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Preface 
This manual describes the functions and use of the C Scientific Subroutine Library II (C-SSL II). C-SSL II is intended to 
be used on various systems from personal computers to vector supercomputers. The interface between the user's program 
and the C-SSL II library is the same regardless of system type, and therefore this manual can be used for all systems 
where the C-SSL II library is in use. Note that some of the C-SSL II routines may be unavailable or restricted on certain 
systems due to hardware restrictions. 

When using the C-SSL II for the first time, the user should read the Introduction first. 

The contents of the C-SSL II may be amended to keep up with the latest technology. That is, if new, revised or updated 
routines include or surpass the functionality of the current routines, then the current routines may then be deleted from the 
library. 

Export Controls 
Exportation/release of this document may require necessary procedures in accordance with the regulations of your 
resident country and/or US export control laws. 
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June 2016, 11th Version J2UL-1907-02ENZ0(00) 
September 2015, 10th Version J2UL-1907-01ENZ0(01) 
October 2014,  9th Version J2UL-1907-01ENZ0(00) 
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Copyright 
Copyright FUJITSU LIMITED 1997-2020 
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Update History
 

Changes Location Version 
The following routine was added. 
• c_dvcft3

Tables of routines, 
Transforms, Description of the  
C-SSL II Routines 

7th Version 

A note related to the Neumann preconditioner is appended. c_dvcgd,  c_dvcge 8th Version 
Rework format Cover, Preface 9th Version 
A note related to the work area w is appended. c_dvcfm1, c_dvcft3 10th Version 
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• All rights reserved.
• The information in this manual is subject to change without notice.

Rework format Cover, Preface 12th Version 
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How to use this manual 
It is strongly recommended that the Introduction is read carefully by first time users of the C-SSL II, even if they are 

familiar with the Fortran SSL II. The Introduction provides: 

an overview of the library,  

 the library design, 

 information on using the library, 

 an annotated sample calling program, 

 the array storage formats employed, 

 an annotated example of what is contained in each routine description. 
 

The Selection of routines chapter gives an overview of the functionality covered by the library and allows the user to 

select an appropriate routine for his/her own calculation. Each major section of the library, e.g. linear algebra, is covered 

separately to allow users to locate the relevant section more quickly. 

After the Selection of routines chapter are Tables of routines, which contain summary information for every routine in the 

library, with cross references to the detailed routine desciptions. This is intended to allow experienced users to quickly 

locate the routine they require. The routines are listed by section and then by generality, e.g. general solution routines are 

listed before routines for more specific cases. 

The bulk of the manual contains the routine descriptions. The routine descriptions are arranged in alphabetical order. Each 

description contains an overview, argument descriptions, sample calling program and important information on how to 

use each routine. 

Detailed descriptions of the underlying numerical methods can be found in the manuals for the Fortran SSL II library and 

in the references specified in the Bibliography.  

Further sources of information 

There are three different manuals that describe underlying Fortran routines. These are: 

1. SSL II User's Guide (Code 99SP4020E-1). 

2. SSL II Extended Capabilities User's Guide (Code 99SP4070E-2). 

3. SSL II Extended Capabilities User's Guide II. 

There are extensive further references provided in the Bibliography. 

Typographic conventions 

Courier and Times fonts are used as follows: 

 Courier regular font - used for routine names, arguments, program objects, such as arrays and 

code. 

 Times regular font - standard font for text. 

 Times italic font - emphasis, book titles, manual section references, e.g. See Comments on use , components 

of matrix and vector objects, e.g. ija . 

 Times bold font - Whole matrix and vector objects, e.g. bAx  , as well as section titles.  
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Mathematical conventions 

Throughout this manual, the distinction is made between matrices and arrays.  

 Matrices and vectors are mathematical objects that are indexed from one, so the first element of a matrix A 

is 11a . 

 2-D and 1-D arrays are C objects indexed from 0, so that the first element of 2-D array a is a[0][0]. 

When used in mathematical expressions, i is usually used to denote the imaginary part of a complex number, for example 

in z = 5 + i10, 1i . 

The modulus function || x  is used to denote absolute value, including complex absolute value. Unless otherwise 

delimited, norms such as x are the 2-norm (so xxx T ). 



 ix 

Tables of routines 

Linear algebra 

1. Storage mode conversion of matrices 

Routine name  Description Page

c_dcgsm Storage format conversion of matrices (real standard format to symmetric format). 279 

c_dcsgm Storage format conversion of matrices (real symmetric format to standard format). 314 

c_dcgsbm Storage format conversion of matrices (standard format to symmetric band format) 276 

c_dcsbsm Storage format conversion of matrices (symmetric band format to symmetric format). 312 

c_dcsbgm Storage format conversion of matrices (symmetric band format to standard format). 310 

c_dcssbm Storage format conversion of matrices (symmetric format to symmetric band format). 317 

2. Matrix manipulation 

Routine name  Description Page

c_daggm Addition of two matrices (real + real). 98 

c_dsggm Subtraction of two matrices (real - real). 522 

c_dvmggm Multiplication of two matrices (real by real). 693 

c_dmav Multiplication of a real matrix by a real vector. 446 

c_dmcv Multiplication of a complex matrix by a complex vector. 448 

c_dvmvsd Multiplication of a real sparse matrix by a real vector (diagonal storage format). 707 

c_dvmvse Multiplication of a real sparse matrix by a real vector (ELLPACK storage format). 709 

c_dmsgm Multiplication of two matrices (symmetric by general). 463 

c_dassm Addition of two matrices (symmetric + symmetric). 138 

c_dsssm Subtraction of two matrices (symmetric - symmetric). 535 

c_dmssm Multiplication of two matrices (symmetric by symmetric). 465 

c_dmgsm Multiplication of two matrices (general by symmetric). 453 

c_dmsv Multiplication of a symmetric matrix and a vector. 467 

c_dmsbv Multiplication of a symmetric band matrix by a vector. 461 

c_dvmbv Multiplication of a band matrix by a vector. 680 

3. Linear equations drivers 

Routine name  Description Page

c_dvlax Solution of a system of linear equations with a real matrix (blocking LU-decomposition 

method). 

645 

c_dlcx Solution of a system of linear equations with a complex matrix (Crout’s method). 412 

c_dlsix Solution of a system of linear equations with an indefinite symmetric matrix (block diagonal 

pivoting method). 

434 

c_dvlsx Solution of a system of linear equations with a symmetric positive definite matrix (modified 

Cholesky’s method). 

661 
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Routine name  Description Page

c_dvlbx Solution of a system of linear equations with a band matrix (Gaussian elimination). 648 

c_dvlspx Solution of a system of linear equations with a symmetric positive definite matrix (blocked 

Cholesky decomposition method). 

658 

c_dvlsbx Solution of a system of linear equations with a symmetric positive definite band matrix 

(modified Cholesky decomposition). 

655 

c_dlsbix Solution of a system of linear equations with an indefinite symmetric band matrix (block 

diagonal pivoting method). 

431 

c_dlstx Solution of a system of linear equations with a symmetric positive definite tridiagonal matrix 

(modified Cholesky’s method). 

437 

c_dltx Solution of a system of linear equations with a tridiagonal matrix (Gaussian elimination 

method). 

440 

c_dvcgd Solution of a system of linear equations with a symmetric positive definite sparse matrix 

(preconditioned CG method, diagonal storage format). 

608 

c_dvcge Solution of a system of linear equations with a symmetric positive definite sparse matrix 

(preconditioned CG method, ELLPACK storage format). 

612 

c_dvtfqd Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix 

(TFQMR method, diagonal storage format). 

770 

c_dvtfqe Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix 

(TFQMR method, ELLPACK storage format). 

773 

c_dvqmrd Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix 

(QMR method, diagonal storage format). 

711 

c_dvqmre Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix 

(QMR method, ELLPACK storage format). 

714 

c_dvcrd Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix 

(MGCR method, diagonal storage format). 

627 

c_dvcre Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix 

(MGCR method, ELLPACK storage format). 

630 

c_dvbcsd Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix 

(BICGSTAB(l) method, diagonal storage format). 

569 

c_dvbcse Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix 

(BICGSTAB(l) method, ELLPACK storage format). 

573 

c_dvltqr Solution of a system of linear equations with a tridiagonal matrix (QR factorization). 664 

c_dvltx Solution of a system of linear equations with a tridiagonal matrix (cyclic reduction method). 666 

c_dvltx1 Solution of a system of linear equations with a constant-tridiagonal matrix (Dirichlet type and 

cyclic reduction method). 

669 

c_dvltx2 Solution of a system of linear equations with a constant-tridiagonal matrix (Neumann type 

and cyclic reduction method). 

672 

c_dvltx3 Solution of a system of linear equations with a constant almost tridiagonal matrix (periodic 

type and cyclic reduction method). 

675 

4. Matrix inversion 

Routine name  Description Page

c_dvluiv The inverse of a real matrix decomposed into L and U factors. 678 

c_dcluiv The inverse of a complex matrix decomposed into L and U factors. 297 
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Routine name  Description Page

c_dvldiv The inverse of a positive definite matrix decomposed into LDL T  form.  651 

5. Decomposition of matrices 

Routine name  Description Page

c_dvalu LU-decomposition of a real matrix (blocking LU-decomposition method). 566 

c_dclu LU-decomposition of a complex matrix (Crout’s method). 294 

c_dsmdm MDM T - decomposition of an indefinite symmetric matrix (block diagonal pivoting method). 528 

c_dvsldl LDL T  decomposition of a symmetric positive definite matrix (modified Cholesky’s method). 754 

c_dvblu LU – decomposition of a band matrix (Gaussian elimination). 583 

c_dsbmdm MDM T - decomposition of an indefinite symmetric band matrix (block diagonal pivoting 

method). 

514 

c_dvspll LLT decomposition of a symmetric positive definite matrix (blocked Cholesky decomposition 

method). 

757 

c_dvbldl LDL T  decomposition of a symmetric positive definite band matrix (modified Cholesky’s 

method). 

577 

6. Solution of decomposed systems  

Routine name  Description Page

c_dlux Solution of a system of linear equations with a real matrix in LU-decomposed form. 443 

c_dclux Solution of a system of linear equations with a complex matrix in LU-decomposed form. 300 

c_dmdmx Solution of a system of linear equations with an indefinite symmetric matrix in MDM T - 

decomposed form. 

450 

c_dvsplx Solution of a system of linear equations with LLT -decomposed positive definite matrix. 760 

c_dvldlx Solution of a system of linear equations with a symmetric positive definite matrix in LDL T  - 

decomposed form. 

653 

c_dvblux Solution of a system of linear equations with LU - decomposed band matrix. 586 

c_dbmdmx Solution of a system of linear equations with an indefinite symmetric band matrix in 

MDM T - decomposed form. 

210 

c_dvbldx Solution of a system of linear equations with a symmetric positive definite band matrix in 

LDL T  - decomposed form. 

580 

7. Least squares solution 

Routine name  Description Page

c_dlaxl Least squares solution with a real matrix (Householder transformation). 406 

c_dlaxlm Least squares minimal norm solution with a real matrix (singular value decomposition 

method). 

409 

c_dginv Generalized inverse of a real matrix (singular value decomposition method). 359 

c_dasvd1 Singular value decomposition of a real matrix (Householder and QR methods). 140 
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Eigenvalues and eigenvectors 

1. Eigenvalue and eigenvector routines 

Routine name  Description Page

c_deig1 Eigenvalues and corresponding eigenvectors of a real matrix (double QR method). 327 

c_dceig2 Eigenvalues and corresponding eigenvectors of a complex matrix (QR method). 268 

c_dseig1 Eigenvalues and corresponding eigenvectors of a real symmetric matrix (QL method). 518 

c_dvseg2 Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix (parallel 

bisection and inverse iteration methods). 

744 

c_dvsevp Eigenvalues and eigenvectors of a real symmetric matrix (tridiagonalization, multisection 

method, and inverse iteration) 

747 

c_dheig2 Eigenvalues and corresponding eigenvectors of a Hermitian matrix (Householder, bisection 

and inverse iteration methods). 

370 

c_dvhevp Eigenvalues and eigenvectors of a Hermitian matrix (tridiagonalization, multisection method, 

and inverse iteration) 

636 

c_dbseg Eigenvalues and corresponding eigenvectors of a real symmetric band matrix (Rutishauser-

Schwarz, bisection and inverse iteration methods). 

229 

c_dbsegj Eigenvalues and corresponding eigenvectors of a symmetric band matrix (Jennings’ method). 232 

c_dvland Eigenvalues and corresponding eigenvectors of a symmetric sparse matrix (Lanczos method, 

diagonal storage format). 

640 

c_dvtdev Eigenvalues and eigenvectors of a tridiagonal matrix. 766 

c_dteig1 Eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix (QL method). 537 

c_dteig2 Selected eigenvalues and corresponding eigenvectors of a real symmetric tridiagonal matrix 

(bisection and inverse iteration methods). 

539 

c_dvgsg2 Selected eigenvalues and corresponding eigenvectors of a real symmetric generalized 

eigenvalue problem: BxAx   (parallel bisection and inverse iteration methods). 

633 

c_dgbseg Eigenvalues and corresponding eigenvectors of a symmetric band generalised eigenproblem 

(Jennings’ method). 

352 

2. Eigenvalue routines 

Routine name  Description Page

c_dhsqr Eigenvalues of a Hessenberg matrix (double QR method). 376 

c_dchsqr Eigenvalues of a complex Hessenberg matrix (QR method). 287 

c_dtrql Eigenvalues of a symmetric tridiagonal matrix (QL method). 552 

c_dbsct1 Selected eigenvalues of a symmetric tridiagonal matrix (bisection method). 226 

3. Eigenvector routines 

Routine name  Description Page

c_dhvec Eigenvectors of a Hessenberg matrix (inverse iteration method). 378 

c_dchvec Eigenvectors of a complex Hessenberg matrix (inverse iteration method). 289 

c_dbsvec Eigenvectors of a symmetric band matrix (inverse iteration method). 242 
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4. Other routines 

Routine name  Description Page

c_dblnc Balancing of a real matrix. 207 

c_dcblnc Balancing of a complex matrix. 263 

c_dhes1 Reduction of a matrix to a Hessenberg matrix (Householder method). 372 

c_dches2 Reduction of a complex matrix to a complex Hessenberg matrix (stabilized elementary 

similarity transformation). 

285 

c_dhbk1 Back transformation and normalization of the eigenvectors of a Hessenberg matrix. 367 

c_dchbk2 Back transformation of the eigenvectors of a complex Hessenberg matrix to the eigenvectors 

of a complex matrix. 

282 

c_dtrid1 Reduction of a symmetric matrix to a symmetric tridiagonal matrix (Householder method). 548 

c_dtridh Reduction of a Hermitian matrix to a real symmetric tridiagonal matrix (Householder method 

and diagonal unitary transformation). 

550 

c_dbtrid Reduction of a symmetric band matrix to a symmetric tridiagonal matrix (Rutishauser-

Schwarz method). 

245 

c_dtrbk Back transformation of the eigenvectors of a symmetric tridiagonal matrix to the eigenvectors 

of a symmetric matrix. 

543 

c_dtrbkh Back transformation of the eigenvectors of a symmetric tridiagonal matrix to the eigenvectors 

of a Hermitian matrix. 

545 

c_dnrml Normalization of the eigenvectors of a real matrix. 489 

c_dcnrml Normalization of the eigenvectors of a complex matrix. 303 

c_dgschl Reduction of a symmetric matrix system BxAx   to a standard form. 364 

c_dgsbk Back transformation of the eigenvectors of the standard form eigenproblem to the 

eigenvectors of the symmetric generalized eigenproblem. 

362 

Nonlinear equations 

Routine name  Description Page

c_drqdr Roots of a quadratic with real coefficients. 512 

c_dcqdr Roots of a quadratic with complex coefficients. 308 

c_dlowp Roots of a low degree polynomial with real coefficients (fifth degree or lower). 423 

c_drjetr Roots of a polynomial with real coefficients (Jenkins-Traub method). 510 

c_dcjart Roots of a polynomial with complex coefficients (Jarratt method). 292 

c_dtsd1 Root of a real function which changes sign in a given interval (derivative not required). 555 

c_dtsdm Root of a real function (Muller’s method). 557 

c_dctsdm Root of a complex function (Muller’s method). 319 

c_dnolbr Solution of a system of nonlinear equations (Brent’s method). 478 

Extrema 

Routine name  Description Page

c_dlminf Minimization of a function with a single variable (quadratic interpolation using function 

values only). 

417 

c_dlming Minimization of a function with a single variable (cubic interpolation using function values 

and derivatives). 

420 



 

 xiv 
 

Routine name  Description Page

c_dminf1 Minimization of a function of several variables (revised quasi-Newton method using function 

values only). 

455 

c_dming1 Minimization of a function of several variables (quasi-Newton method using function values 

and derivatives). 

458 

c_dnolf1 Minimization of the sum of squares of functions of several variables (revised Marquardt 

method using function values only). 

482 

c_dnolg1 Minimization of the sum of squares of functions of several variables (revised Marquardt 

method using function values and derivatives). 

485 

c_dlprs1 Solution of a linear programming problem (revised simplex method). 425 

c_dnlpg1 Nonlinear programming (Powell’s method using function values and derivatives). 473 

Interpolation and approximation 

1. Interpolation 

Routine name  Description Page

c_daklag Aiken-Lagrange interpolation. 104 

c_dakher Aitken-Hermite interpolation. 100 

c_dbif1 B-spline interpolation, differentiation and integration (I). 166 

c_dbif2 B-spline interpolation, differentiation and integration (II). 169 

c_dbif3 B-spline interpolation, differentiation and integration (III). 172 

c_dbif4 B-spline interpolation, differentiation and integration (IV). 175 

c_dbifd1 Two-dimensional B-spline interpolation, differentiation and integration (I-I). 178 

c_dbifd3 B-spline two dimensional interpolation (III-III). 182 

c_dakmid Two-dimensional quasi-Hermite interpolation. 107 

c_dakmin Quasi-Hermite interpolation coefficient calculation. 110 

c_dbic1 B-spline interpolation coefficient calculation (I). 148 

c_dbic2 B-spline interpolation coefficient calculation (II). 151 

c_dbic3 B-spline interpolation coefficient calculation (III). 154 

c_dbic4 B-spline interpolation coefficient calculation (IV). 156 

c_dbicd1 Two-dimensional B-spline interpolation coefficient calculation (I-I). 159 

c_dbicd3 B-spline two-dimensional interpolation coefficient calculation (III-III). 163 

2. Approximations 

Routine name  Description Page

c_dlesq1 Polynomial least squares approximation. 415 

3. Smoothing 

Routine name  Description Page

c_dsmle1 Data smoothing by local least squares polynomials (equally spaced points). 531 

c_dsmle2 Data smoothing by local least squares polynomials (unequally spaced data points). 533 

c_dbsf1 B-spline smoothing. 235 
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Routine name  Description Page

c_dbsc1 B-spline smoothing coefficient calculation. 213 

c_dbsc2 B-spline smoothing coefficient calculation (variable knots). 217 

c_dbsfd1 B-spline two-dimensional smoothing. 238 

c_dbscd2 B-spline two-dimensional smoothing coefficient calculation (variable knots) 221 

4. Series 

Routine name  Description Page

c_dfcheb Chebyshev series expansion of a function (fast cosine transform). 334 

c_decheb Evaluation of a Chebyshev series. 322 

c_dgcheb Differentiation of a Chebyshev series. 356 

c_dicheb Indefinite integral of a Chebyshev series. 382 

c_dfcosf Cosine series expansion of an even function (fast cosine transform). 338 

c_decosp Evaluation of a cosine series. 324 

c_dfsinf Sine series expansion of an odd function (fast sine transform). 345 

c_desinp Evaluation of a sine series. 330 

Transforms 

Routine name  Description Page

c_dvcfm1  One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7). 594 

c_dvmcf2  Singlevariate, multiple and multivariate discrete complex Fourier transform (complex array, 

mixed radix). 

683 

c_dvmcft Singlevariate, multiple and multivariate discrete complex Fourier transform (real and 

imaginary array separated, mixed radix). 

686 

c_dvmrf2  Singlevariate, multiple and multivariate discrete real Fourier transform (mixed radix). 695 

c_dvmrft Multiple and multivariate discrete real Fourier transform (mixed radices of 2, 3, and 5). 700 

c_dvsrft One-dimensional and multiple discrete real Fourier transform (mixed radices of 2, 3, and 5). 763 

c_dvcft1 Discrete complex Fourier transform (radix 2 FFT). 597 

c_dvcft2 Discrete complex Fourier transform (memory efficient, radix 2 FFT). 601 

c_dvcft3 One-dimensional discrete complex Fourier transforms (Radix 2, for data sequence with a 

constant stride). 

605 

c_dvrft1 Discrete real Fourier transform (radix 2 FFT). 732 

c_dvrft2 Discrete real Fourier transform (memory efficient, radix 2 FFT). 736 

c_dvmcst  Discrete cosine transform. 690 

c_dvcos1 Discrete cosine transform (radix 2 FFT). 617 

c_dfcosm Discrete cosine transform (midpoint rule, radix 2 FFT). 342 

c_dvmsnt  Discrete sine transform. 704 

c_dvsin1 Discrete sine transform (radix 2 FFT). 751 

c_dfsinm Discrete sine transform (midpoint rule, radix 2 FFT). 349 

c_dvcpf1  One-dimensional prime factor discrete complex Fourier transforms. 620 

c_dvcpf3 Three-dimensional prime factor discrete complex Fourier transform. 623 

c_dvrpf3 Three-dimensional prime factor discrete real Fourier transform. 740 

c_dvccvf  Discrete convolution or correlation of complex data. 589 

c_dvrcvf  Discrete convolution or correlation of real data. 727 
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Routine name  Description Page

c_dvwflt Wavelet filter generation. 776 

c_dv1dwt One-dimensional wavelet transform. 560 

c_dv2dwt Two-dimensional wavelet transform. 563 

c_dlaps1 Inversion of Laplace transform of a rational function (regular in the right-half plane). 397 

c_dlaps2 Inversion of Laplace transform of a general rational function. 400 

c_dlaps3 Inversion of Laplace transform of a general function. 403 

c_dhrwiz Assessment of Hurwitz polynomials. 374 

Numerical quadrature 

Routine name  Description Page

c_dsimp1 Integration of a tabulated function (Simpson’s rule, equally spaced points). 524 

c_dtrap Integration of a tabulated function (trapezoidal rule, unequally spaced points). 541 

c_daqn9 Integration of a function (adaptive Newton-Cotes 9-point rule). 135 

c_daqc8 Integration of a function by a modified Clenshaw-Curtis rule. 112 

c_daqe Integration of a function (double exponential formula). 115 

c_daqeh Integration of a function over a semi-infinite interval (double exponentiation formula). 119 

c_daqei Integration of a function over an infinite interval (double exponentiation formula). 122 

c_daqmc8 Multiple integration of a function (modified Clenshaw-Curtis integration rule). 125 

c_daqme Multiple integration of a function by double exponential formula. 129 

Differential equations 

Routine name  Description Page

c_dodge Solution of a stiff or non-stiff system of first order initial value ordinary differential equations 

(Gear’s or Adams methods). 

498 

c_dodam Solution of a non-stiff system of first order initial value ordinary differential equations 

(Adams method). 

492 

c_dodrk1 Solution of a system of first order ordinary differential equations (Runge-Kutta-Verner 

method). 

505 

Special functions 

Routine name  Description Page

c_dceli1 Complete elliptic integral of the first kind )(xK . 270 

c_dceli2 Complete elliptic integral of the second kind )(xE . 272 

c_dexpi Exponential integrals )(xEi and )(xEi . 332 

c_dsini Sine integral )(xSi . 526 

c_dcosi Cosine integral )(xCi . 306 

c_dsfri Sine Fresnel integral )(xS . 520 

c_dcfri Cosine Fresnel integral )(xC . 274 

c_digam1 Incomplete Gamma function of the first kind ),( xv . 389 

c_digam2 Incomplete Gamma function of the second kind ),( xv . 391 

c_dierf Inverse error function )(erf 1 x . 385 
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Routine name  Description Page

c_dierfc Inverse complimentary error function )(erfc 1 x . 387 

c_dbj0 Zero-order Bessel function of the first kind )(0 xJ . 190 

c_dbj1 First-order Bessel function of the first kind )(1 xJ . 192 

c_dby0 Zero-order Bessel function of the second kind )(0 xY . 247 

c_dby1 First-order Bessel function of the second kind )(1 xY . 249 

c_dbi0 Modified zero-order Bessel function of the first kind )(0 xI . 144 

c_dbi1 Modified first-order Bessel function of the first kind )(1 xI . 146 

c_dbk0 Modified zero-order Bessel function of the second kind )(0 xK . 199 

c_dbk1 Modified first-order Bessel function of the second kind )(1 xK . 201 

c_dbjn nth-order Bessel function of the first kind )(xJn . 194 

c_dbyn nth-order Bessel function of the second kind )(xYn . 251 

c_dbin Modified nth-order Bessel function of the first kind )( xI n . 186 

c_dbkn Modified nth-order Bessel function of the second kind )(xKn . 203 

c_dcbin Modified nth-order Bessel function of the first kind with complex variable )(zIn . 255 

c_dcbkn Modified nth-order Bessel function of the second kind with complex variable )(zKn . 261 

c_dcbjn nth-order Bessel function of the first kind with complex variable )(zJn . 257 

c_dcbyn nth-order Bessel function of the second kind with complex variable Yn(z). 266 

c_dbjr Real-order Bessel function of the first kind )(xJv . 196 

c_dbyr Real-order Bessel function of the second kind )(xYv . 253 

c_dbir Modified real-order Bessel function of the first kind )(xIv . 188 

c_dbkr Modified real-order Bessel function of the second kind )(xKv . 205 

c_dcbjr Real-order Bessel function of the first kind with complex variable )(zJv . 259 

c_dndf Normal distribution function )(x . 469 

c_dndfc Complimentary normal distribution function )(x . 471 

c_dindf Inverse normal distribution function )(1 x . 393 

c_dindfc Inverse complimentary normal distribution function )(1 x . 395 

Pseudo-random numbers 

Routine name  Description Page

c_dvrau4 Uniform [0,1) pseudo-random numbers. 724 

c_dvran3 Normal pseudo-random numbers. 718 

c_dvran4 Generation of normal random numbers. (Wallace’s method) 721 

c_rane2 Exponential pseudo-random numbers (single precision). 780 

c_ranp2 Poisson pseudo-random numbers. 782 

c_ranb2 Binomial pseudo-random numbers. 778 

Auxiliary routines 

Routine name  Description Page

c_dmach Unit round-off. 790 

c_dsum Inner product (real vector). 791 

c_dcsum Inner product (complex vector). 786 

c_iradix Radix of the floating-point number system. 793 
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Routine name  Description Page

c_dfmax Positive maximum value of the floating-point number system. 788 

c_dfmin Positive minimum value of the floating-point number system. 789 
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Introduction 

Overview of the C-SSL II library 

1. Background 

The main aims in the design of the C-SSL II are to provide a high-performance scientific library with an ANSI C user 
interface, while exploiting the existing Fortran SSL II to minimize the effort involved in the port and to ease future 
maintenance. This section details the implementation of the C library; outlining general techniques and focusing on 
specific problem areas. The most important aspect of the library is that it consists primarily of C interface routines to 
existing Fortran library codes. This has implications for the routine names and the calling sequences employed, as is 
discussed later. Despite the similarity between the two libraries, if the user already has C-code containing calls to Fortran 
SSL II routines then all of these calls should be replaced with calls to the C-SSL II. Mixing direct calls to the Fortran SSL 
II and calls to the C-SSL II might not work correctly.  

The C-SSL II only supports double precision double functionality; single precision float is not supported except in 
three random number routines. Double precision complex numbers are also supported via a special dcomplex type 
definition. In addition, all integer arguments and results are of type int.  

The coverage of the C-SSL II is similar to that of the Fortran SSL II, except that float will not be widely supported. 
Furthermore, where Extended Capability Fortran routines reproduce the functionality of the original routines, only the 
Extended Capability routines are supported. 

The areas covered are: 
A. Linear algebra 

• Array storage format conversion, 
• Basic matrix manipulation, 
• Solutions of linear equations for a variety of matrix types, including complex, banded, indefinite, 

symmetric, positive definite, tridiagonal and sparse matrices, 
• Matrix decomposition, inversion and solver routines for a variety of matrix types, 
• Singular value decomposition, generalized inverses and linear least squares. 

B. Eigenvalues and eigenvectors 
• Eigenvalues and eigenvectors for a range of matrix types including symmetric, Hermitian and 

symmetric band, and also the generalized eigenvalue problem, 
• Routines for matrix balancing and reduction, as well as back transformation and normalization of 

eigenvectors. 
C. Nonlinear equations 

• Roots of polynomials and nonlinear functions, with one routine for nonlinear systems. 
D. Extrema 

• Minimization of nonlinear functions of one or several variables, 
• Constrained minimization of nonlinear systems, 
• Nonlinear least squares, 
• Linear and nonlinear programming. 

E. Interpolation and approximation 
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• Interpolation with a variety of functions including B-splines, 
• Smoothing using B-splines and least squares, 
• Series expansion including sine, cosine and Chebyshev, 
• Least squares approximation. 

F. Transforms 
• Real and complex FFTs, including singlevariate, multiple and multivariate, with fixed, prime factor 

or mixed radices, 
• Cosine and sine transforms, 
• Laplace transforms, 
• Wavelet transforms, 

G. Numerical quadrature 
• 1-D quadrature for finite, infinite and semi-infinite ranges, 
• Two routines for multidimensional quadrature, 
• Integration of tabulated functions. 

H. Differential equations 
• Solutions of systems of stiff and non-stiff initial value ordinary differential equations. 

I. Special functions 
• Extensive support for Bessel and other special functions. 

J. Pseudo-random numbers 
• Support for uniform, normal, exponential, Poisson and binomial pseudo-random numbers. 

K. Auxiliary routines 
• Summation 
• Machine constants 
 

Each major section (with the exception of the auxilliary routines) is described in detail within the Selection of routines 
chapter following the Introduction chapter. 

2. Details on the C-SSL II interface 

Routines in the C library have names consistent with the Fortran library with the C function name constructed by adding 
the prefix c_ to the underlying Fortran routine name in lower case. As nearly all of the routines deal with double precision 
arguments, this means that the nearly all routines start with c_d. The next letter for enhanced capability routines is v, 
hence c_dvalu. The remaining letters (at most 5) attempt to convey some description of the underlying function. For 
instance, nearly all routines that involve arguments with type dcomplex follow the c_d (c_dv with extended 
capability routines) with the letter c, hence c_dclu, which performs the LU-decomposition of a dcomplex array. This 
is not always true, but is a useful guideline; for instance c_dvcos1 performs a 1-D, radix-2 cosine transform on real data. 

From the users’ viewpoint the C-SSL II consists of C routines using standard C conventions for argument passing, 
argument types and return values. Input-only scalars are passed by value; output and input / output arguments are passed 
by pointer. Input-only arguments are not altered and can be reused by the user. Output arguments do not have to be 
initialized by the user before the function call. Input / output arguments need to be defined before function calls and are 
altered as a result of the call. The values are not necessarily meaningful to the user. Work arrays are labelled as such, 
which implies that no user action is required on the initial call, but their output contents may be significant. It is often 
possible to recall a function to carry on with a computation (for instance, a new end point can be specified in one of the 
differential equation routines) and in almost all such cases, work arguments must remain unchanged between calls.  
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Argument names follow the traditional Fortran implicit typing conventions, so that arguments of type int begin with the 
letters i to n. Arguments of type double start with the letters a to h and o to y. The letter z is the exception and is 
usually reserved for arguments of type dcomplex. 

Every (non-auxiliary) library routine returns a standard int error value. If the routine completed successfully then 0 is 
returned; if there was some error detected in the routine, or if the results may not be reliable, 1 is returned. The user 
program can check the error return value and if an error occurred more information about the error condition can be 
obtained from the icon parameter. 

As much as possible, the arguments in each C library routine are identical to the arguments in the Fortran library routine, 
and they are specified in the same order. Generally, main arguments are listed first, control arguments are in the middle 
and workspaces are located towards the last of the arguments. The last argument is always icon, the error condition code 
(note that this argument is not present in the auxiliary routines). Some argument types are described more fully elsewhere 
in this document: multidimensional-arrays (Section 4), user functions (Section 5), and complex numbers (Section 6). 

Notice that where temporary work array arguments are required by a Fortran library routine, the C interface routine also 
includes these arguments. This is not normal C programming, where work space is generally allocated within a routine 
using malloc. However, as mentioned above, there are several instances where data stored in the work area is actually 
required on subsequent calls to the same function.  

The C-SSL II is provided with a header file cssl.h which contains prototypes for all of the user-accessible functions, 
and other information such as the dcomplex data type definition. Every user program which calls the C library must 
include this header file. The function name of the user main program is main or MAIN__ (two underscores after MAIN). 

3. Sample calling program 

The following program calls the routine c_dvlax to solve a dense system of linear equations using LU-decomposition. 
The program also calls the matrix-vector routine c_dmav. The array a is declared larger than the actual matrix used in 
this example. By doing so, the user could generate matrices of different sizes in the same program and call a C-SSL II 
routine repeatedly with different matrices, but the same array storage. On many modern architectures, particularly vector 
supercomputers, the user needs to consider one more thing: it is possible to choose the number of columns, COLS to 
improve performance by reducing cache bank or memory bank conflicts. On vector supercomputers, one guideline is to 
use an odd number for COLS. On most systems, declaring COLS to be a power of two should be avoided. One final point, 
in order to access elements of a correctly within a routine, the value of COLS must be passed to it as one of the arguments. 
In the documentation, the number of columns of a 2-D array is called the C fixed dimension. 

#include <stdio.h> 
#include "cssl.h" 
 
#define ROWS 100 
#define COLS 101 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, isw, is; 
  double epsz, eps; 
  double a[ROWS][COLS], b[ROWS], x[ROWS], vw[ROWS]; 
  int ip[ROWS]; 
 
  n = 50; 
  /* Initialize matrix a */ 
  ... 

Use #define to declare constants. It 
makes life much easier! 

C-SSL II standard header file. 

Non-standard C required– there are 2 underscores 
present after MAIN.  
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  n = 50; 
  /* Initialize matrix a */ 
  ... 
  /* Initialize solution vector x */ 
  ... 
 
  /* Initialize constant vector b = a*x */ 
  ierr = c_dmav((double*)a, COLS, n, n, x, b, &icon); 
 
  epsz = 0.0; 
  isw = 1; 
 
  /* solve system of equations */ 
  ierr = c_dvlax((double*)a, COLS, n, b, epsz, isw, &is, vw, ip, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dvlax failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* check solution vector */ 
  ...  
} 

4. Multidimensional arrays 

As shown in the above example, the library expects users to declare matrices as 2-D arrays. These arrays must be recast as 
a pointer to type double in calls to a library routines and it is also necessary to specify the C fixed dimension of the array. 

The approach taken incurs a small performance penalty. This is because the user's code will use C row-ordered arrays, but 
before these are passed to the Fortran code, they must be transformed to Fortran column-ordered format. Also, before 
exiting from the C wrapper, the arrays may need to be transformed back again to C row-ordered format if the user is 
expected to access the array data.  

With most library routines the output array data is not accessed directly by the user program but instead the array is passed 
to another library routine for further processing, e.g. c_dvalu and c_dvluiv. This means that the wrapper for the first 
routine, e.g. c_dvalu, does not need to transpose the array on exit; and the second wrapper routine, e.g. c_dvluiv, 
does not need to transpose the array on entry or exit. This definition of the array data differs from that for the Fortran 
library.  

See the Array storage formats section for further details about arrays. 

5. User defined functions 

User defined functions work as C programmers would expect. Thus a user function expects scalar arguments to be passed 
by value. When the result is a scalar, this is returned as the function value. When the desired result is a 1-D array , the 
function is a void function, and the result is passed back via one of the function arguments. Some of the Fortran 
routines expect a 2-D array to be returned. The associated arguments are recast as double pointers and the 
documentation shows users how to assign entries to the array elements. 

With simple scalar functions, the user's program will be normal C code: 

/* include C SSL header file */ 
#include "cssl.h" 
/* user function prototype 8/ 
double func(double x); 
 
/* user's main program */  

It is good practice to always check the value of icon.  

Notice the recast! 

Notice the C fixed dimension! 
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MAIN__() 
{ 
  int ierr, nmin, nmax, n, icon; 
  double epsa, epsr, a, b, s, err; 
  ... 
  /* call C library routine */   
  ierr = c_daqn9(a, b, func, epsa, epsr, nmin, nmax, 
                 &s, &err, &n, &icon); 
  ... 
} 
 
/* user function */ 
double func(double x) 
{ 
  double res; 
  res = x*sin(x); 
  return res; 
} 

When the user must return values through a double pointer that will be interpreted as a 2-D array, the user’s program 
would resemble: 

#include <stdlib.h> 
#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 2 /* order of system */ 
 
/* user function prototypes */ 
void fun(double x, double y[], double yp[]); 
void jac(double x, double y[], double *pd, int k); 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, isw, mf, ivw[N+25]; 
  double x, y[N], xend, epsv[N], epsr, h, vw[N*(N+17)+70]; 
 
  /* Define the input to the routine */ 
  ... 
  /* solve system */ 
  ierr = c_dodge(&x, y, fun, n, xend, &isw, epsv, &epsr,  
                 mf, &h, jac, vw, ivw, &icon); 
  /* Check for errors, print results etc. */ 
  ... 
} 
 
/* user function */ 
void fun(double x, double y[], double yp[]) 
{ 
  yp[0] = y[1]; 
  yp[1] = -11*y[1]-10*y[0]; 
  return; 
} 
 
/* user Jacobian function */ 
void jac(double x, double y[], double *pd, int k) 
{ /* [i][j] -> [i*k+j] */ 
  pd[0*k+0] = 0;    /* [0][0] */ 
  pd[0*k+1] = 1;    /* [0][1] */ 
  pd[1*k+0] = -10;  /* [1][0] */ 
  pd[1*k+1] = -11;  /* [1][1] */ 
  return; 
} 

 

6. Complex numbers 

ANSI C does not provide a complex data type, but it is common C practice to define a complex type using a typedef: 

typedef struct { 
  double re, im; 
} dcomplex; 

 



Introduction 

6 

The C-SSL II supports complex numbers defined in this manner. Only double precision real and imaginary parts are 
supported. An example of user code to handle such complex numbers is: 

/* include C-SSL II header file */ 
#include "cssl.h" 
#define NMAX 1000 
 
MAIN__() 
{ 
  dcomplex za[NMAX][NMAX]; 
  dcomplex zvw[NMAX]; 
  ... 
  /* initialize matrix from file */ 
  for (i=0;i<n,i++) 
    for (j=0;j<n;j++)  
      fscanf(in, "%le, %le", &za[i][j].re, &za[i][j].im); 
  ... 
  ierr = c_dclu(za, k, n, epsz, ip, &is, zvw, &icon); 
  ... 
} 

7. Condition codes  

The icon argument indicates the resultant status after execution of the library function (the condition code) and should 
always be checked on output. To make this slightly easier, the C library routines also provide a return code. As suggested 
in Section 2, the error return value is 0 only if the result is considered to be reliable (i.e. icon < 10000). A value of 1 is 
returned if the result may be unreliable (20000 ≤ icon < 30000) or if the routine detected an error in the input 
arguments (icon = 30000). 

The following table shows the range into which the icon value normally falls, and how users should interpret the 
reliability of the processing results. A small number of routines return icon values that are negative or larger than 30000. 
With such routines, it is important that the user checks the routine documentation for the range of such icon values and 
their meaning. 

Code Explanation Reliability of result Result 
0 Processing terminated normally. 
1 - 9999 Processing terminated normally, but additional 

information is included. 

Result is reliable as far as the routine 
can determine. 

Normal 

10000 - 

19999 

Processing terminated due to an internal restriction 
imposed during processing. 

The result is reliable, subject to 
restrictions. 

Warning 

20000 - 

29999 

Processing is stopped due to an error that occurred 
during processing. 

30000 Processing is bypassed due to an error in the input 
argument(s). 

The result is not to be relied upon. Error 

 

Array storage formats 
The methods for storing matrices in arrays depends on the structure and form of the matrices as well as the computation in 
which it is involved. Viewed as a mathematical object class, the C-SSL II library at present supports the following matrix 
class structure: 
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Positive Definite

Symmetric Hermitian

Positive Definite

Symmetric

Band

Symmetric
Positive Definite

Sparse

Positive Definite

Symmetric

Tridiagonal

Matrix

 

Therefore there are matrices, there are sparse matrices and there are symmetric positive definite sparse matrices. This 
structure only represents the matrix classes that are exploited in this library. For each class or sub-class there are one or 
more array storage formats. Some of the different formats are only used in one or two routines in order to obtain better 
performance from a vector processor. The storage formats for tridiagonal are routine specific and are described only in the 
relevant routine documentation. 

1. Storage formats for general matrices 

When an argument is defined as a matrix, that is from the parent-class and not a child-class, such as symmetric, all of the 
elements of a matrix are assumed significant. A standard 2-D array is used to store the matrix, so that matrix element ija  is 
stored in array element a[i-1][j-1]. Matrices are indexed from 1, which is standard mathematical usage, while array 
dimensions are indexed from 0, which is standard C. This also applies to vectors. Again, the mathematical tradition 
numbers the elements from 1, so that vector element iy  would be stored in array element y[i-1]. 

Another feature of the 2-D arrays used in the C-SSL II library is that most routines are designed so that users can specify a 
larger memory area for a 2-D array than is required for a particular problem. Consider the example in Figure 1, where a 5 
by 5 matrix A has been stored in an m by k array a. In order for this matrix to be used in a function call, in addition to the 
matrix size (in this case 5), it is also necessary to specify k, the number of columns of a. In the documentation, this is 
referred to as the C fixed dimension. 

2524232221
2019181716
1514131211
109876
54321

2524232221
2019181716
1514131211
109876
54321

⇒
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=A m

k

5

double a[m][k]

 
Figure 1 Storage format for general matrices 
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2. Storage formats for symmetric matrices  

Symmetric matrices 
As shown in Figure 2, the elements of the diagonal and the lower triangular portions of an n by n symmetric matrix are 
stored row by row in a 1-D array with nt = n(n+1)/2 elements. 

Note: This storage format might also be used in eigenvalue routines where the matrix is required to be symmetric positive 
definite. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44434241

333231

2221

11

aaaa
aaa

aa
a

A

a11

a21

a22

a31

a32

a33

a42

a43

a44

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

nt

a41

 
Figure 2 Storage format for symmetric matrices 

Symmetric positive definite matrices 
The storage format for symmetric positive definite matrices stores the lower triangular part of an n by n matrix column by 
column into a 1-D array with nt = n(n+1)/2 elements, as shown in Figure 3. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44434241

333231

2221

11

aaaa
aaa

aa
a

A

 a
[
9
]

 a
[
8
]

 a
[
7
]

 a
[
6
]

 a
[
5
]

 a
[
4
]

 a
[
3
]

 a
[
2
]

 a
[
1
]

 a
[
0
]

nt

a44a43a33a42a32a22a31a21 a41a11

 
Figure 3 Storage format for symmetric positive definite matrices 

nt = 4(4+1)/2 = 10 

nt = 4(4+1)/2 = 10 
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3. Storage format for Hermitian matrices 

The real parts of the elements of a Hermitian matrix are stored on the diagonal and lower triangular portions of a 2-D array, 
as shown in Figure 4. The imaginary parts of the lower triangular elements of a Hermitian matrix are stored in the upper 
triangular portion of the same 2-D. 

5554535251

5444434241

5343333231

5242322221

5141312111

555454535352525151

44434342424141

3332323131

222121

11

aaaaa
baaaa
bbaaa
bbbaa
bbbba

aibaibaibaiba
aibaibaiba

aibaiba
aiba

a

⇒
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

++++
+++

++
+

=A

5

k

m

 
Figure 4 Storage format for Hermitian matrices 

 

4. Storage formats for band matrices 

Band storage format 
A band matrix is one in which only a certain range of diagonals above and below the main diagonal contain non-zeros. 
The total range of non-zeros is referred to as the matrix bandwidth, designated by w in the following discussion. Generally, 

),1min( 21 nhhw ++= where 1h  is defined to be the lower bandwidth (that is the diagonal farthest below the main 
diagonal that contain non-zeros) and 2h  is the upper bandwidth. With symmetric matrices, by convention, 21 hhh == is 
referred to as the lower bandwidth, so that 12 +⋅= hw . 

The band storage format is designed to ensure that sufficient storage is available for fill-ins caused during matrix 
factorizations, such as LU-decompositions. This necessitates providing additional storage than that required to just store 
the original matrix. A typical layout is shown in Figure 5. In this example, h1, the lower band width has the value 2 and h2, 
the upper bandwidth, has the value 1. The matrix is stored by row, with a total of 12 21 ++⋅ hh  array elements set aside 
for each row. When this total is larger than n, a routine for the general n by n matrix should be used rather than a 
specialized matrix routine for band matrices. Notice that leading elements of the first h1 rows need not be defined (denoted 
by asterisks or * in Figure 5). Similarly, the trailing 21 hh + elements of the last row do not need to be defined, but all other 
array values that do not initially contain matrix elements must be initialized to zero. 
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nt

a[0]

a[1]

a[2]

a[3]

a[4]

a[5]

a[6]

a[7]

a[8]

a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

555453

45444342

34333231

232221

1211

0

0

aaa
aaaa

aaaa
aaa

aa

A

a11

a12

a21

a22

  *

a22

a31

a32

a33

a34

a42

a43

a44

a53

a54

a55

a45

  *

  *

0

0

0

0

0

0

0

0

h1

h2

h1

h1

h1

h1

h1

h1

h1

  *

  *

  *

h1

h1

a[20]

a[21]

a[22]

a[23]

a[24]

a[25]

a[26]

a[27]

a[28]

a[29]

n  = 5
h1 = 2
h2 = 1
nt = (2×2+1+1)×5
   = 30
* - undefined

 
Figure 5 Storage format for band matrices 

Symmetric band storage format 
The elements of the diagonal and lower band portions of a symmetric band matrix are stored row by row in a 1-D array as 
shown in Figure 6. Only the elements on the main diagonal and h sub-diagonals need to be stored, so that the 1-D array 
has nt = n(h+1) - h(h+1)/2 elements.  

Note: This storage format might also be used in eigenvalue routines where the matrix is required to be symmetric positive 
definite. 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
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0 aaa
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aaa
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a

A

a11

a21

a22

a31

a32

a33

a42

a43

a44

a53

a54

a55

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

a[10]

a[11]

nt

 
Figure 6 Storage format for symmetric band matrices 

Symmetric positive definite band storage format 
The mapping of a symmetric postive definite band matrix onto a 1-D array is shown in Figure 7. The elements of the 
lower triangular matrix are stored column by column into the array, which must have nt = n(h+1) elements. The upper 
triangular portion of the matrix is ignored. The trailing elements of the last h columns of the mapped matrix do not have to 
be defined, so the contents of these elements in the array are marked by asterisks. 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

555453

444342

333231

2221

11

0 aaa
aaa

aaa
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a

A

a54a44a53a43a33a42a32a22a31a21a11    * a55    *   *

a
[
1
1
]

a
[
1
0
]

 a
[
9
]

 a
[
8
]

 a
[
7
]

 a
[
6
]

 a
[
5
]

 a
[
4
]

 a
[
3
]

 a
[
2
]

 a
[
1
]

 a
[
0
]

nt

a
[
1
2
]

a
[
1
3
]

a
[
1
4
]

 h+1 h+1  h+1  h+1  h+1

 
Figure 7 Storage format for symmetric positive definite band matrices 

5. Storage formats for general sparse matrices 

ELLPACK storage format 
The ELLPACK storage format is a sparse matrix format that is best suited to those situations where either the matrix non-
zeros are spread over a wide range of the matrix or the matrix diagonals are themselves very sparse (see [63] and [90] for 
further details on ELLPACK). Two 2-D arrays are used to represent the matrix. The array referred to as coef in Figure 8 

n = 5 
h = 2 
nt = )1(hn +×
   = 15 
* - undefined 

n = 5 
h = 2 
nt = 2/3235 ×−×
  = 12 
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contains the non-zeros of the matrix, stored so that the i-th column of the array contains the non-zeros on the matrix row 
i+1 and the array icol contains the matrix column index of the corresponding non-zero element in coef. Another input 
variable is iwidt, the maximum number of non-zeros in any row of A. If a row has fewer than iwidt non-zeros, then 
the associated column of coef must be padded with zeros. The corresponding elements of icol must contain the row 
number of the row in question.  

