors of a symmetric matrix.
ierr = c_dtrbk(ev, k, n, m, p, &icon);

1. Function

This routine applies back transformation to m eigenvectors of an nn symmetric tridiagonal matrix T to form
eigenvectors of a symmetric matrix A. T must have been obtained by the Householder reduction of A. Here,

1 m n.

2. Arguments

The routine is called as follows:
ierr = c_dtrbk((double *) ev, k, n, m, p, &icon);

where:
ev double Input The m eigenvectors of the symmetric tridiagonal matrix T.
 ev[|m|][k] Output The m eigenvectors of the symmetric matrix A.
k int Input C fixed dimension of array ev (n).
n int Input Order n of matrices T and A.
m int Input Number m of eigenvectors. If m < 0, then the absolute value of m is

assumed.
p double

p[n(n+1)/2]

Input Transformation matrix obtained by Householder’s reduction of matrix A
to matrix T. Stored in symmetric storage format. See Array storage
formats in the Introduction section for details, and Comments on use.

icon int Output Condition code.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 ev[0][0] = 1.
30000 One of the following has occurred:

 m = 0 or |m| > n
 k < n

Bypassed.

3. Comments on use

This routine is usually called after routine c_dtrid1. Output argument a of c_dtrid1 can be used as input argument
p of this routine.

The eigenvectors are normalized, 12 ix .

Description of the C-SSL II Routines

544

4. Example program

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back
transformation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, ij, m;
 double a[NMAX*(NMAX+1)/2], sd[NMAX], d[NMAX];
 double e[NMAX], ev[NMAX][NMAX];

 /* initialize matrix */
 n = NMAX;
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[ij++] = n-i;
 }
 /* reduce matrix A to symmetric tridiagonal form */
 ierr = c_dtrid1(a, n, d, sd, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dtrid1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues and eigenvectors */
 k = NMAX;
 ierr = c_dteig1(d, sd, n, e, (double*)ev, k, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dteig1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation to find e-vectors of A */
 ierr = c_dtrbk((double*)ev, k, n, m, a, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dtrbk failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

Consult the entry for TRBK in the Fortran SSL II User's Guide and reference [119].

 c_dtrbkh

 545

c_dtrbkh
Back transformation of the eigenvectors of a symmetric tridiagonal
matrix to the eigenvectors of a Hermitian matrix.
ierr = c_dtrbkh(evr, evi, k, n, m, p, pv,

&icon);

1. Function

This routine applies back transformation (1) to m eigenvectors jy , j = 1,2,...,m of an nn symmetric tridiagonal matrix
T to form eigenvectors jx , j = 1,2,...,m of a Hermitian matrix A.

 yPVx * , (1)

where P and V are transformation matrices obtained from the transformation of Hermitian matrix A to tridiagonal matrix
T by Householder reduction and diagonal unitary transformation. Here, 1 m n.

2. Arguments

The routine is called as follows:
ierr = c_dtrbkh((double *) evr, (double *) evi, k, n, m, (double *) p, pv,

&icon);

where:
evr double Input The m eigenvectors jy of matrix T.
 evr[|m|][k] Output The real parts of the m eigenvectors jx of matrix A. See Comments on

use.
evi double

evi[|m|][k]

Output The imaginary parts of the m eigenvectors jx of matrix A. See
Comments on use.

k int Input C fixed dimension of arrays evr, evi and p (n).
n int Input Order n of matrices T and A.
m int Input Number m of eigenvectors. If m < 0, then the absolute value of m is

assumed.
p double

p[n][k]

Input Transformation matrix P obtained by Householder reduction of matrix A
to matrix T. Stored in Hermitian storage format. See Array storage
formats in the Introduction section for details. See Comments on use.

pv double pv[2n] Input Transformation matrix V obtained by diagonal unitary transformation of
matrix A to matrix T. See Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 evr[0][0] = 1, evi[0][0] = 0.
30000 One of the following has occurred:

 m = 0 or |m| > n
Bypassed.

Description of the C-SSL II Routines

546

Code Meaning Processing
 k < n

3. Comments on use

This routine is for a Hermitian matrix and is not to be applied to a general complex matrix.

evr and evi
If input eigenvector jy is normalized such that 1

2
jy ,then output eigenvector jx is normalized such that

1
2
jx .

The -th element of the eigenvector that corresponds to the j-th eigenvalue is represented

evr[j -1][-1] + i evi[j -1][-1], where 1i , n,...,2,1 , mj ,..,2,1 .

p and pv
Normally, this routine is used after routine c_dtridh. Output arguments a and pv of routine c_dtridh can be used as
input arguments p and pv of this routine.

Note that array p does not directly represent transformation matrix P for reduction of matrix A to matrix T.

4. Example program

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back
transformation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, m;
 double a[NMAX][NMAX], sd[NMAX], d[NMAX], pv[2*NMAX];
 double e[NMAX], evr[NMAX][NMAX], evi[NMAX][NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 a[i][i] = n-i;
 for (j=0;j<i;j++) {
 a[i][j] = n-i;
 a[j][i] = n-i;
 }
 }
 /* reduce matrix A to symmetric tridiagonal form */
 ierr = c_dtridh((double*)a, k, n, d, sd, pv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dtridh failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues and eigenvectors */
 ierr = c_dteig1(d, sd, n, e, (double*)evr, k, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dteig1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation to find e-vectors of A */

 c_dtrbkh

 547

 ierr = c_dtrbkh((double*)evr, (double*)evi, k, n, m, (double*)a, pv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dtrbkh failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", evr[i][j], evi[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

Consult the entry for TRBKH in the Fortran SSL II User's Guide and reference [74].

Description of the C-SSL II Routines

548

c_dtrid1
Reduction of a symmetric matrix to a symmetric tridiagonal matrix
(Householder method).
ierr = c_dtrid1(a, n, d, sd, &icon);

1. Function

This routine reduces an nn symmetric matrix A to a symmetric tridiagonal matrix T using the Householder method
(orthogonal similarity transformation),

 APPT T ,

where P is the transformation matrix. Here, n 1.

2. Arguments

The routine is called as follows:
ierr = c_dtrid1(a, n, d, sd, &icon);

where:
a double

a[n(n+1)/2]

Input Matrix A. Stored in symmetric storage format. See Array storage
formats in the Introduction section for details.

 Output Transformation matrix P. Stored in symmetric storage format. See Array
storage formats in the Introduction section for details.

n int Input Order n of matrix A.
d double d[n] Output Diagonal elements of tridiagonal matrix T.
sd double sd[n] Output Subdiagonal elements of tridiagonal matrix T, stored in sd[i-1],

i = 2,...,n, and sd[0] set to 0.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 or n = 2 Reduction is not performed.
30000 n < 1 Bypassed.

3. Comments on use

Output argument a can be used as input argument p for routine c_dtrbk when determining the eigenvectors of a
symmetric matrix A using routine c_dteig1.

The precision of computed eigenvalues of a symmetric matrix A is determined in the tridiagonal matrix reduction process.
Therefore, this routine has been implimented so that the tridiagonal matrix is determined with as high a precision as
possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller
eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process.

 c_dtrid1

 549

4. Example program

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back
transformation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, ij, m;
 double a[NMAX*(NMAX+1)/2], sd[NMAX], d[NMAX];
 double e[NMAX], ev[NMAX][NMAX];

 /* initialize matrix */
 n = NMAX;
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[ij++] = n-i;
 }
 /* reduce matrix A to symmetric tridiagonal form */
 ierr = c_dtrid1(a, n, d, sd, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dtrid1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues and eigenvectors */
 k = NMAX;
 ierr = c_dteig1(d, sd, n, e, (double*)ev, k, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dteig1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation to find e-vectors of A */
 ierr = c_dtrbk((double*)ev, k, n, m, a, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dtrbk failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

Consult the entry for TRID1 in the Fortran SSL II User's Guide and reference [119].

Description of the C-SSL II Routines

550

c_dtridh
Reduction of a Hermitian matrix to a real symmetric tridiagonal matrix
(Householder method and diagonal unitary transformation).
ierr = c_dtridh(a, k, n, d, sd, pv, &icon);

1. Function

This routine reduces an nn Hermitian matrix A first to a Hermitian tridiagonal matrix H,

 APPH * ,

by the Householder method, and then it is further reduced to a real symmetric tridiagonal matrix T by a diagonal unitary
transformation

 HVVT * ,

where P and V are transformation matrices and n 1.

2. Arguments

The routine is called as follows:
ierr = c_dtridh((double *) a, k, n, d, sd, pv, &icon);

where:
a double

a[n][k]

Input Hermitian matrix A. Stored in Hermitian storage format. See Array
storage formats in the Introduction section for details. See Comments on
use.

 Output Transformation matrix P. Stored in Hermitian storage format. See Array
storage formats in the Introduction section for details. See Comments on
use.

k int Input C fixed dimension of array a (n).
n int Input Order n of matrix A.
d double d[n] Output Diagonal elements of tridiagonal matrix T.
sd double sd[n] Output Subdiagonal elements of tridiagonal matrix T, stored in sd[i-1],

i = 2,...,n and sd[0] set to 0.
pv double pv[2n] Output Transformation vector V, with pv[2(i-1)] = Re(iiv),

pv[2(i-1)+1] = Im(iiv), ni ,...,1 .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 Reduction is not performed.
30000 n < 1 or k < n Bypassed.

3. Comments on use

This routine is used for a Hermitian matrix, and not for a general complex matrix.

 c_dtridh

 551

Output arrays a and pv are needed for determining the eigenvectors of the Hermitian matrix A. They correspond
respectively to p and pv in routine c_dtrbkh which is used to obtain eigenvectors of a Hermitian matrix.

The precision of computed eigenvalues of a Hermitian matrix A is determined in the tridiagonal matrix reduction process.
Therefore, this routine has been implimented so that the tridiagonal matrix is determined with as high a precision as
possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller
eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process.

4. Example program

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back
transformation to obtain the eigenvectors of the original matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, m;
 double a[NMAX][NMAX], sd[NMAX], d[NMAX], pv[2*NMAX];
 double e[NMAX], evr[NMAX][NMAX], evi[NMAX][NMAX];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 for (i=0;i<n;i++) {
 a[i][i] = n-i;
 for (j=0;j<i;j++) {
 a[i][j] = n-i;
 a[j][i] = n-i;
 }
 }
 /* reduce matrix A to symmetric tridiagonal form */
 ierr = c_dtridh((double*)a, k, n, d, sd, pv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dtridh failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues and eigenvectors */
 ierr = c_dteig1(d, sd, n, e, (double*)evr, k, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dteig1 failed with icon = %i\n", icon);
 exit (1);
 }
 /* back transformation to find e-vectors of A */
 ierr = c_dtrbkh((double*)evr, (double*)evi, k, n, m, (double*)a, pv, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dtrbkh failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("eigenvalue: %7.4f\n", e[i]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f+i*%7.4f ", evr[i][j], evi[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

Consult the entry for TRIDH in the Fortran SSL II User's Guide and references [74] and [119].

Description of the C-SSL II Routines

552

c_dtrql
Eigenvalues of a symmetric tridiagonal matrix (QL method).
ierr = c_dtrql(d, sd, n, e, &m, &icon);

1. Function

This routine obtains the eigenvalues of an nn symmetric tridiagonal matrix T using the QL method. Here n 1.

2. Arguments

The routine is called as follows:
ierr = c_dtrql(d, sd, n, e, &m, &icon);

where:
d double d[n] Input Diagonal elements of matrix T.
 Output The contents of d are changed on output.
sd double sd[n] Input Subdiagonal elements of matrix T, stored in sd[i-1], i = 2,...,n, with

sd[0] set to 0.
 Output The contents of sd are changed on output.
n int Input Order n of matrix T.
e double e[n] Output Eigenvalues of matrix T.
m int Output Number of eigenvalues obtained. See Comments on use.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 e[0] = d[0].
15000 Some of the eigenvalues could not be obtained. m is set to the number of eigenvalues obtained.

1 m < n.
20000 None of the eigenvalues could be obtained. m = 0.

30000 n < 1 Bypassed.

3. Comments on use

m
m is set to n when icon = 0, or to the number of eigenvalues obtained when icon = 15000.

General comments
This routine uses the QL method which is best suited for tridiagonal matrices in which the magnitude of the elements
increases down the diagonals.

When approximately n/4 or less eigenvalues are required, it is generally faster to use routine c_dbsct1.

When the eigenvectors of matrix T are also required, routine c_dteig1 should be used.

 c_dtrql

 553

When eigenvalues of a real symmetric matrix are required the matrix can be reduced to a tridiagonal matrix using the
routine c_dtrid1, before calling this routine or c_dbsct1.

4. Example program

This program reduces the matrix to tridiagonal form, and calculates the eigenvalues using two different methods.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 15
#define NHMAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh, m, i, k, ij;
 double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX];
 double sd[NMAX], d[NMAX], vw[NMAX+2*NMAX], epst;

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 nh = NHMAX;
 a[0] = 10;
 a[1] = -3;
 a[2] = 10;
 ij = (nh+1)*nh/2;
 for (i=0;i<n-nh;i++) {
 a[ij] = -6;
 a[ij+1] = -3;
 a[ij+2] = 10;
 ij = ij+nh+1;
 }
 /* reduce to tridiagonal form */
 ierr = c_dbtrid(a, n, nh, d, sd, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dbtrid failed with icon = %i\n", icon);
 exit (1);
 }
 /* find eigenvalues using c_dbsct1 */
 m = n;
 epst = 1e-6;
 ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dbsct1 failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf("eigenvalues:\n");
 for (i=0;i<m;i++) {
 printf("%7.4f ", e[i]);
 }
 printf("\n");
 /* find eigenvalues using c_dtrql */
 ierr = c_dtrql(d, sd, n, e, &m, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dbtrql failed with icon = %i\n", icon);
 exit (1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf("eigenvalues:\n");
 for (i=0;i<m;i++) {
 printf("%7.4f ", e[i]);
 }
 printf("\n");
 return(0);
}

Description of the C-SSL II Routines

554

5. Method

Consult the entry for TRQL in the Fortran SSL II User's Guide and references [118] and [119].

 c_dtsd1

 555

c_dtsd1
Root of a real function which changes sign in a given interval (derivative
not required).
ierr = c_dtsd1(ai, bi, fun, epst, &x, &icon);

1. Function

This function finds a root of the real transcendental equation (1), between two limits, a and b, such that f a f b() () 0 .

 f x() 0 (1)

The derivatives of f x() are not required when determining the root. The bisection method, linear interpolation method,
and inverse quadratic interpolation method are used depending on the behaviour of f x() during the calculations.

2. Arguments

The routine is called as follows:
ierr = c_dtsd1(ai, bi, fun, epst, &x, &icon);

where:
ai double Input The lower limit a of the interval.
bi double Input The upper limit b of the interval.
fun function Input Name of the user defined function to evaluate f x() . Its prototype is:

double fun(double x);

where:
 x double Input Independent variable.
epst double Input The tolerance of absolute error (0) of the approximated root to be

determined. See Comments on use.
x double Output The approximated root.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 f a f b() () > 0
 epst < 0

Bypassed.

3. Comments on use

General Comments
If there are several roots in the interval [a, b], it is uncertain which root will be obtained.

Description of the C-SSL II Routines

556

epst
The required accuracy of the root being determined is defined by argument epst. If the interval [a, b] includes the origin,
it is unwise to set epst=0 since there is a possibility that the exact root is the origin. Otherwise, epst can be set to zero
and the function will calculate the root as precisely as possible.

4. Example program

One root of the function 5.0)(sin)(2 xxf is calculated in the interval]5.1,0.0[. The computed root is output along
with an accuracy check.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

double fun(double x); /* user function prototype */

MAIN__()
{
 int ierr, icon;
 double ai, bi, x, epst, exact;

 /* initialize data */
 ai = 0;
 bi = 1.5;
 epst = 1e-6;
 /* find zero of function */
 ierr = c_dtsd1(ai, bi, fun, epst, &x, &icon);
 printf("icon = %i x = %12.4e\n", icon, x);
 /* check result */
 exact = asin(sqrt(0.5));
 if (fabs((x-exact)/exact) > epst)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

/* user function */
double fun(double x)
{
 return(pow(sin(x),2)-0.5);
}

5. Method

With some modifications, this function uses what is widely known as the Dekker algorithm. The method to be used at
each iteration stage (bisection method, linear interpolation method or inverse quadratic interpolation method) is
determined by examining the behaviour of f x() , where the function f x() is a real function that is continuous in the
interval [a, b] and f a f b() () 0 . For further information consult the entry for TSD1 in the Fortran SSL II User's Guide
and [9].

 c_dtsdm

 557

c_dtsdm
Root of a real function (Muller’s method).
ierr = c_dtsdm(&x, fun, isw, eps, eta, &m,

&icon);

1. Function

This function finds a root of a real function (1) by Muller’s method.

 f x() 0 (1)

An initial approximation to the root must be given.

2. Arguments

The routine is called as follows:
ierr = c_dtsdm(&x, fun, isw, eps, eta, &m, &icon);

where:
x double Input Initial value of the root to be obtained.
 Output Approximate root.
fun function Input Name of the user defined function to evaluate f x() . Its prototype is:

double fun(double x);

where:
 x double Input Independent variable.
isw int Input Control information.

Specify the convergence criterion for finding the root; isw must be one
of the following:

 1 Criterion I: when the condition f xi() eps is satisfied, xi
becomes the root.

2 Criterion II: when the condition x x xi i i 1 eta is satisfied,
xi becomes the root.

3 When either criterion I or II is satisfied, xi becomes the root.
 See Comments on use.
eps double Input The tolerance value (0) for Criterion I. (See argument isw.)
eta double Input The tolerance value (0) for Criterion II. (See argument isw.)
m int Input Upper limit of iterations. See Comments on use.
 Output Total number of iterations performed.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
1 The result satisfied convergence Criterion I. (See

the argument isw.)

Description of the C-SSL II Routines

558

Code Meaning Processing
2 The result satisfied convergence Criterion II. (See

the argument isw.)

10 Completed the m (m=-m) iterations.
11 The condition f xi() 0 was satisfied before

finishing all the iterations (m = -m), therefore the
iteration process was stopped and xi returned as
the root.

12 The condition x x xi i i 1 was satisfied
before finishing all the iterations (m = -m),
therefore the iteration process was stopped and
xi returned as the root.

10000 The specified convergence criterion was not
achieved after completing the given number of
iterations.

Return the last iteration value of xi in argument
x.

20000 The case f x f x f xi i i() () () 2 1 has
occurred and perturbation of xi2 , xi1 , and xi
was tried to overcome the problem. This proved
unsuccessful even when perturbation continued
more than five times.

Processing stopped.

30000 One of the following has occurred:
When m > 0:
 isw = 1 and eps < 0
 isw = 2 and eta < 0
 isw = 3, eps < 0 or eta < 0
otherwise:
 m = 0
 isw 1, 2 or 3

Bypassed.

3. Comments on use

isw
This function will stop the iteration with icon=2 whenever x x xi i i 1 is satisfied (where µ is the unit round-
off) even when isw=1 is given. Similarly with isw=2, it will stop the iteration with icon=1 whenever f xi() 0 is
satisfied.

Note, when the root is a multiple root or very close to another root, eta must be set sufficiently large. If 0 eta < µ, the
function resets eta=µ.

m
Iterations are repeated m times when m is set as m=-m (m > 0). However, when either f xi() 0 or x x xi i i 1 is
satisfied before finishing m iterations, the iteration process is stopped and the result is output with icon=11 or 12.

 c_dtsdm

 559

4. Example program

This example program computes a root of the function 1)(xexf with a starting point of 10 x and displays the
result along with an accuracy check.

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

double fun(double x); /* user function prototype */

MAIN__()
{
 int ierr, icon;
 double x, eps, eta, exact;
 int isw, m;

 /* initialize data */
 x = 1;
 isw = 3;
 eps = 0;
 eta = 1e-6;
 m = 100;
 /* find zero of function */
 ierr = c_dtsdm(&x, fun, isw, eps, eta, &m, &icon);
 printf("icon = %i m = %i x = %12.4e\n", icon, m, x);
 /* check result */
 eps = 1e-6;
 exact = 0;
 if (fabs(x-exact) > eps)
 printf("Inaccurate result\n");
 else
 printf("Result OK\n");
 return(0);
}

/* user function */
double fun(double x)
{
 return(exp(x)-1);
}

5. Method

This function uses Muller’s method for finding a root of a real function. For further information consult the entry for
TSDM in the Fortran SSL II User's Guide and [111].

Description of the C-SSL II Routines

560

c_dv1dwt
One-dimensional wavelet transform.
ierr = c_dv1dwt(x, n, y, isn, f, k, ls,

&icon);

1. Function

This routine performs a one-dimensional wavelet transform or its inverse. The transform is defined by its high- and low-
pass filter coefficients.

2. Arguments

The routine is called as follows:
ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon);

where:
x double x[n] Input Data to be transformed in the case of wavelet transform (isn = 1).
 Output Transformed data in the case of the inverse transform (isn = -1).
n int Input Size (2) of the transformed data. n must be a power of 2. See

Comments on use.
y double y[n] Input Data to be transformed in the case of the inverse transform (isn = -1).
 Output Transformed data in the case of wavelet transform (isn = 1). See

Comments on use.
isn int Input Control information.

isn = 1 for wavelet transform,
isn = -1 for inverse transform.

f double f[2k] Input Wavelet filter coefficients used for transform. See Comments on use.
k int Input Number of wavelet filter coefficients. k must be positive and even.
ls int Input Depth of transform. n 2ls . When n = 2ls , a full wavelet transform is

performed.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 isn 1 or –1 Bypassed.
30002 n < 2 Bypassed.
30004 n is not a power of 2. Bypassed.
30008 One of the following has occurred:

 k is not an even number
 ls < 0 or ls > log 2 n

Bypassed.

 c_dv1dwt

 561

3. Comments on use

n
When the size of the data to be transformed is not a power of 2, the wavelet transform can be performed by storing the
data in an array with length n the smallest power of 2 that is greater than the size of the data, setting to zero the remaining
array elements.

Storing the transform result
For input vector x (isn = 1) or y (isn = -1), the result of the high-pass filter in each wavelet transform is stored in
y[n i2],...,y[n 12 1 i], or x[n i2],...,x[n 12 1 i], i = 1,...,ls.

f
The user can either supply the filter coefficients f, or call routine c_dvwflt before this routine to specify filter
coefficients for the wavelet transform. Input argument n and output argument f of c_dvwflt are the same as input
arguments k and f of this routine.

The orthogonal filter used for this routine generally has vector of size 2k with f[0], f[1], ... , f[k-1] defining the low-
pass filter coefficients and f[k], f[k+1], ... , f[2k-1] defining the high-pass filter coefficients. These coefficients have the
following relationships:

1-k

 i

f[i]
0

2 1

, f[2k-1-i] = (-1) 1i f[i], i = 0,1, ...,k-1.

4. Example program

This program forms the wavelet filter and performs the one-dimensional wavelet transform. The inverse transform is then
performed and the result checked.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 1024
#define KMAX 6

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps;
 double x[NMAX], y[NMAX], f[2*KMAX], xx[NMAX];
 int isn, i, k, ls, n;

 /* generate initial data */
 n = NMAX;
 ls = 10;
 k = KMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (i=0;i<n;i++) {
 ran = (i+1)*phai;
 x[i] = ran - (int)ran;
 }
 for (i=0;i<n;i++)
 xx[i] = x[i];
 /* generate wavelet filter */
 ierr = c_dvwflt(f, k, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvwflt failed with icon = %i\n", icon);
 exit (1);
 }
 /* perform normal wavelet transform */
 isn = 1;

Description of the C-SSL II Routines

562

 ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon);
 if (icon != 0) {
 printf("ERROR: c_dv1dwt failed with icon = %i\n", icon);
 exit (1);
 }
 /* perform inverse wavelet transform */
 isn = -1;
 ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon);
 if (icon != 0) {
 printf("ERROR: c_dv1dwt failed with icon = %i\n", icon);
 exit (1);
 }
 /* check results */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-xx[i])/xx[i]) > eps) {
 printf("Inaccurate result\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for V1DWT in the Fortran SSL II Extended Capabilities User's Guide II, and [20], [27], [43], [93], and
[105].

 c_dv2dwt

 563

c_dv2dwt
Two-dimensional wavelet transform.
ierr = c_dv2dwt(x, m, n, y, isn, f, k, lsx,

lsy, &icon);

1. Function

This routine performs a two-dimensional wavelet transform or its inverse. The transform is defined by its high- and low-
pass filter coefficients.

2. Arguments

The routine is called as follows:
ierr = c_dv2dwt((double *) x, m, n, (double *) y, isn, f, k, lsx, lsy,

&icon);

where:
x double

x[n][m]

Input Data to be transformed in the case of wavelet transform (isn = 1).

 Output Transformed data in the case of the inverse transform (isn = -1).
m int Input Number (2) of columns containing data to be transformed. m must be

a power of 2. See Comments on use.
n int Input Number (2) of rows containing data to be transformed. n must be a

power of 2. See Comments on use.
y double

y[m][n]

Input Data to be transformed in the case of the inverse transform (isn = -1).

 Output Transformed data in the case of wavelet transform (isn = 1). See
Comments on use.

isn int Input Control information.
isn = 1 for wavelet transform,
isn = -1 for inverse transform.

f double f[2k] Input Wavelet filter coefficients used for transform. See Comments on use.
k int Input Number of wavelet filter coefficients. k must be positive and even.
lsx int Input Depth of transform for each row. m 2lsx . When m = 2lsx , a full

wavelet transform is performed.
lsy int Input Depth of transform for each column. n 2lsy . When n = 2lsy , a full

wavelet transform is performed.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 isn 1 or –1 Bypassed.
30002 m < 2 or n < 2 Bypassed.
30004 Either m or n is not a power of 2. Bypassed.

Description of the C-SSL II Routines

564

Code Meaning Processing
30008 One of the following has occurred:

 k is not an even number
 lsx < 0 or lsx > log 2 m
 lsy < 0 or lsy > log 2 n

Bypassed.

3. Comments on use

m and n
When the size of the data to be transformed is not a power of 2, the wavelet transform can be performed by storing the
data in an array with lengths m and n the smallest powers of 2 that is greater than the size of the data, setting to zero the
remaining array elements.

Storing the transform result
For column vector jc and row vector kr in two-dimensional input data, the result of the high-pass filter in each wavelet
transform column is stored in:

jc [in 2],..., jc [12 1 in], i = 1,...,lsy

and the result in each wavelet row is stored in:

kr [im 2],..., kr [12 1 im], i = 1,...,lsx.

The result of the two-dimensional wavelet transform is transposed and stored in array y. For example, the output result of
the high-pass filter for partial wavelet transform in the first stage is stored in y[k][j], k = m/2,…,m-1 and j =
n/2,…,n-1.

f
The user can either supply the filter coefficients f, or call routine c_dvwflt before this routine to specify filter
coefficients for the wavelet transform. Input argument n and output argument f of c_dvwflt are the same as input
arguments k and f of this routine.

The orthogonal filter used for this routine generally has vector of size 2k with f[0], f[1], ... , f[k-1] defining the low-
pass filter coefficients and f[k], f[k+1], ... , f[2k-1] defining the high-pass filter coefficients. These coefficients have the
following relationships:

1-k

 i

f[i]
0

2 1

, f[2k-1-i] = (-1) 1i f[i], i = 0,1, ...,k-1.

4. Example program

This program forms the wavelet filter and performs the two-dimensional wavelet transform. The inverse transform is then
performed and the result checked.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define MMAX 512
#define NMAX 256
#define KMAX 6

 c_dv2dwt

 565

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps;
 double x[NMAX][MMAX], y[MMAX][NMAX], f[2*KMAX], xx[NMAX][MMAX];
 int isn, i, j, k, lsx, lsy, m, n;

 /* generate initial data */
 m = MMAX;
 n = NMAX;
 lsx = 3;
 lsy = 4;
 k = KMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (j=0;j<n;j++) {
 for (i=0;i<m;i++) {
 ran = ((i*n+1)+j+1)*phai;
 x[j][i] = ran - (int)ran;
 }
 }
 for (j=0;j<n;j++)
 for (i=0;i<m;i++)
 xx[j][i] = x[j][i];
 /* generate wavelet filter */
 ierr = c_dvwflt(f, k, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvwflt failed with icon = %i\n", icon);
 exit (1);
 }
 /* perform normal wavelet transform */
 isn = 1;
 ierr = c_dv2dwt((double*)x, m, n, (double*)y, isn, f, k, lsx, lsy, &icon);
 if (icon != 0) {
 printf("ERROR: c_dv2dwt failed with icon = %i\n", icon);
 exit (1);
 }
 /* perform inverse wavelet transform */
 isn = -1;
 ierr = c_dv2dwt((double*)x, m, n, (double*)y, isn, f, k, lsx, lsy, &icon);
 if (icon != 0) {
 printf("ERROR: c_dv2dwt failed with icon = %i\n", icon);
 exit (1);
 }
 /* check results */
 eps = 1e-6;
 for (j=0;j<n;j++)
 for (i=0;i<m;i++)
 if (fabs((x[j][i]-xx[j][i])/xx[j][i]) > eps) {
 printf("Inaccurate result\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for V2DWT in the Fortran SSL II Extended Capabilities User's Guide II, and [20], [27], [43], [93], and
[105].

Description of the C-SSL II Routines

566

c_dvalu
LU-decomposition of a real matrix (blocking LU-decomposition
method).
ierr = c_dvalu(a, k, n, epsz, ip, &is, vw,

&icon);

1. Function

This function LU-decomposes an n n non-singular matrix A using the blocking LU-decomposition method (Gaussian
elimination method).

 PA LU (1)

In (1), P is the permutation matrix that performs the row exchanges required during partial pivoting, L is a lower
triangular matrix and U is a unit upper triangular matrix (n1).

2. Arguments

The routine is called as follows:
ierr = c_dvalu((double*)a, k, n, epsz, ip, &is, vw, &icon);

where:
a double

a[n][k]

Input Matrix A.

 Output Matrices L and U (suitable for input to the matrix inverse function,
c_dvluiv). See Comments on use.

k int Input C fixed dimension of array a (n).
n int Input Order n of matrix A.
epsz double Input Tolerance for relative zero test of pivots during the decomposition of A

(0). When epsz is zero, a standard value is used. See Comments on
use.

ip int ip[n] Output Transposition vector that provides the row exchanges that occurred
during partial pivoting (suitable for input to the matrix inverse function,
c_dvluiv). See Comments on use.

is int Output Information for obtaining the determinant of matrix A. When the n
elements of the calculated diagonal of array a are multiplied together,
and the result multiplied by is, the determinant is obtained.

vw double vw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Either all of the elements of some row were zero

or the pivot became relatively zero. It is highly
probable that the coefficient matrix is singular.

Discontinued.

 c_dvalu

 567

Code Meaning Processing
30000 One of the following has occurred:

 k < n
 n < 1
 epsz < 0

Bypassed.

3. Comments on use

epsz
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix A = ()aij , that
is:

epsz ij
k
kk aa max

then the relative pivot value is assumed to be zero and processing terminates with icon=20000. The standard value of
epsz is 16µ, where µ is the unit round off. If the processing is to proceed at a lower pivot value, epsz will be given the
minimum value but the result is not always guaranteed.

ip
The transposition vector corresponds to the permutation matrix P of LU-decomposition with partial pivoting. In this
function, the elements of the array a are actually exchanged in partial pivoting. In the J-th stage (J = 1, …, n) of
decomposition, if the I-th row has been selected as the pivotal row the elements of the I-th row and the elements of the J-
th row are exchanged. Then, in order to record the history of this exchange, I is stored in ip[j-1].

Matrix inverse
This function is the first stage in a two-stage process to compute the inverse of an n n real general matrix. After calling
this function, calling function c_dvluiv completes the task for matrix inversion.

4. Example program

This example program initializes A and x (from bAx), and then calculates b by multiplication. Matrix A is then
decomposed into LU factors using the library routine. 1A is then calculated and used to calculate x in the equation

xbA 1 and this resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, is;
 double epsz, eps;
 double a[NMAX][NMAX], ai[NMAX][NMAX];
 double b[NMAX], x[NMAX], y[NMAX], vw[NMAX];
 int ip[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=i;j<n;j++) {

Description of the C-SSL II Routines

568

 a[i][j] = n-j;
 a[j][i] = n-j;
 }
 for (i=0;i<n;i++)
 x[i] = i+1;
 k = NMAX;
 /* initialize constant vector b = a*x */
 ierr = c_dmav((double*)a, k, n, n, x, b, &icon);
 epsz = 1e-6;
 /* perform LU decomposition */
 ierr = c_dvalu((double*)a, k, n, epsz, ip, &is, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvalu failed with icon = %d\n", icon);
 exit(1);
 }
 /* find matrix inverse from LU factors */
 ierr = c_dvluiv((double*)a, k, n, ip, (double*)ai, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvluiv failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate y = ai*b */
 ierr = c_dmav((double*)ai, k, n, n, b, y, &icon);
 /* compare x and y */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-y[i])/y[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

The blocking LU-decomposition method is applied by blocking the outer-product Gaussian elimination method. For
further information consult the entry for VALU in the Fortran SSL II Extended Capabilities User’s Guide as well as [5],
[7], [34] and [83].

 c_dvbcsd

 569

c_dvbcsd
Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (BICGSTAB(l) method, diagonal storage
format).
ierr = c_dvbcsd(a, k, ndiag, n, nofst, b,

itmax, eps, iguss, l, x, &iter,

vw, &icon);

1. Function

This function solves a system of linear equations (1) using the Bi-Conjugate Gradient Stabilized(l) (BICGSTAB(l))
method.

 Ax b (1)

In (1), A is an n n real nonsymmetric or indefinite sparse matrix, b is a real constant vector, and x is the real solution
vector. Both the real vectors are of size n.

2. Arguments

The routine is called as follows:
ierr = c_dvbcsd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, l, x,

&iter, vw, &icon);

where:
a double

a[ndiag][k]

Input Sparse matrix A stored in diagonal storage format. See Comments on
use.

k int Input C fixed dimension of array a (n).
ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements.
n int Input Order n of matrix A.
nofst int

nofst[ndiag]

Input Distance from the main diagonal vector corresponding to diagonal
vectors in array a. Super-diagonal vector rows have positive values.
Sub-diagonal vector rows have negative values. See Comments on use.

b double b[n] Input Constant vector b.
itmax int Input Upper limit of iterations in BICGSTAB(l).(>0)
eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 10-6. See Comments on use.
iguss int Input Control information about whether to start the iterative computation

from the approximate value of the solution vector specified in array x.
iguss = 0 : Approximate value of the solution vector is not specified.
iguss 0 : The iterative computation starts from the approximate value

of the solution vector specified in array x.
l int Input The order of stabiliser in the BICGSTAB(l) algorithm.(1 l 8)

The value of l should usually be set to 1 or 2. See Comments on use.

Description of the C-SSL II Routines

570

x double x[n] Input The starting values for the computation. This is optional and relates to
argument iguss.

 Output Solution vector x.
iter int Output Number of iteration performed using the BICGSTAB(l) method.
vw double

vw[Vwlen]
Work Vwlen = k*(4+2*l)+n+NBANDL+NBANDR

NBANDL indicates a lower bandwidth; NBANDR indicates an upper
bandwidth. If the order or the bandwidth of the matrix are not constant
parameters, it is enough to set the size of vw array to be
k*(4+2*l)+3*k.

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Break-down occurred. Processing stopped.
20001 Reached the set maximum number of iterations. Processing stopped.

The approximate solution obtained up to this
stage is returned, but its precision is not
guaranteed.

30000 One of the following has occurred:
 n < 1
 k < 1
 n > k
 l < 1
 l > 8
 ndiag < 1
 ndiag > k
 itmax 0

Bypassed.

32001 abs(nofst[i]) > n-1; 0 i < ndiag

3. Comments on use

Convergent criterion
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less than the product of the initial residual
Euclidean norm and eps, it is judged as having converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of Matrix A and eps.

The residual which used for convergence judgement is computed recursively and it may differ from the true residual.

l
The maximum value of l is set to 8. For l=1, this algorithm coincides with BiCGSTAB. Using smaller l usually results
in faster speed, but in some situations larger l brings a good convergence, although the steps of an iteration are more
expensive for larger l.

Notes on using the diagonal format
A diagonal vector element outside coefficient matrix A must be set to zero.

 c_dvbcsd

 571

There is no restriction in the order in which diagonal vectors are stored in array a.

The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of
indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this
method.

Diagonal scaling
Scaling the equations so that the main diagonal to be 1 may results in better convergence.

Break-down
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine
c_dvcrd which uses the MGCR method should be used.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 2
#define LBANDW 1
#define L 2

MAIN__()
{
 double one=1.0, bcoef=10.0, eps=1.e-6;
 int ierr, icon, ndiag, nub, nlb, n, i, j, k;
 int itmax, iguss, l, iter;
 int nofst[UBANDW + LBANDW + 1];
 double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
 double vw[NMAX * (4 + 2 * L) + NMAX + UBANDW + LBANDW];

 nub = UBANDW;
 nlb = LBANDW;
 ndiag = nub + nlb + 1;
 n = NMAX;
 k = NMAX;

 /* Set A-mat & b */
 for (i=1; i<=nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
 for (j=n-i; j<n ; j++) a[i][j] = 0.0;
 nofst[i] = i;
 }
 for (i=1; i<=nlb; i++) {
 for (j=0 ; j<i+1; j++) a[nub + i][j] = 0.0;
 for (j=i+1; j<n ; j++) a[nub + i][j] = -2.0;
 nofst[nub + i] = -i;
 }
 nofst[0] = 0;
 for (j=0; j<n; j++) {
 b[j] = bcoef;
 a[0][j] = bcoef;
 for (i=1; i<ndiag; i++) b[j] += a[i][j];
 }
 /* solve the nonsymmetric system of linear equations */
 itmax = n;
 iguss = 0;
 l = L;
 ierr = c_dvbcsd ((double*)a, k, ndiag, n, nofst, b, itmax, eps,
 iguss, l, x, &iter, vw, &icon);

Description of the C-SSL II Routines

572

 if (icon != 0) {
 printf("ERROR: c_dvbcsd failed with icon = %d\n", icon);
 exit(1);
 }
 /* check result */
 for (i=0;i<n;i++)
 if (fabs(x[i]-one) > eps*10.0) {
 printf("WARNING: result maybe inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VBCSD in the Fortran SSL II Extended Capabilities User’s Guide II and references [101] and [112].

 c_dvbcse

 573

c_dvbcse
Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (BICGSTAB(l) method, ELLPACK storage
format).
ierr = c_dvbcse(a, k, iwidt, n, icol, b,

itmax, eps, iguss, l, x, &iter,

vw, &icon);

1. Function

This function solves a system of linear equations (1) using the Bi-Conjugate Gradient Stabilized(l) (BICGSTAB(l))
method.

 Ax b (1)

In (1), A is an n n real nonsymmetric or indefinite sparse matrix, b is a real constant vector and x is the real solution
vector. Both the real vectors are of size n.

2. Arguments

The routine is called as follows:
ierr = c_dvbcse((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss, l,

x, &iter, vw, &icon);

where:
a double

a[iwidt][k]

Input Sparse matrix A stored in ELLPACK storage format. See Comments on
use.

k int Input C fixed dimension of array a (n).
iwidt int Input The maximum number of non-zero elements in any row vectors of A

(0).
n int Input Order n of matrix A.
icol int

icol[iwidt][k]

Input Column indices used in the ELLPACK format, showing to which
column the elements corresponding to a belong. See Comments on use.

b double b[n] Input Constant vector b.
itmax int Input Upper limit of iterations in BICGSTAB(l) method.(>0)
eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 10-6. See Comments on use.
iguss int Input Control information about whether to start the iterative computation

from the approximate value of the solution vector specified in array x.
iguss = 0 : Approximate value of the solution vector is not set.
iguss 0 : The iterative computation starts from the approximate value

of the solution vector specified in array x.
l int Input The order of stabiliser in the BICGSTAB(l) algorithm.(1 l 8)

The value of l should usually be set to 1 or 2. See Comments on use.

Description of the C-SSL II Routines

574

x double x[n] Input The starting values for the computation. This is optional and relates to
argument iguss.

 Output Solution vector x.
iter int Output The real number of iteration steps in BICGSTAB(l) method.
vw double

vw[Vwlen]
Work Vwlen = k*(4+2*l)

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Break-down occurred Processing stopped.
20001 Reached the set maximum number of iterations. Processing stopped.

The approximate solution obtained up to this
stage is returned, but its precision is not
guaranteed.

30000 One of the following has occurred:
 n < 1
 k < 1
 n > k
 l < 1
 l > 8
 iwidt < 1
 iwidt > k
 itmax 0

Bypassed.

3. Comments on use

Convergent criterion
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less than the product of the initial residual
Euclidean norm and eps, it is judged as having converged. The difference between the precise solution and obtained
approximate solution is equal to the product of the condition number of matrix A and eps.

The residual which used for convergence judgement is computed recursively and it may differ from the true residual.

l
The maximum value of l is set to 8. For l=1, this algorithm coincides with BiCGSTAB. Using smaller l usually results
in faster speed, but in some situations larger l brings a convergence, although the steps of a iteration are more expensive
for larger l.

Diagonal scaling
Scaling the equations so that the main diagonal to be 1 may results in better convergence.

Break-down
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine
c_dvcre which uses the MGCR method should be used.

 c_dvbcse

 575

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 2
#define LBANDW 1
#define L 2

MAIN__()
{
 double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
 int ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, l, iter, i, j, ix;
 int icol[UBANDW + LBANDW + 1][NMAX];
 double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
 double vw[NMAX * (4 + 2 * L)];

 nub = UBANDW;
 nlb = LBANDW;
 iwidt = UBANDW + LBANDW + 1;
 n = NMAX;
 k = NMAX;
 for (i=0; i<iwidt; i++)
 for (j=0; j<n; j++) {
 a[i][j] = 0.0;
 icol[i][j] = j+1;
 }
 /* Set A-mat & b */
 for (j=0; j<nlb; j++) {
 for (i=0; i<j; i++) a[i][j] = lcf;
 a[j][j] = bcoef;
 b[j] = bcoef + (double) j * lcf + (double) nub * ucf;
 for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
 for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
 }
 for (j=nlb; j<n-nub; j++) {
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef;
 b[j] = bcoef + (double) nlb * lcf + (double) nub * ucf;
 for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;
 for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
 }
 for (j=n-nub; j<n; j++){
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef;
 b[j] = bcoef + (double) nlb * lcf + (double) (n-j-1) * ucf;
 for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
 ix = n - (j+nub-nlb-1);
 for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
 }
 /* solve the nonsymmetric system of linear equations */
 itmax = 2000;
 iguss = 0;
 l = L;
 ierr = c_dvbcse ((double*)a, k, iwidt, n, (int*)icol, b, itmax,
 eps, iguss, l, x, &iter, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvbcse failed with icon = %d\n", icon);
 exit(1);
 }
 /* check result */
 for (i=0; i<n; i++)
 if (fabs(x[i]-one) > eps*10.0) {
 printf("WARNING: result maybe inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

Description of the C-SSL II Routines

576

5. Method

Consult the entry for VBCSE in the Fortran SSL II Extended Capabilities User’s Guide II and references [101] and [112].

 c_dvbldl

 577

c_dvbldl
LDL T decomposition of a symmetric positive definite band matrix
(modified Cholesky’s method).
ierr = c_dvbldl(a, n, nh, epsz, &icon);

1. Function

This routine performs LDL T decomposition of an nn symmetric positive definite band matrix A, with bandwidth h,
using the modified Cholesky’s method,

 TLDLA . (1)

In (1) L is a unit lower band matrix and D is a diagonal matrix. Here, nh 0 .

2. Arguments

The routine is called as follows:
ierr = c_dvbldl(a, n, nh, epsz, &icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric positive definite band storage format. See

Array storage formats in the Introduction section for further details.
).1(hnAlen

 Output Matrix D + (L – I). Stored in symmetric positive definite band storage
format. See Array storage formats in the Introduction section for further
details.

n int Input Order n of matrix A.
nh int Input Bandwidth h of matrix A.
epsz double Input Tolerance (0) for relative zero test of pivots in the decomposition

process of matrix A. When epsz = 0, a standard value is used. See
Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 A pivot was negative. Matrix A is not positive

definite.
Continued.

20000 A pivot is relatively zero. It is probable that
matrix A is singular.

Discontinued.

30000 One of the following has occurred:
 nh < 0 or nh n
 epsz < 0

Bypassed.

Description of the C-SSL II Routines

578

3. Comments on use

epsz
The standard value of epsz is 16 , where is the unit round-off. If, during the decomposition process, a pivot value fails
the relative zero test, it is considered to be zero and decomposition is discontinued with icon = 20000. Decomposition
can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy.

icon
If a pivot is negative during decomposition, the matrix A is not positive definite and icon = 10000 is set. Processing is
continued, however no further pivoting is performed and the resulting calculation error may be significant.

Calculation of determinant
The determinant of matrix A is the same as the determinant of matrix D, and can be calculated by forming the product of
the elements of output array a corresponding to the diagonal elements of D.

4. Example program

This program solves a system of linear equations using LDL T decomposition, and checks the result. The determinant is
also obtained.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(i,j) (i<j) ? i : j

#define NMAX 100
#define HMAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh, i, j, imax, jmax;
 double epsz, det, eps, sum;
 double a[(HMAX+1)*NMAX], b[NMAX], x[NMAX];

 /* initialize matrix */
 n = NMAX;
 nh = HMAX;
 for (j=0;j<n;j++) {
 imax = min(j+nh,n-1);
 for (i=j;i<=imax;i++)
 a[j*(nh+1)+i-j] = n-(j-i);
 }
 for (i=0;i<n;i++) {
 x[i] = i+1;
 b[i] = 0;
 }
 /* initialize constant vector b = a*x */
 for (i=0;i<n;i++) {
 sum = a[i*(nh+1)]*x[i];
 jmax = min(i+nh,n-1);
 for (j=i+1;j<=jmax;j++) {
 b[j] = b[j] + a[i*nh+j]*x[i];
 sum = sum + a[i*nh+j]*x[j];
 }
 b[i] = b[i]+sum;
 }
 epsz = 1e-6;
 /* LDL decomposition of system of equations */
 ierr = c_dvbldl(a, n, nh, epsz, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvbldl failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate determinant */

 c_dvbldl

 579

 det = 1;
 for (i=0;i<n;i++) {
 det = det*a[i*(nh+1)];
 }
 printf("Determinant: %7.4e\n", det);
 /* solve decomposed system of equations */
 ierr = c_dvbldx(b, a, n, nh, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvbldx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VBLDL in the Fortran SSL II Extended Capabilities User's Guide II and reference [79].

Description of the C-SSL II Routines

580

c_dvbldx
Solution of a system of linear equations with a symmetric positive
definite band matrix in LDL T - decomposed form.
ierr = c_dvbldx(b, fa, n, nh, &icon);

1. Function

This routine solves a system of linear equations with an LDL T decomposed nn symmetric positive definite band
coefficient matrix,

 bxLDL T . (1)

In (1) L is a unit lower band matrix with bandwidth h, D is a diagonal matrix, b is a constant vector, and x is the solution
vector. Here, nh 0 .

2. Arguments

The routine is called as follows:
ierr = c_dvbldx(b, fa, n, nh, &icon);

where:
b double b[n] Input Constant vector b.
 Output Solution vector x.
fa double

fa[Falen]
Input Matrix D + (L - I). Stored in symmetric positive definite band storage

format. See Array storage formats in the Introduction section for further
details.).1(hnFalen

n int Input Order n of matrices L and D.
nh int Input Bandwidth h of matrix L.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Coefficient matrix is not positive definite. Continued.
30000 One of the following has occurred:

 nh < 0 or nh n
Bypassed.