In Figure 8, row 1 of A has non-zeros in columns 1 and 4. Therefore, coef[0][0] has the value 1 and icol[0][0] 
has the value 1, because 111 =a . Similarly, coef[1][0] has the value 2 and icol[1][0] = 4 , because 214 =a . 
Row 3 of matrix A has fewer than iwidt non-zeros. Therefore, coef[1][2] is zero and icol[1][2] = 3. Row 4 of 
matrix A is treated similarly. Although not illustrated in the example, the ordering of non-zero elements within a column 
of coef is not important, provided that the same ordering is used in icol. 

2

4334
1321

0042
6531

0006
0500
0430
2001

=

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎦

⎤
⎢
⎣

⎡
=

⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

iwidt

icol

coef

A  

Figure 8 ELLPACK storage format for sparse matrices 

 

Diagonal storage format 
The diagonal storage format is effective for those sparse matrices where the non-zero elements all lie along a small 
number of diagonals. This format is intended to be used with preconditioned iterative linear equation solvers and it only 
stores the main diagonal and those off-diagonals that contain non-zeros. Notice however that all of such diagonals are 
stored, including the zero elements.  

Two arrays are used to store this matrix. The first array, referred to as diag in Figure 9, is a 2-D array whose rows 
contain the diagonal elements and the second is a 1-D array, referred to as nofst whose i-th element contains the offset 
of the diagonal stored in the i-th row of diag. The upper diagonals have a positive offset, the main diagonal an offset of 
zero and the lower diagonals a negative offset. There is no special restriction on the order in which the diagonals are 
stored, although it is essential that the elements within a diagonal are stored consecutively.  

Also notice that leading zeros on the lower diagonals and trailing zeros on the upper diagonals must be explicitly included. 
The reason for these is illustrated in Figure 9. For further information, see [68] and [78]. 

( )1210

10740
 0063
 0902

11851

00
0

111000
9870
6054
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−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
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⎣

⎡

=

⇒

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

nofst

diag

A

 
Figure 9 Diagonal storage format for sparse matrices 
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6. Storage formats for symmetric positive definite sparse matrices 

ELLPACK storage format 
This version of the ELLPACK storage format is intended to be used with symmetric positive definite matrices, where the 
main diagonal has been normalized to ones. There are some important differences between the way elements are stored 
for this matrix sub-class and its parent class. In particular, the main diagonal elements are not stored, because they are 
assumed to be 1 and the upper triangular non-zeros are stored separately from the lower triangular non-zeros. Both the 
upper and lower triangular elements are stored, even though one could be determined from the other. The maximum 
number of non-zeros in each row vector of the upper triangular matrix is nsu and the maximum number of non-zeros in 
each row vector of the lower triangular matrix is nsl. If nsh = max(nsl, nsu), then the non-zeros of the upper 
triangular matrix are stored in rows 0 to nsh –1 and the non-zeros of the lower triangular matrix are stored in rows nsh 
to 2*nsh-1. In other words, occasionally, one or other of the sub-matrix entries will be padded by zeros.  

The indexing for non-zeros (and row numbers for explicit zeros in coef) is still in terms of the original matrix. For 
instance, in Figure 10, coef[2][2] has the value 6, icol[2][2] has the value 2, so that we know 632 =a . 
Similarly, coef[0][2] has the value 7, icol[0][2] has the value 4, so that 734 =a . 

It is the user’s responsibility to ensure that the normalization of the matrix and right hand sides are correct. To obtain the 
solution to bAx = , obtain the solution to the normalized problem ** byA = , where 2/12/1 ADDA =∗  and 

bDb 2/1* =  and then obtain the solution from yDx 2/1= , where D is the diagonal matrix containing the inverse of the 
diagonal elements of A. 
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Figure 10 ELLPACK storage format for normalized symmetric positive definite sparse matrices 

Diagonal storage format 
The data structures used for symmetric positive definite matrices is similar to those in the general case. As with the 
ELLPACK storage format, only normalized matrices are supported, where the main diagonal of the matrix is assumed to 
consist of ones. Therefore, the main diagonal is not explicitly stored because its values are known. An example is 
provided in Figure 11. The order in which the diagonals are stored is now important, with the upper diagonals being 
stored first in diag. Diagonals are given in order from nearest to the main diagonal for both of the upper and lower 
triangular matrices. The entries for the upper diagonals have trailing zeros, so diagonal j will have j trailing zeros. The 
entries for the lower diagonals have leading zeros, so diagonal –j will have j leading zeros.  
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Figure 11 Diagonal storage format for normalized symmetric positive definite sparse matrices 

Unit round-off 
C-SSL II routines frequently use the unit round-off. This value is a basic concept in the error analysis of floating point 
arithmetic. It is defined to be the largest floating point value μ such that 11 =+ μ . The unit round-off is often used in the 
C-SSL II as part of a convergence criterion or to test for the loss of significant figures. Its value can be obtained using the 
auxiliary function c_dmach. 

Error analysis for floating point arithmetic is covered in depth in [117] and [122]. A more basic treatment is found in [16]. 

Machine constants 
There are several references in this manual (particularly in the discussion about special functions) to symbols that express 
computer constants that are hardware dependent. These include: 

• flmin – the positive minimum value for the floating point number system (on hardware supporting the IEEE floating 
point standard, the double value for this is approximately 308102.2 −× ). Its value can be obtained using the 
auxiliary function c_dfmin. 

• flmax – the positive maximum value for the floating point number system (on hardware supporting the IEEE floating 
point standard, the double value for this is approximately 308108.1 × ). Its value can be obtained using the 
auxiliary function c_dfmax. 

• tmax – the upper limit of an argument for a trigonometric function (sin and cos). This is typically around 
151053.3 × for double data types.  

It should be noted that the large size of flmax means that it is unlikely that values near this limit will occur in the course of 
normal computation. The same cannot be said about tmax. Values of the size of tmax can occur in practice. Due care must be 
taken with trigonometric functions to ensure that the input values are in a meaningful range. Even greater care must be 
taken with the transcendental functions (for example 710e  will produce an overflow when evaluated as a double). Such 
care also applies to the special functions supported in the C-SSL II, which is why the range information supplied in the 
documentation is so important.  
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Sample routine documentation with annotation 
The following is a complete routine description. The layout shown is used throughout the manual. 
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Short
description
and sample
call.

c_dmav

Multiplication of a real matrix by a real vector.

ierr = c_dmav(a, k, m, n, x, y, &icon);

1. Function

This function performs matrix-vector product of an m × n real matrix A with a real vector x of size n.
y = Ax (1)

The solution y is a real vector of size m (m and n ≥ 1).

2. Arguments

The routine is called as follows:

ierr = c_dmav((double*)a, k, m, n, x, y, &icon);

where:

a double a[m][k] Input Matrix A.

k int Input C fixed dimension of array a (≥ n).

m int Input The number of rows m for matrices A.

n int Input The number of columns n for matrices A.

See Comments on use.

x double x[n] Input Vector x.

y double y[m] Input Vector y.

Only applies to equation (2). See Comments on use.

Output Solution vector of multiplication.

icon int Output Condition code.  See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

• m < 1

• n = 0

• k < n

Bypassed.

Name of routine.

Mathematical description of the function.

Full sample call and argument description.

Notice the recast
operation.

Argument   C declaration              Usage      Description of the arguments

Values routine dependent
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3. Comments on use

General Comments

The function primarily performs computation for equation (1) but it can also manage to do equation (2) that is very much like (1).
y = y’ - Ax (2)

To tell the function to perform (2), specify argument n=-n and either copy or set the contents of the arbitrary vector y’ into y before calling the

function. Equation (2) is commonly use to compute the residual vector r of linear equations (3) with a right-hand-side vector b.
r = b – Ax (3)

Note, to comply with the same functionality of the Fortran routine.  The same style for specifying the operation is followed in the C function.

4. Example program

This example program calculates a matrix-vector multiplication. The matrix has 10000 elements, and the vector has 100.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 100

MAIN__()
{
  int ierr, icon;
  int m, n, i, j, k;
  double eps;
  double a[NMAX][NMAX], x[NMAX], y[NMAX];

  /* initialize matrix and vector */
  m = NMAX;
  n = NMAX;
  k = NMAX;
  for (i=0;i<n;i++) {
    for (j=0;j<n;j++)
      a[i][j] = 1.0/(j+1);
    x[i] = i+1;
  }
  /* perform matrix vector multiply */
  ierr = c_dmav((double*)a, k, m, n, x, y, &icon);
  if (icon != 0) {
    printf("ERROR: c_dmav failed with icon = %d\n", icon);
    exit(1);
  }
  /* check vector */
  eps = 1e-6;
  for (i=0;i<n;i++)
    if (fabs((y[i]-n)/n) > eps) {
      printf("WARNING: result inaccurate\n");
      exit(1);
    }
  printf("Result OK\n");
  return(0);
}

5. Method

The standard matrix-vector product algorithm is used. For further information consult the entry for MAV in the Fortran SSL II User’s Guide.

Programs show basic use; source is available.

Discussions are minimal, with references to relevant
Fortran routines and research papers

Additional details on arguments and use of function
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Selection of Routines 
The following sections are intended to enable the user to select the most suitable C-SSL II routine for his/her calculation. 
They are organised according to the major sections outlined in the Introduction chapter.  

Each section in this chapter is designed to be independant of all the other sections, so that the user only needs to read the 
section directly relevant to operation they wish to perform.  
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Linear algebra 

1. Outline 

In Table 1 the Linear algebra operations available in the C-SSL II are classified depending on the structure of the 
coefficient matrix and the related problems. 

Table 1 Classification of operations for linear equations 

Structures Problem Section 
Conversion of array storage formats 2 
Matrix manipulation 3 
Systems of linear equations; Matrix inversion 4 

Dense 
matrix 

Least squares solution 7 
Conversion of array storage formats 2 
Matrix manipulation 3 

Band 
matrix 

Systems of linear equations 4 
Tridiagonal 
matrix 

Systems of linear equations 5 

Matrix manipulation 3 Sparse 
matrix Iterative solution of systems of linear 

equations 
6 

 

The time and memory required to solve a system of linear equations can be reduced significantly if it is possible to use a 
method that has been optimized for a particular matrix structure. 

2. Matrix storage format conversion 

The C-SSL II provides conversion routines for the following transformations: 

 Real general matrix

Real symmetric matrix  Real symmetric band matrix

 
Figure 12 Supported conversion operations 

The names of the associated routines are given in Table 2. The storage format of an array depends on the structure and 
form of the underlying matrix. For example, when storing the elements of a real symmetric matrix, only elements on the 
diagonal and upper triangle portion are stored. See the Array storage formats section in the Introduction for details. 
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Table 2 Array storage format conversion routines 

 After conversion 
Before conversion Standard Symmetric  Symmetric band 
Standard  c_dcgsm c_dgsbm 

Symmetric c_dcsgm  c_dcssbm 

Symmetric band c_dcsbgm c_dcsbsm  
 

3. Matrix manipulation 

The following basic matrix manipulations are supported: 

• Addition/Subtraction of two matrices A ± B. 
• Multiplication of a matrix by a vector Ax. 
• Multiplication of two matrices AB. 
 
C-SSL II provides the routines listed in Table 3 for matrix manipulation. There are two different routines for sparse 
matrices, depending on whether the diagonal storage format or ELLPACK storage format is used. 

Table 3 Matrix manipulation routines 

 B or x 
A  General real Symmetric Vector 

Addition c_daggm   

Subtraction c_dsggm   

General real 

Multiplication c_dvmggm c_dmgsm c_dmav 

General complex Multiplication   c_dmcv 

Addition  c_dassm  

Subtraction  c_dsssm  

Symmetric 

Multiplication c_dmsgm c_dmssm c_dmsv 

Band  Multiplication   c_dvmbv 

Symmetric band Multiplication   c_dmsbv 

Sparse – diagonal  Multiplication   c_dvmvsd 

Sparse – ELLPACK  Multiplication   c_dvmvse 

 

Comments on use 
The non-sparse matrix vector multiplication routines also support the operation r = r – Ax, which can be used to compute 
the residual vector in the approximate solution of systems of linear equations.  

4. Linear equations and matrix inversion (direct methods) 

This section describes the routines that are used to solve the following problems. 

• Solve systems of linear equations Ax = b, where A is an n × n matrix, x and b are vectors of size n. 
• Obtain the inverse of a matrix A. 
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• Obtain the determinant of a matrix A. 
 
Users are recommended to solve such problems using the linear equation 'driver' routines that are provided in the C-SSL 
II. These driver routines call a sequence of component routines, where the actual computation takes place. Alternatively, a 
C interface exists to most of the componant routines and therefore, the computation may be performed by making a 
sequence of calls to component routines.  

Depending on the matrix classification, there are component routines to perform the following operations.  

• Numeric decomposition of a coefficient matrix 
• Solving based on the decomposed coefficient matrix 
• Matrix inversion based on the decomposed matrix 
 
Combinations of these routines ensure that systems of linear equations, inverse matrices, and the determinants can be 
solved. 

Linear equations 
The solution of the equations can be obtained by calling the component routines consecutively as follows: 

... 
/* Decomposition routine */ 
ierr = c_dvalu((double *)a,k,n,epsz,ip,&is,vw,&icon) 
/* Solve routine given a decomposition */  
ierr = c_dlux(b,(double *)a,k,n,isw,ip,&icon)  
... 
 

Matrix inversion 
The inverse can be obtained by calling the above components routines serially as follows: 

... 
/* Decomposition routine */ 
ierr = c_dvalu((double *)a,k,n,epsz,ip,&is,vw,&icon);  
/* Compute matrix inverse given a decomposition */ 
ierr = c_dvluiv((double *)a,k,n,ip,(double *)ai,&icon); 
... 
 

The inverses of band matrices are generally dense matrices so that it is not efficient to compute these matrices directly. 
Therefore, no such component routines are provided. 

Determinants 
There are no component routines that return the value of a matrix determinant. However, the value can be computed from 
the elements of a decomposition component routine. 

Routines available 
Table 4 lists the driver routines and component routines available for the direct solution of systems of linear equations. 
Driver routines for tridiagonal and sparse matrices are discussed separately. 

Table 4 Driver and component routines for direct methods 

Matrix type Driver routines Decomposition Solve Inverse 
General c_dvlax c_dvalu c_dlux c_dvluiv 

Complex c_dlcx c_dclu c_dclux c_dcluiv 

Symmetric c_dlsix c_dsmdm c_dmdmx  



Linear algebra 

 23 

Matrix type Driver routines Decomposition Solve Inverse 
Symmetric positive definite 
(Modified Cholesky method) 

c_dvlsx c_dvsldl c_dvldlx c_dvldiv 

Symmetric positive definite 
(Cholesky method) 

c_dvlspx c_dvspll c_dvsplx  

General band c_dvlbx c_dvblu c_dvblux  

Symmetric band c_dlsbix c_dsbmdm c_dbmdmx  

Symmetric positive definite 
band 

c_dvlsbx c_dvbldl c_dvbldx  

 

Comments on use 
Matrix inversion 
Usually, it is not advisable to invert a matrix when solving a system of linear equations. 

 Ax = b (1) 

That is, in solving equation (1), the solution should not be obtained by calculating the inverse A-1 and then multiplying b 
by A-1 from the left side as shown in (2).  

 x = A-1 b (2) 

Instead, it is advisable to compute the LU-decomposition of A and then perform the operations (forward and backward 
substitutions) shown in (3). 

 
yUx
bLy

=
=

 (3) 

Higher operating speed and accuracy can be attained by using method (3). The approximate number of multiplications 
involved in the two methods (2) and (3) are n3 + n2 and n3/3 respectively. Therefore, matrix inversion should only be 
performed when absolutely necessary. 

Equations with identical coefficient matrices 
When solving a number of systems of linear equations as in (4) where the coefficient matrices are the identical and the 
constant vectors are the different, 
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⎪
⎭
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 (4) 

it is not necessary to decompose the matrix A for each equation. After decomposing A when solving the first equation, 
only the forward and backward substitution shown in (3) need be performed for solving the other equations. In driver 
routines, the user can control whether or not processing begins with the decomposition of A via the isw argument in the 
routine call. 

Notes and internal processing 
When using any of the routines, the following should be noted for convenience of internal processing. 
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Blocking LU decomposition, Crout’s method, Gaussian elimination 
In the C-SSL II, a blocking LU decomposition is used to decompose a matrix in standard form. This is a variant of 
Gaussian elimination that has been designed to produce good performance on modern computer architectures. Crout’s 
method is also a variant of Gaussian elimination and is employed for complex matrices. Both produce a decomposition for 
general matrices of the form: 

 A = LU (5) 

where L is a lower triangular matrix and U is an upper triangular matrix. 

Cholesky method  and modified Cholesky method 
The blocked Cholesky decomposition method and the modified Cholesky method is used for positive-definite symmetric 
matrices, that is, the decomposition shown in (6) is done. 

 A = LLT, 
 A = LDLT (6) 

where L is a lower triangular matrix and D is a diagonal matrix. Special variants of the Cholesky method are used for 
symmetric indefinite matrices and for symmetric positive definite band matrices.  

Matrix decompositions are summarized in Table 5. 

Table 5 Matrix decompositions 

Matrix type Contents of decomposed matrices 
General matrices PA = LU 

L: Lower triangular matrix 
U: Unit upper triangular matrix 
P is a permutation matrix. 

Positive-definite symmetric matrices
(Cholesky method) 

A = LLT 
L: lower triangular matrix 
 (To minimize calculation, the lower 
triangular matrix is actually given as LT.) 

Positive-definite symmetric matrices
(Modified Cholesky method) 

A = LDLT 
L: Unit lower triangular matrix 
D: Diagonal matrix 
(To minimize calculation, the diagonal 
matrix is actually given as D-1.) 

 

Pivoting and scaling 
Consider decomposing the real general matrix (7) into the form shown in (5). 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

0.00.2
0.10.0

A  (7) 

In this state, LU decomposition is impossible. And also in the case of (8) 



Linear algebra 

 25 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

0.10.1
0.10001.0

A  (8) 

Decomposing by floating point arithmetic with the precision of three digits will cause unstable solutions. These 
unfavourable conditions can frequently occur when the rows of a matrix are not properly ordered. This can be avoided by 
pivoting, which selects the element with the maximum absolute value for the pivot. Problems can be avoided in (8) by 
exchanging each element in the first row and the second row. 

In order to perform pivoting, the method used to select the maximum absolute value must be unique. By multiplying all of 
the elements of a row by a large enough constant, any absolute value of a non-zero element in the row can be made larger 
than the corresponding element in the other rows. Therefore, it is just as important to equilibrate the rows and columns as 
it is to determine a pivot element of the maximum size in pivoting. C-SSL II uses partial pivoting with row equilibration. 
The row equilibration is performed by scaling so that the maximum absolute value of each row of the matrix to be 
decomposed is 1. Actually the values of the elements are not changed in scaling; the scaling factor is only used when 
selecting a pivot. 

Transposition vectors 
Since row exchanges are performed in pivoting, the historical data is stored as the transposition vector. The matrix 
decomposition which accompanies this partial pivoting can be expressed as; 

 PA = LU (9) 

Where P is the permutation matrix which performs row exchanges required by partial pivoting. This permutation matrix P 
is not stored directly, but is handled as a transposition vector. In other words, in the j th, stage (j = 1,.., n) of decomposition, 
if the i th row (i ≥ j) is selected as the j th pivotal row, the i th row and the j th row of the matrix in the decomposition 
process are exchanged and the j th row element of the transposition vector P is set to i. 

Testing for a zero or relatively zero pivot  
In the decomposition process, if a zero or relative-zero pivot is detected, the matrix can be considered to be singular. In 
such a case, the pivot may have few correct significant digits and continuing the calculation might fail to obtain an 
accurate result. The argument epsz is used to determine whether to continue or discontinue processing. In other words, 
when epsz is set to 10-s, if a loss of over s significant digits occurs when computing the pivot, the pivot is considered to 
be relatively zero and processing is discontinued. 

5. Linear equations (tridiagonal systems) 

The routines that solve tridiagonal systems of linear equations are listed in Table 6. Different array storage formats are 
employed in the different routines. In addition, each requires differing amounts of work area. If a vector processor is being 
employed, but the matrix has no other special properties apart from being non-singular, tridiagonal, then the routine 
c_dvltqr is recommended. If the matrix is diagonally dominant, so that no pivoting is required, then c_dvltx is the 
fastest routine for this class of problem when the matrix size is large and a vector processor is being employed. A slight 
disadvantage of both of these routines is that they require more storage than either c_dltx or c_dlstx. These two 
routines are only suggested for small problems or where a scalar processor is being employed. 

The routines c_dvltx1, c_dvltx2 and c_dvltx3 are specialized versions of c_dvltx that are designed for the 
solution of special tridiagonal systems where the diagonal elements all have the same value and the off-diagonal elements 
all have the same value except at one or two specific locations. Matrices with these properties arise in the numerical 
approximation of partial differential equations (PDEs) via finite differences. Different boundary conditions (Dirichlet, 
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Neumann or periodic) in the underlying PDE produce slightly different matrices, which is reflected in the three routines 
provided. These routines are memory efficient as well as being designed to perform well on a vector processor. 

Table 6 Routines for tridiagonal systems 

Matrix type Routine 
General real tridiagonal c_dvltqr 

General real tridiagonal c_dltx 

General real diagonally dominant tridiagonal c_dvltx 

Symmetric positive definite tridiagonal c_dlstx 

Real constant tridiagonal (Dirichlet type) c_dvltx1 

Real constant tridiagonal (Neumann type) c_dvltx2 

Real constant almost tridiagonal (periodic type) c_dvltx3 

  

6. Iterative Linear equation Solvers and Convergence 

Routines for the iterative solution of sparse systems of linear equations are given in Table 7. The choice of storage format 
for the sparse matrix depends on the extent to which non-zero matrix elements are concentrated along matrix diagonals. 

Table 7 Routines for the iterative solution of sparse systems of linear equations 

Matrix type Method Diagonal storage 
format 

ELLPACK storage  
format 

Symmetric positive  
definite 

Preconditioned conjugate 
gradients 

c_dvcgd c_dvcge 

Transpose-free quasi- 
minimal residual 

c_dvtfqd c_dvtfqe 

Quasi-minimal residual c_dvqmrd c_dvqmre 

Modified generalized  
conjugate residual 

c_dvcrd c_dvcre 

Nonsymmetric or 
indefinite 

Bi-Conjugate gradient 
stabilized(l) 

c_dvbcsd c_dvbcse 

 

6.1  Scaling 

It is strictly recommended to scale the equation in order  to balance the matrix entries for the efficient usage of iterative 
linear equation solver. This normalisation of the matrix strongly improves the numerical stability and the convergence rate 
of the iterative solver. The normalised coefficient matrix Â should have non--negative entries in the main diagonal and, 
for instance, the sum of absolute values in each row should be approximately equal to one. 

 Ax = b (10) 

A normalised form of the linear system (10) can be constructed by multiplying the coefficient matrix A by a diagonal 
matrix L from the left and with a diagonal matrix R from the right. By introducing a new variable xRx 1ˆ −=  the linear 
system(10) is written as 
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 bxALbxLAR ˆˆˆˆ =⇔=   

where, LARA =ˆ , Lbb =ˆ . 

Instead of A the normalised matrix Â  is used in the iterative solver. Keep in mind that the right hand side b has to be 
transformed by multiplication with L before the solver is called and the returned solution approximation has to be 
transformed by multiplication with R. 

If for all i=1,...,n  the ∑
=

=
n

j
iji as

1

 value is the absolute sum of entries in the i-th row one can set 
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for all i,j=1,...,n.  It is emphasized that there are other possible ways of introducing a normalisation with rather different 
effects on the convergence rate of the iterative solvers, see [116] for an overview. 

Notice , that with selection (11) and (12) the normalised matrix Â  is symmetric and positive definite if and only if the 
original matrix is symmetric and positive definite. 

6.2  Symmetry of Matrix and Iterative solvers 

a) Symmetric Matrix 

If the matrix A is symmetric, ie. aij=aji for all i,j=1,...,n, and positive definite the classical conjugate gradient method(see 
[53]) can be used to solve the linear system. 

If the matrix is not positive definite a break down will occurred. 

b) Non-symmetrical or Indefinite Matrix 

In case of a non-symmetrical or indefinite coefficient matrix a set of solvers are available. The optimal solver for the given 
linear system depends on the properties of the coefficient matrix A (or  if the normalised system Â  is considered). For the 
different classes of matrices the following solvers are available: 

6.3  Eigenvalues Distribution of Matrix and Convergence 

a) MGCR method 

If the eigenvalues of the coefficient matrix are close to the positive real axis (see Figure 13) can be used with a small 
number of search directions (eg. 5-10).  If the imaginary part of any eigenvalue is large more search directions must be 
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considered in order to get good convergence.  This increases the storage requirements as well as the amount of 
computation per iteration step which makes MGCR (see [66]) less efficient. 

For a small number of search directions MGCR is a very fast but not very robust method. 

b) TFQMR method 

If the eigenvalues are in the positive half plane but there are eigenvalues with large imaginary part (see Figure 14)  
TFQMR(see [36]) is the recommended method. Also the solvers converge best if the minimal real part of any eigenvalue 
is as large as possible. So, for example, the convergence will be poor if there is an eigenvalue which has a very small 
nonzero real part. The convergence rate of TFQMR can be worse than the convergence rate of MGCR with a large 
number of search directions. However, every iteration step of TFQMR is much cheaper than MGCR with a large number 
of search directions so that a solution is calculated within less CPU time. So TFQMR is more robust but slower than 
MGCR with a small number of search directions. 

c) BICGSTAB(l) method 

Similarly to TFQMR BICGSTAB(l)(see [102]) is suitable for matrices with eigenvalues that are in the positive half plane. 
Also the solvers converge best if the minimal real part of any eigenvalue is as large as possible. So, for example, the 
convergence will be poor if there is an eigenvalue which has a very small nonzero real part. In some applications where 
the eigenvalues of the coefficient matrix are close to the positive real axis BICGSTAB(l) has an even faster convergence 
rate than MGCR with a small number of search directions. However, every iteration step of BICGSTAB(l) is very 
expensive as it requires two matrix vector multiplications. Therefore in some cases MGCR or TFQMR are faster than 
BICGSTAB(l) but BICGSTAB(l) is more robust. 

If no information about the eigenvalues of the (normalised) coefficient matrix is available it is suggested to try the 
methods MGCR, TFQMR and BICGSTAB(l) one after the other. MGCR should be used with 5 and 10 search directions. 
The order in which the methods are tested is important. So the fast but less robust methods should be tested before more 
robust methods are used. A suitable criterion for the quality is the CPU time the solver needs to reach the accuracy 0.1. 

 Imaginary part 

Real part 

 

Figure 13 Eigenvalues distribution for convergent MGCR 

 Imaginary part

Real part 

 

Figure 14 Eigenvalues distribution for convergent 
TFQMR and BICGSTAB(l) 
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7. Least squares solution 

The types of linear least squares problems handled by the C-SSL II with the associated routine names are given in Table 8. 

Table 8 Routines for m × n matrices 

Problem type Routine 
Least squares solution c_dlaxl 

Least squares minimal norm solution c_dlaxlm 

Generalized inverse c_dginv 

Singular value decomposition c_dasvd1 

 

Least squares solution 
The least squares solution is the vector x~  which minimizes 2bAx − , where A is an m × n matrix (m ≥ n, rank (A) = n), 
x is a vector of size n and b is a vector of size m. 

Least squares minimal norm solution (underdetermined systems) 
The least squares minimal norm solution is the vector x+ which has the minimum 2x  over all x  for which 2bAx − is 
minimized. A is an m × n matrix, x is a vector of size n and b is a vector of size m. 

Generalized inverse 
An n × m matrix X that satisfies the equations in (13) for an m × n matrix A is called a Moore-Penrose generalized inverse 
of a matrix A and is denoted by A+. The generalized inverse is unique. The C-SSL II supports this operation for any m × n 
matrix, independent of the relative sizes of m and n. 

 ( )
( ) XAXA

AXAX
XXAX
AAXA

T

T

=
=
=
=

 (13) 

Singular value decomposition 
Singular value decomposition is obtained by decomposing a real m × n matrix A as shown in (14). 

 T
00 VUA Σ=  (14) 

Here U0 and V are m × m and n × n orthogonal matrices respectively, Σ0 is an m × n diagonal matrix where Σ0=diag(σi) 
and σi ≥ 0. The σi are called the singular values of A. Suppose A is an m × n matrix with m ≥ n. Since Σ0 is an m × n 
diagonal matrix, the first n columns of U0 are used for U0 Σn VT in (14). That is, U0 may be considered as an m × n matrix. 
Let U be this matrix, and let Σ be an n × n matrix consisting of matrix Σ0 without the zero (m-n) × n sub-matrix of Σ0. 
When using matrices U and Σ, if m is far larger than n, the storage space can be reduced. So matrices U and Σ are more 
convenient than U0 and Σ0 in practice. This is also true when m is smaller than n (m < n), in which case only the first m 
rows of VT are used and VT can be considered as an m × n matrix. 

Assume that: 
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 TVUA Σ=  (15) 

where: l = min (m, n) is assumed and U is an m × l matrix, Σ is an l × l diagonal matrix where Σ = diag (σi), and σi ≥ 0, 
and V is an n × l matrix. 

When l = n (m ≥ n), 

nIVVVVUU === TTT  

when l = m ( n ≥ m), 

mIVVUUUU === TTT
 

The next section describes some of the properties of the matrices U, V and Σ that are obtained when computing the 
singular values of matrix A. For further details, refer to reference [41] and to the Method section for the routine LAXLM 
in the Fortran SSL II User's Guide. 

Properties of matrices arising in a singular value decomposition 
Singular values σi, i = 1, 2, ..., l are the positive square roots of the first to l-th eigenvalues of matrices ATA and AAT 
ranked from largest to smallest. The i-th column of matrix U is an eigenvector of matrix AAT corresponding to the 
eigenvalue σi

2. The i-th column of matrix V is an eigenvector of matrix ATA, corresponding to eigenvalue σi
2. This can be 

seen by multiplying AT = V Σ UT from the right and left sides of (15) and applying UT U = VT V = Il as follows: 

 2T ΣVAVA =  (16) 

 2T ΣUUAA =  (17) 

Condition number of matrix A 
If σi > 0, i=1, 2, ..., l, the condition number of matrix A is given by : 

 ( ) lσσ /cond 1=A  (18) 

Rank of matrix A 
If σr > 0, and σr+1 = L = σl = 0, the rank of A is r and is given by: 

 rank (A) = r (19) 

Basic solution of homogeneous linear equations Ax = 0 and ATy = 0 
The non-trivial linearly independent solutions of Ax = 0 and AT y = 0 consist of the columns of V and U which 
correspond to the singular values σi = 0. These can be easily obtained from equations AVT = UΣ and ATU = VΣ. 

Least squares minimal norm solution of Ax = b  
The solution x is represented by using the singular value decomposition of A as follows: 

 bUVx T+= Σ  (20) 

where the diagonal matrix Σ+ is defined as:  
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 ),,,(diag 21
++++ σσσ= lLΣ  (21) 
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Generalized inverse of a matrix 
The generalized inverse A+ of A can be expressed by: 

 TUVA ++ = Σ  (23) 

Comments on use 
Systems of linear equations and the rank of coefficient matrices 
A least squares minimal norm solution to the system of linear equations (Ax = b) with an m × n coefficient matrix can be 
obtained regardless of the number of columns or rows, or ranks of the coefficient matrix A. That is, the least squares 
minimal norm solution can be applied to any type of equations. However, obtaining this solution requires a great amount 
of calculation. If the coefficient matrix is rectangular, m > n and the rank is full (i.e. rank (A) = n), the routine for least 
squares solution should be used instead because it requires less calculation. 

 

Least squares minimal norm solution and generalized inverse 
The solution of linear equations Ax = b with m × n matrix A (m ≥ n or m < n, rank(A) ≠ 0) is not unique. However, the 
least squares minimal norm solution always exists uniquely. This solution can be calculated by x = A+ b after the 
generalized inverse A+ of the coefficient matrix A is obtained. This requires a great amount of calculation. It is advisable 
to use the routine for the least squares minimal norm solution, for the sake of high speed processing. This routine provides 
the argument isw by which the user can solve efficiently multiple equations with the same coefficient matrix (see below). 

Equations with the identical coefficient matrix 
Both the least squares solution and least squares minimal norm solution of a system of linear equations consist of two 
stages: the decomposition of the coefficient matrices and then obtaining the solution. 

When obtaining the least squares solution or least squares minimal norm solution of a number of systems with the 
identical coefficient matrices, it is not necessary to repeat the decomposition. 

mm xAx

bAx
bAx

=

=
=

M

22

11

 

In this case, a user should decompose the matrix to solve only the first of these systems as this reduces the of number of 
calculations. C-SSL II provides the argument isw, which can control whether matrix A is decomposed or not. 

Obtaining singular values 
The singular values are obtained by singular value decomposition as shown in (24): 
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 TVUA Σ=  (24) 

This decomposition requires a great amount of calculation. Some savings can be made since the routine does not need to 
calculate the matrices U and V if they are not required by the user. C-SSL II provides parameter isw to control whether 
matrices U or V should be computed. C-SSL II can handle any type of m × n matrices (m > n, m = n, m < n). 
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Eigenvalues and eigenvectors 

1. Outline 

Eigenvalue problems can be organized as show in Table 9 according to the type of problem (Ax = λx, Ax = λBx) and the 
shape (dense, band, sparse), type (real, complex), and form (symmetric, nonsymmetric) of the matrices. The reader should 
refer to the appropriate section specified in the table. 

Table 9 Organization of eigenvalue problems 

Shape of 
matrix 

Type of 
problem 

Matrix type and form Driver 
routines 

Explanation 
section 

Real matrix c_deig1 2 
Complex matrix c_dceig2 3 
Real symmetric matrix c_dseig1 

c_dvseg2 

c_dvsevp 

4 

Ax=λx 

Hermitian matrix c_dheig2 

c_dvhevp 

5 

Dense matrix

Ax=λBx Real symmetric matrix c_dvgsg2 9 
Ax=λx Real symmetric band matrix c_dbseg 

c_dbsegj 

6 Band matrix 

Ax=λBx Real symmetric band matrix c_dgbseg 10 
Sparse matrix Ax=λx Real symmetric matrix c_dvland 7 

Real matrix c_dvtdev Tridiagonal 
matrix 

Ax=λx 
Real symmetric matrix c_dteig1 

c_dteig2 

8 

 

The emphasis in this section is on the driver routines that provide all (or a selected subset) of the eigenvalues of a matrix 
along with the corresponding eigenvectors. For the driver routines that are not based on extended capability routines, there 
are also associated component routines. The C-interfaces to these component routines often involve matrix transpositions, 
so that a sequence of calls to component routines is always slower than a single call to the corresponding driver routine. 

2. Eigenvalues and eigenvectors of a real matrix 

C-SSL II provides the following: 

• A driver routine by which all the eigenvalues and eigenvectors of real matrices may be obtained. 
• Component routines decomposed by function.  
 
User problems can be classified as follows: 

• Obtaining all eigenvalues, 
• Obtaining all eigenvalues and eigenvectors,  
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• Obtaining all eigenvalues and selected eigenvectors.  
The use of component routines and driver routines to obtain all eigenvalues and eigenvectors is illustrated by code 
fragments. The routines required to obtain selected eigenvectors are mentioned.  

The user is recommended to use the driver routine when obtaining all the eigenvalues and eigenvectors of a real matrix. 
This is a robust routine and normally only fails if the matrix is very badly conditioned. 

Obtaining just the eigenvalues or obtaining the eigenvectors corresponding to specified eigenvalues can only be done by 
calling a series of component routines. 

Obtaining all eigenvalues 
In the following program segment, all eigenvalues of the real matrix A (stored in array a) are obtained through the use of 
the component routines shown in steps 1, 2 and 3. 

... 
ierr = c_dblnc((double *)a, k, n, dv, &icon);  /* step 1 */ 
ierr = c_dhes1((double *)a, k, n, pv, &icon);  /* step 2 */ 
ierr = c_dhsqr((double *)a, k, n, er, ei, &m, &icon); /* step 3 */ 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

1. A is balanced, if balancing is not necessary, this step can be omitted. 
2. A is reduced to a Hessenberg matrix using the Householder method. 
3. The eigenvalues of A are obtained by calculating the eigenvalues of the Hessenberg matrix using the 

double QR method. 
 

Obtaining all eigenvalues and eigenvectors  
All eigenvalues and corresponding eigenvectors of real matrix A can be obtained by calling the driver routines as shown 
below.  

... 
ierr = c_deig1((double *)a, k, n, mode, er, ei, (double *)ev, vw, &icon); 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

In the driver routine, the eigenvectors are obtained simultaneously by multiplying all the transformation matrices obtained 
successively. If eigenvalues are tightly clustered or are multiple roots, the eigenvectors can be determined more accurately 
using this method than by using the inverse iteration method. Inverse iteration is employed in the component routine 
c_dhvec to obtain the eigenvectors of a Hessenberg matrix, given the Hessenberg matrix and its eigenvalues. This 
routine can also be used to obtain the eigenvectors of selected eigenvalues of a Hessenberg matrix. These can then be 
transformed back to the corresponding eigenvectors of the original matrix A by calling the routine c_dhbk1. For further 
details and a sample calling program, consult the documentation for c_dhbk1. 

Balancing of matrices 
Errors in calculating eigenvalues and eigenvectors can be reduced by reducing the norm of real matrix A. One way to 
achieve such a reduction is to balance the matrix, whereby the absolute sum of row i and that of column i in A are made 
equal by a diagonal similarity transformation. Symmetric matrices and Hermitian matrices are already balanced. The user 
can control whether the driver routine c_deig1 performs balancing through the mode argument. The component routine 
c_dblnc may also be used for this purpose. 
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Since this method is especially effective when magnitudes of elements in A differ greatly, balancing should normally be 
performed. Except in certain cases (i.e. when the order of A is small), balancing should not take more than 10% of the 
total processing time. 

3. Eigenvalues and eigenvectors of a complex matrix 

C-SSL II provides the following: 

• A driver routine by which all eigenvalues and eigenvectors of a complex matrix can be obtained. 
• Component routines decomposed by function.  
 
User problems are classified as follows: 

• Obtaining all eigenvalues 
• Obtaining all eigenvalues and eigenvectors  
• Obtaining all eigenvalues and selected eigenvectors  
 
The use of driver routines to obtain all eigenvalues and eigenvectors is illustrated by code fragments. The routines 
required to obtain selected eigenvectors are mentioned.  

The user is recommended to use the driver routine when obtaining all the eigenvalues and eigenvectors of a complex 
matrix. This is a robust routine and normally only fails if the matrix is very badly conditioned. 

Obtaining just the eigenvalues or obtaining the eigenvectors corresponding to specified eigenvalues can only be done by 
calling a sequence of component routines. 

Obtaining all eigenvalues 
In the following program segment, all eigenvalues of the complex matrix A (stored in array za) are obtained through the 
use of the component routines shown in steps 1, 2 and 3. 

... 
ierr = c_dcblnc((dcomplex *)za, k, n, dv, &icon);  /* step 1 */ 
ierr = c_dches2((dcomplex *)za, k, n, pv, &icon);  /* step 2 */ 
ierr = c_dchsqr((dcomplex *)za, k, n, ze, &m, &icon); /* step 3 */ 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

1. A is balanced, if balancing is not necessary, this step can be omitted. 
2. A is reduced to a Hessenberg matrix using the Householder method. 
3. The eigenvalues of A are obtained by calculating the eigenvalues of the complex Hessenberg matrix using 

the complex QR method. 
 

Obtaining all eigenvalues and eigenvectors  
All eigenvalues and corresponding eigenvectors of complex matrix A can be obtained by calling the driver routines as 
shown below.  

... 
ierr = c_dceig2((dcomplex *)za, k, n, mode, ze, (dcomplex *)zev, vw, ivw, &icon); 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
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... 
 

In the driver routine, the eigenvectors are obtained simultaneously by multiplying all the transformation matrices obtained 
successively. If eigenvalues are close roots or multiple roots, the eigenvectors can be determined more accurately using 
this method than by using the inverse iteration method. Inverse iteration is employed in the component routine 
c_dchvec to obtain the eigenvectors of a Hessenberg matrix, given the Hessenberg matrix and its eigenvalues. This 
routine can also be used to obtain the eigenvectors of selected eigenvalues of a Hessenberg matrix. These can then be 
transformed back to the corresponding eigenvectors of the original matrix A by calling the routine c_dchbk2. For 
further details and a sample calling program, consult the documentation for c_dchbk2. 

4. Eigenvalues and eigenvectors of a symmetric matrix 

C-SSL II provides the followings: 

• Driver routines by which all or selected eigenvalues and corresponding eigenvectors of a symmetric matrix 
may be obtained. 

• Component routines decomposed by function.  
 
User problems can be classified as follows: 

• Obtaining all eigenvalues, 
• Obtaining selected eigenvalues, 
• Obtaining all eigenvalues and eigenvectors, 
• Obtaining selected eigenvalues and corresponding eigenvectors. 
 
The use of component routines and driver routines to obtain all eigenvalues and eigenvectors is illustrated by code 
fragments.  

The user is recommended to use the driver routines when obtaining all or selected eigenvalues and corresponding 
eigenvectors of a symmetric matrix. Component routines must be used if only eigenvalues are required. 

C-SSL II uses the compressed symmetric matrix storage format to store the associated matrix. (For details, refer to the 
Array storage formats section of the Introduction). 

Obtaining all eigenvalues 
All eigenvalues of a symmetric matrix A can be obtained as shown below in steps 1 and 2.  

... 
ierr = c_dtrid1(a, n, d, sd, &icon);  /* step 1 */ 
ierr = c_dtrql(d, sd, n, e, &m, &icon); /* step 2 */ 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

1. A is reduced to a tridiagonal matrix using the Householder method. Omit this step if A is already a 
tridiagonal matrix. 

2. The eigenvalues of A are obtained by calculating all the eigenvalues of the tridiagonal matrix. 
 

Obtaining selected eigenvalues 
The largest (or smallest) m eigenvalues of a symmetric matrix A can be obtained as shown: 
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... 
ierr = c_dtrid1(a, n, d, sd, &icon);   /* step 1 */ 
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); /* step 2 */ 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

1. Same as step 1 in the previous “Obtaining all eigenvalues”. 
2. The largest (or smallest) m (absolute value of argument m) eigenvalues of tridiagonal matrix are obtained 

using the bisection method. The sign of m controls whether the routine starts from the largest or smallest 
eigenvalue. If n/4 or more eigenvalues are to be determined, it is faster to use routine c_dtrql to obtain 
all the eigenvalues. 

 
Obtaining all eigenvalues and eigenvectors 
All eigenvalues and eigenvectors of a symmetric matrix A can be obtained by calling the driver routine as shown below. 

... 
ierr = c_dseig1(a, n, e, (double *)ev, k, m, vw, &icon); 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

All eigenvalues of the symmetric matrix are computed by transforming the matrix to tridiagonal form and then applying 
the QL method. The eigenvectors are obtained simultaneously by multiplying each of the transformation matrices 
obtained by the QL method. Each eigenvector is normalized such that its Euclidean norm is 1. 

Obtaining selected eigenvalues and corresponding eigenvectors 
Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix A can be obtained by calling the driver 
routine as shown below. 

... 
ierr = c_dvseg2(a, n, m, epst, e, (double *)ev, k, vw, ivw, &icon); 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

Selected eigenvalues and corresponding eigenvectors of a tridiagonal matrix are determined using the parallel bisection 
method and inverse iteration. The obtained eigenvectors are normalized such that each Euclidean norm is 1. 

QL method 
The QL method, mentioned above, is basically the same as the QR method. However, the QR method determines 
eigenvalues from the lower right corner of matrices, while the QL method determines eigenvalues from the upper left. The 
choice of these methods is based on how the data in the matrix is organized. The QR method is ideal when the magnitude 
of matrix elements decreases with element index order (from the upper left to lower right). If the magnitude of the matrix 
elements increases with index order, the QL method is better. Normally, the tridiagonal matrix output by c_dtrid1 has 
elements that increase with index order and so the QL method is used. This component routine is also called by the two 
driver routines.  

Direct sum of submatrices 
When a matrix is a direct sum of submatrices, the processing speed and precision in determining eigenvalues and 
eigenvectors increases if eigenvalues and eigenvectors are obtained from each of the submatrices. Because of this, a 
tridiagonal matrix is split into submatrices according to (1), and then the eigenvalues and eigenvectors are determined. 
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 ( ) nibbc iii ,,3,2,1 K=+μ≤ −  (1) 

μ  is the unit round off; ci, bi are as shown in Figure 15.  
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Note: Element ci is treated as zero according to (1). 

Figure 15 Example in which a tridiagonal matrix is the direct sum of two submatrices 

5. Eigenvalues and eigenvectors of a Hermitian matrix 

C-SSL II provides the following: 

• A driver routine by which all or selected eigenvalues and corresponding eigenvectors of Hermitian matrices 
may be obtained. 

• Component routines decomposed by function. 
 
User problems can be classified as follows: 

• Obtaining all eigenvalues. 
• Obtaining selected eigenvalues. 
• Obtaining all or selected eigenvalues and corresponding eigenvectors. 
 
The use of component routines and driver routines to obtain all eigenvalues and eigenvectors is illustrated by code 
fragments.  

The user is recommended to use the driver routine when obtaining eigenvectors along with all or selected eigenvectors of 
a Hermitian matrix. This is a robust routine and normally only fails if the matrix is very badly conditioned. 

Obtaining just the eigenvalues can only be done by calling a sequence of component routines. 

C-SSL II uses a special Hermitian matrix storage format. (For details, refer to the Array storage formats section of the 
Introduction.) 
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Obtaining all eigenvalues 
All eigenvalues of a Hermitian matrix A can be obtained in steps 1 and 2 below. 

... 
ierr = c_dtridh((double *)a, k, n, d, sd, v, &icon);  /* step 1 */ 
ierr = c_dtrql(d, sd, n, e, m, &icon);   /* step 2 */ 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

1. A Hermitian matrix A is reduced to a symmetric tridiagonal matrix using the Householder method. 
2. All eigenvalues of the symmetric tridiagonal matrix are obtained using the QL method. 
 

Obtaining selected eigenvalues 
The largest (or smallest) m eigenvalues of a Hermitian matrix A can be obtained as shown. 

... 
ierr = c_dtridh((double *)a, k, n, d, sd, v,&icon);  /* step 1 */ 
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon);  /* step 2 */ 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

1. A Hermitian matrix A is reduced to a symmetric tridiagonal matrix by the Householder method. 
2. The largest (or smallest) m eigenvalues of the symmetric tridiagonal matrix are obtained using the 

bisection method. If n/4 or more eigenvalues are to be determined, it is faster to use routine c_dtrql to 
obtain all the eigenvalues. 

 
Obtaining all or selected eigenvalues and corresponding eigenvectors 
All or selected eigenvalues and corresponding eigenvectors can be obtained by calling the driver routine as shown below. 

... 
ierr = c_dheig2((double *)a, k, n, m, e, (double *)evr, (double *)evi, vw, &icon); 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

A Hermitian matrix A is reduced to a symmetric tridiagonal matrix. Eigenvalues of the symmetric tridiagonal matrix (i.e., 
eigenvalues of A) and corresponding eigenvectors are obtained using the QL method. The eigenvectors of the tridiagonal 
matrix are transformed to the eigenvectors of A. The fourth argument m indicates that the largest m eigenvalues are to be 
computed. 

6. Eigenvalues and eigenvectors of a symmetric band matrix 

Routines c_dbseg, c_dbsegj and c_dbtrid are provided for obtaining eigenvalues and eigenvectors of a real 
symmetric band matrix. 

These routines are suitable for large matrices, for example, matrices of the order n > 100 and h/n < 1/6, where h is the 
band-width. Routine c_dbsegj, which uses the Jennings method, is effective for obtaining fewer than n/10 eigenvalues. 
Obtaining all eigenvalues and eigenvectors of a real symmetric band matrix is not required in most cases and therefore 
driver routines are provided only to obtain some eigenvalues and corresponding eigenvectors. 

Example code fragments that illustrate the use of these routines are given below. C-SSL II handles the symmetric band 
matrix in a compressed storage format. (for details, refer to the Array storage formats section of the Introduction.) 
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Obtaining selected eigenvalues 
The largest (or smallest) m eigenvalues of a real symmetric band matrix A of order n and bandwidth h are obtained as 
shown below. 

... 
ierr = c_dbseg(a, n, nh, m, 0, epst, e, (double *)ev, k, vw, &icon); 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

The zero value for the fifth argument indicates that no eigenvectors are required. 

Obtaining all eigenvalues 
All the eigenvalues can be obtained by specifying n as the fourth argument in the example of c_dbseg used to obtain 
some eigenvalues. However, the following component routines are recommended instead. 

... 
ierr =c_dbtrid(a, n, nh, d, sd, &icon); /* step 1 */ 
ierr = c_dtrql(d, sd, n, e, &m, &icon); /* step 2 */ 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

1. Real symmetric band matrix A of order n and bandwidth h is reduced to the real symmetric tridiagonal 
matrix T by using the Rutishauser-Schwarz method. 

2. All eigenvalues of T are obtained by using the QL method. 
 

Obtaining selected eigenvalues and corresponding eigenvectors 
The two driver routines could be used as shown below. 

c_dbseg 
 
... 
ierr = c_dbseg(a, n, nh, m, nv, epst, e, (double *)ev, k, vw, &icon); 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

The routine c_dbseg obtains the largest (or smallest) eigenvalues by using the Rutishauser-Schwarz method, the 
bisection method and the inverse iteration method consecutively. In the above example, the number of eigenvalues, m, and 
the number of eigenvectors, nv, of a real symmetric band matrix A of order n and bandwidth h are obtained. 

c_dbsegj 
 
... 
ierr = c_dbsegj(a, n, nh, m, epst, lm, e, (double *)ev, k, &it, vw, &icon); 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

The routine c_dbsegj obtains the largest (or smallest) absolute value of eigenvalues and also the eigenvectors by using 
the Jennings method based on a simultaneous iteration. This routine is only recommended where a relatively small 
number of eigenvalues and eigenvectors (no more than n/10, where n is the matrix order) are to be obtained. In the 
example above eigenvectors of A, are obtained based on the m initial eigenvectors given. At the same time, the 
corresponding eigenvalues can be also obtained. Care needs to be taken when giving initial eigenvectors in ev and the 
upper limit for the number of iterations in lm. 
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Obtaining all eigenvalues and eigenvectors 
By specifying n as the fourth and fifth arguments of the routine c_dbseg described above, all eigenvalues and 
eigenvectors can be obtained.  

7. Selected eigenvalues and eigenvectors of a sparse symmetric matrix 

The routine c_dvland can be used to obtain the first few largest and/or smallest eigenvalues and corresponding 
eigenvectors of a sparse symmetric matrix. The matrix must be stored using the diagonal storage format. This routine uses 
the Lanczos method to obtain the eigenvalues and eigenvectors. This is not a deterministic method and is not as robust as 
an approach based on tridiagonalization via the Householder method.  

The argument list for c_dvland is reasonably complicated and the user is advised to study the corresponding routine 
documentation carefully. In addition, before using c_dvland, the user should be convinced that more robust alternative 
routines, such as c_dbseg or c_dbsegj are not appropriate for the matrix in question. 

8. Selected eigenvalues and eigenvectors of a tridiagonal matrix 

The routine c_dvtdev can be used to obtain selected eigenvalues and corresponding eigenvectors of a nonsymmetric 
tridiagonal matrix. A Sturm count-based algorithm (see [96] for further details) is used to obtain eigenvalues. Eigenvectors 
are obtained using inverse iteration. Careful attention is paid to the problem of clustered eigenvalues and obtaining 
eigenvectors for such clusters.  

This is a sophisticated routine and the user is advised to study the corresponding routine documentation carefully. Selected 
eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix can be obtained by calling c_dteig2. 

9. Eigenvalues and eigenvectors of a symmetric generalized eigenproblem 

When obtaining eigenvalues and eigenvectors of Ax=λBx (A – a symmetric matrix, and B – a positive definite symmetric 
matrix), how each C-SSL II subroutine is used is illustrated by code fragments. 

The sequence to obtain eigenvalues and eigenvectors of a generalized eigenproblem consists of the following six steps: 

1. Reduction of the generalized eigenvalue problem (Ax=λBx) to the standard eigenvalue problem of a real 
symmetric matrix (Sy=λy) 

2. Reduction of the real symmetric matrix S to a real symmetric tridiagonal matrix T (Sy=λy→Ty′=λy′). 
3. Obtaining eigenvalue λ of the real symmetric tridiagonal matrix T. 
4. Obtaining eigenvector y′ of the real symmetric tridiagonal matrix T. 
5. Back transformation of eigenvector y′ of the real symmetric tridiagonal matrix T to eigenvector y of the 

real symmetric matrix S. 
6. Back transformation of eigenvector y of the real symmetric matrix S to eigenvector x of the generalized 

eigenproblem. 
 

C-SSL II provides component routines corresponding to these steps and a driver routine that performs all the steps in one 
call.  

User generalized eigenproblems can be classified as follows: 
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• Obtaining all eigenvalues. 
• Obtaining selected eigenvalues. 
• Obtaining all eigenvalues and eigenvectors. 
• Obtaining selected eigenvalues and corresponding eigenvectors. 
 
In the following descriptions, the use of component routines and the driver routine is illustrated by code fragments.  

The user is recommended to use the driver routine when obtaining eigenvectors along with all or selected eigenvalues in a 
generalized eigenproblem.  

C-SSL II handles both matrices in a compressed storage format (For details, refer to the Array storage formats section of 
the Introduction). 

Obtaining all eigenvalues 
All the eigenvalues can be obtained from the steps 1, 2 and 3 below. 

... 
ierr = c_dgschl(a, b, n, epsz, &icon); /* step 1*/ 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
ierr = c_dtrid1(a, n, d, sd, &icon);  /* step 2*/ 
ierr = c_dtrql(d, sd, n, e, m, &icon); /* step 3*/ 
... 
 

1. The generalized eigenproblem (Ax = λBx) is reduced to the standard eigenproblem (Sy = λy) 
2. The real symmetric matrix S is reduced to a real symmetric tridiagonal matrix using the Householder 

method. 
3. All the eigenvalues of the real symmetric tridiagonal matrix are obtained using the QL method. 
 

Obtaining selected eigenvalues 
From the following steps 1, 2 and 3, the largest (or smallest) m number of eigenvalues can be obtained.  

... 
ierr= c_dgschl(a, b, n, epsz, &icon);   /* step 1*/ 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
ierr = c_dtrid1(a, n, d, sd, &icon);   /* step 2*/ 
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); /* step 3*/ 
... 
 

1. Same as step 1 in Obtaining all eigenvalues. 
2. Same as step 2 in Obtaining all eigenvalues. 
3. The largest (or smallest) m eigenvalues of the real symmetric tridiagonal matrix are obtained using the 

bisection method. 
 

When obtaining more than n/4 eigenvalues of an order n matrix A, it is generally faster to use the example shown in 
Obtaining all eigenvalues. 

Obtaining all eigenvalues and eigenvectors 
All of the eigenvalues and eigenvectors of a generalized eigenproblem can be obtained using the driver routine as shown 
below: 

... 
ierr = c_dvgsg2(a, b, n, n, epsz, epst, e, (double *)ev, k, vw, &icon); 
if (icon >= 20000) { 
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    /* output a message, maybe terminate processing */ 
} 
... 
 

The driver routine c_dvgsg2 performs all the necessary steps through a single call. In this case, the fourth argument n of 
c_dvgsg2 indicates that all n eigenvalues are to be obtained. 

Obtaining selected eigenvalues and corresponding eigenvectors 
The simplest way in which to obtain selected eigenvalues and corresponding eigenvectors is to use the driver routine as 
shown below. 

... 
ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, (double *)ev, k, vw, &icon); 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

 The argument m specifies that the m largest (or smallest) eigenvalues are to be computed. 

10. Eigenvalues and eigenvectors of a symmetric band generalized 
eigenproblem 

C-SSL II provides the driver routine c_dgbseg to obtain eigenvalues and eigenvectors of Ax = λBx (A – a symmetric 
band matrix and B – a positive definite symmetric band matrix). This is used for large matrices of order n with h/n < 1/6, 
where h is the bandwidth. This routine uses the Jennings method so it is most appropriate when obtaining fewer than n /10 
eigenvalues and eigenvectors. Since this routine uses simultaneous iteration to obtain the specified m eigenvalues and 
eigenvectors, if it terminates abnormally, no eigenvalues or eigenvectors will be returned.  

An illustration of the use of this routine is shown below.  

C-SSL II handles the real symmetric band matrix in a compressed storage format, (for details, refer to the Array storage 
formats section of the Introduction). 

Obtaining selected eigenvalues and eigenvectors 
 
... 
ierr = c_dgbseg(a, b, n, nh, m, epsz, epst, lm, e, (double *)ev, k, &it, vw, &icon); 
if (icon >= 20000) { 
    /* output a message, maybe terminate processing */ 
} 
... 
 

The eigenvalues and eigenvectors are obtained by using the Jennings simultaneous iteration method. Argument m is used 
to specify that the largest (or smallest) m number of eigenvalues and eigenvectors are to be obtained. 
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Nonlinear equations 

1. Outline 

This section is concerned with finding roots of polynomial equations, transcendental equations and systems of nonlinear 
equations (simultaneous nonlinear equations). 

2. Polynomial equations 

The routines shown in Table 10 are used for these types of problems. 

When solving real polynomial equations of fifth degree or lower, c_dlowp can be used. When solving only quadratic 
equations, c_drqdr should be used. 

General conventions and comments concerning polynomial equations 
The general form for a polynomial equation is 

 0,0 0
1

10 ≠=+++ − aaxaxa nnn L  (1) 

where ai (i = 0, 1 ... n) is real or complex. 

If ai is real, (1) is called a real polynomial equation. If ai is complex, (1) is called a complex polynomial equation, and z is 
used in place of x. 

Unless specified otherwise, routines which solve polynomial equations try to obtain all of the roots. Methods and their use 
are covered in this section. 

Algebraic and iterative methods are available for solving polynomial equations. Algebraic methods use the formulas to 
obtain the roots of equations whose degree is four or less. Iterative methods may be used for equations of any degree. In 
iterative methods, an approximate solution has been obtained. For most iterative methods, roots are determined one at a 
time; after a particular root has been obtained, it is eliminated from the equation to create a lower degree equation, and the 
next root is determined. 

Neither algebraic methods nor iterative methods are “better” since each has merits and drawbacks. 

Demerits of algebraic methods 
Underflow or overflow situations can develop during the calculations process when there are extremely large variations in 
size among the coefficients of (1). 

Demerits of iterative methods 
Choosing an appropriate initial approximation presents problems. If initial values are incorrectly chosen, convergence 
may not occur no matter how many iterations are done, so if there is no convergence, it is assumed that the wrong initial 
value was chosen. It is possible that some roots can be determined while others cannot. Convergence must be checked for 
at each iteration, which increases the computation required. 
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Table 10 Polynomial equation routines 

Objective Routine name Method Notes 
Real quadratic equations c_drqdr Root formula  
Complex quadratic equations c_dcqdr Root formula  
Real low degree equations c_dlowp Algebraic method and iterative 

method are used together. 
Fifth degree or lower 

Real high degree polynomial 
equations 

c_drjetr Jenkins-Traub method  

Complex high degree 
polynomial equations 

c_dcjart Jaratt method  

 

In order to avoid the demerits of algebraic methods, C-SSL II uses iterative methods except when solving quadratic 
equations. The convergence criterion method in C-SSL II is described in this section. 

When iteratively solving a polynomial equation: 
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is satisfied, convergence is judged to have occurred, and the solution is used as one of the roots.  

With both algebraic and iterative methods, when calculating with a fixed number of digits, it is possible for certain roots to 
be determined to a higher accuracy than others. 

Generally, multiple roots and neighboring roots tend to be less accurate than the other roots. If neighbouring roots are 
among the solutions of an algebraic equation, the user can assume that those roots are not as precise as the rest. 
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3. Transcendental equations 

A transcendental equation can be represented as 

 f(x) = 0 (5) 

If f(x) is a real function, the equation is called a real transcendental equation. If f(x) is a complex function, the equation is 
called a complex transcendental equation, and z is used in place of x. 

The objective of routines which solve transcendental equations is to obtain only one root of f(x) within a specified range 
or near a specified point. 

Table 11 lists routines used for transcendental equations. 

Iterative methods are used to solve transcendental equations. The speed of convergence in these methods depends mainly 
on how narrow the specified range is or how close a root is to the specified point. Since the method used for determining 
convergence differs among the various routines, the descriptions of each should be studied. 

Table 11 Transcendental equation routines 

Objective Routine name Method Notes 
c_dtsd1 Bisection method, linear interpolation 

method and inverse second order 
interpolation method are all used. 

Derivatives are not 
needed. 

Real transcendental 
equation 

c_dtsdm Muller’s method No derivatives needed. 
Initial values specified. 

Zeros of a complex 
function 

c_dctsdm Muller’s method No derivatives needed. 
Initial values specified. 

4. Nonlinear simultaneous equations 

Nonlinear simultaneous equations are given as: 

 f(x) = 0 (6) 

where f(x) = (f1(x), f2(x),..., fn(x))T and 0 is an n-dimensional zero vector. Nonlinear simultaneous equations are solved by 
iterative methods in which the user must gives an initial vector x0 and it is improved repeatedly until the final solution for 
(6) is obtained within a required accuracy.  

Table 12 Nonlinear simultaneous equation routine 

Objective Routine name Method Notes 
Non-linear simultaneous 
equations 

c_dnolbr Brent’s method Derivatives are not 
needed. 

 

Table 12 lists the routine used for nonlinear simultaneous equations. The best known method among iterative methods is 
Newton method, expressed as: 

 xi +1 = xi – Ji
-1f(xi),  i = 0, 1, .. (7) 
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where Ji is the Jacobian matrix of f(x) for x = xi, which means: 
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 (8) 

The Newton method is theoretically ideal - its order of convergence is quadratic and calculations are simple. However, 
this method develops several calculation problems when it manipulates complex (or larger) systems of nonlinear 
equations. The major reasons are: 

• It is often difficult to obtain the coefficients ∂fi /∂xi in (8), (i.e., partial derivatives cannot be calculated 
because of the complexity of the equations). 

• The number of calculations for all elements in (8) is too large. 
• Since a system of linear equations with coefficient matrix Ji must be solved on each iteration, calculation time 

is long. 
 
If the above problems are solved and the order of convergence is kept quadratic, this method provides short processing 
time as well as ease of handling. 

The following are examples of the above problems and their solutions. To address the first problem, ∂fil∂xi can be 
approximated by differences, i.e. by selecting an appropriate value for h, we can obtain: 
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For the second and third problems, instead of directly calculating the Jacobian matrix, a pseudo Jacobian matrix (which 
need not calculate all the elements) is used to solve the simultaneous equations. All of the above means are adopted in 
SSL II. Several notes on the use of the C-SSL II routine for nonlinear simultaneous equations follows. 

The user must provide the routine to evaluate f(x) for an arbitrary x. The following points should be taken into 
consideration in order to use the routines effectively and to obtain an accurate solution. 

• Loss of accuracy should be avoided in calculating functions. This is especially important because functions 
values are used to approximate derivatives. 

• The magnitude of elements such as those of variable vector x or of function vector f(x) should be balanced. If 
unbalanced, the larger elements often mask the smaller elements during calculations. The C-SSL II routine 
checks the variance in the largest element to detect convergence. In addition, the accuracy of a solution vector 
depends upon the tolerance given by the user. Generally, the smaller the tolerance for convergence, the higher 
the accuracy for the solution vector. However, because of the round-off errors, there is a limit to the accuracy 
improvement.  

• The next problem is how to select the initial value x0. It should be selected by the user depending upon the 
characteristics of the problem to be solved with the equations. If such information is not available, the user 
may use a method of 'trial and error' by arbitrarily selecting the initial value and repeating calculations until a 
final solution is obtained.  
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Extrema 

1. Outline 

The following problems are considered in this section: 

• Unconstrained minimization of a single variable function, 
• Unconstrained minimization of a multivariable function, 
• Unconstrained nonlinear least squares, 
• Linear programming, 
• Nonlinear programming (Constrained minimization of multivariable function). 

2. Minimization of a single variable function 

Given a single variable function f(x), the local minimum point x* and the function value f(x*) are obtained in interval [a, b]. 

Routines 
Table 13 gives the applicable routines, depending on whether the user can define a derivative g(x) analytically in addition 
to the function f(x). 

Table 13 Routines for unconstrained minimization of a single variable function 

Analytical 
definition 

Routine name Notes 

f(x) c_dlminf Quadratic 
interpolation 

f(x), g(x) c_dlming  Cubic 
interpolation 

 

Comments on the interval [a, b] 
In the C-SSL II, only one minimum point of f(x) is obtained within the error tolerance. It is assumed that f(x) is unimodal 
over the interval [a, b]. If there are several minimum points in interval [a, b], the minimum point to which the resultant 
value converges is not guaranteed to be the global minimum over [a, b]. 

This means that it is desirable to specify values for the end points a and b of an interval that are near to and bracket x*. 

3. Unconstrained minimization of multivariable function 

Given a real function f(x) of n variables and an initial vector x0, the vector (local minimum) x* which minimizes the 
function f(x) is obtained together with its function value f(x*), where x = (x1, x2, ..., xn)T. 

Starting from x0, a sequence of iteration vectors, xk, is defined such that f(xk+1) < f(xk),  k = 0, 1, .... Iteration continues until 

∞+ − k1k xx  falls below a threshold value or no further minimization is possible. 
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Normally, the iteration vector is modified based on the direction in which the function f(x) decreases in the region of xk by 
using not only the value of f(x) but also the gradient vector g and the Hessian matrix B as defined in (1). 
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Formula based on Newton method 
If the function f(x) is quadratic and is concave, the global minimum point x* can be obtained theoretically within at most n 
iterations by using the Newton iterative formula. 

A function can be expressed approximately as a quadratic in the region of the local minimum point x* as shown in (2). 

 ( ) ( ) ( ) ( )*** xxxxxx −−+≈ B
T

2
1ff  (2) 

Therefore, if the Hessian matrix B is positive definite, an iterative formula based on Newton’s method applied to the 
quadratic function shown in (2) will be a good iterative formula for any function in general. Now let gk be a gradient 
vector at an arbitrary point xk in the region of the local minimum point x*, then the basic iterative formula of Newton’s 
method is obtained from (2) as shown in (3). 

 kkk gBxx 1
1

−
+ −=  (3) 

The C-SSL II includes routines that implement two types of iterative formulae based on (3). 

Revised quasi-Newton method 
The underlying iterative formula is given in (4). 
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Where Bk is an approximate matrix to the Hessian matrix and is improved by the rank two matrix Ek during the iteration 
process, pk is a search vector that defines the direction in which the function value decreases locally and αk is a constant 
by which f(xk+1) is locally minimized (linear search). 

The formula in (4) can be used when the Hessian matrix cannot be defined analytically. 

Quasi-Newton method 
The underlying iterative formula is given in (5). 
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Where Hk is an approximation to the inverse matrix of the Hessian matrix B-1 and is improved by the rank 2 matrix Fk 
during the iterative process, pk is a search vector that defines the direction in which the function value decreases locally 
and αk is a constant by which f (xk+1) is locally minimized (linear search). 
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Routines 
The relevant C-SSL II routines are shown in Table 14. The routines differ by whether or not the user must analytically 
define a gradient vector g in addition to the function f(x). 

Table 14 Routines for unconstrained minimization of a function with several variables 

Analytical 
definition 

Routine name Notes 

f(x) c_dminf1 Revised quasi-
Newton method 

f(x), g(x) c_dming1 Quasi-Newton 
method 

 

Comments on use 
Giving an initial vector x0 
Choose the initial vector x0 as close to the expected local minimum x* as possible. When the function f(x) has more than 
one local minimum point, if the initial vector is not given appropriately, the method used may not converge to the 
expected minimum point x*.  

User defined functions calculation  
Efficient coding of the user defined functions to calculate the function f(x) and the gradient vector g(x) is important. The 
number of evaluations for each function made by the C-SSL II routine depends on the method used and its initial vector. 
In c_dminf1, the gradient vector g is usually approximated by differences. Therefore the effect of round-off errors 
should also be considered. Consistent with the assumption that f(x) can be locally approximated by a quadratic function, 
as shown in (6), it is assumed that if x is changed by ε, then the function f(x) changes by ε2. If possible, the function 
should be scaled consistent with this assumption. 

 ( ) ( ) xxxxx δδδ B* T*

2
1

+≈+ ff  (6) 

Convergence criterion and accuracy of minimum value ( )*xf  

In an algorithm for minimization, the gradient vector g(x*) of the function f(x) at the local minimum point x* is assumed to 
satisfy g(x*) = 0, that is, the iterative formula approximates the function f(x) as a quadratic function in the region of the 
local minimum point x*. In the C-SSL II, given a convergence criterion ε, if 

 ( ) ε,0.1max1 ⋅≤−
∞∞+ kkk xxx  (7) 

is satisfied for the iteration vector xk, then xk+1 is taken as the local minimum point x*. Therefore, if the minimum value 
f(x*) is to be obtained as accurately as the rounding error, an appropriate convergence criterion ε is 2/1ε μ=  where μ  is 
the unit round off. The C-SSL II uses 2/12μ  as a default convergence criterion. 

4. Unconstrained nonlinear least squares 

Given m real functions f1(x), f2(x), ..., fm(x) of n variables and an initial vector x0, the vector (local minimum) x* which 
minimizes  
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is obtained together with its function value F(x*), where, x = (x1, x2, ...xn)T and m ≥ n. 

If all the functions fi (x) are linear, it is a linear least squares solution problem. For detailed information on its solution, 
refer to the Linear Algebra section, or routine documentation, for example routine c_dlaxl. If all the functions fi (x) are 
nonlinear, the routines explained in this section may be used. When the approximate vector xk of x* is varied by Δx, F(xk 
+ Δx) is approximated as shown in (8). 
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Where |F(xk)| is assumed to be sufficiently small, f(x) = (f1 (x), f2 (x), ..., fm (x))T and Jk is a Jacobian matrix of f(x) at 
vector xk. 

Δxk which minimize this F(xk + Δxk) can be obtained as the solution of the system of linear equations (9) derived by 
differentiating the right side of (8). 

 ( )kkkkk xfJxJJ T−=ΔT  (9) 

The equations shown in (9) are called the normal equations. The iterative method based on the Δxk is called the Newton-
Gauss method. In the Newton-Gauss method function value F(x) decrease along direction Δxk, however, Δxk itself may 
diverge. 

The gradient vector ∇F(xk) at xk of F(x) is given by 

 )(2)( T
kkkF xfJx =∇  (10) 

−∇F(xk) is the steepest descent direction of F(x) at xk. 

The following is the method of steepest descent. 

 )( kk F xx −∇=Δ  (11) 

Δxk guarantees the reduction of F(x). However the iteration proceeds in a zigzag fashion to the minimum value. 

 

Formula based on the Levenberg-Marquardt method 
Levenberg, Marquardt, and Morrison proposed to determine Δxk by combining the ideas of the methods of Newton-Gauss 
and steepest descent as shown in (12). 

 { } )(T
kkkkkk v xfJxIJJ T−=Δ+ 2  (12) 

where vk is a positive integer (called Marquardt number). 

Δxk obtained in (12) depends on the value of vk that is, the direction of Δxk is that of the Newton-gauss method if vk → 0; if 
vk → ∞ it is that of steepest descent. 
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C-SSL II uses an iterative formula based on (12). It does not directly solve the equation in (12) but it obtains the solution 
of the following equation, which is equivalent to (12), by the least squares method (Householder method) to maintain 
numerical stability. 
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The value vk is determined adaptively during iteration. 

Routines 
The routines provided are shown in Table 15. They differ depending on whether or not the user can analytically define a 
Jacobian matrix J in addition to the functions f1 (x), f2 (x), ..., fm (x). 

Table 15 Routines for unconstrained nonlinear least squares 

Analytical definition Routine name Notes 
f1(x), f2(x),..., fm(x) c_dnolf1 Revised Marquardt Method 
f1(x), f2(x),..., fm(x), J c_dnolg1 Revised Marquardt Method 

 

Comments on use 
Giving an initial vector x0 
Choose the initial vector x0 as close to the expected local minimum point x* as possible. When the function F(x) has more 
than one local minimum point, if the initial vector is not given appropriately, the method used may not converge to the 
expected minimum point x*. 

Function calculation program 
Efficient coding of the function programs to calculate the function {fi (x)} value of Jacobian matrix J is important. The 
number of evaluations for each function made by the C-SSL II routine depends on the method used or its initial vector. In 
general, the evaluation of user functions takes the majority of the total processing and has an effect on the efficiency. 

In c_dnolf1, the Jacobian matrix, J, is approximated by using differences. Therefore, an efficient coding to reduce the 
effect of round-off errors should also be considered. 

Convergence criterion and accuracy of minimum value F(x*) 
In an algorithm for minimization, F(x) at the local minimum point x* is assumed to satisfy 

 0)(2)( T ==∇ ** xfJxF  (14) 

that is, the iterative formula approximates the function F(x) as a quadratic function in the region of the local minimum 
point x* as follows: 

 xJJxxxx ** δδδ TT)()( +≈+ FF  (15) 

Equation (15) indicates that when F(x) is scaled appropriately, if x is changed by ε, function F(x) changes by ε2. 

In C-SSL II, if 
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is satisfied for the iteration vector xk, then xk+1 is taken as the local minimum point x*, where ε is a convergence criterion. 
If the minimum value F(x) is to be obtained as accurately as the rounding-error, the convergence criterion should be given 
as 2/1με ≈  where, µ is the unit round-off. 

The C-SSL II uses 2/12 μ⋅  as a default convergence criterion. 

5. Linear programming 

Linear programming is used to obtain: 

• The value of a variable to minimize (or maximize) a linear function 
• The minimum (or maximum) value of a linear function under the constrained conditions represented by the 

combination of several related linear inequalities and equalities. 
 
The following is a standard linear programming problem: 

Minimize the linear objective function:   z = cT x + c0 

subject to 

 dAx =  (17) 

 0x ≥  (18) 

where, A is an m × n coefficient matrix with rank(A) = m ≤ n and 

where, x = (x1, x2, ..., xn)T is a variable vector, 

d = (d1, d2, ..., dm)T is a constant vector, 

c = (c1, c2, ..., cn)T is a coefficient vector and  

c0 is a constant term. 

Let aj be the j-th column of A. If m columns of A, ak1, ak2, ..., akm, are linearly independent, a group of the corresponding 
variables (xk1, xk2, .., xkm) are called bases. xki (i-th corresponding variable) is called a basic variable. A basic solution in (17) 
is obtained by setting all the values of non-basic variables to zeros. A basic solution that additionally satisfies (18) is 
termed a basic feasible solution. Furthermore, the optimal solution that satisfies the constraints and minimizes the value of 
the objective function can be found over the basic feasible solutions (fundamental theorem of linear programming). 

Simplex method 
Given a basic feasible solution, the simplex method provides a means of changing basic variables one by one, always 
maintaining a basic feasible solution, to obtain the optimal solution value (if one exists). 
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Revised simplex method 
Using the iterative calculation of the simplex method, coefficients and constant terms required for determining the basic 
variables to be changed are calculated using the matrix inversion of the basic matrix, B = [ak1

, ak2
, ..., akm

], the original 
coefficient A, c, and constant term d. 

The C-SSL II routine c_dlprs1 uses this revised simplex method. If the constrained condition contains inequalities, the 
routine defines additional variables to change these into equalities. 

For example, 

a11x1 + a12 x2 + ... + a1n x n ≤ d1 

is changed into 

a11x1 + a12 x2 + ... + a1n x n + xn+1= d1 where xn+1 ≥ 0 

and  

a21x1 + a22 x2 + ... + a2n x n ≥d2 

is changed into 

a21x1 + a22 x2 + ... + a2n x n – xn+2 = d2, xn+2 ≥ 0 

• Non-negative variables such as xn+1 or xn+2 that are added to change an inequality into an equality constraint 
are called slack variables. 

• Maximization can be performed by multiplying the objective function by -1 and minimizing instead. 
 
If the user is not able to provide a basic feasible solution, the linear programming can be performed in two stages: 

• At the first stage, obtain the basic feasible solution 
• At the second stage, obtain the optimal solution 
 
An example is shown below. At the first stage the optimal solution is obtained. 

Minimize ∑
=

=
m

i

a
ixz

1

)(
1  

subject to: 

Ax + A(a) x(a) = d, 
  x ≥ 0, x(a) ≥ 0 

where x(a) = (x1
(a), x2

(a), ..., xm
(a))T , A(a) is an m-order diagonal matrix of A(a) = (aii

(a)) where aii
(a) = 1 when di ≥ 0 and aii

(a) 
= –1 when di < 0 

xi
(a) is called an artificial variable. When the optimal solution is obtained, if z1 is larger than zero (z1 > 0), no x will satisfy 

the conditions in (17) and (18). 

If z1 is zero then x(a) = 0 so that a basic feasible solution of the original problem has been obtained. The second stage can 
be proceeded to. But if rank (A) < m and there is an x which satisfies the equation in (17), (m-r) of the conditional 
equations are useless. (If r = rank(A) of the conditional equations are satisfied, the others equations will necessarily hold).  
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The optimal solution obtained at the first stage results in a basic feasible solution for a rank-reduced problem. The routine 
will return and processing will be stopped. The user can examine which indices were used in this reduced problem and 
possibly redefine the original problem and call c_dlprs1 with a suitably redefined set of input arguments (a smaller 
value of m, a smaller matrix A, the indices of a basic feasible solution etc.) 

6. Nonlinear programming (constrained minimization of multivariable 
function) 

Given an n-variable real function f(x) and the initial vector x0, the local minimum point and the function value f(x*) are 
obtained subject to the constraints: 

  ci(x) = 0, i = 1, 2, ...., m1 (19) 

  ci(x) ≥ 0, i = m1 + 1, ...., m1 + m2 (20) 

Where x is vector as (x1, x2, ...., xn)T and m1 and m2 are the numbers of equality and inequality constraints respectively. 

The algorithm for this problem is derived from that for unconstrained minimization explained in Section 3 by adding 
certain procedures for constraints of (19), (20). That is, the algorithm minimizes f(x) by using the quadratic approximation 
for f(x) at an approximate point xk: 

 Byygyxx TT

2
1)()( ++≈ kkff  (21) 

where y = x – xk and B is a Hessian matrix, on the basis of a linear approximation to  the constraints (19), (20) at xk as 
follows: 

 1
T ,,2,1,0)()( micc kiki L==∇+ xyx  (22) 
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Where ∇ci is a gradient vector of ci 

This defines a quadratic programming with respect to y. 

C-SSL II supplies the routine c_dnlpg1 that determines a local minimum point by solving a quadratic programming at 
each iteration. 
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Interpolation and approximation 

1. Outline 

This section is concerned with the following types of problems. 

Interpolation 
Given discrete points x1 < x2 < ...< xn and their corresponding function values yi = f(xi), i = 1, ...., n (in some cases 

)( ii xfy ′=′  are also given), an approximation to f(x) (hereafter called the interpolating function) is determined such that 
it passes through the given points; or, that the interpolating function is used to determine an approximate value (hereafter 
called interpolated value) to f(x) at a point x = v other than xi. 

Least-squares approximation 
Given discrete points x1 < x2 < ... < xn and their corresponding observed values yi, i = 1, ..., n the approximation ( )xmy  
that minimizes 

{ } 0)(,)()(
1

2 ≥−∑
=

i

n

i
imii xwxyyxw  

is determined; w(x) is a weight function, and ( )xym  is a polynomial of degree m. In this type of problem yi is observed 
data. This method is used when the observation error varies among the data. 

Smoothing 
Given discrete points x1, x2, ..., xn and their corresponding observed values yi, i = 1, 2, ...n a new series of points { }iy~  
which approximates the real function is obtained by smoothing out the observation errors contained in the observed value 
{yi}. Hereafter, this processing is referred to as smoothing. iy~ ( or { }iy~ ) is called the smoothed value for yi (or {yi}), 

ii yy ~−  shows the extent of smoothing, and the polynomial used for smoothing is called the smoothing polynomial. 

Series 
When a smooth function f(x) defined on a finite interval is expensive to evaluate, or its derivatives or integrals can not be 
obtained analytically, it is suggested that f(x) be expanded as a Chebyshev series. 

The features of Chebyshev series expansion are: 

• Good convergence 
• Easy to differentiate and integrate term by term 
• Effective evaluation owing to the fast Fourier transformation, leading to numerical stability. 
 
Determine the item number n and the coefficient number in the Chebyshev expansion depending upon the required 
precision. Then obtain the derivative and indefinite integral of f(x) by differentiating and integrating each item of the 
obtained series in forms of series. The derivative value, differential coefficient and definite integral can be obtained by 
summing these series. If the function f(x) is a smooth periodic function, it can be expanded to trigonometric series. Here 
the even function is expanded to the cosine series and the odd function to a sine series depending upon the required 
precision. 
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In the field of interpolation or smoothing in this library, and also in that of numerical differentiation or quadrature of a 
tabulated function, spline functions are used extensively. The definition and the representations of these functions are 
described below. 

2. Spline function 

Definition 
Suppose that discrete points x0, ..., xn divide the range [a, b] into intervals such that 

 a = x0 < x1 < ... < xn = b (1) 

Then, a function S(x) which satisfies the following conditions: 

a. DkS(x) = 0 for each interval (xi, xi+1) 

b. [ ]baCxS k ,)( 2−∈   (2) 

where D≡d/dx is defined as the spline function of degree (k-1) and the discrete points are called knots. 

As shown in (2), S(x) is a polynomial of degree (k-1) which is separately defined for each interval (xi, xi+1) and whose 
derivatives of up to degree (k-2) are continuous over the range [a, b]. 

Representation-1 of spline functions 
Let aj, j = 0, 1, ...., k − 1 and bi, i = 1, 2, ..., n − 1 be arbitrary constants, then a spline function is expressed as 
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The function 1)( −
+− k

ixx  is defined as 
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The following illustration proves that (3) satisfies (2). Suppose that x is moved from x0 to the right in (3). 

For x0 ≤ x < x1, S(x) = p(x), so S(x) is a polynomial of degree (k-1). 

For x1 ≤ x < x2, S(x) = p(x) + b1(x – x1)k-1, so S(x) is a polynomial of degree (k-1). 

In general, for xi ≤ x<xi+1 
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So, it is found that S(x) is a polynomial of degree (k-1) which is separately defined for each interval. 

From equation (3) we obtain 
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For l = 0, 1, ..., 2−k , the right hand side is zero, so that 
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Equation (5) shows the S(l)(x) is continuous at x = xi  

When l = −k 1 the right hand side becomes (k – 1) (k –2) … 1⋅bi 

Since generally bi≠0 
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Equation (7) shows that the (k-1)th derivative of S(x) becomes discontinuous at x = xi. Even in this case, if bi, i = 1, 2, ..., n 
– 1 are all zero, the (k-1)th derivative of S(x) becomes continuous. Then, from (3), it can be found that S(x) = p(x) over the 
range [a, b]. This means that S(x) is virtually equal to the power series expanded at x = x0. Therefore, it can be said that an 
arbitrary polynomial of degree (k-1) defined on [a, b] is a special form of the spline function. Equation (3) is referred to as 
the expression of spline function by the truncated power function, it is in general numerically unstable because (x – xi)k-1 
tends to assume a large absolute value. 

Representation-2 of spline functions (introduction of B-splines) 
In contrast with the representation (3), the representation by B-splines, which are defined below, can avoid numerical 
difficulties. 
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Let a series of points {tr} be defined by 
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This series is shown in Figure 16. 
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Figure 16 A series of points 

Define gk (t; x) as a function of t with parameter x. 

 
⎪⎩

⎪
⎨
⎧

<
≥−

=−=
−

−
+ xt

xtxtxtxtg
k

k
k ,0

,)()();(
1

1  (9) 

See Figure 17. 

t
x

gk(t;x)

xixi-1 xi+2xi+1

ti+2ti+1titi-1  
Figure 17 gk (t; x) 

Then, the k th order divided difference of gk (t ; x) with respect to t = tj, tj+1, ..., tj+k, multiplied by a constant: 

 ];,,,[)()( 1, xtttgttxN kjjjkjkjkj +++ −= L  (10) 

is called the normalized B-spline (or simply B-spline) of degree ( k − 1). 

The characteristics of B-spline Nj,k (x) are as follows. Now, suppose that the position of x is moved with tj, tj+1, ..., tj+k fixed. 
When x ≤ tj since Nj,k(x) includes the k th order divided difference of a polynomial of degree (k-1) with respect to t, it 
becomes zero. When tj+k ≤ x, Njk(x) is zero because it includes the k th order divided difference of a function which is 
identically zero. When tj < x < tj+k, Nj,k(x) ≠ 0. In short, 
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(indeed, when tj < x < tj+k, 0 < Nj,k(x) ≤ 1)  

Next, suppose that j is moved with x fixed. Here, let ti = xi < x < xi+1 = ti+1. 

Then, in the same way as above, we can obtain 
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The characteristics (11) and (12) are referred to as the locality of B-spline functions. 
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From (10), B-spline Nj,k(x) can be written as 
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Therefore, Nj,k(x) is a polynomial of degree (k-1) defined separately for each interval (xi, xi+1) and its derivatives of up to 
degree k-2 are continuous. Based on this characteristic of Nj,k(x), it is proved that an arbitrary spline function S(x) 
satisfying equation (2) can be represented as 
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where cj, j = – k + 1, – k + 2, ...., n − 1 are constants 

Calculating spline functions 
Given a (k – 1)-th degree spline function, 
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the method of calculating its function value, derivatives and integral 
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at the point x ∈ [xi, xi+1) is described hereafter. 

Calculating the function value 
The value of S(x) at x ∈ [xi, xi+1] can be obtained by calculating Nj,k(x). In fact, because of locality (12) of Nj,k(x), only non-
zero elements have to be calculated. 

Nj,k(x) is calculated based on the following recurrence equation 
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where, 
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By applying s = 2, 3, ....., k, r = i – s + 1, i – s + 2, ..., i to Eqs. (16) and (17), all of the Nr,s(x) given in Figure 18 can be 
calculated, and the values in the rightmost column are used for calculating the S(x). 
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Figure 18 Calculating Nr.s(x) at x∈[xi,xi+1) 

Calculating derivatives and integral  
From  
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S(l)(x) can be obtained by calculating Nj,k
(l)(x). 

From  
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so Nj,k
(l)(x) is the divided difference of order k at t = tj, tj+1, ..., tj+k of (19). 

Now let 
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and let Dj,k(x) be the divided difference of order k at t = tj, tj+1,…, tj+k, i.e., 
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This Dj,k(x) can be calculated by the following recurrence equations. For x ∈ [xi, xi+1), 
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 (21) 

and if s = 2, 3, ..., k, and r = i – s + 1, i – s + 2, ..., i are applied, Dj,k for i – k + 1 ≤ j ≤ i, can be obtained. Then Nj,k
(l)(x) can 

be obtained as follows: 
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and S(l)(x) can then be obtained by using this equation. Next, the integral is expressed as 
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so it can be obtained by calculating dyyN
x

x kj )(
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Integration of Nj,k(x) can be carried out by exchanging the sequence of the integration calculation with the calculation of 
divided difference included in Nj,k(x).  

First, from (9), the indefinite integral of gk(t ; x) can be expressed by 

k
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where an integration constant is omitted. Letting ek(t; x) = (t – x)k
+ and its divided difference of order k represented by 

 Ij,k(x) = ek[tj, tj+1, ..., tj+k ; x] (23) 

then Ij,k(x) satisfies the following recurrence equation. 
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where x ∈ [xi, xi+1). 

If (24) is applied for s = 2, 3, ..., k and r = i – s + 1, i – s + 2, ..., i then a series of Ij,k (x) are obtained as shown in the 
rightmost column in Figure 19. 
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Figure 19 Calculation Ir,s(x) at x ∈ [xi, xi+1) 

The integration of Nj,k(y) is represented by 
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Therefore from (22), 
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It has so far been assumed that the coefficients cj in equation (15) are known in the calculation procedures for function 
values, derivatives, and integral values of the spline function S(x). The cj can be determined from the interpolation 
condition if S(x) is an interpolation function, or from least squares approximation if S(x) is a smoothing function. In the 
case of interpolation, for example, since n + k – 1 coefficients cj (– k + 1 ≤ j ≤ n – 1) are involved in (15), cj will be 
determined by assigning n + k – 1 interpolation conditions to (15). If function values are given at n + 1 points (x = x0, 
x1, ...., xn ) in Figure 16, function values must be assigned at additional (n + k – 1) – (n + 1) = k – 2 points or k – 2 other 
conditions (such as those on the derivatives) of S(x) must be provided in order to determine n + k – 1 coefficients cj. 
Further information is available in Section 3. 

The C-SSL II applies the spline function of (15) to smoothing, interpolation, numerical differentiation, quadrature, and 
least squares approximation. 

Definition, representation and calculation method of bivariate spline function 
The bivariate spline function can be defined as an extension of the single variable spline functions described earlier. 

Consider a closed region R = {(x,y) | a ≤ x ≤ b, c ≤ y ≤ d} on the x – y plane and points (xi, yj), where 0 ≤ i ≤ m and 0 ≤ j ≤ 
n according to the division given in (26) 
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Denoting Dx=∂/∂x and Dy=∂/∂y, the function S(x, y) which satisfies 

Dx
k S(x,y) = Dy

k S(x,y) = 0  

for each of the open regions (27) and satisfies (28) 

 { }11, ,),( ++ <<<<= jjiiji yyyxxxyxR  (27) 
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is called a bivariate spline function of full degree k – 1. Equation (27) and (28) shows that S(x,y) is a polynomial in x and y 
on each of Rij and is at most degree (k – 1) with respect to either x or y. Further, (27) shows that on the entire R 
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exists and is continuous when λ = 0, 1, .., k−2 and μ = 0, 1, ..., k−2. 

If a series of points are taken as : 



Selection of Routines 

64 

s-k+1≤s-k+2≤L≤s-1≤s0=x0<s1=x1<L< 
          <sm=xm≤sm+1≤L≤sm+k-1 

t-k+1≤t-k+2≤L≤t-1≤t0=y0<t1=y1<L< 
          <tn=yn≤tn+1≤L≤tn+k-1 

the B-splines in either the x or y directions are defined in the same way as the B-spline with a single variable. 

Nα ,k(x) = (sα+k−sα) gk[sα, sα+1, LL, sα+k ; x] 
Nβ ,k(y) = (tβ+k−tβ) gk[tβ, tβ+1, LL, tβ+k ; y] 

Then the bivariate spline function of dual degree k – 1 defined above can be represented in the form 
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where, cα,β are arbitrary constants. 

The calculation of function values, partial derivatives and indefinite integral of S (x,y) can be done by applying the 
calculation for a single variable, if using the expression (29). First of all, for λ ≥ 0 and μ ≥ 0, 
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Therefore, the calculation of the function values and partial derivatives are accomplished by separately calculating 
N xkα

λ
,

( ) ( ) , and N ykβ
μ
,

( ) ( )  which can be done by applying the previously described method for a single variable. 

Next, consider the value which is obtained by differentiating S(x,y) μ times with respect to y and then by integrating with 
respect to x, namely 
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This value is unchanged even when the order of differentiation and integration is reversed. Rewriting the right-hand side 
of (31) by using (29), we obtain 
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where 
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This is similar to (23) given previously. Therefore, calculation of (32) is performed first by calculating cα and then by 
calculating the integral by using the method for a single variable. 
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In addition S(−1,μ)(x,y), 
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can be calculated by applying the method for calculating derivatives and integrals for a single variable each for x and y 
separately. 

3. Interpolation 

The general procedure of interpolation is to first obtain an approximate function; e.g. polynomial, piecewise polynomial, 
which fits given sample points (xi,yi), then to evaluate that function. 

When polynomials are used for approximation, they are called Lagrange interpolating polynomials or Hermite 
interpolating polynomials (using derivatives as well as function values). The Aitken-Lagrange interpolation and Aitken-
Hermite interpolation methods used in C-SSL II belong to this. As a characteristic, they find the most suitable interpolated 
values by increasing the degree of interpolating polynomials iteratively. 

Piecewise polynomials are used for the interpolation function when a single polynomial is difficult to apply. C-SSL II 
provides quasi-Hermite interpolation and spline interpolation methods. 

Interpolating splines are defined as functions which satisfy the interpolating condition; i.e fits the given points. 
Interpolating splines are not uniquely determined: they can vary with some additional conditions. In C-SSL II, four types 
of spline interpolation are available. The B-spline representation is used because of its numerical stability. 

Interpolation by B-spline 
Routines using B-spline are divided into two types according to their objectives. 

• Routines by which interpolated values (or derivatives, integrals) are obtained 
• Routines by which interpolating splines are obtained. 
 
Since the routines which obtain interpolated values use interpolating splines, these splines must be obtained first. 

C-SSL II provides various interpolating B-splines. Let discrete points be xi, i = 1, 2, ..., n, then four types of B-spline 
interpolating function of degree m (=2l − 1, l ≥ 2) are available depending on the presence/absence or the contents of 
boundary conditions. 

• Type I  S(j)(x1), S(j)(xn), j = 1, 2, ..., l – 1 are specified by the user. 
• Type II  S(j)(x1), S(j)(xn), j = l, l+1, L, 2l−2 are specified by the user. 
• Type III  No boundary conditions. 
• Type IV  S(j)(x1) = S(j)(xn), j = 0, 1,L, 2l−2 are satisfied. This type is suitable to interpolate periodic 

functions. 
 
Selection of the above four types depends upon the quantity of information on the original function available to the user. 
Typically, routines of type III (No boundary conditions) can be used. 
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The bivariate spline function S(x,y) shown in (29) is used as an interpolation function for a two-dimensional interpolation. 
The C-SSL II provides interpolation using only type I or III in both x and y directions. 

The degree of spline must be selected by the user. Usually m is selected as 3 or 5, if the original function does not change 
abruptly, m may take a higher value. However, m should not exceed 15 because it may cause another problem. 