3. Comments on use

A system of linear equations can be solved by calling the routine c_dvbldl to LDL T - decompose the coefficient
matrix before calling this routine. The input argument fa of this routine is the same as the output argument a of
c_dvbldl. Alternatively the system of linear equations can be solved by calling the single routine c_dvlsbx.

 c_dvbldx

 581

4. Example program

This program solves a system of linear equations using LDL T decomposition, and checks the result. The determinant is
also obtained.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(i,j) (i<j) ? i : j

#define NMAX 100
#define HMAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh, i, j, imax, jmax;
 double epsz, det, eps, sum;
 double a[(HMAX+1)*NMAX], b[NMAX], x[NMAX];

 /* initialize matrix */
 n = NMAX;
 nh = HMAX;
 for (j=0;j<n;j++) {
 imax = min(j+nh,n-1);
 for (i=j;i<=imax;i++)
 a[j*(nh+1)+i-j] = n-(j-i);
 }
 for (i=0;i<n;i++) {
 x[i] = i+1;
 b[i] = 0;
 }
 /* initialize constant vector b = a*x */
 for (i=0;i<n;i++) {
 sum = a[i*(nh+1)]*x[i];
 jmax = min(i+nh,n-1);
 for (j=i+1;j<=jmax;j++) {
 b[j] = b[j] + a[i*nh+j]*x[i];
 sum = sum + a[i*nh+j]*x[j];
 }
 b[i] = b[i]+sum;
 }
 epsz = 1e-6;
 /* LDL decomposition of system of equations */
 ierr = c_dvbldl(a, n, nh, epsz, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvbldl failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate determinant */
 det = 1;
 for (i=0;i<n;i++) {
 det = det*a[i*(nh+1)];
 }
 printf("Determinant: %7.4e\n", det);
 /* solve decomposed system of equations */
 ierr = c_dvbldx(b, a, n, nh, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvbldx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

Description of the C-SSL II Routines

582

5. Method

The solution is obtained through forward and backward substitutions. Consult the entry for VBLDX in the Fortran SSL II
Extended Capabilities User's Guide II.

 c_dvblu

 583

c_dvblu
LU - decomposition of a band matrix (Gaussian elimination).
ierr = c_dvblu(a, n, nh1, nh2, epsz, &is, ip,

vw, &icon);

1. Function

This routine performs LU - decomposition of an nn band matrix A, with lower bandwidth 1h and upper bandwidth

2h using Gaussian elimination,

 LUPA ,

where P is a permutation matrix that performs the row exchanges of the matrix A required during pivoting, L is a unit
lower band matrix, and U is an upper band matrix. Here, 0 1h < n and 0 2h < n.

2. Arguments

The routine is called as follows:
ierr = c_dvblu(a, n, nh1, nh2, epsz, &is, ip, vw, &icon);

where:
a double a[Alen] Input Matrix A. Stored in band storage format. See Array storage formats in

the Introduction section for details. nhhAlen)12(21 .
 Output Matrix (L - I) + U. Stored in band storage format. See Array storage

formats in the Introduction section for details.
n int Input Order n of matrix A.
nh1 int Input Lower bandwidth 1h of matrix A.
nh2 int Input Upper bandwidth 2h of matrix A.
epsz double Input Tolerance (0) for relative zero test of pivots in the decomposition

process of matrix A. When epsz = 0, a standard value is used. See
Comments on use.

is int Output Information available when calculating the determinant of matrix A. See
Comments on use.

ip int ip[n] Output Transposition vector that provides the row exchanges that occurred
during pivoting. See Comments on use.

vw double vw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 All the elements of a row of matrix A are zero, or

a pivot is relatively zero. It is probable that the
matrix is singular.

Discontinued.

30000 One of the following has occurred:
 nh1 < 0 or nh1 n

Bypassed.

Description of the C-SSL II Routines

584

Code Meaning Processing
 nh2 < 0 or nh2 n
 epsz < 0

3. Comments on use

epsz
The standard value of epsz is 16 , where is the unit round-off. If, during the decomposition process, a pivot value fails
the relative zero test, it is considered to be zero and decomposition is discontinued with icon = 20000. Decomposition
can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy.

Calculating the determinant
The determinant of matrix A is calculated by multiplying the value of argument is by the n diagonal elements of U stored
in array a in the same locations as the diagonal elements of A.

ip
In partial pivoting, this routine performs the actual exchange of the rows of array a. If at the j-th step of the decomposition
(j=1,2,...,n-1), the i-th row (i j) is selected as the pivot row, the elements of array a corresponding to the i-th and j-th
rows are interchanged. To show the history of exchanges, i is stored in ip[j-1].

Array storage area
In order to save on storage, this routine stores the matrices in band storage format. However, when nhh 12 21 , the
routine c_dvalu requires less storage than this routine.

4. Example program

This program solves a system of linear equations using LU decomposition, and checks the result. The determinant is also
obtained.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(i,j) (i<j) ? i : j
#define max(i,j) (i>j) ? i : j

#define NMAX 100
#define H1MAX 2
#define H2MAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh1, nh2, i, j, jmin, jmax, is, ip[NMAX];
 double epsz, det, eps, sum;
 double a[(2*H1MAX+H2MAX+1)*NMAX], b[NMAX], x[NMAX], vw[NMAX];

 /* initialize matrix */
 n = NMAX;
 nh1 = H1MAX;
 nh2 = H2MAX;
 for (i=0;i<n*(2*nh1+nh2+1);i++)
 a[i] = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh1,0);
 jmax = min(i+nh2,n-1);
 for (j=jmin;j<=jmax;j++)
 a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i);
 }
 for (i=0;i<n;i++) {

 c_dvblu

 585

 x[i] = i+1;
 }
 /* initialize constant vector b = a*x */
 for (i=0;i<n;i++) {
 jmin = max(i-nh1,0);
 jmax = min(i+nh2,n-1);
 sum = 0;
 for (j=jmin;j<=jmax;j++)
 sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j];
 b[i] = sum;
 }
 epsz = 1e-6;
 /* LU decomposition of system of equations */
 ierr = c_dvblu(a, n, nh1, nh2, epsz, &is, ip, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvblu failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate determinant */
 det = is;
 for (i=0;i<n;i++) {
 det = det*a[i*(2*nh1+1+nh2)+nh1];
 }
 printf("Determinant: %7.4e\n", det);
 /* solve decomposed system of equations */
 ierr = c_dvblux(b, a, n, nh1, nh2, ip, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvblux failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

LU decomposition is performed through LU decomposition of the outer product type. Consult the entry for VBLU in the
Fortran SSL II Extended Capabilities User's Guide II and [42].

Description of the C-SSL II Routines

586

c_dvblux
Solution of a system of linear equations with LU - decomposed band
matrix.
ierr = c_dvblux(b, fa, n, nh1, nh2, ip,

&icon);

1. Function

This routine solves the linear system of equations

 bAx ,

where A is an nn band matrix, with lower bandwidth 1h and upper bandwidth 2h , through forward-substitution and
backward-substitution, based on the decomposition

 LUPA ,

obtained by LU-decomposition using Gaussian elimination.

P is a permutation matrix that performs the row exchanges of the matrix A required during pivoting, L is a unit lower
band matrix, and U is an upper band matrix. Here, b is a constant vector, x is the solution vector, and 0 1h < n and 0

2h < n.

2. Arguments

The routine is called as follows:
ierr = c_dvblux(b, fa, n, nh1, nh2, ip, &icon);

where:
b double b[n] Input Constant vector b.
 Output Solution vector x.
fa double

fa[Falen]
Input Matrix (L - I) + U. Stored in band storage format. See Array storage

formats in the Introduction section for details. nhhFalen)12(21
n int Input Order n of matrix A.
nh1 int Input Lower bandwidth 1h of matrix A.
nh2 int Input Upper bandwidth 2h of matrix A.
ip int ip[n] Output Transposition vector that provides the row exchanges that occurred

during pivoting. See Comments on use.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 The coefficient matrix is singular. Discontinued.
30000 One of the following has occurred:

 nh1 < 0 or nh1 n
 nh2 < 0 or nh2 n

Bypassed.

 c_dvblux

 587

Code Meaning Processing
 error occurred in ip

3. Comments on use

A system of linear equations can be solved by calling the routine c_dvblu to LU-decompose the coefficient matrix
before calling this routine. The input arguments fa and ip of this routine are the same as the output arguments a and ip
of c_dvblu. Alternatively the system of linear equations can be solved by calling the single routine c_dvlbx.

4. Example program

This program solves a system of linear equations using LU decomposition, and checks the result. The determinant is also
obtained.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(i,j) (i<j) ? i : j
#define max(i,j) (i>j) ? i : j

#define NMAX 100
#define H1MAX 2
#define H2MAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh1, nh2, i, j, jmin, jmax, is, ip[NMAX];
 double epsz, det, eps, sum;
 double a[(2*H1MAX+H2MAX+1)*NMAX], b[NMAX], x[NMAX], vw[NMAX];

 /* initialize matrix */
 n = NMAX;
 nh1 = H1MAX;
 nh2 = H2MAX;
 for (i=0;i<n*(2*nh1+nh2+1);i++)
 a[i] = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh1,0);
 jmax = min(i+nh2,n-1);
 for (j=jmin;j<=jmax;j++)
 a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i);
 }
 for (i=0;i<n;i++) {
 x[i] = i+1;
 }
 /* initialize constant vector b = a*x */
 for (i=0;i<n;i++) {
 jmin = max(i-nh1,0);
 jmax = min(i+nh2,n-1);
 sum = 0;
 for (j=jmin;j<=jmax;j++)
 sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j];
 b[i] = sum;
 }
 epsz = 1e-6;
 /* LU decomposition of system of equations */
 ierr = c_dvblu(a, n, nh1, nh2, epsz, &is, ip, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvblu failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate determinant */
 det = is;
 for (i=0;i<n;i++) {
 det = det*a[i*(2*nh1+1+nh2)+nh1];
 }
 printf("Determinant: %7.4e\n", det);

Description of the C-SSL II Routines

588

 /* solve decomposed system of equations */
 ierr = c_dvblux(b, a, n, nh1, nh2, ip, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvblux failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

The solution is obtained through forward and backward substitutions. Consult the entry for VBLUX in the Fortran SSL II
Extended Capabilities User's Guide II.

 c_dvccvf

 589

c_dvccvf
Discrete convolution or correlation of complex data.
ierr = c_dvccvf(zx, k, n, m, zy, ivr, isw,

tab, &icon);

1. Function

This function performs one-dimensional complex discrete convolutions or correlations between a filter and multiple input
data using discrete Fourier method.

The convolution and correlation of a filter y with a single input data x are defined as follows:

Convolution

1

0

1,...,0,
n

i
iikk nkyxz

Correlation

1

0

1,...,0,
n

i
iikk nkyxz

where, xj is a cyclic data with period n. See Comments on use.

2. Arguments

The routine is called as follows:
ierr = c_dvccvf((dcomplex*)zx, k, n, m, zy, ivr, isw, tab, &icon);

where:
zx dcomplex

zx[m][k]

Input The m complex data sequences {xj} are stored in zx[i][j], i = 0, ... ,
m1, j = 0, ... , n1.

 Output The m complex sequences {zk} are stored in zx[i][k] , i = 0, ... ,
m1, k = 0, ... , n1.

k int Input C fixed dimension of array zx(n).
n int Input The number of elements in one data sequence or in filter y. See

Comments on use.
m int Input The number of rows in the array zx.
zy dcomplex

zy[n]

Input Filter vector {yi}. The values of this array will be altered after calling
with isw = 0 or 2. See Comments on use.

ivr int Input Specify either convolution or correlation.
 0 Convolution is calculated.
 1 Correlation is calculated.
isw int Input Control information.

0 all the procedure will be done at once.
If the calculation should be divided into step-by-step procedure,
specify as follows. See Comments on use.

1 to prepare the array tab.

Description of the C-SSL II Routines

590

2 to perform the Fourier transform in array zy using the
trigonometric function table tab.

 3 to perform the convolution or correlation using the array zy and
tab which are prepared in advance.

tab double

tab[2n]
Work Trigonometric function table used for the transformation is stored.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n 0
 k < n
 m 0
 isw 0, 1, 2, 3
 ivr 0, 1

Bypassed.

3. Comments on use

To compute non-periodic convolution or correlation
Non-periodic convolution or correlation can be calculated by this routine with padding the value of zx[i][j], i = 0, ... ,
m 1, j = nx, ... , n 1 and zy[k], k = ny, ... , n 1 with zeros, where nx is the actual length of the data sequence, ny is
the actual length of the filter y and n must be larger or equal to nx ny 1. See Example Program.

The values of correlation zk, corresponding to k = ny 1, ... , 1 are stored in zx[i][j], i = 0, ... , m 1, j = n ny
1, ... , n 1 in this non-periodic case.

Recommended value of n
The n can be an arbitrary number, but the calculation is fast with the sizes which can be expressed as products of the
powers of 2, 3, and 5.

Efficient use of the array tab and zy
When this routine will calculate convolution or correlation successively for a fixed value of n, the trigonometric function
table tab should be initialized once at first call with isw = 0 or 1 and should be kept intact for second and subsequent
calls with isw = 2 and 3. This saves initialization procedure of array tab.

Furthermore, if the filter vector y is also fixed, the array zy which is transformed with isw = 0 or 2 can be reused for
second and subsequent calls with isw = 3.

In these cases, the array zy must be transformed surely once.

To compute autocorrelation
Autocorrelation or autoconvolution can be calculated by this routine with letting the filter array zy be identical to the data
array zx. In this case, specifying isw = 2 will be ignored. See Example Program.

 c_dvccvf

 591

Stack size
This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack
area runs out. The necessary size is 16 n byte.

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command under consideration that
the stack area could be used for another work area of fixed size and for user’s program also.

4. Example program

Example 1) In this example, periodic convolution of a filter with three data vectors is calculated with n=8.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL header file */

#define K 8
#define M 3

int MAIN__(void)
{
 dcomplex zx[M][K], zy[K];
 double tab[K*2];
 int i, j, n;
 int ivr, isw, icon;

 n=K;

 for (j=0; j<M; j++) {
 for (i=0; i<n; i++) {
 zx[j][i].re = i+j+1;
 zx[j][i].im = i-j;
 }
 }

 for (i=0; i<n; i++) {
 zy[i].re = (i+1)*(i+1);
 zy[i].im = 9-i;
 }

 printf("--INPUT DATA--\n");

 for (j=0; j<M; j++) {
 printf("zx[%d][*] : ",j);
 for (i=0; i<n; i++) {
 if(i%4==0) printf("\n ");
 printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
 }
 printf("\n");
 }

 printf("Filter zy : ");
 for (i=0; i<n ; i++) {
 if(i%4==0) printf("\n ");
 printf("(%8.2f,%8.2f) ", zy[i].re, zy[i].im);
 }

 ivr = 0;
 isw = 0;
 c_dvccvf((dcomplex*)zx, K, n, M, zy, ivr, isw, tab, &icon);

 printf("\n\n--OUTPUT DATA--\n");
 for (j=0; j<M; j++) {
 printf("zx[%d][*] : ",j);
 for (i=0; i<n; i++) {
 if(i%4==0) printf("\n ");
 printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
 }
 printf("\n");
 }
}

Example 2) In this example, non-periodic convolution is calculated with nx=7, ny=9 and n=16.

Description of the C-SSL II Routines

592

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL header file */

#define K 16
#define M 3

int MAIN__(void)
{
 dcomplex zx[M][K], zy[K];
 double tab[K*2];
 int i, j, n, nx, ny;
 int ivr, isw, icon;

 nx=7, ny=9, n=nx+ny-1;
 if(n%2) n=n+1;

 for (j=0; j<M; j++) {
 for (i=0; i<nx; i++) {
 zx[j][i].re = i+j+1;
 zx[j][i].im = i-j;
 }
 for (i=nx; i<n; i++) {
 zx[j][i].re = 0.0;
 zx[j][i].im = 0.0;
 }
 }

 for (i=0; i<ny; i++) {
 zy[i].re = (i+1)*(i+1);
 zy[i].im = 9-i;
 }
 for (i=ny; i<n; i++) {
 zy[i].re = 0.0;
 zy[i].im = 0.0;
 }

 printf("--INPUT DATA--\n");

 for (j=0; j<M; j++) {
 printf("zx[%d][*] : ",j);
 for (i=0; i<n; i++) {
 if(i%4==0) printf("\n ");
 printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
 }
 printf("\n");
 }

 printf("Filter zy : ");
 for (i=0; i<n ; i++) {
 if(i%4==0) printf("\n ");
 printf("(%8.2f,%8.2f) ", zy[i].re, zy[i].im);
 }

 ivr = 0;
 isw = 0;
 c_dvccvf((dcomplex*)zx, K, n, M, zy, ivr, isw, tab, &icon);

 printf("\n\n--OUTPUT DATA--\n");
 for (j=0; j<M; j++) {
 printf("zx[%d][*] : ",j);
 for (i=0; i<n; i++) {
 if(i%4==0) printf("\n ");
 printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
 }
 printf("\n");
 }
}

Example 3) In this example, autocorrelation is calculated with nx=4.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL header file */

#define K 8
#define M 3

int MAIN__(void)
{

 c_dvccvf

 593

 dcomplex zx[M][K];
 double tab[K*2];
 int i, j, n, nx;
 int ivr, isw, icon;

 nx=4, n=nx*2;

 for (j=0; j<M; j++) {
 for (i=0; i<nx; i++) {
 zx[j][i].re = i+j+1;
 zx[j][i].im = i-j;
 }
 for (i=nx; i<n; i++) {
 zx[j][i].re = 0.0;
 zx[j][i].im = 0.0;
 }
 }

 printf("--INPUT DATA--\n");

 for (j=0; j<M; j++) {
 printf("zx[%d][*] : ",j);
 for (i=0; i<n; i++) {
 if(i%4==0) printf("\n ");
 printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
 }
 printf("\n");
 }

 ivr = 1;
 isw = 1;
 c_dvccvf((dcomplex*)zx, K, n, M, (dcomplex*)zx, ivr, isw, tab, &icon);
 isw=3;
 c_dvccvf((dcomplex*)zx, K, n, M, (dcomplex*)zx, ivr, isw, tab, &icon);

 printf("\n--OUTPUT DATA--\n");
 for (j=0; j<M; j++) {
 printf("zx[%d][*] : ",j);
 for (i=0; i<n; i++) {
 if(i%4==0) printf("\n ");
 printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
 }
 printf("\n");
 }
}

5. Method

For further information consult the entry for VCCVF in the Fortran SSL II Extended Capabilities User’s Guide.

Description of the C-SSL II Routines

594

c_dvcfm1
One-dimensional discrete complex Fourier transforms (mixed radices of
2, 3, 5 and 7).
ierr = c_dvcfm1(x, n, &isw, isn, w, &icon);

1. Function

This function performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT.

The length of data transformed n is a product of the powers of 2, 3, 5 and 7.

The one-dimensional Fourier transform
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}.

)/2exp(,

1,...,1,0,
1

0
ni

nkxn

n

n

j

jk
njk

 (1)

The one-dimensional Fourier inverse transform
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}.

)/2exp(,

1,...,1,0,
1

0
ni

njx

n

n

k

jk
nkj

 (2)

2. Arguments

The routine is called as follows:
ierr = c_dvcfm1(x, n, &isw, isn, w, &icon);

where:
x dcomplex x[n] Input Complex data.
n int Input The length of the data transformed.
isw int Input Control information.
 isw = 1 For the first call, to generate a trigonometric function table

and control information in w and perform Fourier transform.
 isw 1 For the second or consecutive call, to perform Fourier

transform for the data of the same length as in the first call.
The contents in w must not be changed as the second or
consecutive call uses the values in w generated in the first
call.

 Output When isw is set to 1, isw is set to zero after performing transform.
isn int Input Either the transform or the inverse transform is indicated.

1 for the transform.
1 for the inverse transform.

 c_dvcfm1

 595

w dcomplex

w[2n+70]
Work When isw is set to 1, the trigonometric function table for data length n

is generated into w.
Otherwise the contents generated in the first call is reused.
See Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 The value of n in second or consecutive call is

different from that of first call.
Bypassed.

30000 The value of isn is incorrect.
30008 The order of transform is not radix 2/3/5/7.

3. Comments on use

General definition of Fourier transform
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

 1,...,1,0,1 1

0

 nkx
n

n

j

jk
njk (3)

 1,...,1,0,
1

0

njx
n

k

jk
nkj (4)

where, n = exp(2i/n).

This function calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the
results may be required.

Use of the array w
When this routine is called successively with a fixed value of n, the trigonometric function table in w, which is initialized
at the first call with isw=1, is reused for the subsequent calls with isw1.
Note that the array w is also used as a read-write work area even for the sebsequent calls.

4. Example program

A one-dimensional FFT is computed.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define N 640
#define max(a,b) ((a) > (b) ? (a) : (b))

int MAIN__(void)
{
 dcomplex x[N], w[N*2+70], tmp;
 double error;
 int isw, isn, icon, i;

 for (i=0; i<N; i++) {

Description of the C-SSL II Routines

596

 x[i].re=(double)(i+1)/(double)N;
 x[i].im=0.0;
 }

 /* do the forward transform */
 isw=1, isn=1;
 c_dvcfm1(x, N, &isw, isn, w, &icon);

 if (icon != 0) {
 printf("icon = %d",icon);
 exit(1);
 }

 /* do the reverse transform */
 isn=-1;
 c_dvcfm1(x, N, &isw, isn, w, &icon);

 if (icon != 0) {
 printf("icon = %d",icon);
 exit(1);
 }

 error = 0.0;
 for (i=0; i<N; i++) {
 tmp.re = fabs(x[i].re/(double)N - (double)(i+1)/(double)N);
 tmp.im = fabs(x[i].im/(double)N);
 tmp.re += tmp.im;
 error=max(error,tmp.re);
 }

 printf("error = %e\n", error);

}

5. Method

For further information consult the entry for VCFM1 in the Fortran SSL II Extended Capabilities User’s Guide.

 c_dvcft1

 597

c_dvcft1
Discrete complex Fourier transform (radix 2 FFT).
ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw,

&icon);

1. Function

Given one dimensional (n-term) complex time series data { }x j , this function computes the discrete complex Fourier
transform or its inverse by the Fast Fourier Transform (FFT) using a method suited to a vector processor. It is assumed
that 2n , where is a non-negative integer.

Fourier transform
When { }x j is provided, the transform defined below is used to obtain { }nak .

1,...,1,0,
1

0

 nkxna kj
n

j
jk

where nie /2 .

Fourier inverse transform
When { }ak is provided, the transform defined below is used to obtain { }x j .

1,...,1,0,
1

0

njax kj
n

k
kj

where nie /2 .

2. Arguments

The routine is called as follows:
ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw, &icon);

where:
a double a[n] Input Real part of { }x j or { }ak
 Output Real part of { }nak or { }x j
b double b[n] Input Imaginary part of { }x j or { }ak
 Output Imaginary part of { }nak or { }x j
n int Input Number of terms n of the transform.
isn int Input Indicates that the transform (isn=+1) or the inverse transform

 (isn=-1) is to be performed. See Comments on use
isw int Input Information controlling the initial state of the transform. Specified by:

0 for the first call
1 for the second and subsequent calls.
See Comments on use.

vw double

vw[Rlen]
Work Rlen max(,)n 1 .

Description of the C-SSL II Routines

598

ivw int ivw[Ilen] Work Ilen n max(,) 3 2 .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 isn = 0
 isw 0 or 1
 2n (0 is an integer).

Bypassed.

3. Comments on use

Use of this function
This function performs the high-speed calculation of a complex FFT on a vector processor. Other routines might be more
appropriate on a general purpose computer.

isw
When multiple transforms are calculated, specify isw = 1 for the second and subsequent function calls. This enables
the function to bypass the steps for generating a trigonometric table and a list vector, both of which are needed for the
transform, thus improving processing efficiency. The contents of arrays vw and ivw must not be modified between
function calls.

Even if the number of terms n of each of the multiple transforms varies, specifying isw = 1 improves processing
efficiency. However, transforms with the same number of terms should be executed consecutively for the highest
efficiency.

When calling this function together with the real Fourier transform function c_dvrft1, specifying isw = 1 improves
processing efficiency.

isn
Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used
for strided access through data. Therefore, if the real and imaginary parts of { }x j or { }nak are stored at intervals of
length i, specify isn = +i for a transform and isn = -i for an inverse transform. The results will be stored at intervals
of length i. Note however that when i > 1, it is also necessary for the length of the work array vw to be at least
n () 2 .

When using a vector processor, the interval stride i should take the values i = 2p+1, for p = 1,2,3,….

Work array size conversion table
The table for 16 4096 n is as follows. Figures in () are the lengths when |isn| > 1.

 n Length of vw Length of
ivw

4 16 64 (96) 32
5 32 160 (224) 64
6 64 384 (512) 192
7 128 896 (1152) 512

 c_dvcft1

 599

 n Length of vw Length of
ivw

8 256 2048 (2560) 1280
9 512 4608 (5632) 3072

10 1024 10240 (12288) 7168
11 2048 22528 (26624) 16384
12 4096 49152 (57344) 36864

General definition of Fourier transform
The discrete complex Fourier transform and its inverse transform can be defined as shown below in (1) and in (2)
respectively.

 1,...,1,0,1 1

0

 nkx

n
a kj

n

j
jk (1)

 1,...,1,0,
1

0

njax kj
n

k
kj (2)

where nie /2 .

This function computes { }nak or { }x j corresponding to the left hand side of (1) or (2). The user is responsible for
normalizing the result, if required.

4. Example program

This program computes a 1-D FFT on 1024 elements, where the real and imaginary parts are chosen at random. The
inverse transform is then computed and the normalized results of this are compared with the original data values.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 1024

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps;
 double a[NMAX], b[NMAX], aa[NMAX], bb[NMAX], vw[NMAX*10];
 int i, n, isw, isn, ivw[NMAX*(10-3)];

 /* generate initial data */
 n = NMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (i=0;i<n;i++) {
 ran = (i+1)*phai;
 a[i] = ran - (int)ran;
 ran = (i+n+1)*phai;
 b[i] = ran - (int)ran;
 }
 for (i=0;i<n;i++) {
 aa[i] = a[i];
 bb[i] = b[i];
 }
 /* perform normal transform */
 isw = 0;
 isn = 1;
 ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw, &icon);

Description of the C-SSL II Routines

600

 /* perform inverse transform */
 isw = 1;
 isn = -1;
 ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw, &icon);
 /* check results */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if ((fabs((a[i]/n - aa[i])/aa[i]) > eps) ||
 (fabs((b[i]/n - bb[i])/bb[i]) > eps)) {
 printf("Inaccurate result\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For further information consult the entry for VCFT1 in the Fortran SSL II Extended Capabilities User’s Guide and [110].

 c_dvcft2

 601

c_dvcft2
Discrete complex Fourier transform (memory efficient, radix 2 FFT).
ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw,

&icon);

1. Function

Given one dimensional (n-term) complex time-series data }{ jx , this routine computes the discrete complex
Fourier transform or its inverse transform by the Fast Fourier Transform (FFT) using a method suited to a vector
processor. It is assumed that 2n , where is a non-negative integer.

Fourier transform
When }{ jx is input, the transform defined below is used to obtain the Fourier coefficients }{ kna .

1

0

,
n

j

jk
jk xna ,1,...,1,0 nk

where nie /2 .

Fourier inverse transform
When }{ ka is input, the transform defined below is used to obtain }{ jx .

1

0

,
n

k

jk
kj ax ,1,...,1,0 nj

where nie /2 .

2. Arguments

The routine is called as follows:
ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw, &icon);

where:
a double a[n] Input Real part of }{ jx or }{ ka .
 Output Real part of }{ kna or }{ jx .
b double b[n] Input Imaginary part of }{ jx or }{ ka .
 Output Imaginary part of }{ kna or }{ jx .
n int Input Number of terms n of the transform.
isn int Input Control information, indicating that the transform or the inverse

transform is to be performed (isn 0).
isn = 1 for transform,
isn = -1 for inverse transform.
See Comments on use.

isw int Input Control information, indicating the initial state of the transform.
isw = 0 for first call,
isw = 1 for the second and subsequent calls.
See Comments on use.

Description of the C-SSL II Routines

602

vw double vw[5n] Work
ivw int ivw[3n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 isn = 0
 isw 0 or 1
 n 2 , with a non-negative integer.

Bypassed.

3. Comments on use

Use of this routine
This routine performs the high-speed calculation of a complex Fourier transform on a vector processor. On a general-
purpose computer other routines may be more appropriate.

This routine is suitable for calculating only a single transform. The work array area is limited to the required minimum; it
is a memory-efficient routine. For multiple transforms, if there is sufficient work array area available, the high-
performance routine c_dvcft1 is more suitable.

isn
Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used
for strided access through data. Therefore, if the real and imaginary parts of }{ jx or }{ ka are stored at intervals of length
i, specify isn = +i for a transform and isn = -i for an inverse transform. The results will be stored at intervals of length i.
Note, however, that when i > 1, it is also necessary for the length of the work array vw to be at least 7n.

When using a vector processor, the interval stride i should take a value of the form i = 2p + 1, p = 1,2,3,... for more
efficient memory access.

isw
When multiple transforms are calculated, specify isw = 1 for the second and subsequent routine calls. This enables the
routine to bypass the steps generating a trigonometric table and a list vector, both of which are needed for the transform,
thus improving processing efficiency. The contents of arrays vw and ivw must not be changed between routine calls.

Even if the number of terms n of each of the multiple transforms varies, specifying isw = 1 improves processing
efficiency. However, transforms with the same number of terms should be executed consecutively for the highest
efficiency.

When calling this routine together with the real Fourier transform routine c_dvrft2, specifying isw = 1 improves
processing efficiency.

Work array size conversion table
The table for 16 n 4096 is as follows. Figures in () are the lengths when |isn| > 1.

 c_dvcft2

 603

 n Length of vw Length of
ivw

4 16 80(112) 48

5 32 160(224) 96

6 64 320 (448) 192

7 128 640 (896) 384

8 256 1280 (1792) 768

9 512 2560 (3584) 1536

10 1024 5120 (7168) 3072

11 2048 10240(14336) 6144

12 4096 20480 (28672) 12288

General definition of Fourier transform
The discrete complex Fourier transform and its inverse transform can be defined as in (1) and (2) respectively:

1

0

,1 n

j

jk
jk x

n
a ,1,...,1,0 nk (1)

 jk
n

k
kj ax

1

0

, ,1,...,1,0 nj (2)

where nie /2 .

This routine obtains }{ kna or }{ jx corresponding to the left hand side of (1) or (2) respectively. The user is responsible
for normalizing the result, if required.

4. Example program

This program performs the Fourier transform followed by the inverse transform and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 1024

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps;
 double a[NMAX], b[NMAX], aa[NMAX], bb[NMAX], vw[NMAX*5];
 int i, n, isw, isn, ivw[NMAX*3];

 /* generate initial data */
 n = NMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (i=0;i<n;i++) {
 ran = (i+1)*phai;
 a[i] = ran - (int)ran;
 ran = (i+n+1)*phai;
 b[i] = ran - (int)ran;
 }
 for (i=0;i<n;i++) {
 aa[i] = a[i];

Description of the C-SSL II Routines

604

 bb[i] = b[i];
 }
 /* perform normal transform */
 isw = 0;
 isn = 1;
 ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw, &icon);
 /* perform inverse transform */
 isw = 1;
 isn = -1;
 ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw, &icon);
 /* check results */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if ((fabs((a[i]/n - aa[i])/aa[i]) > eps) ||
 (fabs((b[i]/n - bb[i])/bb[i]) > eps)) {
 printf("Inaccurate result\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VCFT2 in the Fortran SSL II Extended Capabilities User's Guide.

 c_dvcft3

 605

c_dvcft3
One-dimensional discrete complex Fourier transforms
(Radix 2, for data sequence with a constant stride).
ierr = c_dvcft3(x, n, ndist, &isw, isn, w,

&icon);

1. Function

This routine c_dvcft3 performs a one-dimensional complex Fourier transform or its inverse transform using a radix
2 FFT.

 The length of data transformed n is a power of 2.

The one-dimensional Fourier transform
When }{ jx is input, the transform defined below is calculated to obtain {nk}.

1

0
,

n

j

jk
njk xna ,1,...,1,0 nk

where)/2exp(nin .

The one-dimensional Fourier inverse transform
When {k} is input, the transform defined below is calculated to obtain {xj}.

1

0
,

n

k

jk
nkj ax ,1,...,1,0 nj

where)/2exp(nin .

2. Arguments

The routine is called as follows:
ierr = c_dvcft3(x, n, ndist, &isw, isn, w, &icon);

where:
x dcomplex

x[(n-1)*ndist
+1]

Input Complex data. The data {xj} or {k} to be transformed is stored in
x[0], x[ndist], …, x[(n-1)*ndist].

 Output Complex data. Transformed data {nk}or {xj} is stored in x[0],
x[ndist], …,x[(n-1)*ndist].
This is a complex one-dimensional array.

n int Input Number of terms n of the transform.
ndist int Input The stride size of data sequence in the array x . Positive integer.

ndist = 1 : Data sequence is stored consecutively in the array x.
isw int Input Control information.

isw = 1 : For the first call, to generate a trigonometric function table
and control information in w and perform Fourier transform.
isw 1 : For the second or consecutive call, to perform Fourier

Description of the C-SSL II Routines

606

transform for the data of the same length as in the first call. The
contents in w must not be changed as the second or consecutive call
uses the values in w generated in the first call.

 Output When isw is set to 1, isw is set to zero after performing transform.
Therefore the second or consecutive transform for new data in x can
be performed easily without setting isw.

isn Input Either the transform or the inverse transform is indicated.
isn = 1 for the transform
isn = -1 for the inverse transform

w dcomplex

w[2n+70]

Work When isw is set to 1, the trigonometric function table for data length
n is generated into w.
Otherwise the contents generated in the first call is reused.
See Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 The value of n in second or consecutive call is

different from that of first call.
Bypassed.

30000 The value of isn is incorrect. ndist is not a positive
integer.

30008 The length of data sequence to be transformed is
not a power of 2.

3. Comments on use

General definition of Fourier transform
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (1) and (2):

1

0
,1 n

j

jk
njk x

n
a ,1,...,1,0 nk (1)

 jk
n

n

k
kj ax

1

0
, ,1,...,1,0 nj (2)

where)/2exp(nin .

This routine calculates }{ kna or }{ jx corresponding to the left term of (1) or (2) respectively. Normalization of the
results may be required.

Use of the array w
When this routine is called successively with a fixed value of n, the trigonometric function table in w, which is initialized
at the first call with isw=1, is reused for the subsequent calls with isw1.
Note that the array w is also used as a read-write work area even for the sebsequent calls.

 c_dvcft3

 607

4. Example program

One-dimensional FFTs are computed for plural data sequences with a constant stride.

#include <stdio.h>
#include <math.h>
#include "cssl.h"

#define N 1024
#define MULT 16
#define NPAD 3
#define NDIST (MULT+NPAD)

#define max(a,b) ((a) > (b) ? (a) : (b))

MAIN__()
{
 dcomplex x[N][NDIST],w[2*N+70];
 int i,j;
 int isw,icon,ierr;
 double tmp;

 for(j=0;j<MULT;j++)
 for(i=0;i<N;i++) {
 x[i][j].re=i/((double)N)+j;
 x[i][j].im=0.0;
 }
/*
 multiple forward transform
*/
 isw=1;
 for(j=0;j<MULT;j++) {
 ierr=c_dvcft3((dcomplex*)&x[0][j],N,NDIST,&isw,1,w,&icon);
 if(icon!=0) printf("icon=%d\n",icon);
 }
/*
 multiple reverse transform
*/
 for(j=0;j<MULT;j++) {
 ierr=c_dvcft3((dcomplex*)&x[0][j],N,NDIST,&isw,-1,w,&icon);
 if(icon!=0) printf("icon=%d\n",icon);
 }

 tmp=0.0;
 for(j=0;j<MULT;j++) {
 for(i=0;i<N;i++) {
 tmp=max(tmp,fabs(x[i][j].re/N-(i/((double)N)+j))+fabs(x[i][j].im/N));
 }
 }
 printf("error = %le\n",tmp);
 return 0;
}

5. Method

Consult the entry for VCFT3 in the Fortran SSL II Extended Capabilities User's Guide.

Description of the C-SSL II Routines

608

c_dvcgd
Solution of a system of linear equations with a symmetric positive
definite sparse matrix (preconditioned CG method, diagonal storage
format).
ierr = c_dvcgd(a, k, nw, n, ndlt, b, ipc,

itmax, isw, omega, eps, iguss, x,

&iter, &rz, vw, ivw, &icon);

1. Function

This function solves a system of linear equations (1) using the preconditioned conjugate gradient (CG) method.

 Ax b (1)

In (1), A is an n n real normalized symmetric positive definite sparse matrix, b is a real constant vector and x is the real
solution vector. Both the real vectors are of size n.

2. Arguments

The routine is called as follows:
ierr = c_dvcgd((double*)a, k, nw, n, ndlt, b, ipc, itmax, isw, omega, eps,

iguss, x, &iter, &rz, vw, ivw, &icon);

where:
a double

a[nw][k]

Input

Output

Sparse matrix A stored in diagonal normalized symmetric positive
definite storage format. See Comments on use.
The contents of the array are altered on output when ipc=3.

k int Input C fixed dimension of array a (n).
nw int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements (excluding the main diagonal), i.e. the lower bandwidth
plus the upper bandwidth.

n int Input Order n of matrix A.
ndlt int ndlt[nw] Input Indicate the distance from the main diagonal vector. See Comments on

use.
b double b[n] Input Constant vector b.
ipc int Input Preconditioner control information. See Comments on use.

1 No preconditioner.
2 Neumann preconditioner.
3 Preconditioner with incomplete Cholesky decomposition.

In this case, omega must be specified.
itmax int Input Upper limit of iterations.
isw int Input Control information. See Comments on use.

1 Initial call.
2 Subsequent calls.

The arrays, a, ndlt, vw and ivw, must NOT be changed as the
values set on the initial call are reused.

 c_dvcgd

 609

omega double Input Modification factor for incomplete Cholesky decomposition, 0 omega
 1. Only use when ipc=3. See Comments on use.

eps double Input Tolerance for convergence test.
When eps is zero or less, eps is set to b , with 10 6 . See
Comments on use.

iguss int Input Control information on whether to start the computation with input
values in array x. When iguss0 then starts computation with input
from array.

x double x[n] Input The starting values for the computation. This is optional, see iguss.
 Output Solution vector x.
iter int Output Total number of iterations performed.
rz double Output The square root of residual, rz, after convergence. See Comments on use.
vw double

vw[Vwlen]
Work When ipc=3, Vwlen=k*(nw+6)+2*nband otherwise

Vwlen=k*5+2*nband
nband is size of the lower or upper bandwidth.

ivw int ivw[Ivwlen] Work Ivwlen = (k+1)*4
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20001 Reached set maximum number of iterations. Processing stopped.

The approximate solution obtained up to this
stage is returned, but its precision is not
guaranteed.

20003 Break down occurred.

30003 itmax 0 Processing stopped.
30005 k < n
30006 Could not perform incomplete

LLT decomposition.
30007 Pivot is negative.
30089 nw is not an even number.
30091 nband = 0
30092 nw 0, n 0
30093 k 0
30096 omega < 0 or omega > 1
30097 ipc < 1 or ipc > 3
30102 Upper triangular part is not correctly stored.
30103 Lower triangular part is not correctly stored.
30104 The number of super-diagonals in upper

triangular part is not equal to sub-diagonals in the
lower triangular part.

30105 isw 1 or 2
30200 abs(ndlt[i]) > n-1 or

ndlt[i] = 0; 0 i < nw

Description of the C-SSL II Routines

610

3. Comments on use

a and ndlt
The sparse matrix A is normalized in such a way that the main diagonal elements are ones. The non-zero elements other
than the main diagonal elements are stored using the diagonal storage format. For details on normalization of systems of
linear equations and the diagonal normalized symmetric positive definite storage format, see the Array storage formats
section of the Introduction.

isw
When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with
ipc=3, the solution on the first call is with isw=1, and solutions on subsequent calls are with isw=2. In subsequent
calls, the result of the incomplete Cholesky decomposition obtained on the initial call is reused.

eps and rz
The solution is assumed to have converged in the m-th iteration when (2), the square root of residual rz is less than the set
tolerance, eps:

 rz eps rz (2)

 r b Ax m (3)

The residual vector r for the solution at the m-th iteration is obtained from (3) and with the preconditioner matrix
M, rz is calculated by equation (4).
 rz r M rT 1 (4)

ipc and omega
Two types of preconditioners and a no-preconditioner option are provided.

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a
preconditioner based on an incomplete Cholesky decomposition to obtain the solution.

If A I N , the preconditioner M of the linear equation ()I N x b is as follows for the different values of ipc:

1. No preconditioner, M I .
2. Neumann, M I N 1 () .
3. Incomplete Cholesky decomposition, M LL T .

When ipc=2, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix
(I+N) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not
improve the convergence when the preconditioner does not approximate the inverse matrix of A in some situations such
that the maximum absolute value of the eigenvalues of the matrix N is larger than one.

When ipc=3, the user must provide a value for omega (0 omega 1). For values of omega, 0 gives the incomplete
Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the
two decompositions.

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was
found empirically to be in the range of 0.92 to 1.00.

 c_dvcgd

 611

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 2

MAIN__()
{
 double one=1.0, bcoef=10.0, eps=1.e-6;
 int ierr, icon, nw, nub, n, i, j, k;
 int ipc, itmax, isw, iguss, iter;
 int ndlt[2 * UBANDW], ivw[4 * (NMAX + 1)];
 double sum, omega, rz;
 double a[2 * UBANDW][NMAX], b[NMAX], x[NMAX];
 double vw[NMAX*(2 * UBANDW + 6) + 2 * UBANDW];

 /* initialize normalized symmetric matrix and vector */
 nub = UBANDW;
 nw = nub + nub;
 n = NMAX;
 k = NMAX;
 for (i=0; i<nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
 for (j=n-i; j<n ; j++) a[i][j] = 0.0;
 ndlt[i] = i;
 for (j=0; j<i; j++) a[nub + i][j] = 0.0;
 for (j=i; j<n; j++) a[nub + i][j] = -1.0;
 ndlt[nub + i] = -i;
 }
 for (j=0; j<n; j++) {
 sum = bcoef;
 for (i=0; i<nw; i++) sum -= a[i][j];
 for (i=0; i<nw; i++) a[i][j] /= sum;
 b[j] = bcoef / sum;
 }
 /* solve the system of linear equations */
 ipc = 3;
 itmax = 8 * (int) sqrt ((double) n + 0.1);
 isw = 1;
 omega = 0.98;
 iguss = 0;
 ierr = c_dvcgd ((double*)a, k, nw, n, ndlt, b, ipc, itmax, isw,
 omega, eps, iguss, x, &iter, &rz, vw, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvcgd failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0;i<n;i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

The standard conjugate gradient algorithm is used, see [42]. For the preconditioner method based on the incomplete
Cholesky decomposition, see [77]. For further information consult the entry for VCGD in the Fortran SSL II Extended
Capabilities User’s Guide II.

Description of the C-SSL II Routines

612

c_dvcge
Solution of a system of linear equations with a symmetric positive
definite sparse matrix (preconditioned CG method, ELLPACK storage
format).
ierr = c_dvcge(a, k, nw, n, icol, b, ipc,

itmax, isw, omega, eps, iguss, x,

&iter, &rz, vw, ivw, &icon);

1. Function

This function solves a system of linear equations (1) using the preconditioned conjugate gradient (CG) method.

 Ax b (1)

In (1), A is an n n real normalized symmetric positive definite sparse matrix, b is a real constant vector and x is the real
solution vector. Both the real vectors are of size n.

2. Arguments

The routine is called as follows:
ierr = c_dvcge((double*)a, k, nw, n, (int*)icol, b, ipc, itmax, isw, omega,

eps, iguss, x, &iter, &rz, vw, ivw, &icon);

where:
a double

a[nw][k]

Input

Output

Sparse matrix A stored in the ELLPACK normalized symmetric positive
definite storage format. See Comments on use.
The contents of the array are altered on output when ipc=3.

k int Input C fixed dimension of array a (n).
nw int Input The size of the first dimension of array a.

When the maximum number of non-zero elements of the row vector for
the upper triangular matrix is NSU and NSL for the lower triangular, then
nw=2·max(NSU,NSL). See Comments on use.

n int Input Order n of matrix A.
icol int

icol[nw][k]

Input Column indices used in the ELLPACK format, showing to which column
vector the elements corresponding to a belong. See Comments on use.

b double b[n] Input Constant vector b.
ipc int Input Preconditioner control information. See Comments on use.

1 No preconditioner.
2 Neumann preconditioner.
3 Preconditioner with incomplete Cholesky decomposition.

In this case, omega must be specified.
itmax int Input Upper limit of iterations.
isw int Input Control information. See Comments on use.

1 Initial call.

 c_dvcge

 613

2 Subsequent calls.
The arrays, a, icol, vw and ivw, must NOT be changed as the
values set on the initial call are reused.

omega double Input Modification factor for incomplete Cholesky decomposition, 0 omega
 1. Only use when ipc=3. See Comments on use.

eps double Input Tolerance for convergence test.
When eps is zero or less, eps is set to b , with 10 6 . See
Comments on use.

iguss int Input Control information on whether to start the computation with input
values in array x. When iguss0 then starts computation with input
from array.

x double x[n] Input The starting values for the computation. This is optional, see iguss.
 Output Solution vector x.
iter int Output Total number of iterations performed.
rz double Output The square root of residual, rz, after convergence. See Comments on use.
vw double

vw[Vwlen]
Work When ipc=3, Vwlen=k*nw+4*n otherwise Vwlen=n*3

ivw int ivw[Ivwlen] Work When ipc=3, Ivwlen=k*nw+4*n otherwise Ivwlen=n*4
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 a, icol elements are permuted to U/L format. Processing continues.
20001 Reached set maximum number of iterations. Processing stopped.

The approximate solution obtained up to this
stage is returned, but its precision is not
guaranteed.

20003 Break down occurred.

30003 itmax 0 Processing stopped.
30005 k < n
30006 Could not perform incomplete

LLT decomposition.
30007 Pivot is negative.
30092 nw 0
30093 k 0, n 0
30096 omega < 0 or omega > 1
30097 ipc < 1 or ipc > 3
30098 isw 1 or 2
30100 nw 2 * max(NSU, NSL)
30104 Either the upper or lower triangular part is not

stored correctly.
negative
number

One of the rows in matrix A was found with a
non-zero diagonal element. The row number on
which it occurred is returned by icon as a
negative value

Processing stopped.

Description of the C-SSL II Routines

614

3. Comments on use

a, nw and icol
The sparse matrix A is normalized in such a way that the main diagonal elements are ones. The non-zero elements other
than the main diagonal elements are stored using the ELLPACK storage format. For details on normalization of systems
of linear equations and ELLPACK normalized symmetric positive definite storage format, see the Array storage formats
section of the Introduction.