Table 16 lists interpolation routines. 

Table 16 Interpolation routines 

Objective Routine name Method Notes 
c_daklag Aitken-Lagrange 

interpolation 
Derivatives not 
needed. 

c_dakher Aitken-Hermite 
interpolation 

Derivatives 
needed 

c_dbif1 B-spline interpolation (I) Type I 
c_dbif2 B-spline interpolation (II) Type II 
c_dbif3 B-spline interpolation (III) Type III 
c_dbif4 B-spline interpolation (IV) Type IV 
c_dbifd1 B-spline two-dimensional 

interpolation(I-I) 
Type I-I 

c_dbifd3 B-spline two-dimensional 
interpolation (III-III) 

Type III-III 

Interpolated value 

c_dakmid Two-dimensional quasi-
Hermite interpolation 

 

c_dakmin Quasi-Hermite interpolation  
c_dbic1 B-spline interpolation (I) Type I 
c_dbic2 B-spline interpolation (II) Type II 
c_dbic3 B-spline interpolation (III) Type III 
c_dbic4 B-spline interpolation (IV) Type IV 
c_dbicd1 B-spline two-dimensional 

interpolation (I-I) 
Type I-I 

Interpolating 
function 

c_dbicd3 B-spline two-dimensional 
interpolation (III-III) 

Type III-III 

 

Quasi-Hermite interpolation 
This is an interpolation by using piecewise polynomials similar to spline interpolation. The only difference between the 
two is that quasi-Hermite interpolation does not require so strict a condition on the continuity of higher degree derivatives 
as the spline interpolation does. 

A characteristic of quasi-Hermite interpolation is that no “wiggle” appears between discrete points. Therefore it is suitable 
for curve fitting or surface fitting to the accuracy of a hand-drawn curve by a trained draftsman. 

However, if very accurate interpolated values, derivatives or integrals are to be obtained, the B-spline interpolation should 
be used. 
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4. Approximation 

This includes least-squares approximation polynomials as listed in Table 17. The least squares approximation using B-
splines is treated in Section 5. 

Table 17 Approximation routine 

Objective Routine name Method Notes 
Least squares 
approximation 
polynomials 

c_dlesq1 Discrete point 
polynomial 

The degree of the polynomial is 
determined within the routine. 

5. Smoothing 

Table 18 lists routines used for smoothing. 

Table 18 Smoothing routines 

Objective Routine name Method Notes 
c_dsmle1 Local least-squares 

approximation polynomials 
Equally spaced discrete points 

c_dsmle2 Local least-squares 
approximation polynomials 

Unequally spaced discrete 
points 

c_dbsf1 B-spline smoothing Unequally spaced discrete 
points 

Smoothed 
value 

c_dbsfd1 B-spline two-dimensional 
smoothing 

Unequally spaced lattice points

c_dbsc1 B-spline smoothing (fixed 
nodes) 

c_dbsc2 B-spline smoothing (added 
nodes) 

Unequally spaced discrete 
points 

Smoothing 
function 

c_dbscd2 B-spline two-dimensional 
smoothing (added nodes) 

Unequally spaced lattice points

 

Routines c_dsmle1 and c_dsmle2 apply local least-squares approximation for each discrete point instead of applying 
the identical least-squares approximation over the observed values. However, it is advisable for the user to use B-spline 
routines. In B-spline smoothing, spline functions shown in (14) and (29) are used for the one-dimensional smoothing and 
two-dimensional smoothing respectively. Coefficients cj or cα,β are determined by the linear least squares. The smoothed 
value is obtained by evaluating the obtained smoothing function. C-SSL II provides routines for evaluating the smoothing 
functions. 

There are two types of routines to obtain B-spline smoothing functions depending upon how to determine knots. They are: 

• The user specifies knots (fixed knots) 
• Routines determine knots adaptively (variable knots) 
 
The former requires experience on how to specify knots. Usually the latter routines are recommended. 
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6. Series 

C-SSL II provides routines shown in Table 19 for Chebyshev series expansion, series evaluation, derivatives and 
indefinite integral. 

Table 19 Chebyshev series routines 

Objective Routine name Method Notes 
Series expansion c_dfcheb Fast cosine transformation Number of terms is 

(Power of 2) + 1. 
Evaluation of series c_decheb Backward recurrence equation  
Derivatives of series c_dgcheb Differention formula for 

Chebyshev polynomials 
 

Indefinite integral of 
series 

c_dicheb Integral formula for Chebyshev 
polynomials 

 

 

Table 20 lists routines used for cosine series expansion, sine series expansion and their evaluation, which are for periodic 
functions. 

Table 20 Cosine or sine series routines 

Objective Routine name Method Notes 
Cosine series expansion c_dfcosf Fast cosine transformation Even functions 
Cosine series evaluation c_decosp Backward recurrence equation Even functions 
Sine series expansion c_dfsinf Fast sine transformation Odd functions 
Sine series evaluation c_desinp Backward recurrence equation Odd functions 
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Transforms 

1. Outline 

This section explains discrete Fourier transforms and Laplace transforms. 

Characteristics 
For a discrete Fourier transform, routines are provided for each of the characteristics of transformed data. The data 
characteristics are classified as 

• Real or complex data, and 
• For real data, even or odd function 

2. Discrete real Fourier transforms 

When handling real data, routines are provided to perform the transform (1) and the inverse transform (2) 
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where ak and bk are called discrete Fourier coefficients. These correspond to the integrals 
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which define Fourier coefficients of a real valued function x(t) with period 2π. The transforms (1) can be derived by 
representing the function x(t) by n points  
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in the closed interval [0,2π] and by applying the trapezoidal rule. Particularly, if x(t) is the (n/2 – 1)th order trigonometric 
polynomial, the transforms (1) are the exact numerical integral formula of the integrals (3). In other words, the discrete 
Fourier coefficients are identical to the analytical Fourier coefficients. 

Either the discrete cosine or sine transforms can be used, depending on whether the function x(t) is even or odd. 
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3. Discrete cosine transforms 

Routines are provided to perform two variants of the cosine transform for even functions. One of the transforms includes 
the end points of the closed interval [0,π], and the other transform does not include the end points. 

Discrete cosine transform (Trapezoidal rule)  
This variant of the cosine transform is defined by representing an even function x(t) by  
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in the closed interval [0,π] and by applying the trapezoidal rule to  
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which defines the Fourier coefficients of x(t). The transform and inverse transform are: 
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where Σ″ denotes that both the first and the last terms of the sum are multiplied by 1/2.  

Discrete cosine transform (midpoint rule) 
This variant of the cosine transform is defined by representing an even function x(t) by  

1,,1,0,
2
1

2/1 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=+ njj

n
xx j L

π  

in the open interval (0,π). The transform (7) can be derived by applying a midpoint rule with n terms to the integral (4). 
The transform and inverse transform are: 
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where Σ′ denotes that the first term of the sum is multiplied by 1/2. 

4. Discrete sine transforms 

Routines are provided to perform two variants of the sine transform for odd functions. One of the transforms includes the 
end points of the closed interval [0,π], and the other transform does not include the end points. 

Discrete sine transform (Trapezoidal rule) 
This variant of the sine transform is defined by representing an odd function x(t) by  
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in the closed interval [0,π] and by applying the trapezoidal rule to the integral: 
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which defines the Fourier coefficients of x(t). The transform and inverse transform are: 

 1,,2,1,sin2 1

1
−== ∑

−

=

nkkj
n

x
n

b
n

j
jk L

π  (10) 

 1,,2,1,sin
1

1
−== ∑

−

=

njkj
n

bx
n

k
kj L

π  (11) 

Discrete sine transform (midpoint rule) 
This variant of the sine transform is defined by representing an odd function x(t) by  
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in the open interval (0,π). The transform (12) can be derived by applying the midpoint rule with n terms to the integral (9). 
The transform and inverse transform are: 
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5. Discrete complex Fourier transforms 

For complex data, routines are provided to perform the transforms corresponding to the transform (14) and the inverse 
transform (15) 
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Transform (14) can be derived by representing the complex valued function x(t) with period 2π by  
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in the closed interval [0,2π] and by applying the trapezoidal rule to the integral 
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which defines the Fourier coefficients of x(t). 

The discrete type Fourier transforms described above are all performed by using the Fast Fourier Transform (FFT). 

The fastest implementations of the FFT require the number of data items n to be a power of two. One of the complex FFT 
routines allows the number of data items to be arbitrary, but in general performance will be better if one of the following 
apply: 

• The number of data items is a power of 2 (radix 2) 
• The number of data items can be expressed as a multiple of 2, 3 and 5 only (radix 2, 3 and 5) 
• The number of data items can be expressed as a product of mutually prime factors selected from 

{2,3,4,5,7,8,9,16} (mixed radix). 
 
In addition, selected routines can perform combinations of: 

• Multiple transforms 
• Multidimensional transforms (where normally the number of dimensions is 1, 2 or 3) 
• Multivariate transforms. 
 
Table 21 lists the routines for each data characteristic. 

Comments on use 
Sample point number (dimension) 
The number of data points, n, of transformed data is defined differently depending on the properties of the function x(t). 
That is, n corresponds to: 

• the number of sample points taken in the half period interval, (0,π), or [0,π], for the cosine and sine 
transforms or 

• the number of sample points taken in the full period interval, [0,2π], for the real and complex transforms. 
 

Real transform versus cosine and sine transforms  
If it is known in advance that the x(t) is either an even or odd function, the routine for cosine and sine transforms should 
be used. (The processing speed is about twice as fast as for a real transform.) 

Fourier coefficients in real and complex transforms 
The following relationships exist between the Fourier coefficients {ak} and {bk} used in a real transform (including cosine 
and sine transforms) and the Fourier coefficient {αk} used in a complex transform. 
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where n denotes equally spaced points in a period [0,2π]. Based on the above relationships, users can use both routines for 
real and complex transforms as appropriate. However, attention must be paid to scaling and data ordering. 
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Trigonometric functions 
For cosine and sine transforms, the necessary trigonometric function table for transforms is provided in the routine for 
better processing efficiency. The function table is output to the argument tab, which can be used again for successive 
transforms. 

For each transform, two routines are provided based on the trapezoidal rule and the midpoint rule. The size of the 
trigonometric function table is smaller and therefore more efficient in the former. 

Scaling 
Scaling of the resultant values is left to the user. 

Table 21 Routines for discrete Fourier transform 

Type of transform Radix Routine Features 

Cosine 
Trapezoidal rule 

2 
c_dvcos1  

Midpoint rule c_dfcosm  
 Arbitrary c_dvmcst  

Sine 
Trapezoidal rule 

2 
c_dvsin1  

Midpoint rule c_dfsinm  
 Arbitrary c_dvmsnt  

Real transform 

2, 3 or 5 
c_dvmrft Multiple, 

multivariate 
c_dvsrft 1-D multiple 

2 
c_dvrft1  
c_dvrft2 Memory efficient 

Mixed  
c_dvrpf3 3-D 
c_dvmrf2  

Complex transform 

Arbitrary  c_dvmcft Multiple, 
Multivariate 

2 

c_dvcft1  
c_dvcft2 Memory efficient 
c_dvcft3 for data sequence 

with a constant 
stride 

Mixed  

c_dvcpf1 1-D 
c_dvcpf3 3-D 
c_dvcfm1 1-D 
c_dvmcf2  

6. Laplace transform 

The Laplace transform of f(t) and its inverse are defined respectively as: 
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where  > 0, 0 (abscissa of convergence). 

In these transforms, f(t) is called the original function and F(s) the image function. Assume the following about F(s). 
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where F*(s) is the conjugate of F(s). Condition 1) is always satisfied, condition 2) is satisfied unless f(t) is a distribution 
and condition 3) is satisfied when f(t) is a real function. The C-SSL II routines perform the numerical transformation of 
expression (19). The outline of the method is described below. 

Formula for numerical transformation 
Assume 0  0 for simplicity, that is F(s) is regular in the domain of Re(s) > 0, and the integral (19) exists for an arbitrary 
real value  greater than 0. Since 

  see s 
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est in (19) is approximated as follows using an appropriate value for  

    stestEec  00 cosh2, 0    

Function Eec(st,0) is characterized as follows:  

There are an infinite number of poles on the line expressed by Re(s)=0/t. Figure 20 shows locations of the poles. This can 
be explicitly represented as: 
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Then, f(t,0) which denotes an approximation of the original function f(t) is: 

      








ir

ir ec dsstEsF
i

tf 00 ,
2
1,  (21) 

where 0 <  < 0/t is assumed. 

It follows that the integral of the right-hand side can be expanded in terms of integrals around the poles of Eec(st,0). 
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Imaginary axis

Real axis

Re(s)=

 
Figure 20 Poles of Eec(st,0) 

Since F(s) is regular in the domain of Re(s) > 0, the following is obtained according to Cauchy’s integral formula: 
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 (22) 

If 0 > 0 the condition 0 <  < 0/t cannot be satisfied for a certain value of t(0 < t < ). This means 0  0 is 
necessary for (22) to be used for 0 < t < . 

Function f(t,0) gives an approximation to function f(t) and is expressed as follows: 

           tfetfetftf 53, 00 42
0

  (23) 

This means that function f(t,0) gives a good approximation to f(t) when 0 >> 1. Moreover, (23) can be used for 
estimating the approximation error. 

For numerical calculation, the approximation can be obtained principally by truncating (22) up to an appropriate term; 
however, the direct summation is often not practical. The Euler transformation that can be generally applied in this case is 
incorporated in the routines. Define function Fn as follows: 
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Then, the Euler transformation is applicable when the following conditions are satisfied (See reference [14] for details.): 

 1) For an integer k1, the sign of Fn alternates when nk (25) 

      2) 1/2  | Fn+1/Fn | < 1 when n  k 

When Fn satisfies these conditions, the series represented by (22) can be transformed as: 
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where Rp(k) is defined as: 

Rp(k)  2P(DpFk+DpFk+1+DpFk+2+) 
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DpFk is the pth difference defined as 
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In the routines, the following expression is employed: 
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where N = k + p, 
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The determination of the values for 0, k, and p is explained in each routine description. 

The following has been proved for the truncation error of fN(t,0). Suppose (n)  Fn. If the p th derivative of (x), (p)(x), 
is of constant sign for positive x and monotonously decreases with increase of x (for example, if F(s) is a rational function), 
the following will be satisfied: 
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where fN+1(t,0) stands for (28) with k + 1 instead of k. To calculate Dp+1Fk in the above formula, Fk+p+1 is required, in 
addition to the set {Fn; n = k, k+1, ...., k+p} to be used for calculation of fN(t,0); hence, one more evaluation of the 
function is needed. To avoid that, the following expression is substituted for the truncation error of fN(t,0) in the routines; 
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In the routines, the truncation error is output in the form of the following relative error: 
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Dp+1Fk-1 is a linear combination of Fk-1, Fk, ..., Fk+p. The coefficients Ap,r can be calculated as a cumulative sum, as shown 
in (29). Thus, these coefficients can easily be calculated by using Pascal’s triangle. Figure 21 shows this calculation 
techniques (for p = 4) 
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Figure 21 Pascal’s triangle (for p=4) 

When 0>0, since F(s) is not regular in the domain of Re(s) > 0; the above technique cannot be directly applied. Note, 
however, that the integral in (19) can be expressed as: 
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    where r>0, G(s)=F(s+ro) 
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Since G(s) is regular in the domain of Re(s) > 0, g(t) can be calculated as explained above; then f(t) is obtained by 
multiplying g(t) by t0e  

Transformation of rational functions 
A rational function F(s) can be expressed as follows using polynomials Q(s) and P(s) each having real coefficients: 

 F(s) = Q(s) / P(s) (32) 

To determine whether 00 or 0>0, it is only necessary to check whether P(s) is a Hurwitz polynomial (that is, all zeros 
are on the left-half plane {s | Re(s)<0}. The procedure used for the check is described below (reference [56]): 

A polynomial P(s) of degree n with real coefficients is expressed as follows: 
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The ratio of n(s) to m(s) is defined as: 

     snsmsW   

Then, W(s) is expanded into continued fraction as: 
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If all of h1, h2, are positive, P(s) is a Hurwitz polynomial. If F(s) has singularities in the domain of Re(s) >0, the above 
procedure can be repeated by increasing ( > 0) so that G(s)=F(s+) is regular in the domain of Re(s) > 0. The value of 
fN(t,0) is calculated by multiplying et by gN(t,0), the inverse of G(s). 

When F(s) is an irrational function or a distribution, there is no practical method that tests if F(s) is regular in the domain 
of Re(s) > 0, therefore, the abscissa of convergence of a general function F(s) must be specified by the user. 

Choice of routines 
Table 22 shows routines for the inversion of Laplace transforms. c_dlaps1 and c_dlaps2 are used for rational 
functions with c_dlaps1 for 0  0 and c_dlaps2 otherwise. c_dhrwiz judges the condition P(s), that is, examines 
if 0 > 0 in (32) is a Hurwitz polynomial; and if 0 > 0 is detected, the approximated value of 0 is calculated. The condition 
0 > 0 means that the original function f(t) increases exponentially as t . c_dhrwiz can be used for examining this 
behaviour. Figure 22 shows a flowchart for choosing routines. 

Table 22 Laplace transform routines 

Function type Routine name Remarks 

Rational functions 

c_dlaps1 
Rational functions regular 
in the right-half plane. 

c_dlaps2 General rational functions. 

c_dhrwiz 
Judgment on Hurwitz 
polynomials. 

General functions 
c_dlaps3 

Convergence coordinate 0 
must be input. 
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Figure 22 Flowchart for choosing Laplace transform routines.
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Numerical differentiation and quadrature 

1. Outline 

This section describes the following types of problems. 

Numerical differentiation: 
Given function values yi = f(xi), i = 1, ... n at discrete points x1 < x2 < ... < xn, the l - th order derivative )()( vf l , at x = v in 
the interval [x1, xn] is determined, where l  1. 

Two-dimensional differentiation is also included. Given the function f(x), the derivative 1,)()()(  ldxxfdxf lll  
is approximated by a Chebyshev series expansion. 

Numerical quadrature: 
Given function values yi = f(xi), i = 1, ..., n at discrete points x1, x2, ..., xn, the integral of f(x) over the interval [x1, xn] is 
determined. Also, given the function f(x), the integral 


b

a
dxxfS )(  

is determined within a required accuracy. Multi-dimensional integrals are also supported. 

2. Numerical differentiation 

When performing numerical differentiation, C-SSL II divides problems into the following two types: 

Discrete point input 
In numerical differentiation, an appropriate B-spline interpolation function is first obtained to fit the given sample points 
(xi,yi) where i = 1, 2, ..., n, then it is differentiated. 

See the Interpolation and approximation section in this chapter for a description of spline functions and the B-spline 
representation. 

Function input 
Given the function f(x) and domain [a, b], f(x) is expanded in Chebyshev series within a required accuracy. That is, it is 
approximated by the following functions: 
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Then by differentiating term by term. 
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the derivatives are expanded in Chebyshev series. The derivative values are obtained by summing the appropriate 
Chebyshev series at the point x = v in the interval [a, b]. 
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Table 23 lists routines used for numerical differentiation. 

Table 23 Routines used for numerical differentiation 

Objective Routine name Method Remarks 
Derivative 
value 

c_dbif1 B-spline interpolation (I) Discrete point input 
c_dbif2 B-spline interpolation (II) 
c_dbif3 B-spline interpolation (III) 
c_dbif4 B-spline interpolation (IV) 
c_dbsf1 B-spline smoothing 
c_dbifd1 B-spline 2-dimensional 

interpolation (I-I) 
Discrete point input 2-
dimensional 

c_dbifd3 B-spline 2-dimensional 
interpolation (III-III) 

c_dbsfd1 B-spline two-dimensional 
smoothing 

Derivative 
function and 
derivative 
value 

c_dfcheb Fast cosine transformation Function input, Chebyshev 
series expansion 

c_dgcheb Backward recurrence 
equation 

Chebyshev series 
derivative 

c_decheb Backward recurrence 
equation 

Summing Chebyshev 
series 

3. Numerical quadrature 

Numerical quadrature is divided into the following two types. 

Integration of a tabulated function 
Given function values yi = f(xi), i = 1, ..., n at discrete points x1 < x2< .... <xn, the definite integral: 


nx

x
dxxfS

1

)(  

is approximated using only the given function values yi. The bounds of error of the approximated value cannot be 
calculated. Different routines are used depending on whether or not the discrete points are equally spaced. 

Integration of a function 
Given a function f(x) and the interval of integration [a, b], the definite integral: 


b

a
dxxfS )(  

is calculated within a required accuracy. Different routines are used according to the form, characteristics, and the interval 
of integration of f(x). 

The following types of integrals are also supported. 
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Routines used for numerical quadrature are shown in Table 24. 

Table 24 Numerical quadrature routines 

Objective Routine name Method Remarks 
1-dimensional finite 
interval 
(equally spaced) 

c_dsimp1 Simpson’s rule Discrete point input 

1-dimensional finite 
interval 
(unequally spaced) 

c_dtrap Trapezoidal rule 
c_dbif1 B-spline interpolation (I) 
c_dbif2 B-spline interpolation (II) 
c_dbif3 B-spline interpolation (III) 
c_dbif4 B-spline interpolation (IV) 
c_dbsf1 B-spline smoothing 

2-dimensional finite 
interval 

c_dbifd1 B-spline 2-dimensional 
interpolation (I-I) 

Discrete input 2-
dimensional 

c_dbifd3 B-spline 2-dimensional 
interpolation (III-III) 

c_dbsfd1 B-spline two-dimensional 
smoothing 

1-dimensional finite 
interval 

c_daqn9 Adaptive Newton-Cotes 9 
point rule 

Integration of a function 

c_daqc8 Clenshaw-Curtis integration
c_daqe Double exponential formula

1-dimensional semi-
infinite interval 

c_daqeh Double exponential formula

1-dimensional infinite 
interval 

c_daqei Double exponential formula

Multi-dimensional 
finite region 

c_daqmc8 Clenshaw-Curtis quadrature Multi-variate function 
input 

Multi-dimensional 
region 

c_daqme Double exponential formula

 

General conventions and comments on numerical quadrature 
The routines used for numerical quadrature are classified primarily by the following characteristics. 

 Dimensions of the variable of integration: 1, 2 or 3 dimensions 
 Interval of integration: dimensions finite interval, infinite interval, or semi-infinite interval. 
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Numerical integration methods differ depending on whether a tabulated function or a continuous function is given. For a 
tabulated function, since integration is performed using just the function values yi = f(xi), i = 1, ...n it is difficult to obtain 
an approximation with high accuracy. On the other hand, if a function is given, function values in general can be 
calculated anywhere (except for singular cases), thus the integral can be obtained to a desired precision by calculating a 
sufficient number of function values. Also, the bounds of error can be estimated. 

Integrals of one-dimensional functions over a finite interval 
Automatic quadrature routines 
Four quadrature routines, c_dsimp2, c_daqn9, c_daqc8, and c_daqe are provided for the integration of 

 
b

a
dxxf , 

as shown in Table 24. All these routines are automatic quadrature routines, that is they calculate the integral to satisfy the 
desired accuracy when integrand f(x), integration interval [a, b], and a desired accuracy for the integral are given.  

Generally in automatic quadrature routines, an integral calculation starts with only several abscissas (where the integrand 
is evaluated), and improves the integral by increasing the number of abscissas gradually until the desired accuracy is 
satisfied. Then the calculation stops and the integral value is returned. 

In recent years, many automatic quadrature routines have been developed all over the world. These routines have been 
tested and compared with each other many times for reliability (i.e. ability to satisfy the desired accuracy) and economy 
(i.e. less calculation) by many persons. These efforts are reflected in the C-SSL II routines. 

Adaptive method 
This is the most commonly used type of automatic integration method. This is not a specific integration formula (for 
example, Simpson’s rule, Newton-Cotes 9 point rule, or Gauss’s rule, etc.), but a method which controls the number of 
abscissas and their positions automatically in response to the behavior of the integrand. That is, it locates abscissas densely 
where the integrand changes rapidly, or sparsely where it changes gradually. Routines c_dsimp2 and c_daqn9 use this 
method. 

Routine selection 
As a preliminary for routine selection, Table 25 shows several types of integrands from the viewpoint of actual use. 

It is necessary in routine selection to know which routine is suitable for the integrand. The types of routines and functions 
are described below in conjunction with Table 25. 

Table 25 Integrand type 

Code Meaning Example 
Smooth Function with rapidly 

convergent power series.  1

0
e dxx  

Peak Function with some high 
peaks and wiggles in the 
integration interval. 

 

1

1 62 )10(x
dx  

Oscillatory Function with severe, short 
length wave oscillations. 

 
1

0
100sin xdx  
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Code Meaning Example 
Singular Function with algebraic 

singularity (x, -1 < ) or 
logarithmic singularity (log x). 


1

0

1

0

log

/

xdx

xdx
 

Discontinuous Function with discontinuities 
in the function value or its 
derivatives 




0
cos dxx  

 
c_daqn9 Adaptive method based on Newton-Cotes’ 9-point rule. This is the recommended adaptive method in because of 

its superior reliability or economy. Since this routine is good at detecting local actions of integrand, it can be used 
for functions which have singular points such as a algebraic singularity, logarithmic singularity, or discontinuities 
in the integration interval, and in addition, peaks. 

c_daqc8 Since this routine is based on the Chebyshev series expansion of a function, the more effectively the function can 
be approximated, the better the convergence property of the integrand. For example, it can be used for smooth 
functions and oscillatory functions but is not suitable for singular functions and peak type functions. 

c_daqe This method extends the integration interval [a, b] to (-,) by variable transformation and uses the trapezoidal 
rule. In this processing, the transformation is selected so that the integrand after conversion will decay in a 
manner of a double exponential function (exp(-aexp|x|), where a>0) when x. Due to this operation, the 
processing is still effective even if the function changes rapidly near the end points of the original interval [a, b]. 
This routine is well suited for functions which have an algebraic singularity or logarithmic singularity only at the 
end points; processing is more successful than any other routine, but is not as successful on functions with 
interior singularities. 

 
Table 26 summarizes these descriptions. The routine marked by ‘OK’ is the most suitable for the corresponding type of 
function, and routines marked by ‘X’ should not be used for the type. A blank indicates that the routine is not always 
suitable but can be used. All these routines can satisfy the desired accuracy for the integral of smooth type. However, 
c_daqc8 is best in the sense of economy, that is, the amount of calculation is the least among the three. 

Table 26 Routine selection 

 Function type 
Routine Smooth Peak Oscillatory End point 

singularity 
Interior 
singularit
y 

Discontinuous Unknown* 

c_daqn9  OK   OK OK OK 
c_daqc8 OK X OK X X X  
c_daqe    OK X X  

* Functions with unknown characteristics 

C-SSL II provides routines c_daqmc8 and c_daqme for integration in up to 3 dimensions. They are automatic 
quadrature routines as described below. 

c_daqmc8 Uses Clenshaw-Curtis quadrature for each dimension. It can be used for a smooth and oscillatory functions. 
However, it is not applicable to functions having singular points or peaked functions. 

c_daqme Uses double exponential formula for each dimension. Since this routines has all formulas used in c_daqe, 
c_daqeh and c_daqei, it can be used for any type of intervals (finite, semifinite or infinite interval). 
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Differential equations 

1. Outline 

This section describes the solution of initial value problems of ordinary differential equations. 

Initial value problems of systems of first order ordinary differential equations are solved directly. 
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Initial value problems of high order ordinary differential equations can be reduced to the form shown in (1). Namely, 
when a high order equation: 

),,,,,,( )1()(  kk yyyyxfy   
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is handled, we can let: 
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21 xyyxyyxyy k
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Then, the high order equations can be reduced to and expressed as: 
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2. Ordinary differential equations 

To solve the initial value problem y´ = f(x,y), y(x0) = y0 on the interval [x0, xe] means to obtain approximate solutions at 
discrete points x0 < x1 < x2 < ... <xe  step by step as shown in Figure 23. 
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y 
 
 
 
y0 
 

    0         x0     x1      x2   x3           x4              x5         xe                        
x 

 
Figure 23 Approximate solutions of y   = f (x, y), y(x0) = y0 

Solution output 
In Figure 23, solution output points x1, x2, x3, ... are either specified by the user or selected as a result of step-size control 
by the routine. The purpose of solving the differential equations is to obtain: 

 the solution y(xe) only at xe, 
 the solutions at the points selected as a result of step-size control by the routine. In this case, the purpose is to 

know the behavior of solutions, and no restriction is necessary to the solution output points because the 
behaviour of the solutions is all that is needed, 

 the solution at user-specified points {j} or at equally spaced points. 
 
The C-SSL II ordinary differential equation routines provide two return mechanisms to the user program from the routine 
corresponding to the purposes described above. 

 Final value output – when the solution y(xe) is obtained, return to the user program. To obtain output at 
specified points, set xe to i sequentially, where i = 1, 2, ..., and call the routine repeatedly. 

 Step output – under step-size control, return to the user program after one step integration. The user program 
can call this routine repeatedly to obtain output at final output points. 

 
C-SSL II provides routines c_dodrk1, c_dodam and c_dodge which incorporate final value output and step output. 
The user can select the manner of output by specifying an argument. 

Stiff differential equations 
This section describes stiff differential equations, which appear in many applications, and presents definitions and 
examples. 

The equations shown in (1) can be expressed in vector notation as shown in (3). 

 00 )(),,( yyyfy  xx  (3) 
 
where   ,,,, T

21 nyyy y  

       ,,,,,,,),( T
21 yyyyf xfxfxfx n  

   nii yyyxfxf ,,,,, 21 y  
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Suppose f(x, y) is linear, that is 

    xx ΦAyyf ,  (4) 

where, A is a constant coefficient matrix and (x) is an appropriate function vector. Then, the solution for (3) can be 
expressed by using eigenvalues of A and the corresponding eigenvectors as follows: 

    


 
n

i
i

x
i xekx i

1

Ψuy  (5) 

 ki : constant 

Let us assume the following conditions for i and (x) in (5): 

 Re(i)<0, for i=1, 2, ..., n 
 (x) is smoother than any eix (that is, it has rapidly convergent power expansion). 
 
Under these conditions, as x tends to infinity,  




 
n

i
i

x
i

iek
1

0u  

Therefore, the solution y(x) tends to (x). After (x) has become dominant, the solution can be obtained by the 
approximate solution for (x). Relatively large step-sizes can be used. 

However, attempts to use methods such as Euler and classical Runge-Kutta encounter a phenomenon that errors 
introduced at a certain step increase from step to step. Therefore, when using these methods, the step sizes are 
substantially restricted. The larger the value of max ( |Re(i)| ), the smaller the step size must be. 

Although solution y(x) can be approximated numerically by the smooth function (x), the step sizes must be small for 
integration. This causes an imbalance between two step sizes, one that is small enough to approximate the solution 
numerically, and the other that is required for error protection. 

If (x)=0, that is, (x)=0 in (3), solution y(x) becomes smaller. Therefore, it is actually approximated by the term ki eix 
ui corresponding to the smallest | Re(i) |. In this case, if max | Re(i) | is large, the above mentioned difficulty occurs. 

A stiff differential equation is defined as follows: 

Definition 1 
When the linear differential equation 

  xΦAyy   (6) 

satisfies the (7) and (8), 

 Re(i)<0, i=1, 2, , n (7) 

 
  
  i

i





Remin
Remax

>>1 (8) 

they are called stiff differential equations. The left side of the equation in (8) is called stiffness ratio. If this value is large, it 
is strongly stiff: otherwise, it is mildly stiff. Strong stiffness with a stiffness ratio of magnitude 106 is quite common. 
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An example of stiff linear differential equations is shown in (9). Its solution is shown in (10) (See Figure 24). 
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Figure 24 Approximate graph for the solution in (10) 

Suppose f(x, y) is nonlinear. The eigenvalues of the Jacobian matrix  

 
y

yfJ





x,  

determines stiffness, where the eigenvalues vary with x. Then, Definition 1 is extended for nonlinear equations as follows. 

Definition 2 
When the nonlinear differential equation y = f(x, y) satisfies the following conditions in a certain interval, I, it is said to be 
stiff in that interval. 

   nixi ,,2,1,0Re     x I  

  
  i

i





Remin
Remax

>>1 , x I  

where i(x) are the eigenvalues of J. 

Whether the given equation is stiff or not can be checked to some extent as follows: 

 When the equation is linear as shown in (6), the stiffness can be checked directly by calculating the 
eigenvalues of A. 

 When the equation is nonlinear, routine c_dodam can be used to check stiffness. c_dodam uses the Adams 
method by which non-stiff equations can be solved. c_dodam notifies of stiffness via the icon argument if 
the equation is stiff. 

 
 Routine c_dodge can be used to solve stiff equations. 

Routine selection 
Table 27 lists routines used for differential equations. 
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 c_dodge for stiff equations. 
 c_dodrk1 or c_dodam for non-stiff equations. 
 c_dodrk1 is effective when the following conditions are satisfied: 

 The accuracy required for solution is not high. 
 When requesting output of the solution at specific points of independent variable x, the interval 

between points is wide enough. 
 The user should use c_dodam when any of these conditions is not satisfied. 
 Use c_dodam at first if the equation is not known to be stiff or non-stiff. 
 c_dodam can be changed to c_dodge if stiffness is detected. 
 

Table 27 Ordinary differential equation routines 

Objective Routine name Method Comments 
Initial value 
problem 

c_dodrk1 Rung-Kutta-Verner 
method 

Variable step size 

c_dodam Adams method Variable step size, Variable order 
c_dodge Gear’s method Variable step size, Variable order 

(Stiff equations) 
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Special functions 

1. Outline 

The special functions of C-SSL II are functions not available as Fortran basic functions. This includes some special 
functions where the variables and functions are complex. 

The following properties are common in special function routines. 

Accuracy 
The balance between accuracy and speed is important and therefore taken into account when selecting calculation 
formulas. In C-SSL II, calculation formulas have been selected such that the theoretical accuracies (accuracies in 
approximation) are guaranteed to be within about 16 digits. However, since the accuracy of function values depends on 
the number of working digits available for calculation in the computer, the theoretical accuracy cannot always be assured. 
The accuracy of the double precision routines has been checked by comparing their results with those of extended 
precision (“long double”) routines that have much higher precision than double precision routines. 

Speed 
Special functions are designed with an emphasis on accuracy first and speed second. Though real type functions may be 
calculated with complex type function routines, separate routines are available with greater speed for real type calculations. 
For frequently used functions, both general and limited purpose routines are available. 

There are some important aspects of the C-SSL II routines for special functions that must be taken into account: 

Calling method 
Since various difficulties may occur in calculating special functions, routines for these functions have the icon argument 
to indicate how computations have finished. Accordingly, the C-SSL II routines return the result of the special function as 
one of the argument values. 

icon 
Special functions use Fortran basic functions, such as exponential functions and trigonometric functions. If errors occur in 
these basic functions, such as overflow or underflow, detection of the real cause of problems will be delayed. Therefore, to 
identify such troubles as early as possible, checks are made before using basic functions in special function routines, and if 
problems are detected, information about them is returned in the argument icon. 

2. Elliptic integrals 

Elliptic integrals are shown in Table 28. 

A second order iteration method can be used to calculate complete elliptic integrals, however, it has the disadvantage that 
the speed depends upon the magnitude of the argument. In C-SSL II routines, an approximation formula is used so that a 
constant speed is maintained. 
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Table 28 Routines for elliptic integrals 

Item Mathematical 
symbol 

Routine 
name 

Complete elliptic integral of 
the first kind 

K(x) c_dceli1

Complete elliptic integral of 
the second kind 

E(x) c_dceli2

3. Exponential integral 

The exponential integral routine is shown in Table 29. 

Table 29 Routine for exponential integral 

Item Mathematical 
symbol 

Routine name 

Exponential 
integral 

)( xEi  , x > 0 c_dexp1 

)(xE i , x > 0 
 

Since the exponential integral is rather difficult to compute, various formulas are used for various ranges of the variable. 

4. Sine and cosine integrals 

Sine and cosine integrals are shown in Table 30. 

Table 30 Routines for sine and cosine integrals 

Item Mathematical 
symbol 

Routine name 

Sine integral Si(x) c_dsini 

Cosine integral Ci(x) c_dcosi 

5. Fresnel integrals 

Fresnel integrals are shown in Table 31. 

Table 31 Routines for Fresnel integrals 

Item Mathematical 
symbol 

Routine name

Sine Fresnel 
integral 

S(x) c_dsfri 

Cosine Fresnel 
integral 

C(x) c_dcfri 
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6. Gamma functions 

Gamma functions are shown in Table 32. 

Table 32 Routines for gamma functions 

Item Mathematical 
symbol 

Routine name

Incomplete gamma 
function of first kind 

(,x) c_digam1 

Incomplete gamma 
function of second kind

(,x) c_digam2 

 

Between the complete Gamma function () and the first and the second kind incomplete Gamma functions the following 
relationship holds: 

     xvxvv ,,   

The corresponding C basic external function should be used for (). 

7. Error functions 

Error functions are shown in Table 33. 

Table 33 Routines for error functions 

Item Mathematical 
symbol 

Routine name

Inverse error function erf-1(x) c_dierf 

Inverse complementary 
error function 

erfc-1(x) c_dierfc 

 

The relationship 

erf-1 (x) = erfc-1 (1 – x) 

holds between the inverse error function and inverse complementary error function. Each is evaluated by using the 
function that is appropriate for that range of x. 

The corresponding C basic functions must be used for erf(x) and erfc(x). 

8. Bessel functions 

Bessel functions are classified into various types as shown in Table 34 and Table 35. Since zero-order and first-order 
Bessel functions are used quite often, limited purpose routines, which are quite fast, are provided. 
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Table 34 Routines for Bessel functions with a real argument 

Item Mathematical
symbol 

Routine 
name 

First kind

Zero-order Bessel function J0 (x) c_dbj0 

First-order Bessel function J1 (x) c_dbj1 

Integer order Bessel function Jn(x) c_dbjn 

Real-order Bessel function Jv(x)  
(v  0.0) 

c_dbjr 

Zero order modified Bessel function I0 (x) c_dbi0 

First order modified Bessel function I1(x) c_dbi1 

Integer order modified Bessel 
function 

In(x) c_dbin 

Real order modified Bessel function Iv(x)  
(v  0.0) 

c_dbir 

Second 
kind 

Zero-order Bessel function Y0(x) c_dby0 

First-order Bessel function Y1(x) c_dby1 

Integer order Bessel function Yn(x) c_dbyn 

Real-order Bessel function Yv(x) 
(v  0.0) 

c_dbyr 

Zero order modified Bessel function K0(x) c_dbk0 

First order modified Bessel function K1(x) c_dbk1 

Integer order modified Bessel 
function 

Kn(x) c_dbkn 

Real order modified Bessel function Kv(x)  c_dbkr 

 

Table 35 Bessel function routines with a complex argument 
Item Mathematical

symbol 
Routine 
name 

First  
kind 

Integer order Bessel function Jn(z) c_dcbjn 

Real order Bessel function Jv(z) 
(v  0.0) 

c_dcbjr 

Integer order modified Bessel 
function 

In(z) c_dcbin 

Second 
kind 

Integer order Bessel function Yn(z) c_dcbyn 

Integer order modified Bessel 
function  

Kn(z) c_dcbkn 

9. Normal distribution functions 

Normal distribution functions are shown in Table 36. 
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Table 36 Normal distribution function routines 

Item Mathematical 
symbol 

Routine 
name 

Normal distribution 
function 

(x) c_dndf 

Complementary normal 
distribution function 

(x) c_dndfc 

Inverse normal 
distribution function 

-1(x) c_dindf 

Inverse complementary 
normal distribution 

-1(x) c_dindfc
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Pseudo-random numbers 

1. Outline 

This section deals with the generation of pseudo-random (real or integer) numbers with various probability distribution 
functions. 

2. Pseudo-random number generation 

Random numbers with any given probability distribution can be obtained by transformation of the uniform pseudo-
random numbers. Let g(x) be the probability density function of the desired distribution. Then, the required pseudo-
random numbers y are obtained by the inverse function )(1 uFy   of  

  dxxgyF y
 0

)(  

where F(y) is the cumulative distribution function of g(x) and u is a uniform pseudo-random number. 

Pseudo-random numbers with discrete distribution are complicated slightly by intermediate calculations. For example the 
routine c_dranp2 first generates a table of cumulative Poisson distribution and a reference table which refers efficiently 
to a generated uniform number and then produces Poisson pseudo-random integers. 

Table 37 shows a list of routines provided in the C-SSL II. These routines provide an argument to be used as a starting 
value to control random number generation. Usually, only one setting of the argument will suffice to yield a sequence of 
random numbers. Notice that some of these routines do NOT return a double argument value. 

Table 37 List of routines for pseudo random number generation 

Type Routine name
Fast uniform [0,1) pseudo-random numbers c_dvrau4 

Exponential pseudo-random numbers c_rane2 

Fast normal pseudo-random numbers 
c_dvran3 

c_dvran4 

Poisson pseudo-random integers c_ranp2 

Binomial pseudo-random numbers c_ranb2 
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c_daggm 
Addition of two matrices (real + real). 
ierr = c_daggm(a, ka, b, kb, c, kc, m, n, 

&icon); 

1. Function 

This function performs addition of two m  n general real matrices, A and B. 

 C A B   (1) 

In (1), the resultant C is also an m  n matrix (m,n  1). 

2. Arguments 

The routine is called as follows: 
ierr = c_daggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, &icon); 

where: 
a double 

a[m][ka] 

Input Matrix A. 

ka int Input C fixed dimension of array a ( n). 
b double 

b[m][kb] 

Input Matrix B. 

kb int Input C fixed dimension of array b ( n). 
c double 

c[m][kc] 

Output Matrix C.  See Comments on use. 

kc int Input C fixed dimension of array c ( n). 
m int Input The number of rows m for matrices A, B and C. 
n int Input The number of columns n for matrices A, B and C. 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m < 1 
 n < 1 
 ka < n 
 kb < n 
 kc < n 

Bypassed. 
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3. Comments on use 

Efficient use of memory 
Storing the solution matrix C in the same memory area for matrix A (or B) is permitted if array contents (matrix A) can be 
discarded after computation.  To take advantage of this efficient reuse of memory, the array and dimensioning associated 
for matrix A need to appear in the locations reserved for C on the function argument list, as indicated below. 

For A: 

ierr = c_daggm(a, ka, b, kb, a, ka, m, n, &icon); 

And for B: 

ierr = c_daggm(a, ka, b, kb, b, kb, m, n, &icon); 

Note, if both matrices A and B are required after the solution then a separate array must be supplied for storing matrix C. 

4. Example program 

This example program performs a matrix addition and checks the results. Each matrix is 100 by 100 elements. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, ka, kb, kc, i, j; 
  double eps, err; 
  double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX]; 
 
  /* initialize matrices*/ 
  m = NMAX; 
  n = NMAX; 
  ka = NMAX; 
  kb = NMAX; 
  kc = NMAX; 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) { 
      a[i][j] = n-i-j; 
      b[i][j] = i+j; 
    } 
  /* add matrices */ 
  ierr = c_daggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_daggm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check matrix */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) { 
      err = fabs((c[i][j]-n)/n); 
      if (err > eps) { 
        printf("WARNING: result inaccurate\n"); 
        exit(1); 
      } 
    } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_dakher 
Aitken-Hermite interpolation. 
ierr = c_dakher(x, y, dy, n, v, &m, &eps, &f, 

vw, &icon); 

1. Function 

Given discrete points nxxx  ...21 , with their corresponding function values )( ii xfy  , and derivative values 
)( ii xfy  , i=1,2,...,n, this routine interpolates for a given point vx  using Aitken-Hermite interpolation. 

2. Arguments 

The routine is called as follows: 
ierr = c_dakher(x, y, dy, n, v, &m, &eps, &f, vw, &icon); 

where: 
x double x[n] Input Discrete points ix . 
y double y[n] Input Function values iy . 
dy double dy[n] Input Derivative values iy  . 
n int Input Number of discrete points n. 
v double Input Interpolation point v. 
m int Input Number of discrete points to be used in the interpolation (  n). 
  Ouput Number of discrete points actually used. See Comments on use. 
eps double Input Threshold value. 
  Output Estimate of the absolute error of the interpolated value. 
f double Output Interpolated value. 
vw double vw[5n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 The interpolation point v matched a discrete point 

x[i] for some i. 
f is set to y[i]. 

30000 One of the following has occurred: 
 n < 1 
 m = 0 
 x[i-1]   x[i] for some i 

f is set to zero. 

3. Comments on use 

m 
To specify m: 
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1. When it is known that in a neighbourhood of vx  the original function can be approximated well by 
polynomials of degree 12 k or less, it is natural to use a polynomial of degree 12 k or less. In this case, 
argument m should be specified equal to k. 

2. When the condition in 1 is unknown, m should be specified equal to n. 

In the above two cases, the routine will determine the actual degree of polynomial to be used by applying a 
stopping criterion given below, and the actual number of discrete points to be used in the interpolation will be 
output in m. 

3. When the user wants an interpolated value that is obtained using exactly m points, without applying the 
stopping criterion, m must be specifed equal to –m (for example, m = -k or m = -n). 

Stopping criterion and eps 
Consider the effect of the degree of interpolation on numerical behaviour. Let jZ denote the interpolated value obtained 
using j discrete points near vx  (discrete points selected such that the points closest to vx   are selected first), and let 

jD denote the difference defined as 1 jjj ZZD  with mj ,...,2 , and m the maximum number of discrete points to 
be used. In general, as the degree of interpolation polynomial increases, the curve jD  behaves similar to that shown in 
Figure 25 

l m j

|Dj|

 

Figure 25 The curve of jD  as degree of polynomial increases 

In Figure 25, at l the truncation error and the calculation error of the interpolation polynomial are both at the same level, 
and lZ  is usually considered the numerical optimum interpolated value. However, jD  can exhibit various types of 
behaviour, depending on the tabulated function, for example, oscillation can occur as in Figure 26. 
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l m j

|Dj|

s  

Figure 26 Possible behaviour of jD  

In the case of Figure 26, lZ , and not sZ , should be used for the interpolated value. Therefore the interpolated 
value to be output is determined as shown below: 
 

When calculating mDDD ,...,, 32 , 

- if epsjD , mj ...,3,2 then l is determined such that  jjl DD min  

- if epsjD , for a certain j, then from j on, l is determined such that 1 ll DD , or if 

this does not occur then l is set to m. 
In all cases, the arguments f, m, and eps are set to the values of lZ , l, and lD . 

The user can specify eps = 0 when jZ  corresponding to the minimum jD  is to be output as the interpolated 

value. 

4. Example program 

This program interpolates the function xxf sin)(   at 10 equally spaced points in the interval ],0[  . It then computes 
approximations to the function value associated with a particular point and checks the result. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m; 
  double x[NMAX], y[NMAX], dy[NMAX], vw[5*NMAX]; 
  double p, h, v, f, eps, exact, pi; 
 
  /* initialize data */ 
  n = NMAX; 
  m = n; 
  p = 0; 
  pi = 2*asin(1); 
  h = pi/(n-1); 
  /* set function and derivative values */ 
  for (i=0;i<n;i++) { 
    x[i] = p+i*h; 
    y[i] = sin(x[i]); 
    dy[i] = cos(x[i]); 
  } 
  eps = 1e-6; 
  v = pi/2; 
  exact = sin(v); 
  /* interpolate */ 
  ierr = c_dakher(x, y, dy, n, v, &m, &eps, &f, vw, &icon); 
  printf("icon = %i   f = %12.6e   m = %i   eps = %12.6e\n", icon, f, m, eps); 
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  eps = 1e-6; 
  /* check result */ 
  if (fabs((f-exact)/exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The method used is the Aitken-Hermite interpolation method. For further information consult the entry for AKHER in the 
Fortran SSL II User's Guide and [40]. 
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c_daklag 
Aitken-Lagrange interpolation. 
ierr = c_daklag(x, y, n, v, &m, &eps, &f, vw, 

&icon); 

1. Function 

Given discrete points x x xn1 2    and their corresponding function values y f xi i ( )  for i n 1, , , this 
function interpolates for a given point x v  using the Aitken-Lagrange interpolation. 