Apart from the incomplete Cholesky decomposition preconditioner (ipc=3), both the storage formats for ELLPACK,
normalized and unnormalized, are acceptable for the function. In the standard case (unnormalized), nw=2·max(NSU,
NSL) is not required. For further information consult the Array storage formats section of the Introduction.

isw
When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with
ipc=3, the solution on the first call is with isw=1, and solutions on subsequent calls are with isw=2. In subsequent
calls, the result of the incomplete Cholesky decomposition obtained on the initial call is reused.

eps and rz
The solution is assumed to have converged in the m-th iteration when (2), the square root of residual rz is less than the set
tolerance, eps:

 rz eps rz (2)

 r b Ax m (3)

The residual vector r for the solution at the m-th iteration is obtained from (3) and with the preconditioner matrix M, rz is
calculated by equation (4).

 rz r M rT 1 (4)

ipc and omega
Two types of preconditioners and a no-preconditioner option are provided.

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a
preconditioner based on an incomplete Cholesky decomposition to obtain the solution.

If A I N , the preconditioner M of the linear equation ()I N x b is as follows for the different values of ipc:

1. No preconditioner, M I .
2. Neumann, M I N 1 () .
3. Incomplete Cholesky decomposition, M LL T .

When ipc=2, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix
(I+N) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not
improve the convergence when the preconditioner does not approximate the inverse matrix of A in some situations such
that the maximum absolute value of the eigenvalues of the matrix N is larger than one.

When ipc=3, the user must provide a value for omega (0 omega 1). For values of omega, 0 gives the incomplete
Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the
two decompositions.

 c_dvcge

 615

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was
found empirically to be in the range of 0.92 to 1.00.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 1

MAIN__()
{
 double cf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
 int ierr, icon;
 int nw, n, k, id, ipc, itmax, isw, iter, iguss, i, j;
 int icol[2 * UBANDW][NMAX], ivw[NMAX * (2 * UBANDW + 5)];
 double sum, omega, rz;
 double a[2 * UBANDW][NMAX], b[NMAX], x[NMAX];
 double vw[NMAX * (2 * UBANDW + 5)];

 /* initialize matrix and vector */
 nw = 2 * UBANDW;
 n = NMAX;
 k = NMAX;
 id = 1;
 for (i=0; i<nw; i++)
 for (j=0; j<n; j++) {
 a[i][j] = 0.0;
 icol[i][j] = j+1;
 }
 for (j=0; j<n-id; j++) {
 a[0][j] = cf;
 icol[0][j] = j+id+1;
 }
 for (j=id; j<n; j++) {
 a[1][j] = cf;
 icol[1][j] = j-id+1;
 }
 for (j=0; j<n; j++) {
 sum = bcoef;
 for (i=0; i<nw; i++) sum -= a[i][j];
 for (i=0; i<nw; i++) a[i][j] /= sum;
 b[j] = bcoef / sum;
 }
 /* solve the system of linear equations */
 ipc = 3;
 itmax = 8 * (int) sqrt ((double) n + 0.1);
 isw = 1;
 omega = 0.98;
 iguss = 0;
 ierr = c_dvcge ((double*)a, k, nw, n, (int*)icol, b, ipc, itmax,
 isw, omega, eps, iguss, x, &iter, &rz, vw, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvcge failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0; i<n; i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

Description of the C-SSL II Routines

616

5. Method

The standard conjugate gradient algorithm is used, see [42]. For the preconditioner method based on the incomplete
Cholesky decomposition, see [77]. For further information consult the entry for VCGE in the Fortran SSL II Extended
Capabilities User’s Guide II.

 c_dvcos1

 617

c_dvcos1
Discrete cosine transform (radix 2 FFT).
ierr = c_dvcos1(a, n, tab, vw, ivw, &icon);

1. Function

Given n+1 data points { }x j , obtained by dividing the first half of a 2 period, even function x(t) into n equal parts, that is

n
njjxx j

 ,,...,1,0),(.

The discrete cosine transform or its inverse transform is computed by a Fast Fourier Transform (FFT) algorithm suited to
a vector processor.

 It is assumed that n 2 , where is a non-negative integer.

Cosine transform
When { }x j is input, the transform defined below is calculated to obtain }2{ kna .

nkjkxkxxna
n

j
jnk ,...,1,0),cos(4)cos(222

1

1
0

where n/ .

Cosine inverse transform
When { }ak is input, the transform defined below is calculated to obtain }4{ jx .

njjkajaax
n

k
knj ,...,1,0,)cos(4)cos(224

1

1
0

where n/ .

2. Arguments

The routine is called as follows:
ierr = c_dvcos1(a, n, tab, vw, ivw, &icon);

where:
a double a[n+2] Input { }x j or { }ak where a[n+1] is ignored.
 Output }2{ kna or }4{ jx where a[n+1] always contains zero.
n int Input Number of terms n of the transform.
tab double

tab[Tlen]
Output Trigonometric function table used in the transformation. Tlen = 2n+4.

vw double

vw[Rlen]
Work Rlen max(() / ,)n 1 2 1 .

ivw int ivw[Ilen] Work Ilen n max(,) / 4 2 2 .
icon int Output Condition code. See below.
The complete list of condition codes is:

Description of the C-SSL II Routines

618

Code Meaning Processing
0 No error Completed.
30000 n 2 (0 is an integer) Bypassed.

3. Comments on use

Use of this function
This function performs the high-speed calculation of a discrete cosine transform on a vector processor. Other routines
might be more appropriate on a general purpose computer.

Multiple transforms
Multiple transforms are performed efficiently because the generation of the trigonometric table and list vector are only
performed on the first call to the function. It is therefore essential that tab, vw and ivw remain unchanged between calls
to this function.

The contents of these three arguments are valid even when the number of terms n are different for the multiple transforms.
However, transforms with the same number of terms should be executed consecutively for the highest efficiency.

Work array size conversion table
The table for 16 4096 n is as follows:

 n Length of
tab

Length of
vw

Length of
ivw

4 16 36 40 16
5 32 68 96 32
6 64 132 224 64
7 128 260 512 192
8 256 516 1152 512
9 512 1028 2560 1280

10 1024 2052 5632 3072
11 2048 4100 12288 7168
12 4096 8196 26624 16384

General definition of discrete cosine transform
The discrete cosine transform and its inverse transform can be defined as shown below in (1) and in (2) respectively.

 nkjkx
n

k
n
x

n
x

a
n

j
j

n
k ,...,1,0),cos(2)cos(

1

1

0

, (1)

 njjkaj
aa

x
n

k
k

n
j ,...,1,0,)cos()cos(

22

1

1

0

, (2)

where n/ .

This function computes }2{ kna or }4{ jx corresponding to the left hand side of (1) or (2). The user is responsible for
normalizing the result, if required.

 c_dvcos1

 619

4. Example program

This program computes a cosine transform on 1024 elements, where the input elements are chosen at random. The inverse
transform is then computed and the normalized results of this are compared with the original data values.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 1024

MAIN__()
{
 int ierr, icon;
 double phai, ran, scale, eps;
 double a[NMAX+2], b[NMAX+2], tab[2*NMAX+4], vw[NMAX*(10+1)/2];
 int i, n, ivw[NMAX*(10-4)/2];

 /* generate initial data */
 n = NMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (i=0;i<n+1;i++) {
 ran = (i+1)*phai;
 a[i] = ran - (int)ran;
 }
 for (i=0;i<n+1;i++)
 b[i] = a[i];
 /* perform normal transform */
 ierr = c_dvcos1(a, n, tab, vw, ivw, &icon);
 /* perform inverse transform */
 ierr = c_dvcos1(a, n, tab, vw, ivw, &icon);
 /* check results */
 scale = 1.0/(8*n);
 eps = 1e-6;
 for (i=0;i<n+1;i++)
 if (fabs((scale*a[i]-b[i])/b[i]) > eps) {
 printf("Inaccurate result\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For further information consult the entry for VCOS1 in the Fortran SSL II Extended Capabilities User’s Guide and [108].

Description of the C-SSL II Routines

620

c_dvcpf1
One-dimensional prime factor discrete complex Fourier transforms.
ierr = c_dvcpf1(x, n, &isw, isn, &iout, y, w,

iw, &icon);

1. Function

This function performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT.

The length of data transformed n must satisfy the following condition.

The size must be expressed by a product of a mutual prime factor p, selected from the following numbers:
factor p (p {2, 3, 4, 5, 7, 8, 9, 16, 25})

The one-dimensional Fourier transform
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}.

)/2exp(,

1,...,1,0,
1

0
ni

nkxn

n

n

j

jk
njk

 (1)

The one-dimensional Fourier inverse transform
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}.

)/2exp(,

1,...,1,0,
1

0
ni

njx

n

n

k

jk
nkj

 (2)

2. Arguments

The routine is called as follows:
ierr = c_dvcpf1(x, n, &isw, isn, &iout, y, w, iw, &icon);

where:
x dcomplex

x[n]

Input Complex data.

n int Input The length of the data transformed.
isw int Input Control information.
 isw = 1 For the first call, to generate a trigonometric function table in W

and a control information in IW and perform Fourier transform.
 isw 1 For the second or consecutive call, to perform Fourier transform

for the data of the same length as in the first call. In this time the
contents set in w and iw is used, therefore the values in n, isn,
w and iw must not be changed after the first call.

 Output When isw is set to 1, isw is set to zero after performing transform.
Therefore the second or consecutive transform for new data in x can be
performed easily without setting isw.

 c_dvcpf1

 621

isn int Input Either the transform or the inverse transform is indicated.
isn = 1 for the transform
isn = 1 for the inverse transform.

iout int Output Information about where for transformed data to be stored. The transformed
data is stored into different area due to the length of data n.

 iout = 1 Transformed data is stored into y[i], i = 0, ... , n 1.
 iout 1 Transformed data is stored into x[i], i = 0, ... , n 1.
y dcomplex

y[n]

Output When iout = 1, the complex data transformed is stored. The area of this
array must be different from that of array x.

w dcomplex

w[n]

Work When isw is set to 1, the trigonometric function table for the transform
specified by n and isn is stored.
Otherwise the contents in the trigonometric function table generated in the
first call with isw = 1 is used as input.

iw int iw[20] Work Control information for transform.
When isw = 1, the control information regarding transform with data length
n and specific isn is stored.
Otherwise the control information set in the first call with isw = 1 is used as
input.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 The number n can not be factored into the

product of the mutual prime factor in {2, 3, 4, 5,
7, 8, 9, 16, 25}.

Bypassed.

20100 The value of n or isn in the second or
consecutive call is different from that in the first
call.

3. Comments on use

General definition of Fourier transform
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

 1,...,1,0,1 1

0

 nkx
n

n

j

jk
njk (3)

 1,...,1,0,
1

0

njx
n

k

jk
nkj (4)

where, n = exp(2i / n).

This subroutine calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the
results may be required.

Description of the C-SSL II Routines

622

4. Example program

A one-dimensional FFT is computed.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define N 560
#define max(a,b) ((a) > (b) ? (a) : (b))

int MAIN__(void)
{
 dcomplex w[N], x[N], y[N], tmp;
 double error;
 int iw[20], isw, isn, iout, icon, i;

 for (i=0; i<N; i++) {
 x[i].re=(double)(i+1)/(double)N;
 x[i].im=0.0;
 }

 /* do the forward transform */
 isw=1, isn=1;
 c_dvcpf1(x, N, &isw, isn, &iout, y, w, iw, &icon);

 if (icon != 0) {
 printf("icon = %d",icon);
 exit(1);
 }

 /* do the reverse transform */
 if (iout != 1) {
 isw=1, isn=-1;
 c_dvcpf1(x, N, &isw, isn, &iout, y, w, iw, &icon);
 } else {
 isw=1, isn=-1;
 c_dvcpf1(y, N, &isw, isn, &iout, x, w, iw, &icon);
 }

 if (icon != 0) {
 printf("icon = %d",icon);
 exit(1);
 }

 error = 0.0;
 for (i=0; i<N; i++) {
 tmp.re = fabs(x[i].re/(double)N - (double)(i+1)/(double)N);
 tmp.im = fabs(x[i].im/(double)N);
 tmp.re += tmp.im;
 error=max(error,tmp.re);
 }

 printf("error = %e\n", error);
}

5. Method

Consult the entry for VCPF1 in the Fortran SSL II Extended Capabilities User's Guide II.

 c_dvcpf3

 623

c_dvcpf3
Three-dimensional prime factor discrete complex Fourier transform.
ierr = c_dvcpf3(a, b, l, m, n, isn, vw1, vw2,

&icon);

1. Function

Given three-dimension complex time-series data }{
321 jjjx , where the size of each dimension is ,,, 321 nnn this routine

performs discrete complex Fourier transform or the inverse transform by using the prime factor Fourier transform (prime
factor FFT). The size of each dimension must satisfy the following conditions:

 the size must be a product of mutually prime factors selected from }16,9,8,7,5,4,3,2{ .
 the size of the first dimension must be an even number 2 , where satisfies the previous condition.

Three-dimensional complex Fourier transform
When }{

321 jjjx is provided, the transform defined below is used to obtain }{
321321 kkknnn

1

0

1

0
32

1

0
1321

1

1

2

2

3322
3

3

11
321321

n

j

n

j

kjkj
n

j

kj
jjjkkk xnnn ,

where 1,...,0 rr nk , and)/2exp(rr ni , r = 1, 2, 3.

Three-dimensional complex Fourier inverse transform
 When }{

321 kkk is provided, the inverse transform defined below is used to obtain }{
321 jjjx .

1

0

1

0
32

1

0
1

1

1

2

2

3322
3

3

11
321321

n

k

n

k

kjkj
n

k

kj
kkkjjjx ,

where 1,...,0 rr nj , and)/2exp(rr ni , r = 1, 2, 3.

2. Arguments

The routine is called as follows:
ierr = c_dvcpf3((double *) a, (double *) b, l, m, n, isn, vw1, vw2, &icon);

where:
a double

a[n][m][l]

Input Real part of }{
321 jjjx or }{

321 kkk .
See Comments on use for data storage.

 Output Real part of }{
321321 kkknnn or }{

321 jjjx .
See Comments on use for data storage.

b double

b[n][m][l]

Input Imaginary part of }{
321 jjjx or }{

321 kkk .
See Comments on use for data storage.

 Output Imaginary part of }{
321321 kkknnn or }{

321 jjjx .
See Comments on use for data storage.

l int Input Number of data items of the third array dimension 1n , with l 5040.
m int Input Number of data items of the second dimension 2n , with m 5040.

Description of the C-SSL II Routines

624

n int Input Number of data items of the first array dimension 3n , with n 5040.
isn int Input Control information.

isn 0 for the transform
isn 0 for the inverse transform.

vw1 double

vw1[l*m*n]

Work

vw2 double

vw2[l*m*n]

Work

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 One of the following has occurred:

 l, m, or n exceeds 5040
 l, m, or n cannot be factored into the product

of mutually prime factors in
{2,3,4,5,7,8,9,16}

Bypassed.

30000 l, m, or n is zero or a negative number Bypassed.

3. Comments on use

Data storage
The real parts of data }{

321 jjjx , }{
321321 kkknnn or }{

321 kkk are stored in array a, with

a[j3][j2][j1] = Re(
321 jjjx), 1,...,1,0 ii nj , i = 1, 2, 3.

or a[k3][k2][k1] = Re(
321321 kkknnn) or Re(

321 kkk), 1,...,1,0 ii nk , i = 1, 2, 3.

The imaginary parts of }{
321 jjjx , }{

321321 kkknnn or }{
321 kkk are stored in array b, with

b[j3][j2][j1] = Im(
321 jjjx), 1,...,1,0 ii nj , i = 1, 2, 3.

or b[k3][k2][k1] = Im(
321321 kkknnn) or Im(

321 kkk), 1,...,1,0 ii nk , i = 1, 2, 3.

Number of terms
The number of terms in a dimension is a product of mutually prime factors from {2,3,4,5,7,8,9,16}. The maximum
number for each dimension is 5 7 9 16 = 5040.

When this routine is called with input argument n = 1, a two-dimensional complex prime factor fast Fourier transform is
determined.

When this routine is called with input arguments n = 1 and m = 1, a one-dimensional complex prime factor fast Fourier
transform is determined.

General definition of three-dimensional complex Fourier transform
The three dimensional discrete complex Fourier transform and its inverse transform can be defined as shown below in (1)
and (2) respectively.

 c_dvcpf3

 625

1

0

1

0
32

1

0
1

321

1

1

2

2

3322
3

3

11
321321

1 n

j

n

j

kjkj
n

j

kj
jjjkkk x

nnn
 , (1)

where 1,...,0 rr nk , and)/2exp(rr ni , r = 1, 2, 3.

1

0

1

0
32

1

0
1

1

1

2

2

3322
3

3

11
321321

n

k

n

k

kjkj
n

k

kj
kkkjjjx , (2)

where 1,...,0 rr nj , and)/2exp(rr ni , r = 1, 2, 3.

This routine calculates }{
321321 kkknnn or }{

321 jjjx corresponding to the left hand terms of (1) or (2) respectively. The
user must normalize the results, if required.

4. Example program

This program performs the Fourier transform followed by the inverse transform and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N1 4
#define N2 3
#define N3 2

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps;
 double a[N3][N2][N1], b[N3][N2][N1], vw1[N3][N2][N1], vw2[N3][N2][N1];
 double aa[N3][N2][N1], bb[N3][N2][N1];
 int i, j, k, cnt, l, m, n, isn, pr;

 /* generate initial data */
 l = N1;
 m = N2;
 n = N3;
 pr = l*m*n;
 phai = (sqrt(5.0)-1.0)/2;
 cnt = 1;
 for (k=0;k<n;k++) {
 for (j=0;j<m;j++) {
 for (i=0;i<l;i++) {
 ran = cnt*phai;
 a[k][j][i] = ran - (int)ran;
 b[k][j][i] = a[k][j][i] - 0.5;
 cnt++;
 }
 }
 }
 /* keep copy */
 for (k=0;k<n;k++) {
 for (j=0;j<m;j++) {
 for (i=0;i<l;i++) {
 aa[k][j][i] = a[k][j][i];
 bb[k][j][i] = b[k][j][i];
 }
 }
 }
 /* perform normal transform */
 isn = 1;
 ierr = c_dvcpf3((double*)a, (double*)b, l, m, n, isn,
 (double*)vw1, (double*)vw2, &icon);
 /* perform inverse transform */
 isn = -1;
 ierr = c_dvcpf3((double*)a, (double*)b, l, m, n, isn,
 (double*)vw1, (double*)vw2, &icon);
 /* check results */

Description of the C-SSL II Routines

626

 eps = 1e-6;
 for (k=0;k<n;k++) {
 for (j=0;j<m;j++) {
 for (i=0;i<l;i++) {
 if ((fabs((a[k][j][i]/pr - aa[k][j][i])/aa[k][j][i]) > eps) ||
 (fabs((b[k][j][i]/pr - bb[k][j][i])/bb[k][j][i]) > eps)) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 }
 }
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VCPF3 in the Fortran SSL II Extended Capabilities User's Guide II and references [17] and [120].

 c_dvcrd

 627

c_dvcrd
Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (MGCR method, diagonal storage format).
ierr = c_dvcrd(a, k, ndiag, n, nofst, b,

itmax, eps, iguss, ndirv, x,

&iter, vw, &icon);

1. Function

This function solves a system of linear equations (1) using the modified generalized conjugate residuals (MGCR) method.

 Ax b (1)

In (1), A is an n n real nonsymmetric or indefinite sparse matrix, b is a real constant vector, and x is the real solution
vector. Both the real vectors are of size n.

2. Arguments

The routine is called as follows:
ierr = c_dvcrd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, ndirv, x,

&iter, vw, &icon);

where:
a double

a[ndiag][k]

Input Sparse matrix A stored in diagonal storage format. See Comments on
use.

k int Input C fixed dimension of array a (n).
ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements.
n int Input Order n of matrix A.
nofst int

nofst[ndiag]

Input Distance from the main diagonal vector corresponding to diagonal
vectors in array a. Super-diagonal vector rows have positive values.
Sub-diagonal vector rows have negative values. See Comments on use.

b double b[n] Input Constant vector b.
itmax int Input Upper limit of iterations.
eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 10-6. See Comments on use.
iguss int Input Control information on whether to start the computation with input

values in array x. When iguss0 then starts computation with input
from array.

ndirv int Input The number of search direction vectors used in the MGCR method (1).
Generally, a small number between 10 and 100.

x double x[n] Input The starting values for the computation. This is optional and relates to
argument iguss.

 Output Solution vector x.
iter int Output Total number of iterations performed.
vw double Work Vwlen = n*(ndirv+5)+ndirv*(ndirv+1)

Description of the C-SSL II Routines

628

vw[Vwlen]
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20001 Reached the set maximum number of iterations. Processing stopped.

The approximate solution obtained up to this
stage is returned, but its precision is not
guaranteed.

30000 One of the following has occurred:
 n < 1
 k < 1
 n > k
 ndiag < 1
 itmax 0

Bypassed.

30004 ndirv < 1
32001 abs(nofst[i]) > n-1; 0 i < ndiag

3. Comments on use

a and nofst
The coefficients of matrix A are stored in two arrays using the diagonal storage format. For full details, see the Array
storage formats section of the Introduction.

eps
In the MGCR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and
eps, the solution is judged to have converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of matrix A and eps.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 2
#define LBANDW 1
#define NSDIR 50

MAIN__()
{
 double one=1.0, bcoef=10.0, eps=1.e-6;
 int ierr, icon, ndiag, nub, nlb, n, i, j, k;
 int itmax, iguss, ndirv, iter;
 int nofst[UBANDW + LBANDW + 1];
 double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
 double vw[NMAX * (NSDIR + 5) + NSDIR * (NSDIR + 1)];

 /* initialize nonsymmetric matrix and vector */

 c_dvcrd

 629

 nub = UBANDW;
 nlb = LBANDW;
 ndiag = nub + nlb + 1;
 n = NMAX;
 k = NMAX;
 for (i=1; i<=nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
 for (j=n-i; j<n ; j++) a[i][j] = 0.0;
 nofst[i] = i;
 }
 for (i=1; i<=nlb; i++) {
 for (j=0 ; j<i+1; j++) a[nub + i][j] = 0.0;
 for (j=i+1; j<n ; j++) a[nub + i][j] = -2.0;
 nofst[nub + i] = -(i + 1);
 }
 nofst[0] = 0;
 for (j=0; j<n; j++) {
 a[0][j] = bcoef;
 for (i=1; i<ndiag; i++) a[0][j] -= a[i][j];
 b[j] = bcoef;
 }
 /* solve the system of linear equations */
 itmax = n;
 iguss = 0;
 ndirv = NSDIR;
 ierr = c_dvcrd ((double*)a, k, ndiag, n, nofst, b, itmax, eps,
 iguss, ndirv, x, &iter, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvcrd failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0;i<n;i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For the MGCR method, see [66]. The algorithm is a modification of the generalized conjugate residuals method. The
algorithm is robust and is always faster than the GMRES method, see [92]. For further information consult the entry for
VCRD in the Fortran SSL II Extended Capabilities User’s Guide II.

Description of the C-SSL II Routines

630

c_dvcre
Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (MGCR method, ELLPACK storage format).
ierr = c_dvcre(a, k, iwidt, n, icol, b, itmax,

eps, iguss, ndirv, x, &iter, vw,

&icon);

1. Function

This function solves a system of linear equations (1) using the modified generalized conjugate residuals (MGCR) method.

 Ax b (1)

In (1), A is an n n real nonsymmetric or indefinite sparse matrix, b is a real constant vector and x is the real solution
vector. Both the real vectors are of size n.

2. Arguments

The routine is called as follows:
ierr = c_dvcre((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss,

ndirv, x, &iter, vw, &icon);

where:
a double

a[iwidt][k]

Input Sparse matrix A stored in ELLPACK storage format. See Comments on
use.

k int Input C fixed dimension of array a (n).
iwidt int Input The maximum number of non-zero elements in any row vectors of A

(0).
n int Input Order n of matrix A.
icol int

icol[iwidt][k

]

Input Column indices used in the ELLPACK format, showing to which
column the elements corresponding to a belong. See Comments on use.

b double b[n] Input Constant vector b.
itmax int Input Upper limit of iterations.
eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 10-6. See Comments on use.
iguss int Input Control information on whether to start the computation with input

values in array x. When iguss0 then starts computation with input
from array.

ndirv int Input The number of search direction vectors used in the MGCR method (1).
Generally, a small number between 10 and 100.

x double x[n] Input The starting values for the computation. This is optional and relates to
argument iguss.

 Output Solution vector x.
iter int Output Total number of iterations performed.
vw double Work Vwlen = n*(ndirv+5)+ndirv*(ndirv+1)

 c_dvcre

 631

vw[Vwlen]
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20001 Reached the set maximum number of iterations. Processing stopped.

The approximate solution obtained up to this
stage is returned, but its precision is not
guaranteed.

30000 One of the following has occurred:
 n < 1
 k < 1
 n > k
 iwidt < 0
 itmax 0

Bypassed.

30004 ndirv < 1

3. Comments on use

a and icol
The coefficients of matrix A are stored in two arrays using the ELLPACK storage format. For full details, see the Array
storage formats section of the Introduction.

eps
In the MGCR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and
eps, the solution is judged to have converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of matrix A and eps.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 2
#define LBANDW 1
#define NSDIR 50

MAIN__()
{
 double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
 int ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, ndirv, iter, i, j, ix;
 int icol[UBANDW + LBANDW + 1][NMAX];
 double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
 double vw[NMAX * (NSDIR + 5) + NSDIR * (NSDIR + 1)];

 /* initialize matrix and vector */
 nub = UBANDW;
 nlb = LBANDW;
 iwidt = UBANDW + LBANDW + 1;

Description of the C-SSL II Routines

632

 n = NMAX;
 k = NMAX;
 for (i=0; i<n; i++) b[i] = bcoef;
 for (i=0; i<iwidt; i++)
 for (j=0; j<n; j++) {
 a[i][j] = 0.0;
 icol[i][j] = j+1;
 }
 for (j=0; j<nlb; j++) {
 for (i=0; i<j; i++) a[i][j] = lcf;
 a[j][j] = bcoef - (double) j * lcf - (double) nub * ucf;
 for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
 for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
 }
 for (j=nlb; j<n-nub; j++) {
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef - (double) nlb * lcf - (double) nub * ucf;
 for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;
 for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
 }
 for (j=n-nub; j<n; j++){
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef - (double) nlb * lcf - (double) (n-j-1) * ucf;
 for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
 ix = n - (j+nub-nlb-1);
 for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
 }
 /* solve the system of linear equations */
 itmax = n;
 iguss = 0;
 ndirv = NSDIR;
 ierr = c_dvcre ((double*)a, k, iwidt, n, (int*)icol, b, itmax,
 eps, iguss, ndirv, x, &iter, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvcre failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0; i<n; i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For the MGCR method, see [66]. The algorithm is a modification of the generalized conjugate residuals method. The
algorithm is robust and is always faster than the GMRES method, see [92]. For further information consult the entry for
VCRE in the Fortran SSL II Extended Capabilities User’s Guide II.

 c_dvgsg2

 633

c_dvgsg2
Selected eigenvalues and corresponding eigenvectors of a real symmetric
generalized eigenvalue problem: BxAx (parallel bisection and
inverse iteration methods).
ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, ev,

k, vw, ivw, &icon);

1. Function

This function calculates m eigenvalues for the generalized eigenvalue problem expressed by (1) for an n order real
symmetric matrix A and n order real positive definite matrix B in descending (or ascending) order, using the parallel
bisection method.

 Ax Bx (1)

It also calculates the corresponding m eigenvectors, x1, x2 , …, xm using the inverse iteration method. Eigenvectors must
satisfy the relation expressed by:

 X BX IT

where X x x x 1 2, , , m with 1 m n .

2. Arguments

The routine is called as follows:
ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, (double *)ev, k, vw, ivw, &icon);

where:
a double a[Alen] Input Symmetric matrix A with dimension of Alen = n(n+1)/2. The

matrix is stored in symmetric storage format. See the Array storage
formats section in the Introduction.

Output The content is altered on output.
b double b[Blen] Input Positive definite matrix B with dimension of Blen = n(n+1)/2. The

matrix is stored in symmetric storage format. See the Array storage
formats section in the Introduction.

Output The content is altered on output.
n int Input Order n of matrix A.
m int Input Number m of the eigenvalues to be calculated. Calculate in descending

order when m = +m. Calculate in ascending order when m = -m.
epsz double Input Relative error test of the pivot in the LLT decomposition of B. A default

value is used when a non-positive value is specified. See Comments on
use.

epst double Input Upper bound of the absolute error used in eigenvalue convergence test. A
default value is used when a non-positive value is specified. See
Comments on use.

Description of the C-SSL II Routines

634

e double e[|m|] Output Contains eigenvalues stored in descending or ascending order depending
on the sign of m.

ev double

ev[|m|][k]

Output Eigenvector corresponding to eigenvalue e[i] is stored at ev[i][j],
j=0,1,…,n-1.

k int Input C fixed dimension of array ev (n).
vw double

vw[15*n]

Work

ivw int ivw[7*n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 n = 1 ev[0][0] is set to 1/sqrt(b[0]) and e[0]

is set to a[0]/b[0]
15000 Some eigenvectors were not calculated. The uncalculated eigenvectors are set to zero.
20000 No eigenvectors were calculated. All eigenvectors are set to zero.
28000 Pivot became negative during LLT decomposition

of B. B is indefinite.
Stopped.

29000 Pivot became relatively zero during LLT

decomposition of B. B may be singular.
Stopped.

30000 One of the following has occurred:
 m = 0
 n < m
 k < n

Bypassed.

3. Comments on use

epsz
The default value for epsz is 16 , where is the unit round-off.

If epsz for this routine is set at 10s , the condition code (icon=29000) is set assuming that the pivot is zero and
processing is terminated when the pivot value is zero to s decimal digits of accuracy during the LLT decomposition of the
symmetric matrix B.

Even when the pivot becomes small, calculation can continue if a sufficiently small value of epsz is specified, but the
calculation accuracy cannot be guaranteed.

When the pivot value becomes negative during decomposition, the matrix B is assumed to be indefinite and calculation is
terminated, setting the condition code appropriately (icon=28000).

epst
The default value of the argument epst is expressed by (2) where is the unit round-off.

 epst max(,)max min (2)

where max and min are the upper and lower bounds of the existence range (given by Gerschgorin’s theorem) of the
eigenvalues of BxAx .

 c_dvgsg2

 635

When very large and small absolute eigenvalues co-exist and a convergence test is performed using (2), it is generally
difficult to calculate smaller eigenvalues with adequate precision. In such cases, smaller eigenvalues may be calculated
with higher precision by setting epst to a smaller value. However, processing speed decreases as the number of
iterations increases.

See the entry for VSEG2 in the Fortran SSL II Extended Capability User’s Guide I to obtain details on the convergence
criterion.

4. Example program

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 matrix.

#include <stdlib.h>
#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, m, i, j, k, ij, ivw[7*NMAX];
 double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2];
 double e[NMAX], ev[NMAX][NMAX], vw[15*NMAX], epsz, epst;

 /* initialize matrix */
 n = NMAX;
 ij = 0;
 for (i=0;i<n;i++) {
 for (j=0;j<i;j++) {
 a[ij] = n-i;
 b[ij++] = 0;
 }
 a[ij] = n-i;
 b[ij++] = 1;
 }
 k = NMAX;
 m = n;
 epsz = 0;
 epst = 0;
 /* find eigenvalues and eigenvectors */
 ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, (double*)ev, k, vw, ivw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dvgsg2 failed with icon = %d\n", icon);
 exit(1);
 }
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("e-value %d: %10.4f\n",i+1,e[i]);
 printf("e-vector:");
 for (j=0;j<n;j++)
 printf("%7.4f ",ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

This function calculates m eigenvalues and eigenvectors of a generalized eigenvalue problem (1) with an n by n real
symmetric matrix A and an n by n positive definite matrix B. For more information consult the entry for VGSG2 for the
generalized eigenvalue problem and VSEG2 for the related symmetric eigenvalue value in the Fortran SSL II Extended
Capabilities User's Guide as well as [16] or [118].

Description of the C-SSL II Routines

636

c_dvhevp
Eigenvalues and eigenvectors of a Hermitian matrix
(tridiagonalization, multisection method, and inverse iteration)
ierr = c_dvhevp(ar, ai, k, n, nf, nl, ivec,

&etol, &ctol, nev, e, maxne, m,

evr, evi, vw, iw, &icon);

1. Function

This routine calculates specified eigenvalues and, optionally, eigenvectors of an n-dimensional Hermitian matrix.

 Ax = x. (1)

2. Arguments

The routine is called as follows:
ierr = c_dvhevp((double *)ar, (double *)ai, k, n, nf, nl, ivec, &etol, &ctol,

nev, e, maxne, (int *)m, (double *)evr, (double *)evi, vw, iw,

&icon);

where:
ar double

ar[n][k]

Input The real part of Hermitian matrix A, stored in the Hermitian storage
format. See Array storage formats in the Introduction section.

ai double

ai[n][k]

Input The imaginary part of Hermitian matrix A, stored in the Hermitian
storage format. See Array storage formats in the Introduction section.

k int Input C fix dimension of matrix A. (k n)
n int Input Order n of matrix A.
nf int Input Number assigned to the first eigenvalue to be acquired by numbering

eigenvalues in ascending order. (Multiple eigenvalues are numbered so
that one number is assigned to one eigenvalue.)

nl int Input Number assigned to the last eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so
that one number is assigned to one eigenvalue.)

ivec int Input Control information.
ivec = 1 if both the eigenvalues and eigenvectors are sought.
ivec 1 if only the eigenvalues are sought.

etol double Input Tolerance for determining whether an eigenvalue is distinct or
numerically multiple.

 Output etol is set to the default value of 16103 when etol is set to less
than it. See Comments on use.

ctol double Input Tolerance (etol) for determining whether adjacent eigenvalues are
approximately multiple, i.e. clustered.

 Output When ctol is less than etol, ctol is set to etol. See Comments
on use.

nev int nev[3] Output Number of eigenvalues calculated.
nev[0] indicates the number of distinct eigenvalues,

 c_dvhevp

 637

nev[1] indicates the number of distinct clusters,
nev[2] indicates the total number of eigenvalues including
multiplicities.

e double

e[maxne]

Output Eigenvalues. Stored in e[i-1], i = 1,...,nev[2].

maxne int Input Maximum number of eigenvalues that can be computed. See Comments
on use.

m int

m[2][maxne]

Output Information about the multiplicity of the computed eigenvalues.
m[0][i-1] indicates the multiplicity of the i-th eigenvalue = i ,
m[1][i-1] indicates the size of the i-th cluster of eigenvalues,
i = 1,...,min{maxne, nev[2]}.

evr double

evr[maxne][k]

Output When ivec = 1, the real part of the eigenvectors corresponding to the
computed eigenvalues. Stored by row in evr[i-1][j-1],
i = 1, ... ,nev[2], j = 1,...,n.

evi double

evi[maxne][k]

Output When ivec = 1, the imaginary part of the eigenvectors corresponding
to the computed eigenvalues. Stored by row in evi[i-1][j-1],
i = 1, ... , nev[2], j = 1,...,n.

vw double vw[17k] Work
iw int iw[Ivwlen] Work 1289 maxneIvwlen .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 The total number of eigenvalues exceeded

maxne during computation of multiple and/or
clustered eigenvalues.

Discontinued. The eigenvectors cannot be
computed. Eigenvalues are returned but are not
stored taking into account multiplicities. See
Comments on use.

30000 One of the following has occurred:
 n < 1
 k < n
 nf < 1
 nl > n
 nl < nf
 maxne < nl-nf+1

Bypassed.

30100 The input matrix may not be a Hermitian matrix. Bypassed.

3. Comments on use

etol and ctol
If the eigenvalues j , ksssj ,...,1, ,)0(k satisfy

|)||,max(|1
||

1

1

ii

ii , (2)

with = etol, and if 1s and 1ks do not satisfy (2), then the eigenvalues j , ksssj ,...,1, , are considered
to be identical, that is, a single eigenvalue of multiplicity 1k .

Description of the C-SSL II Routines

638

The default value of etol is 16103 . Using this value, the eigenvalues are refined to machine precision.

When (2) is not satisfied for = etol, 1i and i are assumed to be distinct eigenvalues.

If (2) is satisfied for = ctol (but is not satisfied with = etol) for eigenvalues j , ktttj ,...,1, , but not for

1t and 1kt , then eigenvalues j , ktttj ,...,1, , are considered to be approximately multiple, that is, clustered,
though distinct (not numerically multiple). In order to obtain an invariant subspace, eigenvectors corresponding to
clustered eigenvalues are computed using orthogonal starting vectors and are re-orthogonalized.

If ctol < etol, then ctol = etol is set.

maxne
Assume r eigenvalues are requested. Note that if the first or last requested eigenvalue has a multiplicity greater than 1 then
more than r eigenvalues, are obtained. The corresponding eigenvectors can be computed only when the corresponding
eigenvector storage area is sufficient.

The maximum number of computable eigenvalues can be specified in maxne. If the total number of eigenvalues exceeds
maxne, icon = 20000 is returned. The corresponding eigenvectors cannot be computed. In this case, the eigenvalues are
returned, but they are not stored repeatedly according to multiplicities.

When all eigenvalues are distinct, it is sufficient to set maxne = nl–nf+1.

When the total number of eigenvalues to be sought exceeds maxne, the necessary value for maxne for seeking
eigenvalues again is returned in nev[2].

4. Example program

This program obtains eigenvalues and prints the results.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define K 512
#define N K
#define NF 1
#define NL 28
#define MAXNE NL-NF+1
#define NVW 19*K
#define NIW 9*MAXNE+128

MAIN__()
{
 double ar[N][K], ai[N][K];
 double e[MAXNE], evr[MAXNE][K], evi[MAXNE][K];
 double vw[NVW];
 double etol, ctol;
 int nev[3], m[2][MAXNE], iw[NIW];
 int ierr, icon;
 int i, j, k, n, nf, nl, maxne, ivec;

 n = N;
 k = K;
 nf = NF;
 nl = NL;
 ivec = 1;
 maxne = MAXNE;
 etol = 1.0e-14;
 ctol = 5.0e-12;

 printf(" Number of data points = %d\n", n);

 c_dvhevp

 639

 printf(" Parameter k = %d\n", k);
 printf(" Eigenvalue calculation tolerance = %12.4e\n", etol);
 printf(" Cluster tolerance = %12.4e\n", ctol);
 printf(" First eigenvalue to be found is %d\n", nf);
 printf(" Last eigenvalue to be found is %d\n", nl);

 /* Set up real and imaginary parts of matrix in AR and AI */
 for(i=0; i<n; i++) {
 for(j=0; j<n; j++) {
 ar[i][j] = (double)(i+j+2)/(double)n;
 if(i==j) {
 ai[i][j] = 0.0;
 ar[i][j] = (double)(j+1);
 } else {
 ai[i][j] = (double)((i+1)*(j+1))/(double)(n*n);
 }
 }
 }
 for(i=0; i<n; i++) {
 for(j=0; j<n; j++) {
 if(i > j) ai[i][j] = -ai[i][j];
 }
 }
 /* Call complex eigensolver */
 ierr = c_dvhevp ((double*)ar, (double*)ai, k, n, nf, nl, ivec, &etol, &ctol, nev, e,
 maxne, (int*)m, (double*)evr, (double*)evi, vw, iw, &icon);
 if (icon > 20000) {
 printf("ERROR: c_dvhevp failed with icon = %d\n", icon);
 exit(1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf(" Number of Hermitian eigenvalues = %d\n", nev[2]);
 printf(" Eigenvaluse of complex Hermitian matrix\n");
 for(i=0; i<nev[2]; i++) {
 printf(" e[%d] = %12.4e\n", i, e[i]);
 }
 return(0);
}

5. Method

Consult the entry for VHEVP in the Fortran SSL II Extended Capabilities User's Guide II and [81], [118].

Description of the C-SSL II Routines

640

c_dvland
Eigenvalues and corresponding eigenvectors of a symmetric sparse
matrix (Lanczos method, diagonal storage format).
ierr = c_dvland(a, k, ndiag, n, nofst, ivec,

ix, eps, nmin, nmax, nlmin, nlmax,

kr, maxc, e, indx, &ncmin, &ncmax,

ev, vw, ivw, &icon);

1. Function

This routine computes a few of the largest and/or smallest eigenvalues and corresponding eigenvectors of a large-
scale symmetric sparse matrix A using the Lanczos method.

2. Arguments

The routine is called as follows:
ierr = c_dvland((double *) a, k, ndiag, n, nofst, ivec, ix, eps, nmin, nmax,

nlmin, nlmax, kr, maxc, e, indx, &ncmin, &ncmax, (double *) ev,

vw, iwv, &icon);

where:
a double

a[ndiag][k]

Input Matrix A. Stored in diagonal storage format for general sparse matrices.
See Array storage formats in the Introduction section for details.

k int Input C fixed dimension of arrays a and ev (n).
ndiag int Input Number (1) of diagonals of matrix A that contain non-zero elements.
n int Input Order n (1) of matrix A.

nofst int

nofst[ndiag]

Input Offsets from the main diagonal corresponding to diagonals stored in A.
Upper diagonals have positive offsets, the main diagonal has a zero
offset, and the lower diagonals have negative offsets. See Array storage
formats in the Introduction section for details.

ivec int Input Control information indicating whether an initial vector is specified in
ev[0][i], i = 0,…,n-1.
ivec = 1 when the initial vector in ev is to be used
ivec 1 when the initial vector is to be generated randomly.

ix int Input Seed value used to generate a random number sequence when an initial
vector is generated randomly for ivec 1. ix must be an integer
value from 1 to 100,000.

eps double Input Tolerance to decide whether the computed eigenpair),(ii x is to be
accepted. When eps is zero or less, eps is set to 610 . See Comments
on use.

nmin int Input Number (0) of smallest eigenvalues and corresponding eigenvectors
to be computed. nmin should be a small number and can be 0 if
nmax 1.

nmax int Input Number (0) of largest eigenvalues and corresponding eigenvectors to
be computed. nmax should be a small number and can be 0 if

 c_dvland

 641

nmin 1.
nlmin int Input Number of eigenvalues (nmin) to be used in the search for the

nmin smallest eigenvalues. Generally, nlmin = 2 nmin. See
Comments on use.

nlmax int Input Number of eigenvalues (nmax) to be used in the search for the
nmax largest eigenvalues. Generally, nlmax = 2 nmax. See
Comments on use.

kr int Input Maximum dimension (nlmin + nlmax) of the Krylov subspace
generated in the Lanczos method. See Comments on use.

maxc int Input Maximum number (0) of eigenvalues in a cluster, for example 10.
See Comments on use.

e double e[Elen] Output Largest and smallest eigenvalues stored in ascending order using the
indirect index list indx. Elen = nlmin + nlmax. The smallest are
stored in e[indx[i-1]], i = 1,...,ncmin, the largest are stored in
e[indx[nmin+nmax–i]], i = 1,...,ncmax.

indx int indx

[nmin+nmax]

Output Stores indirect indices of arrays e and ev. The eigenvector
corresponding to eigenvalue e[indx[i]] is stored in
ev[indx[i]][j], j = 0,...,n-1; i = 0,...,nmin+nmax - 1.

ncmin int Output Number of smallest eigenvalues and corresponding eigenvectors
computed.

ncmax int Output Number of largest eigenvalues and corresponding eigenvectors
computed.

ev double

ev[Evlen][k]
Input When ivec = 1, an initial vector is stored in ev[0][j],

j = 0,...,n - 1. Evlen = nlmin + nlmax.
 Output Computed eigenvectors. The eigenvector corresponding to eigenvalue

e[indx[i]] is stored in ev[indx[i]][j], j = 0,...,n - 1;
i = 0,...,nmin+nmax - 1.

vw double

vw[Vwlen]
Work kkrkrmaxc 7)1)(14()2)((mdmnlVwlen , with

mnl = max{nlmin, nlmax}, md = nlmin+nlmax.
ivw int ivw[Ivwlen] Work 128)(11 mdmnlIvwlen maxc , with

mnl = max{nlmin, nlmax}, md = nlmin+nlmax.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Number of eigenvalues in a cluster exceeded

maxc. Eigenvectors cannot be computed.
Discontinued.

30000 One of the following has occurred:
 n < 1
 k < n
 ndiag < 1
 ix < 1 or ix > 100000
 nlmin < nmin or nlmax < nmax
 nmin < 0 or nmax < 0
 nmin = nmax = 0

Bypassed.

Description of the C-SSL II Routines

642

Code Meaning Processing
30004 kr < nlmin + nlmax Bypassed.
32001 |nofst[i-1]| > n – 1, i = 1,...,ndiag Bypassed.
39001 The initial vector is 0 or near 0. Bypassed.
39006 The input matrix is not symmetric. Bypassed.

3. Comments on use

ivec and ix
The results obtained using the Lanczos method depend on the choice of initial vector. If the initial vector contains large
components in the directions of the requested eigenvectors, then good approximations to the requested eigenvalues and
eigenvectors will be computed. If these components are small or absent in the initial vector then the desired eigenpairs
may not be obtained; however, the returned values may be good approximations to some eigenpairs of the matrix A.

In most cases, a good initial vector is not known and in these instances the initial vector is generated randomly.

Accuracy
When the eigenpair),(ii x satisfies |||||| iiii xAx , it is accepted as an eigenvalue and eigenvector of matrix
A. Otherwise, the pair is rejected. Here, eps , and indicates the dimension of the Krylov subspace.

nlmin and nlmax
In the Lanczos method spurious eigenvalues and eigenvectors, not belonging to the original matrix A, may be obtained.
As these values will be rejected, the number of eigenvalues and eigenvectors used in the search must be sufficiently large.
The values of nlmin and nlmax should be chosen carefully. In most cases, nlmin = nmin and nlmax = nmax are too
small. Generally, nlmin = 2 nmin and nlmax = 2 nmax will suffice.

kr
The quality of the computed eigenvalues and eigenvectors depends on the dimension kr of the Krylov subspace and the
initial vector. Increasing kr enables the user to obtain better approximate eigenvalues and eigenvectors. However, since
memory and computional costs are increased, kr should be chosen as small as possible. In some cases, it is not possible to
choose kr smaller than n (for example, the one-dimensional discrete Laplacian). When kr is equal to n, this routine
works correctly but may be unacceptably slow. kr should exceed n.

maxc
A cluster is a set of very close eigenvalues with the distance between adjacent eigenvalues (relative to the eigenvalue
magnitude) of order machine epsilon.

General comments
The Lanczos method is not a deterministic procedure, and hence is not as robust as, for example, the method based on the
tridiagonalization by Householder reduction.