2. Arguments 

The routine is called as follows: 
ierr = c_daklag(x, y, n, v, &m, &eps, &f, vw, &icon); 

where: 
x double x[n] Input Discrete points xi . 
y double y[n] Input Function values yi . 
n int Input Number of discrete points n. 
v double Input Interpolation point v. 
m int Input Number of discrete points to be used in the interpolation ( n ) 
  Output Number of discrete points actually used.  See Comments on use. 
eps double Input Threshold value. 
  Output Absolute error of the interpolated value.  See Comments on use. 
f double Output Interpolated value. 
vw double 

vw[4*n] 

Work  

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 The interpolation point v  matched a discrete 

point xi . 
f is set to yi . 

30000 One of the following has occurred: 
 n < 1 
 m = 0 
 x xi i 1  

f is set to zero. 

3. Comments on use 

m 
1. When it is known that in the neighbourhood of x v , the original function can be well approximated by 

polynomials of degree k or less, it is natural to use interpolating polynomials of degree k or less.  In this 
case, argument m should be specified equal to k+1. 
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2. When the condition in 1 is unknown, m should be the same as argument n. 
3. It is possible that the user wants an interpolated value that is obtained by using exactly m points without 

applying the stopping criterion.  In this case, the user can specify m equal to –m. 
 
Stopping criterion 
First, lets consider the effect of the degree of interpolation on numerical behaviour.  If we let Z j  to denote the interpolated 
value obtained by using j discrete points near x v  (discrete points are selected such that the points closest to x v  are 
selected first).  The difference D j  is defined as: 

D Z Zj j j  1  

with j m 2, , , and m  is the maximum number of discrete points.  In general, as the degree of interpolation 
polynomial increases, the curve for D j  would behave similar to what is in Figure 27. 

l m j

|Dj|

 

Figure 27 The curve of D j  as degree of polynimial increases 

In Figure1, l indicates that the truncation error and the calculation error of the approximation polynomial are both at the 
same level.  Where Zl  is usually considered as the numerical optimum interpolated value. 

eps 
The following conditions are considered.  Convergence is tested, as described above, but D j  can exhibits various types of 
behaviour depending on the tabulated function, as shown in Figure 28, vacillation can occur in some cases. 

l m j

|Dj|

s  

Figure 28 Behaviour of D j  
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In this case, Zl  instead of Zs  should be used for the interpolated value.  Based on this, the interpolated value to be output 
is determined as below. 

When calculating D D Dm2 3, , , : 

 If D j  eps  with j m 2 3, , ,  then l is determined such that 

 D Dl j min  (1) 

 If D j  eps  occurs for a certain j then from then on l is determined such that 

 D Dl l 1  (2) 

and Zl , l, and D j  are output.  If (2) does not occur then l is set to m and the output are Zm , m and D j . 

If the user specifies eps as zero then Z j  corresponding to the minimum D j  is output as the interpolated value. 

4. Example program  

This program evaluates the function xxxf )sin()(   at 10 equally spaced points in the interval ]1,0[  and then uses the 
interpolation routine to estimate the function value at a certain point, then checks the result. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m; 
  double x[NMAX], y[NMAX], v, f, eps, vw[4*NMAX], h, p, exact; 
 
  /* initialize data */ 
  n = NMAX; 
  p = 0; 
  h = 1.0/n; 
  for (i=0;i<n;i++) { 
    x[i] = p; 
    y[i] = sin(p)*sqrt(p); 
    p = p + h; 
  } 
  m = n; 
  v = x[n/2] + (x[n/2+1]-x[n/2])/2; 
  eps = 1e-6; 
  exact = sin(v)*sqrt(v); 
  /* interpolate */ 
  ierr = c_daklag(x, y, n, v, &m, &eps, &f, vw, &icon); 
  printf("icon = %i   f = %12.6e   m = %i   eps = %12.6e\n", icon, f, m, eps); 
  eps = 1e-6; 
  /* check result */ 
  if (fabs((f-exact)/exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The method used is the Aitken-Lagrange interpolation method.  For further information consult the entry for AKLAG in 
the Fortran SSL II User's Guide and [89]. 
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c_dakmid 
Two-dimensional quasi-Hermite interpolation. 
ierr = c_dakmid(x, nx, y, ny, fxy, k, &isw, 

vx, &ix, vy, &iy, &f, vw, &icon); 

1. Function 

Given function values f f x yij i j ( , )  at points ( , )x yi j  where x x xnx1 2    for i nx 1, ,  and 
y y yny1 2    for j ny 1, , , an interpolated value at the point P v vx y( , )  is obtained by using the piecewise 

two-dimensional quasi-Hermite interpolating function of dually degree 3, where 
xnx xvx 1  and 

yny yvy 1 . Note 
that xn  and yn  must be greater than or equal to 3. 

2. Arguments 

The routine is called as follows: 
ierr = c_dakmid(x, nx, y, ny, fxy, k, &isw, vx, &ix, vy, &iy, &f, vw, &icon); 

where: 
x double x[nx] Input Discrete points in the x-direction xi . 
nx int Input Number of discrete points in x-direction nx . 
y double y[ny] Input Discrete points in the y-direction y j . 
ny int Input Number of discrete points in y-direction n y . 
fxy double 

fxy[nx][k] 

Input Function values f ij . 

k int Input C fixed dimension of array fxy (  ny). 
isw int Input isw = 0 on first call.  Repeated calls leave isw unchanged, as when a 

series of interpolated values are needed with the same data set. 
  Output Information on (i, j) that satisfies x v xi x i  1  and x v xj y j  1  

for repeated calls.  Set isw = 0 when starting with new data set. 
vx double Input The x-coordinate of point P v vx y( , ) . 

ix int Input The i-th element that satisfies x v xi x i  1 . Note that due to the C 
indexing, 1 iix . When v xx nx

  then ix = 2xn . 

  Output The i-th element that satisfies x v xi x i  1 .  See Comments on use. 
vy double Input The y-coordinate of point P v vx y( , ) . 
iy int Input The j-th element that satisfies 1 jyj yvy . Note that due to the C 

indexing, 1 jiy . When v yy ny
  then iy = 2yn . 

  Output The j-th element that satisfies y v yj y j  1 .  See Comments on use. 
f double Output Interpolated value. 
vw double vw[50] Work Do not alter contents when repeating calls. 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 
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Code  Meaning  Processing 
0 No error. Completed. 
10000 Either x[ix]   vx < x[ix+1] or 

y[iy]   vy < y[iy+1] is not satisfied.  
ix or iy satisfying the relationship on the left is 
searched for in the function and the processing is 
continued. 

29000 Memory allocation error. Bypassed. 
30000 One of the following has occurred: 

 vx < x[0] or vx > x[nx-1] 
 vy < y[0] or vy > y[ny-1] 
 isw has an invalid value 
also when 0isw , one of the following my 
have occurred: 
 x[i]   x[i+1] exists 
 y[j]   y[j+1] exists 
 nx < 3 or ny < 3 
 k < ny 

Bypassed. 

3. Comments on use 

General 
The interpolating function used in the function and its first order derivative are continuous in the area for (x, y) bounded 
by x x xnx1    and y y yny1   , but its second and higher order derivatives may not be.  However, this interpolating 
function has a characteristic which irregular points or planes do not appear. 

To obtain an interpolated value, derivative and integral value for a bivariate function with accuracy, function c_bifd3 
that uses an interpolation method by the spline function should be used. 

When obtaining more than one interpolated value with the same input data ( x y fi j ij, , ), the function is more effective if 
it is called with its input points continuous in the same grid area (See Example).  In this case, argument values of isw and 
vw must not be altered. 

ix and iy 
The arguments ix and iy should satisfy x[ix] vx< x[ix+1]  and y[iy] vy < y[iy+1] , respectively.  If not, 
ix or iy satisfying the relationship is searched for to continue the processing. 

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by 
one, i.e. C starts from 0 and the mathematics starts from 1. 

4. Example program 

This program evaluates the function xyxyyxf )sin(),(   at 100 points in the region ]1,0[]1,0[   and then uses the 
interpolation routine to estimate the function value at a point and then checks the result. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10 
 
MAIN__()  
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{ 
  int ierr, icon; 
  int i, j, nx, ny, k, ix, iy, isw; 
  double x[NMAX], y[NMAX], fxy[NMAX][NMAX], eps, vw[50], exact; 
  double hx, hy, px, py, vx, vy, f; 
 
  /* initialize data */ 
  nx = NMAX; 
  ny = NMAX; 
  k = NMAX; 
  isw = 0; 
  hx = 1.0/(nx-1); 
  hy = 1.0/(ny-1); 
  px = 0; 
  for (i=0;i<nx;i++) { 
    x[i] = px; 
    px = px + hx; 
  } 
  py = 0; 
  for (j=0;j<ny;j++) { 
    y[j] = py; 
    py = py + hy; 
  } 
  for (i=0;i<nx;i++) 
    for (j=0;j<ny;j++) { 
      px = x[i]; 
      py = y[j]; 
      fxy[i][j] = sin(px*py)*sqrt(px*py); 
    } 
  ix = nx/2; 
  vx = x[ix] + (x[ix+1]-x[ix])/2; 
  iy = ny/2; 
  vy = y[iy] + (y[iy+1]-y[iy])/2; 
  exact = sin(vx*vy)*sqrt(vx*vy); 
  /* interpolate */ 
  ierr = c_dakmid(x, nx, y, ny, (double*)fxy, k, &isw,  
                  vx, &ix, vy, &iy, &f, vw, &icon); 
  printf("icon = %i   f = %12.6e\n", icon, f); 
  eps = 1e-4; 
  /* check result */ 
  if (fabs((f - exact)/exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information consult the entry for AKMID in the Fortran SSL II User's Guide and [3]. 
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c_dakmin 
Quasi-Hermite interpolation coefficient calculation. 
ierr = c_dakmin(x, y, n, c, d, e, &icon); 

1. Function 

Given discrete points x x xn1 2    and their corresponding function values y f xi i ( )  for i n 1, , , this 
function obtains the quasi-Hermite interpolating polynomial of degree 3, equation (1). 

 S x y c x x d x x e x xi i i i i i i( ) ( ) ( ) ( )      2 3  (1) 

In (1), x x xi i  1  for i n 1 2 1, , ,  with n  3 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dakmin(x, y, n, c, d, e, &icon); 

where: 
x double x[n] Input Discrete points xi . 
y double y[n] Input Function values yi . 
n int Input Number of discrete points n. 
c double c[n-1] Output Coefficients of ci . 
d double d[n-1] Output Coefficients of di . 
e double e[n-1] Output Coefficients of ei . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 x[i]   x[i+1] exists 
 n < 3 

Bypassed. 

3. Comments on use 

The interpolating function obtained by this function is characterized by the absence of unnatural deviation, and thus 
produces curves close to those manually drawn.  However, the derivatives of this function in interval [ x1 , xn ] are 
continuous up to the first degree, but discontinuous above the second and higher degrees. 

If f x( ) is a quadratic polynomial and xi , for i n 1, , , are given at equal intervals, then the resultant interpolating 
function represents f x( )  itself, provided there is no calculation errors. 

If interpolation should be required outside the interval ( x x 1  or x xn ), the polynomials corresponding to i  1  or 
i n 1  in (1) may be employed but they do not yield good accuracy. 
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4. Example program 

This program interpolates the function xxxf )sin()(   at 10 equally spaced points in the interval ]1,0[ . The library 
routine is used to produce the interpolation coefficients and then the piecewise cubic function is evaluated at a point and 
this value compared with the true function value. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, k; 
  double x[NMAX], y[NMAX], c[NMAX-1], d[NMAX-1], e[NMAX-1]; 
  double f, eps, h, p, v, exact; 
 
  /* initialize data */ 
  n = NMAX; 
  p = 0; 
  h = 1.0/n; 
  for (i=0;i<n;i++) { 
    x[i] = p; 
    y[i] = sin(p)*sqrt(p); 
    p = p + h; 
  } 
  /* calculate interpolation coefficients */ 
  ierr = c_dakmin(x, y, n, c, d, e, &icon); 
  k = n/2; 
  v = x[k] + (x[k+1]-x[k])/2; 
  exact = sin(v)*sqrt(v); 
  /* calculate function value using coefficients */ 
  h = v-x[k]; 
  f = y[k] + (c[k]+(d[k]+e[k]*h)*h)*h; 
  printf("calculated = %12.6e   exact = %12.6e\n", f, exact); 
  eps = 1e-4; 
  /* check result */ 
  if (fabs((f-exact)/exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information consult the entry for AKMIN in the Fortran SSL II User's Guide and [2]. 

 



Description of the C-SSL II Routines 

112 

c_daqc8 
Integration of a function by a modified Clenshaw-Curtis rule. 
ierr = c_daqc8(a, b, fun, epsa, epsr, nmin, 

nmax, &s, &err, &n, &icon); 

1. Function 

Given a function )(xf  and constants a, b, a , and r , this routine obtains an approximation S which satisfies 

 







 

b

a
ra

b

a
dxxfdxxfS )(,max)( , (1) 

using a modified Clenshaw-Curtis. Here, a , r    0. 

2. Arguments 

The routine is called as follows: 
ierr = c_daqc8(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 

where: 
a double Input Lower limit a of the interval. 
b double Input Upper limit b of the interval. 
fun function Input User defined function to evaluate )(xf  . Its prototype is: 

double fun (double x); 
   x double Input Independent variable x. 
epsa double Input Absolute error tolerance a  (  0). See Comments on use. 
epsr double Input Relative error tolerance r  (  0). See Comments on use. 
nmin int Input Lower limit on the number of function evaluations (  0). An appropriate 

value is 15. See Comments on use. 
nmax int Input Upper limit on the number of function evaluations (nmax   nmin). An 

appropriate value is 511. Values greater than 511 are interpreted as 511. 
See Comments on use. 

s double Output Approximation S to the integral. See Comments on use. 
err double Output Estimate of the absolute error in the approximation. See Comments on 

use. 
n int Output Number of function evaluations actually performed. 
icon int Output Condition Code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 The desired accuracy cannot be obtained due to 

round-off errors. 
Stopped. s is the approximation obtained so far. 
The accuracy is the maximum attainable. 

20000 The desired accuracy has not been obtained, even 
though the number of function evaluations has 

Stopped. s is the approximation obtained so far, 
but is not accurate. 
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Code  Meaning  Processing 
reached nmax. 

30000 One of the following has occurred: 
 epsa < 0 
 epsr < 0 
 nmin < 0 
 nmax < nmin 

Bypassed. 

3. Comments on use 

General comments 
When this routine is called many times a table of constants (weights and abscissae for the integration formula) is 
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time. 

The routine works most successfully when the integrand function )(xf  is an oscillatory function. For a smooth function, 
this routine requires less function evaluations than routines c_daqn9 and c_daqe. For functions which contain 
singularity points, routine c_daqe is suitable if the singularity points are only on the end points of the integration interval, 
and routine c_daqn9  is suitable if the singularity points are between end points, or for a peak type function. 

nmin and nmax 
The number of evaluations of )(xf  actually performed is strictly controlled by the arguments nmin and nmax, 
regardless of the convergence of the integration. Therefore, 

nmin  n   nmax . 

If the solution is not reached after nmax evauations of )(xf , the routine stops with icon = 20000. If the value of nmax 
is less than 15, a default of 15 is used. 

s, epsa and epsr 
Given the two error tolerances a  and r , in arguments epra and epsr, this routine determines an approximation 
satisfying (1). When 0 r , the absolute error criterion is used, and when 0 a  the relative error criterion is used. 
When a and r  are too small in comparison with the arithmetic precision of )(xf , the effect of round-off error may 
become dominant before the maximum number of function evaluations nmax has been reached. In such a case, the 
routine stops with icon = 10000. At this time the accuracy of s has reached the attainable limit for the computer used. 

Sometimes the approximation does not converge within the maximum number of function evaluations nmax. For 
example, due to unexpected characteristics of the function )(xf . In such cases, the routine stops with icon = 20000, and 
s is the approximation obtained so far and is not accurate. 

err 
This routine always outputs an estimate of the absolute error, in argument err, together with the integral approximation 
in argument s. 

4. Example program 

As p is increased from 0.1 to 0.9, the integral of )cos()( pxxf   is calculated. 

#include <stdio.h> 
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#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
double fun(double x); /* user function prototype */ 
double p; 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, nmin, nmax; 
  double a, b, epsa, epsr, err, s; 
 
  /* initialize data */ 
  a = -1; 
  b = 1; 
  epsa = 1e-5; 
  epsr = 1e-5; 
  nmin = 15; 
  nmax = 511; 
  printf("  icon     p      s            err        n\n"); 
  for (i=1;i<10;i++) { 
    p = (double)i/10; 
    /* calculate integral */ 
    ierr = c_daqc8(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 
    printf("%6i %6.2f %12.4e %12.4e %4i\n", icon, p, s, err, n); 
  } 
  return(0); 
} 
 
/* user function */ 
double fun(double x) 
{ 
  return cos(p*x); 
} 

5. Method 

Consult the entry for AQC8 in the Fortran SSL II User's Guide and [21]. 
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c_daqe 
Integration of a function (double exponential formula). 
ierr = c_daqe(a, b, fun, epsa, epsr, nmin, 

nmax, &s, &err, &n, &icon); 

1. Function 

Given a function f x( )  and the constants aba ,, and r , this library function obtains an approximation S which satisfies: 

 







 

b
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by Takahashi-Mori’s double exponential formula. 

2. Arguments 

The routine is called as follows: 
ierr = c_daqe(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 

where: 
a double Input Lower limit of the integral. 
b double Input Upper limit of the integral. 
fun function Input Name of the user defined function to evaluate f x( ) . Its prototype is: 

double fun(double x[]); 

where: 
x double 

x[2] 
Input x[0]is the independent 

variable x. x[1] is the 
distance from the endpoint of 
the integration interval. See 
Comments on use. 

epsa double Input Absolute error tolerance a . 
epsr double Input Relative error tolerance r . 
nmin int Input Lower limit on the number of evaluations of f x( ) . A suitable value is 

20. 
nmax int Input Upper limit on the number of evaluations of f x( ) . A suitable value is 

641. Values greater than 641 are interpreted as 641. 
s double Output An approximation to the integral. See Comments on use. 
err double Output An estimate of the absolute error in the approximation of the integral. 
n int Output Number of evaluations of f x( )  actually performed. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 The desired accuracy cannot be obtained due to Processing stopped. The approximation so far is 



Description of the C-SSL II Routines 

116 

Code  Meaning  Processing 
rounding errors. given in s. The accuracy has reached the 

attainable limit. 
11000 The function value increases rapidly near the 

upper limit of the integration interval. 
Processing stopped. Can be continued with 
relaxed error tolerances. 

12000 The function value increases rapidly near the 
lower limit of the integration interval. 

13000 The function value increases rapidly near both 
limits of the integration interval. 

20000 The desired accuracy has not been reached, even 
though the number of function evaluations has 
reached nmax. 

Processing stopped. s is the approximation so far 
but is not accurate. 

21000 to 23000 The same as icon = 11000 to 13000, but the 
maximum number of function evaluations 
(nmax) has also been reached. 

25000 The abscissa table has been exhausted. Processing stopped. s is an approximation using 
the smallest step size allowed in this library 
function. 

30000 One of the following has occurred: 
 epsa 0  
 epsr  0  
 nmin  0  
 nmax nmin  

Bypassed. 

3. Comments on use 

General comments 
When this routine is called many times, a table of constants (weights and abscissas for the integration formula) are 
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time. 

This library function works most successfully when the integrand function f x( ) changes rapidly near the endpoints of the 
integration interval. Therefore, if f x( )  has algebraic or logarithmic singularities at the endpoints of the integration (only), 
this routine is highly useful. 

If the integrand contains singularities within the integration interval, the user can either split up the interval at the 
singularity points and call this library function once for each section, or use the c_daqn9 function over the whole 
interval. 

This library function does not evaluate the integrand at either endpoint. Therefore f x( )  is permitted at the 
endpoints, but not between them. 

nmin and nmax 
The number of evaluations of f x( )  actually performed is strictly controlled by the arguments nmin and nmax, 
regardless of the convergence of the integration. Therefore: 

 nmin n nmax    

If the solution is not reached after nmax evaluations of f x( ) , the routine aborts with icon = 20000 to 23000. 
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epsa and epsr 
This library function approximates s (see equation (1)), given the two error tolerances a  and r  (in the arguments 
epsa and epsr respectively). When a = 0, the relative error is used to test for convergence, and when r = 0, the 
absolute error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example, 
when a  and r are very small in comparison with the arithmetic precision in the integrand function evaluations, the 
effect of rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has 
not been reached. 

err 
err provides an estimate of the accuracy of the approximation s. Both of these arguments are set on output from the 
function, even if the computation has not converged. The user is referred to the table of condition codes for a detailed 
explanation of the different errors that may occur. 

fun 
The independent variable x is passed from the library routine to this user defined function as the first element of a 2-
element vector rather than a scalar. The second element enables the user to calculate )(xf  in the user defined function in 
an alternate way to avoid numerical cancellation, as shown below. However it is expected that the second element in the 
vector will be ignored in most cases, and x (the independent variable) can therefore be treated in the user defined function 
as a pointer to a double scalar. 

Avoiding numerical cancellation 
Consider the following integral, in which the integrand has singularities at points x = 1 and x = 3:  

 I dx
x x x


  ( ) ( )3 11 4 3 4

1

3

  

Near the end points, the function takes extremely large values, which dominate the integral, and so these values need to be 
accurately calculated. Unfortunately, the function cannot be calculated accurately at these points due to cancellation when 
calculating (3-x) and (x-1). 

However, this library function allows the user to avoid this by describing the integrand in another form using variable 
transformation. The user defined function fun may be used as follows: 

double fun(double x[]); 

where: 
x double x[2] Input x[0] is the integration variable and, 

x[1] is defined according to the integration variable as follows: 
Let AA a b min( , ) and BB a b max( , ) then, 









BBxBBAAxBB

BBAAxAAxAA
2/)(,

2/)(,
x[1]  

Therefore x[1]is the distance from the nearest endpoint, and f x( ) can be written as: 

 








0x[1]x[1]

0<x[1]x[1]

),(
),(

)(
BBf
AAf

xf   

The user can then elect to use either x[0] or x[1] to evaluate )(xf . 
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4. Example program 

This program computes an approximation to dx
xx 

1

1 )1)(1(
1 . 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
double fun(double x[]); /* user function prototype */ 
double p; 
 
MAIN__()  
{ 
  int ierr, icon; 
  int n, nmin, nmax; 
  double a, b, epsa, epsr, err, s; 
 
  /* initialize data */ 
  a = -1; 
  b = 1; 
  epsa = 1e-5; 
  epsr = 0; 
  nmin = 20; 
  nmax = 641; 
  /* calculate integral */ 
  ierr = c_daqe(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 
  printf("  icon   s            err          n\n"); 
  printf("%6i %12.4e %12.4e %4i\n", icon, s, err, n); 
  return(0); 
} 
 
/* user function */ 
double fun(double x[]) 
{ 
  double p, res; 
  p = (1+x[0])*(1-x[0]); 
  res = 0; 
  if (p > 0)  
    res = 1.0/sqrt(p); 
  return(res); 
} 

5. Method 

For further information on Takahashi-Mori’s method, and the computational techniques used in this function, consult the 
entry for AQE in the Fortran SSL II User’s Guide and also [109]. 
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c_daqeh 
Integration of a function over a semi-infinite interval (double exponential 
formula). 
ierr = c_daqeh(fun, epsa, epsr, nmin, nmax, 

&s, &err, &n, &icon); 

1. Function 

Given a function f x( )  and the error tolerances a and r , this library function obtains an approximation S which 
satisfies: 

 







 



00
)(,max)( dxxfdxxfS ra  (1) 

by Takahashi-Mori’s double exponential formula. 

2. Arguments 

The routine is called as follows: 
ierr = c_daqeh(fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 

where: 
fun function Input Name of the user defined function to evaluate f x( ) . Its prototype is: 

double fun(double x); 

where: 
x double Input Independent variable. 

epsa double Input Absolute error tolerance a . 
epsr double Input Relative error tolerance r . 
nmin int Input Lower limit on the number of evaluations of f x( ) . A suitable value is 

20. 
nmax int Input Upper limit on the number of evaluations of f x( ) . A suitable value is 

689. Values greater than 689 are interpreted as 689. 
s double Output An approximation to the integral. See Comments on use. 
err double Output An estimate of the absolute error in the approximation of the integral. 
n int Output Number of evaluations of f x( )  actually performed. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 The desired accuracy cannot be obtained due to 

rounding errors. 
Processing stopped. The approximation so far is 
outputted in s. The accuracy has reached the 
attainable limit. 

11000 The function value increases rapidly as x 0 . Processing stopped. Can be continued with 
relaxed error tolerances. 
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Code  Meaning  Processing 
12000 The function value does not tend to 0 quickly 

enough as x . 
Processing stopped. Can be continued with 
relaxed error tolerances. 

13000 As 11000 and 12000, but together.  
20000 The desired accuracy has not been reached, even 

though the number of function evaluations has 
reached nmax. 

Processing stopped. s is the approximation so far 
but is not accurate. 

21000 to 23000 The same as icon = 11000 to 13000, but the 
maximum number of function evaluations 
(nmax) has also been reached. 

25000 The abscissa table has been exhausted. Processing stopped. s is an approximation using 
the smallest step size allowed in this library 
function. 

30000 One of the following has occurred: 
 epsa 0  
 epsr  0  
 nmin  0  
 nmax nmin  

Bypassed. 

3. Comments on use 

General comments 
When this routine is called many times, a table of constants (weights and abscissas for the integration formula) is 
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time. 

This library function works most successfully when the integrand function f x( ) converges slowly to zero as x , or 
when Gauss-Laguerre’s rule cannot be applied to the integrand. If the integrand severely oscillates an accurate integral 
value may not be obtained. 

This library function does not evaluate the integrand x  0 . Therefore f x( )    is permitted as x  0 . If this 
occurs however, values of f x( ) will be required for small values of x (i.e. close to zero), and so fun must be able to deal 
with overflows if a high degree of accuracy is required. 

nmin and nmax 
The number of evaluations of f x( )  actually performed is strictly controlled by the arguments nmin and nmax, 
regardless of the convergence of the integration. Therefore: 

 nmin n nmax    

If the solution is not reached after nmax evaluations of f x( ) , the routine aborts with icon = 20000 to 23000. 

epsa and epsr 
This library function approximates S (see equation (1)), given the two error tolerances a  and r  (in the arguments epsa 
and epsr respectively). When a = 0, the relative error is used to test for convergence, and when r = 0, the absolute 
error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example, when 

a  and r are very small in comparison with the arithmetic precision in the integrand function evaluations, the effect of 
rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has not been 
reached. 
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err 
err provides an estimate of the accuracy of the approximation s. Both of these arguments are set on output from the 
function, even if the computation has not converged. The user is referred to the table of condition codes for a detailed 
explanation of the different errors that may occur. 

4. Example program 

This program computes an approximation to dxxe x
 

0
)sin( . 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
double fun(double x); /* user function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  int n, nmin, nmax; 
  double epsa, epsr, err, s; 
 
  /* initialize data */ 
  epsa = 1e-5; 
  epsr = 0; 
  nmin = 20; 
  nmax = 689; 
  /* calculate integral */ 
  ierr = c_daqeh(fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 
  printf("  icon   s            err          n\n"); 
  printf("%6i %12.4e %12.4e %4i\n", icon, s, err, n); 
  return(0); 
} 
 
/* user function */ 
double fun(double x) 
{ 
  double res; 
  if (x > 176) 
    res = 0; 
  else 
    res = exp(-x)*sin(x); 
  return(res); 
} 

5. Method 

This function, when compared to c_daqe uses a transformation on the integration variable as follows: 

 ))sinh(exp()( 2
3 ttx    

and to the weight function )(t : 

 ))sinh(exp()cosh()( 2
3

2
3 ttt   

For further information on Takahashi-Mori’s method, and the computational techniques used, consult the entry for AQE in 
the Fortran SSL II User’s Guide. 
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c_daqei 
Integration of a function over an infinite interval (double exponential 
formula). 
ierr = c_daqei(fun, epsa, epsr, nmin, nmax, 

&s, &err, &n, &icon); 

1. Function 

Given a function f x( ) and the error tolerances a and r , this library function obtains an approximation S which 
satisfies: 

 







 








dxxfdxxfS ra )(,max)(  (1) 

by Takahashi-Mori’s double exponential formula. 

2. Arguments 

The routine is called as follows: 
ierr = c_daqei(fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 

where: 
fun function Input Name of the user defined function to evaluate f x( ) . Its prototype is: 

double fun(double x); 

where: 
x double Input Independent variable.  

epsa double Input Absolute error tolerance a . 
epsr double Input Relative error tolerance r . 
nmin int Input Lower limit on the number of evaluations of f x( ) . A suitable value is 

20. 
nmax int Input Upper limit on the number of evaluations of f x( ) . A suitable value is 

645. Values greater than 645 are interpreted as 645. 
s double Output An approximation to the integral. See Comments on use. 
err double Output An estimate of the absolute error in the approximation of the integral. 
n int Output Number of evaluation of f x( )  actually performed. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 The desired accuracy cannot be obtained due to 

rounding errors. 
Processing stopped. The approximation so far is 
given in s. The accuracy has reached the 
attainable limit. 

11000 The function value does not tend to 0 quickly 
enough as x   . 

Processing stopped. Can be continued with 
relaxed error tolerances. 
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Code  Meaning  Processing 
12000 The function value does not tend to 0 quickly 

enough as x . 
 

13000 The function value does not tend to 0 quickly 
enough as x   . 

20000 The desired accuracy has not been reached, even 
though the number of function evaluations has 
reached nmax. 

Processing stopped. s is the approximation so far 
but is not accurate. 

21000 to 23000 The same as icon = 11000 to 13000, but the 
maximum number of function evaluations 
(nmax) has also been reached. 

25000 The abscissa table has been exhausted. Processing stopped. s is an approximation using 
the smallest step size allowed in this library 
function. 

30000 One of the following has occurred: 
 epsa 0  
 epsr  0  
 nmin  0  
 nmax nmin  

Bypassed. 

3. Comments on use 

General comments 
When this routine is called many times, a table of constants (weights and abscissas for the integration formula) is 
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time. 

This library function works successfully even when the integrand function f x( ) converges slowly to zero as x   , 
and when Gauss-Hermite’s rule cannot be applied to the integrand. If f x( )  has a high peak around x  0  or is 
oscillatory, then the integral value obtained may be inaccurate. 

As the library function requires values of f x( )  at large values of x, fun must be able to deal with overflows and 
underflows if a high degree of accuracy is required. 

nmin and nmax 
The number of evaluations of f x( )  actually performed is strictly controlled by the arguments nmin and nmax, 
regardless of the convergence of the integration. Therefore: 

 nmin n nmax    

If the solution is not reached after nmax evaluations of f x( ) , the routine aborts with icon = 20000 to 23000. 

If nmax is specified to be too small, the library function increases it to a suitable value, determined by the behaviour of 
f x( ) . 

epsa and epsr 
This library function approximates S (see equation (1)), given the two error tolerances a  and r  (in the arguments epsa 
and epsr respectively). When a = 0, the relative error is used to test for convergence, and when r = 0, the absolute 
error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example, when 
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a  and r are very small in comparison with the arithmetic precision in the integrand function evaluations, the effect of 
rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has not been 
reached. 

err 
err provides an estimate of the accuracy of the approximation s. Both of these arguments are set on output from the 
function, even if the computation has not converged. The user is referred to the table of condition codes for a detailed 
explanation of the different errors that may occur. 

4. Example program 

This program computes an approximation to dx
x



   2210
1 . 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
double fun(double x); /* user function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  int n, nmin, nmax; 
  double epsa, epsr, err, s; 
 
  /* initialize data */ 
  epsa = 1e-3; 
  epsr = 0; 
  nmin = 20; 
  nmax = 645; 
  /* calculate integral */ 
  ierr = c_daqei(fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 
  printf("  icon   s            err          n\n"); 
  printf("%6i %12.4e %12.4e %4i\n", icon, s, err, n); 
  return(0); 
} 
 
/* user function */ 
double fun(double x) 
{ 
  double res; 
  if (fabs(x) > 1e35) 
    res = 0; 
  else if (fabs(x) < 1e-35) 
    res = 100; 
  else  
    res = 1/(1e-2+x*x); 
  return(res); 
} 

5. Method 

This function, when compared to c_daqe uses a transformation on the integration variable as follows: 

 ))sinh(sinh()( 2
3 ttx    

and to the weight function )(t : 

 ))sinh(cosh()cosh()( 2
3

2
3 ttt   

For further information on Takahashi-Mori’s method, and the computational techniques used, consult the entry for AQE in 
the Fortran SSL II User’s Guide. 
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c_daqmc8 
Multiple integration of a function (modified Clenshaw-Curtis integration 
rule). 
ierr = c_daqmc8(m, lsub, fun, epsa, epsr, 

nmin, nmax, &s, &err, &n, &icon); 

1. Function 

A multiple integration of dimension m where 31  m  is defined here by: 
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where the limits of integration are given by: 
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This library function obtains an approximation S such that: 

 ),max( IIS ra   (3) 

for the error tolerances a  (absolute) and r  (relative) using a modified Clenshaw-Curtis rule applied to each dimension. 

2. Arguments 

The routine is called as follows: 
ierr = c_daqmc8(m, lsub, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 

where: 
m int Input Dimension m of the integral, where 1 3 m . 
lsub function Input The user defined function which calculates the limits of the integration 

k  and k . The prototype is as follows: 
void lsub(int k, double x[], double *a, double 

*b); 

where: 
k int Input Dimension of the integration 

variable. 1 k m   
x double 

x[m-1] 

Input Integration variables 
x x xm1 2 1, , ,   which are 
stored in x[0] to x[m-2]. 

a double Output The value of the lower limit. 
See equations (1) and (2). 
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b double Output The value of the upper limit. 
See equations (1) and (2). 

fun function Input The user defined function that evaluates the integrand f x x xm( , , , )1 2  . 
Its prototype is: 
double fun(double x[]); 

where fun returns a value of type double and the argument is: 
x double 

x[m] 

Input Integration variables 
x x xm1 2, , ,  which are stored 
in x[0] to x[m-1]. 

epsa double Input Absolute error tolerance a . 
epsr double Input Relative error tolerance r . 
nmin int Input Lower limit on the number of evaluations of the integrand. A suitable 

value is 7. 
nmax int Input Upper limit on the number of evaluations of the integrand. A suitable 

value is 511. Values greater than 511 are interpreted as 511. 
s double Output An approximation to the integral. See Comments on use. 
err double Output An estimate of the absolute error in the approximation of the integral. 
n int Output Number of evaluations of the integrand actually performed. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed 
100, 1000, 
1100, 10000 
10100, 11000 
11100 

When integrating in the direction of a certain co-
ordinate axis, the required accuracy could not be 
obtained due to round off errors. A ‘1’ in the ‘ten-
thousands’ digit indicates that the problem 
occurred when integrating along the x1 axis, a ‘1’ 
in the ‘thousands’ digit indicates the x2 axis, and 
a ‘1’ in the ‘hundreds’ digit indicates the x3 axis. 

When icon = 100, 1000 or 1100, the accuracy of 
the solution has either reached the limit of the 
arithmetic precision, or has satisfied the required 
accuracy (check err). When icon = 10000 to 
11100, the accuracy of the solution has reached 
the limit of the arithmetic precision. 

200, 2000 
2200, 20000 
20200, 22000 
22200 

When integrating in a certain direction, the 
number of evaluations of the integrand reached 
nmax, and the requested accuracy in this 
direction could not be obtained. Again the 
positions of the ‘2’s in the icon value indicate 
the different directions, with ‘ten-thousands’, 
‘thousands’ and ‘hundreds’ representing 
directions x x1 2,  and x3  respectively. 

When icon = 200, 2000 or 2200, the accuracy 
of the approximation may or may not have 
achieved the required accuracy (check err). 
When icon = 20000 to 22200, the 
approximation is inaccurate. 

300 to 23300 Both problems discussed above (i.e. icon = 100 
to 11100, and icon = 200 to 22200) occur 
concurrently. As above, the different digits 
indicate the different directions of integration. 

The approximation may or may not have 
achieved the required accuracy (check err). See 
Comments on use. 

30000 One of the following has occurred: 
 epsa 0  
 epsr  0  
 nmin  0  

Bypassed. 
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Code  Meaning  Processing 
 nmax nmin  
 m 0  or m 4  

3. Comments on use 

General comments 
When c_daqmc8 is called many times, a table of constants (weights and abscissas for the integration formula) is 
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time. 
c_daqmc8 is useful for both smooth and oscillatory integrand functions. 

nmin and nmax 
The number of evaluations of the integrand function actually performed is controlled by the arguments nmin and nmax. 
Therefore, for each dimension of the integration i = 1,2,...,m: 

 nmaxnnmin  i   

If the solution is not reached after nmax evaluations, the library function aborts with icon = 200 to 22200, with the 
position of the ‘2’ indicating the direction of integration which caused the error, i.e. the x x1 2,  and x3  directions being 
represented by the 10000, 1000 and 100 positions respectively. 

When nmax is specified as less than 7, it is taken to be 7. 

epsa and epsr 
This library function approximates s (see equation (3)), given the two error tolerances a  and r  (in the arguments 
epsa and epsr respectively). When a = 0 the relative error is used to test for convergence, and when r = 0, the 
absolute error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example, 
when a  and r are very small in comparison with the arithmetic precision in the integrand function evaluations, the 
effect of rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has 
not been reached. If this occurs, the library function aborts with icon = 100 to 11100, with the position of the ‘1’ 
indicating the direction of integration which caused the error, i.e. the x x1 2,  and x3  directions being represented by the 
10000, 1000 and 100 positions respectively. 

In general, when icon returns a value of 100, 1000, or 1100, the overall accuracy of the approximation s may still satisfy 
the required accuracy. The value of err should therefore be checked. 

err 
err provides an estimate of the accuracy of the approximation s. Both of these arguments are set on output from the 
function, even if the computation has not converged (unless illegal arguments were passed to the library function). 

icon 
When integrating in the directions of the x2  and x3 , if both rounding errors occur and nmax is reached, the library 
function returns icon = 300, 3000 or 3300 as specified in the table of condition codes. However, when integrating in the 
direction of x1 , c_daqmc8 behaves differently, terminating processing after the first of the 2 errors occur. This means 
that condition codes with a ‘3’ in the ‘ten-thousands’ digit, due to these 2 errors occurring together are impossible. 
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4. Example program 

This program computes an approximation to: 

 dxdydz
pzpypx 

3

3

2

2

1

1 )cos()cos()cos(
1   

with p varying from 1 to 3 in increments of 1. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
/* function prototypes */ 
void lsub(int k, double x[], double *a, double *b); 
double fun(double x[]); 
 
double p; 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, m, n, nmin, nmax; 
  double epsa, epsr, err, s; 
 
  /* initialize data */ 
  epsa = 1e-5; 
  epsr = 1e-5; 
  nmin = 7; 
  nmax = 511; 
  m = 3; 
  printf("p    icon    s            err          n\n"); 
  for (i=1;i<4;i++) { 
    p = (double)i; 
    /* calculate integral */ 
    ierr = c_daqmc8(m, lsub, fun, epsa, epsr, 
                    nmin, nmax, &s, &err, &n, &icon); 
    printf("%3.0f %6i %12.4e %12.4e   %4i\n", p, icon, s, err, n); 
  } 
  return(0); 
} 
 
/* limits function */ 
void lsub(int k, double x[], double *a, double *b) 
{ 
  switch (k) { 
  case(1): 
    *a = -1; 
    *b = 1; 
    break; 
  case(2): 
    *a = -2; 
    *b = 2; 
    break; 
  case(3): 
    *a = -3; 
    *b = 3; 
    break; 
  } 
} 
 
/* user function */ 
double fun(double x[]) 
{ 
  double res; 
  res = 1/(cos(p*x[0])*cos(p*x[1])*cos(p*x[2])+2); 
  return(res); 
} 

5. Method 

For further information on the Clenshaw-Curtis rule, and the computational techniques used in this library function, 
consult the entries for AQMC8 and AQC8 in the Fortran SSL II User’s Guide. 
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c_daqme 
Multiple integration of a function by double exponential formula. 
ierr = c_daqme(m, intv, lsub, fun, epsa, epsr, 

nmin, nmax, &s, &err, &n, &isf, 

&icon); 

1. Function 

This routine obtains an approximation S to a multiple integral of dimension m (1 )3 m  defined by 
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Generally the lower and upper limits of integration are as follows: 
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where a and b are constants. The region of integration ],[ kk   for kx , may be finite, semi infinite ),0[   or infinite 
),(  . 

The approximation S is calculated using the Takahashi-Mori double exponential formula repeatedly and satisfies  

  ||,max|| IIS ra   (1) 

for given a  (  0) and r  (  0). 

2. Arguments 

The routine is called as follows: 
ierr = c_daqme(m, intv, lsub, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &isf, 

&icon); 

where: 
m int Input Dimension m of the integral. 
intv int intv[m] Input Information indicating the type of interval of integration for each 

variable. intv[k] indicates the type of integration interval for 1kx  as 
follows: 
intv[k] = 1 for a finite interval 
intv[k] = 2 for a semi-infinite interval 
intv[k] = 3 for an infinite interval 

For example, for   
  


0 0

2

0
123321 ),,( dxdxdxxxxfI , 

intv[0] = 2, intv[1] = 1, intv[2] = 1. 
lsub function Input User defined function to evaluate the lower limit k  and upper limit 
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k . Its prototype is: 
void lsub (int k, double x[], double *a, 

           double *b); 
   k int Input Index k of integration variable 

mk 1 . 
   x double 

x[m-1] 

Input Integration variables  
x[k-1] = kx , k = 1,2,...,m-1. 

   a double Output Lower limit ),...,,( 121  kk xxx . 
   b double Output Upper limit ),...,,( 121  kk xxx  
   If the interval ],[ kk   is either ),0[   or ),(   it is not necessary 

to define values of a and b for the corresponding k. 
fun function Input User defined function to evaluate )...,,( ,21 mxxxf  . Its prototype is: 

double fun (double x[]); 
   x double 

x[m] 

Input Integration variables  
x[k-1] = kx , k=1,2,...,m. 

   See Comments on use. 
epsa double Input Absolute error tolerance a  (  0). See Comments on use. 
epsr double Input Relative error tolerance r  (  0). See Comments on use. 
nmin int Input Lower limit (  0) on the number of evaluations of the integrand 

function when integrating in each integration variable. An appropriate 
value is 20. See Comments on use. 

nmax int Input Upper limit (  0) on the number of evaluations of the integrand function 
when integrating in each integration variable. An appropriate value is 
705. If the value exceeds 705, then 705 is assumed. See Comments on 
use. 

s double Output Approximation S to the integral. See Comments on use. 
err double Output Estimate of the absolute error in approximation s. See Comments on use.
n int Output Total number of integrand evaluations actually performed. 
isf int Output Information about the behaviour of the integrand when the value of 

icon is in the 25000’s. isf is a 3-digit positive integer in decimal. 
Representing isf by 
           isf = 321 10100 jjj  , 

1j , 2j , and 3j  indicate the behaviour of the integrand function in the 
direction of axis 1x , 2x , and 3x  respectively. Each ij  assumes the 
value 1, 2, 3 or 0 as explained below: 

   isf = 1 The function increases rapidly near the lower limit of 
integration, or if the interval is infinite, the function tends to 
zero very slowly as ix . 

   isf = 2 The function increases rapidly near the upper limit of 
integration, or if the interval is semi-infinite or infinite, the 
function tends to zero very slowly as ix . 

   isf = 3 The events indicated in 1 and 2 above occur concurrently. 
   isf = 0 None of the events indicated in 1, 2, and 3 above occurs. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 
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Code  Meaning  Processing 
0 No error. Completed. 
10001 to 10077 When integrating in the direction of axis 3x  and 

2x , the required accuracy has not been obtained 
in the direction of the axis, as indicated by the 
lower two digits of the code. The last of these two 
digits indicates the direction of axis 3x , and the 
other digit indicates the direction of axis 2x . Each 
digit assumes a value from 0 to 7 (there is no case 
when both are zero.). The digits have the 
following meanings: 
1 – the required accuracy in the direction of the 
axis cannot be obtained due to the round-off error.
2 – the required accuracy in the direction of the 
axis cannot be obtained even if the number of 
integrand evaluations in the direction of the axis 
reaches the upper limit nmax. 
3 – the events indicated in 1 and 2 above occur 
concurrently. 
4 – the required accuracy in the direction of the 
axis cannot be obtained even if integrating by the 
minimum step-size defined in the routine. 
5 – the events indicated in 1 and 4 above occur 
concurrently. 
6 – the events indicated in 2 and 4 above occur 
concurrently. 
7 – the events indicated in 1, 2 and 4 above occur 
concurrently. 
0 - none of the events indicated above occur. 

s is the approximation obtained and err is an 
estimate of the absolute error in s. The required 
accuracy may be satisfied. 

10100 to 10177 When integrating in the direction of axis 1x , the 
required accuracy cannot be obtained due to the 
round-off error. The lower two digits indicate the 
same as those in codes 10001 to 10077. 

s is the approximation obtained and err is an 
estimate of the absolute error in s. 
The accuracy is the maximum attainable. 

20200 to 20277 When integrating in the direction of axis 1x , the 
required accuracy cannot be obtained even 
though the number of integrand evaluations in the 
direction of the axis has reached the upper limit 
nmax. The lower two digits indicate the same as 
those in codes 10001 to 10077. 

s is the approximation obtained and err is an 
estimate of the absolute error in s. The required 
accuracy may not have been reached. If nmax is 
increased (up to nmax = 750), the accuracy may 
be improved. 

20400 to 20477 When integrating in the direction of axis 1x , the 
required accuracy was not obtained even using 
the minimum step size defined in the routine. The 
lower two digits indicate the same as those in 
codes 10001 to 10077. 

s is the approximation obtained and err is an 
estimate of the absolute error in s. 

25000 to 25477 When integrating in the direction of one of the 
axes, the value of the function rapidly increases 

Continued after relaxing the required accuracy. 
The obtained approximation is output in s, and 
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Code  Meaning  Processing 
near the lower limit or upper limit of the 
integration interval, or when the integration 
interval is semi-finite or infinite, the integrand 
function slowly converges to zero as the 
integration variable tends to infinity. With the 
middle digit of the code indicating the direction of 
axis 1x , the lower three digits mean the same as 
in codes 10001 to 10077. 

err is an estimate of the absolute error in s. 
Even when the integral does not exist 
theoretically, this range of code may be returned. 
Refer to argument isf for information on the 
behaviour of the integrand. 

30000 One of the following has occurred: 
 epsa < 0 
 epsr < 0 
 nmin < 0 
 nmax < nmin 
 m   0 or m   4 
 Some value other than 1, 2, or 3 is input for 

an element of intv. 

Bypassed. 

3. Comments on use 

General comments 
When this routine is called many times a table of constants (weights and abscissae for the integration formula) is 
calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time. 

This routine usually works successfully even when the integrand function changes rapidly in the neighbourhood of the 
boundary of the integration region. The routine is recommended when algebraic or logorithmic singularities are located on 
the boundary. If the integrand is smooth or oscillatory and the region of integration is finite, routine c_daqmc8 should be 
used. 