4. Example program

This program finds the largest and smallest eigenvalues and corresponding eigenvectors, and prints the result.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NDIM 15

 c_dvland

 643

#define NDIAG 5
#define NMIN 1
#define NMAX 1
#define NEV NMIN+NMAX
#define NLMIN 2*NMIN
#define NLMAX 2*NMAX
#define NEVL NLMIN+NLMAX

#define max(a,b) ((a) > (b) ? (a) : (b))

MAIN__()
{
 int ierr, icon;
 int n, i, j, k;
 int ivec, ix, nmin, nmax, nlmin, nlmax, kr, maxc, ncmin, ncmax;
 double a[NDIAG][NDIM], e[NEVL], ev[NEVL][NDIM];
 int ndiag, nofst[NDIAG], indx[NEV], *iw, mnl, md;
 double *wv, eps;

 /* initialize matrix */
 ndiag = NDIAG;
 n = NDIM;
 k = NDIM;

 for (i=0;i<n;i++) {
 a[0][i] = -6;
 a[1][i] = -3;
 a[2][i] = 10;
 a[3][i] = -3;
 a[4][i] = -6;
 }
 a[0][0] = 0;
 a[0][1] = 0;
 a[1][0] = 0;
 a[3][n-1] = 0;
 a[4][n-2] = 0;
 a[4][n-1] = 0;
 nofst[0] = -2;
 nofst[1] = -1;
 nofst[2] = 0 ;
 nofst[3] = 1;
 nofst[4] = 2;
 ivec = 0;
 ix = 1;
 eps = 1e-6;
 nmin = NMIN;
 nmax = NMAX;
 nlmin = NLMIN;
 nlmax = NLMAX;
 kr = n;
 maxc = 10;
 mnl = max(nlmin,nlmax);
 md = nlmin+nlmax;
 wv = (double*)malloc(((maxc+mnl)*(kr+2)+md*(kr+1)+7*k+14*(kr+1))
 *sizeof(double));
 iw = (int*)malloc((11*(maxc+mnl)+md+128)*sizeof(int));
 /* find eigenvalues and eigenvectors */
 ierr = c_dvland((double*)a, k, ndiag, n, nofst, ivec, ix, eps, nmin, nmax,
 nlmin, nlmax, kr, maxc, e, indx, &ncmin, &ncmax,
 (double*)ev, wv, iw, &icon);
 printf("icon = %i\n", icon);
 /* print smallest eigenvalues and eigenvectors */
 for (i=0;i<ncmin;i++) {
 printf("eigenvalue: %7.4f\n", e[indx[i]]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[indx[i]][j]);
 printf("\n");
 }
 /* print largest eigenvalues and eigenvectors */
 for (i=0;i<ncmax;i++) {
 printf("eigenvalue: %7.4f\n", e[indx[NEV-ncmax+i]]);
 printf("eigenvector: ");
 for (j=0;j<n;j++)
 printf("%7.4f ", ev[indx[NEV-ncmax+i]][j]);
 printf("\n");
 }
 free(wv);
 free(iw);
 return(0);
}

Description of the C-SSL II Routines

644

5. Method

For information on the Lanczos method consult [25] and [42]. The algorithm used for this routine generates a tridiagonal
matrix T of size less than (or equal) to that of the matrix A. The eigenvalues and eigenvectors of this tridiagonal matrix are
computed using a multisection sturm count procedure and inverse iteration, respectively. See the entry for VTDEV in the
Fortran SSL II Extended Capabilities User's Guide II. The eigenvectors of matrix A are recovered from those of T using
the Krylov subspace basis vectors generated by the Lanczos process.

 c_dvlax

 645

c_dvlax
Solution of a system of linear equations with a real matrix (blocking LU-
decomposition method).
ierr = c_dvlax(a, k, n, b, epsz, isw, &is, vw,

ip, &icon);

1. Function

This function solves a system of linear equations (1) using the blocking LU-decomposition (Gaussian elimination
method).

 Ax b (1)

In (1), A is an n n regular real matrix, b is a real constant vector and x is the real solution vector. Both the real vectors
are of size n (n1).

2. Arguments

The routine is called as follows:
ierr = c_dvlax((double*)a, k, n, b, epsz, isw, &is, vw, ip, &icon);

where:
a double

a[n][k]

Input
Output

Matrix A.
The contents of the array are altered on output.

k int Input C fixed dimension of array a (n).
n int Input Order n of matrix A.
b double b[n] Input Constant vector b.
 Output Solution vector x.
epsz double Input Tolerance for relative zero test of pivots in decomposition process of A

(0). When epsz is zero, a standard value is used. See Comments on
use.

isw int Input Control information.
When solving several sets of equations that have the same coefficient
matrix, set isw=1 for the first set, and isw=2 for the second and
subsequent sets. Only argument b is assigned a new constant vector b
and the others are unchanged. See Comments on use.

is int Output Information for obtaining the determinant of matrix A. When the n
elements of the calculated diagonal of array a are multiplied together,
and the result is then multiplied by is, the determinant is obtained.

vw double vw[n] Work
ip int ip[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.

Description of the C-SSL II Routines

646

Code Meaning Processing
20000 Either all of the elements of some row are zero or

the pivot became relatively zero. It is highly
probable that the coefficient matrix is singular.

Discontinued.

30000 One of the following has occurred:
 k < n
 n < 1
 epsz < 0
 isw 1 or 2

Bypassed.

3. Comments on use

epsz
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix A ()aij , that
is:

epsz ij
k
kk aa max

then the relative pivot value is assumed to be zero and processing terminates with icon=20000. The standard value of
epsz is 16µ, where µ is the unit round-off. If the processing is to proceed at a lower pivot value, epsz will be given the
minimum value but the result is not always guaranteed.

isw
When solving several sets of linear equations with same coefficient matrix, specify isw=2 for any second and subsequent
sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and go directly to
the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise. The value
of is is identical for all sets and any valid isw.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, isw, is;
 double epsz, eps;
 double a[NMAX][NMAX], b[NMAX], x[NMAX], vw[NMAX];
 int ip[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=i;j<n;j++) {
 a[i][j] = n-j;
 a[j][i] = n-j;

 c_dvlax

 647

 }
 for (i=0;i<n;i++)
 x[i] = i+1;
 k = NMAX;
 /* initialize constant vector b = a*x */
 ierr = c_dmav((double*)a, k, n, n, x, b, &icon);
 epsz = 1e-6;
 isw = 1;
 /* solve system of equations */
 ierr = c_dvlax((double*)a, k, n, b, epsz, isw, &is, vw, ip, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvlax failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

The blocking LU-decomposition method is used for matrix decomposition before solving the system of linear equations
by forward and backward substitutions. For further information consult the entry for VLAX in the Fortran SSL II
Extended Capabilities User’s Guide.

Description of the C-SSL II Routines

648

c_dvlbx
Solution of a system of linear equations with a band matrix (Gaussian
elimination).
ierr = c_dvlbx(a, n, nh1, nh2, b, epsz, isw,

&is, ip, vw, &icon);

1. Function

This function solves a system of linear equations (1) using the Gaussian elimination method.

 Ax b (1)

In (1), A is an n n real band matrix with lower bandwidth h1 and upper bandwidth h2, b is a real constant vector and x is
the real solution vector. Both the real vectors are of size n (n>h10, n>h20).

2. Arguments

The routine is called as follows:
ierr = c_dvlbx(a, n, nh1, nh2, b, epsz, isw, &is, ip, vw, &icon);

where:
a double a[Alen] Input Matrix A sored in band storge format, with Alen=(2*nh1+nh2+1)*n
 Output LU-decomposed matrices L and U. Suitable for subsequent calls to this

routine. See Comments on use.
n int Input Order n of matrix A.
nh1 int Input Lower bandwidth h1 of matrix A.
nh2 int Input Upper bandwidth h2 of matrix A.
b double b[n] Input Constant vector b.
 Output Solution vector x.
epsz double Input Value for relative zero test of pivots (0). When epsz is zero, a

standard value is used. See Comments on use.
isw int Input Control information.

When solving several sets of equations that have the same coefficient
matrix, set isw=1 for the first set, and isw=2 for the second and
subsequent sets. Only argument b is assigned a new constant vector b
and the others are unchanged. See Comments on use.

is int Output Information for obtaining the determinant of matrix A. See Comments
on use.

ip int ip[n] Output Transposition vector that shows the history of the exchanges of rows
performed during partial pivoting.

vw double vw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.

 c_dvlbx

 649

Code Meaning Processing
20000 All the elements of a row of matrix A are zero, or

pivot is relative zero. Strong possibility that
matrix A is singular.

Processing stopped.

30000 One of the following has occurred:
 n nh1
 n nh2
 nh1 < 0
 nh2 < 0
 epsz < 0
 isw 1 or 2

Bypassed.

3. Comments on use

a
The band matrix A is stored in band storage format, for details see the Array storage formats section of the Introduction.

epsz
In this function, the case of the pivot value being less than epsz is considered relative zero and processing is stopped
with icon=20000.

The standard value of epsz is 16µ, where µ is the unit round-off.

isw
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and
subsequent sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and
go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than
otherwise.

Calculation of determinant - is
The elements of matrix U are stored in array a. Therefore, the determinant is obtained by multiplying the is value by n
diagonal elements, that is, the multiplication of a[(2*h1+h2+1)*i+h1], i=0,…,n-1.

Storage space
In order to save space in the data storage area, this function stores band matrices by taking advantage of their
characteristics. However, depending on bandwidth size, a data storage area that is larger than c_dvalu may be required.
In such cases, space in the data storage area can be save by using c_dvalu.

Characteristics of this function can be exploited when 12 21 hhn .

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

Description of the C-SSL II Routines

650

#define min(i,j) (i<j) ? i : j
#define max(i,j) (i>j) ? i : j

#define NMAX 100
#define H1MAX 2
#define H2MAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh1, nh2, i, j, jmin, jmax, isw, is, ip[NMAX];
 double epsz, eps, sum;
 double a[(2*H1MAX+H2MAX+1)*NMAX], b[NMAX], x[NMAX], vw[NMAX];

 /* initialize matrix */
 n = NMAX;
 nh1 = H1MAX;
 nh2 = H2MAX;
 for (i=0;i<n*(2*nh1+nh2+1);i++)
 a[i] = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh1,0);
 jmax = min(i+nh2,n-1);
 for (j=jmin;j<=jmax;j++)
 a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i);
 }
 for (i=0;i<n;i++) {
 x[i] = i+1;
 }
 /* initialize constant vector b = a*x */
 for (i=0;i<n;i++) {
 jmin = max(i-nh1,0);
 jmax = min(i+nh2,n-1);
 sum = 0;
 for (j=jmin;j<=jmax;j++)
 sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j];
 b[i] = sum;
 }
 epsz = 1e-6;
 isw = 1;
 /* solve system of equations */
 ierr = c_dvlbx(a, n, nh1, nh2, b, epsz, isw, &is, ip, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvlbx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

After LU-decomposition of the outer product type (see [42]) is performed, equation (1) is solved through forward and
backward substitutions. For further information consult the entry for VLBX in the Fortran SSL II Extended Capabilities
User’s Guide II.

 c_dvldiv

 651

c_dvldiv
The inverse of a real symmetric positive definite matrix decomposed into

TLDL factors.
ierr = c_dvldiv(a, n, vw, &icon);

1. Function

The inverse matrix 1A of an nn symmetric positive definite matrix A given in the decomposed form of TLDLA
is given by:

 1111 LDLA T (1)

where L is the unit lower triangular matrix, and D is the diagonal matrix. 1n .

2. Arguments

The routine is called as follows:
ierr = c_dvldiv(a, n, vw, &icon);

where:
a double a[Alen] Input Matrices L and 1D (obtained from routine c_dvsldl). Stored in

symmetric positive definite storage format. See Array storage formats in
the Introduction section for further details. .2/)1(nnAlen

 Output Lower triangular part of inverse A 1 stored by columns.
n int Input Order n of matrix A.
vw double vw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Matrix was not positive definite. Continued.
30000 1n Bypassed.

3. Comments on use

General comments
Prior to calling this function, the factors L and 1D must be obtained by the function, c_dvsldl, and passed into this
routine via parameter a to obtain the inverse. For solving linear equations use the c_dvlsx function. This is far more
efficient than calculating the inverse matrix. Users should only use this function when calculating the inverse matrix is
unavoidable.

4. Example program

This program solves a system of linear equations by calculating the inverse matrix and then checks the result.

Description of the C-SSL II Routines

652

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij;
 double epsz, eps, sum;
 double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], y[NMAX], vw[2*NMAX];
 int ivw[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 ij = 0;
 for (j=0;j<n;j++)
 for (i=j;i<n;i++)
 a[ij++] = n-i;
 for (i=0;i<n;i++) {
 x[i] = i+1;
 b[i] = 0;
 y[i] = 0;
 }
 /* initialize constant vector b = a*x */
 ij = 0;
 for (i=0;i<n;i++) {
 sum = a[ij++]*x[i];
 for (j=i+1;j<n;j++) {
 b[j] = b[j] + a[ij]*x[i];
 sum = sum + a[ij++]*x[j];
 }
 b[i] = b[i]+sum;
 }
 epsz = 1e-6;
 /* LDL decomposition of system of equations */
 ierr = c_dvsldl(a, n, epsz, vw, ivw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvsldl failed with icon = %d\n", icon);
 exit(1);
 }
 /* find matrix inverse from LDL factors */
 ierr = c_dvldiv(a, n, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvldiv failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate y = a*b */
 ij = 0;
 for (i=0;i<n;i++) {
 sum = a[ij++]*b[i];
 for (j=i+1;j<n;j++) {
 y[j] = y[j] + a[ij]*b[i];
 sum = sum + a[ij++]*b[j];
 }
 y[i] = y[i]+sum;
 }
 /* compare x and y */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-y[i])/y[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For further information on the algorithm used consult the entry for LDIV in the Fortran SSL II User's Guide, and [71].
Note that the storage format used in LDIV is different from that used in this routine, but the underlying algorithm is the
same.

 c_dvldlx

 653

c_dvldlx
Solution of a system of linear equations with a symmetric positive
definite matrix in LDL T - decomposed form.
ierr = c_dvldlx(b, fa, n, &icon);

1. Function

This routine solves a system of linear equations with an LDL T decomposed nn symmetric positive definite coefficient
matrix,

 bxLDL T . (1)

In (1) L is a unit lower triangular matrix, D is a diagonal matrix, b is a constant vector, and x is the solution vector. Here,
1n .

2. Arguments

The routine is called as follows:
ierr = c_dvldlx(b, fa, n, &icon);

where:
b double b[n] Input Constant vector b.
 Output Solution vector x.
fa double

fa[Falen]
Input Matrix D 1 + (L – I). Stored in symmetric positive definite storage

format. See Array storage formats in the Introduction section for further
details. .2/)1(nnFalen

n int Input Order n of matrices L and D.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Coefficeint matrix is not positive definite. Continued.
30000 n < 1 Bypassed.

3. Comments on use

A system of linear equations can be solved by calling the routine c_dvsldl to LDL T -decompose the coefficient matrix
before calling this routine. The input argument fa of this routine is the same as the output argument a of c_dvsldl.
Alternatively the system of linear equations can be solved by calling the single rotuine c_dvlsx.

4. Example program

This program solves a system of linear equations using LDL T decomposition, and checks the result.

#include <stdlib.h>

Description of the C-SSL II Routines

654

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij;
 double epsz, eps, sum;
 double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX];
 int ivw[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 ij = 0;
 for (j=0;j<n;j++)
 for (i=j;i<n;i++)
 a[ij++] = n-i;
 for (i=0;i<n;i++) {
 x[i] = i+1;
 b[i] = 0;
 }
 /* initialize constant vector b = a*x */
 ij = 0;
 for (i=0;i<n;i++) {
 sum = a[ij++]*x[i];
 for (j=i+1;j<n;j++) {
 b[j] = b[j] + a[ij]*x[i];
 sum = sum + a[ij++]*x[j];
 }
 b[i] = b[i]+sum;
 }
 epsz = 1e-6;
 /* LDL decomposition of system of equations */
 ierr = c_dvsldl(a, n, epsz, vw, ivw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvsldl failed with icon = %d\n", icon);
 exit(1);
 }
 /* solve decomposed system of equations */
 ierr = c_dvldlx(b, a, n, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvldlx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VLDLX in the Fortran SSL II Extended Capabilities User's Guide.

 c_dvlsbx

 655

c_dvlsbx
Solution of a system of linear equations with a symmetric positive
definite band matrix (modified Cholesky decomposition).
ierr = c_dvlsbx(a, n, nh, b, epsz, isw,

&icon);

1. Function

This function solves a system of linear equations (1) using the modified Cholesky method.

 Ax b (1)

In (1), A is an n n symmetric positive definite real band matrix with upper and lower bandwidths, h, b is a real constant
vector and x is the real solution vector. Both the real vectors are of size n (n>h0).

2. Arguments

The routine is called as follows:
ierr = c_dvlsbx(a, n, nh, b, epsz, isw, &icon);

where:
a double a[Alen] Input Symmetric band matrix A with Alen=(nh+1)*n. The diagonal and

lower triangular elements of the band matrix.
 Output Decomposed matrices D and L
 See Comments on use.
n int Input Order n of matrix A.
nh int Input Lower bandwidth h.
b double b[n] Input Constant vector b.
 Output Solution vector x.
epsz double Input Value for relative zero test of pivots (0). When epsz is zero, a

standard value is used. See Comments on use.
isw int Input Control information.

When solving several sets of equations that have the same coefficient
matrix, set isw=1 for the first set, and isw=2 for the second and
subsequent sets. Only argument b is assigned a new constant vector b
and the others are unchanged. See Comments on use.

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 Pivot is negative. Matrix A is not positive

definite.
Processing continues.

20000 Pivot is relatively zero. Strong possibility that
matrix A is singular.

Processing stopped.

Description of the C-SSL II Routines

656

Code Meaning Processing
30000 One of the following has occurred:

 nh < 0
 nh n
 epsz < 0
 isw 1 or 2

Bypassed.

3. Comments on use

a
Matrix A is stored in symmetric positive definite band storage format. For details see the Array storage formats section of
the Introduction.

epsz
In this function, the case of the pivot value being less than epsz is considered relative zero and processing is stopped
with icon=20000.

The standard value of epsz is 16µ, where µ is the unit round-off.

isw
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and
subsequent sets after successfully completing the first with isw=1. This will bypass the LDLT decomposition section
and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than
otherwise.

Negative pivot during the solution
When the pivot becomes negative during the decomposition process, the coefficient matrix is not positive definite. In this
function, processing continues, but icon is set to 10000.

Calculation of determinant
The elements of matrix L are stored in array a, for storage details see above. Therefore, the determinant is obtained by
multiplying the n diagonal elements, that is, the multiplication of a[(h+1)*i], i=0,…,n-1.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(i,j) (i<j) ? i : j

#define NMAX 100
#define HMAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh, i, j, jmax, imax, isw;
 double epsz, eps, sum;
 double a[(HMAX+1)*NMAX], b[NMAX], x[NMAX];

 c_dvlsbx

 657

 /* initialize matrix */
 n = NMAX;
 nh = HMAX;
 for (j=0;j<n;j++) {
 imax = min(j+nh,n-1);
 for (i=j;i<=imax;i++)
 a[j*(nh+1)+i-j] = n-(j-i);
 }
 for (i=0;i<n;i++) {
 x[i] = i+1;
 b[i] = 0;
 }
 /* initialize constant vector b = a*x */
 for (i=0;i<n;i++) {
 sum = a[i*(nh+1)]*x[i];
 jmax = min(i+nh,n-1);
 for (j=i+1;j<=jmax;j++) {
 b[j] = b[j] + a[i*nh+j]*x[i];
 sum = sum + a[i*nh+j]*x[j];
 }
 b[i] = b[i]+sum;
 }
 epsz = 1e-6;
 isw = 1;
 /* solve system of equations */
 ierr = c_dvlsbx(a, n, nh, b, epsz, isw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvlsbx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

After LDLT decomposition of the outer product type (see [42]) is performed, the equation is solved through forward and
backward substitutions. For further information consult the entry for VLSBX in the Fortran SSL II Extended Capabilities
User’s Guide II and [79].

Description of the C-SSL II Routines

658

c_dvlspx
Solution of a system of linear equations with a symmetric positive
definite matrix (blocked Cholesky decomposition method).
ierr = c_dvlspx(a, k, n, b, epsz, isw, &icon);

1. Function

This function decomposes the coefficient matrix A of a system of a real coefficient linear equation (1) as shown in (2)
using the blocked Cholesky decomposition of outer products.

 Ax = b (1)

 A = LLT (2)

In (1) and (2), A is an n n positive definite symmetric real matrix, b is a real constant vector, x is the real solution vector,
and L is a lower triangular matrix. It is assumed that n1.

2. Arguments

The routine is called as follows:
ierr = c_dvlspx((double*)a, k, n, b, epsz, isw, &icon);

where:
a double

a[n][k]

Input The upper triangular part {aij, i j} of A is stored in the upper triangular
part {a[i-1][j-1], i j} of a for input.
See Figure dvlspx-1.
The contents of the array are altered on output.

 Output Decomposed matrix. After the first set of equations has been solved, the
upper triangular part of a[i-1][j-1](i j) contains lij (i j) of the
upper triangular matrix LT.

k int Input A fixed dimension of matrix A. (n)
n int Input Order n of matrix A.
b double b[n] Input Constant vector b.
 Output Solution vector x.
epsz double Input Tolerance for relative zero test (0).

When epsz is zero, a standard value is assigned. See Comments on use.
isw int Input Control information.

When solving several sets of equations that have the same coefficient
matrix, set isw=1 for the first set, and isw=2 for the second and
subsequent sets. When specifying isw=2, only argument b is assigned
a new constant vector b and the others are unchanged. See Comments
on use.

icon int Output Condition code. See below.

 c_dvlspx

 659

k
n

n

a11 a1na12

ann

a22 a2n

Unnecessary

Input Array a

k
n

n

l11 l1n l12

lnn

l22 l2n

Altered

Output Array a

Figure dvlspx-1. Storing the data for the Cholesky decomposition method

The diagonal elements and upper triangular part (aij) of the LLT-decomposed positive definite matrix are stored in array
a[i-1][j-1], i=1,...,n, j=i,...,n.
After LLT decomposition, the upper triangular matrix LT is stored in the upper triangular part of the array a.

The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Pivot became relatively zero. Coefficient matrix

might be singular.
Discontinued.

20100 Pivot became negative.
Coefficient matrix is not positive definite.

30000 One of the following has occurred:
 n < 1
 epsz < 0
 k < n
 isw 1 or 2

3. Comments on use

epsz
If a value is set for the judgment of relative zero, it has the following meaning:

If the value of the selected pivot is positive and less than epsz during LLT decomposition by the Cholesky
decomposition, the pivot is assumed to be relatively zero and decomposition is discontinued with icon=20000. When
unit round off is µ, the standard value of epsz is 16µ.

When the computation is to be continued even if the pivot becomes small, assign the minimum value to epsz. In this
case, however the result is not assured.

isw
When several sets of linear equations having an identical coefficient matrix are solved, the value of isw should be 2 from
the second time on. This reduces the execution time because LLT decomposition for coefficient matrix A is bypassed.

Description of the C-SSL II Routines

660

Negative pivot during the solution
If the pivot value becomes negative during decomposition, the coefficient matrix is no longer positive definite. Processing
is discontinued with icon=20100.

Calculation of determinant
After the calculation has been completed, the determinant of the coefficient matrix is computed by multiplying all the n
diagonal elements of the array a and taking the square of the result.

4. Example program

A system of linear equations with a 2000 2000 coefficient matrix is solved.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 2000
#define KMAX NMAX+1

MAIN__()
{
 int epsz, isw, icon, ierr, i, j;
 double a[NMAX][KMAX], b[NMAX];

 for (i=0; i<NMAX; i++) {
 for (j=i; j<NMAX; j++) {
 a[i][j] = i+1;
 }
 }

 for (i=0; i<NMAX; i++) {
 b[i] = (i+1)*(i+2)/2+(i+1)*(NMAX-i-1);
 }

 isw = 1, epsz = 1e-13;
 ierr = c_dvlspx((double*)a, KMAX, NMAX, b, epsz, isw, &icon);

 if (icon != 0) {
 printf("ERROR: c_dvlspx failed with icon = %d\n", icon);
 exit(1);
 }

 printf ("Solution vector\n");
 for (i=0; i<10; i++) {
 printf ("b[%d] = %15.10le\n", i, b[i]);
 }
}

5. Method

For further information consult the entry for VLSPX in the Fortran SSL II Extended Capabilities User’s Guide.

 c_dvlsx

 661

c_dvlsx
Solution of a system of linear equations with a symmetric positive
definite matrix (modified Cholesky’s method).
ierr = c_dvlsx(a, n, b, epsz, isw, vw, ivw,

&icon);

1. Function

This function solves a system of linear equations (1) with a real coefficient matrix by modified Cholesky’s method.

 Ax b (1)

In (1), A is an n n positive definite symmetric real matrix, b is a real constant vector, and x is the real solution vector.
Both the real vectors are of size n (n1).

2. Arguments

The routine is called as follows:
ierr = c_dvlsx(a, n, b, epsz, isw, vw, ivw, &icon);

where:
a double a[Alen] Input

Output

Matrix A stored insymmetric positive definite storage format. See the
Array storage formats section in the Introduction. Alen=n(n+1)/2.
The contents of the array are altered on output.

n int Input Order n of matrix A.
b double b[n] Input Constant vector b.
 Output Solution vector x.
epsz double Input Tolerance for relative zero test (0).

When epsz is zero, a standard value is assigned. See Comments on use.
isw int Input Control information.

When solving several sets of equations that have the same coefficient
matrix, set isw=1 for the first set, and isw=2 for the second and
subsequent sets. Only argument b is assigned a new constant vector b
and the others are unchanged. See Comments on use.

vw double

vw[2*n]

Work

ivw int ivw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
10000 Pivot became negative.

Coefficient matrix is not positive definite.
Processing continues.

20000 Pivot became smaller then relative zero value.
Coefficient matrix might be singular.

Discontinued.

Description of the C-SSL II Routines

662

Code Meaning Processing
30000 One of the following has occurred:

 n < 1
 epsz < 0
 isw 1 or 2

Bypassed.

3. Comments on use

epsz
If the value 10-s is given for epsz as the tolerance for relative zero test then it has the following meaning:

If the pivot value loses more than s significant digits during LDLT decomposition in the modified Cholesky’s method, the
value is assumed to be zero and decomposition is discontinued with icon=20000. The standard value of epsz is
normally 16µ, where µ is the unit round-off.

Decomposition can be continued by assigning the smallest value (e.g. 10-70) to epsz even when pivot values become
smaller than the standard value, however the result obtained may not be of the desired accuracy.

isw
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and
subsequent sets after successfully completing the first with isw=1. This will bypass the LDLT decomposition section and
go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than
otherwise.

Negative pivot during the solution
If the pivot value becomes negative during decomposition, it means the coefficient matrix is no longer positive definite.
The calculation is to continued and icon=10000 is returned on exit. Note, however, that the resulting calculation error
may be significant, because no pivoting is performed.

Calculation of determinant
To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of the array a together(i.e.,
diagonal elements of D-1) after calculation is completed, and take the reciprocal of this result.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the
resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij, isw;
 double epsz, eps, sum;
 double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX];
 int ivw[NMAX];

 /* initialize matrix and vector */
 n = NMAX;

 c_dvlsx

 663

 ij = 0;
 for (j=0;j<n;j++)
 for (i=j;i<n;i++)
 a[ij++] = n-i;
 for (i=0;i<n;i++) {
 x[i] = i+1;
 b[i] = 0;
 }
 /* initialize constant vector b = a*x */
 ij = 0;
 for (i=0;i<n;i++) {
 sum = a[ij++]*x[i];
 for (j=i+1;j<n;j++) {
 b[j] = b[j] + a[ij]*x[i];
 sum = sum + a[ij++]*x[j];
 }
 b[i] = b[i]+sum;
 }
 epsz = 1e-6;
 isw = 1;
 /* solve system of equations */
 ierr = c_dvlsx(a, n, b, epsz, isw, vw, ivw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvlsx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

The modified Cholesky’s method is used for matrix decomposition before solving the system of linear equations by
forward and backward substitutions. For further information consult the entry for VLSX in the Fortran SSL II Extended
Capabilities User’s Guide.

Description of the C-SSL II Routines

664

c_dvltqr
Solution of a system of linear equations with a tridiagonal matrix (QR
factorization).
ierr = c_dvltqr(su, d, sl, n, b, vw, &icon);

1. Function

This routine solves a system of linear equations

 bTx ,

using QR factorization, where T is an nn tridiagonal matrix, b is a constant vector, and x is the solution vector. Here,
1n .

2. Arguments

The routine is called as follows:
ierr = c_dvltqr(su, d, sl, n, b, vw, &icon);

where:
su double su[n] Input Upper diagonal of matrix T, stored in su[i], i = 0,...,n-2, with

su[n-1] = 0.
d double d[n] Input Diagonal of matrix T.
sl double sl[n] Input Lower diagonal of matrix T, stored in sl[i], i = 1,...,n-1, with

sl[0] = 0.
n int Input Order n of matrix T.
b double b[n] Input Constant vector b.
 Output Solution vector x.
vw double vw[7n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 Matrix T is near singular. Completed.
20000 It is probable that the matrix is singular. Discontinued.
30000 n < 1 Bypassed.

3. Comments on use

icon
When icon = 10000, the matrix T is near singular, but processing continues and a solution is obtained. When icon =
20000, the matrix T is probably singular and processing is discontinued.

 c_dvltqr

 665

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i;
 double eps, vw[7*NMAX];
 double sl[NMAX], d[NMAX], su[NMAX], b[NMAX], x[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 for (i=0;i<n;i++) {
 sl[i] = -1;
 su[i] = -1;
 d[i] = 10;
 }
 sl[0] = 0;
 su[n-1] = 0;
 for (i=0;i<n;i++)
 x[i] = i+1;
 /* initialize constant vector b=a*x */
 b[0] = d[0]*x[0] + su[0]*x[1];
 for (i=1;i<n-1;i++) {
 b[i] = sl[i]*x[i-1] + d[i]*x[i] + su[i]*x[i+1];
 }
 b[n-1] = sl[n-1]*x[n-2] + d[n-1]*x[n-1];
 /* solve system of equations */
 ierr = c_dvltqr(su, d, sl, n, b, vw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvltqr failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VLTQR in the Fortran SSL II Extended Capabilities User's Guide II. and [42] and [51].

Description of the C-SSL II Routines

666

c_dvltx
Solution of a system of linear equations with a tridiagonal matrix (cyclic
reduction method).
ierr = c_dvltx(sbd, d, spd, n, b, isw, ind,

ivw, &icon);

1. Function

This routine solves a tridiagonal matrix equation

 bAx , (1)

using the cyclic reduction method, where A is an nn irreducible diagonally dominant tridiagonal matrix of the form:

0

2

1

e
d

A 3

2

1

e
d
f

2f

ne

n

n

d
f 1

0

with

 iii fed , ni ,...,2,1 ,

where 01 nfe , and for at least one i a strict inequality holds.

In (1) b is a constant vector, x is the solution vector, and n 1.

2. Arguments

The routine is called as follows:
ierr = c_dvltx(sbd, d, spd, n, b, isw, ind, ivw, &icon);

where:
sbd double Input Sub-diagonal of matrix A, with sbd[i-1] = ie , ni ,...,2 .
 sbd[2n] Output The contents of sbd are changed on output. See Comments on use.
d double d[2n] Input Diagonal of matrix A, with d[i-1] = id , ni ,...,1 .
 Output The contents of d are changed on output. See Comments on use.
spd double Input Super-diagonal of matrix A, with spd[i-1] = if , 1,...,1 ni .
 spd[2n] Output The contents of spd are changed on output. See Comments on use.
n int Input Order n of matrix A.
b double b[2n] Input Constant vector b, with b[i-1] = ib , ni ,...,1 .
 Output Solution vector x, with b[i-1] = ix , ni ,...,1 . See Comments on

use.
isw int Input Control information.

isw=1, except when solving several sets of equations that have the same
coefficient matrix, then isw=1 for the first set, and isw=2 for the

 c_dvltx

 667

second and subsequent sets. Only argument b is assigned a new constant
vector b, the other arguments must not be changed. See Comments on
use.

ind int Input Control information:
ind = 0 to check the coefficient matrix is irreducibly diagonally
 dominant,
ind = 1 not to check the coefficient matrix is irreducibly diagonally
 dominant.
Normally, ind = 0 is specified.

ivw int ivw[Ivwlen] Work 10log 2 nIvwlen
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Coefficient matrix is not irreducibly diagonally

dominant.
Discontinued.

30000 One of the following has occurred:
 n < 1
 isw 1 or 2
 ind 0 or 1

Bypassed.

3. Comments on use

sbd, d, spd and b
Elements sbd[n], sbd[n+1],..., sbd[2n-1] are used as work areas. The same elements of arrays d, spd, and b
are also used as work areas.

If the routine is called with isw = 1, arrays sbd, d, and spd on output are as follows:

sbd[i-1] = ii de / , ni ,...,2 , d[i-1] = id/1 , ni ,...,1 , spd[i-1] = ii df / , 1,...,1 ni .

isw
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution
stage, thereby reducing the computation time.

ind
If the coefficient matrix is known in advance to be irreducibly diagonally dominant, specify ind = 1 to bypass testing for
irreducible diagonal dominance, thereby reducing the computation time. If ind = 1 is specified for a matrix that is not
irreducibly diagonally dominant, the solution may not be as accurate as desired.

General comments
This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor
has the following features:

 It is much faster than the Gaussian elimination method used in routine c_dltx.

Description of the C-SSL II Routines

668

 Processing time increases almost linearly with n.

 The more diagonally dominant the matrix is, the faster it is processed.

 This routine is about as accurate as routine c_dltx when processing irreducible diagonally dominant matrices.

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, isw, ind, ivw[20];
 double eps;
 double sbd[2*NMAX], d[2*NMAX], spd[2*NMAX], b[2*NMAX], x[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 for (i=0;i<n;i++) {
 sbd[i] = -1;
 spd[i] = -1;
 d[i] = 10;
 }
 sbd[0] = 0;
 spd[n-1] = 0;
 for (i=0;i<n;i++)
 x[i] = i+1;
 /* initialize constant vector b=a*x */
 b[0] = d[0]*x[0] + spd[0]*x[1];
 for (i=1;i<n-1;i++) {
 b[i] = sbd[i]*x[i-1] + d[i]*x[i] + spd[i]*x[i+1];
 }
 b[n-1] = sbd[n-1]*x[n-2] + d[n-1]*x[n-1];
 isw = 1;
 ind = 0;
 /* solve system of equations */
 ierr = c_dvltx(sbd, d, spd, n, b, isw, ind, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvltx failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VLTX in the Fortran SSL II Extended Capabilities User's Guide and reference [104].

 c_dvltx1

 669

c_dvltx1
Solution of a system of linear equations with a constant-tridiagonal
matrix (Dirichlet type and cyclic reduction method).
ierr = c_dvltx1(d, sd, n, b, isw, vw, ivw,

&icon);

1. Function

This routine solves a tridiagonal matrix equation

 bAx , (1)

using the cyclic reduction method, where A is an nn irreducible diagonally dominant constant-tridiagonal matrix of the
form:

0

e
d

A e
d
e

e

e

d
e

0

, (2)

with d 0, || d 2 || e .

In (1) b is a constant vector, x is the solution vector, and n 1.

This routine restricts the coefficient matrix to the form in (2) in order to achieve high performance. Routine c_dvltx
processes a general tridiagonal matrix.

2. Arguments

The routine is called as follows:
ierr = c_dvltx1(d, sd, n, b, isw, vw, ivw, &icon);

where:
d double Input Diagonal element d of matrix A.
sd double Input Off-diagonal element e of matrix A.
n int Input Order n of matrix A.
b double b[2n] Input Constant vector b, with b[i-1] = ib , ni ,...,1 .
 Output Solution vector x, with b[i-1] = ix , ni ,...,1 . See Comments on

use.
isw int Input Control information.

isw=1, except when solving several sets of equations that have the same
coefficient matrix, then isw=1 for the first set, and isw=2 for the
second and subsequent sets. Only argument b is assigned a new constant
vector b, the other arguments must not be changed. See Comments on
use.

vw double Work)1log(2 2 nVwlen .

Description of the C-SSL II Routines

670

vw[Vwlen]
ivw int ivw[Ivwlen] Work 10)1log(2 2 nIvwlen .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Coefficient matrix is not irreducibly diagonally

dominant.
Discontinued.

30000 One of the following has occurred:
 n < 1
 isw 1 or 2

Bypassed.

3. Comments on use

A
This form of coefficient matrix (2) arises from the discretization of simple Dirichlet boundary value problems.

b
Elements b[n], b[n+1],..., b[2n-1] are used as work areas.

isw
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution
stage, thereby reducing the computation time.

General comments
This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor
has the following features:

 It is much faster than the Gaussian elimination method used in routine c_dltx or c_dlstx.

 Processing time increases almost linearly with n.

 The more diagonally dominant the matrix is, the faster it is processed.

 This routine is about as accurate as routine c_dltx or c_dlstx when processing irreducible diagonally dominant
matrices.

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{

 c_dvltx1

 671

 int ierr, icon;
 int n, i, isw, ivw[50];
 double eps;
 double d, sd, b[2*NMAX], x[NMAX], vw[30];

 /* initialize matrix and vector */
 n = NMAX;
 d = 10;
 sd = -1;
 for (i=0;i<n;i++)
 x[i] = i+1;
 /* initialize constant vector b=a*x */
 b[0] = d*x[0] + sd*x[1];
 for (i=1;i<n-1;i++) {
 b[i] = sd*x[i-1] + d*x[i] + sd*x[i+1];
 }
 b[n-1] = sd*x[n-2] + d*x[n-1];
 isw = 1;
 /* solve system of equations */
 ierr = c_dvltx1(d, sd, n, b, isw, vw, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvltx1 failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VLTX1 in the Fortran SSL II Extended Capabilities User's Guide.

Description of the C-SSL II Routines

672

c_dvltx2
Solution of a system of linear equations with a constant-tridiagonal
matrix (Neumann type and cyclic reduction method).
ierr = c_dvltx2(d, sd, n, b, isw, ind, vw,

ivw, &icon);

1. Function

This routine solves a tridiagonal matrix equation

 bAx , (1)

using the cyclic reduction method, where A is an nn irreducible diagonally dominant constant-tridiagonal matrix of
one of the following forms:

0

e
d

e
d
e2

e

e

d
e

0

, d 0, || d 2 || e . (2)

0

e
d

e
d
e

e

e2

d
e

0

, d 0, || d 2 || e . (3)

0

e
d

e
d
e2

e

e2

d
e

0

, d 0, || d > 2 || e . (4)

In (1) b is a constant vector, x is the solution vector, and n 1.

This routine restricts the coefficient matrix to the form above in order to achieve high performance. Routine c_dvltx
processes a general tridiagonal matrix.

2. Arguments

The routine is called as follows:
ierr = c_dvltx2(d, sd, n, b, isw, ind, vw, ivw, &icon);

where:
d double Input Diagonal element d of matrix A.
sd double Input Off-diagonal element e of matrix A.
n int Input Order n of matrix A.

 c_dvltx2

 673

b double b[Blen] Input Constant vector b, with b[i-1] = ib , ni ,...,1 .

 nnBlen 2log2 .
 Output Solution vector x, with b[i-1] = ix , ni ,...,1 .See Comments on use.
isw int Input Control information.

isw=1, except when solving several sets of equations that have the same
coefficient matrix, then isw=1 for the first set, and isw=2 for the
second and subsequent sets. Only argument b is assigned a new constant
vector b, the other arguments must not be changed. See Comments on
use.

ind int Input Control information specifying the form of matrix A.
ind = 1 for (2),
ind = 2 for (3),
ind = 3 for (4).

vw double

vw[Vwlen]
Work)1log(2 2 nVwlen .

ivw int ivw[Ivwlen] Work 10)1log(2 2 nIvwlen .
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Coefficient matrix is not irreducibly diagonally

dominant.
Discontinued.

30000 One of the following has occurred:
 n < 1
 isw 1 or 2
 ind 1, 2 or 3

Bypassed.

3. Comments on use

A
These forms of coefficient matrices arise from the discretization of simple Neumann boundary value problems.

b
Elements b[n], b[n+1],..., b[Blen-1] are used as work areas.

isw
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution
stage, thereby reducing the computation time.

General comments
This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor
has the following features:

 It is much faster than the Gaussian elimination method used in routine c_dltx.

 Processing time increases almost linearly with n.

Description of the C-SSL II Routines

674

 The more diagonally dominant the matrix is, the faster it is processed.

 This routine is about as accurate as routine c_dltx when processing irreducible diagonally dominant matrices.

4. Example program

This program solves a system of linear equations and checks the result. ind is set to 3.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, isw, ind, ivw[30];
 double eps;
 double d, sd, b[2*NMAX+10], x[NMAX], vw[20];

 /* initialize matrix and vector */
 n = NMAX;
 d = 10;
 sd = -1;
 for (i=0;i<n;i++)
 x[i] = i+1;
 /* initialize constant vector b=a*x */
 ind = 3;
 b[0] = d*x[0] + 2*sd*x[1];
 for (i=1;i<n-1;i++) {
 b[i] = sd*x[i-1] + d*x[i] + sd*x[i+1];
 }
 b[n-1] = 2*sd*x[n-2] + d*x[n-1];
 isw = 1;
 /* solve system of equations */
 ierr = c_dvltx2(d, sd, n, b, isw, ind, vw, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvltx2 failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 printf("%12.5e %12.5e\n", x[i], b[i]);
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VLTX2 in the Fortran SSL II Extended Capabilities User's Guide.

 c_dvltx3

 675

c_dvltx3
Solution of a system of linear equations with a constant almost
tridiagonal matrix (periodic type and cyclic reduction method).
ierr = c_dvltx3(d, sd, n, b, isw, vw, ivw,

&icon);

1. Function

This routine solves a tridiagonal matrix equation

 bAx , (1)

using the cyclic reduction method, where A is an nn irreducible diagonally dominant constant almost tridiagonal
matrix of the form:

e

e
d

A
0
e
d
e

e

e

0

d
e

e

 (2)

with d 0, || d > 2 || e .

In (1) b is a constant vector, x is the solution vector, and n 1.

2. Arguments

The routine is called as follows:
ierr = c_dvltx3(d, sd, n, b, isw, vw, ivw, &icon);

where:
d double Input Diagonal element d of matrix A.
sd double Input Off-diagonal element e of matrix A.
n int Input Order n of matrix A.
b double b[Blen] Input Constant vector b, with b[i-1] = ib , ni ,...,1 .

 nnBlen 2log2 .
 Output Solution vector x, with b[i-1] = ix , ni ,...,1 . See Comments on

use.
isw int Input Control information.

isw=1, except when solving several sets of equations that have the same
coefficient matrix, then isw=1 for the first set, and isw=2 for the
second and subsequent sets. Only argument b is assigned a new constant
vector b, the other arguments must not be changed. See Comments on
use.

vw double

vw[Vwlen]
Work)1log(3 2 nVwlen .

ivw int ivw[Ivwlen] Work 10)1log(4 2 nIvwlen .

Description of the C-SSL II Routines

676

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Coefficient matrix is not irreducibly diagonally

dominant.
Discontinued.

30000 One of the following has occurred:
 n < 1
 isw 1 or 2

Bypassed.

3. Comments on use

A
This form of coefficient matrix (2) arises from the discretization of simple periodic boundary value problems.

b
Elements b[n], b[n+1],..., b[Blen-1] are used as work areas.

isw
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution
stage, thereby reducing the computation time.

General comments
This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor
has the following features:

 It is much faster than the Gaussian elimination method.

 Processing time increases almost linearly with n.

 The more diagonally dominant the matrix is, the faster it is processed.

 This routine is about as accurate as the Gaussian elimination method when processing irreducible diagonally
dominant matrices.

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, isw, ivw[50];
 double eps;

 c_dvltx3

 677

 double d, sd, b[2*NMAX+10], x[NMAX], vw[30];

 /* initialize matrix and vector */
 n = NMAX;
 d = 10;
 sd = -1;
 for (i=0;i<n;i++)
 x[i] = i+1;
 /* initialize constant vector b=a*x */
 b[0] = d*x[0] + sd*x[1] + sd*x[n-1];
 for (i=1;i<n-1;i++) {
 b[i] = sd*x[i-1] + d*x[i] + sd*x[i+1];
 }
 b[n-1] = sd*x[0] + sd*x[n-2] + d*x[n-1];
 isw = 1;
 /* solve system of equations */
 ierr = c_dvltx3(d, sd, n, b, isw, vw, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvltx3 failed with icon = %d\n", icon);
 exit(1);
 }
 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VLTX3 in the Fortran SSL II Extended Capabilities User's Guide.

Description of the C-SSL II Routines

678

c_dvluiv
The inverse of a real matrix decomposed into L and U factors.
ierr = c_dvluiv(fa, k, n, ip, ai, &icon);

1. Function

This function computes the inverse A 1 of an n n real general matrix A given in decomposed form PA = LU.

 A U L P 1 1 1 (1)

In (1), L and U are the respective n n lower and unit upper triangular matrices, P is the permutation matrix that performs
the row exchanges in partial pivoting for LU-decomposition (n1).

2. Arguments

The routine is called as follows:
ierr = c_dvluiv((double*)fa, k, n, ip, (double*)ai, &icon);

where:
fa double

fa[n][k]

Input Matrices L and U, the obtained from function c_dvalu. See
Comments on use.

k int Input C fixed dimension of array fa (n).
n int Input Order n of matrices L and U.
ip int ip[n] Input Transposition vector that provides the row exchanges that occurred in

partial pivoting, the output obtained from function c_dvalu. See
Comments on use.

ai double

ai[n][k]

Output Inverse A 1 .

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Singular matrix. Discontinued.
30000 One of the following has occurred:

 k < n
 n < 1
 an error in array ip

Bypassed.

3. Comments on use

General comments
Prior to calling this function, the LU-decomposed matrix and transposition vector must be obtained by the function,
c_dvalu, and passed into this function via fa and ip, to obtain the inverse. For the solution of linear equations use the
c_dvlax function. This is far more efficient than the inverse matrix route. Users should only use this function when the
use of the inverse matrix is unavoidable.

 c_dvluiv

 679

The transposition vector corresponds to the permutation matrix P, equation (1), for LU-decomposition with partial
pivoting, please see the notes for the c_dvalu function.

4. Example program

This example program initializes A and x (from bAx), and then calculates b by multiplication. Matrix A is then
decomposed into LU factors. The library routine is then called to calculate 1A which is then used in the equation

xbA 1 to calculate x, and this resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, k, is;
 double epsz, eps;
 double a[NMAX][NMAX], ai[NMAX][NMAX];
 double b[NMAX], x[NMAX], y[NMAX], vw[NMAX];
 int ip[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=i;j<n;j++) {
 a[i][j] = n-j;
 a[j][i] = n-j;
 }
 for (i=0;i<n;i++)
 x[i] = i+1;
 k = NMAX;
 /* initialize constant vector b = a*x */
 ierr = c_dmav((double*)a, k, n, n, x, b, &icon);
 epsz = 1e-6;
 /* perform LU decomposition */
 ierr = c_dvalu((double*)a, k, n, epsz, ip, &is, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvalu failed with icon = %d\n", icon);
 exit(1);
 }
 /* find matrix inverse from LU factors */
 ierr = c_dvluiv((double*)a, k, n, ip, (double*)ai, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvluiv failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate y = ai*b */
 ierr = c_dmav((double*)ai, k, n, n, b, y, &icon);
 /* compare x and y */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-y[i])/y[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Given LU-decomposed matrices L, U and permutation matrix P that indicates row exchanges in partial pivoting then the
inverse of A is computed by calculating L1 and U 1 . For further information consult the entry for VLUIV in the
Fortran SSL II Extended Capabilities User’s Guide

Description of the C-SSL II Routines

680

c_dvmbv
Multiplication of a real banded matrix by a real vector.
ierr = c_dvmbv(a, n, nh1, nh2, x, y, &icon);

1. Function

This function calculates the matrix-vector product of an n n real band matrix A with lower bandwidth 1h and upper
bandwidth 2h (0 1h < n and 0 2h < n) with a real vector x of size n.

 y Ax (1)

The solution y is a real vector of size n (n 1).

2. Arguments

The routine is called as follows:
ierr = c_dvmbv(a, n, nh1, nh2, x, y, &icon);

where:
a double a[Alen] Input Matrix A. Stored in band storage format. See Array storage formats in

the Introduction section for details. nhhAlen)12(21 .
n int Input Order n of matrix A.
nh1 int Input Lower bandwidth 1h of matrix A.
nh2 int Input Upper bandwidth 2h of matrix A.
x double x[n] Input Vector x.
y double y[n] Output Result vector y.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n = 0
 nh1 < 0 or nh1 n
 nh2 < 0 or nh2 n

3. Comments on use

The function primarily performs computation for equation (1) but it can also perform a residual calculation as shown in
equation (2).

 y y Ax (2)

To perform this operation, specify argument n=-n and set the contents of the initial vector y into argument y before
calling the function.

 c_dvmbv

 681

4. Example program

This program multiplies a band matrix by a vector and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(i,j) (i<j) ? i : j
#define max(i,j) (i>j) ? i : j

#define NMAX 100
#define H1MAX 2
#define H2MAX 2

MAIN__()
{
 int ierr, icon;
 int n, nh1, nh2, i, j, jmin, jmax;
 double eps, sum;
 double a[(2*H1MAX+H2MAX+1)*NMAX], x[NMAX], y[NMAX], yy[NMAX];

 /* initialize matrix */
 n = NMAX;
 nh1 = H1MAX;
 nh2 = H2MAX;
 for (i=0;i<n*(2*nh1+nh2+1);i++)
 a[i] = 0;
 for (i=0;i<n;i++) {
 jmin = max(i-nh1,0);
 jmax = min(i+nh2,n-1);
 for (j=jmin;j<=jmax;j++)
 a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i);
 }
 for (i=0;i<n;i++) {
 x[i] = i+1;
 }
 /* multiply directly for checking: yy = a*x */
 for (i=0;i<n;i++) {
 jmin = max(i-nh1,0);
 jmax = min(i+nh2,n-1);
 sum = 0;
 for (j=jmin;j<=jmax;j++)
 sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j];
 yy[i] = sum;
 }
 /* perform matrix vector multiply using c_dvmbv */
 ierr = c_dvmbv(a, n, nh1, nh2, x, y, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvmbv failed with icon = %d\n", icon);
 exit(1);
 }
 /* check result */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((y[i]-yy[i])/y[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

This routine performs the multiplication)(iyy of an n n real band matrix)(ijaA (A with lower bandwidth 1h
and upper bandwidth 2h) by a vector)(jxx given by:

Description of the C-SSL II Routines

682

n

j
jiji nixay

1

,,1,

However, as A is a band matrix, the actual calculation is given by:

),min(

),1max(

2

1

,,1,
nhi

hij
jiji nixay

 c_dvmcf2

 683

c_dvmcf2
Singlevariate, multiple and multivariate discrete complex Fourier
transform (complex array, mixed radix).
ierr = c_dvmcf2(z, n, m, isn, &icon);

1. Function

This function performs singlevariate, multiple and multivariate discrete complex Fourier transforms using complex array.

For each dimension, it is possible to specify whether the Fourier transform is to be performed, and whether it is normal or
inverse.

The size of each dimension can be an arbitrary number, but the transform is fast when the size has factors 2, 3 or 5.

Multivariate Fourier transform
By inputting m-dimensional data {xj1 j2...jm} and performing the transform defined in (1), {k1 k2...km} is obtained.

 jmkmrm-
nm

rkj-
n

rkj-
n

nm

m=j
...jmjj

n

=j

n

=j
kmkk x

....... 222
2

111
1

1

0
21

12

02

11

01
...21 (1)

1,...,2,1,0
...

12,...,2,1,02
11,...,2,1,01

nmkm

nk
nk

 and

)/2exp(
...

)2/2exp(
)1/2exp(

2

1

nmi

ni
ni

nm

n

n

where, n1, n2, ..., nm is the size of each dimension.

When ri = 1, the transform is normal. When ri = 1, the transform is inverse.

If r = (1, 1, 1) for example, the following three-dimensional transform is obtained:

 33
3

22
2

11
1

13

03
321

12

02

11

01
321 . kj

n
kj

n
kj

n

n

j
jjj

n

j

n

j
kkk x

Multiple transform
For ri = 0, the summation

1

0

in

ij
is omitted, and index ji of x in (1) is changed to ki.

For example, a singlevariate multiple transform has only one summation. When performing the following transform with
respect to only the second dimension of a three-dimensional data, specify r = (0, 1, 0).

 22
2

12

02
321321 . kj

n

n

j
kjkkkk x

2. Arguments

The routine is called as follows:
ierr = c_dvmcf2((dcomplex*)z, n, m, isn, &icon);

Description of the C-SSL II Routines

684

where:

z dcomplex

z[nm]...[n2][n1]
Input Complex data {xj1 j2...jm} is stored in x[jm]...[j2][j1], jm =

0, ... , n[m1]1, ... , j2 = 0, ... , n[1]1, j1 = 0, ... , n[0]1.
 Output Complex data {k1 k2...km} is stored in x[km]...[k2][k1], km =

0, ... , n[m1]1, ... , k2 = 0, ... , n[1]1, k1 = 0, ... , n[0]1.
n int n[m] Input n[i1] is the size of the ith dimension.
m int Input Number of dimensions m of the multivariate Fourier transform.
isn int isn[m] Input isn[i-1] shows the direction ri of the Fourier transform in the ith

dimension, and can take the following values:
1 Normal transform.
0 No transform.
1 Inverse transform.

icon int Output Condition code. See below.
The complete list of condition codes is given below:

Code Meaning Processing
0 No error. Completed.
30000 m 0. Processing is stopped.
30002 isn[i] > 1 or isn[i]< 1.
30003 n[i] < 1.
30004 isn[i] were all zero.

3. Comments on use

General definition of the Fourier transform
The multivariate discrete complex Fourier transform and inverse transform are generally defined in (2) and (3).

 jmkm
nm

kj
n

kj
n

nm

jm
jmjj

n

j

n

j
k...kmkk x...

nmnn

..21

1 22
2

11
1

1

0
...21

12

02

11

01
21 (3)

 jmkm
nm

kj
n

kj
n

nm

km
kmkk

n

k

n

k
...jmjj ...x

 22
2

11
1

1

0
...21

12

02

11

01
21 (4)

where:

1,...,2,1,0
...

12,...,2,1,02
11,...,2,1,01

nmjm

nj
nj

 and

1,...,2,1,0
...

12,...,2,1,02
11,...,2,1,01

nmkm

nk
nk

 and

)/2exp(
...

)2/2exp(
)1/2exp(

2

1

nmi

ni
ni

nm

n

n

The routine calculates {n1 n2 ... nm k1k2...km} or {xj1j2...jm} corresponding to the left-hand-side terms in equations (2) and (3).
The user must normalize the terms if necessary.

Stack size
This function exploits work area internally on stack area. Therefore an abnormal termination could be occur when the
stack area runs out. The necessary size is shown below.

 c_dvmcf2

 685

If ni can be expressed as products of powers of 2, 3, and 5, then the work area size is 16 max{ni | i = 1, ..., m and
isn[i] 0.} byte.

If there are numbers among ni that cannot be expressed as products of powers of 2, 3, and 5, then the work area size is 80
 max{ni | i = 1, ..., m and isn[i] 0.} byte.

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command under consideration that
the stack area could be used for another work area of fixed size and for user’s program also.

4. Example program

In this example, a singlevariate fast Fourier transform is computed.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100000
#define NDIM 1
#define max(a,b) ((a) > (b) ? (a) : (b))

int MAIN__(void)
{
 int nval[6] = { 16199,16200,16201,16383,16384,16385 };

 dcomplex z[NMAX], tmp;
 double pi, error, theta;
 int m, n[NDIM], isn[NDIM], icon;
 int n1, in, i, k, l;

 pi = 4.0 * atan(1.0);

 for (in=0; in<6; in++) {
 n1 = nval[in];
 n[0] = n1;
 l = 79;

 for (i=0; i<n1; i++) {
 z[i].re = 0.0;
 z[i].im = 0.0;
 }

 z[l].re = 1.0;
 z[l].im = 0.0;
 isn[0] = 1;
 m = 1;

 c_dvmcf2(z, n, m, isn, &icon);

 if (icon != 0) {
 printf("icon = %d\n",icon);
 }

 error = 0.0;
 for (k=0; k<n1; k++) {
 theta = pi*2*l*k/(double)n1;
 tmp.re = fabs(z[k].re-cos(theta));
 tmp.im = fabs(z[k].im+sin(theta));
 error = max(error,tmp.re+tmp.im);
 }

 printf("n = %d, error = %10.3e\n", n1, error);
 }
}

5. Method

For further information consult the entry for VMCF2 in the Fortran SSL II Extended Capabilities User's Guide II.

Description of the C-SSL II Routines

686

c_dvmcft
Singlevariate, multiple and multivariate discrete complex Fourier
transform (real and imaginary array separated, mixed radix).
ierr = c_dvmcft(xr, xi, n, m, isn, w, &iw,

&icon);

1. Function

This routine performs singlevariate, multiple and multivariate discrete complex Fourier transforms. For each dimension, it
is possible to specify whether the Fourier transform is to be performed, and whether it will be normal or inverse. The size
of any dimension can be an arbitrary number, but decomposition is faster if it has factors of 2, 3 or 5.

Singlevariate Fourier transform
By inputting }{

21 mjjjx and performing the transform described in (1), }{
21 mkkk is obtained.

 mmm
m

m

m

mm

rkj
n

rkj
n

n

j

n

j

n

j

rkj
njjjkkk x

222

2

1

1

2

2

111
12121

1

0

1

0

1

0

 (1)

where:

1,,2,1,0

1,,2,1,0
1,,2,1,0

22

11

mm nk

nk
nk

 and

)/2exp(

)/2exp(

)/2exp(

2

1

2

1

mn

n

n

ni

ni

ni

m

When 1ir the transform is normal, and when 1ir the transform is inverse. When 0ir , the summation over ij
(from 0 to 1in) is omitted, and ij is changed to ik , where ij is an index of x in equation (1). Therefore if)1,1,0(r ,
the following equation is obtained:

 33
3

22
2

2

2

3

3

321321

1

0

1

0

kj
n

kj
n

n

j

n

j
jjkkkk x

Multiple transform
A multiple transform has only one summation. When performing the second dimension transform, the following equation
is obtained:

 22
2

2

2

321321

1

0

kj
n

n

j
kjkkkk x

2. Arguments

The routine is called as follows:
ierr = c_dvmcft(xr, xi, n, m, isn, w, &iw, &icon);

where:

 c_dvmcft

 687

xr double

xr[Xlen]
Input
Output

Real part of
mjjjx 21

. mnnnXlen 21 .
Real part of

mkkk 21
 .

xi double

xi[Xlen]
Input
Output

Imaginary part of
mjjjx 21

. mnnnXlen 21 .
Imaginary part of

mkkk 21
 .

n int n[m] Input n[i-1] is the size of the ith dimension.
m int Input Number of dimensions m of the multivariate Fourier transform.
isn int isn[m] Input isn[i-1] shows the direction ir of the Fourier transform in the ith

dimension, and can take the following values:
1 Normal transform.
0 No transform.
-1 Inverse transform.

w double w[iw] Work
iw int Input

Output
Size of the workspace. See Comments on use.
If the workspace is too small, the minimum required size is output.

icon int Output Condition code. See below.
The complete list of condition codes is given below:

Code Meaning Processing
0 No error. Completed.
30000 0m . Processing is stopped.
30001 Insufficient work area.
30002 1isn[i] or 1isn[i] .
30003 1n[i] .
30004 0isn[i] for all dimensions.

3. Comments on use

General definition of the Fourier transform
The multivariate discrete complex Fourier transform and inverse transform are generally defined in (2) and (3)
respectively:

 mm
m

m

m

mm

kj
n

kj
n

n

j

n

j

n

j

kj
njjj

m
kkk x

nnn

22

2

1

1

2

2

11
12121

1

0

1

0

1

0
,

21

1 (2)

 mm
m

m

m

mm

kj
n

kj
n

n

k

n

k

n

k

kj
njjjkkkx

22

2

1

1

2

2

11
12121

1

0

1

0

1

0

 (3)

where:

1,,2,1,0

1,,2,1,0
1,,2,1,0

22

11

mm nj

nj
nj

 and

1,,2,1,0

1,,2,1,0
1,,2,1,0

22

11

mm nk

nk
nk

 and

)/2exp(

)/2exp(

)/2exp(

2

1

2

1

mn

n

n

ni

ni

ni

m

The routine calculates }{
2121 mkkkmnnn or }{

21 mjjjx corresponding to the left-hand-side terms in equations
(2) and (3). The user must normalize the terms if necessary.

Description of the C-SSL II Routines

688

Size of the workspace iw
The size of the workspace required by the routine is calculated as follows:

Define:

 RADIX is the set of natural numbers that can be expressed as powers of 2, 3 and 5 only.
 NORAD is the set of natural numbers, which are the differences between the elements of RADIX and any

other natural numbers, i.e. NORAD = any natural number - RADIX.
 minrad(n) is the smallest member of RADIX that is larger than the dimension size n.
 relfac(n) is the smallest member of NORAD which can be multiplied by any member of RADIX to give the

dimension size n, i.e. relfec(n) is the minimum natural number q where: qpn and RADIXp and
NORADq .

 NP is the product of all the dimension sizes. i.e. mnnnNP 21 .

For each dimension i, where mi ,,2,1 , provided that 01]-isn[i .

1. If RADIXni , then the size required by dimension i is: in2 .
2. If ii nnrelfac)(, then the size required by dimension i is:)(4/)(2 iii nminradnnminradNP .
3. Otherwise, the size required is:)2),((4max()(/))((2 iiii nnrelfacminradnrelfacnrelfacminradNP .

From the set of sizes obtained above, the maximum size is taken as the size of the workspace array.

If the routine is called with no workspace (i.e. with iw = 0) then the minimum required size is returned in iw.

4. Example program

This program computes a 1-D FFT on 16384 elements where all of the elements are zero, except for the 101st element,
which has the value 1+i0. The results are checked against the correct transform values.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define M 1
#define N 16384
#define W 2*N

#define max(i,j) (i>j) ? i : j

MAIN__()
{
 int ierr, icon;
 double xr[N], xi[N], w[W], eps, pi;
 int i, k, n[M], m, isn[M], iw;

 /* generate initial data */
 m = M;
 n[0] = N;
 k = 100;
 for (i=0;i<n[0];i++) {
 xr[i] = 0;
 xi[i] = 0;
 }
 xr[k] = 1;
 isn[0] = 1;
 iw = W;
 /* perform transform */

 c_dvmcft

 689

 ierr = c_dvmcft(xr, xi, n, m, isn, w, &iw, &icon);
 /* check results */
 if (icon != 0) {
 printf("ERROR: c_dvmcft failed with icon = %d\n", icon);
 exit(1);
 }
 pi = 4*atan(1);
 eps = 1e-6;
 for (i=0;i<n[0];i++)
 if ((xr[i]-cos(2*pi*i*k/n[0]) > eps) ||
 (xi[i]+sin(2*pi*i*k/n[0]) > eps)) {
 printf("Inaccurate result\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For further information consult the entry for VMCFT in the Fortran SSL II Extended Capabilities User's Guide II and [49]
and [50].

Description of the C-SSL II Routines

690

c_dvmcst
Discrete cosine transforms
ierr = c_dvmcst(x, k, n, m, isw, tab, &icon);

1. Function

This function performs one-dimensional, multiple discrete cosine transforms.

Given one-dimensional n1 sample data {xj} defined on both end points and internal points dividing a half of 2 period of
even-function x(t) into n parts equally as follows:

 njj
n

xx j ,...,1,0,

this function calculate the discrete cosine transform defined as follows in each row of the array:

1

1
0 ,...,1,0,cos2)1(

n

j
jn

k
k nkkj

n
xxxa (1)

2. Arguments

The routine is called as follows:
ierr = c_dvmcst((double*)x, k, n, m, isw, tab, &icon);

where:

x double

x[m][k]

Input The m sequences of {xj}, j = 0, ... , n are stored in x[i1][i2], i1 =
0, ... , m 1, i2 = 0, ... , n.

 Output The m sequences of {ak}, k = 0, ... , n are stored in x[i1][i2], i1 =
0, ... , m 1, i2 = 0, ... , n.

k int Input C fixed dimension of array x (n 1).
n int Input The number of partition of the half period. n must be an even number.

See Comments on use.
m int Input The multiplicity m of the transform.
isw int isw Input Control information. See Comments on use.

isw should be set as follows.
0 to generate the array tab and perform the cosine transforms..
1 to prepare the array tab only.
2 to perform the cosine transforms using the array tab prepared

before calling.
tab double

tab[2n]
Work Trigonometric function table used for the transformation is stored.

icon int Output Condition code. See below.
The complete list of condition codes is given below:

 c_dvmcst

 691

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n 0
 k < n 1
 m 0
 isw 0, 1, 2
 n is not an even number.

Processing is stopped.

3. Comments on use

Recommended value of n
The n can be an arbitrary even number, but the transform is fast with the sizes which can be expressed as products of the
powers of 2, 3, and 5.

Efficient use of the array tab
When this routine is called successively with a fixed value of n, the trigonometric function table tab should be initialized
once at first call with isw = 0 or 1 and should be kept intact for second and subsequent calls with isw = 2. This saves
initialization procedure of array tab.

Normalization
The cosine transform defined as in (1) is also an inverse transform itself. Applying the transform twice results in the
original sequences multiplied by 2 n.

If necessary, the user must normalize the results.

Stack size
This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack
area runs out. The necessary size is 8 n byte.

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command under consideration that
the stack area could be used for another work area of fixed size and for user’s program also.

4. Example program

In this example, cosine transforms are calculated with multiplicity of 5.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define N 1024
#define K (1024+1)
#define M 5
#define max(a,b) ((a) > (b) ? (a) : (b))

int MAIN__(void)
{
 double x[M][K], tab[N*2];
 double vnrm, error, t1, t2;
 int isw, icon;
 int i, j;

 for (j=0; j<M; j++) {

Description of the C-SSL II Routines

692

 for (i=0; i<N+1; i++) {
 x[j][i]=(double)max(i,(N-i)/(j+1));
 }
 }

 /* FORWARD TRANSFORM */
 isw=0;
 c_dvmcst((double*)x, K, N, M, isw, tab, &icon);

 printf("icon = %d\n",icon);

 /* BACKWARD TRANSFORM */
 isw=2;
 c_dvmcst((double*)x, K, N, M, isw, tab, &icon);

 printf("icon = %d\n",icon);

 for (j=0; j<M; j++) {
 error=0.0;
 vnrm =0.0;
 for (i=0; i<N+1; i++) {
 t1=x[j][i]/(double)(N*2);
 t2=t1-(double)(max(i,(N-i)/(j+1)));
 vnrm +=t1*t1;
 error+=t2*t2;
 }
 printf("error = %e\n",sqrt(error/vnrm));
 }
}

5. Method

For further information consult the entry for VMCST in the Fortran SSL II Extended Capabilities User's Guide II.

 c_dvmggm

 693

c_dvmggm
Multiplication of two matrices (real by real).
ierr = c_dvmggm(a, ka, b, kb, c, kc, m, n, l,

&icon);

1. Function

This function performs multiplication of an m n real matrix A by an n l real matrix B.

 C AB (1)

In (1), the resultant C is an m l matrix (m, n, l 1).

2. Arguments

The routine is called as follows:
ierr = c_dvmggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, l,

&icon);

where:
a double

a[m][ka]

Input Matrix A.

ka int Input C fixed dimension of array a (n).
b double

b[n][kb]

Input Matrix B.

kb int Input C fixed dimension of array b (l).
c double

c[m][kc]

Output Matrix C. See Comments on use.

kc int Input C fixed dimension of array c (l).
m int Input The number of rows m in matrices A and C.
n int Input The number of columns n in matrix A and number of rows n in matrix B.
l int Input The number of columns l in matrices B and C.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m < 1
 n < 1
 l < 1
 ka < n
 kb < l
 kc < l

Bypassed.

Description of the C-SSL II Routines

694

3. Comments on use

This function is design to perform high-speed computations on a vector processor.

Storage space
Storing the solution matrix C in the same memory area used for matrix A or B is NOT permitted. C must be stored in a
separate array otherwise the result will be incorrect.

4. Example program

This example program performs a matrix-matrix multiplication and checks the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j;
 double eps;
 double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX];

 /* initialize matrices */
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<n;j++) {
 a[i][j] = j+1;
 b[j][i] = 1.0/(j+1);
 }
 /* matrix matrix multiply */
 ierr = c_dvmggm((double*)a, NMAX, (double*)b, NMAX,
 (double*)c, NMAX, n, n, n, &icon);
 /* check result */
 eps = 1e-5;
 for (i=0;i<n;i++)
 for (j=0;j<n;j++)
 if (fabs((c[i][j]-n)/n) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

 c_dvmrf2

 695

c_dvmrf2
Singlevariate, multiple and multivariate discrete real Fourier transform
(mixed radix).
ierr = c_dvmrf2(x, n, m, isin, isn, &icon);

1. Function

This function performs singlevariate, multiple and multivariate discrete real Fourier transforms.

Whether the Fourier transform is to be performed, and its direction, can be specified for each dimension. For the 1-st
dimension, "no transform" cannot be specified, and the size of the 1-st dimension must be an even number. The sizes of
all other dimension can be arbitrary numbers, but the transform is fast with the sizes which can be expressed as products
of the powers of 2, 3, and 5.

The result of a multiple and multivariate discrete real Fourier transform has a complex conjugate relation. For the 1-st
dimension, the first n1 / 2 + 1 complex elements are stored.

Multivariate Fourier Transform
Transform: Inputting m-dimensional data {xj1j2...jm} and performing the transform defined in (1) obtains {k1k2...km}.

 mrmkmj-
mn

rkj-
n

rkj-
n

nm

mj
...jmjj

n

j

n

j
kmkk x...

.... 222
2

111
1

1

0
21

12

02

11

01
...21 (1)

1,...,2,1,0
...

12,...,2,1,02
11,...,2,1,01

nmkm

nk
nk

 and

)/2exp(
...

)2/2exp(
)1/2exp(

2

1

nmi

ni
ni

nm

n

n

where, n1, n2 , ... , nm is the size of each dimension. ri = 1 or ri = 1 can be specified for the transform direction.

If r = (1, 1, 1) for example, the following three-dimensional Fourier transform is obtained:

 33
3

22
2

11
1

13

03
321

12

02

11

01
321 . kj-

n
kj-

n
kj-

n

n

j
jjj

n

j

n

j
kkk x

Inverse transform: Inputting {k1k2...km} and performing the transform defined in (2), obtains {xj1j2...jm}.

 mrmkmj-
mn

rkj-
n

rkj-
n

nm

mk
...kmkk

n

k

n

k
...jmjj ...x

.... 222
2

111
1

1

0
21

12

02

11

01
21 (2)

1,...,2,1,0
...

12,...,2,1,02
11,...,2,1,01

nmjm

nj
nj

 and

)/2exp(
...

)2/2exp(
)1/2exp(

2

1

nmi

ni
ni

nm

n

n

where, n1,n2,..., nm is the size of each dimension.

In an inverse transform, a direction that is inverse to that specified in the transform must be specified. ri = 1 or ri = 1

Description of the C-SSL II Routines

696

Multiple transform

When ri = 0 is specified, the summation

1

0

ni

ji

is omitted.

In the case of real-to-complex transform, index ji of x in (1) is changed to ki. In the case of complex-to-real transform,
index ki of in (2) is changed to ji.

For example, singlevariate multiple transform has only one summation. When performing the following transform with
respect to only the first-dimension of a three-dimensional data, specify r = (1, 0, 0)

 11
1

11

01
321321 . kj-

n

n

j
kkjkkk x

2. Arguments

The routine is called as follows:
ierr = c_dvmrf2((double*)x, n, m, isin, isn, &icon);

where:
x double

x[nm]...[n2][n1+2]

Input If isn = 1 (transform from real to complex).
The real data {xj1j2...jm} is stored in x[jm]...[j2][j1], jm =
0, ... , n[m1]1, ... , j2 = 0, ... , n[1]1, j1 = 0, ... , n[0]1.

If isn = 1 (transform from complex to real).
The real and imaginary part of {k1k2...km} are stored in
x[km]...[k2][k1], km = 0, ... , n[m1]1, ... , k2 = 0, ... ,
n[1]1, k1 = 0, ... , n[0]1 by turns.

 Output If isn = 1 (transform from real to complex).
The real and imaginary part of {k1k2...km} are stored in
x[km]...[k2][k1], km = 0, ... , n[m1]1, ... , k2 = 0, ... ,
n[1]1, k1 = 0, ... , n[0]1 by turns.

If isn = 1 (transform from complex to real).
The real data {xj1j2...jm} is stored in x[jm]...[j2][j1], jm =
0, ... , n[m1]1, ... , j2 = 0, ... , n[1]1, j1 = 0, ... , n[0]1.

n int n[m] Input Sizes ni, i = 1, 2, ... , m of the dimensions, with n[i-1] = ni, i = 1,
2 , ... , m. The size of the 1-st dimension must be an even number.

m int Input The number of dimensions m of the multivariate Fourier transform.
isin int isin[m] Input Direction ri of the Fourier transform in the i-th dimension, i = 1,

2, ... , m.
isin[0] cannot be 0.
isin[i-1] = 1 for ri = 1
isin[i-1] = 0 for no transform
isin[i-1] = -1 for ri = 1

isn int Input Control information.
isn = 1 for the normal transform (real to complex)
isn = 1 for the inverse transform (complex to real).

icon int Output Condition code. See below.
The complete list of condition codes is:

 c_dvmrf2

 697

Code Meaning Processing
0 No error. Completed.
30001 One of the following has occurred:

 n[i] 0 for some i
 m 0.

Bypassed.

30016 One of the following has occurred:
 isin[i] < 1
 isin[i] > 1
 isin[0] = 0

30032 isn 1 or 1.
30512 The size of first dimension is odd number.

3. Comments on use

General definition of Fourier transform
The multivariate discrete Fourier transform and inverse transform are generally defined as in (3) and (4).

 jmkm
nm

kj
n

kj
n

nm

jm
...jmjj

n

j

n

j
kmkk x

nmnn

...21
1 22

2
11

1

1

0
21

12

02

11

01
...21 (3)

1,...,2,1,0
...

12,...,2,1,02
11,...,2,1,01

nmkm

nk
nk

 and

)/2exp(
...

)2/2exp(
)1/2exp(

2

1

nmi

ni
ni

nm

n

n

 jmkm
nm

kj
n

kj
n...kmkk

nm

km

n

k

n

k
jmjjx

22
2

11
121

1

0

12

02

11

01
...21 (4)

1,...,2,1,0
...

12,...,2,1,02
11,...,2,1,01

nmjm

nj
nj

 and

)/2exp(
...

)2/2exp(
)1/2exp(

2

1

nmi

ni
ni

nm

n

n

The routine calculates {n1 n2...nm k1k2...km} or {xj1j2...jm} corresponding to the left-hand terms of (3) and (4). For i, where
isin[i] = 0, ni is replaced with 1. If necessary, the user must normalize the results.

Complex conjugate relation
The result of the multivariate discrete real Fourier transform has the following complex conjugate relation:

 kmnmknknkkk m ...2211...21

1,...,2,1,0
...

12,...,2,1,02
2/1,...,2,1,01

nmkm

nk
nk

In the case of ki = 0, niki is regarded as 0. For h, where isin[h] = 0, the h-th index in the right-hand terms is still kh.
The rest of terms can be calculated using this relation.

Description of the C-SSL II Routines

698

Stack size
This function exploits work area internally on stack area. Therefore an abnormal termination could be occur when the
stack area runs out. The necessary size is shown below.

If ni can be expressed as products of powers of 2, 3, and 5, then the work area size is 24 max{ni | i = 1, ..., m and
isn[i] 0.} byte.

If there are numbers among ni that cannot be expressed as products of powers of 2, 3, and 5, then the work area size is 80
 max{ni | i = 1, ..., m and isn[i] 0.} byte.

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command under consideration that
the stack area could be used for another work area of fixed size and for user’s program also.

4. Example program

In this example, a two-dimensional real Fourier transform is calculated.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define N1 1024
#define N2 1024
#define M 2
#define max(a,b) ((a) > (b) ? (a) : (b))

int MAIN__(void)
{
 double x[N2][N1+2], error, tmp;
 int n[M], isn, isin[M], icon;
 int i, j;

 for (i=0; i<N2; i++) {
 for (j=0; j<N1; j++) {
 x[i][j]=(double)(N1*i+j+1);
 }
 }

 n[0] = N1;
 n[1] = N2;
 isin[0] = 1;
 isin[1] = 1;
 isn = 1;

 /* REAL TO COMPLEX TRANSFORM */
 c_dvmrf2((double*)x, n, M, isin, isn, &icon);

 printf("icon = %d\n",icon);

 n[0] = N1;
 n[1] = N2;
 isin[0] = -1;
 isin[1] = -1;
 isn = -1;

 /* COMPLEX TO REAL TRANSFORM */
 c_dvmrf2((double*)x, n, M, isin, isn, &icon);

 printf("icon = %d\n",icon);

 error = 0.0;
 for (i=0; i<N2; i++) {
 for (j=0; j<N1; j++) {
 tmp = fabs(x[i][j]/(double)(N1*N2)-(double)(N1*i+j+1));
 error = max(error,tmp);
 }
 }

 c_dvmrf2

 699

 printf("error = %e\n",error);
}

5. Method

For further information consult the entry for VMRF2 in the Fortran SSL II Extended Capabilities User's Guide II.

Description of the C-SSL II Routines

700

c_dvmrft
Multiple and multivariate discrete real Fourier transform (mixed radices
of 2, 3, and 5).
ierr = c_dvmrft(x, n, m, isin, isn, w, &icon);

1. Function

This routine performs multiple and multivariate discrete real Fourier transforms (or the inverse transforms). Whether the
Fourier transform is to be performed, and its direction, can be specified for each of m dimensions. All dimensions on
which a transform is to be performed must have sizes that are products of the powers 2, 3, and 5.

At least one of the first m-1 dimensions must be an even number. A transform must be specified for the m-th dimension.

The result of a multiple and multivariate discrete real Fourier transform has a complex conjugate relation. By using this
relation, it is only necessary to store the first 12/floor mn elements for the m-th dimension, where mn is the size of
the m-th dimension.

Multivariate Fourier Transform
Transform: When }{ ...21 mjjjx is provided, the transform defined below is used to obtain }...{ ...21 21 mkkkmnnn

1

0

1

0

1

0
......21

1

1

2

2

222

2

111

12121
.........

n

j

n

j

rkj
n

rkj
n

n

j

rkj
njjjkkkm

mmm

m

m

m

mm
xnnn ,

where 1,...,0 nk ,)/2exp(
nin , r = 1 or –1, = 1,2,...,m, and r specifies the transform direction in the

 -th dimension.

For r = 0, the summation

1

0

n

j

is omitted, the j -th index of x is changed to k , and n on the left hand side of

the above definition is replaced with 1. For example, for r = (0, 1, 1), the following is obtained:

1

0

1

0
32

2

2

3

3

33

3

22

2321321
.

n

j

n

j

kj
n

kj
njjkkkk xnn

Fourier inverse transform: When }{ ...21 mkkk is provided, the inverse transform defined below is used to obtain
}{ ...21 mjjjx .

1

0

1

0

1

0
......

1

1

2

2

222

2

111

12121
......

n

k

n

k

rkj
n

rkj
n

n

k

rkj
nkkkjjj

mmm

m

m

m

mm
x ,

where 1,...,0 nj ,)/2exp(
nin , r = -1 or 1, = 1,2,...,m, and r specifies the transform direction in the

 -th dimension. With an inverse transform, a direction that is the inverse to that specified in the transform must be
specified.

For r = 0, the summation

1

0

n

k

is omitted, the k -th index of is changed to j . For example, for

r = (0, -1,-1), the following is obtained:

 c_dvmrft

 701

1

0

1

0

2

2

3

3

33

3

22

2321321
.

n

k

n

k

kj
n

kj
nkkjjjjx

Multiple transform
A multiple transform has only one summation. With a three-dimensional transform, the following is obtained:

1

0
3

3

3

333

3321321

n

j

rkj
njkkkkk xn .

2. Arguments

The routine is called as follows:
ierr = c_dvmrft((double *)x, n, m, isin, isn, w, &icon);

where:
x double x[Nmlen]

[n[m-2]]…[n[0]]

Input If isn = 1 (transform from real to complex), real data }{ ...21 mjjjx .
If isn = -1 (transform from complex to real), complex data

}{ ...21 mkkk . Nmlen = 12/floor2 mn = 2(n[m-1]/2+1).
See Comments on use for data storage.

 Output If isn = 1 (transform from real to complex), complex data
}...{ ...21 21 mkkkmnnn .

If isn = -1 (transform from complex to real) real data }{ ...21 mjjjx .
See Comments on use for data storage.

n int n[m] Input Sizes in , i = 1,2,...,m of the dimensions, with n[i-1] = in ,
i = 1,2,...,m. If isin[i-1] is non-zero, n[i-1] must be a
product of powers of 2,3, and 5. At least one of the first m-1
elements of n must be an even number.

m int Input The number of dimensions m of the multivariate Fourier transform.
isin int isin[m] Input Direction ir of the Fourier transform in the i-th dimension,

i = 1,2,...,m.
isin[i-1] = 1 for ir = 1
isin[i-1] = 0 for no transform
isin[i-1] = -1 for ir = -1
isin[m-1] cannot be 0.

isn int Input Control information.
isn = 1 for the transform (real to complex)
isn = -1 for the inverse transform (complex to real).

w double w[Wlen] Work .)12/(floor...),...,,max(2 12121 mmm nnnnnnnWlen
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30001 One of the following has occurred:

 n[i] 0 for some i
 m < 2.

Bypassed.

30008 n[i] is not a product of powers of 2,3, and 5, Bypassed.

Description of the C-SSL II Routines

702

Code Meaning Processing
when isin[i] 0 for some i.

30016 isin[i] -1, 0, or 1 for some i or
isin[m-1] = 0.

Bypassed.

30032 isn -1 or 1. Bypassed.
30512 The first m-1 elements of array n are odd

numbers.
Bypassed.

3. Comments on use

Data storage
The real data (transform input and inverse transform output) is stored in array x with

x[jm]…[j2][j1] =
mjjjx ...21

, 1,...,1,0 ii nj , i = 1,2,...,m.

For complex data (transform output and inverse transform input), the real part is stored in one half of array x and the
imaginary part in the other half of x.

x[km]…[k2][k1] = Re(
mkkk ...21

) or Re(
mkkkmnnn ...21 21

...), 1,...,1,0 ii nk , i = 1,2,...,m-1,
x[km+n[m-1]/2+1]…[k2][k1] = Im(

mkkk ...21
) or Im(

mkkkmnnn ...21 21
...), 2/floor,...,0 mm n k

An alternative way to reference the imaginary part of the data, as a separate array that is aliased to x, is shown in the
sample calling program. For isin[i-1] = 0, in in }...{ ...21 21 mkkkmnnn is replaced with 1, i = 1,...,m.

Complex conjugate relation
The result of the multivariate discrete real Fourier transform has the following complex conjugate relation:

1121 ... knkkk m

22 kn ... mm kn ,

1,...,1,0 ii nk , ,1,...,2,1 mi .2/floor,...,2,1 mm nk In the case of 0ik , ii kn is regarded as 0.

For h, where isin[h] = 0, the h-th index in the right hand terms is hk .

Only the terms }...{ ...21 21 mkkkmnnn , 1,...,1,0 ii nk , ,1,...,1 mi .2/floor,...,2,1 mm nk need be stored, as this
relation can be used to determine the remaining terms.

General definition of Fourier transform
The multivariate discrete Fourier transform and inverse transform can be defined as in (1) and (2).

1

0

1

0

1

0
...

21
...

1

1

2

2

222

2

111

12121
......

...
1 n

j

n

j

rkj
n

rkj
n

n

j

rkj
njjj

m
kkk

mmm

m

m

m

mm
x

nnn
 , (1)

where 1,...,0 nk ,)/2exp(
nin , r = 1 or –1, = 1,2,...,m,

1

0

1

0

1

0
......

1

1

2

2

222

2

111

12121
......

n

k

n

k

rkj
n

rkj
n

n

k

rkj
nkkkjjj

mmm

m

m

m

mm
x , (2)

where 1,...,0 nj ,)/2exp(
nin , r = -1 or 1, = 1,2,...,m.

 c_dvmrft

 703

This routine calculates }...{ ...21 21 mkkkmnnn or }{ ...21 mjjjx corresponding to the left hand terms of (1) or (2) respectively.
For i, where isin[i-1] = 0, in is replaced with 1. The user must normalize the results, if required.

4. Example program

This program performs the Fourier transform and prints out the transformed data. It then performs the inverse transform
and checks the result. Both the normal and inverse transforms are performed on the second dimension only.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define M 2
#define N1 4
#define N2 4
#define LDIM 2*(N2/2+1)
#define WLEN 2*N1+N1*LDIM

MAIN__()
{
 int ierr, icon;
 double x[LDIM][N1], xx[LDIM][N1], w[WLEN], eps;
 double (*cx)[2][LDIM/2][N1]; /* pointer to complex data */
 int i, j, n[M], isn, isin[M], m, pr;

 /* generate initial data */
 m = M;
 n[0] = N1;
 n[1] = N2;
 for (j=0;j<n[1];j++)
 for (i=0;i<n[0];i++)
 x[j][i] = (i+1)*(j+1);
 /* keep copy */
 for (j=0;j<N2;j++)
 for (i=0;i<N1;i++)
 xx[j][i] = x[j][i];
 /* perform normal transform */
 isn = 1;
 isin[0] = 0;
 isin[1] = 1;
 pr = n[1];
 ierr = c_dvmrft((double*)x, n, m, isin, isn, w, &icon);
 /* check results */
 if (icon != 0) {
 printf("ERROR: c_dvmrft failed with icon = %d\n", icon);
 exit(1);
 }
 /* print complex transformed data */
 cx = (double(*)[2][LDIM/2][N1])x; /* complex data overwrites real data */
 for (j=0;j<N2/2+1;j++) {
 for (i=0;i<N1;i++) {
 printf("%8.5f + i*%8.5f ", (*cx)[0][j][i], (*cx)[1][j][i]);
 }
 printf("\n");
 }
 /* perform inverse transform */
 isn = -1;
 isin[0] = 0;
 isin[1] = -1;
 ierr = c_dvmrft((double*)x, n, m, isin, isn, w, &icon);
 /* check results */
 eps = 1e-6;
 for (j=0;j<n[1];j++)
 for (i=0;i<n[0];i++)
 if (fabs((x[j][i]/pr - xx[j][i])/xx[j][i]) > eps) {
 printf("Inaccurate result\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

Description of the C-SSL II Routines

704

c_dvmsnt
Discrete sine transforms
ierr = c_dvmsnt(x, k, n, m, isw, tab, &icon);

1. Function

This function performs one-dimensional, multiple discrete sine transforms.

Given one-dimensional n1 sample data {xj} defined on the internal points except both end points dividing a half of 2
period of odd-function x(t) into n parts equally as follows:

 1,...,2,1,

 njj

n
xx j

this function calculate the discrete sine transform defined as follows in each row of the array:

1

1

1,...,2,1,sin2
n

j
jk nkkj

n
xa (1)

2. Arguments

The routine is called as follows:
ierr = c_dvmsnt((double*)x, k, n, m, isw, tab, &icon);

where:

x double

x[m][k]

Input The m sequences of {xj}, j = 1, ... , n1 are stored in x[i1][i2], i1 =
0, ... , m 1, i2 = 0, ... , n2.

 Output The m sequences of {ak}, k = 1, ... , n1 are stored in x[i1][i2], i1
= 0, ... , m 1, i2 = 0, ... , n2.

k int Input C fixed dimension of array x (n 1).
n int n Input The number of partition of the half period. n must be an even number.

See Comments on use.
m int Input The multiplicity m of the transform.
isw int isw Input Control information. See Comments on use.

isw should be set as follows.
0 to generate the array tab and perform the cosine transforms..
1 to prepare the array tab only.
2 to perform the cosine transforms using the array tab prepared

before calling.
tab double

tab[2n]
Work Trigonometric function table used for the transformation is stored.

icon int Output Condition code. See below.
The complete list of condition codes is given below:

 c_dvmsnt

 705

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n 0
 k < n 1
 m 0
 isw 0, 1, 2
 n is not an even number.

Processing is stopped.

3. Comments on use

Recommended value of n
The n can be an arbitrary even number, but the transform is fast with the sizes which can be expressed as products of the
powers of 2, 3, and 5.

Efficient use of the array tab
When this routine is called successively with a fixed value of n, the trigonometric function table tab should be initialized
once at first call with isw = 0 or 1 and should be kept intact for second and subsequent calls with isw = 2. This saves
initialization procedure of array tab.

Normalization
The cosine transform defined as in (1) is also an inverse transform itself. Applying the transform twice results in the
original sequences multiplied by 2 n.

If necessary, the user must normalize the results.

Stack size
This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack
area runs out. The necessary size is 16 n byte.

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command under consideration that
the stack area could be used for another work area of fixed size and for user’s program also.

4. Example program

In this example, sine transforms are calculated with multiplicity of 5.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define N 1024
#define K (N-1)
#define M 5
#define min(a,b) ((a) < (b) ? (a) : (b))

int MAIN__(void)
{
 double x[M][K], tab[N*2];
 double vnrm, error, t1, t2;
 int isw, icon, i, j;

 for (j=0; j<M; j++) {
 for (i=0; i<N-1; i++) {

Description of the C-SSL II Routines

706

 x[j][i]=(double)min(i+1,(N-i-1)/(j+1));
 }
 }

 /* FORWARD TRANSFORM */
 isw = 0;
 c_dvmsnt((double*)x, K, N, M, isw, tab, &icon);

 printf("icon = %d\n", icon);

 /* BACKWARD TRANSFORM */
 isw = 2;
 c_dvmsnt((double*)x, K, N, M, isw, tab, &icon);

 printf("icon = %d\n", icon);

 for (j=0; j<M; j++) {
 error = 0.0;
 vnrm = 0.0;
 for (i=0; i< N-1; i++) {
 t1=x[j][i]/(double)(N*2);
 t2=t1-(double)(min(i+1,(N-i-1)/(j+1)));
 vnrm +=t1*t1;
 error+=t2*t2;
 }
 printf("error = %e\n",sqrt(error/vnrm));
 }
}

5. Method

For further information consult the entry for VMSNT in the Fortran SSL II Extended Capabilities User's Guide II.

 c_dvmvsd

 707

c_dvmvsd
Multiplication of a real sparse matrix by a real vector (diagonal storage
format).
ierr = c_dvmvsd(a, k, ndiag, n, nofst, nlb, x,

y, &icon);

1. Function

This function computes the product in equation (1).

 y Ax (1)

In (1), A is an n n real sparse matrix with x and y both real vectors of size n.

2. Arguments

The routine is called as follows:
ierr = c_dvmvsd((double*)a, k, ndiag, n, nofst, nlb, x, y, &icon);

where:
a double

a[ndiag][k]

Input Sparse matrix A stored in diagonal storage format. See Comments on
use.

k int Input C fixed dimension of array a (n).
ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements.
n int Input Order n of matrix A.
nofst int

nofst[ndiag]

Input Distance from the main diagonal vector corresponding to diagonal
vectors in array a. Super-diagonal vectors have positive values. Sub-
diagonal vectors have negative values. See Comments on use.

nlb int Input Lower bandwidth of matrix A.
x double x[Xlen] Input Vector x is stored in x[i], nlb ≤ i < nlb+n.

Xlen = n + ndiag-1.
y double y[n] Output Product vector y.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 k < 1
 n < 1
 n > k
 ndiag < 1
 nlb max(-nofst[i]); 0 i < ndiag
 abs(nofst[i]) > n-1; 0 i < ndiag

Bypassed.

Description of the C-SSL II Routines

708

3. Comments on use

a and nofst
The coefficients of matrix A are stored in two arrays using the diagonal storage format. For full details, see the Array
storage formats section of the Introduction.

The advantage of this method lies in the fact that the matrix-vector product can be computed without the use of indirect
indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method.

4. Example program

This example program calculates a matrix-vector multiplication and checks the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 2
#define LBANDW 1

MAIN__()
{
 double one=1.0, eps=1.e-6;
 int ierr, icon;
 int ndiag, nlb, nub, n, i, j, k;
 int nofst[UBANDW + LBANDW + 1];
 double a[UBANDW + LBANDW + 1][NMAX], x[NMAX + UBANDW + LBANDW], y[NMAX];

 /* initialize matrix and vector */
 ndiag = UBANDW + LBANDW + 1;
 nlb = LBANDW;
 nub = UBANDW;
 n = NMAX;
 k = NMAX;
 for (i=1; i<=nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
 for (j=n-i; j<n ; j++) a[i][j] = 0.0;
 nofst[i] = i;
 }
 for (i=1; i<=nlb; i++) {
 for (j=0; j<i; j++) a[nub + i][j] = 0.0;
 for (j=i; j<n; j++) a[nub + i][j] = -2.0;
 nofst[nub + i] = -i;
 }
 for (i=0; i<n+nlb+nub; i++) x[i] = 0.0;
 nofst[0] = 0;
 for (j=0; j<n; j++) {
 a[0][j] = one;
 for (i=1; i<ndiag; i++) a[0][j] -= a[i][j];
 x[nlb + j] = one;
 }
 /* perform matrix-vector multiply */
 ierr = c_dvmvsd((double*)a, k, ndiag, n, nofst, nlb, x, y, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvmvsd failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0;i<n;i++)
 if (fabs(y[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

 c_dvmvse

 709

c_dvmvse
Multiplication of a real sparse matrix by a real vector (ELLPACK
storage format).
ierr = c_dvmvse(a, k, nw, n, icol, x, y,

&icon);

1. Function

This function computes the product of equation (1).

 y Ax (1)

In (1), A is an n n real sparse matrix with x and y both real vectors of size n.

2. Arguments

The routine is called as follows:
ierr = c_dvmvse((double*)a, k, nw, n, (int*)icol, x, y, &icon);

where:
a double

a[nw][k]

Input Sparse matrix A stored in ELLPACK storage format. See Comments on
use.

k int Input C fixed dimension of array a (n).
nw int Input The maximum number of non-zero elements in any row of matrix A

(0).
n int Input Order n of matrix A.
icol int

icol[nw][k]

Input Column indices used in the ELLPACK format, showing to which
column the elements corresponding to a belong. See Comments on use.

x double x[n] Input Vector x.
y double y[n] Output Solution vector y.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 k < 1
 n 0
 nw < 1
 n > k

Bypassed.

3. Comments on use

a and icol
The coefficients of matrix A are stored in two arrays using the ELLPACK storage format. For full details, see the Array
storage formats section of the Introduction.

Description of the C-SSL II Routines

710

Before storing data in the ELLPACK format, it is recommended that the user initialize the arrays a and icol with zero
and the row number, respectively.