This routine usually works successfully when the integrand function converges to zero rather slowly as x . 
However, if the function is extremely oscillatory in the region, high accuracy may not be attained. 

The routine does not evaluate the integrand function on the boundary, therefore it is possible for the function to be infinite 
on the boundaries. However, singularities must not be contained within the region. 

fun 
When the integration interval in the direction of an axis (say the i-th axis) is infinite, function values for large || ix are 
required, therefore if the desired accuracy is high, the function fun needs to avoid overflows or underflows. 

nmin and nmax 
This routine limits the number of evaluations in , of the integrand function in the direction of each coordinate axis ix , 
such that 

 nmaxnmin  in .  

This means that the integrand function is evaluated at least nmin times in the direction of each axis, but no more than 
nmax times in each direction, regardless of the result of the convergence test. When the approximation does not converge 
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within nmax evaluations, this information is output to the last, second last, or third last digit of the argument icon, 
corresponding to the axis 3x , 2x , 1x  respectively. 

When an extremely small value of nmax is given, for example nmax = 2, nmax is increased automatically to a value 
which is determined by the behaviour of the integrand function. 

s, epsa and epsr 
Given the two error tolerances a  and r , in arguments epra and epsr respectively, this routine determines an 
approximation satisfying (1). When 0 r , the absolute error criterion is used, and when 0 a  the relative error 
criterion is used. When a and r  are too small in comparison with the arithmetic precision of the function evaluation, 
the effect of round-off error may become dominant before the maximum number of function evaluations nmax has been 
reached. Depending upon the axis, this information is output to the last, second last, or third last digits of argument icon. 

Generally speaking, even when the effect of round-off error on the integration is large in the direction of 2x  or 3x , the 
required accuracy may still be obtained, and the error estimate err should be checked. 

As mentioned in the comments on nmin and nmax, sometimes the approximation does not converge within nmax 
evaluations, and this information is output to icon. If this occurs in the direction of axis 2x  or 3x , the obtained integral 
approximation may still satisfy the required accuracy, and the error estimate err should be checked. 

In addition, the approximation may not converge even though the smallest step-size defined in the routine is used. 
Although this information is output to icon, if this event occurs when integrating in the direction of 2x  or 3x , the 
required accuracy may still be obtained, and the error estimate err should be checked. 

err 
This routine always outputs an estimate of the absolute error, in argument err, together with the integral approximation 
in argument s. 

4. Example program 

The integral I is calculated in the following program. I is given by: 
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#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
/* function prototypes */ 
void lsub(int k, double x[], double *a, double *b); 
double fun(double x[]); 
 
MAIN__()  
{ 
  int ierr, icon; 
  int m, n, nmin, nmax, intv[3], isf; 
  double epsa, epsr, err, s; 
 
  /* initialize data */ 
  epsa = 1e-3; 
  epsr = 1e-3; 
  nmin = 20; 
  nmax = 705; 
  m = 3; 
  intv[0] = 2; 
  intv[1] = 1; 
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  intv[2] = 1; 
  /* calculate integral */ 
  ierr = c_daqme(m, intv, lsub, fun, epsa, epsr, 
    nmin, nmax, &s, &err, &n, &isf, &icon); 
  printf("icon = %i s = %12.4e err = %12.4e isf = %i  n = %i\n", 
  icon, s, err, isf, n); 
  return(0); 
} 
 
/* limits function */ 
void lsub(int k, double x[], double *a, double *b) 
{ 
  *a = 0;  
  switch (k) { 
  case(1): 
    break; 
  case(2): 
    *b = x[0]; 
    break; 
  case(3): 
    *b = 1-x[1]; 
    break; 
  } 
} 
 
/* user function */ 
double fun(double x[]) 
{ 
  double y; 
  y = x[1]+x[2]; 
  if (y < 1e-70) return 0; 
  if (x[0] > 174) return 0; 
  y = x[0]*sqrt(y); 
  if (y < 1e-70) return 0; 
  return exp(-x[0])/y; 
} 

5. Method 

Consult the entry for AQME in the Fortran SSL II User's Guide. 
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c_daqn9 
Integration of a function (adaptive Newton-Cotes 9 point rule). 
ierr = c_daqn9(a, b, fun, epsa, epsr, nmin, 

nmax, &s, &err, &n, &icon); 

1. Function 

Given a function f x( )  and the constants aba ,,  and r  this subroutine obtains an approximation S that satisfies the 
following: 
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by the adaptive Newton-Cotes 9 point rule. 

2. Arguments 

The routine is called as follows: 
ierr = c_daqn9(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 

where: 
a double Input Lower limit a of the integral. 
b double Input Upper limit b of the integral. 
fun function Input User defined function that evaluates f x( ) . Its prototype is: 

double fun(double x); 

where: 
x double Input Independent variable. 

epsa double Input The absolute error tolerance a . 
epsr double Input The relative error tolerance r . 
nmin int Input Lower limit on the number of function evaluations, where 

0 150 nmin . A suitable value is 21. 
nmax int Input Upper limit on the number of function evaluations. A suitable value is 

2000. nmax > nmin + 8. 
s double Output Approximation to the integral. 
err double Output An estimate of the absolute error in the approximation. 
n int Output Number of function evaluations actually performed. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 to 13111 Irregular points such as singular points are found. 

The last 4 digits have the following meanings: 
The ‘thousands’ digit can contain a ‘1’, ‘2’, or ‘3’ 
which signify: 

Processing completed. For logarithmic and 
discontinuity points only, s will probably satisfy 
the desired accuracy. 
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Code  Meaning  Processing 
‘1’ Algebraic singularities have been found. 
‘2’ Cauchy’s singularities have been found. 
‘3’ Both algebraic and Cauchy’s singularities 
found. 
A ‘1’ in the ‘hundreds’ digit signifies that 
logarithmic singularities have been found. 
A ‘1’ in the ‘tens’ digit signifies that discontinuity 
points are present. 
A ‘1’ in the ‘units’ digit signifies that other 
irregular points were found. 

20000 to 23111 The desired accuracy has not been attained 
although the upper limit on the number of 
integrand evaluations nmax has been reached. 
The last 4 digits have the same meanings as 
above. 

Processing stops. s is the approximation attained 
so far, but is not accurate. 

30000 One of the following has occurred: 
 epsa<0. 
 epsr<0. 
 nmin<0. 
 nmin  150. 
 nmax nmin+8. 

Bypassed. 

3. Comments on use 

General Comments 
This routine may be used for a broad class of functions, and can successfully handle integrands that have peaks or 
irregular points (such as algebraic singularities, logarithmic singularities, or discontinuities), which can be accessed in the 
manner of bisection (such as the end points, midpoint and quartered points). Consequently, this routine should be tried 
first on integrands of this type, and also for integrands whose properties are not well known. To improve the accuracy of 
the solution, the limits of integration should be changed so that any irregular points only occur at the endpoints of the 
integration. 

It should be noted that c_daqmc8 is better suited (and more efficient) than c_daqn9 to oscillatory and smooth 
functions, and c_daqe is better suited to functions which only have singularities at the endpoints of the integration. 

If the value of f x( )    at a certain point within the integration interval, then the value of f x( ) at that point should 
be replaced by a finite value, e.g. 0. 

nmin and nmax 
The number of evaluations of the integrand function actually performed is strictly controlled by the arguments nmin and 
nmax, regardless of the convergance of the integral. 

 nmaxnnmin    

If an accurate solution is not reached after nmax evaluations, the library function aborts with icon = 20000 to 21111. See 
the table of condition codes for details. 
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 When the value of nmax is less than 21 the default value of 21 is used. 

Accuracy and err 
This routine approximates S (see equation (1)), given the two error tolerances a  and r  (in the arguments epsa and 
epsr respectively). When a = 0 the relative error is used to test for convergence, and when r = 0 the absolute error is 
used. Decreasing the size of these arguments means that this routine needs to perform a larger number of evaluations of 
f x( )  to attain the required accuracy, which may then possibly exceed nmax, causing an error with a condition code 

between 20000 and 23111. The argument err gives an estimate of the absolute error in the solution s. 

4. Example program 

This program computes an approximation to dxpxx p ))sin((
1

0
   with p varying from 0.1 to 0.9 in increments of 0.1. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
double fun(double x); /* user function prototype */ 
double p; 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, nmin, nmax; 
  double a, b, epsa, epsr, err, s; 
 
  /* initialize data */ 
  a = 0; 
  b = 1; 
  epsa = 1e-4; 
  epsr = 1e-4; 
  nmin = 21; 
  nmax = 2000; 
  printf("p    icon    s            err          n\n"); 
  for (i=1;i<10;i++) { 
    p = (double)i/10; 
    /* calculate integral */ 
    ierr = c_daqn9(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon); 
    printf("%3.1f %6i %12.4e %12.4e %4i\n", p, icon, s, err, n); 
  } 
  return(0); 
} 
 
/* user function */ 
double fun(double x) 
{ 
  double res; 
  res = 0; 
  if (x > 0)  
    res = pow(x,-p) + sin(p*x); 
  return(res); 
} 

5. Method 

For further information on adaptive integration using the Newton-Cotes 9 point rule consult the entry for AQN9 in the 
Fortran SSL II User’s Guide and also [76]. 
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c_dassm 
Addition of two matrices (symmetric + symmetric). 
ierr = c_dassm(a, b, c, n, &icon); 

1. Function 

This routine performs addition of two nn  symmetric matrices, A and B. 

 BAC   (1) 

In (1), the resultant matrix C is also an nn matrix (n 1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dassm(a, b, c, n, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage 

formats in the Introduction section for details. .2/)1(  nnAlen  
b double b[Blen] Input Matrix B. Stored in symmetric storage format. See Array storage formats 

in the Introduction section for details. .2/)1(  nnBlen  
c double c[Clen] Input Matrix C. Stored in symmetric storage format. See Array storage 

formats in the Introduction section for details. .2/)1(  nnClen  See 
Comments on use. 

n int Input The order n of matrices A, B and C. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 n < 1 Bypassed. 

3. Comments on use 

Efficient use of memory 
Storing the solution matrix C in the same memory area as matrix A (or B) is permitted if the array contents of matrix A (or 
B) can be discarded after computation. To take advantage of this efficient reuse of memory, the array arguments associated 
with matrix A (or B) need to appear in the locations reserved for matrix C in the function argument list, as indicated below. 

For A: 

ierr = c_dassm(a, b, a, n, &icon); 

For B: 

ierr = c_dassm(a, b, b, n, &icon); 
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Note, if both matrices A and B are required after the solution then a separate array must be supplied for storing C. 

4. Example program 

This program adds two symmetric matrices together and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij; 
  double eps, err; 
  double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], c[NMAX*(NMAX+1)/2]; 
 
  /* initialize matrices*/ 
  n = NMAX; 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      a[ij] = i-j+1; 
      b[ij++] = n-i+j-1; 
    } 
  /* add matrices */ 
  ierr = c_dassm(a, b, c, n, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dassm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check matrix */ 
  eps = 1e-6; 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      err = fabs((c[ij++]-n)/n); 
      if (err > eps) { 
        printf("WARNING: result inaccurate\n"); 
        exit(1); 
      } 
    } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_dasvd1 
Singular value decomposition of a real matrix (Householder and QR 
methods). 
ierr = c_dasvd1(a, ka, m, n, isw, sig, u, ku, 

v, kv, vw, &icon); 

1. Function 

This function performs singular value decomposition of an m  n real matrix A using the Householder and QR methods. 

 A U V  T  (1) 

In (1), U and V are matrices of m  l and n  l respectively, l = min (m, n). 

When l = n (m  n), 

U U V V VV IT T T   n  

else l = m (m < n), 

U U UU V V IT T T   m  

The variable   is an l  l diagonal matrix expressed by   diag( i i), 0  and  i  is a singular value of A .  
Singular values  i  are the positive square root of the eigenvalues of matrix A AT  and the i-th row of V is the 
eigenvector corresponding to the eigenvalue  i  )1,1(  nm . 

For dimensions of matrices A U V, , , , see Figure 29 
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Figure 29 Relationship of matrix dimensions 

2. Arguments 

The routine is called as follows: 
ierr = c_dasvd1((double*)a, ka, m, n, isw, sig, (double*)u, ku, (double*)v, 

kv, vw, &icon); 

where: 



 c_dasvd1 

 141 

a double 

a[m][ka] 

Input Matrix A.  See Comments on use. 

ka int Input C fixed dimension of array a ( n). 
m int Input The number of rows m in matrix A. 
n int Input The number of columns n in matrix A. 
isw int Input Control information. 

isw = 10d1 + d0 with d0 and d1 are either 0 or 1, specified as follows: 
d1 0 not to obtain matrix U. 

1 to obtain matrix U. 
d0 0 not to obtain matrix V. 

1 to obtain matrix V. 
sig double 

sig[Slen] 
Output Singular values of matrix A with Slen = l+1.  See Comments on use. 

u double 

u[m][ku] 

Output Matrix U.  See Comments on use. 

ku int Input C fixed dimension of array u ( n). 
v double 

v[n][kv] 

Output Matrix V.  See Comments on use. 

kv int Input C fixed dimension of array v ( min(m+1, n)). 
vw double 

vw[n+1] 

Work  

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
15000 Some singular values cannot be obtained. Stopped. 
29000 Memory allocation error. Bypassed. 
30000 One of the following has occurred: 

 m < 1 
 n < 1 
 ka < n 
 ku < n 
 kv < min(m+1, n) 
 isw  0, 1, 10 or 11 

Bypassed. 

3. Comments on use 

Matrix inverse or least squares 
If users use the decomposition factors, U,  and V, from singular value decomposition, for obtaining generalized matrix 
inverse or least squares minimal norm solution of linear equations.  They can do so but overall computation will not be as 
efficient compares to using function c_dginv and c_dlaxlm, respectively. 

Matrices U and V – u, v & isw 
Although the singular value decomposition can be widely utilized, it requires a great amount of computation.  Therefore, 
U and V are only computed when required.  The argument isw control such requests. 
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The function allows rewriting of either U or V on array a to reduce storage space.  Only when A does not have to be 
saved else separate arrays are needed. 

sig 
All singular values are non-negative and stored in descending order.  When icon=15000, the unobtainable singular 
values are set to –1 and the values are not arranged in any order. 

Matrix A – a 
In this function, there are no constraints on the number of columns m or rows n for matrix A, i.e. this function can perform 
singular value decomposition when m is less than, equal to, or greater than n. 

4. Example program 

This program defines a matrix A, performs a single value decomposition, and displays the singular values and 
eigenvectors. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define MMAX 7 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int m, n, i, j, ka, ku, kv, isw; 
  double a[MMAX][NMAX], sig[NMAX], u[MMAX][NMAX], v[NMAX][NMAX], vw[NMAX]; 
 
  /* initialize system */ 
  m = MMAX; 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=i;j<n;j++) { 
      a[i][j] = n-j; 
      a[j][i] = n-j; 
    } 
  for (i=n;i<m;i++) 
    for (j=0;j<n;j++) { 
      a[i][j] = 0; 
      if (i%n == j) a[i][j] = 1; 
    } 
  ka = NMAX; 
  ku = NMAX; 
  kv = NMAX; 
  isw = 11; 
  /* singular value decomposition */ 
  ierr = c_dasvd1((double*)a, ka, m, n, isw, sig,  
                  (double*)u, ku, (double*)v, kv, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dasvd1 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print singular values and eigenvectors */ 
  for (i=0;i<n;i++) { 
    printf("singular value: %10.4f\n", sig[i]); 
    printf("e-vector:"); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ",v[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 
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5. Method 

The Householder and QR methods are used for the singular value decomposition.  For further information consult the 
entry for ASVD1 in the Fortran SSL II User’s Guide and [41]. 
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c_dbi0 
Modified zero-order Bessel function of the first kind I x0 ( ) . 
ierr = c_dbi0(x, &bi, &icon); 

1. Function 

This function computes the modified zero-order Bessel function of the first kind 
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by polynomial approximations and the asymptotic expansion. 

2. Arguments 

The routine is called as follows: 
ierr = c_dbi0(x, &bi, &icon); 

where: 
x double Input Independent variable x. 
bi double Output Function value I x0 ( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  log( )maxfl  bi is set to flmax . 

3. Comments on use 

x 
The range of values of x is limited to avoid numerical overflow of e x  in the computations. The  table of condition codes 
shows these limits. For details on the constant, flmax , see the Machine constants section of the Introduction. 

4. Example program 

This program evaluates a table of function values for x from 0 to 100 in increments of 1. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, bi; 
  int i; 
 
  for (i=0;i<=100;i++) { 
    x = (double)i; 
    /* calculate Bessel function */ 
    ierr = c_dbi0(x, &bi, &icon); 
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    if (icon == 0) 
      printf("x = %4.2f   bi = %e\n", x, bi); 
    else 
      printf("ERROR: x = %4.2f   bi = %e   icon = %i\n", x, bi, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the modified zero-order Bessel function of the first kind, 
I x0 ( ) , is: 

 Power series expansion using polynomial approximations when 0 8 x . 
 Asymptotic expansion when 8  x fllog( )max . 
 
For further information consult the entry for BI0 in the Fortran SSL II User's Guide. 
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c_dbi1 
Modified first-order Bessel function of the first kind I x1 ( ) . 
ierr = c_dbi1(x, &bi, &icon); 

1. Function 

This function computes the modified first-order Bessel function of the first kind 
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by polynomial approximations and the asymptotic expansion. 

2. Arguments 

The routine is called as follows: 
ierr = c_dbi1(x, &bi, &icon); 

where: 
x double Input Independent variable x. 
bi double Output Function value I x1( ) . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 )log( maxflx  or )log( maxflx . bi is set to flmax  or maxfl  respectively.. 

3. Comments on use 

x 
The range of values of x is limited to avoid numerical overflow of e x  in the computations. The  table of condition codes 
shows these limits. For details on the constant, flmax , see the Machine constants section of the Introduction. 

4. Example program 

This program evaluates a table of function values for x from 0 to 100 in increments of 1. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, bi; 
  int i; 
 
  for (i=0;i<=100;i++) { 
    x = (double)i; 
    /* calculate Bessel function */ 
    ierr = c_dbi1(x, &bi, &icon); 
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    if (icon == 0) 
      printf("x = %4.2f   bi = %e\n", x, bi); 
    else 
      printf("ERROR: x = %4.2f   bi = %e   icon = %i\n", x, bi, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the modified zero-order Bessel function of the first kind, 
I x1 ( ) , is: 

 Power series expansion using polynomial approximations when 0 8 x . 
 Asymptotic expansion when 8  x fllog( )max . 
 
For further information consult the entry for BI1 in the Fortran SSL II User's Guide. 
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c_dbic1 
B-spline interpolation coefficient calculation (I). 
ierr = c_dbic1(x, y, dy, n, m, c, vw, &icon); 

1. Function 

Given function values )( ii xfy  for ni ,...,1  at discrete points nxxx  ...21  and derivative values 
)( 1

)()(
1 xfy    and )()()(

nn xfy    for 2/)1(,...,1  m , this routine obtains the interpolation coefficients jc , 
1,...,2,1  nmmj , of the interpolating spline )(xS  of degree m represented as a linear combination of B-splines 

(1). 
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Here m is an odd integer and is the degree of the B-spline )(1, xN mj  , with 3m  and 2n . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbic1(x, y, (double*)dy, n, m, c, vw, &icon); 

where: 
x double x[n] Input Discrete points ix . 
y double y[n] Input Function values iy . 
dy double  

dy[(m-1)/2][2] 

Input Derivative values at end points 1x and nx . 
dy[ 1 ][0] = )(

1
y , dy[ 1 ][1] = )(

ny ,   =1,2,...,(m-1)/2.  

n int Input Number of discrete points n. 
m int Input Degree m of the B-spline. See Comments on use. 
c double  

c[n+m-1] 

Output Interpolating coefficients jc . 

vw double 

vw[Vwlen] 
Work )1(2/)1()2( 2  mmmnVwlen . 

icon int Output Condition code. See below. 
The complete list of condition codes is: 
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Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m is not an odd integer 
 x[i]   x[i+1] for some i 
 m < 3 
 n < 2 

Bypassed. 

3. Comments on use 

Relationship with c_dbif1 
The interpolated value, derivative value, or integral value based on the interpolating B-spline (1) may be determined by 
the c_dbif1 routine. In which case, the values of arguments x, n, m, and c are input to the c_dbif1 routine. 

m 
The preferred degree m is 3 or 5. However,  if the original function is smooth and the iy ’s are given with high accuracy, 
the degree may be increased above 3 or 5 but not beyond 15. 

4. Example program 

This program interpolates the function 3)( xxf   at 10 equally spaced points in the interval ]1,0[  with a B-spline. It then 
computes approximations to the function value as well as an integral and several derivatives associated with a particular 
point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, isw; 
  double x[N], y[N], c[N+M-1], dy[1][2], vw[36]; 
  double p, h, v, f; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  p = 0; 
  h = 1.0/(n-1); 
  /* set function values */ 
  for (i=0;i<n;i++) { 
    x[i] = p+i*h; 
    y[i] = x[i]*x[i]*x[i]; 
  } 
  /* set derivative values at end-points */ 
  dy[0][0] = 3*x[0]*x[0]; 
  dy[0][1] = 3*x[n-1]*x[n-1]; 
 
  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbic1(x, y, (double*)dy, n, m, c, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dbic1 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  i = 4; 
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  v = 0.5; 
  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbif1(x, n, m, c, isw, v, &i, &f, vw, &icon); 
    if (icon >= 20000) { 
      printf("ERROR: c_dbif1 failed with icon = %d\n", icon); 
      exit(1); 
    } 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
} 

5. Method 

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using 
an LU decomposition method the coefficients are obtained. For further information consult the entry for BIC1 in the 
Fortran SSL II User's Guide. 
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c_dbic2 
B-spline interpolation coefficient calculation (II). 
ierr = c_dbic2(x, y, dy, n, m, c, vw, &icon); 

1. Function 

Given function values )( ii xfy  for ni ,...,1  at discrete points nxxx  ...21  and derivative values 
)( 1

)()(
1 xfy    and )()()(

nn xfy    for 1,...,12/)1(,2/)1(  mmm , this routine obtains the interpolation 
coefficients jc , 1,...,2,1  nmmj , of the interpolating spline )(xS  of degree m represented as a linear 
combination of B-splines (1). 
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Here m is an odd integer and is the degree of the B-spline )(1, xN mj  , with 3m  and 2/)1(  mn . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbic2 (x, y, (double*)dy, n, m, c, vw, &icon); 

where: 
x double x[n] Input Discrete points ix . 
y double y[n] Input Function values iy . 
dy double  

dy[(m-1)/2][2] 

Input Derivative values at end points 1x and nx . 
dy[ -(m+1)/2][0] = )(

1
y , dy[ -(m+1)/2][1] = )(

ny , 
1,...,12/)1(,2/)1(  mmm . 

n int Input Number of discrete points n. 
m int Input Degree m of the B-spline. See Comments on use. 
c double  

c[n+m-1] 

Output Interpolating coefficients jc . 

vw double 

vw[Vwlen] 
Work )1(2)3(  mmnmVwlen . 

icon int Output Condition code. See below. 
The complete list of condition codes is: 



Description of the C-SSL II Routines 

152 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m is not an odd integer 
 x[i]   x[i+1] for some i 
 m < 3 
 n < (m+1)/2 

Bypassed. 

3. Comments on use 

Relationship with c_dbif2 
The interpolated value, derivative value, or integral value based on the interpolating B-spline (1) may be determined by 
the c_dbif2 routine. In which case, the values of arguments x, n, m, and c are input to the c_dbif2 routine. 

m 
The preferred degree m is 3 or 5. However, if the original function is smooth and the iy ’s are given with high accuracy, 
the degree may be increased above 3 or 5 but not beyond 15. 

4. Example program 

This program interpolates the function 3)( xxf   at 10 equally spaced points in the interval ]1,0[  with a B-spline. It then 
computes approximations to the function value as well as an integral and several derivatives associated with a particular 
point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, isw; 
  double x[N], y[N], c[N+M-1], dy[1][2], vw[38]; 
  double p, h, v, f; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  p = 0; 
  h = 1.0/(n-1); 
  /* set function values */ 
  for (i=0;i<n;i++) { 
    x[i] = p+i*h; 
    y[i] = x[i]*x[i]*x[i]; 
  } 
  /* set derivative values at end-points */ 
  dy[0][0] = 3*x[0]*x[0]; 
  dy[0][1] = 3*x[n-1]*x[n-1]; 
  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbic2(x, y, (double*)dy, n, m, c, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dbic2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  i = 4; 
  v = 0.5; 
  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbif2(x, n, m, c, isw, v, &i, &f, vw, &icon); 
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    if (icon >= 20000) { 
      printf("ERROR: c_dbif2 failed with icon = %d\n", icon); 
      exit(1); 
    } 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
} 

5. Method 

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using 
an LU decomposition method the coefficients are obtained. For further information consult the entry for BIC2 in the 
Fortran SSL II User's Guide. 
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c_dbic3 
B-spline interpolation coefficient calculation (III). 
ierr = c_dbic3(x, y, n, m, c, xt, vw, &icon); 

1. Function 

Given discrete points x x xn1 2    and their corresponding function values y f xi i ( )  for i n 1, , , this 
function obtains the interpolating spline S x( )  of degree m represented as a linear combination of B-splines (1). 
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Here, m is an odd integer greater than 2 and n m  2 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbic3(x, y, n, m, c, xt, vw, &icon); 

where: 
x double x[n] Input Discrete points xi . 
y double y[n] Input Function values yi . 
n int Input Number of discrete points n. 
m int Input Degree m of the B-spline.  See Comments on use. 
c double c[n] Output Interpolating coefficients c j . 
xt double 

xt[n-m+1] 

Output The knots i . 

vw double 

vw[m*n+2] 

Work  

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m is not an odd number 
 n < m + 2 
 x[i]   x[i+1] exists 
 m < 3 

Bypassed. 
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3. Comments on use 

Relationship with c_dbif3 
The interpolated values or derivative or integrals based on the interpolating spline (1) may be determined by calling the 
function c_dbif3 after this function.  In that case, the values of arguments x, n, m, c and xt are input to the c_dbif3 
function. 

m 
The preferred degree m is 3 or 5.  However, if the original function is smooth and yi ’s are given with high accuracy, the 
degree may be increased above 3 or 5 but not beyond 15. 

4. Example program 

This program interpolates the function xxxf )sin()(   at 10 equally spaced points in the interval ]1,0[  with a cubic B-
spline. It then computes approximations to the function value as well as an integral and several derivatives associated with 
a particular point. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, isw; 
  double x[N], y[N], c[N], xt[N-M+1], vw[M*N+2]; 
  double p, h, v, f; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  isw = 0; 
  p = 0; 
  h = 1.0/n; 
  for (i=0;i<n;i++) { 
    x[i] = p; 
    y[i] = sin(p)*sqrt(p); 
    p = p + h; 
  } 
  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbic3(x, y, n, m, c, xt, vw, &icon); 
  i = n/2; 
  v = x[i] + (x[i+1]-x[i])/2; 
  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbif3(x, n, m, c, xt, isw, v, &i, &f, vw, &icon); 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
} 

5. Method 

The interpolating condition for the B-spline derives a system of equations for its coefficients, by solving this system using 
a LU decomposition method the coefficients are obtained.  For further information consult the entry for BIC3 in the 
Fortran SSL II User's Guide. 



Description of the C-SSL II Routines 

156 

c_dbic4 
B-spline interpolation coefficient calculation (IV). 
ierr = c_dbic4 (x, y, n, m, c, vw, &icon); 

1. Function 

Given periodic function values )( ii xfy  for ni ,...,1 , with nyy 1 , and period )( 1xxn  , at discrete points 

nxxx  ...21 , this routine obtains the interpolation coefficients jc , 1,...,2,1  nmmj , of the interpolating 
spline )(xS  of degree m represented as a linear combination of B-splines (1). 
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Here m is an odd integer and is the degree of the B-spline )(1, xN mj  , with 3m  and 2 mn . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbic4 (x, y, n, m, c, vw, &icon); 

where: 
x double x[n] Input Discrete points ix . 
y double y[n] Input Function values iy , with nyy 1 .If nyy 1 , then 1y  is set to ny . 
n int Input Number of discrete points n. 
m int Input Degree m of the B-spline. See Comments on use. 
c double  

c[n+m-1] 

Output Interpolating coefficients jc . 

vw double 

vw[Vwlen] 
Work 1)12)(1(  mmnVwlen . 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m is not an odd integer 
 x[i]   x[i+1] for some i 
 m < 3 
 n < m+2 

Bypassed. 
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3. Comments on use 

Relationship with c_dbif4 
The interpolated value, derivative value, or integral value based on the interpolating B-spline (1) may be determined by 
the c_dbif4 routine. In which case, the values of arguments x, n, m, and c are input to the c_dbif4 routine. 

m 
The preferred degree m is 3 or 5. However,  if the original function is smooth and the iy ’s are given with high accuracy, 
the degree may be increased above 3 or 5 but not beyond 15. 

4. Example program 

This program interpolates the function xxf sin)(   at 10 equally spaced points in the interval ]2,0[   with a B-spline. It 
then computes approximations to the function value as well as an integral and several derivatives associated with a 
particular point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, isw; 
  double x[N], y[N], c[N+M-1], vw[49]; 
  double p, h, v, f, pi; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  p = 0; 
  pi = 2*asin(1); 
  h = 2*pi/(n-1); 
  /* set function values */ 
  for (i=0;i<n;i++) { 
    x[i] = p+i*h; 
    y[i] = sin(x[i]); 
  } 
  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbic4(x, y, n, m, c, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dbic4 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  i = 4; 
  v = pi; 
  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbif4(x, n, m, c, isw, v, &i, &f, vw, &icon); 
    if (icon >= 20000) { 
      printf("ERROR: c_dbif4 failed with icon = %d\n", icon); 
      exit(1); 
    } 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
} 
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5. Method 

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using 
an LU decomposition method the coefficients are obtained. For further information consult the entry for BIC4 in the 
Fortran SSL II User's Guide. 
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c_dbicd1 
Two-dimensional B-spline interpolation coefficient calculation (I-I). 
ierr = c_dbicd1(x, nx, y, ny, fxy, k, m, c, 

vw, &icon); 

1. Function 

Given function values ),( jiij yxff   at points ),( ji yx  for xni ,...,1  and ynj ,...,1 , where 
xnxxx  ...21  

and 
ynyyy  ...21  on the xy-plane, and partial derivatives ),(

,


jif , xni ,1 , ynj ,1 , 2/)1(,...,2,1  m ,  

2/)1(,...,2,1  m  at the boundary points, this routine obtains the coefficients ,c of the m-th degree two-
dimensional B-spline interpolation function (1). 
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Here, m is an odd integer with 3m , 2xn , and 2yn . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbicd1(x, nx, y, ny, (double*)fxy, k, m, (double*)c, vw, &icon) 

where: 
x double x[nx] Input Discrete points in the x-direction ix . 
nx int Input Number of discrete points in x-direction xn . 
y double y[ny] Input Discrete points in the y-direction jy . 
ny int Input Number of discrete points in y-direction yn . 
fxy double 

fxy[Fxylen][k] 
Input Function values and partial derivatives jif ,

ˆ . 1 mnFxylen x . 
See Comments on use. 

k int Input C fixed dimension of arrays fxy and c (  ny + m –1). 
m int Input Degree m of B-spline. See Comments on use. 
c double 

c[Clen][k] 
Output Interpolating coefficients ,c . 1 mnClen x . 

vw double vw[Vwlen] Work 2/)1(3)2)(1),(max( 2 mmnnVwlen yx . 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m is not an odd integer 
 x[i] x[i+1]exists 
 y[i] y[i+1]exists 
 m < 3 

Bypassed. 
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Code  Meaning  Processing 
 nx < 2 or ny < 2 

3. Comments on use 

fxy 
Array fxy contains function values and partial derivatives, jif ,

ˆ , as shown below with 2/)1(  m , 

 )1,1(
1,1,

ˆ ji
ji ff    1,...,2,1  i ;  1,...,2,1  j ; 

 )1,0(
1,,

ˆ j
iji ff 
 
  1,...,3,2  xni  ;  1,...,2,1  j ; 

 )1,(
1,,

ˆ jni
nji

x

x
ff    xxx nnni   2,...,1, ;  1,...,2,1  j ; 

 )0,1(
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ˆ i
jji ff 
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  jiji ff ,,
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y

nj
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 1,...,3,2  xni  ;  yyy nnnj   2,...,1, ; 

 ),(
,,
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yx

njni
nnji ff    

xxx nnni   2,...,1, ;  yyy nnnj   2,...,1, . 

 
The matrix with jif ,

ˆ  as elements has the following form: 
 
 1j  1 j 2 j  1 ynj  ynj    ynj  2

1i  
Function value and partial 

derivatives at ),( 11 yx  
Function value and partial 
derivatives at ),( 1 jyx  

Function value and partial 
derivatives at ),( 1 ynyx  

1 i  
2 i  

Function value and partial 
derivatives at ),( 1yxi   

Function value at ),(   ji yx  

where 12  xni   
and 12  ynj   

Function value and partial 
derivatives at ),(

yni yx   
1 xni   

xni    
Function value and partial 
derivatives at ),( 1yx

xn  
Function value and partial 
derivatives at ),( jn yx

x
 

Function value and partial 
derivatives at ),(

yx nn yx  
xni  2  

 
 
Relationship with c_dbifd1 
By calling the routine c_dbifd1 after this routine, the interpolated values based on the B-spline interpolating function 
(1), as well as derivatives and/or integrals, can be obtained. The values of the arguments x, nx, y, ny, k, m and c are 
input to c_dbifd1. 
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m 
The preferred degree m is 3 or 5. However, if the original function is smooth and the ),(

,


jif  are given with high 
accuracy, the degree may be increased above 3 or 5 but not beyond 15. 

4. Example program 

This program interpolates the function 33),( yxyxf   at 100 points in the region ]1,0[]1,0[   with a spline. It then 
computes approximations to the function value as well as an integral and several partial derivatives associated with a 
particular point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
/* function prototype for initializer */ 
void gen(double x[], double y[], int n, double fxy[][N+M-1]); 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, j, nx, ny, m, k, ix, iy, iswx, iswy; 
  double x[N], y[N], fxy[N+M-1][N+M-1], c[N+M-1][N+M-1]; 
  double vw[60]; 
  double hx, hy, px, py, vx, vy, f; 
 
  /* initialize data */ 
  nx = N; 
  ny = N; 
  m = M; 
  k = N+M-1; 
  hx = 1.0/(nx-1); 
  hy = 1.0/(ny-1); 
  px = 0; 
  for (i=0;i<nx;i++) { 
    x[i] = px+i*hx; 
  } 
  py = 0; 
  for (j=0;j<ny;j++) { 
    y[j] = py+j*hy; 
  } 
  /* generate function and derivative values in fxy */ 
  gen(x, y, nx, fxy); 
 
  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbicd1(x, nx, y, ny, (double*)fxy, k,  
                  m, (double*)c, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dbicd1 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  ix = 4; 
  vx = 0.5; 
  iy = 4; 
  vy = 0.5; 
  for (iswx=-1;iswx<=m;iswx++) { 
    iswy = iswx; 
    /* calculate value at point */ 
    ierr = c_dbifd1(x, nx, y, ny, m, (double*)c, k, 
                    iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon); 
    if (icon >= 20000) { 
      printf("ERROR: c_dbifd1 failed with icon = %d\n", icon); 
      exit(1); 
    } 
    if (iswx == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (iswx == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, iswx, f); 
  } 
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  return(0); 
} 
 
/* generate function and derivative values for f=x^3y^3 */ 
void gen(double x[], double y[], int n, double fxy[][N+M-1]) 
{ 
  double y1, yn, x1, xn, fx, fy; 
  int i, j; 
 
  /* corner points; df/dxdy values */ 
  fxy[0][0] = 9*x[0]*x[0]*y[0]*y[0]; 
  fxy[n+1][0] = 9*x[n-1]*x[n-1]*y[0]*y[0]; 
  fxy[0][n+1] = 9*x[0]*x[0]*y[n-1]*y[n-1]; 
  fxy[n+1][n+1] = 9*x[n-1]*x[n-1]*y[n-1]*y[n-1]; 
 
  /* partial derivatives on edges: df/dx, df/dy */ 
  y1 = y[0]*y[0]*3; 
  yn = y[n-1]*y[n-1]*3; 
  x1 = x[0]*x[0]*3; 
  xn = x[n-1]*x[n-1]*3; 
 
  /* edges; fx.df/dy or fy.df/dx */ 
  for (i=0;i<n;i++) { 
    fx = x[i]*x[i]*x[i]; 
    fy = y[i]*y[i]*y[i]; 
    fxy[i+1][0] = y1*fx; 
    fxy[0][i+1] = x1*fy; 
    fxy[n+1][i+1] = xn*fy; 
    fxy[i+1][n+1] = yn*fx; 
  } 
 
  /* central area; function values */ 
  for (i=0;i<n;i++) { 
    fx = x[i]*x[i]*x[i]; 
    for (j=0;j<n;j++) { 
      fxy[i+1][j+1] = fx*y[j]*y[j]*y[j]; 
    } 
  } 
  return; 
} 

5. Method 

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using 
an LU decomposition  method the coefficients are obtained. For further information consult the entry for BICD1 in the 
Fortran SSL II User's Guide. 
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c_dbicd3 
B-spline two-dimensional interpolation coefficient calculation (III-III). 
ierr = c_dbicd3(x, nx, y, ny, fxy, k, m, c, 

xt, vw, &icon); 

1. Function 

Given function values f f x yij i j ( , )  at points ( , )x yi j  where x x xnx1 2    for i nx 1, ,  and 

y y yny1 2    for j ny 1, , , on the xy-plane, this function obtains the coefficients c ,  of the dual degree 

m B-spline two-dimensional interpolation function (1). 
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Here, m is an odd integer with m  3, n mx   2  and n my   2 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbicd3(x, nx, y, ny, (double*)fxy, k, m, (double*)c, xt, vw, &icon); 

where: 
x double x[nx] Input Discrete points in the x-direction xi . 
nx int Input Number of discrete points in x-direction nx . 
y double y[ny] Input Discrete points in the y-direction y j . 
ny int Input Number of discrete points in y-direction ny . 
fxy double 

fxy[nx][k] 

Input Function values f ij . 

k int Input C fixed dimension of array fxy (  ny). 
m int Input Degree m of the B-spline.  See Comments on use. 
c double 

c[nx][k] 

Output Interpolating coefficients c , . 

xt double 

xt[Xtlen] 
Output The knots i  and  j  in x and y directions, respectively. 

Xtlen = (nx-m+1)+(ny-m+1). 
vw double Work Vwlen = (max(nx, ny)-2)*m + 2*(m+1)+2*max(nx, ny) 
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vw[Vwlen] 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
29000 Memory allocation error. Bypassed. 
30000 One of the following has occurred: 

 m is not an odd number 
 nx < m + 2 or ny < m + 2 
 x[i]   x[i+1] exists 
 y[j]   y[j+1] exists 
 m < 3 

Bypassed. 

3. Comments on use 

Relationship with c_dbifd3 
By calling the function c_dbifd3 after this function, the interpolated values based on the B-spline interpolating function 
(1), as well as derivatives and/or integrals can be obtained.  The argument values of x, nx, y, ny, k, m, c and xt are input 
to c_dbifd3. 

m 
The preferred degree m is 3 or 5.  However, if the original function is smooth and f ij ’s are given with high accuracy, the 
degree may be increased above 3 or 5 but not beyond 15. 

4. Example program 

This program interpolates the function xyxyyxf )sin(),(   at 100 points in the region ]1,0[]1,0[   with a bi-cubic 
spline. It then computes approximations to the function value as well as an integral and several partial derivatives 
associated with a particular point. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, j, nx, ny, m, k, ix, iy, iswx, iswy; 
  double x[N], y[N], fxy[N][N], c[N][N], xt[2*(N-M+1)]; 
  double vw[(N-2)*M+2*(M+1)+2*N]; 
  double hx, hy, px, py, vx, vy, f; 
 
  /* initialize data */ 
  nx = N; 
  ny = N; 
  m = M; 
  hx = 1.0/(nx-1); 
  hy = 1.0/(ny-1); 
  px = 0; 
  for (i=0;i<nx;i++) { 
    x[i] = px; 
    px = px + hx; 
  } 
  py = 0; 
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  for (j=0;j<ny;j++) { 
    y[j] = py; 
    py = py + hy; 
  } 
  for (i=0;i<nx;i++) 
    for (j=0;j<ny;j++) { 
      px = x[i]; 
      py = y[j]; 
      fxy[i][j] = sin(px*py)*sqrt(px*py); 
    } 
  k = N; 
  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbicd3(x, nx, y, ny, (double*)fxy, k,  
                  m, (double*)c, xt, vw, &icon); 
  ix = nx/2; 
  vx = x[ix] + (x[ix+1]-x[ix])/2; 
  iy = ny/2; 
  vy = y[iy] + (y[iy+1]-y[iy])/2; 
  for (iswx=-1;iswx<m;iswx++) { 
    iswy = iswx; 
    /* calculate value at point */ 
    ierr = c_dbifd3(x, nx, y, ny, m, (double*)c, k, xt,  
                    iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon); 
    if (iswx == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (iswx == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, iswx, f); 
  } 
  return(0); 
} 

5. Method 

The interpolating condition for the B-spline derives a system of equations for its coefficients, by solving this system using 
a LU decomposition method the coefficients are obtained. 

For further information consult the entry for BICD3 in the Fortran SSL II User's Guide. 
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c_dbif1 
B-spline interpolation, differentiation and integration (I). 
ierr = c_dbif1(x, n, m, c, isw, v, &i, &f, vw, 

&icon); 

1. Function 

Given function values )( ii xfy  for ni ,...,1  at discrete points nxxx  ...21  and derivative values 
)( 1

)()(
1 xfy    and )()()(

nn xfy    for 2/)1(,...,1  m , this routine obtains the interpolated value or the 
derivative value at x , or the integral over the interval 1x to  , where nxx 1 . 

Before using this routine, it is necessary that a sequence of interpolating coefficients jc , 1,...,2,1  nmmj , of the 
B-spline interpolation (1) be computed by the c_dbic1 routine. 

 





1

1
1, )()(

n

mj
mjj xNcxS  (1) 

where m is an odd integer and is the degree of the B-spline )(1, xN mj  , with 3m  and 2n . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbif1(x, n, m, c, isw, v, &i, &f, vw, &icon); 

where: 
x double x[n] Input Discrete points ix . 
n int Input Number of discrete points n. 
m int Input Degree m of the B-spline. 
c double  

c[n+m-1] 

Input Interpolating coefficients jc  (output from c_dbic1). 

isw int Input Type of calculation. 
    0 Interpolated value, )( SF . 
     Derivative of order  , )()(  SF , with m1 . 
   -1 Integral value, 

v

x
dxxSF

1

)( . 

v double Input Interpolation point  . 
i int Input Value of i such that x[i]   v < x[i+1]. 

If nx then i = 2n . 
  Output Value of i such that x[i]   v < x[i+1]. See Comments on use. 
f double Output Interpolated value, or derivative of order  , or integral value, depending 

on isw. See isw. 
vw double 

vw[m+1] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is: 
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Code  Meaning  Processing 
0 No error. Completed. 
10000 x[i]   v < x[i+1] is not satisfied. An i satisfying the condition is sought to 

continue processing. 
30000 One of the following has occurred: 

 v < x[0] or v > x[n-1] 
 isw < -1 or isw > m 
 

Bypassed. 

3. Comments on use 

Relationship with c_dbic1 
This routine obtains the interpolated value, derivative value, or integral value based on B-spline interpolating functions 
determined by the c_dbic1 routine. Therefore, c_dbic1 must be called to obtain the coefficients of the interpolating 
function (1) before calling this routine to compute the required value. Arguments x, n, m, and c must be passed directly 
from c_dbic1. 

i 
Argument i should satisfy the condition x[i]   v < x[i+1]. If not, an i satisfying this condition is sought by the 
routine to continue processing. 

Note that the indexing of the standard mathematical  notation and the corresponding array location in C differs by one, i.e. 
the mathematics starts from 1 and C starts from 0. 

4. Example program 

This program interpolates the function 3)( xxf   at 10 equally spaced points in the interval ]1,0[  with a B-spline. It then 
computes approximations to the function value as well as an integral and several derivatives associated with a particular 
point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, isw; 
  double x[N], y[N], c[N+M-1], dy[1][2], vw[36]; 
  double p, h, v, f; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  p = 0; 
  h = 1.0/(n-1); 
  /* set function values */ 
  for (i=0;i<n;i++) { 
    x[i] = p+i*h; 
    y[i] = x[i]*x[i]*x[i]; 
  } 
  /* set derivative values at end-points */ 
  dy[0][0] = 3*x[0]*x[0]; 
  dy[0][1] = 3*x[n-1]*x[n-1]; 
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  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbic1(x, y, (double*)dy, n, m, c, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dbic1 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  i = 4; 
  v = 0.5; 
  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbif1(x, n, m, c, isw, v, &i, &f, vw, &icon); 
    if (icon >= 20000) { 
      printf("ERROR: c_dbif1 failed with icon = %d\n", icon); 
      exit(1); 
    } 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for BIF1 in the Fortran SSL II User's Guide. 
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c_dbif2 
B-spline interpolation, differentiation and integration (II). 
ierr = c_dbif2 (x, n, m, c, isw, v, &i, &f, 

vw, &icon); 

1. Function 

Given function values )( ii xfy  for ni ,...,1  at discrete points nxxx  ...21  and derivative values 
)( 1

)()(
1 xfy    and )()()(

nn xfy    for 1,...,12/)1(,2/)1(  mmm , this routine obtains the interpolated 
value or the derivative value at x , or the integral over the interval 1x to  , where nxx 1 . 

Before using this routine, it is necessary that a sequence of interpolating coefficients jc , 1,...,2,1  nmmj , of the 
B-spline interpolation (1) be computed by the c_dbic2 routine. 

 





1

1
1, )()(

n

mj
mjj xNcxS  (1) 

where m is an odd integer and is the degree of the B-spline )(1, xN mj  , with 3m , and 2/)1(  mn . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbif2 (x, n, m, c, isw, v, &i, &f, vw, &icon); 

where: 
x double x[n] Input Discrete points ix . 
n int Input Number of discrete points n. 
m int Input Degree m of the B-spline. 
c double  

c[n+m-1] 

Input Interpolating coefficients jc  (output from c_dbic2). 

isw int Input Type of calculation. 
    0 Interpolated value, )( SF . 
     Derivative of order  , )()(  SF , with m1 . 
   -1 Integral value, 




1

)(
x

dxxSF . 

v double Input Interpolation point  . 
i int Input Value of i such that x[i]   v < x[i+1]. 

If nx then i = 2n . 
  Output Value of i such that x[i]   v < x[i+1].See Comments on use. 
f double Output Interpolated value, or derivative of order  , or integral value, depending 

on isw. See isw. 
vw double 

vw[m+1] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is: 
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Code  Meaning  Processing 
0 No error. Completed. 
10000 x[i]   v < x[i+1] is not satisfied. An i satisfying the condition is sought for 

processing to continue. 
30000 One of the following has occurred: 

 v < x[0] or v > x[n-1] 
 isw < -1 or isw > m 
 

Bypassed. 

3. Comments on use 

Relationship with c_dbic2 
This routine obtains the interpolated value, derivative value, or integral value based on B-spline interpolating functions 
determined by the c_dbic2 routine. Therefore, c_dbic2 must be called to obtain the coefficients of the interpolating 
function (1) before calling this routine to compute the required value. Arguments x, n, m, and c must be passed directly 
from c_dbic2. 

i 
Argument i should satisfy the condition x[i]   v < x[i+1]. If not, an i satisfying this condition is sought by the 
routine for processing to continue. 