4. Example program

This example program calculates a matrix-vector multiplication and checks the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 1000
#define UBANDW 2
#define LBANDW 1

MAIN__()
{
 double lcf=-2.0, ucf=-1.0, one=1.0, eps=1.e-6;
 int ierr, icon;
 int nlb, nub, nw, n, i, j, k, ix;
 int icol[UBANDW + LBANDW + 1][NMAX];
 double a[UBANDW + LBANDW + 1][NMAX], x[NMAX], y[NMAX];

 /* initialize matrix and vector */
 nub = UBANDW;
 nlb = LBANDW;
 nw = UBANDW + LBANDW + 1;
 n = NMAX;
 k = NMAX;
 for (i=0; i<n; i++) x[i] = one;
 for (i=0; i<nw; i++)
 for (j=0; j<n; j++) {
 a[i][j] = 0.0;
 icol[i][j] = j+1;
 }
 for (j=0; j<nlb; j++) {
 for (i=0; i<j; i++) a[i][j] = lcf;
 a[j][j] = one - (double) j * lcf - (double) nub * ucf;
 for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
 for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
 }
 for (j=nlb; j<n-nub; j++) {
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = one - (double) nlb * lcf - (double) nub * ucf;
 for (i=nlb+1; i<nw; i++) a[i][j] = ucf;
 for (i=0; i<nw; i++) icol[i][j] = i+1+j-nlb;
 }
 for (j=n-nub; j<n; j++){
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = one - (double) nlb * lcf - (double) (n-j-1) * ucf;
 for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
 ix = n - (j+nub-nlb-1);
 for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
 }
 /* perform matrix-vector multiply */
 ierr = c_dvmvse((double*)a, k, nw, n, (int*)icol, x, y, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvmvse failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0; i<n; i++)
 if (fabs(y[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

 c_dvqmrd

 711

c_dvqmrd
Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (QMR method, diagonal storage format).
ierr = c_dvqmrd(a, k, ndiag, n, nofst, at,

ntofst, b, itmax, eps, iguss, x,

&iter, vw, &icon);

1. Function

This routine solves a system of linear equations (1) using the quasi-minimal residual (QMR) method.

 Ax b (1)

In (1), A is an n n nonsymmetric or indefinite sparse matrix, b is a constant vector, and x is the solution vector. Both the
vectors are of size n, and n 1.

2. Arguments

The routine is called as follows:
ierr = c_dvqmrd((double *) a, k, ndiag, n, nofst, (double *) at, ntofst, b,

itmax, eps, iguss, x, &iter, vw, &icon);

where:
a double

a[ndiag][k]

Input Matrix A. Stored in diagonal storage format for general sparse matrices.
See Array storage formats in the Introduction section for details. See
Comments on use.

k int Input C fixed dimension of arrays a and at (n).
ndiag int Input Number (> 0) of diagonals of matrix A that contain non-zero elements.
n int Input Order n of matrix A.
nofst int

nofst[ndiag]

Input Offsets from the main diagonal corresponding to diagonals stored in A.
Upper diagonals have positive offsets, the main diagonal has a zero
offset, and the lower diagonals have negative offsets. See Array storage
formats in the Introduction section for details. See Comments on use.

at double

at[ndiag][k]

Input Matrix TA . Stored in diagonal storage format for general sparse
matrices. See Array storage formats in the Introduction section for
details. See Comments on use.

ntofst int

ntofst[ndiag]

Input Offsets from the main diagonal corresponding to diagonals stored in
TA . Upper diagonals have positive offsets, the main diagonal has a zero

offset, and the lower diagonals have negative offsets. See Array storage
formats in the Introduction section for details. See Comments on use.

b double b[n] Input Constant vector b.
itmax int Input Upper limit (> 0) on the number of iteration steps in the QMR method.
eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 10-6. See Comments on use.
iguss int Input Control information on whether to start the computation with

approximate solution values in array x. When iguss 0, computation

Description of the C-SSL II Routines

712

is to start from approximate solution values in x.
x double x[n] Input The starting approximations for the computation. This is optional and

relates to argument iguss.
 Output Solution vector.
iter int Output Total number of iteration steps performed in QMR method.
vw double

vw[Vwlen]
Work Vwlen = 9k + n + ndiag - 1.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Break-down occurred. See Comments on use. Discontinued.
20001 Upper limit of number of iteration steps was

reached.
Stopped. The approximate solution obtained up to
this stage is returned, but its precision is not
guaranteed.

30000 One of the following has occurred:
 n < 1
 k < 1 or k < n
 ndiag < 1 or ndiag > k
 itmax 0

Bypassed.

32001 |nofst[i-1]| > n-1 or
|ntofst[i-1]| > n-1
for some i = 1,...,ndiag

Bypassed.

3. Comments on use

a, at, nofst and ntofst
The coefficients of matrix A (and TA) are stored using two arrays a and nofst (at and ntoftst) and the diagonal
storage format. For full details, see the Array storage formats section of the Introduction.

eps
In the QMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and
eps, the solution is judged to have converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of matrix A and eps.

Break-down
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine
c_dvcrd which uses the MGCR method should be used.

General comments
The speed of the QMR method is generally higher than the MGCR method.

4. Example program

This program solves a system of linear equations and checks the result.

 c_dvqmrd

 713

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 2
#define LBANDW 1

MAIN__()
{
 double one=1.0, zero=0.0, lcoef=-2.0, ucoef=-1.0, bcoef=10.0, eps=1.e-06;
 int ierr, icon, ndiag, nub, nlb, n, itmax, iguss, iter, i, j, k;
 int nofst[UBANDW + LBANDW + 1], ntofst[UBANDW + LBANDW + 1];
 double a[UBANDW + LBANDW + 1][NMAX], at[UBANDW + LBANDW + 1][NMAX];
 double b[NMAX], x[NMAX], vw[NMAX * 9 + NMAX + UBANDW + LBANDW];

 nub = UBANDW;
 nlb = LBANDW;
 ndiag = nub + nlb + 1;
 n = NMAX;
 k = NMAX;

/* Set A-mat & b */
 for (i=1; i<=nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = ucoef;
 for (j=n-i; j<n ; j++) a[i][j] = zero;
 nofst[i] = i;
 }
 for (i=1; i<=nlb; i++) {
 for (j=0; j<i; j++) a[nub + i][j] = zero;
 for (j=i; j<n; j++) a[nub + i][j] = lcoef;
 nofst[nub + i] = -i;
 }
 nofst[0] = 0;
 for (j=0; j<n; j++) {
 b[j] = bcoef;
 a[0][j] = bcoef;
 for (i=1; i<ndiag; i++) b[j] += a[i][j];
 }
/* Set A-mat transpose */
 ntofst[0] = 0;
 for (j=0; j<n; j++) at[0][j] = a[0][j];
 for (i=1; i<ndiag; i++) {
 ntofst[i] = - nofst[i];
 for (j=0; j<n; j++) at[i][j] = a[i][n-j-1];
 }
/* solve the nonsymmetric system of linear equations */
 itmax = 2000;
 iguss = 0;
 ierr = c_dvqmrd ((double*)a, k, ndiag, n, nofst, (double*)at,
 ntofst, b, itmax, eps, iguss, x, &iter, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvqmrd failed with icon = %d\n", icon);
 exit(1);
 }
/* check result */
 for (i=0;i<n;i++)
 if (fabs(x[i]-one) > eps*10.0) {
 printf("WARNING: result maybe inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 exit(0);
}

5. Method

For the QMR method consult [37].

Description of the C-SSL II Routines

714

c_dvqmre
Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (QMR method, ELLPACK storage format).
ierr = c_dvqmre(a, k, iwidt, n, icol, at,

iwidtt, icolt, b, itmax, eps,

iguss, x, &iter, vw, &icon);

1. Function

This routine solves a system of linear equations (1) using the quasi-minimal residual method (QMR) method.

 Ax b (1)

In (1), A is an n n nonsymmetric or indefinite sparse matrix, b is a constant vector and x is the solution vector. Both the
vectors are of size n and n 1.

2. Arguments

The routine is called as follows:
ierr = c_dvqmre((double *) a, k, iwidt, n, (double *) icol, (double *) at,

iwidtt, (double *) icolt, b, itmax, eps, iguss, x, &iter, vw,

&icon);

where:
a double

a[iwidt][k]

Input Matrix A. Stored in ELLPACK storage format for general sparse
matrices. See Array storage formats in the Introduction section for
details. See Comments on use.

k int Input C fixed dimension of arrays a, at, icol and icolt (n).
iwidt int Input The maximum number (> 0) of non-zero elements in any row vectors

of A.
n int Input Order n of matrices A and TA .
icol int

icol[iwidt][k]

Input Column indices used in the ELLPACK format, showing to which
column the elements corresponding to a belong. See Comments on
use.

at double

at[iwidtt][k]

Input Matrix TA . Stored in ELLPACK storage format for general sparse
matrices. See Array storage formats in the Introduction section for
details. See Comments on use.

iwidtt int Input The maximum number (> 0) of non-zero elements in any row vectors
of TA .

icolt int icolt

[iwidtt][k]

Input Column indices used in the ELLPACK format, showing to which
column the elements corresponding to at belong. See Comments on
use.

b double b[n] Input Constant vector b.
itmax int Input Upper limit (> 0) on the number of iteration steps in the QMR

method.
eps double Input Tolerance for convergence test.

 c_dvqmre

 715

When eps is zero or less, eps is set to 10-6. See Comments on use.
iguss int Input Control information on whether to start the computation with

approximate solution values in array x. When iguss 0
computation is to start from approximate solution values in x.

x double x[n] Input The starting values for the computation. This is optional and relates to
argument iguss.

 Output Solution vector x.
iter int Output Total number of iteration steps performed in QMR method.
vw double vw[12k] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Break-down occurred. See Comments on use. Discontinued.
20001 Upper limit of number of iteration steps was

reached.
Stopped. The approximate solution obtained up to
this stage is returned, but its precision is not
guaranteed.

30000 One of the following has occurred:
 n < 1
 k < 1 or k < n
 iwidt < 1 or iwidt > k
 iwidtt < 1 or iwidtt > k
 itmax 0

Bypassed.

3. Comments on use

a, at, icol, and icolt
The coefficients of matrix A (and TA) are stored using two arrays a and icol (at and icolt) and the ELLPACK
storage format for general sparse matrices. For full details, see the Array storage formats section of the Introduction.

eps
In the QMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and
eps, the solution is judged to have converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of matrix A and eps.

Break-down
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine
c_dvcre which uses the MGCR method should be used.

General comments
The speed of the QMR method is generally higher than the MGCR method.

4. Example program

This program solves a system of linear equations and checks the result.

Description of the C-SSL II Routines

716

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 2
#define LBANDW 1

MAIN__()
{
 double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, zero = 0.0, eps=1.e-06;
 int ierr, icon, nlb, nub, iwidt, iwidtt, n, k, itmax, iguss, iter, i, j, ix;
 int icol[UBANDW + LBANDW + 1][NMAX], icolt[UBANDW + LBANDW + 1][NMAX];
 double a[UBANDW + LBANDW + 1][NMAX], at[UBANDW + LBANDW + 1][NMAX];
 double b[NMAX], x[NMAX], vw[NMAX * 12];

 nub = UBANDW;
 nlb = LBANDW;
 iwidt = UBANDW + LBANDW + 1;
 iwidtt = iwidt;
 n = NMAX;
 k = NMAX;

/* Initialize A-mat and A-mat transpose */
 for (i=0; i<iwidt; i++)
 for (j=0; j<n; j++) {
 a [i][j] = zero;
 at[i][j] = zero;
 icol [i][j] = j+1;
 icolt[i][j] = j+1;
 }
/* Set A-mat & b */
 for (j=0; j<nlb; j++) {
 for (i=0; i<j; i++) a[i][j] = lcf;
 a[j][j] = bcoef;
 b[j] = bcoef + (double) j * lcf + (double) nub * ucf;
 for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
 for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
 }
 for (j=nlb; j<n-nub; j++) {
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef;
 b[j] = bcoef + (double) nlb * lcf + (double) nub * ucf;
 for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;
 for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
 }
 for (j=n-nub; j<n; j++){
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef;
 b[j] = bcoef + (double) nlb * lcf + (double) (n-j-1) * ucf;
 for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
 ix = n - (j+nub-nlb-1);
 for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
 }
/* Set A-mat transpose */
 for (j=0; j<nub; j++) {
 for (i=0; i<j; i++) at[i][j] = ucf;
 at[j][j] = bcoef;
 for (i=j+1; i<j+1+nlb; i++) at[i][j] = lcf;
 for (i=0; i<=nlb+j; i++) icolt[i][j] = i+1;
 }
 for (j=nub; j<n-nlb; j++) {
 for (i=0; i<nub; i++) at[i][j] = ucf;
 at[nub][j] = bcoef;
 for (i=nub+1; i<iwidtt; i++) at[i][j] = lcf;
 for (i=0; i<iwidtt; i++) icolt[i][j] = i+1+j-nub;
 }
 for (j=n-nlb; j<n; j++){
 for (i=0; i<nub; i++) at[i][j] = ucf;
 at[nub][j] = bcoef;
 for (i=1; i<nlb-1+n-j; i++) at[i+nub][j] = lcf;
 ix = n - (j+nlb-nub);
 for (i=n; i>=j+nlb-nub; i--) icolt[ix--][j] = i;
 }
/* solve the nonsymmetric system of linear equations */
 itmax = 2000;
 iguss = 0;
 ierr = c_dvqmre ((double*)a, k, iwidt, n, (int*)icol, (double*)at,
 iwidtt, (int*)icolt, b, itmax, eps, iguss, x,
 &iter, vw, &icon);

 c_dvqmre

 717

 if (icon != 0) {
 printf("ERROR: c_dvqmre failed with icon = %d\n", icon);
 exit(1);
 }
/* check result */
 for (i=0; i<n; i++)
 if (fabs(x[i]-one) > eps*10.0) {
 printf("WARNING: result maybe inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 exit(0);
}

5. Method

For QMR method consult [37].

Description of the C-SSL II Routines

718

c_dvran3
Normal pseudo-random numbers.
Ierr = c_dvran3(dam, dsd, &ix, da, n, dwork,

nwork, &icon);

1. Function

This subroutine generates pseudo-random numbers from a normally distributed probability density function with a mean
of m and a standard deviation :

 2

2

2
)(exp

2
1)(mxxf

2. Arguments

The routine is called as follows:
ierr = c_dvran3(dam, dsd, &ix, da, n, dwork, nwork, &icon);

where:
dam double Input The mean m of the normal distribution.
dsd double Input Standard deviation of the normal distribution.
ix int Input Starting value, or ‘seed’. Set 0ix on the first call. See Comments on

use.
Output Return value is 0. Should not be changed on subsequent calls. See

Comments on use.
da double da[n] Output Pseudo-random numbers.
n int Input Number of pseudo-random numbers to be generated.
dwork double

dwork[nwork]

Work Contents should not be changed on subsequent calls.

nwork int Input Size of workspace. 156,1nwork .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30001 nwork is too small. Bypassed.
30002 0ix .
30003 to 30008 dwork was modified between calls or ix was set

to 0 on the first call.

3. Comments on use

This routine generates normally distributed pseudo-random numbers using the Polar method, which uses uniform random
numbers with a long period of at least 1052. A different starting value, or ‘seed’ gives a different sequence of numbers (see
ix below). That is, a random number sequence is generated from different random number subsequences. These

 c_dvran3

 719

subsequences are created through the segmentation of a long period random number sequence, and are separated by a
distance of at least 260 (> 1018) intervals. For details, see the entry for DVRAU4 in the Fortran SSL II Extended
Capabilities User's Guide II.

ix
Since a sequence of pseudo-random numbers is to be generated by a deterministic program, there must be some form of
random input. This is provided by ix. It should be set to a positive integer on the first call, and then left unaltered to
generate more numbers in the same sequence on subsequent calls, i.e. it is output as 0 after each call, and should be left
unaltered.

n
This argument controls the number of pseudo-random numbers generated from the infinite sequence defined by the
starting value of ix. If 0n , no random numbers are returned. For efficiency, n should be set to a large number, e.g.
100,000. This reduces the overheads involved in calling the routine several times, and allows vectorization. n can be
changed between successive calls provided that the size of da is as large as the maximum value of n.

dwork
This work space array is used to store the state information required for repeated calls to the library function. Therefore its
contents should not be altered between successive calls.

nwork
The size of the work space array, nwork should be at least 1,156 and should remain unchanged between successive calls
to the library function. For efficiency on vector processors however, nwork should be large, e.g. 100,000.

Repeated generation of the same random numbers
As dwork contains all the state information for the routine, it can be saved and reused to generate precisely the same
numbers from the same point in a particular sequence of random numbers, provided that ix is set to 0. That is, if ix is set
to 0, and a particular state is input in dwork, the same pseudo-random numbers will always be generated.

4. Example program

This program calculates 10000 normally distributed pseudo-random numbers, and their mean and standard deviation is
then determined. These observed values and the expected values of the mean and standard deviation are displayed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10000

MAIN__()
{
 int ierr, icon;
 int n, nwork, ix, i;
 double dsd, dam, dwork[NMAX], da[NMAX], sum, sumsq, mean, dev;

 /* initialize parameters */
 n = NMAX;
 nwork = NMAX;
 ix = 12345;
 dsd = 1;
 dam = 0;

 /* generate pseudo-random numbers */
 ierr = c_dvran3(dam, dsd, &ix, da, n, dwork, nwork, &icon);
 if (icon != 0) {

Description of the C-SSL II Routines

720

 printf("ERROR: c_dvran3 failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate mean and normal deviation */
 sum = 0;
 sumsq = 0;
 for (i=0;i<n;i++) {
 sum = sum+da[i];
 sumsq = sumsq+da[i]*da[i];
 }
 mean = sum/n;
 dev = sqrt(sumsq/n - mean*mean);
 printf("observed mean = %12.4e deviation = %12.4e\n",
 mean, dev);
 printf("calculated mean = %12.4e deviation = %12.4e\n",
 dam, dsd);
 return(0);
}

5. Method

To generate normally distributed pseudo-random numbers, this routine uses the Polar method, with fast elementary
function evaluation. The uniform pseudo-random numbers are generated by the Fortran routine DVRAU4.

The Polar method is described in [64]. Implementation details and comparison with other methods are discussed in [10].

 c_dvran4

 721

c_dvran4
Generation of normal random numbers.(Wallace’s method)
Ierr = c_dvran4(dam, dsd, &ix, da, n, dwork,

nwork, &icon);

1. Function

This subroutine generates pseudo-random numbers from a normal distribution density function with a given mean m and
standard deviation :

 2

2

2
)(exp

2
1)(mxxf

2. Arguments

The routine is called as follows:
ierr = c_dvran4(dam, dsd, &ix, da, n, dwork, nwork, &icon);

where:
dam double Input The mean m of the normal distribution.
dsd double Input Standard deviation of the normal distribution.
ix int Input Starting value, or ‘seed’. Set 0ix on the first call. See Comments on

use.
Output Return value is 0. Should not be changed on subsequent calls. See

Comments on use.
da double da[n] Output Pseudo-random numbers.
n int Input Number of pseudo-random numbers to be generated.
dwork double

dwork[nwork]

Work Contents should not be changed on subsequent calls.

nwork int Input Size of workspace. nwork 1,350.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30001 nwork is too small. Bypassed.
30002 Internal check failed.
30003 to 30008 dwork was modified between calls or ix was set

to 0 on the first call.
30009 ix is too large.
40001 to 40002 dwork was over written or ix was set to zero on

the initial call.

Description of the C-SSL II Routines

722

3. Comments on use

ix
Since a sequence of pseudo-random numbers is to be generated by a deterministic program, there must be some form of
random input. This is provided by ix. It should be set to a positive integer on the first call, and then left unaltered to
generate more numbers in the same sequence on subsequent calls, i.e. it is output as 0 after each call, and should be left
unaltered.

n
This argument controls the number of pseudo-random numbers generated from the infinite sequence defined by the
starting value of ix. If 0n , no random numbers are returned. For efficiency, n should be set to a large number, e.g.
100,000. This reduces the overheads involved in calling the routine several times, and allows vectorization. n can be
changed between successive calls provided that the size of da is as large as the maximum value of n.

dwork
This work space array is used to store the state information required for repeated calls to the library function. Therefore its
contents should not be altered between successive calls.

nwork
The size of the work space array, nwork should be at least 1,350 and should remain unchanged between successive calls
to the library function. For efficiency on vector processors however, nwork should be large, e.g. 500,000.

Repeated generation of the same random numbers
If dwork[0], ..., dwork[nwork-1] is saved, the same sequence of random numbers can be generated again (from the
point where dwork was saved) by reusing dwork[0], ..., dwork[nwork] and calling this subroutine with argument
ix = 0.

Wallace’s method
The implementation of Wallace's method in c_dvran4 is about three times faster than the implementation of the Polar
method in c_dvran3.

4. Example program

This program calculates 10000 normally distributed pseudo-random numbers, and their mean and standard deviation is
then determined. These observed values and the expected values of the mean and standard deviation are displayed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10000

MAIN__()
{
 int ierr, icon;
 int n, nwork, ix, i;
 double dsd, dam, dwork[NMAX], da[NMAX], sum, sumsq, mean, dev;

 /* initialize parameters */
 n = NMAX;
 nwork = NMAX;
 ix = 12345;
 dam = 0;
 dsd = 1;

 c_dvran4

 723

 /* generate pseudo-random numbers */
 ierr = c_dvran4(dam, dsd, &ix, da, n, dwork, nwork, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvran4 failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate mean and normal deviation */
 sum = 0;
 sumsq = 0;
 for (i=0;i<n;i++) {
 sum = sum+da[i];
 sumsq = sumsq+da[i]*da[i];
 }
 mean = sum/n;
 dev = sqrt(sumsq/n - mean*mean);
 printf("observed mean = %12.4e deviation = %12.4e\n",
 mean, dev);
 printf("calculated mean = %12.4e deviation = %12.4e\n",
 dam, dsd);
 return(0);
}

5. Method

This routine uses a variant of Wallace’s method to generate normally distributed pseudo-random numbers. The uniform
pseudo-random numbers are generated by the Fortran routine DVRAU4. For further information consult the entry for
DVRAN4 and DVRAU4 in the Fortran SSL II Extended Capabilities User’s Guide II, and also [8], [10] and [115].

Description of the C-SSL II Routines

724

c_dvrau4
Uniform [0.1) pseudo-random numbers.
ierr = c_dvrau4(&ix, da, n, dwork, nwork,

&icon);

1. Function

This subroutine generates pseudo-random numbers from a uniform distribution on [0,1).

2. Arguments

The routine is called as follows:
ierr = c_dvrau4(&ix, da, n, dwork, nwork, &icon);

where:
ix int Input Starting value, or ‘seed’. Set 0ix on the first call. See Comments on

use.
Output Return value is 0. Should not be changed on subsequent calls. See

Comments on use.
da double da[n] Output Pseudo-random numbers.
n int Input Number of pseudo-random numbers to be generated.
dwork double

dwork[nwork]

Work Contents should not be changed on subsequent calls.

nwork int Input Size of workspace. 388nwork .
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30001 nwork is too small. Bypassed.
30002 0ix .
30003 to 30008 dwork was modified between calls or ix was set

to 0 on the first call.

3. Comments on use

ix
Since a sequence of pseudo-random numbers is to be generated by a deterministic program, there must be some form of
random input. This is provided by ix. It should be set to a positive integer on the first call, and then left unaltered to
generate more numbers in the same sequence on subsequent calls, i.e. it is output as 0 after each call, and should be left
unaltered.

n
This argument controls the number of pseudo-random numbers generated from the infinite sequence defined by the
starting value of ix. If 0n , no random numbers are returned. For efficiency, n should be set to a large number, e.g.

 c_dvrau4

 725

100,000. This reduces the overheads involved in calling the routine several times, and allows vectorization. n can be
changed between successive calls provided that the size of da is as large as the maximum value of n.

dwork
This work space array is used to store the state information required for repeated calls to the library function. Therefore its
contents should not be altered between successive calls.

nwork
The size of the work space array, nwork should be at least 388 and should remain unchanged between successive calls to
the library function. For efficiency on vector processors however, nwork should be large, e.g. 45,000.

Repeated generation of the same random numbers
As dwork contains all the state information for the routine, it can be saved and reused to generate precisely the same
numbers from the same point in a particular sequence of random numbers, provided that ix is set to 0. That is, if ix is set
to 0, and a particular state is input in dwork, the same pseudo-random numbers will always be generated.

4. Example program

This program calculates 10000 pseudo-random numbers, and their mean and standard deviation is then determined. These
observed values and the expected values of the mean and standard deviation are displayed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10000

MAIN__()
{
 int ierr, icon;
 int n, nwork, ix, i;
 double dwork[NMAX], da[NMAX], sum, sumsq, mean, dev;

 /* initialize parameters */
 n = NMAX;
 nwork = NMAX;
 ix = 12345;
 /* generate pseudo-random numbers */
 ierr = c_dvrau4(&ix, da, n, dwork, nwork, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvrau4 failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate mean and normal deviation */
 sum = 0;
 sumsq = 0;
 for (i=0;i<n;i++) {
 sum = sum+da[i];
 sumsq = sumsq+da[i]*da[i];
 }
 mean = sum/n;
 dev = sqrt(sumsq/n - mean*mean);
 printf("observed mean = %12.4e deviation = %12.4e\n",
 mean, dev);
 printf("calculated mean = %12.4e deviation = %12.4e\n",
 0.5, sqrt(1.0/12));
 return(0);
}

Description of the C-SSL II Routines

726

5. Method

For more information on the methods used in this routine, see the entry for DVRAU4 in the Fortran SSL II Extended
Capabilities User's Guide II, and also [11] and [12]. For a comparison with other methods, see [6], [32], [58] and [70].

 c_dvrcvf

 727

c_dvrcvf
Discrete convolution or correlation of real data.
ierr = c_dvrcvf(x, k, n, m, y, ivr, isw, tab,

&icon);

1. Function

This function performs one-dimensional discrete convolutions or correlations between a filter and multiple input data
using discrete Fourier method.

The convolution and correlation of a filter y with a single input data x are defined as follows:

Convolution

1

0

1,...,0,
n

i
iikk nkyxz

Correlation

1

0

1,...,0,
n

i
iikk nkyxz

where, xj is a cyclic data with period n. See Comments on use.

2. Arguments

The routine is called as follows:
ierr = c_dvrcvf((double*)x, k, n, m, y, ivr, isw, tab, &icon);

where:
x double

x[m][k]

Input The m data sequences {xj}, j = 0, ... , n1, are stored in x[i][j] , i =
0, ... , m1, j = 0, ... , n1.

 Output The m sequences {zk}, k = 0, ... , n1, are stored in x[i][k] , i = 0, ... ,
m1, k = 0, ... , n1.

k int Input C fixed dimension of array x(n).
n int Input The number of elements in one data sequence or in filter y. n must be an

even number. See Comments on use.
m int Input The number of rows in the array x.
y double y[n] Input Filter vector {yi}. The values of this array will be altered after calling

with isw = 0 or 2. See Comments on use.
ivr int Input Specify either convolution or correlation.
 0 Convolution is calculated.
 1 Correlation is calculated.
isw int Input Control information.

0 all the procedure will be done at once.
If the calculation should be divided into step-by-step procedure,
specify as follows. See Comments on use.

1 to prepare the array tab.

Description of the C-SSL II Routines

728

2 to perform the Fourier transform in array y using the trigonometric
function table tab.

 3 to perform the convolution or correlation using the array y and tab
which are prepared in advance.

tab double

tab[2n]
Work Trigonometric function table used for the transformation is stored.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 n 0
 k < n
 m 0
 ivr 0, 1
 isw 0, 1, 2, 3
 n is not an even number.

Bypassed.

3. Comments on use

To compute non-periodic convolution or correlation
Non-periodic convolution or correlation can be calculated by this routine with padding the value of x[i][j], i = 0, ... ,
m 1, j = nx, ... , n 1 and y[k], k = ny, ... , n 1 with zeros, where nx is the actual length of the data sequence, ny is the
actual length of the filter y and n must be larger or equal to nx ny 1. See Example Program.

The values of correlation zk, corresponding to k = ny 1, ... , 1 are stored in x[i][j], i = 0, ... , m 1, j = n ny
1, ... , n 1 in this non-periodic case.

Recommended value of n
The n can be an arbitrary even number, but the calculation is fast with the sizes which can be expressed as products of the
powers of 2, 3, and 5.

Efficient use of the array tab and y
When this routine will calculate convolution or correlation successively for a fixed value of n, the trigonometric function
table tab should be initialized once at first call with isw = 0 or 1 and should be kept intact for second and subsequent
calls with isw = 2 and 3. This saves initialization procedure of array tab.

Furthermore, if the filter vector y is also fixed, the array y which is transformed with isw = 0 or 2 can be reused for
second and subsequent calls with isw = 3.

In these cases, the array y must be transformed surely once.

To compute autocorrelation
Autocorrelation or autoconvolution can be calculated by this routine with letting the filter array y be identical to the data
array x. In this case, specifying isw = 2 will be ignored. See Example Program.

 c_dvrcvf

 729

Stack size
This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack
area runs out. The necessary size is 8 n byte.

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command under consideration that
the stack area could be used for another work area of fixed size and for user’s program also.

4. Example program

Example 1) In this example, periodic convolution of a filter with three data vectors is calculated with n=8.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL header file */

#define K 8
#define M 3

int MAIN__(void)
{
 double x[M][K], y[K], tab[K*2];
 int ivr, isw, icon;
 int i, j, n;

 n = 8;

 for (j=0; j<M; j++) {
 for (i=0; i<n; i++) {
 x[j][i] = (double)(i+j+1);
 }
 }

 for (i=0; i<n; i++) {
 y[i] = (double)(i+11);
 }

 printf("--INPUT DATA--\n");

 for (j=0; j<M; j++) {
 printf("x[%d][*] : ",j);
 for (i=0; i<n; i++) {
 printf("%8.2f ",x[j][i]);
 }
 printf("\n");
 }

 printf("Filter y : ");
 for (i=0; i<n ; i++) {
 printf("%8.2f ", y[i]);
 }

 ivr = 0;
 isw = 0;
 c_dvrcvf((double*)x, K, n, M, y, ivr, isw, tab, &icon);

 printf("\n\n--OUTPUT DATA--\n");
 for (j=0; j<M; j++) {
 printf("x[%d][*] : ",j);
 for (i=0; i<n; i++) {
 printf("%8.2f ",x[j][i]);
 }
 printf("\n");
 }
}

Example 2) In this example, non-periodic convolution is calculated with nx=7, ny=9 and n=16.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL header file */

Description of the C-SSL II Routines

730

#define K 16
#define M 3

int MAIN__(void)
{
 double x[M][K], y[K], tab[K*2];
 int ivr, isw, icon;
 int i, j, n, nx, ny;

 nx=7, ny=9, n=nx+ny-1;
 if(n%2) n=n+1;

 for (j=0; j<M; j++) {
 for (i=0; i<nx; i++) {
 x[j][i] = (double)(i+j+1);
 }
 for (i=nx; i<n; i++) {
 x[j][i] = 0.0;
 }
 }

 for (i=0; i<ny; i++) {
 y[i] = (double)(i+11);
 }
 for (i=ny; i<n; i++) {
 y[i] = 0.0;
 }

 printf("--INPUT DATA--\n");

 for (j=0; j<M; j++) {
 printf("x[%d][*] : ",j);
 for (i=0; i<n; i++) {
 if(i%8==0) printf("\n ");
 printf("%8.2f ",x[j][i]);
 }
 printf("\n");
 }

 printf("Filter y : ");
 for (i=0; i<n ; i++) {
 if(i%8==0) printf("\n ");
 printf("%8.2f ", y[i]);
 }

 ivr = 0;
 isw = 0;
 c_dvrcvf((double*)x, K, n, M, y, ivr, isw, tab, &icon);

 printf("\n\n--OUTPUT DATA--\n");
 for (j=0; j<M; j++) {
 printf("x[%d][*] : ",j);
 for (i=0; i<n; i++) {
 if(i%8==0) printf("\n ");
 printf("%8.2f ",x[j][i]);
 }
 printf("\n");
 }
}

Example 3) In this example, autocorrelation is calculated with nx=4.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL header file */

#define K 8
#define M 3

int MAIN__(void)
{
 double x[M][K], tab[K*2];
 int ivr, isw, icon;
 int i, j, n, nx;

 nx=4, n=nx*2;

 for (j=0; j<M; j++) {
 for (i=0; i<nx; i++) {
 x[j][i] = (double)(i+j+1);

 c_dvrcvf

 731

 }
 for (i=nx; i<n; i++) {
 x[j][i] = 0.0;
 }
 }

 printf("--INPUT DATA--\n");

 for (j=0; j<M; j++) {
 printf("x[%d][*] : ",j);
 for (i=0; i<n; i++) {
 printf("%8.2f ",x[j][i]);
 }
 printf("\n");
 }

 ivr = 1;
 isw = 1;
 c_dvrcvf((double*)x, K, n, M, (double*)x, ivr, isw, tab, &icon);

 isw = 3;
 c_dvrcvf((double*)x, K, n, M, (double*)x, ivr, isw, tab, &icon);

 printf("\n--OUTPUT DATA--\n");
 for (j=0; j<M; j++) {
 printf("x[%d][*] : ",j);
 for (i=0; i<n; i++) {
 printf("%8.2f ",x[j][i]);
 }
 printf("\n");
 }
}

5. Method

For further information consult the entry for VRCVF in the Fortran SSL II Extended Capabilities User’s Guide.

Description of the C-SSL II Routines

732

c_dvrft1
Discrete real Fourier transform (radix 2 FFT).
ierr = c_dvrft1(a, n, isn, isw, vw, ivw,

&icon);

1. Function

Given one dimensional (n-term) real time series data { }x j ,this function computes the discrete real Fourier transform or
its inverse by the Fast Fourier Transform (FFT) using a method suited to a vector processor. It is assumed that n 2 ,
where is a non-negative integer.

Fourier transform
When { }x j is input, the transform defined below is calculated to obtain { }nak and { }nbk .

2/,...,1,0),cos(2
1

0

nkjkxna
n

j
jk

12/,...,2,1),sin(2
1

0

nkjkxnb
n

j
jk

where 2 / n .

Fourier inverse transform
When { }ak and { }bk are input, the transform defined below is calculated to obtain { }2x j .

 1,...,1,0,)sin()cos(2)cos(2
12/

1
2/0

njjkbjkajaax kk

n

k
nj

where 2 / n .

2. Arguments

The routine is called as follows:
ierr = c_dvrft1(a, n, isn, isw, vw, ivw, &icon);

where:
a double a[n+2] Input { }x j or { }ak , { }bk . See Comments on use for data storage.
 Output { }nak , { }nbk or { }x j
n int Input Number of terms n of the transform.
isn int Input Indicates that the transform (isn=+1) or the inverse transform

(isn=-1) is to be performed. See Comments on use.
isw int Input Information controlling the initial state of the transform. Specified by:

0 for the first call
1 for the second and subsequent calls.
See Comments on use.

vw double Work Rlen max(() / ,)n 1 2 1 .

 c_dvrft1

 733

vw[Rlen]
ivw int ivw[Ilen] Work Ilen n max(,) / 4 2 2 .
icon int Output Condition code. See below.
The complete list of condition codes :

Code Meaning Processing
0 No error Completed.
30000 One of the following has occurred:

 isn = 0,
 isw 0 or 1
 2n (0 is an integer)

Bypassed.

3. Comments on use

Use of this function
This function performs the high-speed calculation of a real FFT on a vector processor. Other routines might be more
appropriate on a general purpose computer.

Data storage for input data in array a
Array { }x j { }ak ,

{ }bk
a[0] x0 a0

a[1] x1
a[2] x2 a1
a[3] x3 b1

a[n-2] xn-2 an/2-1

a[n-1] xn-1 bn/2-1

a[n] * an/2

a[n+1] * *
The elements indicated by * are ignored on input and are set to zero on output.

isw
When multiple transforms are calculated, specify isw = 1 for the second and subsequent function calls. This enables
the function to bypass the steps for generating a trigonometric table and a list vector, both of which are needed for the
transform, thus improving processing efficiency. The contents of arrays vw and ivw must not be modified between
function calls.

Even if the number of terms n of each of the multiple transforms varies, specifying isw = 1 improves processing
efficiency. However, it is desirable that transforms with the same number of terms are executed consecutively for the
highest efficiency.

When calling this function together with the complex Fourier transform function c_dvcft1, specifying isw = 1
improves processing efficiency.

Description of the C-SSL II Routines

734

isn
Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used
for strided access through data. Therefore, if the real and imaginary parts of { }x j or { }ak , { }bk are stored at intervals of
length i, specify isn = +i for a transform and isn = -i for an inverse transform. The results will be stored at intervals of
length i.

When using a vector processor, the interval stride i should take the values i = 2p+1, for p = 1,2,3,….

Work array size conversion table
The table for 16 4096 n is as follows:

 n Length of
vw

Length of
ivw

4 16 40 16
5 32 96 32
6 64 224 64
7 128 512 192
8 256 1152 512
9 512 2560 1280

10 1024 5632 3072
11 2048 12288 7168
12 4096 26624 16384

General definition of Fourier transform
The discrete real Fourier transform and its inverse transform can be defined as shown below in (1) and in (2) respectively.

1

0

1

0

12/,...,2,1),sin(2

2/,...,1,0),cos(2

n

j
jk

n

j
jk

nkjkx
n

b

nkjkx
n

a

, (1)

 1,...,1,0,)sin()cos()cos(
2
1

2
1 12/

1
2/0

njjkbjkajaax kk

n

k
nj , (2)

where 2 / n .

This function computes { }nak , { }nbk or { }x j corresponding to the left hand side of (1) or (2). The user is responsible
for normalizing the result, if required.

4. Example program

This program computes a 1-D real FFT on 1024 elements, where the input elements are chosen at random. The inverse
transform is then computed and the normalized results of this are compared with the original data values.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

 c_dvrft1

 735

#define NMAX 1024

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps;
 double a[NMAX+2], b[NMAX+2], vw[NMAX*(10+1)/2];
 int i, n, isw, isn, ivw[NMAX*(10-4)/2];

 /* generate initial data */
 n = NMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (i=0;i<n;i++) {
 ran = (i+1)*phai;
 a[i] = ran - (int)ran;
 }
 for (i=0;i<n;i++)
 b[i] = a[i];
 /* perform normal transform */
 isw = 0;
 isn = 1;
 ierr = c_dvrft1(a, n, isn, isw, vw, ivw, &icon);
 /* perform inverse transform */
 isw = 1;
 isn = -1;
 ierr = c_dvrft1(a, n, isn, isw, vw, ivw, &icon);
 /* check results */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((a[i]/(2*n) - b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For further information consult the entries for VCFT1 and VRFT1 in the Fortran SSL II Extended Capabilities User’s
Guide.

Description of the C-SSL II Routines

736

c_dvrft2
Discrete real Fourier transform (memory efficient, radix 2 FFT).
ierr = c_dvrft2(a, n, isn, isw, vw, ivw,

&icon);

1. Function

Given one dimensional (n-term) real time-series data {xj}, this routine computes the discrete real Fourier transform
or its inverse transform by the Fast Fourier Transform (FFT) using a method suited to a vector processor. It is
assumed that n = 2l, where l is a non-negative integer.

Fourier transform
When {xj} is input, the transform defined below is used to obtain the Fourier coefficients {nak} and {nbk}.

1

0

,cos2
n

j
jk kjxna ,2/,...,1,0 nk ,/2 n

1

0

,sin2
n

j
jk kjxnb ,12/,...,1 nk n/2 .

Fourier inverse transform
When }{ ka and }{ kb are input, the transform defined below is used to obtain }2{ jx .

12/

1
2/0),cos()]sin(cos[22

n

k
nkkj jakjbkjaax ,1,...,1,0 nj n/2 .

2. Arguments

The routine is called as follows:
ierr = c_dvrft2(a, n, isn, isw, vw, ivw, &icon);

where:
a double a[n+2] Input }{ jx or }{ ka , }{ kb . See Comments on use for data storage.
 Output }{ kna , }{ knb or }2{ jx .

n int Input Number of terms n of the transform.
isn int Input Control information, indicating that the transform or the inverse

transform is to be performed (isn 0).
isn = 1 for transform,
isn = -1 for inverse transform.
See Comments on use.

isw int Input Control information, indicating the initial state of the transform.
isw = 0 for first call,
isw = 1 for the second and subsequent calls.
See Comments on use.

vw double

vw[7n/2]

Work

 c_dvrft2

 737

ivw int ivw[3n/2] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 isn = 0
 isw 0 or 1
 n 2 , with a non-negative integer.

Bypassed.

3. Comments on use

Use of this routine
This routine performs the high-speed calculation of a real Fourier transform on a vector processor. On a general-purpose
computer other routines may be more appropriate.

The function of this routine is the same as that of routine c_dvrft1, which is also suited to a vector processor. This
routine is suitable for calculating only a single transform. The work array area is limited to the required minimum; it is a
memory-efficient routine. For multiple transforms, if there is sufficient work array area available, the high-performance
routine c_dvrft1 is more suitable.

Data storage for input data in array a
Array }{ jx }{ ka ,

}{ kb

a[0] 0x 0a

a[1] 1x *

a[2] 2x 1a

a[3] 3x 1b

. . .

. . .

. . .

a[n-2] 2nx 12/ na

a[n-1] 1nx 12/ nb

a[n] * 2/na

a[n+1] * *

The elements indicated by * are ignored on input and are set to zero on output.

isn
Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used
for strided access through data. Therefore, if }{ jx or }{ ka , }{ kb are stored at intervals of length i, specify isn = +i for
a transform and isn = -i for an inverse transform. The results will be stored at intervals of length i.

Description of the C-SSL II Routines

738

When using a vector processor, the interval stride i should take a value of the form i = 2p + 1, p = 1,2,3,... for more
efficient memory access.

isw
When multiple transforms are calculated, specify isw = 1 for the second and subsequent routine calls. This enables the
routine to bypass the steps generating a trigonometric table and a list vector, both of which are needed for the transform,
thus improving processing efficiency. The contents of arrays vw and ivw must not be changed between routine calls.

Even if the number of terms n of each of the multiple transforms varies, specifying isw = 1 improves processing
efficiency. However, transforms with the same number of terms should be executed consecutively for the highest
efficiency.

When calling this routine together with the complex Fourier transform routine c_dvcft2, specifying isw = 1 improves
processing efficiency.

Work array size conversion table
The table for 16 n 4096 is as follows.

 n Length of
vw

Length of
ivw

4 16 56 24

5 32 112 48

6 64 224 96

7 128 448 192

8 256 896 384

9 512 1792 768

10 1024 3584 1536

11 2048 7168 3072

12 4096 14336 6144

General definition of Fourier transform
The discrete Fourier transform and its inverse transform can be defined as in (1) and (2):

1

0

,cos2 n

j
jk kjx

n
a 2/,...,1,0 nk , n/2

 (1)

1

0

,sin2 n

j
jk kjx

n
b 2/,...,1 nk , n/2

)cos(
2
1)],sin(cos[

2
1

2/

12/

1
0 jakjbkjaax n

n

k
kkj

, ,1,...,1,0 nj n/2 . (2)

This routine obtains }{ kna , { knb } or }2{ jx corresponding to the left hand side of (1) or (2) respectively. The user is
responsible for normalizing the result, if required.

 c_dvrft2

 739

4. Example program

This program performs the Fourier transform followed by the inverse transform and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 1024

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps;
 double a[NMAX+2], b[NMAX+2], vw[7*NMAX/2];
 int i, n, isw, isn, ivw[3*NMAX/2];

 /* generate initial data */
 n = NMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (i=0;i<n;i++) {
 ran = (i+1)*phai;
 a[i] = ran - (int)ran;
 }
 for (i=0;i<n;i++)
 b[i] = a[i];
 /* perform normal transform */
 isw = 0;
 isn = 1;
 ierr = c_dvrft2(a, n, isn, isw, vw, ivw, &icon);
 /* perform inverse transform */
 isw = 1;
 isn = -1;
 ierr = c_dvrft2(a, n, isn, isw, vw, ivw, &icon);
 /* check results */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((a[i]/(2*n) - b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VRFT2 in the Fortran SSL II Extended Capabilities User's Guide.

Description of the C-SSL II Routines

740

c_dvrpf3
Three-dimensional prime factor discrete real Fourier transform.
ierr = c_dvrpf3(a, l, m, n, isn, vw, &icon);

1. Function

Given three-dimension real time-series data }{
321 jjjx , where the size of each dimension is ,,, 321 nnn this routine

performs discrete real Fourier transform or the inverse transform by using the prime factor Fourier transform (prime factor
FFT). The size of each dimension must satisfy the following conditions:

-the size must be a product of mutually prime factors selected from }16,9,8,7,5,4,3,2{ .

-the size of the first dimension must be an even number 2 , where satisfies the previous condition.

Three-dimensional Fourier transform
When }{

321 jjjx is provided, the transform defined below is used to obtain }{
321321 kkknnn

1

0

1

0
32

1

0
1321

1

1

2

2

3322
3

3

11
321321

n

j

n

j

kjkj
n

j

kj
jjjkkk xnnn ,

where 1,...,0 rr nk , and)/2exp(rr ni , r = 1, 2, 3.

For a three-dimensional real Fourier transform }{
321 kkk is needed only for 2/floor,..,1,0 11 nk . A conjugate relation

can be used to calculate the remaining elements of the first dimension, 1,...,12/floor 111 nnk .

3211321 kkknkkk ,

Three-dimensional Fourier inverse transform: When }{
321 kkk is provided, the inverse transform defined below is

used to obtain }{
321 jjjx .

1

0

1

0
32

1

0
1

1

1

2

2

3322
3

3

11
321321

n

k

n

k

kjkj
n

k

kj
kkkjjjx ,

where 1,...,0 rr nj , and)/2exp(rr ni , r = 1, 2, 3.

2. Arguments

The routine is called as follows:
ierr = c_dvrpf3((double *) a, l, m, n, isn, vw, &icon);

where:
a double

a[n][m][l]

Input If isn 0 (transform from real to complex), real data }{
321 jjjx .

If isn < 0 (transform from complex to real), complex data }{
321 kkk .

See Comments on use for data storage.
 Output If isn 0 (transform from real to complex), complex data

}{
321321 kkknnn .

If isn < 0 (transform from complex to real) real data }{
321 jjjx .

 c_dvrpf3

 741

See Comments on use for data storage.
l int Input Number of data items of the third array dimension 1n + 2 with l even and

(l – 2)/2 5040.
m int Input Number of data items of the second dimension 2n , with m 5040.
n int Input Number of data items of the first array dimension 3n , with n 5040.
isn int Input Control information.

isn 0 for the transform (real to complex)
isn 0 for the inverse transform (complex to real).

vw double

vw[n*m*l]

Work

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 One of the following has occurred:

 (l –2)/2, m or n exceeds 5040
 (l –2)/2, m or n cannot be factored into the

product of mutually prime factors in
{2,3,4,5,7,8,9,16}

Bypassed.

30000 One of the following has occurred:
 l – 2 is not an even number
 l, m, or n is zero or a negative number

Bypassed.

3. Comments on use

Data storage
The real data (transform input and inverse transform output) is stored in array a with

a[j3][j2][j1] =
321 jjjx , 1,...,1,0 ii nj , i = 1, 2, 3.

For complex data (transform output and inverse transform input), the real part is stored in one half of array a and the
imaginary part in the other half of a.

a[k3][k2][k1] = Re(
321 kkk) or Re(

321321 kkknnn), 2/floor,...,1,0 11 nk ,
a[k3+1+n1/2][k2][k1] = Im(

321 kkk) or Im(
321321 kkknnn), 1,...,1,0 ii nk , i = 2, 3.

The sample calling program shows how it is possible to alias the portion of array a containing the imaginary part with a
second array, which makes it easier to work with the data.

Number of terms
The number of terms in a dimension is a product of mutually prime factors from {2,3,4,5,7,8,9,16}. The maximum
number for the second and third dimensions is 5 7 9 16 = 5040. The number of terms in the last dimension must be
an even number up to 2 5040.

When this routine is called with input argument n = 1, a two-dimensional prime factor fast Fourier transform is
determined.

Description of the C-SSL II Routines

742

When this routine is called with input arguments n = 1 and m = 1, a one-dimensional prime factor fast Fourier transform is
determined.

General definition of three-dimensional Fourier transform
The three dimensional discrete Fourier transform and its inverse transform can be defined as shown below in (1) and (2)
respectively.

1

0

1

0
32

1

0
1

321

1

1

2

2

3322
3

3

11
321321

1 n

j

n

j

kjkj
n

j

kj
jjjkkk x

nnn
 , (1)

where 1,...,0 rr nk , and)/2exp(rr ni , r = 1, 2, 3.

1

0

1

0
32

1

0
1

1

1

2

2

3322
3

3

11
321321

n

k

n

k

kjkj
n

k

kj
kkkjjjx , (2)

where 1,...,0 rr nj , and)/2exp(rr ni , r = 1, 2, 3.

This routine calculates }{
321321 kkknnn or }{

321 jjjx corresponding to the left hand terms of (1) or (2) respectively. The
user must normalize the results, if required.

4. Example program

This program performs the Fourier transform followed by the inverse transform and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

/* problem dimensions */
#define N1 4
#define N2 3
#define N3 2

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps;
 double a[N3][N2][N1+2]; /* allocate real data */
 double (*b)[2][N3][N2][(N1+2)/2]; /* pointer to complex data */
 double aa[N3][N2][N1+2], vw[N3][N2][N1+2];
 int i, j, k, cnt, l, m, n, isn, pr;

 /* generate initial real data */
 l = N1+2;
 m = N2;
 n = N3;
 pr = (l-2)*m*n;
 phai = (sqrt(5.0)-1.0)/2;
 cnt = 1;
 for (k=0;k<N3;k++) {
 for (j=0;j<N2;j++) {
 for (i=0;i<N1;i++) {
 ran = cnt*phai;
 a[k][j][i] = ran - (int)ran;
 cnt++;
 }
 }
 }
 /* keep copy */
 for (k=0;k<N3;k++) {
 for (j=0;j<N2;j++) {
 for (i=0;i<N1;i++)
 aa[k][j][i] = a[k][j][i];
 }

 c_dvrpf3

 743

 }
 /* perform normal transform */
 isn = 1;
 ierr = c_dvrpf3((double*)a, l, m, n, isn, (double*)vw, &icon);
 /* print complex transformed data */
 b = (double(*)[2][N3][N2][(N1+2)/2])a; /* complex data overwrites real data */
 for (k=0;k<N3;k++) {
 for (j=0;j<N2;j++) {
 for (i=0;i<=N1/2;i++) {
 printf("%8.5f + i*%8.5f ", (*b)[0][k][j][i], (*b)[1][k][j][i]);
 }
 printf("\n");
 }
 printf("\n");
 }
 /* perform inverse transform */
 isn = -1;
 ierr = c_dvrpf3((double*)a, l, m, n, isn, (double*)vw, &icon);
 /* check results */
 eps = 1e-6;
 for (k=0;k<N3;k++) {
 for (j=0;j<N2;j++) {
 for (i=0;i<N1;i++) {
 if (fabs((a[k][j][i]/pr - aa[k][j][i])/aa[k][j][i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 }
 }
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VRPF3 in the Fortran SSL II Extended Capabilities User's Guide II and references [17] and [120].

Description of the C-SSL II Routines

744

c_dvseg2
Selected eigenvalues and corresponding eigenvectors of a real symmetric
matrix (parallel bisection and inverse iteration methods).
ierr = c_dvseg2(a, n, m, epst, e, ev, k, vw,

ivw, &icon);

1. Function

This function calculates m eigenvalues of an n order real symmetric matrix A given by:

 xAx

in descending (or ascending) order, using the parallel bisection method. It also calculates the corresponding m
eigenvectors, using the inverse iteration method. Eigenvectors are normalised such that x 2 1 . The result must be such
that 1 m n .

2. Arguments

The routine is called as follows:
ierr = c_dvseg2(a, n, m, epst, e, (double *)ev, k, vw, ivw, &icon);

where:
a double a[Alen] Input Symmetric matrix A with dimension of Alen = n(n+1)/2. The matrix

is stored in symmetric storage format. See the Array storage formats
section in the Introduction.

Output The content is altered on output.
n int Input Order n of the symmetric matrix A.
m int Input Number m of the eigenvalues to be calculated. Calculate in descending

order when m = +m. Calculate in ascending order when m = -m.
epst double Input Upper bound of the absolute errors used in eigenvalue convergence test.

A default value is used when a non-positive value is specified. See
Comments on use.

e double e[|m|] Output Contains eigenvalues stored in ascending or descending order depending
on the sign of m.

ev double

ev[|m|][k]

Output Eigenvector corresponding to eigenvalue e[i] is stored at
ev[i][j], j=0,1,…,n-1.

k int Input C fixed dimension of array ev (n).
vw double

vw[15*n]

Work

ivw int ivw[7*n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.

 c_dvseg2

 745

Code Meaning Processing
10000 n = 1 ev[0][0] is set to 1.0, and e[0] is set to

a[0].
15000 Some eigenvectors were not calculated. The uncalculated eigenvectors are set to zero.
20000 No eigenvectors were calculated. All of the eigenvectors are set to zero.
30000 One of the following has occurred:

 m = 0.
 n < m.
 k < n.

Bypassed.

3. Comments on use

epst
The default value of the argument epst is expressed by (1) where is the unit round-off:

 epst max(,)max min (1)

where max and min are the upper and lower bounds of the existence range (given by Gerschgorin’s theorem) of the
eigenvalues of Ax x .

When very large and small absolute eigenvalues co-exist and a convergence test is performed using (1), it is generally
difficult to calculate smaller eigenvalues with adequate precision. In such cases, smaller eigenvalues may be calculated
with higher precision by setting epst to a smaller value. However, processing speed decreases as the number of
iterations increases.

See the entry for VSEG2 in the Fortran SSL II Extended Capability User’s Guide to obtain details on the convergence
criterion.

4. Example program

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 symmetric matrix.

#include <stdlib.h>
#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 5

MAIN__()
{
 int ierr, icon;
 int n, m, i, j, ij, k, ivw[7*NMAX];
 double a[NMAX*(NMAX+1)/2], e[NMAX], ev[NMAX][NMAX], vw[15*NMAX], epst;

 /* initialize matrix */
 n = NMAX;
 ij = 0;
 for (i=0;i<n;i++)
 for (j=0;j<=i;j++) {
 a[ij++] = n-i;
 }
 k = NMAX;
 m = n;
 epst = 0;
 /* find eigenvalues and eigenvectors */
 ierr = c_dvseg2(a, n, m, epst, e, (double*)ev, k, vw, ivw, &icon);
 if (icon >= 20000) {
 printf("ERROR: c_dvseg2 failed with icon = %d\n", icon);
 exit(1);

Description of the C-SSL II Routines

746

 }
 /* print eigenvalues and eigenvectors */
 for (i=0;i<m;i++) {
 printf("e-value %d: %10.4f\n",i+1,e[i]);
 printf("e-vector:");
 for (j=0;j<n;j++)
 printf("%7.4f ",ev[i][j]);
 printf("\n");
 }
 return(0);
}

5. Method

This function calculates m eigenvalues of an n by n real symmetric matrix A in descending (or ascending) order using the
parallel bisection method and their corresponding eigenvectors using the inverse iteration method.

For further information consult the entry for VSEG2 in the Fortran SSL II Extended Capability User’s Guide.

 c_dvsevp

 747

c_dvsevp
Eigenvalues and eigenvectors of a real symmetric matrix
(tridiagonalization, multisection method, and inverse iteration)
ierr = c_dvsevp(a, k, n, nf, nl, ivec, &etol,

&ctol, nev, e, maxne, m, ev, vw,

iw, &icon);

1. Function

This routine calculates specified eigenvalues and, optionally, eigenvectors of an n-dimensional real symmetric
matrix A.

First, the matrix is reduced to tridiagonal form using the Householder reductions. Then, the specified eigenvalues are
obtained by the multisection method. The eigenvectors are obtained by the inverse iteration.

 Ax = x. (1)

2. Arguments

The routine is called as follows:
ierr = c_dvsevp((double *)a, k, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne,

(int *)m, (double *)ev, vw, iw, &icon);

where:
a double a[n][k] Input Real symmetric matrix A, stored in the real symmetric storage format.

See Array storage formats in the Introduction section.
k int Input C fix dimension of matrix A. (k n)
n int Input Order n of matrix A.
nf int Input Number assigned to the first eigenvalue to be acquired by numbering

eigenvalues in ascending order. (Multiple eigenvalues are numbered so
that one number is assigned to one eigenvalue.)

nl int Input Number assigned to the last eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so
that one number is assigned to one eigenvalue.)

ivec int Input Control information.
ivec = 1 if both the eigenvalues and eigenvectors are sought.
ivec 1 if only the eigenvalues are sought.

etol double Input Tolerance for determining whether an eigenvalue is distinct or
numerically multiple.

 Output etol is set to the default value of 16103 when etol is set to less
than it. See Comments on use.

ctol double Input Tolerance (etol) for determining whether adjacent eigenvalues are
approximately multiple, i.e. clustered.

 Output When ctol is less than etol, ctol is set to etol. See Comments
on use.

Description of the C-SSL II Routines

748

nev int nev[3] Output Number of eigenvalues calculated.
nev[0] indicates the number of distinct eigenvalues,
nev[1] indicates the number of distinct clusters,
nev[2] indicates the total number of eigenvalues including
multiplicities.

e double

e[maxne]

Output Eigenvalues. Stored in e[i-1], i = 1,...,nev[2].

maxne int Input Maximum number of eigenvalues that can be computed. See Comments
on use.

m int

m[2][maxne]

Output Information about the multiplicity of the computed eigenvalues.
m[0][i-1] indicates the multiplicity of the i-th eigenvalue = i ,
m[1][i-1] indicates the size of the i-th cluster of eigenvalues,
i = 1,...,min{maxne, nev[2]}.

ev double

ev[maxne][k]

Output When ivec = 1, the eigenvectors corresponding to the computed
eigenvalues. Stored by row in ev[i-1][j-1], i = 1,...,nev[2],
j = 1,...,n.

vw double vw[17n] Work
iw int iw[Ivwlen] Work Ivwlen = 9 k + 128.
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 The total number of eigenvalues exceeded

maxne during computation of multiple and/or
clustered eigenvalues.

Discontinued. The eigenvectors cannot be
computed. Eigenvalues are returned but are not
stored taking into account multiplicities. See
Comments on use.

30000 One of the following has occurred:
 n < 1
 k < n
 nf < 1
 nl > n
 nl < nf
 maxne < nl-nf+1

Bypassed.

30100 The input matrix may not be a symmetric matrix. Bypassed.

3. Comments on use

etol and ctol
If the eigenvalues j , ksssj ,...,1, ,)0(k satisfy

|)||,max(|1
||

1

1

ii

ii , (2)

with = etol, and if 1s and 1ks do not satisfy (2), then the eigenvalues j , ksssj ,...,1, , are considered
to be identical, that is, a single eigenvalue of multiplicity 1k .

 c_dvsevp

 749

The default value of etol is 16103 . Using this value, the eigenvalues are refined to machine precision.

When (2) is not satisfied for = etol, 1i and i are assumed to be distinct eigenvalues.

If (2) is satisfied for = ctol (but is not satisfied with = etol) for eigenvalues j , ktttj ,...,1, , but not for

1t and 1kt , then eigenvalues j , ktttj ,...,1, , are considered to be approximately multiple, that is, clustered,
though distinct (not numerically multiple). In order to obtain an invariant subspace, eigenvectors corresponding to
clustered eigenvalues are computed using orthogonal starting vectors and are re-orthogonalized.

If ctol < etol, then ctol = etol is set.

maxne
Assume r eigenvalues are requested. Note that if the first or last requested eigenvalue has a multiplicity greater than 1 then
more than r eigenvalues, are obtained. The corresponding eigenvectors can be computed only when the corresponding
eigenvector storage area is sufficient.

The maximum number of computable eigenvalues can be specified in maxne. If the total number of eigenvalues exceeds
maxne, icon = 20000 is returned. The corresponding eigenvectors cannot be computed. In this case, the eigenvalues are
returned, but they are not stored repeatedly according to multiplicities.

When all eigenvalues are distinct, it is sufficient to set maxne = nl–nf+1.

When the total number of eigenvalues to be sought exceeds maxne, the necessary value for maxne for seeking
eigenvalues again is returned in nev[2].

4. Example program

This program obtains eigenvalues and prints the results.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define K 500
#define N K
#define NF 1
#define NL 100
#define MAXNE NL-NF+1
#define NVW 17*K
#define NIW 9*MAXNE+128

MAIN__()
{
 double a[N][K], ab[N][K];
 double e[MAXNE], ev[MAXNE][K], vw[NVW];
 double vv[N][K];
 double etol, ctol, pi;
 int nev[3], m[2][MAXNE], iw[NIW];
 int ierr, icon;
 int i, j, k, n, nf, nl, maxne, ivec;

 n = N;
 k = K;
 nf = NF;
 nl = NL;
 ivec = 1;
 maxne = MAXNE;
 etol = 3.0e-16;
 ctol = 5.0e-12;

Description of the C-SSL II Routines

750

 /* Generate real symmetric matrix with known eigenvalues */
 /* Initialization */
 pi = 4.0 * atan(1.0);
 for(i=0; i<n; i++) {
 for(j=0; j<n; j++) {
 vv[i][j] = sqrt(2.0/(double)(n+1))*sin((double)(i+1)*pi*
 (double)(j+1)/(double)(n+1));
 a[i][j] = 0.0;
 }
 }

 for(i=0; i<n; i++) {
 a[i][i] = (double)(-n/2+(i+1));
 }

 printf(" Input matrix size is %d\n", n);
 printf(" Matrix calculations use k = %d\n", k);
 printf(" Desired eigenvalues are nf to nl %d %d\n", nf, nl);
 printf(" That is, request %d eigenvalues.\n", maxne) ;
 printf(" True eigenvalues are as follows\n");
 for(i=nf-1; i<nl; i++) {
 printf("a(%d,%d) = %12.4e\n", i, i, a[i][i]);
 }

 ierr = c_dvmggm ((double*)a, k, (double*)vv, k, (double*)ab, k, n, n, n, &icon);
 ierr = c_dvmggm ((double*)vv, k, (double*)ab, k, (double*)a, k, n, n, n, &icon);

 /* Calculate the eigendecomposition of A */
 ierr = c_dvsevp ((double*)a, k, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne,
 (int*)m, (double*)ev, vw, iw, &icon);
 if (icon > 0) {
 printf("ERROR: c_dvsevp failed with icon = %d\n", icon);
 exit(1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf(" Number of eigenvalues %d\n", nev[2]);
 printf(" Number of distinct eigenvalues %d\n", nev[0]);
 printf(" Solution to eigenvalues\n");
 for(i=0; i<nev[2]; i++) {
 printf(" e[%d] = %12.4e\n", i, e[i]);
 }
 return(0);
}

5. Method

Consult the entry for VSEVP in the Fortran SSL II Extended Capabilities User's Guide II and [81].

 c_dvsin1

 751

c_dvsin1
Discrete sine transform (radix 2 FFT).
ierr = c_dvsin1(b, n, tab, vw, ivw, &icon);

1. Function

Given n data points { }x j , obtained by dividing the first half of a 2 period, odd function)(tx into n equal parts, that is

n
njjxx j

 ,1,...,1,0),(.

The discrete sine transform or its inverse transform is computed by a Fast Fourier Transform (FFT) algorithm suited to a
vector processor.

 It is assumed that n 2 , where is a non-negative integer.

Sine transform
When { }x j is input, the transform defined below is calculated to obtain }2{ knb .

1,...,1,0),sin(42
1

1

nkjkxnb
n

j
jk

where n/ and x0 = 0.

Sine inverse transform
When }{ kb is input, the transform defined below is calculated to obtain }4{ jx .

1,...,1,0,)sin(44
1

1

njjkbx
n

k
kj

where n/ and b0 = 0.

2. Arguments

The routine is called as follows:
ierr = c_dvsin1(b, n, tab, vw, ivw, &icon);

where:
b double b[n+2] Input }{ jx or }{ kb . As x0 and b0 are assumed to be zero; b[0], b[n] and

b[n+1] are ignored.
 Output }2{ knb or }4{ jx ; b[0], b[n] and b[n+1] are set to zero.
n int Input Number of samples n.
tab double

tab[Tlen]
Output Trigonometric function table used in the transformation. Tlen = 2n+4.

vw double

vw[Rlen]
Work Rlen max(() / ,)n 1 2 1 .

ivw int ivw[Ilen] Work Ilen n max(,) / 4 2 2 .
icon int Output Condition code. See below.

Description of the C-SSL II Routines

752

The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 2n (0 is an integer). Bypassed.

3. Comments on use

Use of this function
This function performs the high-speed calculation of a discrete sine transform on a vector processor. Other routines might
be more appropriate on a general purpose computer.

Multiple transforms
Multiple transforms are performed efficiently because the generation of the trigonometric table and list vector are only
performed on the first call to the function. It is therefore essential that tab, vw and ivw remain unchanged between calls
to this function.

The contents of these three arguments are valid even when the number of terms n are different for the multiple transforms.
However, it is desirable that transforms with the same number of terms are executed consecutively for the highest
efficiency.

Work array size conversion table
The table for 16 4096 n is as follows:

 n Length of
tab

Length of
vw

Length of
ivw

4 16 36 40 16
5 32 68 96 32
6 64 132 224 64
7 128 260 512 192
8 256 516 1152 512
9 512 1028 2560 1280

10 1024 2052 5632 3072
11 2048 4100 12288 7168
12 4096 8196 26624 16384

General definition of discrete sine transform
The discrete sine transform and its inverse transform can be defined as shown below in (1) and in (2) respectively.

 1,...,1,0),sin(2 1

1

nkjkx
n

b
n

j
jk , (1)

 1,...,1,0,)sin(
1

1

njjkbx
n

k
kj , (2)

where n/ .

 c_dvsin1

 753

This function computes }2{ knb or }4{ jx corresponding to the left hand side of (1) or (2). The user is responsible for
normalizing the result, if required.

4. Example program

This program computes a sine transform on 1024 elements, where the input elements are chosen at random. The inverse
transform is then computed and the normalized results of this are compared with the original data values.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 1024

MAIN__()
{
 int ierr, icon;
 double phai, ran, scale, eps;
 double a[NMAX+2], b[NMAX+2], tab[2*NMAX+4], vw[NMAX*(10+1)/2];
 int i, n, ivw[NMAX*(10-4)/2];

 /* generate initial data */
 n = NMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (i=1;i<n;i++) {
 ran = (i+1)*phai;
 a[i] = ran - (int)ran;
 }
 for (i=1;i<n;i++)
 b[i] = a[i];
 /* perform normal transform */
 ierr = c_dvsin1(a, n, tab, vw, ivw, &icon);
 /* perform inverse transform */
 ierr = c_dvsin1(a, n, tab, vw, ivw, &icon);
 /* check results */
 scale = 1.0/(8*n);
 eps = 1e-6;
 for (i=0;i<n+1;i++)
 if (fabs((scale*a[i]-b[i])) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For further information consult the entry for VSIN1 in the Fortran SSL II Extended Capabilities User’s Guide and [88]
and [108].

Description of the C-SSL II Routines

754

c_dvsldl
LDL T decomposition of a symmetric positive definite matrix (modified
Cholesky’s method).
ierr = c_dvsldl(a, n, epsz, vw, ivw, &icon);

1. Function

This routine performs LDL T decomposition of an nn symmetric positive definite matrix A, using the modified
Cholesky’s method,

 TLDLA . (1)

In (1) L is a unit lower triangular matrix and D is a diagonal matrix. Here, 1n .

2. Arguments

The routine is called as follows:
ierr = c_dvsldl(a, n, epsz, vw, ivw, &icon);

where:
a double a[Alen] Input Matrix A. Stored in symmetric positive definite storage format. See

Array storage formats in the Introduction section for further details.
.2/)1(nnAlen

 Output Matrix D 1 + (L – I). Stored in symmetric positive definite storage
format. See Array storage formats in the Introduction section for further
details.

n int Input Order n of matrix A.
epsz double Input Tolerance (0) for relative zero test of pivots in the decomposition

process of matrix A. When epsz = 0, a standard value is used. See
Comments on use.

vw double vw[2n] Work
ivw int ivw[n] Work
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
10000 A pivot was negative. Matrix A is not positive

definite.
Continued.

20000 A pivot is relatively zero. It is probable that
matrix A is singular.

Discontinued.

30000 One of the following has occurred:
 n < 1
 epsz < 0

Bypassed.

 c_dvsldl

 755

3. Comments on use

epsz
The standard value of epsz is 16 , where is the unit round-off. If, during the decomposition process, a pivot value fails
the relative zero test, it is considered to be zero and decomposition is discontinued with icon = 20000. Decomposition
can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy.

icon
If a pivot is negative during decomposition, the matrix A is not positive definite and icon = 10000 is set. Processing is
continued, however no further pivoting is performed and the resulting calculation error may be significant.

Calculation of determinant
The determinant of matrix A is the same as the determinant of matrix D, and can be calculated by forming the product of
the elements of output array a corresponding to the diagonal elements of D 1 , and then taking the reciprocal of the result.

4. Example program

This program solves a system of linear equations using LDL T decomposition, and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int ierr, icon;
 int n, i, j, ij;
 double epsz, eps, sum;
 double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX];
 int ivw[NMAX];

 /* initialize matrix and vector */
 n = NMAX;
 ij = 0;
 for (j=0;j<n;j++)
 for (i=j;i<n;i++)
 a[ij++] = n-i;
 for (i=0;i<n;i++) {
 x[i] = i+1;
 b[i] = 0;
 }
 /* initialize constant vector b = a*x */
 ij = 0;
 for (i=0;i<n;i++) {
 sum = a[ij++]*x[i];
 for (j=i+1;j<n;j++) {
 b[j] = b[j] + a[ij]*x[i];
 sum = sum + a[ij++]*x[j];
 }
 b[i] = b[i]+sum;
 }
 epsz = 1e-6;
 /* LDL decomposition of system of equations */
 ierr = c_dvsldl(a, n, epsz, vw, ivw, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvsldl failed with icon = %d\n", icon);
 exit(1);
 }
 /* solve decomposed system of equations */
 ierr = c_dvldlx(b, a, n, &icon);
 if (icon > 10000) {
 printf("ERROR: c_dvldlx failed with icon = %d\n", icon);
 exit(1);
 }

Description of the C-SSL II Routines

756

 /* check solution vector */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-b[i])/b[i]) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for VSLDL in the Fortran SSL II Extended Capabilities User's Guide.

 c_dvspll

 757

c_dvspll
LLT decomposition of symmetric positive definite matrix (blocked
Cholesky decomposition method).
ierr = c_dvspll(a, k, n, epsz, &icon);

1. Function

This function executes LLT decomposition for an n n positive definite matrix A using the blocked Cholesky
decomposition of outer products.

 A = LLT

where, L is a lower triangular matrix. It is assumed that n1.

2. Arguments

The routine is called as follows:
ierr = c_dvspll((double*)a, k, n, epsz, &icon);

where:
a double

a[n][k]

Input The upper triangular part {aij, i j} of A is stored in the upper triangular
part {a[i-1][j-1], i j} of a for input.
See Figure dvspll-1.
The contents of the array are altered on output.

 Output Decomposed matrix. After the first set of equations has been solved, the
upper triangular part of a[i-1][j-1](i j) contains lij (i j) of the
upper triangular matrix LT.

k int Input A fixed dimension of matrix A. (n)
n int Input Order n of matrix A.
epsz double Input Tolerance for relative zero test (0).

When epsz is zero, a standard value is assigned. See Comments on use.
icon int Output Condition code. See below.

k
n

n

a11 a1na12

ann

a22 a2n

Unnecessary

Input Array a

k
n

n

l11 l1n l12

lnn

l22 l2n

Altered

Output Array a

Figure dvspll-1. Storing the data by Cholesky decomposition

Description of the C-SSL II Routines

758

The diagonal elements and upper triangular part aij of the positive definite matrix for whith LLT decomposition is
performed is stored in array a[i-1][j-1], i=1,...,n, j=i,...,n.
After LLT decomposition, the upper triangular matrix LT is stored in the upper triangular part.

The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 Pivot became relatively zero. Coefficient matrix

might be singular.
Discontinued.

20100 Pivot became negative.
Coefficient matrix is not positive definite.

30000 One of the following has occurred:
 n < 1
 epsz < 0
 k < n

3. Comments on use

epsz
If a value is set for the judgment of relative zero, it has the following meaning:

If the value of the selected pivot is positive and less than epsz during LLT decomposition by the Cholesky
decomposition, the pivot is assumed to be relatively zero and decomposition is discontinued with icon=20000. When
unit round off is µ, the standard value of epsz is 16µ.

When the computation is to be continued even if the pivot becomes small, assign the minimum value to epsz. In this
case, however the result is not assured.

Negative pivot during the solution
If the pivot value becomes negative during decomposition, the coefficient matrix is no longer positive definite. Processing
is discontinued with icon=20100.

Calculation of determinant
After the calculation has been completed, the determinant of the coefficient matrix is computed by multiplying all the n
diagonal elements of the array a and taking the square of the result.

4. Example program

LLT decomposition is executed for a 2000 2000 matrix.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 2000
#define KMAX NMAX+1

MAIN__()
{
 int epsz, icon, ierr, i, j;
 double a[NMAX][KMAX], b[NMAX], s, det;

 c_dvspll

 759

 for (i=0; i<NMAX; i++) {
 for (j=i; j<NMAX; j++) {
 a[i][j] = i+1;
 }
 }

 epsz = 0.0;
 ierr = c_dvspll((double*)a, KMAX, NMAX, epsz, &icon);

 if (icon != 0) {
 printf("ERROR: c_dvspll failed with icon = %d\n", icon);
 exit(1);
 }

 for (i=0, s=1.0; i<NMAX; i++) {
 s = s*a[i][i];
 }

 det = s*s;
 printf ("Determinant of matrix = %15.10le\n\n", det);
 printf ("Decomposed matrix\n");

 for (i=0; i<5; i++) {
 printf ("i=%d ",i);
 for (j=i; j<5; j++) {
 printf ("%15.10le ", a[i][j]);
 }
 printf ("\n");
 }
}

5. Method

For further information consult the entry for VSPLL in the Fortran SSL II Extended Capabilities User’s Guide.

Description of the C-SSL II Routines

760

c_dvsplx
Solution of a system of linear equations with LLT-decomposed positive
definite matrix.
ierr = c_dvsplx(b, fa, kfa, n, &icon);

1. Function

This function solves a system of linear equations with LLT-decomposed symmetric positive definite coefficient matrix.

 LLTx = b (1)

Where, L is a lower triangular matrix, b is a real constant vector, and x is the real solution vector. It is assumed that n1.

This function receives the LLT-decomposed matrix from function c_dvspll and calculates the solution of a system of
linear equations.

2. Arguments

The routine is called as follows:
ierr = c_dvsplx(b, (double*)fa, kfa, n, &icon);

where:
b double b[n] Input Constant vector b.
 Output Solution vector x.
fa double

fa[n][k]

Input The LLT-decomposed matrix LT is stored.
The upper triangular matrix LT{ lij , i j} is stored in the upper triangular
part {fa[i-1][j-1], i j} of fa.
See Figure dvsplx-1.

kfa int Input A fixed dimension of array fa. (n)
n int Input Order n of matrix L.
icon int Output Condition code. See below.

Array fa

kfa
n

n

l11 l1nl12

lnn

l22 l2n

Altered

Figure dvsplx-1. Storing the data for the Cholesky decomposition method

After LLT decomposition, the upper triangular matrix L is stored in the upper triangular part of the array.

 c_dvsplx

 761

The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
20000 The coefficient matrix is singular. Discontinued.
30000 One of the following has occurred:

 n < 1
 kfa < n

3. Comments on use

A system of linear equations with a positive definite coefficient matrix can be solved by calling this function after calling
function c_dvspll. However, function c_dvlspx should be usually used to solve a system of linear equations in one
step.

4. Example program

A 2000 2000 coefficient matrix is decomposed into LLT-decomposed matrix, then the system of linear equations is
solved.

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 2000
#define KMAX NMAX+1

MAIN__()
{
 int epsz, isw, icon, ierr, i, j;
 double a[NMAX][KMAX], b[NMAX], s, det;

 for (i=0; i<NMAX; i++) {
 for (j=i; j<NMAX; j++) {
 a[i][j] = i+1;
 }
 }

 for (i=0; i<NMAX; i++) {
 b[i] = (i+1)*(i+2)/2+(i+1)*(NMAX-i-1);
 }

 epsz = 0.0;
 ierr = c_dvspll((double*)a, KMAX, NMAX, epsz, &icon);

 if (icon != 0) {
 printf("ERROR: c_dvspll failed with icon = %d\n", icon);
 exit(1);
 }

 ierr = c_dvsplx(b, (double*)a, KMAX, NMAX, &icon);

 if (icon != 0) {
 printf("ERROR: c_dvsplx failed with icon = %d\n", icon);
 exit(1);
 }

 printf ("Solution vector\n");
 for (i=0; i<10; i++) {
 printf ("b[%d] = %23.16le\n", i, b[i]);
 }

 for (i=0, s=1.0; i<NMAX; i++) {
 s = s*a[i][i];
 }

Description of the C-SSL II Routines

762

 det = s*s;
 printf ("\nDeterminant of coefficient matrix = %15.10le\n", det);
}

5. Method

For further information consult the entry for VSPLX in the Fortran SSL II Extended Capabilities User’s Guide.

 c_dvsrft

 763

c_dvsrft
One-dimensional and multiple discrete real Fourier transform (mixed
radices of 2, 3, and 5).
ierr = c_dvsrft(x, m, n, isin, isn, w, &icon);

1. Function

This routine performs one-dimensional discrete real Fourier transforms (for m multiplicity). The size of the data to be
transformed n must be a product of powers of 2, 3, and 5, and either m or n must be an even integer.

Fourier transform
When }{ kjx is provided, }{ kn is defined by the transform (1).

1

0

n

j

rj
nkjk xn

 , (1)

where)/2exp(nin , 1,...,0 mk , 1,...,0 n , and r = 1 or –1 for the transform direction.

Only the terms kn , 1,...,0 mk , 2/,...,0 n are computed by (1), as the remaining terms kn , 1,...,0 mk ,
1,...,12/ nn are computed using the complex conjugate relation (2).

 knk . (2)

Fourier inverse transform
When }{ k is provided, the inverse transform defined below is used to obtain }{ kjx .

1

0

n
rj

nkkjx

 ,

where)/2exp(nin , 1,...,0 mk , 1,...,0 nj , and r = –1 or 1. With the inverse transform, the direction r
must be the inverse to that specified in the transform.

2. Arguments

The routine is called as follows:
ierr = c_dvsrft(x, n, m, isin, isn, w, &icon);

where:
x double x[Nlen][m] Input 2/floor4 nnNlen .

If isn = 1 (transform from real to complex), real data }{ kjx , with
x[j][k] = kjx , 1,...,0 mk , 1,...,0 nj .
If isn = -1 (transform from complex to real), complex data }{ k ,
with x[][k] = Re(k), 1,...,0 mk ,
and x[1)2/(n][k] = Im(k), 2/,...,0 n ,

 Output If isn = 1 (transform from real to complex), complex data }{ kn ,
with x[][k] = Re(kn), 1,...,0 mk , ,
and x[1)2/(n][k] = Im(kn), 2/,...,0 n ,

Description of the C-SSL II Routines

764

If isn = -1 (transform from complex to real), real data }{ kjx , with
x[j][k]= kjx , 1,...,0 mk , 1,...,0 nj .

m int Input Multiplicity m. Either m or n must be an even integer.
n int Input Size of data n, which must be a product of powers of 2, 3, and 5.

Either m or n must be an even integer.
isin int Input Fourier transform direction.

isin = 1 for r = 1,
isin = -1 for r = -1.

isn int Input Control information.
isn = 1 for the transform (real to complex)
isn = -1 for the inverse transform (complex to real).

w double w[Wlen] Work 2/floor42 nnmnWlen
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30001 n 0 or m 0. Bypassed.
30008 n is not a product of powers of 2, 3, and 5. Bypassed.
30016 isin 1 or –1. Bypassed.
30032 isn 1 or –1 Bypassed.
30512 Both n and m are odd integers. Bypassed.

3. Comments on use

n and m
Two methods are used, one for when n is an even number and one for when m is an even number. The method when n is
even has a vector length of about nm . The method when m is even has a vector length of 2/m , but it performs less
data movement. The routine performs transforms at maximum speed when m is a large even number.

Accessing the imaginary part of complex data
The sample calling program demonstrates how the imaginary part of complex data can be more easily manipulated by
defining an array that is aliased to the part of array x that contains the imaginary data.

General definition of Fourier transform
The multiple discrete Fourier transform and its inverse transform can be defined as in (3) and (4).

1

0

1 n

j

rj
nkjk x

n

 , (3)

where)/2exp(nin , 1,...,0 mk , 1,...,0 n , and r = 1 or –1.

1

0

n
rj

nkkjx

 (4)

where)/2exp(nin , 1,...,0 mk , 1,...,0 nj , and r = –1 or 1.

 c_dvsrft

 765

The routine calculates kn or kjx corresponding to the left hand sides of (3) or (4) respectively. The user must
normalize the results, if required.

4. Example program

This program performs the Fourier transform and prints out the transformed data. It then performs the inverse transform
and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define M 2
#define N 8
#define LDIM (N+4*2)
#define WLEN 2*N+M*LDIM

MAIN__()
{
 int ierr, icon;
 double x[LDIM][M], xx[LDIM][M], eps;
 double (*cx)[2][N/2+1][M]; /* pointer to complex data */
 double w[WLEN];
 int i, j, n, isn, isin, m;

 /* generate initial data */
 m = M;
 n = N;
 for (j=0;j<n;j++)
 for (i=0;i<m;i++)
 x[j][i] = (i+1)*(j+1);
 /* keep copy */
 for (j=0;j<n;j++)
 for (i=0;i<m;i++)
 xx[j][i] = x[j][i];
 /* perform normal transform */
 isn = 1;
 isin = 1;
 ierr = c_dvsrft((double*)x, m, n, isin, isn, w, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvsrft failed with icon = %d\n", icon);
 exit(1);
 }
 /* print complex transformed data */
 cx = (double(*)[2][N/2+1][M])x; /* complex data overwrites real data */
 for (j=0;j<n/2+1;j++) {
 for (i=0;i<m;i++) {
 printf("%8.5f + i*%8.5f ", (*cx)[0][j][i], (*cx)[1][j][i]);
 }
 printf("\n");
 }
 /* perform inverse transform */
 isn = -1;
 isin = -1;
 ierr = c_dvsrft((double*)x, m, n, isin, isn, w, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvsrft failed with icon = %d\n", icon);
 exit(1);
 }
 /* check results */
 eps = 1e-6;
 for (j=0;j<n;j++)
 for (i=0;i<m;i++)
 if (fabs((x[j][i]/n - xx[j][i])/xx[j][i]) > eps) {
 printf("Inaccurate result\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

Description of the C-SSL II Routines

766

c_dvtdev
Eigenvalues and eigenvectors of a tridiagonal matrix.
ierr = c_dvtdev(d, sl, su, n, &nf, ivec, etol,

ctol, nev, e, &maxne, ev, k, m,

vw, ivw, &icon);

1. Function

This routine computes the eigenvalues and, optionally, the corresponding eigenvectors of a tridiagonal matrix.

 xTx . (1)

The lower diagonal and upper diagonal elements of the tridiagonal matrix T must satisfy the following condition:

 01 iiul , ni ,...,2 ,

where 11)(iiiiiii xuxdxlTx , ni ,...,1 , with 01 nul .

2. Arguments

The routine is called as follows:
ierr = c_dvtdev(d, sl, su, n, &nf, ivec, etol, ctol, nev, e, &maxne,

(double *) ev, k, (int *) m, vw, ivw, &icon);

where:
d double d[n] Input Diagonal of matrix T.
sl double sl[n] Input Lower diagonal of matrix T, with sl[i-1] = il , ni ,...,1 .
su double su[n] Input Upper diagonal of matrix T, with su[i-1] = iu , ni ,...,1 .
n int Input Order n of matrix T.
nf int Input Index of the first eigenvalue sought, where eigenvalues are numbered in

ascending order. Eigenvalues with indices in the range nf to
nf + nev[0] – 1 are computed.

 Output Index of the first eigenvalue obtained, taking into account the case in
which the first obtained eigenvalue is multiple and/or part of a cluster.

ivec int Input Control information.
ivec = 1 if both the eigenvalues and eigenvectors are sought.
ivec 1 if only the eigenvalues are sought.

etol double Input Tolerance for determining whether an eigenvalue is distinct or
numerically multiple. The default value is 16103 , and etol is set to
the default whenever a smaller value is specified. See Comments on
use.

ctol double Input Tolerance (etol) for determining whether adjacent eigenvalues are
approximately multiple, i.e. clustered. When ctol is less than etol,
ctol is set to etol. See Comments on use.

nev int nev[3] Input nev[0] indicates the number of eigenvalues to be computed.
 Output nev[0] indicates the number of distinct eigenvalues,

nev[1] indicates the number of distinct clusters,

 c_dvtdev

 767

nev[2] indicates the total number of eigenvalues including
multiplicities.

e double

e[maxne]

Output Eigenvalues. Stored in e[i-1], i = 1,...,nev[2].

maxne int Input Maximum number of eigenvalues that can be computed. See Comments
on use.

 Output When nev[2] is greater than maxne, eigenvectors cannot be
computed, and maxne contains the smallest number, nev[2], required
to compute the eigenvectors.

ev double

ev[maxne][k]

Output When ivec = 1, the eigenvectors corresponding to the computed
eigenvalues. Stored by row in ev[i-1][j-1], i = 1,...,nev[2],
j = 1,...,n.

k int Input C fixed dimension of array ev (n).
m int

m[2][maxne]

Output Information about the multiplicity of the computed eigenvalues.
m[0][i-1] indicates the multiplicity of the i-th eigenvalue = i ,
m[1][i-1] indicates the size of the i-th cluster of eigenvalues,
i = 1,...,min{maxne, nev[2]}.

vw double vw[12n] Work
ivw int

ivw[Ivwlen]

Work 1289 maxneIvwlen .

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 The total number of eigenvalues exceeded

maxne during computation of multiple and/or
clustered eigenvalues.

Discontinued. The eigenvectors cannot be
computed. Eigenvalues are returned but are not
stored taking into account multiplicities. See
Comments on use.

30000 One of the following has occurred:
 n < 1
 k < 1 or k < n
 nf < 1
 nev[0] < 1
 nf + nev[0] > n

Bypassed.

30100 sl[i] su[i-1] 0 , for some i. The
matrix cannot be reduced to symmetric form.

Bypassed.

3. Comments on use

etol and ctol
If the eigenvalues j , ksssj ,...,1, ,)0(k satisfy

Description of the C-SSL II Routines

768

|)||,max(|1
||

1

1

ii

ii , (2)

with = etol, and if 1s and 1ks do not satisfy (2), then the eigenvalues j , ksssj ,...,1, , are considered
to be identical, that is, a single eigenvalue of multiplicity 1k .

The default value of etol is 16103 . Using this value, the eigenvalues are refined to machine precision.

When (2) is not satisfied for = etol, 1i and i are assumed to be distinct eigenvalues.

If (2) is satisfied for = ctol (but is not satisfied with = etol) for eigenvalues j , ktttj ,...,1, , but not for

1t and 1kt , then eigenvalues j , ktttj ,...,1, , are considered to be approximately multiple, that is, clustered,
though distinct (not numerically multiple). In order to obtain an invariant subspace, eigenvectors corresponding to
clustered eigenvalues are computed using orthogonal starting vectors and are re-orthogonalized.

If ctol < etol, then ctol = etol is set.

maxne
If r eigenvalues are requested, then, depending on the multiplicities of the eigenvalues, more than r eigenvalues may be
obtained. The corresponding eigenvectors can be computed only when the corresponding eigenvector storage area is
sufficient.

The maximum number of eigenvalues to be computed can be specified in maxne. If the total number of eigenvalues
exceeds maxne, processing is discontinued with icon = 20000. The corresponding eigenvectors cannot be computed.
The eigenvalues are returned, but they are not stored repeatedly according to multiplicities.

When all eigenvalues are known to be distinct, it is sufficient to set maxne = nev[0], the number of eigenvalues to be
computed.

General comments
This routine requires only that 01 iiul . The eigenvalue problem (1) can be reduced to a symmetric generalized
eigenvalue problem,

 0xD(DT) ,

where D is a diagonal matrix with 11 D and iiii lu /11 DD , .,...,2 ni If iD can cause a scaling problem, it is
preferable to consider the symmetric problem,

 0wITDD)(2/12/1 ,

where xDw 2/1 .

This routine can also be used to solve the generalized eigenvalue problem

 DxTx ,

by the replacement 1 TDT , where the diagonal matrix must satisfy 0D .

4. Example program

This program obtains 103 eigenvalues and prints the results.

 c_dvtdev

 769

#include <stdio.h>
#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define P1 350
#define Q1 2
#define NMAX P1*Q1
#define N0 584
#define N1 686
#define NE N1-N0+1
#define MAXNE NE+2*Q1

MAIN__()
{
 int ierr, icon;
 int n, m[2][NMAX], nf, ivec, maxne, nev[3], i, j, k, ii;
 double d[NMAX], sl[NMAX], su[NMAX], e[MAXNE], ev[MAXNE][NMAX];
 double etol, ctol, vw[12*NMAX];
 int ivw[9*MAXNE+128];

 /* initialize matrix */
 n = NMAX;
 k = NMAX;
 j = (P1+1)/2;
 d[j-1] = 0;
 for (i=1;i<j;i++) {
 sl[i] = 1;
 su[i-1] = 1;
 sl[j+i-1] = 1;
 su[j+i-2] = 1;
 d[i-1] = j-i;
 d[2*j-i-1] = d[i-1];
 }
 sl[0] = 0;
 su[P1-1] = 0;
 for (j=2;j<=Q1;j++) {
 ii = (j-1)*P1;
 for (i=1;i<=P1;i++) {
 sl[ii+i-1] = sl[i-1];
 su[ii+i-1] = su[i-1];
 d[ii+i-1] = d[i-1];
 }
 }
 sl[0] = 0;
 su[n-1] = 0;
 nf = N0;
 ivec = 1;
 etol = 0;
 ctol = 0;
 nev[0] = NE;
 maxne = MAXNE;
 /* find eigenvalues only */
 ierr = c_dvtdev(d, sl, su, n, &nf, ivec, etol, ctol, nev, e, &maxne,
 (double*)ev, k, (int*)m, vw, ivw, &icon);
 if (icon > 20000) {
 printf("ERROR: c_dvtdev failed with icon = %d\n", icon);
 exit(1);
 }
 printf("icon = %i\n", icon);
 /* print distinct eigenvalues */
 ii = 0;
 for (i=0;i<nev[0];i++) {
 printf("eigenvalue %i : %7.4f with multiplicity %i\n", nf+ii, e[ii], m[0][ii]);
 if (icon == 20000) ii = ii+1;
 else ii = ii+m[0][ii];
 }
 return(0);
}

5. Method

Consult the entry for VTDEV in the Fortran SSL II Extended Capabilities User's Guide II and [31], [81], [96] and [118].

Description of the C-SSL II Routines

770

c_dvtfqd
Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (TFQMR method, diagonal storage format).
ierr = c_dvtfqd(a, k, ndiag, n, nofst, b,

itmax, eps, iguss, x, &iter, vw,

&icon);

1. Function

This routine solves a system of linear equations (1) using the transpose-free quasi-minimal residual method (TFQMR).

 Ax b (1)

In (1), A is an n n nonsymmetric or indefinite sparse matrix, b is a constant vector, and x is the solution vector. Both
the vectors are of size n and n 1.

2. Arguments

The routine is called as follows:
ierr = c_dvtfqd((double *) a, k, ndiag, n, nofst, b, itmax, eps, iguss, x,

&iter, vw, &icon);

where:
a double

a[ndiag][k]

Input Matrix A. Stored in diagonal storage format for general sparse matrices.
See Array storage formats in the Introduction section for details. See
Comments on use.

k int Input C fixed dimension of array a (n).
ndiag int Input The number (> 0) of diagonals in the coefficient matrix A having non-zero

elements.
n int Input Order n of matrix A.
nofst int

nofst[ndiag]

Input Offsets from the main diagonal corresponding to diagonals stored in A.
Upper diagonals have positive offsets, the main diagonal has a zero offset,
and the lower diagonals have negative offsets. See Array storage formats
in the Introduction section for details. See Comments on use.

b double b[n] Input Constant vector b.
itmax int Input Upper limit (> 0) on the number of iteration steps in the TFQMR method.
eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 10-6. See Comments on use.
iguss int Input Control information on whether to start the computation with approximate

solution values in array x. When iguss 0, computation is to start from
approximate solution values in x.

x double x[n] Input The starting values for the computation. This is optional and relates to
argument iguss.

 Output Solution vector x.
iter int Output Total number of iterations performed in the TFQMR method.
vw double Work Vwlen = 10k + n + ndiag - 1.

 c_dvtfqd

 771

vw[Vwlen]
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Break-down occurred. See Comments on use. Discontinued.
20001 Upper limit of number of iteration steps was

reached.
Stopped. The approximate solution obtained up to
this stage is returned, but its precision is not
guaranteed.

30000 One of the following has occurred:
 n < 1
 k < 1 or k < n
 ndiag < 1 or ndiag > k
 itmax 0

Bypassed.

32001 |nofst[i-1]| > n-1 for some i = 1,...,ndiag Bypassed.

3. Comments on use

a and nofst
The coefficients of matrix A are stored using two arrays a and nofst and the diagonal storage format. For full details,
see the Array storage formats section of the Introduction.

eps
In the TFQMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and
eps, the solution is judged to have converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of matrix A and eps.

Break-down
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine
c_dvcrd which uses the MGCR method should be used.

General comments
The speed of the TFQMR method is generally higher than the MGCR method.

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 2
#define LBANDW 1

MAIN__()
{
 double one=1.0, bcoef=10.0, eps=1.e-6;
 int ierr, icon, ndiag, nub, nlb, n, i, j, k;

Description of the C-SSL II Routines

772

 int itmax, iguss, iter;
 int nofst[UBANDW + LBANDW + 1];
 double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
 double vw[NMAX*10+NMAX+UBANDW+LBANDW];

 /* initialize nonsymmetric matrix and vector */
 nub = UBANDW;
 nlb = LBANDW;
 ndiag = nub + nlb + 1;
 n = NMAX;
 k = NMAX;
 for (i=1; i<=nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
 for (j=n-i; j<n ; j++) a[i][j] = 0.0;
 nofst[i] = i;
 }
 for (i=1; i<=nlb; i++) {
 for (j=0 ; j<i+1; j++) a[nub + i][j] = 0.0;
 for (j=i+1; j<n ; j++) a[nub + i][j] = -2.0;
 nofst[nub + i] = -(i + 1);
 }
 nofst[0] = 0;
 for (j=0; j<n; j++) {
 a[0][j] = bcoef;
 for (i=1; i<ndiag; i++) a[0][j] -= a[i][j];
 b[j] = bcoef;
 }
 /* solve the system of linear equations */
 itmax = n;
 iguss = 0;
 ierr = c_dvtfqd ((double*)a, k, ndiag, n, nofst, b, itmax, eps,
 iguss, x, &iter, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvtfqd failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0;i<n;i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For the TFQMR method consult [36].

 c_dvtfqe

 773

c_dvtfqe
Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (TFQMR method, ELLPACK storage format).
ierr = c_dvtfqe(a, k, iwidt, n, icol, b,

itmax, eps, iguss, x, &iter, vw,

&icon);

1. Function

This routine solves a system of linear equations (1) using the transpose-free quasi-minimal residual (TFQMR) method.