Note that the indexing of the standard mathematical  notation and the corresponding array location in C differs by one, i.e. 
the mathematics starts from 1 and C starts from 0. 

4. Example program 

This program interpolates the function 3)( xxf   at 10 equally spaced points in the interval ]1,0[  with a B-spline. It then 
computes approximations to the function value as well as an integral and several derivatives associated with a particular 
point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, isw; 
  double x[N], y[N], c[N+M-1], dy[1][2], vw[38]; 
  double p, h, v, f; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  p = 0; 
  h = 1.0/(n-1); 
  /* set function values */ 
  for (i=0;i<n;i++) { 
    x[i] = p+i*h; 
    y[i] = x[i]*x[i]*x[i]; 
  } 
  /* set derivative values at end-points */ 
  dy[0][0] = 3*x[0]*x[0]; 
  dy[0][1] = 3*x[n-1]*x[n-1]; 
  /* calculate B-spline interpolation coefficients */ 
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  ierr = c_dbic2(x, y, (double*)dy, n, m, c, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dbic2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  i = 4; 
  v = 0.5; 
  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbif2(x, n, m, c, isw, v, &i, &f, vw, &icon); 
    if (icon >= 20000) { 
      printf("ERROR: c_dbif2 failed with icon = %d\n", icon); 
      exit(1); 
    } 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for BIF2 in the Fortran SSL II User's Guide. 
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c_dbif3 
B-spline interpolation. (III) 
ierr = c_dbif3(x, n, m, c, xt, isw, v, &i, &f, 

vw, &icon); 

1. Function 

Given function values y f xi i ( )  for i n 1, ,  at discrete points x x xn1 2   , this function obtains the 
interpolated value, derivative at x v  or integral over the interval x1  to v . 

Before using this function, it is necessary that a sequence of knots i , i n m  1 2 1, , , , and interpolating coefficients 
c j , j m m n m   1 2, , , , of the B-spline interpolation (1) be computed by the c_dbic3 function. 

 S x c N xj j m
j m

n m

( ) ( ), 
 



 1
1

 (1) 

Here, m is an odd number that denotes the degree of B-spline N xj m, ( )1 , with m  3, x v xn1    and n m  2 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbif3(x, n, m, c, xt, isw, v, &i, &f, vw, &icon); 

where: 
x double x[n] Input Discrete points xi . 
n int Input Number of discrete points n. 
m int Input Degree m of the B-spline. 
c double c[n] Input Interpolating coefficients c j  (output from c_dbic3). 
xt double 

xt[n-m+1] 

Input The knots i  (output from c_dbic3). 

isw int Input Type of calculation. 
   0 Interpolated value, F S v ( ) . 

l The derivative of order l, F S vl ( ) ( ) , with ml 1 . 

-1 Integral value, 
v

x
dxxSF

1

)( . 

v double Input Interpolation point v. 
i int Input The i-th element that satisfies 1]x[ivx[i]  . 

When v xn  then i = 2n . 
  Output The i-th element that satisfies 1]x[ivx[i]  .  See Comments 

on use. 
f double Output Interpolated value or derivative of order l or integral value, depending on 

isw.  See isw. 
vw double 

[2*m+2] 

Work  

icon int Output Condition code.  See below. 
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The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 1]x[ivx[i]   is not satisfied. An i satisfying the condition is searched for in 

the function to continue the processing. 
30000 One of the following has occurred: 

 v < x[0] or v > x[n-1] 
 isw < -1 or isw > m 

Bypassed. 

3. Comments on use 

Relationship with c_dbic3 
This function obtains interpolated value, derivative or integral based on B-spline interpolating functions determined by the 
c_dbic3 function.  Therefore, c_dbic3 must be called to obtain the interpolating function (1) before calling this 
function to compute the required value.  Arguments x, n, m, c and xt must be passed directly from c_dbic3. 

i 
Argument i should satisfy the condition 1]x[ivx[i]  . If not, an i satisfying the condition is searched for to 
continue the processing. 

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by 
one, i.e. C starts from 0 and the mathematics starts from 1. 

4. Example program 

This program interpolates the function xxxf )sin()(   at 10 equally spaced points in the interval ]1,0[  with a cubic B-
spline. It then computes approximations to the function value as well as an integral and several derivatives associated with 
a particular point. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, isw; 
  double x[N], y[N], c[N], xt[N-M+1], vw[M*N+2]; 
  double p, h, v, f; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  isw = 0; 
  p = 0; 
  h = 1.0/n; 
  for (i=0;i<n;i++) { 
    x[i] = p; 
    y[i] = sin(p)*sqrt(p); 
    p = p + h; 
  } 
  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbic3(x, y, n, m, c, xt, vw, &icon); 
  i = n/2; 
  v = x[i] + (x[i+1]-x[i])/2; 
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  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbif3(x, n, m, c, xt, isw, v, &i, &f, vw, &icon); 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
} 

5. Method 

For further information consult the entry for BIF3 in the Fortran SSL II User's Guide. 

 



 c_dbif4 

 175 

c_dbif4 
B-spline interpolation, differentiation and integration (IV). 
ierr = c_dbif4(x, n, m, c, isw, v, &i, &f, vw, 

&icon); 

1. Function 

Given periodic function values )( ii xfy   for ni ,...,1  with nyy 1 , and period )( 1xxn  , at discrete points 

nxxx  ...21 , this routine obtains the interpolated value or the derivative value at x , or the integral over the 
interval 1x to  , where nxx 1 . 

Before using this routine, it is necessary that a sequence of interpolating coefficients jc , 1,...,2,1  nmmj , of the 
B-spline interpolation (1) that satisfies the periodic condition, be computed by the c_dbic4 routine. 

 





1

1
1, )()(

n

mj
mjj xNcxS  (1) 

where m is an odd integer and is the degree of the B-spline )(1, xN mj  , with 3m  and 2 mn . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbif4 (x, n, m, c, isw, v, &i, &f, vw, &icon); 

where: 
x double x[n] Input Discrete points ix . 
n int Input Number of discrete points n. 
m int Input Degree m of the B-spline. 
c double  

c[n+m-1] 

Input Interpolating coefficients jc  (output from c_dbic4). 

isw int Input Type of calculation. 
    0 Interpolated value, )( SF . 
     Derivative of order  , )()(  SF , with m1 . 
   -1 Integral value, 




1

)(
x

dxxSF . 

v double Input Interpolation point  . 
i int Input Value of i such that x[i]   v < x[i+1]. 

If nx then i = 2n . 
  Output Value of i such that x[i]   v < x[i+1].See Comments on use. 
f double Output Interpolated value, or derivative of order  , or integral value, depending 

on isw. See isw. 
vw double 

vw[m+1] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is: 
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Code  Meaning  Processing 
0 No error. Completed. 
10000 x[i]   v < x[i+1] is not satisfied. An i satisfying the condition is sought to 

continue processing. 
30000 One of the following has occurred: 

 v < x[0] or v > x[n-1] 
 isw < -1 or isw > m 
 

Bypassed. 

3. Comments on use 

Relationship with c_dbic4 
This routine obtains the interpolated value, derivative value, or integral value based on B-spline interpolating functions 
determined by the c_dbic4 routine. Therefore, c_dbic4 must be called to obtain the coefficients of the interpolating 
function (1) before calling this routine to compute the required value. Arguments x, n, m, and c must be passed directly 
from c_dbic4. 

i 
Argument i should satisfy the condition x[i]   v < x[i+1]. If not, an i satisfying this condition is sought by the 
routine to continue processing. 

Note that the indexing of the standard mathematical  notation and the corresponding array location in C differs by one, i.e. 
the mathematics starts from 1 and C starts from 0. 

4. Example program 

This program interpolates the function xxf sin)(   at 10 equally spaced points in the interval ]2,0[   with a B-spline. It 
then computes approximations to the function value as well as an integral and several derivatives associated with a 
particular point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, isw; 
  double x[N], y[N], c[N+M-1], vw[49]; 
  double p, h, v, f, pi; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  p = 0; 
  pi = 2*asin(1); 
  h = 2*pi/(n-1); 
  /* set function values */ 
  for (i=0;i<n;i++) { 
    x[i] = p+i*h; 
    y[i] = sin(x[i]); 
  } 
  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbic4(x, y, n, m, c, vw, &icon); 
  if (icon != 0) { 
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    printf("ERROR: c_dbic4 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  i = 4; 
  v = pi; 
  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbif4(x, n, m, c, isw, v, &i, &f, vw, &icon); 
    if (icon >= 20000) { 
      printf("ERROR: c_dbif4 failed with icon = %d\n", icon); 
      exit(1); 
    } 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for BIF4 in the Fortran SSL II User's Guide. 
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c_dbifd1 
Two-dimensional B-spline interpolation, differentiation and integration 
(I-I). 
ierr = c_dbifd1(x, nx, y, ny, m, c, k, iswx, 

vx, &ix, iswy, vy, &iy, &f, vw, 

&icon); 

1. Function 

Given function values ),( jiij yxff   at points ),( ji yx  for xni ,...,1  and ynj ,...,1 , where 
xnxxx  ...21  

and 
ynyyy ...21  , on the xy-plane, and the following partial derivatives at the boundary points 
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xni ,...,2,1 ,   ynj ,...,2,1 ,   2/)1(,...,2,1  m ,   2/)1(,...,2,1  m , this routine obtains an interpolated value 
or a partial derivative at the point ),( yx vvP , or a double integral over the area [ ,1 xvxx  yvyy 1 ], where 

xnx xvx 1  and 
yny yvy 1 . Note that m is an odd integer and 3m , 2xn , 2yn . 

Before using this routine, the interpolating coefficients ,c  in the two-dimensional B-spline interpolating function 
(1) must be computed by the c_dbicd1 routine. 
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Here, m is the degree of B-spline )(1, xN m  and )(1, yN m . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbifd1(x, nx, y, ny, m, (double*)c, k, iswx, vx, &ix, iswy, vy, &iy, 

&f, vw, &icon); 

where: 
x double x[nx] Input Discrete points in the x-direction ix   
nx int Input Number of discrete points in the x-direction xn . 
y double y[ny] Input Discrete points in the y-direction jy . 
ny int Input Number of discrete points in the y-direction yn . 
m int Input Degree m of the B-spline. 
c double 

c[Clen][k] 
Input Interpolating coefficients ,c  (output from c_dbicd1). 

1 mnClen x  
k int Input C fixed dimension of array c (  ny + m - 1). 
iswx int Input Type of calculation associated with x-direction. 
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 -1   iswx  m, see argument f. 
vx double Input The x-coordinate of point ),( yx vvP . 
ix int Input Integer such that x[ix]   vx < x[ix+1]. When 

xnx xv  then      

ix = 2xn . 

  Output Integer such that x[ix]  vx < x[ix+1]. See Comments on use. 
iswy int Input Type of calculation associated with y-direction. 

-1   iswy   m, see argument f. 
vy double Input The y-coordinate of point ),( yx vvP . 
iy int Input Integer such that y[iy]   vy < y[iy+1]. When 

yny yv  then      

iy = 2yn . 

  Output Integer such that y[iy]  vy < y[iy+1]. See Comments on use. 
f double Output Interpolated value, or partial derivative, or integral value. 

By setting iswx =   and iswy = µ, one of the following is returned 
depending on the combination of   and µ: 

    when  , µ 0  
   

),( yx vvS
yx 






f  

   The interpolated value can be obtained by setting   = µ = 0. 
    when 1 , µ 0  
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vw double 

vw[Vwlen] 
Work 1),max()1(4  mnnmVwlen yx . 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Either x[ix]   vx < x[ix+1] 

 or y[iy]   vy < y[iy+1] is not satisfied. 
Either an ix or an iy satisfying the relationship 
is sought to continue processing. 

30000 One of the following has occurred: 
 vx < x[0] or vx > x[nx-1] 
 vy < y[0] or vy > y[ny-1] 
 iswx < -1 or iswx > m 
 iswy < -1 or iswy > m 

Bypassed. 
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3. Comments on use 

Relationship with c_dbicd1 
This routine obtains an interpolated value, or a partial derivative, or a double integral based on the two-dimensional B-
spline interpolating function determined by the c_dbicd1 routine. Therefore, c_dbicd1 must be called to obtain the 
interpolating function (1) before calling this routine to compute the required value. Also, arguments x, nx, y, ny, k, m, 
and c must be passed directly from c_dbicd1. 

ix and iy 
Arguments ix and iy should satisfy the relationships x[ix]   vx < x[ix+1] and y[iy]   vy < y[iy+1]. If not, 
ix and iy satisfying the relationships are sought by the routine to continue the processing. 

Note that the indexing between standard mathematical notation and the corresponding array location in C differs by one, 
i.e. the mathematics starts from 1 and C starts from 0. 

4. Example program 

This program interpolates the function 33),( yxyxf   at 100 points in the region ]1,0[]1,0[   with a spline. It then 
computes approximations to the function value as well as an integral and several partial derivatives associated with a 
particular point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
/* function prototype for initializer */ 
void gen(double x[], double y[], int n, double fxy[][N+M-1]); 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, j, nx, ny, m, k, ix, iy, iswx, iswy; 
  double x[N], y[N], fxy[N+M-1][N+M-1], c[N+M-1][N+M-1]; 
  double vw[60]; 
  double hx, hy, px, py, vx, vy, f; 
 
  /* initialize data */ 
  nx = N; 
  ny = N; 
  m = M; 
  k = N+M-1; 
  hx = 1.0/(nx-1); 
  hy = 1.0/(ny-1); 
  px = 0; 
  for (i=0;i<nx;i++) { 
    x[i] = px+i*hx; 
  } 
  py = 0; 
  for (j=0;j<ny;j++) { 
    y[j] = py+j*hy; 
  } 
  /* generate function and derivative values in fxy */ 
  gen(x, y, nx, fxy); 
 
  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbicd1(x, nx, y, ny, (double*)fxy, k,  
                  m, (double*)c, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dbicd1 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  ix = 4; 
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  vx = 0.5; 
  iy = 4; 
  vy = 0.5; 
  for (iswx=-1;iswx<=m;iswx++) { 
    iswy = iswx; 
    /* calculate value at point */ 
    ierr = c_dbifd1(x, nx, y, ny, m, (double*)c, k, 
                    iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon); 
    if (icon >= 20000) { 
      printf("ERROR: c_dbifd1 failed with icon = %d\n", icon); 
      exit(1); 
    } 
    if (iswx == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (iswx == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, iswx, f); 
  } 
  return(0); 
} 
 
/* generate function and derivative values for f=x^3y^3 */ 
void gen(double x[], double y[], int n, double fxy[][N+M-1]) 
{ 
  double y1, yn, x1, xn, fx, fy; 
  int i, j; 
 
  /* corner points; df/dxdy values */ 
  fxy[0][0] = 9*x[0]*x[0]*y[0]*y[0]; 
  fxy[n+1][0] = 9*x[n-1]*x[n-1]*y[0]*y[0]; 
  fxy[0][n+1] = 9*x[0]*x[0]*y[n-1]*y[n-1]; 
  fxy[n+1][n+1] = 9*x[n-1]*x[n-1]*y[n-1]*y[n-1]; 
 
  /* partial derivatives on edges: df/dx, df/dy */ 
  y1 = y[0]*y[0]*3; 
  yn = y[n-1]*y[n-1]*3; 
  x1 = x[0]*x[0]*3; 
  xn = x[n-1]*x[n-1]*3; 
 
  /* edges; fx.df/dy or fy.df/dx */ 
  for (i=0;i<n;i++) { 
    fx = x[i]*x[i]*x[i]; 
    fy = y[i]*y[i]*y[i]; 
    fxy[i+1][0] = y1*fx; 
    fxy[0][i+1] = x1*fy; 
    fxy[n+1][i+1] = xn*fy; 
    fxy[i+1][n+1] = yn*fx; 
  } 
 
  /* central area; function values */ 
  for (i=0;i<n;i++) { 
    fx = x[i]*x[i]*x[i]; 
    for (j=0;j<n;j++) { 
      fxy[i+1][j+1] = fx*y[j]*y[j]*y[j]; 
    } 
  } 
  return; 
} 

5. Method 

Consult the entry BIFD1 for in the Fortran SSL II User's Guide. 
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c_dbifd3 
B-spline two-dimensional interpolation (III-III). 
ierr = c_dbifd3(x, nx, y, ny, m, c, k, xt, 

iswx, vx, &ix, iswy, vy, &iy, &f, 

vw, &icon); 

1. Function 

Given function values f f x yij i j ( , )  at points ( , )x yi j  where x x xnx1 2    for i nx 1, ,  and 
y y yny1 2    for j ny 1, , , on the xy-plane, this function obtains an interpolated value or a partial derivative at 

the point P v vx y( , )  and/or a double integral over the area [ x x v x1   , y y v y1   ], where 
xnx xvx 1  and 

yny yvy 1 . Note that 2 mnx  and 2 mny , where 3m . 

Before using this function, the knots i  and  j  in both the respective x and y directions, and the interpolating 
coefficients c ,  in the B-spline two-dimensional interpolating function (1) must be computed by the c_dbicd3 
function. 

 S x y c N x N ym m
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Here, m is an odd number that denotes the degree of B-spline N xm , ( )1  and N ym , ( )1 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbifd3(x, nx, y, ny, m, (double*)c, k, xt, iswx, vx, &ix, iswy, vy, 

&iy, &f, vw, &icon); 

where: 
x double x[nx] Input Discrete points in the x-direction xi . 
nx int Input Number of discrete points in x-direction nx . 
y double y[ny] Input Discrete points in the y-direction y j . 
ny int Input Number of discrete points in y-direction ny . 
m int Input Degree m of the B-spline. 
c double 

c[nx][k] 

Input Interpolating coefficients c ,  (output from c_dbicd3). 

k int Input C fixed dimension of array c (  ny). 
xt double 

xt[Xtlen] 
Input The knots i  and  j  in x and y directions, respectively (output from 

c_dbicd3). 
Xtlen = (nx-m+1)+(ny-m+1). 

iswx int Input Type of calculation associated with x-direction. 
-1   iswx   m, see argument f. 

vx double Input The x-coordinate of point P v vx y( , ) . 
ix int Input The i-th element that satisfies x v xi x i  1 . Not that due to C 

indexing 1 iix . When v xx nx
  then ix = 2xn . 
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  Output The i-th element that satisfies x v xi x i  1 .  See Comments on use. 
iswy int Input Type of calculation associated with y-direction. 

-1   iswy   m, see argument f. 
vy double Input The y-coordinate of point P v vx y( , ) . 
iy int Input The j-th element that satisfies 1 jyj yvy . Note that due to C 

indexing 1 jiy . When v yy ny
  then iy = 2yn . 

  Output The j-th element that satisfies y v yj y j  1 .  See Comments on use. 
f double Output Interpolated value, partial derivative or integral value. 

With setting iswx =   and iswy =  , one of the following is returned 
depending on combination of   and  : 
 when 0   ,  
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vw double 

vw[Vwlen] 
Work Vwlen = 4·(m+1)+max(nx, ny) 

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Either x[ix]   vx < x[ix+1] or 

y[iy]   vy < y[iy+1] is not satisfied. 
An ix or iy satisfying the relationship is 
searched for in the function to continue the 
processing. 

29000 Memory allocation error. Bypassed. 
30000 One of the following has occurred: 

 vx < x[0] or vx > x[nx-1] 
 vy < y[0] or vy > y[ny-1] 
 iswx < -1 or iswx > m 
 iswy < -1 or iswy > m 

Bypassed. 



Description of the C-SSL II Routines 

184 

3. Comments on use 

Relationship with c_dbicd3 
This function obtains interpolated value or partial derivative or double integral based on B-spline two-dimensional 
interpolating functions determined by the c_dbicd3 function.  Therefore, c_dbicd3 must be called to obtain the 
interpolating function (1) before calling this function to compute the required value.  Also arguments x, nx, y, ny, k, m, c 
and xt must be passed directly from c_dbicd3. 

ix and iy 
Arguments ix and iy should satisfy the condition x[ix]   vx < x[ix+1] and y[iy]   vy < y[iy+1].  If not, 
ix or iy satisfying the condition is searched for to continue the processing. 

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by 
one, i.e. C starts from 0 and the mathematics starts from 1. 

4. Example program 

This program interpolates the function xyxyyxf )sin(),(   at 100 points in the region ]1,0[]1,0[   with a bi-cubic 
spline. It then computes approximations to the function value as well as an integral and several partial derivatives 
associated with a particular point. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, j, nx, ny, m, k, ix, iy, iswx, iswy; 
  double x[N], y[N], fxy[N][N], c[N][N], xt[2*(N-M+1)]; 
  double vw[(N-2)*M+2*(M+1)+2*N]; 
  double hx, hy, px, py, vx, vy, f; 
 
  /* initialize data */ 
  nx = N; 
  ny = N; 
  m = M; 
  hx = 1.0/(nx-1); 
  hy = 1.0/(ny-1); 
  px = 0; 
  for (i=0;i<nx;i++) { 
    x[i] = px; 
    px = px + hx; 
  } 
  py = 0; 
  for (j=0;j<ny;j++) { 
    y[j] = py; 
    py = py + hy; 
  } 
  for (i=0;i<nx;i++) 
    for (j=0;j<ny;j++) { 
      px = x[i]; 
      py = y[j]; 
      fxy[i][j] = sin(px*py)*sqrt(px*py); 
    } 
  k = N; 
  /* calculate B-spline interpolation coefficients */ 
  ierr = c_dbicd3(x, nx, y, ny, (double*)fxy, k,  
                  m, (double*)c, xt, vw, &icon); 
  ix = nx/2; 
  vx = x[ix] + (x[ix+1]-x[ix])/2; 
  iy = ny/2; 
  vy = y[iy] + (y[iy+1]-y[iy])/2; 
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  for (iswx=-1;iswx<m;iswx++) { 
    iswy = iswx; 
    /* calculate value at point */ 
    ierr = c_dbifd3(x, nx, y, ny, m, (double*)c, k, xt,  
                    iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon); 
    if (iswx == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (iswx == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, iswx, f); 
  } 
  return(0); 
} 

5. Method 

For further information consult the entry for BIFD3 in the Fortran SSL II User's Guide. 
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c_dbin 
Modified nth-order Bessel function of the first kind I xn ( ) . 
ierr = c_dbin(x, n, &bi, &icon); 

1. Function 

This function computes the modified nth-order Bessel function of the first kind 
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by Taylor expansion and recurrence formula. 

2. Arguments 

The routine is called as follows: 
ierr = c_dbin(x, n, &bi, &icon); 

where: 
x double Input Independent variable x. 
n int Input Order n of I xn ( ) . 
bi double Output Function value I xn ( ) . 
icon int Output Condition code.  See below. 

When n=0 or 1, the icon values are same as in function c_dbi0 and 
c_dbi1 respectively. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 One of the following has occurred: 

 x  100  
 1 8 1 x  and n x 19 29  
 1 10 x  and n x 4 7 43.  
 10 100 x  and n x 183 71.  

bi is set to zero. 

3. Comments on use 

x 
The range of values of x and n is limited to avoid numerical overflow and underflow in the computations. The table of 
condition codes shows these limits.  

Zero- and first-order Bessel function 
When computing either I x0 ( )  or I x1 ( ) , use the functions c_dbi0 or c_dbi1 respectively, as they are more efficient. 
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4. Example program 

This program evaluates a table of function values for x from 0 to 10 in increments of 1 and n equal to 20 and 30. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, bi; 
  int i, n; 
 
  for (n=20;n<=30;n=n+10) 
    for (i=0;i<=10;i++) { 
      x = (double)i; 
      /* calculate Bessel function */ 
      ierr = c_dbin(x, n, &bi, &icon); 
      if (icon == 0) 
        printf("x = %4.2f   n = %i   bi = %e\n", x, n, bi); 
      else 
        printf("ERROR: x = %4.2f   n = %i   bi = %e   icon = %i\n",  
               x, n, bi, icon); 
    } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the modified nth-order Bessel function of the first kind, I xn ( ) , 
is: 

 Taylor expansion when 0 1 8 x . 
 Recurrence formula when 1 8 100 x . 
 
For further information consult the entry for BIN in the Fortran SSL II User's Guide. 
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c_dbir 
Modified real-order Bessel function of the first kind I xv ( ) . 
ierr = c_dbir(x, v, &bi, &icon); 

1. Function 

This function computes the modified real-order Bessel function of the first kind (1) by power series expansion and 
recurrence formula. 
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2. Arguments 

The routine is called as follows: 
ierr = c_dbir(x, v, &bi, &icon); 

where: 
x double Input Independent variable x. 
v double Input Order v of I xv ( ) . 
bi double Output Function value I xv ( ) . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  log( )maxfl  bi is set to zero. 
30000 x  0  or v  0  bi is set to zero. 

3. Comments on use 

x 
The values of x and v are limited to avoid numerical overflow and underflow in the computations. The limits are shown 
in the table of condition codes. For details on the constant, maxfl , see the Machine constants section of the Introduction. 

Zero- and first-order Bessel function 
When computing either I x0 ( )  or I x1 ( ) , use the function c_dbi0 or c_dbi1 respectively, as they are more efficient. 

Evaluation sequence 
When all the values of I x I x I x I xv v v v M( ), ( ), ( ), , ( )  1 2   are required at the same time, it is more efficient to 
compute them in the following way. First, compute the value of I xv M ( )  and I xv M 1 ( )  with this function, then the 
others in the order of I x I x I xv M v M v   2 3( ), ( ), , ( )  by repeating the recurrence formula (see Method).  Conversely, 
computing values in the reverse order, i.e. I x I x I xv v v M  2 3( ), ( ), , ( )  by recurrence formula after I xv ( )  and 
I xv1 ( ) , should be avoided because of instability. 
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4. Example program 

This program evaluates a table of function values for x from 0 to 10 in increments of 1 and v equal to 0.4 and 0.6. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double v, x, bi; 
  int nv, i; 
 
  for (i=0;i<=10;i++) { 
    x = (double)i; 
    for (nv=40;nv<=60;nv=nv+20) { 
      v = (double)nv/100; 
      /* calculate Bessel function */ 
      ierr = c_dbir(v, x, &bi, &icon); 
      if (icon == 0) 
        printf("x = %5.2f   v = %5.2f   bi = %e\n", x, v, bi); 
      else 
        printf("ERROR: x = %5.2f   v = %5.2f   bi = %e   icon = %i\n",  
               x, v, bi, icon); 
    } 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the modified real-order Bessel function of the first kind, 
I xv ( ) , is: 

 Power series expansion, equation (1), when 0 1 x . 
 Recurrence formula when 1 x fllog( )max . 

Suppose m is an appropriately large integer (depends upon the required precision of x and v) and   an 
appropriately small constant (smallest positive number allowed for the computer), and moreover that n and   
are determined by 
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For further information consult the entry for BIR in the Fortran SSL II User's Guide. 
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c_dbj0 
Zero-order Bessel function of the first kind J x0 ( ) . 
ierr = c_dbj0(x, &bj, &icon); 

1. Function 

This function computes the zero-order Bessel function of the first kind 
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by rational approximations and asymptotic expansion. 

2. Arguments 

The routine is called as follows: 
ierr = c_dbj0(x, &bj, &icon); 

where: 
x double Input Independent variable x. 
bj double Output Function value J x0 ( ) . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  tmax  bj is set to zero. 

3. Comments on use 

x 
The values of x is limited to avoid loss of accuracy in the calculation of sin( )x  

4  and cos( )x  
4  which occurs when 

x becomes too large. The limits are shown in the table of condition codes. For details on the constant, t max , see the 
Machine constants section of the Introduction. 

4. Example program 

This program evaluates a table of function values for x from 0 to 100 in increments of 1. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, bj; 
  int i; 
 
  for (i=0;i<=100;i++) { 
    x = (double)i; 
    /* calculate Bessel function */ 
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    ierr = c_dbj0(x, &bj, &icon); 
    if (icon == 0) 
      printf("x = %4.2f   bj = %f\n", x, bj); 
    else 
      printf("ERROR: x = %4.2f   bj = %f   icon = %i\n", x, bj, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the zero-order Bessel function of the first kind, J x0 ( ) , is: 

 Power series expansion when 0 8 x . 
 Asymptotic expansion when x  8 . 
 
For further information consult the entry for BJ0 in the Fortran SSL II User's Guide and [48]. 
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c_dbj1 
First-order Bessel function of the first kind J x1 ( ) . 
ierr = c_dbj1(x, &bj, &icon); 

1. Function 

This function computes the first-order Bessel function of the first kind 
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by rational approximations and asymptotic expansion. 

2. Arguments 

The routine is called as follows: 
ierr = c_dbj1(x, &bj, &icon); 

where: 
x double Input Independent variable x. 
bj double Output Function value J x1( ) . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  tmax  bj is set to zero. 

3. Comments on use 

x 
The range of x is limited as both sin( )x  3

4
  and cos( )x  3

4
  lose accuracy when x becomes too large. The limits are 

shown in the table of condition codes. For details on the constant, t max , see the Machine constants section of the 
Introduction. 

4. Example program 

This program evaluates a table of function values for x from 0 to 100 in increments of 1. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, bj; 
  int i; 
 
  for (i=0;i<=100;i++) { 
    x = (double)i; 
    /* calculate Bessel function */ 
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    ierr = c_dbj1(x, &bj, &icon); 
    if (icon == 0) 
      printf("x = %4.2f   bj = %f\n", x, bj); 
    else 
      printf("ERROR: x = %4.2f   bj = %f   icon = %i\n", x, bj, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the first-order Bessel function of the first kind, J x1 ( ) , is: 

 Power series expansion using rational approximations when 0 8 x . 
 Asymptotic expansion when x  8 . 
 
For further information consult the entry for BJ1 in the Fortran SSL II User's Guide and [48]. 
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c_dbjn 
nth-order Bessel function of the first kind J xn ( ) . 
ierr = c_dbjn(x, n, &bj, &icon); 

1. Function 

This function computes the nth-order Bessel function of the first kind 

J x
x

k n kn

k k n

k

( )
( ) ( )

!( )!











 1 2 2

0

 

by Taylor expansion and recurrence formula. 

2. Arguments 

The routine is called as follows: 
ierr = c_dbjn(x, n, &bj, &icon); 

where: 
x double Input Independent variable x. 
n int Input Order n of J xn ( ) . 
bj double Output Function value J xn ( ) . 
icon int Output Condition code.  See below. 

When n=0 or 1, see icon of function c_dbj0 and c_dbj1 
respectively. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 One of the following has occurred: 

 x  100  
 1 8 1 x  and n x 19 29  
 1 10 x  and n x 4 7 43.  
 10 100 x  and n x 183 71.  

bj is set to zero. 

3. Comments on use 

x 
The ranges of x and n are limited to avoid numerical overflow and underflow in the computations. The limits are shown 
in the table of condition codes.  

Zero- and first-order Bessel function 
When computing either J x0 ( )  or J x1 ( ) , use the function c_dbj0 or c_dbj1 respectively, as they are more efficient. 
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4. Example program 

This program evaluates a table of function values for x from 0 to 10 in increments of 1 and n equal to 20 and 30. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, bj; 
  int i, n; 
 
  for (n=20;n<=30;n=n+10) 
    for (i=0;i<=10;i++) { 
      x = (double)i; 
      /* calculate Bessel function */ 
      ierr = c_dbjn(x, n, &bj, &icon); 
      if (icon == 0) 
        printf("x = %4.2f   n = %i   bj = %e\n", x, n, bj); 
      else 
        printf("ERROR: x = %4.2f   n = %i   bj = %e   icon = %i\n",  
               x, n, bj, icon); 
    } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the nth-order Bessel function of the first kind, J xn ( ) , is: 

 Taylor expansion when 0 1 8 x . 
 Recurrence formula when 1 8 100 x . 
 
For further information consult the entry for BJN in the Fortran SSL II User's Guide. 
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c_dbjr 
Real-order Bessel function of the first kind J xv ( ) . 
ierr = c_dbjr(x, v, &bj, &icon); 

1. Function 

This function computes the real-order Bessel function of the first kind (1) by power series expansion, recurrence formula 
and asymptotic expansion ( x  0 , v  0 ). 
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2. Arguments 

The routine is called as follows: 
ierr = c_dbjr(x, v, &bj, &icon); 

where: 
x double Input Independent variable x. 
v double Input Order v of J xv ( ) . 
bj double Output Function value J xv ( ) . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 One of the following has occurred: 

 x  100  and v  15  
 maxtx  

bj is set to zero. 

30000 x  0  or v  0  bj is set to zero. 

3. Comments on use 

x and v 
Both x and v must be greater than or equal to zero. If 15v  , then maxtx , but if 15v  , then 100x , otherwise 
cosine and sine terms in the asymptotic expansion method of the Bessel function will not be calculated accurately. See 
Method. 

Zero- and first-order Bessel function 
When computing either J x0 ( )  or J x1 ( ) , use the function c_dbj0 or c_dbj1 respectively, as they are more efficient. 

Evaluation sequence 
When all the values of J x J x J x J xv v v v M( ), ( ), ( ), , ( )  1 2   are required at the same time, it is more efficient to 
compute them in the following way.  First, compute the value of J xv M ( )  and J xv M 1 ( )  with this function, then the 
others in the order of J x J x J xv M v M v   2 3( ), ( ), , ( )  by repeating the recurrence formula (see Method).  Conversely, 
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computing values in the reverse order, i.e. J x J x J xv v v M  2 3( ), ( ), , ( )  by recurrence formula after J xv ( )  and 
J xv1 ( ) , should be avoided because of instability. 

4. Example program 

This program evaluates a table of function values for x from 0 to 10 in increments of 1 and v equal to 0.4 and 0.6. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double v, x, bj; 
  int nv, i; 
 
  for (i=0;i<=10;i++) { 
    x = (double)i; 
    for (nv=40;nv<=60;nv=nv+20) { 
      v = (double)nv/100; 
      /* calculate Bessel function */ 
      ierr = c_dbjr(v, x, &bj, &icon); 
      if (icon == 0) 
        printf("x = %5.2f   v = %5.2f   bj = %e\n", x, v, bj); 
      else 
        printf("ERROR: x = %5.2f   v = %5.2f   bj = %e   icon = %i\n",  
               x, v, bj, icon); 
    } 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x and v, the method used to compute the real-order Bessel function of the first kind, J xv ( ) , 
is: 

 Power series expansion, equation (1), when 10  x . 
 Recurrence formula when 1 30 x , or 30 100 x  and v x 0115 4. . 

Suppose m is an appropriately large integer (depends upon the required precision of x and v) and   an 
appropriately small constant (smallest positive number allowed for the computer), and moreover that n and   
are determined by 

v n   

where, n is an integer and 0 1  .  With the initial values, 
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 Asymptotic expansion when 100  x tmax  and v  15 , or 30 100 x  and v x 0115 4. . 
 
For further information consult the entry for BJR in the Fortran SSL II User's Guide. 
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c_dbk0 
Modified zero-order Bessel function of the second kind K x0 ( ) . 
ierr = c_dbk0(x, &bk, &icon); 

1. Function 

This function computes the modified zero-order Bessel function of the second kind (1) by polynomial approximations and 
asymptotic expansion. 
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In (1), I x0 ( )  is the modified zero-order Bessel function of the first kind,   is Euler’s constant and x  0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbk0(x, &bk, &icon); 

where: 
x double Input Independent variable x. 
bk double Output Function value K x0 ( ) . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  log( )maxfl  bk is set to zero. 
30000 x  0  bk is set to zero. 

3. Comments on use 

x 
The range of values of x is limited to avoid numerical underflow of e x  in the computations. The range of values is 
shown in the table of condition codes. For details on the constant, flmax , see the Machine constants section of the 
Introduction. 

4. Example program 

This program evaluates a table of function values for x from 1 to 100 in increments of 1. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, bk; 
  int i; 
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  for (i=1;i<=100;i++) { 
    x = (double)i; 
    /* calculate Bessel function */ 
    ierr = c_dbk0(x, &bk, &icon); 
    if (icon == 0) 
      printf("x = %4.2f   bk = %e\n", x, bk); 
    else 
      printf("ERROR: x = %4.2f   bk = %e   icon = %i\n", x, bk, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the modified zero-order Bessel function of the second kind, 
K x0 ( ) , is: 

 Power series expansion using polynomial approximations when 0 2 x . 
 Asymptotic expansion when 2  x fllog( )max . 
 
For further information consult the entry for BK0 in the Fortran SSL II User's Guide. 
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c_dbk1 
Modified first-order Bessel function of the second kind K x1 ( ) . 
ierr = c_dbk1(x, &bk, &icon); 

1. Function 

This function computes the modified first-order Bessel function of the second kind (1) by polynomial approximations and 
asymptotic expansion. 
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    (1) 

In (1), I x1 ( )  is the modified first-order Bessel function of the first kind,   is Euler’s constant and x  0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbk1(x, &bk, &icon); 

where: 
x double Input Independent variable x. 
bk double Output Function value K x1( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  log( )maxfl  bk is set to zero. 
30000 x  0  bk is set to zero. 

3. Comments on use 

x 
The range of values of x is limited to avoid numerical underflow of e x  in the computations. The limits are shown in the 
table of condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction. 

4. Example program 

This program evaluates a table of function values for x from 1 to 100 in increments of 1. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, bk; 
  int i; 
 
  for (i=1;i<=100;i++) { 
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    x = (double)i; 
    /* calculate Bessel function */ 
    ierr = c_dbk1(x, &bk, &icon); 
    if (icon == 0) 
      printf("x = %4.2f   bk = %e\n", x, bk); 
    else 
      printf("ERROR: x = %4.2f   bk = %e   icon = %i\n", x, bk, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the modified first-order Bessel function of the second kind, 
K x1( ) , is: 

 Power series expansion using polynomial approximations when 0 2 x . 
 Asymptotic expansion when 2  x fllog( )max . 
 
For further information consult the entry for BK1 in the Fortran SSL II User's Guide. 
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c_dbkn 
Modified nth-order Bessel function of the second kind K xn ( ) . 
ierr = c_dbkn(x, n, &bk, &icon); 

1. Function 

This function computes the modified nth-order Bessel function of the second kind (1) by recurrence formula for x  0 . 
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In (1), I xn ( )  is the nth-order Bessel function of the first kind,   is Euler’s constant and   is given as: 
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2. Arguments 

The routine is called as follows: 
ierr = c_dbkn(x, n, &bk, &icon); 

where: 
x double Input Independent variable x. 
n int Input Order n of K xn ( ) . 
by double Output Function value K xn ( ) . 
icon int Output Condition code. See below. 

When n=0 or 1, the icon values are same as in function c_dbk0 and 
c_dbk1 respectively. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  log( )maxfl  bk is set to zero. 
30000 x  0  bk is set to zero. 

3. Comments on use 

x 
The range of  values of x is limited to avoid numerical underflow of e x  in the computations. The limits are shown in the 
table of condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction. 

Zero- and first-order Bessel function 
When computing either K x0 ( )  or K x1 ( ) , use the function c_dbk0 or c_dbk1 respectively, as they are more efficient. 
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4. Example program 

This program evaluates a table of function values for x from 1 to 10 in increments of 1 and n equal to 20 and 30. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, bk; 
  int i, n; 
 
  for (n=20;n<=30;n=n+10) 
    for (i=1;i<=10;i++) { 
      x = (double)i; 
      /* calculate Bessel function */ 
      ierr = c_dbkn(x, n, &bk, &icon); 
      if (icon == 0) 
        printf("x = %4.2f   n = %i   bk = %e\n", x, n, bk); 
      else 
        printf("ERROR: x = %4.2f   n = %i   bk = %e   icon = %i\n",  
               x, n, bk, icon); 
    } 
  return(0); 
} 

5. Method 

The recurrence formula is used to calculate the Bessel function K xn ( )  of order n.  For orders of 0 and 1, the Fortran 
routines DBK0 and DBK1 are used to compute K x0 ( )  and K x1 ( ) .  For further information consult the entry for BKN 
in the Fortran SSL II User's Guide. 
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c_dbkr 
Modified real-order Bessel function of the second kind K xv ( ) . 
ierr = c_dbkr(x, v, &bk, &icon); 

1. Function 

This function computes the modified real-order Bessel function of the second kind (1) by Yoshida and Ninomiya's method. 
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In (1), I xv ( )  is the modified real-order Bessel function of the first kind and x  0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbkr(x, v, &bk, &icon); 

where: 
x double Input Independent variable x. 
v double Input Order v of K xv ( ) . 
bk double Output Function value K xv ( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  0  or bk was large enough to overflow. bk is returned with the maximum floating point 

value. 
30000 x  0  bk is set to zero. 

3. Comments on use 

Zero- and first-order Bessel function 
When computing either K x0 ( )  or K x1 ( ) , use the function c_dbk0 or c_dbk1 respectively, as they are more efficient. 

Evaluation sequence 
When all the values of K x K x K x K xv v v v M( ), ( ), ( ), , ( )  1 2   are required at the same time, it is more efficient to 
compute them in the following way.  First, compute the value of K xv ( )  and K xv1 ( )  with this function, then the others 
in the order of K x K x K xv v v M  2 3( ), ( ), , ( ) . 

When the function is called repeatedly with the same value of v but with various, large value of x in magnitude, the 
function computes K xv ( )  more efficiently by bypassing a common part of the computation. 
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4. Example program 

This program evaluates a table of function values for x from 0 to 10 in increments of 1 and v equal to 0.4 and 0.6. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double v, x, bk; 
  int nv, i; 
 
  for (i=1;i<=10;i++) { 
    x = (double)i; 
    for (nv=40;nv<=60;nv=nv+20) { 
      v = (double)nv/100; 
      /* calculate Bessel function */ 
      ierr = c_dbkr(v, x, &bk, &icon); 
      if (icon == 0) 
        printf("x = %5.2f   v = %5.2f   bk = %e\n", x, v, bk); 
      else 
        printf("ERROR: x = %5.2f   v = %5.2f   bk = %e   icon = %i\n",  
               x, v, bk, icon); 
    } 
  } 
  return(0); 
} 

5. Method 

The method by Yoshida and Ninomiya is used to compute the modified real-order Bessel function of the second kind, 
K xv ( ) . For further information consult the entry for BKR in the Fortran SSL II User's Guide. 
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c_dblnc 
Balancing of a real matrix. 
ierr = c_dblnc(a, k, n, dv, &icon); 

1. Function 

This routine applies the diagonal similarity transformation shown in (1) to an nn  matrix A, 

 ADDA 1~  , (1) 

where D is a diagonal matrix. By this transformation, the sum of the norm of the elements in the i-th row and that 
of the i-th column (i = 1,2,...,n) are almost equalized for the transformed real matrix A~ . Here, n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dblnc((double *) a, k, n, dv, &icon); 

where: 
a double Input Matrix A. 
 a[n][k] Output Balanced matrix A~ . 

k int Input C fixed dimension of array a (  n). 
n int Input Order n of matrices A and A~ . 

dv double dv[n] Output Scaling factors (diagonal elements of D). 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 Balancing was not performed. 
30000 One of the following has occurred: 

 n < 1 
 k < n 

Bypassed. 

3. Comments on use 

If there are large differences in magnitude of the elements of a matrix, the precision of computed eigenvalues and 
eigenvectors of that matrix can be adversely affected. This routine can be used before computing the eigenvalues and 
eigenvectors to avoid loss of precision. 

If each element of a matrix is nearly the same in magnitude, this routine performs no balancing and should not be used. 

If all elements except the diagonal element of a row (or column) are zero, balancing of the row (or column) and the 
corresponding column (or row) is bypassed. 

In order to obtain the eigenvectors x of a matrix A which has been balanced by this routine, back transformation (2) must 
be applied to the eigenvectors x~  of A~ . 



Description of the C-SSL II Routines 

208 

 xDx ~ . (2) 

The back transformation (2) can be performed using routine c_dhbk1. 

4. Example program 

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then 
performs a back transformation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, m, mk, ind[NMAX]; 
  double a[NMAX][NMAX], pv[NMAX], aw[NMAX+4][NMAX]; 
  double er[NMAX], ei[NMAX], ev[NMAX][NMAX]; 
  double dv[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  mk = NMAX; 
  for (i=0;i<n;i++) { 
    a[i][i] = n-i;  
    for (j=0;j<i;j++) { 
      a[i][j] = n-i; 
      a[j][i] = n-i; 
    } 
  } 
  /* balance matrix A */ 
  ierr = c_dblnc((double*)a, k, n, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dblnc failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* reduce matrix to Hessenberg form */ 
  ierr = c_dhes1((double*)a, k, n, pv, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dhes1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<n;i++)  
    for (j=0;j<n;j++) 
      aw[i][j] = a[i][j]; 
  /* find eigenvalues */ 
  ierr = c_dhsqr((double*)aw, k, n, er, ei, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dhsqr failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<m;i++) ind[i] = 1; 
  /* find eigenvectors for given eigenvalues */ 
  ierr = c_dhvec((double*)a, k, n, er, ei,  
   ind, m, (double*)ev, mk, (double*)aw, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dhvec failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation to find e-vectors of A */ 
  ierr = c_dhbk1((double*)ev, k, n, ind, m, (double*)a, pv, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dhbk1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  i = 0; 
  k = 0; 
  while (i<m) { 
    if (ind[i] == 0) i++; 
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    else if (ei[i] == 0) { 
      /* real eigenvector */ 
      printf("eigenvalue: %12.4f\n", er[i]); 
      printf("eigenvector:"); 
      for (j=0;j<n;j++) 
        printf("%7.4f  ", ev[k][j]); 
      printf("\n"); 
      i++; 
      k++; 
    } 
    else { 
      /* complex eigenvector pair */ 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", er[i], ei[i]); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
        printf("%7.4f+i*%7.4f   ", ev[k][j], ev[k+1][j]); 
      printf("\n"); 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", er[i+1], ei[i+1]); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
        printf("%7.4f+i*%7.4f   ", ev[k][j], -ev[k+1][j]); 
      printf("\n"); 
      i = i+2; 
      k = k+2; 
    } 
  } 
  return(0); 
} 

5. Method 

Consult the entry for BLNC in the Fortran SSL II User's Guide and reference [119]. 
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c_dbmdmx 
Solution of a system of linear equations with an indefinite symmetric 
band matrix in MDM T - decomposed form. 
ierr = c_dbmdmx(b, fa, n, nh, mh, ip, ivw, 

&icon); 

1. Function 

This routine solves a linear system of equations with an MDM T - decomposed nn  indefinite symmetric band matrix  

 bxPMDMP  TT1  (1) 

In (1), P is a permutation matrix (which performs row exchanges of the coefficient matrix based on the pivoting during 
the MDM T - decomposition), M = ( ijm ) is a unit lower band matrix with bandwidth h

~
 (n> h

~
 0), and D = ( ijd ) is a 

symmetric block diagonal matrix with blocks of order at most 2. b is a constant vector, and x is the solution vector. Both 
vectors are of size n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dbmdmx(b, fa, n, nh, mh, ip, ivw, &icon); 

where: 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
fa double 

fa[Falen] 

Input Matrix I)(MD  . Stored in symmetric band storage format. See 
Array storage formats in the Introduction section for details. The matrix 
must be stored as if it had bandwidth mh . See Comments on use. 

.2/)1()1(  mmm hhhnFalen  
n int Input Order n of matrices M and D. 
nh int Input Bandwidth h

~
 of matrix M. See Comments on use. 

mh int Input Maximum bandwidth mh  (n>mh nh) of matrix M. See Comments on 
use. 

ip int ip[n] Input Transposition vector that provides the row exchanges that occurred 
during pivoting. See Comments on use. 

ivw int ivw[n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Coefficient matrix was singular. Discontinued. 
30000 One of the following has occurred: 

 nh < 0 
 mh < nh 
 mh   n 

Bypassed. 
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Code  Meaning  Processing 
 error found in ip. 