 Ax b (1)

In (1), A is an n n nonsymmetric or indefinite sparse matrix, b is a constant vector and x is the solution vector. Both the
vectors are of size n and n 1.

2. Arguments

The routine is called as follows:
ierr = c_dvtfqe((double *) a, k, iwidt, n, (double *) icol, b, itmax, eps,

iguss, x, &iter, vw, &icon);

where:
a double

a[iwidt][k]

Input Matrix A. Stored in ELLPACK storage format for general sparse
matrices. See Array storage formats in the Introduction section for
details. See Comments on use.

k int Input C fixed dimension of arrays a and icol (n).
iwidt int Input The maximum number (> 0) of non-zero elements in any row vectors

of A.
n int Input Order n of matrix A.
icol int

icol[iwidt][k]

Input Column indices used in the ELLPACK format, showing to which
column the elements corresponding to a belong. See Comments on
use.

b double b[n] Input Constant vector b.
itmax int Input Upper limit (> 0) on the number of iteration steps in the TFQMR

method.
eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 10-6. See Comments on use.
iguss int Input Control information on whether to start the computation with

approximate solution values in array x. When iguss 0
computation is to start from approximate solution values in x.

x double x[n] Input The starting values for the computation. This is optional and relates to
argument iguss.

 Output Solution vector x.
iter int Output Total number of iteration steps performed in TFQMR method.
vw double vw[13k] Work

Description of the C-SSL II Routines

774

icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
20000 Break-down occurred. See Comments on use. Discontinued.
20001 Upper limit of number of iteration steps was

reached.
Stopped. The approximate solution obtained up to
this stage is returned, but its precision is not
guaranteed.

30000 One of the following has occurred:
 n < 1
 k < 1 or k < n
 iwidt < 1 or iwidt > k
 itmax 0

Bypassed.

3. Comments on use

a and icol
The coefficients of matrix A are stored using two arrays a and icol and the ELLPACK storage format for general sparse
matrices. For full details, see the Array storage formats section of the Introduction.

eps
In the TFQMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and
eps, the solution is judged to have converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of matrix A and eps.

Break-down
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine
c_dvcre which uses the MGCR method should be used.

General comments
The speed of the TFQMR method is generally higher than the MGCR method.

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100
#define UBANDW 2
#define LBANDW 1

MAIN__()
{
 double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
 int ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, iter, i, j, ix;
 int icol[UBANDW + LBANDW + 1][NMAX];
 double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
 double vw[NMAX * 13];

 c_dvtfqe

 775

 /* initialize matrix and vector */
 nub = UBANDW;
 nlb = LBANDW;
 iwidt = UBANDW + LBANDW + 1;
 n = NMAX;
 k = NMAX;
 for (i=0; i<n; i++) b[i] = bcoef;
 for (i=0; i<iwidt; i++)
 for (j=0; j<n; j++) {
 a[i][j] = 0.0;
 icol[i][j] = j+1;
 }
 for (j=0; j<nlb; j++) {
 for (i=0; i<j; i++) a[i][j] = lcf;
 a[j][j] = bcoef - (double) j * lcf - (double) nub * ucf;
 for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
 for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
 }
 for (j=nlb; j<n-nub; j++) {
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef - (double) nlb * lcf - (double) nub * ucf;
 for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;
 for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
 }
 for (j=n-nub; j<n; j++){
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef - (double) nlb * lcf - (double) (n-j-1) * ucf;
 for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
 ix = n - (j+nub-nlb-1);
 for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
 }
 /* solve the system of linear equations */
 itmax = n;
 iguss = 0;
 ierr = c_dvtfqe ((double*)a, k, iwidt, n, (int*)icol, b, itmax,
 eps, iguss, x, &iter, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvtfqe failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0; i<n; i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

For TFQMR method consult [36].

Description of the C-SSL II Routines

776

c_dvwflt
Wavelet filter generation.
ierr = c_dvwflt(f, n, &icon);

1. Function

This routine generates a filter corresponding to the Daubechies wavelet (order n) having a compact support. A filter of
order 2, 4, 6, 12 or 20 can be generated.

2. Arguments

The routine is called as follows:
ierr = c_dvwflt(f, n, &icon);

where:
f double f[2n] Input Wavelet filter coefficients used for transform. See Comments on use.
n int Input Order n (2,4,6,12, or 20) of wavelet filter. (Number of wavelet filter

coefficients.)
icon int Output Condition code. See below.
The complete list of condition codes is:

Code Meaning Processing
0 No error. Completed.
30000 n is not 2, 4, 6, 12, or 20. Bypassed.

3. Comments on use

The orthogonal filter used for this routine generally has a vector of size 2n with f[0], f[1], ... , f[n-1] defining the low-
pass filter coefficients and f[n], f[n+1], ... , f[2n-1] defining the high-pass filter coefficients. These coefficients have the
following relationships:

1n-

 i

f[i]
0

2 1

, f[2n-1-i] = (-1) 1i f[i], i = 0,1, ...,n-1.

c_dv1dwt and c_dv2dwt
The filter coefficients generated by this routine can be used with routine c_dv1dwt or c_dv2dwt to perform one or
two dimensional wavelet transforms or inverse transforms. Input argument n and output argument f of this routine are the
same as input arguments k and f of c_dv1dwt and c_dv2dwt.

4. Example program

This program forms the wavelet filter and performs the one-dimensional wavelet transform. The inverse transform is then
performed and the result checked.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

 c_dvwflt

 777

#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 1024
#define KMAX 6

MAIN__()
{
 int ierr, icon;
 double phai, ran, eps;
 double x[NMAX], y[NMAX], f[2*KMAX], xx[NMAX];
 int isn, i, k, ls, n;

 /* generate initial data */
 n = NMAX;
 ls = 10;
 k = KMAX;
 phai = (sqrt(5.0)-1.0)/2;
 for (i=0;i<n;i++) {
 ran = (i+1)*phai;
 x[i] = ran - (int)ran;
 }
 for (i=0;i<n;i++)
 xx[i] = x[i];
 /* generate wavelet filter */
 ierr = c_dvwflt(f, k, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvwflt failed with icon = %i\n", icon);
 exit (1);
 }
 /* perform normal wavelet transform */
 isn = 1;
 ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon);
 if (icon != 0) {
 printf("ERROR: c_dv1dwt failed with icon = %i\n", icon);
 exit (1);
 }
 /* perform inverse wavelet transform */
 isn = -1;
 ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon);
 if (icon != 0) {
 printf("ERROR: c_dv1dwt failed with icon = %i\n", icon);
 exit (1);
 }
 /* check results */
 eps = 1e-6;
 for (i=0;i<n;i++)
 if (fabs((x[i]-xx[i])/xx[i]) > eps) {
 printf("Inaccurate result\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult references [20] and [27].

Description of the C-SSL II Routines

778

c_ranb2
Binomial pseudo-random numbers.
ierr = c_ranb2(m, p, &ix, ia, n, vw, ivw,

&icon);

1. Function

This library function generates a sequence of n pseudo-random numbers from the probability density function of the
binomial distribution with moduli m and p, as given below:

 ,3,2,1,,2,1,010,)1(

 mmkppp

k
m

P kmk
k

where n 1. A sequence of uniformly distributed pseudo-random numbers is used to generate a sequence of values for k,
where },,2,1,0{ mk .

2. Arguments

The routine is called as follows:
ierr = c_ranb2(m, p, &ix, ia, n, vw, ivw, &icon);

where:
m int Input Modulus m.
p float Input Modulus p.
ix int Input

Output

Starting value or ‘seed’. Must be non-negative integer. See Comments on
use.
Starting value for subsequent call.

ia int ia[n] Output The pseudo-random numbers.
n int Input Number of pseudo-random numbers to be produced.
vw float vw[m+1] Work
ivw int ivw[m+1] Work
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 m 1
 p 0 or p 1
 ix 0
 n 1

Bypassed.

 c_ranb2

 779

3. Comments on use

ix
This library function converts uniformly distributed pseudo-random numbers into binomial random numbers. ix is used
as the starting value, or ‘seed’, to generate the uniform random numbers.

vw and ivw
vw and ivw should not be altered as long as m and p are unchanged between subsequent calls.

4. Example program

This program calculates 10000 binomial pseudo-random numbers, and their mean and standard deviation is then
determined. These observed values and the expected values of the mean and standard deviation are displayed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 10000
#define M 20

MAIN__()
{
 int ierr, icon;
 int m, n, ix, i, ia[N], ivw[M+1], sum, sumsq;
 float p, vw[M+1], mean, dev;

 /* initialize parameters */
 n = N;
 ix = 12345;
 m = M;
 p = 0.75;
 /* generate pseudo-random numbers */
 ierr = c_ranb2(m, p, &ix, ia, n, vw, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_ranb2 failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate mean and deviation */
 sum = 0;
 sumsq = 0;
 for (i=0;i<n;i++) {
 sum = sum+ia[i];
 sumsq = sumsq+ia[i]*ia[i];
 }
 mean = (double)sum/n;
 dev = sqrt((double)sumsq/n - mean*mean);
 printf("observed mean = %12.4e deviation = %12.4e\n",
 mean, dev);
 printf("calculated mean = %12.4e deviation = %12.4e\n",
 m*p, sqrt(m*p*(1-p)));
 return(0);
}

5. Method

For further information, see the entry for RANB2 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

780

c_rane2
Exponential pseudo-random numbers (single precision).
ierr = c_rane2(am, &ix, a, n, &icon);

1. Function

This library function generates a sequence of n pseudo-random numbers from the probability density function of the
exponential distribution with a mean value of m, as given below:

 mxe
m

xg
1)(

where x 0 , m 0 , and n 1. A sequence of uniform pseudo-random numbers is used to generate a sequence of values
for x.

2. Arguments

The routine is called as follows:
ierr = c_rane2(am, &ix, a, n, &icon);

where:
am float Input Mean value of the exponential distribution m.
ix int Input

Output
Starting value, or ‘seed’.
Starting value for the next call. See Comments on use.

a float a[n] Output n exponentially distributed pseudo-random numbers.
n int Input Number n of pseudo-random numbers to be generated.
icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 One of the following has occurred:

 0am .
 0ix .
 1n .

Bypassed.

3. Comments on use

ix
This library function generates uniformly distributed pseudo-random numbers and then converts then into exponentially
distributed random numbers. ix is used as the starting value, or ‘seed’, to generate the uniform random numbers.

4. Example program

This program calculates 10000 exponential pseudo-random numbers, and their mean and standard deviation is then
determined. These observed values and the expected values of the mean and standard deviation are displayed.

 c_rane2

 781

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10000

MAIN__()
{
 int ierr, icon;
 int n, ix, i;
 float a[NMAX], am, sum, sumsq, mean, dev;

 /* initialize parameters */
 n = NMAX;
 ix = 12345;
 am = 1;
 /* generate pseudo-random numbers */
 ierr = c_rane2(am, &ix, a, n, &icon);
 if (icon != 0) {
 printf("ERROR: c_rane2 failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate mean and deviation */
 sum = 0;
 sumsq = 0;
 for (i=0;i<n;i++) {
 sum = sum+a[i];
 sumsq = sumsq+a[i]*a[i];
 }
 mean = sum/n;
 dev = sqrt(sumsq/n - mean*mean);
 printf("observed mean = %12.4e deviation = %12.4e\n",
 mean, dev);
 printf("calculated mean = %12.4e deviation = %12.4e\n",
 1.0, 1.0);
 return(0);
}

5. Method

For further information, see the entry for RANE2 in the Fortran SSL II User's Guide.

Description of the C-SSL II Routines

782

c_ranp2
Poisson pseudo-random numbers.
ierr = c_ranp2(am, &ix, ia, n, vw, ivw,

&icon);

1. Function

This library function generates a sequence of n pseudo-random numbers from the probability density function of the
Poisson distribution with a mean value of m, as given below:

 m
k

k e
k

mP
!

 (1)

where 0m , and },2,1{ k . Thus a sequence of uniform pseudo-random numbers is used to generate a sequence of
values for k.

2. Arguments

The routine is called as follows:
ierr = c_ranp2(am, &ix, ia, n, vw, ivw, &icon);

where:
am float Input Mean value m of the Poisson distribution. See Comments on use.
ix int Input

Output
Starting value, or ‘seed’.
Starting value for the next call. See Comments on use.

ia int ia[n] Output n Poisson pseudo-random numbers.
n int Input Number n of pseudo-random numbers to be generated.
vw float

vw[2m+10]

Work

ivw int

ivw[2m+10]

Work

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code Meaning Processing
0 No error. Completed.
30000 am 0 , ix 0 , n 1 , or am> fllog()max .

See Comments on use.
Bypassed.

3. Comments on use

am
The criterion that)log(maxflam is required in this routine, as otherwise an underflow could occur during the
calculation of me in the cumulative Poisson distribution. For details of maxfl see the Machine Constants section in the
Introduction. Note that where am is large)20(am , Poisson pseudo-random numbers can be approximated by normally
distributed pseudo-random numbers, with mean m and standard deviation m.

 c_ranp2

 783

ix
This library function converts uniformly distributed pseudo-random numbers into Poisson random numbers. ix is used as
the starting value, or ‘seed’, to generate the uniform random numbers.

4. Example program

This program calculates 10000 Poisson pseudo-random numbers, and their mean and standard deviation is then
determined. These observed values and the expected values of the mean and standard deviation are displayed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define NMAX 10000
#define MMAX 20

MAIN__()
{
 int ierr, icon;
 int n, ix, i, ia[NMAX], ivw[2*MMAX+10], sum, sumsq;
 float am, vw[2*MMAX+10], mean, dev;

 /* initialize parameters */
 n = NMAX;
 am = 1;
 ix = 12345;
 /* generate pseudo-random numbers */
 ierr = c_ranp2(am, &ix, ia, n, vw, ivw, &icon);
 if (icon != 0) {
 printf("ERROR: c_ranp2 failed with icon = %d\n", icon);
 exit(1);
 }
 /* calculate mean and deviation */
 sum = 0;
 sumsq = 0;
 for (i=0;i<n;i++) {
 sum = sum+ia[i];
 sumsq = sumsq+ia[i]*ia[i];
 }
 mean = (double)sum/n;
 dev = sqrt((double)sumsq/n - mean*mean);
 printf("observed mean = %12.4e deviation = %12.4e\n",
 mean, dev);
 printf("calculated mean = %12.4e deviation = %12.4e\n",
 am, sqrt(am));
 return(0);
}

5. Method

For further information consult the entry for RANP2 in the Fortran SSL II User's Guide.

 785

Description of the auxiliary routines

Description of the auxiliary routines

786

c_dcsum
Inner product (complex vector).
ierr = c_dcsum(za, zb, n, ia, ib, &zsum);

1. Function

Given n-dimensional complex vectors a and b, this routine computes the inner product (product sum) ,

n

i
iiba

1

,

where),...,,(21
T

naaaa ,),...,,(21
T

nbbbb .

2. Arguments

The routine is called as follows:
ierr = c_dcsum(za, zb, n, ia, ib, &zsum);

where:
za dcomplex

za[Alen]
Input Vector a. nia *Alen .

zb dcomplex

zb[Blen]
Input Vector b. nib *Blen .

n int Input Dimension n of vectors a and b.
ia int Input Interval (0) in array za between consecutive elements of vector a.

Generally, ia = 1. See Comments on use.
ib int Input Interval (0) in array zb between consecutive elements of vector b.

Generally, ib = 1. See Comments on use.
zsum dcomplex Output Inner product . See Comments on use.

3. Comments on use

Data spacing in arrays za and zb
Set ia = p when elements of vector a are stored in array za with spacing p. Likewise set ib = q when elements of
vector b are stored in array zb with spacing q. If p, q < 0, care must be taken in assigning arrays za and zb.

4. Example program

This program finds the sum of a row and a column of a matrix and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{

 c_dcsum

 787

 int n, i, j, ia, ib;
 double eps;
 dcomplex zsum, zsum2;
 dcomplex zmat[NMAX][NMAX], *za, *zb;

 /* initialize matrix */
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<n;j++) {
 zmat[i][j].re = i+j+1;
 zmat[i][j].im = i-j+1;
 }
 /* calculate the product sum of row 6 and column 3 */
 za = &zmat[6][0];
 ia = 1;
 zb = &zmat[0][3];
 ib = NMAX;
 c_dcsum(za, zb, n, ia, ib, &zsum);
 /* check sum */
 eps = 1e-6;
 zsum2.re = 0;
 zsum2.im = 0;
 for (i=0;i<n;i++) {
 zsum2.re = zsum2.re + za[i*ia].re*zb[i*ib].re-za[i*ia].im*zb[i*ib].im;
 zsum2.im = zsum2.im + za[i*ia].re*zb[i*ib].im+za[i*ia].im*zb[i*ib].re;
 }
 if ((fabs((zsum2.re-zsum.re)/zsum.re) > eps) ||
 (fabs((zsum2.im-zsum.im)/zsum.im) > eps)) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

Description of the auxiliary routines

788

c_dfmax
Positive maximum value of the floating-point number system.
result = c_dfmax();

1. Function

This routine returns the positive maximum value maxfl , of the floating-point number system.

2. Arguments

The routine returns a result of type double and is called as follows:
result = c_dfmax();

3. Comments on use

Values of maxfl are given below.

Arithmetic Maximum values Application
Hexadecimal 6314 16)161(FACOM M series

FACOM S series
SX/G 200 series

Binary 102453 2)21(VPP series
FM series

25256 2)21(SX/G 100 series

 c_dfmin

 789

c_dfmin
Positive minimum value of the floating-point number system.
result = c_dfmin();

1. Function

This routine returns the positive minimum value minfl , of the floating-point number system.

2. Arguments

The routine returns a result of type double and is called as follows:
result = c_dfmin();

3. Comments on use

Values of minfl are given below.

Arithmetic Minimum values Application
Hexadecimal 641 1616 FACOM M series

FACOM S series
SX/G 200 series

Binary 10211 22 VPP series
FM series

2591 22 SX/G 100 series

Description of the auxiliary routines

790

c_dmach
Unit round-off.
result = c_dmach();

1. Function

This routine defines the unit round-off in normalized floating-point arithmetic.

 2/L1M for correctly rounded arithmetic,

 L1M for chopped arithmetic,

where M is the radix of the number system, and L is the number of digits contained in the mantissa.

2. Arguments

The routine returns a result of type double and is called as follows:
result = c_dmach();

3. Comments on use

Values of the unit round-off are given below.

Arithmetic method dmach Application

Hexadecimal: M = 16 Chopped arithmetic L = 14, 1316 FACOM M series
FACOM S series
SX/G 200 series

Binary: M = 2 Rounded arithmetic L = 52 512
2
1 VPP series

FM series
SX/G series

 c_dsum

791

c_dsum
Inner product (real vector).
ierr = c_dsum(a, b, n, ia, ib, &sum);

1. Function

Given n-dimensional real vectors a and b, this routine computes the inner product (product sum) ,

n

i
iiba

1

,

where),...,,(21
T

naaaa ,),...,,(21
T

nbbbb .

2. Arguments

The routine is called as follows:
ierr = c_dsum(a, b, n, ia, ib, &sum);

where:
a double a[Alen] Input Vector a. nia *Alen .
b double b[Blen] Input Vector b. nib *Blen .
n int Input Dimension n of vectors a and b.
ia int Input Interval (0) in array a between consecutive elements of vector a.

Generally, ia = 1. See Comments on use.
ib int Input Interval (0) in array b between consecutive elements of vector b.

Generally, ib = 1. See Comments on use.
sum double Output Inner product . See Comments on use.

3. Comments on use

Data spacing in arrays a and b
Set ia = p when elements of vector a are stored in array a with spacing p. Likewise set ib = q when elements of
vector b are stored in array b with spacing q. If p, q < 0, care must be taken in assigning arrays a and b.

4. Example program

This program finds the sum of a row and a column of a matrix and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
 int n, i, j, ia, ib;
 double eps, err, sum, sum2;
 double mat[NMAX][NMAX], *a, *b;

Description of the auxiliary routines

792

 /* initialize matrix */
 n = NMAX;
 for (i=0;i<n;i++)
 for (j=0;j<n;j++)
 mat[i][j] = i+j+1;
 /* calculate the product sum of row 6 and column 3 */
 a = &mat[6][0];
 ia = 1;
 b = &mat[0][3];
 ib = NMAX;
 c_dsum(a, b, n, ia, ib, &sum);
 /* check sum */
 eps = 1e-6;
 sum2 = 0;
 for (i=0;i<n;i++)
 sum2 = sum2 + a[i*ia]*b[i*ib];
 err = fabs((sum2-sum)/sum);
 if (err > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}

 c_iradix

793

c_iradix
Radix of the floating-point number system.
radix = c_iradix();

1. Function

This routine returns the radix of the floating-point number system.

2. Arguments

The routine returns a result of type int and is called as follows:
radix = c_iradix();

3. Comments on use

Values of the iradix are given below.

Arithmetic iradix Application

Binary iradix = 2 VPP Series
FM series
SX/G series

Hexadecimal iradix = 16 FACOM M series
FACOM S series
SX/G 200 series

 795

Bibliography
[1] Ahlberg, J. H., Nilson, E. N. and Walsh, J. L. The Theory of Splines and Their Applications, Academic Press, 1967.
[2] Akima, H. “A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedure”, Journal of the

ACM, Vol.17, No.41, pp.589-602, 1970.
[3] Akima, H. “Bivariate Interpolation and Smooth Surface Fitting Based on Local Procedures”, Comm. ACM, Vol.17,

No.1, pp.26-31, 1974.
[4] "Algorithm 334, Normal Random Deviates”, Comm. ACM, Vol.11, p.498, (July 1968).
[5] Amestoy, P., Dayde, M. and Duff, I. “Use of computational kernels in the solution of full and sparse linear equations”,

Parallel and Distributed Algorithms, (M. Cosnard, Y. Robert, Q. Quinton and M. Raynal eds.), pp.13-19, North-
Holland, 1989.

[6] Anderson, S. L. “Random number generators on vector supercomputers and other advanced architectures”, SIAM
Rev, Vol.32 (1990), pp.221-251.

[7] Bowdler, H. J., Martin, R. S. and Wilkinson, J. H. “Solution of Real and Complex Systems of Linear Equations”,
Linear Algebra Handbook for Automatic Computation, Vol.2, pp.93-110, Springer-Verlag, 1971.

[8] Brent, R. P. A Fast Vectorised Implementation of Wallace’s Normal Random Number Generator, Technical Report,
Computer Sciences Laboratory, Australian National University, To appear.

[9] Brent, R. P. Algorithms for Minimization without Derivatives, Prentice-Hall, pp.47-60, 1973.
[10] Brent, R. P. “Fast normal random number generators on vector processors”, Technical Report TR-CS-93-04,

Computer Sciences Laboratory, Australian National University, Canberra, March 1993.
[11] Brent, R. P. “Uniform random number generators for supercomputers”, Proc. Fifth Australian Supercomputer

Conference, Melbourne, Dec. 1992, pp.95-104.
[12] Brent, R. P. “Uniform random number generators for vector and parallel computers”, Report TR-CS-92-02,

Computer Sciences Laboratory, Australian National University, Canberra, March 1992.
[13] Brezinski, C. Acceleration de la Convergence en Analyse Numerique, Lecture Notes in Mathematics 584, Springer-

Verlag, pp.136-159, 1977.
[14] Bromwich, T. J. Introduction to the Theory of Infinite Series, Macmillan, 1926.
[15] Bunch, J. R. and Kaufman, L. “Some Stable Methods for Calculation Inertia and Solving Symmetric. Linear

Systems”, Math. Comp., Vol.13, No.137, January 1977, pp.163-179.
[16] Burden, R.L. and Faires, J. D. Numerical Analysis, Fifth Edition, PWS Publishing Company, 1993.
[17] Burrus, C. S., and Eschenbacher, P. W. “An In Place, In-Order Prime Factor FFT Algorithm”, IEEE Trans. on Acous,

Speech, Signal Processing, Vol.ASSP-29, No.4, pp.806-817, August 1981.
[18] Businger, P. and Golub, G. H. “Linear Least Squares Solutions by Householder Transformations”, Linear Algebra

Handbook for Automatic Computation, Vol.2, pp.111-118, Springer-Verlag, 1971.
[19] Byrne, G. D. and Hindmarsh, A. C. “A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations”,

ACM Trans. Math. Soft., Vol.1, No.1, pp.71-96, March 1975.
[20] Chui, C.K. “Wavelets and Splines” in Advances in Numerical. Analysis, Vol. II, Oxford Scientific Publishers, 1992.
[21] Clenshaw, C.W. and Curtis, A. R. “A method for numerical integration on an automatic computer”, Numer. Math.,

Vol.2, 1960, pp.197-205.
[22] Cody, W. J. and Thacher Jr, C. H. “Chebyshev Approximations for the Exponential Integral Ei(x)”, Math. Comp.,

Vol.23, pp.289-303, Apr. 1969.
[23] Cody, W. J. and Thacher Jr., C. H. “Rational Chebyshev Approximations for the Exponential Integral Ei(x)”, Math.

Comp., Vol.22, pp.641-649, July 1968.
[24] Cosnard, M. Y. “A Comparison of Four Methods for Solving Systems of Nonlinear Equations”, Cornell University

Computer Science Technical Report TR75-248, 1975.

Bibliography

796

[25] Cullum, J.K. and Willoughby, R.A. Lanczos algorithm for large symmetric eigenvalue computations, Birkhauser,
1985.

[26] Dantzig, G. Linear Programming and Extensions, Princeton University Press, 1963.
[27] Daubechies, I. Ten lectures on wavelets, SIAM, 1992.
[28] Davis, P. J. and Rabinowitz, P. Methods of Numerical Integration, Academic Press, 1975.
[29] De Boor, C. “CADRE: An algorithm for numerical quadrature”, in Mathematical Software (ed. J. R. Rice), Academic

Press, 1971, pp.417-449.
[30] De Boor, C. “On Calculating with B-splines”, J. Approx. Theory, Vol.6, 1972, pp.50-62.
[31] Demmel, J. and Kahan, W. “Accurate singular values of bidiagonal matrices”, SIAM J. Sci. Comput, Vol.11, pp.873-

912, 1990.
[32] Ferrenberg, A. M., Landau, D. P. and Wong, Y. J. “Monte Carlo simulations: Hidden errors from "good" random

number generators”, Phys. Rev. Lett, Vol.69, (1992), pp.3382-3384.
[33] Fletcher, R. “Fortran subroutines for minimization by quasi-Newton methods”, Report R7125 AERE, Harwell,

England, 1972.
[34] Forsythe, G. E. and Moler, C. B. Computer Solution of Linear Algebraic Systems, Prentice-Hall Inc., 1967.
[35] Fox, L. and Parker, A. B. Chebyshev Polynomials in Numerical Analysis, Oxford University Press, 1972.
[36] Freund, R. “A transpose-free quasi-minimal residual algorithm for nonhermitian linear systems”, SIAM J. Sci.

Comput. Vol. 14, pp.470-482, 1993.
[37] Freund, R. and Nachtigal, N., “QMR: a quasi minimal residual method for non-Hermitian linear systems”,

Numerische Mathematik Vol. 60, pp. 315-339, 1991.
[38] Garside, G. R., Jarratt, P. and Mack, C. “A New Method for Solving Polynomial Equations”, Computer Journal,

Vol.11, pp.87-90, 1968.
[39] Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, 1971.
[40] Gershinsky, M. and Levine, D. “Aitken-Hermite Interpolation”, Journal of the ACM, Vol.11, No.3, 1964, pp.352-356.
[41] Golub, G. H. and Reinsch, C. “Singular Value Decomposition and Least Squares Solutions”, Linear Algebra

Handbook for Automatic Computation, Vol.2, pp.134-151, Springer-Verlag, 1971.
[42] Golub, G. H. and Van Loan, C. Matrix computations, The Johns Hopkins University Press, Baltimore, 1989.
[43] Graps, A. “An introduction to wavelets”, IEEE Computational Science and Engineering, Vol. 9, No.2, 1995.
[44] Greville, T. N. E. “Spline Function, Interpolation and Numerical Quadrature”, Mathematical Methods for Digital

Computers, Vol.2, John-Wiley & Sons, 1967, pp.156-168.
[45] Gutknecht, M. H. Variants of BiCGStab for matrices with complex spectrum, IPS Research report No. 91-14, 1991.
[46] Hamming, R. W. “Stable Predictor Corrector Methods for Ordinary Differential Equations”, Journal of the ACM,

Vol.6, 1956, pp.37-47.
[47] Hamming, W. Numerical Methods for Scientists and Engineers, McGraw-Hill, 1973.
[48] Hart, J. F. Complete Elliptic Integrals, John Wiley & Sons, 1968.
[49] Hegland, M. “A self-sorting in-place fast Fourier transform algorithm suitable for vector and parallel processing”,

Numerische Mathematik, 1994.
[50] Hegland, M. “An Implementation of Multiple and Multivariate Fourier Transforms on Vector Processors”, SIAM J.

Sci. Comput, Vol.16, No.2, pp.271-288, March 1995.
[51] Hegland, M. “On the parallel solution of tridiagonal systems by wrap-around partitioning and incomplete LU

factorization”, Numerische Mathematik, Vol. 59, No.5, pp.453-472, 1991.
[52] Heringa, J.R, Blöte, H.W .J. and Compagner, A. “New primitive trinomials of Mersenne-exponent degrees for

random-number generation”, International J. of Modern Physics C 3(1992), pp.561-564.
[53] Hestenes, M. R. and Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Nat Bur. Standards,

49:409-433, 1952.
[54] Hildebrand, F. B. Introduction to Numerical Analysis, Second Edition. McGraw-Hill, 1974.

797

[55] Hindmarsh, A. C. and Byrne, G. D. “EPISODE: An Effective Package for the Integration of Systems of Ordinary
Differential Equations”, UCID- 30112, Rev. 1, Lawrence Livermore Laboratory, April 1977.

[56] Hosono, T. “Numerical inversion of Laplace Transform and some applications to wave optics”, International U.R.S.I.
– Symposium 1980 on Electromagnetic Waves, Munich, 1980.

[57] Jackson, K. R. Enright, W. H. and Hull, T. E. “A theoretical criterion for comparing Runge-Kutta formulas”, SIAM J.
Numer. Anal., Vol.15, No.3, 1978, pp.618-641.

[58] James, F. “A review of pseudo-random number generators”, Computer Physics Communication, Vol.60 (1990),
pp.329-344.

[59] Jenkins, M. A. “Algorithm 493 Zeros of a real polynomial”, ACM Trans. Math. Soft., Vol.1, No.2, pp.178-187, 1975.
[60] Jenkins, M. A. and Traub, J. F. “A three-stage algorithm for real polynomials using quadratic iteration”, SIAM J.

Numer. Anal. Vol.17, pp.545-566, 1970.
[61] Jennings, A. Matrix Computation for Engineers and Scientists, J.Wiley, pp.301-310, 1977.
[62] Kahaner, D. K. “Comparison of numerical quadrature formulas”, in Mathematical Software (J. R. Rice ed.),

Academic Press, 1971, pp.229-259.
[63] Kincaid, D. and Oppe, T. “ITPACK on supercomputers”, Numerical methods, Lecture Notes in Mathematics 1005,

Springer-Verlag, (1982).
[64] Knuth, D.E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms (second edition). Addison-

Wesley, Menlo Park, 1981, Sec. 3.4.1, Algorithm P.
[65] Lambert, J. D. Computational Methods in Ordinary Differential Equations, Wiley, 1973.
[66] Leyk, Z. “Modified generalized conjugate residuals for nonsymmetric systems of linear equations”, Proceedings of

the 6th Biennial Conference on Computational Techniques and Applications: CTAC93, D. Siewart, H. Gardner and D.
Singleton. eds., World Scientific, 1994, pp.338-344. Also published as CMA Research Report CMA-MR33-93,
Australian National University, 1993.

[67] Lyness, J. N. “Notes on the Adaptive Simpson Quadrature Routine”, Journal of the ACM, Vol.16, No.3, 1969,
pp.483-495.

[68] Madsen, N. K., Rodrigue, G. H. and Karush, J.I. “Matrix multiplication by diagonals on a vector/parallel processor”,
Information Processing Letters, Vol.5, 1976, pp.41-45.

[69] Marquardt, D.W. “An algorithm for least squares estimation of nonlinear parameters”, SIAM J. Appl. Math., Vol.11,
pp.431-441, 1963.

[70] Marsaglia, G. “A current view of random number generators”, Computer Science and Statistics: The Interface (L.
Billard ed.), Elsevier Science Publishers B.V., 1985, pp.3-10.

[71] Martin, R. S., Peters, G. and Wilkinson, J. H. “Symmetric Decomposition of a Positive Definite Matrix”, Linear
Algebra Handbook for Automatic Computation, Vol.2, pp.9-30, Springer-Verlag, 1971.

[72] Martin, R. S. and Wilkinson, J. H. “Solution of Symmetric and Unsymmetric Band Equations and the Calculations of
Eigenvectors of Band Matrices”, Linear Algebra Handbook for Automatic Computation, Vol.2, pp 70-92, Springer-
Verlag, 1971.

[73] Martin, R. S. and Wilkinson, J. H. “Symmetric Decomposition of Positive Definite Band Matrices”, Linear Algebra
Handbook for Automatic Computation, Vol.2, pp 50-56, Springer-Verlag, 1971.

[74] Mueller, D. J. “Householder's Method for Complex Matrices and Eigensystems of Hermitian Matrices”, Numer.Math.
8, pp.72-92, 1966.

[75] Nayler, T R. Computer Simulation Techniques, John Wiley & Sons, 1966, pp.43-67.
[76] Ninomiya, I. “Improvements of Adaptive Newton-Cotes Quadrature Methods, Journal of Information Processing,

Vol.3, No.3, 1980, pp.162-170.
[77] Oppe, T., Joubert, W. and Kincaid, D. “An overview of NSPCG: a nonsymmetric preconditioned conjugate gradient

package”, Computer physics communications, Vol.53, p283, (1989).
[78] Oppe, T. C. and Kincaid, D. R. “Are there interactive BLAS?”, Int. J. Sci. Comput. Modeling, (to appear).

Bibliography

798

[79] Ortega, J. Introduction to parallel and vector solution of linear systems, Plenum Press, 1988.
[80] Ortega, J. “The Givens-Householder Method for Symmetric Matrix”, Mathematical Methods for Digital Computors,

Vol.2, John Wiley & Sons, pp.94-115,1967.
[81] Osborne, M. “Computing the eigenvalues of tridiagonal matrices on parallel vector processors”, Mathematics

Research Report No. MRR 044-94, Australian National University, 1994.
[82] Osborne, M. “Nonlinear least squares-the Levenberg algorithm revisited”, J. of the Australian Mathematical Society,

Vol.19, pp.343-357, 1976.
[83] Parlett, B. N. and Wang, Y. “The Influence of The Compiler on The Cost of Mathematical Software-- in Particular on

The Cost of Triangular Factorization, ACM Trans. Math. Soft., Vol.1, No.1, pp.35-46, March, 1975.
[84] Peters, G. and Wilkinson, J.H. “Eigenvalues of Ax=Bx with Band Symmetric A and B”, Comp. J. Vol.12, pp.398-

404, 1969.
[85] Pike, M. C. “Algorithm 267, Random Normal Deviate”, Comm. ACM, Vol.8 (Oct.1965), p.606.
[86] Powell, M. J. D. “A fast algorithm for nonlinearly constrained optimization calculations”, Proceedings of the 1977

Dundee Conference on Numerical Analysis, Lecture Notes in Mathematics, Springer-Verlag, 1978.
[87] Powell, M. J. D. et al. “The Watchdog technique for forcing convergence in algorithms for constrained optimization”,

presented at the Tenth International Symposium on Mathematical Programming, Montreal, 1979.
[88] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. Numerical Recipes in C, Second Edition,

Cambridge University Press, 1995.
[89] Ralston, A. A First Course in Numerical Analysis, McGraw-Hill, 1965.
[90] Rice, J.R. and Boisvert, R.F. Solving Elliptic Problems Using ELLPACK, Springer-Verlag, 1985.
[91] Romanelli, M. J. “Runge-Kutta Methods for Solution of Ordinary Differential Equations”, Mathematical Methods

for Digital Computers, Vol.2, pp.110-120, John Wiley & Sons, 1967.
[92] Saad, Y. and Schultz, M. H. “GMRES. A generalized minimal residual algorithm for solving non-symmetric linear

systems”, SIAM J. Sci. Stat. Comp., Vol.7, 1986, pp.856-869.
[93] Salesin, D.H., Stollnitz, E.J. and DeRose, T.D. “Wavelets for computer graphics: A primer, part 1 and 2”, IEEE

Computer Graphics and Applications, Vol.15, 1995.
[94] Shampine, L. F. and Gordon, M. K. Computer Solution of Ordinary Differential Equations, Freeman, 1975.
[95] Shanno, D. F. and Phua, K. H. “Numerical comparison of several variable metric algorithms”, J. of Optimization

Theory and Applications, Vol.25, No.4, 1978.
[96] Simon, H. “Bisection is not optimal on vector processors”, SIAM J. Sci. Stat. Comp., Vol.10, pp.205-209, 1989.
[97] Simonnard, M. (translated by W. S. Jeweli) Linear Programming, Prentice -Hall, 1966.
[98] Singlton, C. “An Algorithm for Computing The Mixed Radix Fast Fourier Transform”, IEEE Transactions on Audio

and Electroacoustics, Vol.AU-17, No.2, pp.93-103, June 1969.
[99] Singlton, R. C. “An ALGOL Convolution Procedure Based On The Fast Fourier Transform”, Comm. ACM, Vol.12,

No.3, pp.179-184, March 1969.
[100] Singlton, R. C. “On Computing The Fast Fourier Transform”, Comm. ACM, Vol.10, No.10, pp.647-654, October

1967.
[101] Sleijpen, G. and Fokkema, D. BICG_STAB(L) for linear equations involving unsymmetric matrices with

complex spectrum, Electronic Transqctions on Numerical Analysis, Vol 1, p11-32, 1993.
[102] Sleijpen, G. L. G. , van der Vorst, H. A.. and Fokkema, D. R. BiCGSTAB(l) and other hybrid Bi-CG methods.

Numerical Algorithms, 7:75-109, 1994.
[103] Smith, B. T., Boyle, J. M., Garbow, B. S., Ikebe, Y., Kiema, V. C. and Moler, C. B. Matrix Eigensystem Routine-

EISPACK Guide 2nd edition, Lecture Notes in Computer Science 6, Springer-Verlag, 1976.
[104] Stone, H. S. “Parallel Tridiagonal Equation Solvers”, ACM Trans. Math. Soft., Vol.1, No.4, pp.289-307.
[105] Strang, G. and Nguyen, T. Wavelets and filter banks, Wellesley-Cambridge Press, 1996.
[106] Streck, A. J. “On the Calculation of the Inverse of Error Function”, Math. Comp., Vol.22, 1968.

799

[107] Swarztrauber, P. N., “Bluestein's FFTs for arbitrary N on the hypercube”, Parallel Comput. Vol.17, (1991),
pp.607-617, 1975.

[108] Swarztrauber, P.N. “Vectorizing the FFTs”, Parallel Comput., Academic Press, 1982, pp.51-83.
[109] Takahashi, H. and Mori, M. Double Exponential Formulas for Numerical Integration, Publications of R. I. M. S,

Kyoto Univ.
[110] Temperton, C. “Fast Fourier Transforms and Poisson solvers on CRAY-I”, INFOTECH, 1979.
[111] Traub, J. F. “The Solution of Transcendental Equations”, Mathematical Methods for Digital Computers, Vol.2,

pp.171-184, 1967.
[112] Van Der Vorst, H. A. “BCG: A fast and smoothly converging variant of BI-CG for the solution of non-symmetric

linear systems”, SIAM J. Sci Statist. Comput., 13 p631 1992.
[113] Vande Panne, C. Linear Programming and Related Techniques, North-Holland, 1971.
[114] Verner, J. H. “Explicit Runge-Kutta methods with estimate of the local truncation error”, SIAM J. Numer. Anal.

Vol.15, No.4, 1978, pp,772-790.
[115] Wallace, C. S. “Fast Pesudo-Random Generators for Normal and Exponential Variates”, ACM Trans. on

Mathematical Software 22 (1996), 119-127.
[116] Weiss, R. Parameter-Free Iterative Linear Solvers. Mathematical Research, vol. 97. Akademie Verlag, Berlin,

1996.
[117] Wilkinson, J. H. Rounding Errors in Algebraic Process, Her Britannic Majesty's Stationary Office, London,

1963.
[118] Wilkinson, J. H. The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[119] Wilkinson, J. H. and Reinsch, C. Linear Algebra Handbook for Automatic Computation, Vol.2, Springer-Verlag,

1971.
[120] Winograd, S. “On computing the discrete Fourier transform”, Math. Comp., Vol.32, pp.175-199, Jan 1978.
[121] Wynn, P. “Acceleration Techniques for Iterated Vector and Matrix Problems”, Math. Comp., Vol.16, pp.301-322,

1962.
[122] Yamashita, S. “On the Error Estimation in Floating-point Arithmetic. ” Information Processing in Japan Vol.15,

pp.935-939, 1974.

	Title Page
	Preface
	Acknowledgements
	How to use this manual
	Tables of routines
	Linear algebra
	Eigenvalues and eigenvectors
	Nonlinear equations
	Extrema
	Interpolation and approximation
	Transforms
	Numerical quadrature
	Differential equations
	Special functions
	Pseudo-random numbers
	Auxiliary routines

	Contents
	Introduction
	Overview of the C-SSL II library
	Array storage formats
	Unit round-off
	Machine constants
	Sample routine documentation with annotation

	Selection of Routines
	Linear algebra
	Eigenvalues and eigenvectors
	Nonlinear equations
	Extrema
	Interpolation and approximation
	Transforms
	Numerical differentiation and quadrature
	Differential equations
	Special functions
	Pseudo-random numbers

	Description of the C-SSL II Routines
	c_daggm
	c_dakher
	c_daklag
	c_dakmid
	c_dakmin
	c_daqc8
	c_daqe
	c_daqeh
	c_daqei
	c_daqmc8
	c_daqme
	c_daqn9
	c_dassm
	c_dasvd1
	c_dbi0
	c_dbi1
	c_dbic1
	c_dbic2
	c_dbic3
	c_dbic4
	c_dbicd1
	c_dbicd3
	c_dbif1
	c_dbif2
	c_dbif3
	c_dbif4
	c_dbifd1
	c_dbifd3
	c_dbin
	c_dbir
	c_dbj0
	c_dbj1
	c_dbjn
	c_dbjr
	c_dbk0
	c_dbk1
	c_dbkn
	c_dbkr
	c_dblnc
	c_dbmdmx
	c_dbsc1
	c_dbsc2
	c_dbscd2
	c_dbsct1
	c_dbseg
	c_dbsegj
	c_dbsf1
	c_dbsfd1
	c_dbsvec
	c_dbtrid
	c_dby0
	c_dby1
	c_dbyn
	c_dbyr
	c_dcbin
	c_dcbjn
	c_dcbjr
	c_dcbkn
	c_dcblnc
	c_dcbyn
	c_dceig2
	c_dceli1
	c_dceli2
	c_dcfri
	c_dcgsbm
	c_dcgsm
	c_dchbk2
	c_dches2
	c_dchsqr
	c_dchvec
	c_dcjart
	c_dclu
	c_dcluiv
	c_dclux
	c_dcnrml
	c_dcosi
	c_dcqdr
	c_dcsbgm
	c_dcsbsm
	c_dcsgm
	c_dcssbm
	c_dctsdm
	c_decheb
	c_decosp
	c_deig1
	c_desinp
	c_dexpi
	c_dfcheb
	c_dfcosf
	c_dfcosm
	c_dfsinf
	c_dfsinm
	c_dgbseg
	c_dgcheb
	c_dginv
	c_dgsbk
	c_dgschl
	c_dhbk1
	c_dheig2
	c_dhes1
	c_dhrwiz
	c_dhsqr
	c_dhvec
	c_dicheb
	c_dierf
	c_dierfc
	c_digam1
	c_digam2
	c_dindf
	c_dindfc
	c_dlaps1
	c_dlaps2
	c_dlaps3
	c_dlaxl
	c_dlaxlm
	c_dlcx
	c_dlesq1
	c_dlminf
	c_dlming
	c_dlowp
	c_dlprs1
	c_dlsbix
	c_dlsix
	c_dlstx
	c_dltx
	c_dlux
	c_dmav
	c_dmcv
	c_dmdmx
	c_dmgsm
	c_dminf1
	c_dming1
	c_dmsbv
	c_dmsgm
	c_dmssm
	c_dmsv
	c_dndf
	c_dndfc
	c_dnlpg1
	c_dnolbr
	c_dnolf1
	c_dnolg1
	c_dnrml
	c_dodam
	c_dodge
	c_dodrk1
	c_drjetr
	c_drqdr
	c_dsbmdm
	c_dseig1
	c_dsfri
	c_dsggm
	c_dsimp1
	c_dsini
	c_dsmdm
	c_dsmle1
	c_dsmle2
	c_dsssm
	c_dteig1
	c_dteig2
	c_dtrap
	c_dtrbk
	c_dtrbkh
	c_dtrid1
	c_dtridh
	c_dtrql
	c_dtsd1
	c_dtsdm
	c_dv1dwt
	c_dv2dwt
	c_dvalu
	c_dvbcsd
	c_dvbcse
	c_dvbldl
	c_dvbldx
	c_dvblu
	c_dvblux
	c_dvccvf
	c_dvcfm1
	c_dvcft1
	c_dvcft2
	c_dvcft3
	c_dvcgd
	c_dvcge
	c_dvcos1
	c_dvcpf1
	c_dvcpf3
	c_dvcrd
	c_dvcre
	c_dvgsg2
	c_dvhevp
	c_dvland
	c_dvlax
	c_dvlbx
	c_dvldiv
	c_dvldlx
	c_dvlsbx
	c_dvlspx
	c_dvlsx
	c_dvltqr
	c_dvltx
	c_dvltx1
	c_dvltx2
	c_dvltx3
	c_dvluiv
	c_dvmbv
	c_dvmcf2
	c_dvmcft
	c_dvmcst
	c_dvmggm
	c_dvmrf2
	c_dvmrft
	c_dvmsnt
	c_dvmvsd
	c_dvmvse
	c_dvqmrd
	c_dvqmre
	c_dvran3
	c_dvran4
	c_dvrau4
	c_dvrcvf
	c_dvrft1
	c_dvrft2
	c_dvrpf3
	c_dvseg2
	c_dvsevp
	c_dvsin1
	c_dvsldl
	c_dvspll
	c_dvsplx
	c_dvsrft
	c_dvtdev
	c_dvtfqd
	c_dvtfqe
	c_dvwflt
	c_ranb2
	c_rane2
	c_ranp2

	Description of the auxiliary routines
	c_dcsum
	c_dfmax
	c_dfmin
	c_dmach
	c_dsum
	c_iradix

	Bibliography