3. Comments on use 

fa, nh, ip, mh and MDM T - decomposition 
A system of linear equations with an indefinite symmetric band coefficient matrix can be solved by calling the routine 
c_dsbmdm to MDM T - decompose the coefficient matrix prior to calling this routine. The input arguments fa, nh, ip 
and mh of this routine are the same as the output arguments a, nh, ip and input argument mh of routine c_dsbmdm. 
Alternatively, the system of linear equations can be solved by calling the single routine c_dlsbix. 

Calculation of determinant 
The determinant of matrix A is the same as the determinant of matrix D, that is the product of the determinants of the 11  
and 22  blocks of D. See the example program with c_dsbmdm. 

Eigenvalues 
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program with c_dsbmdm. 

4. Example program 

This program decomposes and solves a system of linear equations using MDM T  decomposition and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define min(a,b) ((a) < (b) ? (a) : (b)) 
 
#define NMAX 100 
#define NHMAX 50 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, mh, i, j, ij, jmin; 
  double epsz, eps; 
  double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], b[NMAX], x[NMAX]; 
  int ivw[NMAX], ip[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  nh = 2; 
  mh = NHMAX; 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-mh, 0); 
    for (j=jmin;j<=i;j++) 
      if (i-j == 0) 
 a[ij++] = 10; 
      else if (i-j == 1) 
 a[ij++] = -3; 
      else if (i-j == 2) 
 a[ij++] = -6; 
      else 
 a[ij++] = 0; 
  } 
  epsz = 1e-6; 
  /* initialize RHS vector */ 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  /* initialize constant vector b = a*x */ 
  ierr = c_dmsbv(a, n, mh, x, b, &icon); 
  /* MDM decomposition of system */ 
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  ierr = c_dsbmdm(a, n, &nh, mh, epsz, ip, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dsbmdm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* solve decomposed system of equations */ 
  ierr = c_dbmdmx(b, a, n, nh, mh, ip, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dbmdmx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for BMDMX in the Fortran SSL II User's Guide. 
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c_dbsc1 
B-spline smoothing coefficient calculation. 
ierr = c_dbsc1(x, y, w, n, m, xt, nt, c, r, 

&rnor, vw, ivw, &icon); 

1. Function 

Given observed values nyyy ,,, 21   at points nxxx ,,, 21   with weighted function values )( ii xww   for 
ni ,,2,1   and the knots of the spline function 

tn ,,, 21   for the degree m B-spline smoothing function (1), this 
function obtains the smoothing coefficients jc  that minimise the square sum of weighted residual (2). 
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The interval )]max(),[min( jjI    spanned by the knots j  does not always have to contain all of the n discrete 
points.  For example, as shown in Figure 30, the I  can be specified as a part of the interval )]max(),[min( iix xxI   
that is spanned by all of the discrete points.  In such cases, the discrete points for )(xS , equation (1), contained in the 
interval (whose number we say is en ), then when taking the summation in (2) only the discrete points contained in the 
interval I  have to be taken into consideration. 

Here, 0iw , 1m , 3tn , kj    ( kj  ) and 1 mnn te . 

Interval I
Interval Ix

 
Figure 30 Section I  for smoothing function 

2. Arguments 

The routine is called as follows: 
ierr = c_dbsc1(x, y, w, n, m, xt, nt, c, r, &rnor, vw, ivw, &icon); 

where: 
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x double x[n] Input Discrete points xi . 
y double y[n] Input Observed data iy . 
w double w[n] Input Weighted function values. 
n int Input Number of discrete points n. 
m int Input Degree m of the B-spline.  See Comments on use. 
xt double xt[nt] Input The knots j .  See Comments on use. 
  Output If on input 1]-xt[ntxt[1]xt[0]    is not satisfied then on 

output they will be realigned to the condition. 
nt int Input Number of knots tn . 
c double 

c[nt+m-1] 

Output Smoothing coefficients jc . 

r double r[n] Output Residuals )( ii xSy  . 
rnor double Output Square sum of weighted residual 2

m . 
vw double 

vw[Vwlen] 
Work Vwlen = (nt+m)*(m+1). 

ivw int ivw[n] Work  
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 At least one negative weight in w 
 m < 1 
 xt[i] = xt[j] where i  j 
 nt < 3 
 en  < nt + m - 1 

Bypassed. 

3. Comments on use 

Calling function c_dbsf1 
By calling the function c_dbsf1 after this one, the interpolated values as well as derivatives or integrals can be obtained 
based on B-spline smoothing function (1).  The argument values of m, xt, nt and c are input to c_dbsf1. 

m 
The degree m is preferably 3 but no greater than 5, because of the normal equation used when obtaining the smoothing 
coefficients become ill-conditioned as m becomes large. 

xt 
It is important for the knots j  to be located according to the behaviour of observed values.  In general, a knot should be 
assigned to the point at which the observed values have a peak or change rapidly.  Knots should not be assigned to 
intervals where the observed values change slowly.  See Figure 31. 
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1 2 3 4 5 6  
Figure 31 Knots j  

4. Example program 

This program evaluates the function 3)( xxf   at 10 equally spaced points in the interval ]1,0[ . Using the cubic B-spline 
function obtained by a least squares fit it then computes approximations to the function value as well as an integral and 
several partial derivatives associated with a particular point. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
#define NT 5 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, nt, isw, ivw[N]; 
  double x[N], y[N], w[N], c[NT+M-1], xt[NT], r[N], vw[(NT+M)*(M+1)]; 
  double p, h, v, f, rnor; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  nt = NT; 
  isw = 0; 
  p = 0; 
  h = 1.0/n; 
  for (i=0;i<n;i++) { 
    w[i] = 10; 
    x[i] = p; 
    y[i] = pow(p,3); 
    p = p + h; 
  } 
  p = 0; 
  h = 1.0/nt; 
  for (i=0;i<nt;i++) { 
    xt[i] = p; 
    p = p + h; 
  } 
  /* calculate B-spline smoothing coefficients */ 
  ierr = c_dbsc1(x, y, w, n, m, xt, nt, c, r, &rnor, vw, ivw, &icon); 
  i = nt/2; 
  v = xt[i] + (xt[i+1]-xt[i])/2; 
  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, vw, &icon); 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
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} 

5. Method 

A system of linear equations is derived for the smoothing coefficients.  Solving this system by a LLT  decomposition 
method, the coefficients are obtained. 

For further information consult the entry for BSC1 in the Fortran SSL II User's Guide. 
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c_dbsc2 
B-spline smoothing coefficient calculation (variable knots). 
ierr = c_dbsc2(x, y, s, n, m, xt, &nt, nl, 

rnot, c, rnor, vw, ivw, &icon); 

1. Function 

Given observed values nyyy ,...,, 21  at discrete points nxxx ,...,, 21 , observation errors n ,...,, 21 , a tolerance 2
t  for 

the sum of squares of residuals, and initial knots 
sn ,...,, 21 , this routine obtains the smoothing coefficients for a degree 

m B-spline smoothing function to the data, with knots being added so that the sum of squares of residuals becomes within 
the tolerance. 

Letting tn denote the number of knots finally used, and 2
tn the corresponding sum of squares of residuals, the 

routine obtains the coefficients jc  in the B-spline smoothing function (1), subject to (2). 
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This routine outputs final knots 
tn ,...,, 21 , the sum of squares of residuals at each step in which knots are added (3), 
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(in which )(xS is a degree m B-spline smoothing function in which 
rn ,...,, 21 are knots), and statistics (4) and (5), 

  )1(/22  mnn rnn rr
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 )1(2log 2  mnnAICr rnr
. (5). 

Here tssr nnnn ,...,1,  , 0 i , 1m , 2sn  and the initial knots i  must satisfy )(min)(min iijj
x  and 

)(max)(max i
i

j
j

x . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbsc2(x, y, s, n, m, xt, &nt, nl, rnot, c, (double*)rnor, vw, ivw, 

&icon); 

where: 
x double x[n] Input Discrete points ix . 
y double y[n] Input Observed values iy . 
s double s[n] Input Observation errors i . See Comments on use. 
n int Input Number n of discrete points. 
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m int Input Degree m of B-spline. See Comments on use. 
xt double xt[nl] Input Initial knots si ni ,...,2,1,  . See Comments on use. 
  Output Final knots ti ni ,...,2,1,  , in order 

tn ...21 . 
nt int Input Number sn of initial knots. 
  Output Number tn  of final knots. 
nl int Input Upper limit ( sn ) on number of knots. See Comments on use. 
rnot double Input Tolerance 2

t  for the sum of squares of residuals. An appropriate value is 
nt 2 . 

c double 

c[nl+m-1] 

Output Smoothing coefficients 1,...,2,1,  tj nmmjc . Note that jc  is 
stored in c[j+m-1]. 

rnor double 

rnor[Rlen][3] 
Output Values of AICr

rr nn ,, 22  , for tssr nnnn ,...,1,  . 

2
rn  is stored in rnor[ sr nn  ][0] 

2
rn  is stored in rnor[ sr nn  ][1] 

AICr  is stored in rnor[ sr nn  ][2] 

1 snRlen nl . See Comments on use. 

vw double 

vw[Vwlen] 
Work ))(2()1( mmmVwlen  nl . 

ivw int ivw[Ivwlen] Work mnIvwlen  nl . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Number of knots reached the upper limit, but the 

convergence criterion (2) was not satisfied. 
Outputs the coefficients for the most recently 
obtained smoothing function. 

30000 One of the following has occurred: 
 0 i  for some i 
 m < 1 
 xt[i]=xt[j] for some i j 
 2sn  
 nl < sn  
 )(min)(min iijj

x  or 

)(max)(max i
i

j
j

x  

Bypassed. 

3. Comments on use 

Calling routine c_dbsf1 
By calling routine c_dbsf1 after this routine, an interpolated value, or derivative value, or integral can be obtained based 
on the B-spline smoothing function (1). The argument values of m, xt, nt, and c are input to c_dbsf1. 
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s 
The observation error i  is an estimate for the error contained in the observed values iy . For example, if iy  has id  
significant decimal digits, the value i

d yi10  can be used as i . The observation error i  is used to indicate how 
closely )(xS  should be fit to iy . The larger i  is, the less closely )(xS  is fit to iy . 

m 
An appropriate value for m is 3, but the value should not exceed 5 because the normal equations used when obtaining the 
smoothing coefficients become ill-conditioned as m increases. 

xt 
Generally, initial knots sj nj ,...,2,1,   can be given by 2sn , )(min1 ii

x , )(max i
i

n x
s
 . 

nl 
The upper limit nl on the number of knots should be given a value near 2/n (as the number of knots increases, the 
normal equations become ill-conditioned). The routine terminates with icon = 10000 when the number of knots 
reaches the upper limit even if the convergence criterion (2) has not been met. 

rnor 
The information output in rnor is the history of various statistics obtained in the process of adding knots at each step. 
The history can be used for assessing the smoothing function. 

4. Example program 

This program evaluates the function 3)( xxf   at 10 equally spaced points in the interval ]1,0[ . Using the cubic B-spline 
function it then computes approximations to the function value as well as an integral and several derivatives associated 
with a particular point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
#define NTMAX 5 
#define NT 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, nt, nl, isw, ivw[N+NTMAX+M]; 
  double x[N], y[N], s[N], rnor[NTMAX-NT+1][3]; 
  double c[NTMAX+M-1], xt[NTMAX], vw[(M+1)+(M+2)*(NTMAX+M)]; 
  double p, h, v, f, rnot; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  nt = NT; 
  nl = NTMAX; 
  rnot = n; 
  p = 0.1; 
  h = 0.8/(n-1); 
  for (i=0;i<n;i++) { 
    x[i] = p+i*h; 
    y[i] = pow(x[i],3); 
    s[i] = 1e-6*fabs(y[i]); /* make up some error values */ 
  } 
  p = 0; 
  h = 1.0/(nt-1); 
  for (i=0;i<nt;i++) { 
    xt[i] = p+i*h; 
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  } 
  /* calculate B-spline smoothing coefficients */ 
  ierr = c_dbsc2(x, y, s, n, m, xt, &nt, nl, rnot,  
   c, (double*)rnor, vw, ivw, &icon); 
  if (icon >= 20000) { 
    printf("ERROR: c_dbsc2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  i = 1; 
  v = 0.5; 
  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, vw, &icon); 
    if (icon >= 20000) { 
      printf("ERROR: c_dbsf1 failed with icon = %d\n", icon); 
      exit(1); 
    } 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for BSC2 in the Fortran SSL II User's Guide. 
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c_dbscd2 
B-spline two-dimensional smoothing coefficient calculation (variable 
knots) 
ierr = c_dbscd2(x, nx, y, ny, fxy, kf, sx, sy, 

m, xt, &nxt, yt, &nyt, nxl, nyl, 

rnot, c, kc, rnor, vw, ivw, 

&icon); 

1. Function 

Given observed values ),( jiij yxff  , observation errors 
ji yxij  , at the points ),( ji yx , xni ,...,2,1 , 

ynj ,...,2,1 , a tolerance for the sum of squares of residual 2
t , and initial sequences of knots 

sn ,...,, 21 , 

s
 ,...,, 21 , in the x- and y- directions respectively, this routine obtains a bivariate m-th degree B-spline smoothing 

function to the data, in which the sum of the squares of residuals is within the tolerance, by adding knots appropriately in 
the x- and y- directions. 

Letting the number of knots in the x- and y- directions be tn and t , the routine obtains the coefficients ,c  of the B-
spline smoothing function (1) subject to (2). 
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  (2) 

This routine outputs final knots 
tn ,...,, 21 in the x-direction, and 

t
 ,...,, 21 , in the y-direction, the sum of squares 

of residuals (3) at each step of adding knots, and statistics (4) and (5), along with coefficients ,c . 
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  (3) 

(where ),( yxS denotes the m-th degree B-spline smoothing function with knots 
rn ,...,, 21 and 

r
 ,...,, 21 ), 

 )}1)(1({22   mmnnn rryxnn rrrr
 , (4) 

 )1)(1(2log 2   mmnnnAIC rrnyxr rr
 . (5) 

Here, ttssssrr nnnn   ,...,1, , 0
ix , 0

jy , 1m , 2sn , 2s , and the initial knots 

sn ,...,, 21 in the x-direction must satisfy )(min)(min iijj
x  and )(max)(max i

i
j

j
x , while the initial knots 

s
 ,...,, 21 in the y-direction must satisfy )(min)(min iijj

y  and )(max)(max i
i

j
j

y . 

2. Arguments 

The routine is called as follows: 
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ierr = c_dbscd2(x, nx, y, ny, (double*)fxy, kf, sx, sy, m, xt, &nxt, yt, &nyt, 

nxl, nyl, rnot, (double*)c, kc, (double*)rnor, vw, ivw, &icon); 

where: 
x double x[nx] Input Discrete points ix  in the x-direction.. 
nx int Input Number xn  of discrete points in the x-direction. 
y double y[ny] Input Discrete points jy in the y-direction. 
ny int Input Number yn  of discrete points in the y-direction. 
fxy double 

fxy[nx][kf] 

Input Observed values ijf . 

kf int Input C fixed dimension of array fxy (   ny). 
sx double sx[nx] Input Observation errors 

ix in the x-direction. 

sy double sy[ny] Input Observation errors 
jy in the y-direction. 

m int Input Degree m of the B-spline.See Comments on use. 
xt double Input Initial knots i , sni ,...,2,1  in the x-direction. See Comments on use. 
 xt[nxl] Output Final knots i , tni ,...,2,1  in the x-direction, in the order 

tn ...21 . 

nxt int Input Number sn (  2) of initial knots in the x-direction. 
  Output Number tn of final knots in the x-direction. 
yt double Input Initial knots j , sj ,...,2,1  in the y-direction. See Comments on use. 
 yt[nyl] Output Final knots j , tj ,...,2,1  in the y-direction, in the order 

t
 ...21 . 

nyt int Input Number s (  2) of initial knots in the y-direction. 
  Output Number t of final knots in the y-direction. 
nxl int Input Upper limit )( sn on the number of knots in the x-direction. See 

Comments on use. 
nyl int Input Upper limit )( s  on the number of knots in the y-direction. See 

Comments on use. 
rnot double Input Tolerance 2

t  for the sum of squares of residuals. An appropriate 

value is yxt nn 2 . 

c double 

c[Clen][kc] 
Output Smoothing coefficients ,c , 1,...,2,1  tnmm , 

1,...,2,1  tmm  , stored in c[ 1 m ][ ]1 m . 
Clen = nxl+m-1. 

kc int Input C fixed dimension of array c (  nyl+m-1). 
rnor double 

rnor[Rlen][3] 
Output Values of 2

rrn  , 2
rrn  , and rAIC  at each step of adding knots. 

Letting ttssssrr nnnn   ,...,1,  and 
)()( srsrr nnP   , then 

2
rrn   is stored in rnor[ rP ][0], 

2
rrn   is stored in rnor[ rP ][1], 

rAIC  is stored in rnor[ rP ][2]. 
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Rlen = (nxl - sn ) + (nyl - s ) +1. 

vw double 

vw[Vwlen] 
Work ),max( 21 ssVwlen   where  

)1)(2(1  mmnns yx  

            )1)(,min(2),,max(max  mmnmnmnmn yxyx , 

  yxyx nnmnns  )1(3),min(2 2 nylnxl . 

ivw int ivw[Ivwlen] Work mnnIvwlen yx  )max( nylnxl, . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 The number of knots in the x-direction reached 

the upper limit, but the convergence criterion was 
not satisfied. 

Outputs the coefficients for the most recently 
obtained smoothing function. 

11000 The number of knots in the y-direction reached 
the upper limit, but the convergence criterion was 
not satisfied. 

Outputs the coefficients for the most recently 
obtained smoothing function. 

30000 One of the following has occurred: 
 0

ix  
 0

jy  
 1m  
 xt[i] = xt[j] or yt[i] = yt[j] 
                        when i  j 
 2sn or 2s  
 snnxl  or snyl  
 )(min)(min iiii

x  or 

)(max)(max i
i

i
i

x  

 )(min)(min jjjj
y  or 

)(max)(max j
j

j
j

y  

Bypassed. 

3. Comments on use 

Relationship with c_dbsfd1 
By calling routine c_dbsfd1 after this routine, an interpolated value, or partial derivative, or double integral can be 
obtained based on the two-dimensional B-spline smoothing function (1). The argument values of m, xt, nxt, yt, nyt and 
c are input to c_dbsfd1. 

m 
An appropriate value for degree m (either odd or even) is 3, but the value should not exceed 5 because the normal 
equations used when obtaining the smoothing coefficients become ill-conditioned as m increases. 



Description of the C-SSL II Routines 

224 

xt and yt 
Generally, initial knots ji  , , sni ,...,2,1 , sj ,...,2,1  can be given by 2 ssn  , )(min1 ii

x , 

)(max i
i

n x
s
 , )(min1 jj

y , )(max j
j

l y
s
 . 

nxl and nyl 
The upper limits nxl and nyl on the number of knots in the x- and y- directions should be given values near 2/xn  and 

2/yn  respectively (as the number of knots increases, the normal equations become more ill-conditioned). The routine 
terminates, with icon = 10000 (for the x-direction) and icon = 11000 (for the y-direction), when the number of knots 
reaches either of the upper limits, and the convergence criterion has not been met. 

rnor 
The information output in rnor is the history of various statistics obtained in the process of adding knots at each 
step. The history can be used to assess the smoothing function. Generally, the statistics converge with the addition 
of knots. In particular, when 2

rrn   and rAIC  change slowly with the addition of knots, the smoothing function 

is usually good. 

4. Example program 

This program interpolates the function 33),( yxyxf   at 100 points in the region ]9.0,1.0[]9.0,1.0[   with a spline. It 
then computes approximations to the function value as well as an integral and several partial derivatives associated with a 
particular point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
#define NTMAX 5 
#define NT 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, j, kf, kc, nx, ny, m, nxt, nyt, nxl, nyl, ivw[2*N+NTMAX*M]; 
  int iswx, iswy, ix, iy; 
  double x[N], y[N], fxy[N][N], sx[N], sy[N], rnor[2*(NTMAX-NT)+1][3]; 
  double c[NTMAX+M-1][NTMAX+M-1], xt[NTMAX], yt[NTMAX]; 
  double vw[158]; 
  double p, h, vx, vy, f, fx, rnot; 
 
  /* initialize data */ 
  nx = N; 
  ny = N; 
  m = M; 
  nxt = NT; 
  nyt = NT; 
  nxl = NTMAX; 
  nyl = NTMAX; 
  rnot = nx*ny; 
  kf = N; 
  kc = NTMAX+M-1; 
  p = 0.1; 
  h = 0.8/(nx-1); 
  for (i=0;i<nx;i++) { 
    x[i] = p+i*h; 
    y[i] = x[i]; 
    sx[i] = 1e-6; /* make up some error values */ 
    sy[i] = sx[i]; 
  } 
  for (i=0;i<nx;i++) { 
    fx = x[i]*x[i]*x[i]; 
    for (j=0;j<ny;j++) { 
      fxy[i][j] = fx*y[j]*y[j]*y[j]; 
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    } 
  } 
  p = 0; 
  h = 1.0/(nxt-1); 
  for (i=0;i<nxt;i++) { 
    xt[i] = p+i*h; 
    yt[i] = xt[i]; 
  } 
  /* calculate B-spline smoothing coefficients */ 
  ierr = c_dbscd2(x, nx, y, ny, (double*)fxy, kf, sx, sy, m,  
    xt, &nxt, yt, &nyt, nxl, nyl, rnot,  
    (double*)c, kc, (double*)rnor, vw, ivw, &icon); 
  if (icon >= 20000) { 
    printf("ERROR: c_dbscd2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  ix = 1; 
  iy = ix; 
  vx = 0.5; 
  vy = vx; 
  for (iswx=-1;iswx<=m;iswx++) { 
    iswy = iswx; 
    /* calculate value at point */ 
    ierr = c_dbsfd1(m, xt, nxt, yt, nyt, (double*)c, kc, 
      iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon); 
    if (icon >= 20000) { 
      printf("ERROR: c_dbsfd1 failed with icon = %d\n", icon); 
      exit(1); 
    } 
    if (iswx == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (iswx == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, iswx, f); 
  } 
  return(0); 
} 

5. Method 

For further information consult the entry for BSCD2 in the Fortran SSL II User's Guide. 
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c_dbsct1  
Selected eigenvalues of a symmetric tridiagonal matrix (bisection 
method). 
ierr = c_dbsct1 (d, sd, n, m, epst, e, vw, 

&icon); 

1. Function 

This routine obtains the m largest or m smallest eigenvalues of an nn  symmetric tridiagonal matrix T using the 
bisection method. Here 1   m   n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dbsct1 (d, sd, n, m, epst, e, vw, &icon); 

where: 
d double d[n] Input Diagonal elements of matrix T. 
sd double sd[n] Input Subdiagonal elements of matrix T, stored in sd[i-1], i = 2,...,n, with 

sd[0] set to 0. 
n int Input Order n of matrix T. 
m int Input Number of eigenvalues required (m   0). 

m = m, when the m largest eigenvalues required; 
m = -m, when the m smallest eigenvalues are required. 

epst double Input Absolute error tolerance used to determine the accuracy of the 
eigenvalues. When epst < 0 a standard value is used. See Comments on 
use. 

e double e[m] Output The m eigenvalues of matrix T. In descending order when m > 0 and 
ascending order when m < 0. 

vw double 

vw[n+2m] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 e[0] = d[0]. 
30000 One of the following has occurred: 

 n < |m| 
 m = 0 

Bypassed. 

3. Comments on use 

General comments 
When approximately n/4 or more eigenvalues are required, it is generally faster to use routine c_dtrql. 



 c_dbsct1 

 227 

When the eigenvectors of matrix T are also required, routine c_dteig2 should be used. 

When eigenvalues of a symmetric matrix are required the matrix can be reduced to a tridiagonal matrix using the routine 
c_dtrid1, before calling this routine or c_dtrql. 

epst 
If it is possible one of the eigenvalues is zero, the argument epst should be set accordingly. See the Method section for 
BSCT1 in the Fortran SSL II User's Guide.  

4. Example program 

This program reduces the matrix to tridiagonal form, and calculates the eigenvalues using two different methods. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 15 
#define NHMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, m, i, k, ij; 
  double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX]; 
  double sd[NMAX], d[NMAX], vw[NMAX+2*NMAX], epst; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  nh = NHMAX; 
  a[0] = 10; 
  a[1] = -3; 
  a[2] = 10; 
  ij = (nh+1)*nh/2; 
  for (i=0;i<n-nh;i++) { 
    a[ij] = -6; 
    a[ij+1] = -3; 
    a[ij+2] = 10; 
    ij = ij+nh+1; 
  } 
  /* reduce to tridiagonal form */ 
  ierr = c_dbtrid(a, n, nh, d, sd, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dbtrid failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues using c_dbsct1 */ 
  m = n; 
  epst = 1e-6; 
  ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dbsct1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf("eigenvalues:\n"); 
  for (i=0;i<m;i++) { 
    printf("%7.4f   ", e[i]); 
  } 
  printf("\n"); 
  /* find eigenvalues using c_dtrql */ 
  ierr = c_dtrql(d, sd, n, e, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dbtrql failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf("eigenvalues:\n"); 
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  for (i=0;i<m;i++) { 
    printf("%7.4f   ", e[i]); 
  } 
  printf("\n"); 
  return(0); 
} 

5. Method 

Consult the entry for BSCT1 in the Fortran SSL II User's Guide and references [80], [118] and [119]. 
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c_dbseg 
Eigenvalues and corresponding eigenvectors of a real symmetric band 
matrix (Rutishauser-Schwarz, bisection and inverse iteration methods). 
ierr = c_dbseg(a, n, nh, m, nv, epst, e, ev, 

k, vw, &icon); 

1. Function 

The m largest or smallest eigenvalues of an n order real symmetric band matrix A (bandwidth h, where nh 0 ) are 
determined using the Rutishauser-Schwarz method and the bisection method, where nm 1 . The corresponding vn  
eigenvectors are then obtained using the inverse iteration method, where mnv 0 . The eigenvectors are then 
normalised such that 12 x . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbseg(a, n, nh, m, nv, epst, e, (double *)ev, k, vw, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in the original symmetric band storage format. See 

Array storage formats in the Introduction section for details. 
2/)1()1(  hhhnAlen .  

  Output When 0vn  the contents of A are not altered on output, but if 0vn  
the contents are altered. 

n int Input The order n of matrix A. 
nh int Input Bandwidth h. 
m int Input The number of eigenvalues to be calculated. If m is positive, the m largest 

eigenvalues are calculated. If m is negative, the m smallest eigenvalues 
are calculated. 

nv int Input The number of eigenvectors to be calculated. If nv is negative, its 
absolute value is taken. If nv = 0, no eigenvectors are generated. 

epst double Input Absolute error tolerance on the eigenvalues, used in the convergence 
criterion. If epst < 0, a standard value is set. 

e double e[m] Output Eigenvalues. 
ev double 

ev[nv][k] 

Output Eigenvectors. Stored by rows. 

k int Input C fixed dimension of ev. When 0vn , k is an arbitrary number. 
vw double 

vw[Vwlen] 
Work ))1(2,23max(  hnmnVwlen . If 0vn , then mnVwlen 23  . 

icon int Output Condition codes. See below. 
The complete list of condition codes is. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 0nh  Completed normally. 
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Code  Meaning  Processing 
15000 After calculation of the eigenvalues, some of the 

eigenvectors could not be determined. 
The eigenvectors that were not obtained are set to 
0. 

20000 None of the eigenvectors could be determined. All the eigenvectors are set to 0. 
30000 One of the following has occurred: 

 0nh  
 nnh   
 nk   
 0m   
 nvm   
 nm   

Bypassed. 

3. Comments on use 

General Comments 
This routine is suitable for obtaining the largest or smallest eigenvalues from a symmetric band matrix, provided that the 
ratio of the bandwidth to the order of the matrix (i.e. h/n) is less than 1/6.  

Eigenvectors 
Although the eigenvectors corresponding to the obtained eigenvalues can be obtained at the same time, since the inverse 
iteration method is applied to directly processing the input band matrix, rather than a symmetric tridiagonal matrix, this 
method is relatively ineffective. Unnecessary eigenvectors should not be calculated. Therefore this method should only be 
used when a small number of eigenvalues need to be calculated from the largest or smallest eigenvalues in a large order 
symmetric band matrix. 

4. Example program 

This program uses the library routine to calculate all the eigenvalues and eigenvectors for a 5 by 5 symmetric band matrix 
(in original symmetric band storage format). 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 15 
#define HMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, m, nv, i, j, k, ij ; 
  double a[NMAX*(HMAX+1)-HMAX*(HMAX+1)/2], e[NMAX], ev[NMAX][NMAX]; 
  double vw[2*NMAX*(HMAX+1)], epst; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  nh = HMAX; 
  a[0] = 10; 
  a[1] = -3; 
  a[2] = 10; 
  ij = (nh+1)*nh/2; 
  for (i=0;i<n-nh;i++) { 
    a[ij] = -6; 
    a[ij+1] = -3; 
    a[ij+2] = 10; 
    ij = ij+nh+1; 
  } 
  m = 1; 
  nv = m; 
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  epst = -1; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dbseg(a, n, nh, m, nv, epst, e, (double*)ev, k, vw, &icon); 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

For further information consult the entry for BSEG in the Fortran SSL II User's Guide and also [118] and [119]. 
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c_dbsegj 
Eigenvalues and corresponding eigenvectors of a symmetric band matrix 
(Jennings’ method). 
ierr = c_dbsegj(a, n, nh, m, epst, lm, e, ev, 

k, &it, vw, &icon); 

1. Function 

This routine obtains m eigenvalues of an nn  symmetric band matrix A with bandwidth h, starting with the eigenvalue 
of the largest (or smallest) absolute value. When starting with the smallest absolute eigenvalue, matrix A must be positive 
definite. Given m initial vectors, m eigenvectors corresponding to the eigenvalues are obtained. The routine uses the 
Jennings’ simultaneous iteration method with Jennings’ acceleration. The eigenvectors are normalized such that 12 x . 
Here, nm 1  and nh 0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbsegj(a, n, nh, m, epst, lm, e, (double *)ev, k, &it, vw, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric band storage format. See Array storage 

formats in the Introduction section for details. 
2/)1()1(  hhhnAlen . 

  Output When obtaining the eigenvalues of smallest absolute value first, the 
contents of a are changed on output. 

n int Input Order n of matrix A. 
nh int Input Bandwidth h of matrix A. 
m int Input Number of eigenvalues m to be obtained. 

m > 0 if the m eigenvalues of largest absolute value are to be obtained. 
m < 0 if the m eigenvalues of smallest absolute value are obtained. See 
Comments on use. 

epst double Input Absolute error tolerance   for convergence criterion for the 
eigenvectors. If 0 , a standard value is assumed. See Comments on 
use. 

lm int Input Upper limit for the number of iterations. If the number of iterations 
exceeds lm, processing is stopped. See Comments on use. 

e double e[m] Output The m eigenvalues of matrix A, stored in the sequence specified by 
argument m. 

ev double Input The m initial vectors, stored by rows. See Comments on use. 
 ev[m+2][k] Output The m eigenvectors of matrix A, stored by rows. 
k int Input C fixed dimension of array ev (  n). 
it int Output Number of iterations performed to obtain the eigenvalues and 

eigenvectors. 
vw double 

vw[Vwlen] 
Work 2/)13()2,max(  mmmnVwlen . 
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icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 The number of iterations exceeded the upper limit 

lm. 
Stopped. e and ev contain the approximations of 
the eigenvalues and eigenvectors obtained so far. 

28000 Orthogonalization of the eigenvectors at each 
iteration cannot be attained. 

Discontinued. 

29000 Matrix A is not positive definite (when the 
smallest eigenvalues are required) or A may be 
singular. 

Discontinued. 

30000 One of the following has occurred: 
 nh < 0 or nh   n 
 k < n 
 m = 0 or |m| > n 

Bypassed. 

3. Comments on use 

m 
The number of eigenvalues and eigenvectors m, should be smaller than n such that m/n < 1/10. The numbering of 
eigenvalues is from the largest (or smallest) absolute value of eigenvalue, m ,...,, 21 . If possible, m should be chosen 
such that 1/1   mm   (or 1/1   mm ). 

epst 
When an eigenvector (normalized so that 12 x ) converges for the convergence criterion constant  , the 

corresponding eigenvalue converges at least with accuracy 2A , and in most cases with greater accuracy. The 

standard convergence criterion constant is  16 , where   is the unit round-off. However, when the eigenvalues 
are close together convergence may not be attained with this convergence criterion constant, and a more 
appropriate value would be  100 . 

lm 
The upper limit lm for the number of iterations is used to stop the processing when convergence is not attained. The value 
of lm should be chosen taking into account the required accuracy and how close together the eigenvalues are to each other. 
With the standard convergence criterion constant and well-separated eigenvalues a value for lm between 500 and 1000 
should be appropriate. 

Initial eigenvectors 
It is desirable for the initial vectors to be good approximations to the eigenvectors. However, if approximate eigenvectors 
are not available as initial vectors, the standard way to choose intial vectors is to use the first m column vectors of the 
identity matrix I. 

c_dbseg and c_dbsegj 
c_dbseg determines the eigenvalues and eigenvectors of a real symmetric band matrix using a direct method. In general, 
c_dbseg will be faster than this routine, but c_dbseg needs more storage space than this routine. 
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4. Example program 

This program finds the eigenvalues and corresponding eigenvectors of a symmetric band matrix and prints the results. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 15 
#define NHMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, m, i, j, k, ij, it, lm; 
  double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX], ev[NMAX+2][NMAX]; 
  double vw[2*NMAX+NMAX*(3*NMAX+1)/2], epst; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  nh = NHMAX; 
  a[0] = 10; 
  a[1] = -3; 
  a[2] = 10; 
  ij = (nh+1)*nh/2; 
  for (i=0;i<n-nh;i++) { 
    a[ij] = -6; 
    a[ij+1] = -3; 
    a[ij+2] = 10; 
    ij = ij+nh+1; 
  } 
  m = 1; 
  /* initialize m eigenvectors */ 
  for (i=0;i<m;i++) 
    for (j=0;j<n;j++) 
      if (i == j) ev[i][j] = 1; 
      else ev[i][j] = 0; 
  lm = 1000; 
  epst = 1e-6; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dbsegj(a, n, nh, m, epst, lm, e, (double*)ev, k, &it, vw, &icon); 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for BSEGJ in the Fortran SSL II User's Guide and [61]. 
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c_dbsf1 
B-spline smoothing. 
ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, 

vw, &icon); 

1. Function 

Given observed values nyyy ,,, 21   at points nxxx ,,, 21   with weighted function values )( ii xww   for 
ni ,,2,1   and the knots of the spline function 

tn ,,, 21   (
tn  21 ), this function obtains a smoothed 

value or derivative at ],[ 1 tnvx   or integral from 1  to v  based on the degree B-spline smoothing function (1). 

 





1

1
1, )()(

tn

mj
mjj xNcxS  (1) 

One condition is that the smoothing coefficients jc  for 1,,2,1  tnmmj   in (1) must be computed by the 
c_dbsc1 function before using this function. 

Here m is the degree of the B-spline )(1, xN mj  , 1m , 3tn  and 
tnv  1 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, vw, &icon); 

where: 
m int Input Degree m of the B-spline. 
xt double xt[nt] Input The knots i . 
nt int Input Number of knots tn . 
c double 

c[nt+m-1] 

Input Smoothing coefficients jc  (output from c_dbsc1). 

isw int Input Type of calculation. 
   0 Smoothed value, )(vSF  . 

l The derivative of order l, )()( vSF l , with ml 1 . 

-1 Integral value, 
v

dxxSF
1

)( . 

v double Input Point v at which the smoothing value etc are obtained. 
i int Input The i-th element that satisfies 1]xt[ivxt[i]  . 

When 
tnv   then i = 2tn . 

  Output The i-th element that satisfies 1]xt[ivxt[i]  .  See 
Comments on use. 

f double Output Smoothed value or derivative of order l or integral value, depending on 
isw.  See isw. 

vw double 

vw[m+1] 

Work  
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icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 xt[i]   v < xt[i+1] is not satisfied. An i satisfying the relationship is searched for in 

the function to continue the processing. 
30000 One of the following has occurred: 

 v < xt[0] or v > xt[nt-1] 
 isw < -1 or isw > m 

Bypassed. 

3. Comments on use 

Relationship with c_dbsc1 
This function computes a smoothed value or derivative or integral value based on the B-spline smoothing function 
determined by the c_dbsc1 function.  Therefore, c_dbsc1 must be called to obtain the smoothing function (1) before 
calling this function to compute the required data.  Plus arguments m, xt, nt and c must be passed directly from 
c_dbsc1. 

i 
Argument i should satisfy the condition 1]xt[ivxt[i]  . If not, an i satisfying the condition is searched for to 
continue the processing. 

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by 
one, i.e. C starts from 0 and the mathematics starts from 1. 

4. Example program 

This program evaluates the function 3)( xxf   at 10 equally spaced points in the interval ]1,0[ . Then with a cubic B-
spline function obtained by a least squares fit, it then computes approximations to the function value as well as an integral 
and several partial derivatives associated with a particular point. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
#define NT 5 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, nt, isw, ivw[N]; 
  double x[N], y[N], w[N], c[NT+M-1], xt[NT], r[N], vw[(NT+M)*(M+1)]; 
  double p, h, v, f, rnor; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  nt = NT; 
  isw = 0; 
  p = 0; 
  h = 1.0/n; 
  for (i=0;i<n;i++) { 
    w[i] = 10; 
    x[i] = p; 
    y[i] = pow(p,3); 
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    p = p + h; 
  } 
  p = 0; 
  h = 1.0/nt; 
  for (i=0;i<nt;i++) { 
    xt[i] = p; 
    p = p + h; 
  } 
  /* calculate B-spline smoothing coefficients */ 
  ierr = c_dbsc1(x, y, w, n, m, xt, nt, c, r, &rnor, vw, ivw, &icon); 
  i = nt/2; 
  v = xt[i] + (xt[i+1]-xt[i])/2; 
  for (isw=-1;isw<=m;isw++) { 
    /* calculate value at point */ 
    ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, vw, &icon); 
    if (isw == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (isw == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, isw, f); 
  } 
  return(0); 
} 

5. Method 

For further information consult the entry for BSF1 in the Fortran SSL II User's Guide 

.
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c_dbsfd1 
B-spline two-dimensional smoothing. 
ierr = c_dbsfd1(m, xt, nxt, yt, nyt, c, kc, 

iswx, vx, &ix, iswy, vy, &iy, &f, 

vw, &icon); 

1. Function 

Given observed values ),( jiij yxff  , observation errors 
ji yxij  at the points ),( ji yx , xni ,...,2,1 , 

ynj ,...,2,1 , this routine obtains a smoothed value or a partial derivative at the point ),( yx vvP , or a double 

integral over the range ],[ 11 yx vyvx  , based on the bivariate m-th degree B-spline smoothing function, 

(1), with knots 
tn ,...,, 21  in the x-direction and knots 

t
 ,...,, 21  in the y-direction, and 

tnxv 1 , 

tyv 1 . 
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. (1) 

Before using this routine, the routine c_dbscd2 must be called to determine the knots i and j , and the smoothing 
coefficients ,c . Here, 1m . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbsfd1(m, xt, nxt, yt, nyt, (double*)c, kc, iswx, vx, &ix, iswy, vy, 

&iy, &f, vw, &icon); 

where: 
m int Input Degree m of the B-spline. 
xt double xt[nxt] Input Knots i  in the x-direction. 
nxt int Input Number tn  of knots in the x-direction. 
yt double yt[nyt] Input Knots j  in the y-direction. 
nyt int Input Number t  of knots in the y-direction. 
c double  

c[nxt+m-1][kc] 

Input Smoothing coefficients ,c . 

kc int Input C fixed dimension of array c (  nyt + m – 1). 
iswx int Input Type of calculation associated with x-direction, -1   iswx   m. See 

argument f. 
vx double Input x-coordinate xv , of point ),( yx vvP . 
ix int Input Integer such that xt[ix] vx < xt[ix+1]. If 

tnxv   then ix = 
2tn . 

  Output Integer ix such that xt[ix] vx < xt[ix+1]. See Comments on 
use. 

iswy int Input Type of calculation associated with y-direction, -1   iswy   m. See 
argument f. 

vy double Input y-coordinate yv , of point ),( yx vvP . 



 c_dbsfd1 

 239 

iy int Input Integer is such that yt[iy] vy < yt[iy+1]. If 
tyv   then iy 

= 2t . 
  Output Integer iy such that yt[iy] vy < yt[iy+1]. See Comments on 

use. 
f double Output Smoothed value, partial derivative, or double integral value. By setting 

iswx =   and iswy = µ, one of the following is returned depending 
on the combination of   and µ: 

    when  , µ 0  
   

),( yx vvS
yx 






f  

   A smoothed value can be obtained by setting   = µ = 0. 
    when 1 , µ 0  
   

 








xv
y dxvxS

y1

),(f  

    when 0 , µ 1  
   

 








yv
x dyyvS

x1

),(f  

    when   = µ = 1  
   dydxyxS

y xv v

  


1 1

),(f  

vw double vw[Vwlen] Work ),max()1(5 ttnmVwlen  . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 xt[ix]   vx < xt[ix+1] or  

yt[iy]   vy < yt[iy+1] is not satisfied. 
The ix or iy satisfying the relationship is sought 
by the routine to continue the processing. 

30000 One of the following has occurred: 
 vx < xt[0] or vx > xt[nxt-1] 
 vy < yt[0] or vy > yt[nyt-1] 
 iswx < -1 or iswx > m 
 iswy < -1 or iswy > m 

Bypassed. 

3. Comments on use 

Relationship with c_dbscd2 
This routine obtains the smoothed value, partial derivative, or double integral based upon the two-dimensional B-spline 
smoothing function determined by the c_dbscd2 routine. Therefore, c_dbscd2 must be called to obtain the smoothing 
function (1) before calling this routine to compute the required value. Also, the arguments m, xt, nxt, yt, nyt, c, and 
kc must be passed directly from c_dbscd2. 

ix and iy 
Arguments ix and iy should satisfy the relationships xt[ix]   vx < xt[ix+1] and yt[iy]   vy < yt[iy+1]. 
If not, ix and iy satisfying the relationships are sought by the routine to continue the processing. 
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4. Example program 

This program interpolates the function 33),( yxyxf   at 100 points in the region ]9.0,1.0[]9.0,1.0[   with a spline. It 
then computes approximations to the function value as well as an integral and several partial derivatives associated with a 
particular point. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
#define NTMAX 5 
#define NT 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, j, kf, kc, nx, ny, m, nxt, nyt, nxl, nyl, ivw[2*N+NTMAX*M]; 
  int iswx, iswy, ix, iy; 
  double x[N], y[N], fxy[N][N], sx[N], sy[N], rnor[2*(NTMAX-NT)+1][3]; 
  double c[NTMAX+M-1][NTMAX+M-1], xt[NTMAX], yt[NTMAX]; 
  double vw[158]; 
  double p, h, vx, vy, f, fx, rnot; 
 
  /* initialize data */ 
  nx = N; 
  ny = N; 
  m = M; 
  nxt = NT; 
  nyt = NT; 
  nxl = NTMAX; 
  nyl = NTMAX; 
  rnot = nx*ny; 
  kf = N; 
  kc = NTMAX+M-1; 
  p = 0.1; 
  h = 0.8/(nx-1); 
  for (i=0;i<nx;i++) { 
    x[i] = p+i*h; 
    y[i] = x[i]; 
    sx[i] = 1e-6; /* make up some error values */ 
    sy[i] = sx[i]; 
  } 
  for (i=0;i<nx;i++) { 
    fx = x[i]*x[i]*x[i]; 
    for (j=0;j<ny;j++) { 
      fxy[i][j] = fx*y[j]*y[j]*y[j]; 
    } 
  } 
  p = 0; 
  h = 1.0/(nxt-1); 
  for (i=0;i<nxt;i++) { 
    xt[i] = p+i*h; 
    yt[i] = xt[i]; 
  } 
  /* calculate B-spline smoothing coefficients */ 
  ierr = c_dbscd2(x, nx, y, ny, (double*)fxy, kf, sx, sy, m,  
    xt, &nxt, yt, &nyt, nxl, nyl, rnot,  
    (double*)c, kc, (double*)rnor, vw, ivw, &icon); 
  if (icon >= 20000) { 
    printf("ERROR: c_dbscd2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  ix = 1; 
  iy = ix; 
  vx = 0.5; 
  vy = vx; 
  for (iswx=-1;iswx<=m;iswx++) { 
    iswy = iswx; 
    /* calculate value at point */ 
    ierr = c_dbsfd1(m, xt, nxt, yt, nyt, (double*)c, kc, 
      iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon); 
    if (icon >= 20000) { 
      printf("ERROR: c_dbsfd1 failed with icon = %d\n", icon); 
      exit(1); 
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    } 
    if (iswx == -1) 
      printf("icon = %i   integral = %12.6e\n", icon, f); 
    else if (iswx == 0) 
      printf("icon = %i   value = %12.6e\n", icon, f); 
    else 
      printf("icon = %i   derivative %i = %12.6e\n", icon, iswx, f); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for BSFD1 in the Fortran SSL II User's Guide. 
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c_dbsvec 
Eigenvectors of a symmetric band matrix (inverse iteration method). 
ierr = c_dbsvec(a, n, nh, nv, e, ev, k, vw, 

&icon); 

1. Function 

This routine obtains the eigenvectors corresponding to vn  given eigenvalues 
vn ,...,, 21 of an nn  symmetric 

band matrix A with bandwidth h, using the inverse iteration method. 

2. Arguments 

The routine is called as follows: 
ierr = c_dbsvec(a, n, nh, nv, e, (double *) ev, k, vw, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric band storage format. See Array storage 

formats in the Introduction section for details. 
2/)1()1(  hhhnAlen . 

n int Input Order n of matrix A. 
nh int Input Bandwidth h of matrix A. 
nv int Input Number of eigenvectors vn ( 0) to be obtained. If nv < 0, then |nv| is 

used. 
e double e[|nv|] Input Eigenvalues, with ev[i-1] = i , vni ,...,1 . 
ev double 

ev[|nv|][k] 

Output Eigenvectors, stored by rows.  

k int Input C fixed dimension of array ev (  n). 
vw double 

vw[2n(h+1)] 

Work  

icon int Input Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 nh = 0 Completed. 
15000 An eigenvector corresponding to a specified 

eigenvalue could not be obtained. 
The eigenvector is set to the zero vector. 

20000 None of the eigenvectors could be obtained. All of the eigenvectors are set to the zero vector. 
30000 One of the following has occured: 

 nh < 0 or nh   n 
 k < n 
 nv = 0 or |nv| > n 

Bypassed. 
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3. Comments on use 

If the eigenvalues are close to each other in a small range, the inverse iteration method used to obtain the corresponding 
eigenvectors may not converge. If this happens icon is set to 15000 or 20000 and unobtained eigenvectors are set to the 
zero vector. 

This routine is for a real symmetric band matrix. To determine the eigenvalues and eigenvectors of a real symmetric 
matrix, use routines c_dseig1 or c_dvseg2. For a real symmetric tridiagonal matrix use routines c_dteig1 or 
c_dteig2. 

4. Example program 

This program finds the eigenvalues and eigenvectors of a symmetric band matrix and prints the results. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 15 
#define NHMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, m, nv, i, j, k, ij; 
  double e[NMAX], ev[NMAX][NMAX]; 
  double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2]; 
  double b[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2]; 
  double vw[2*NMAX*(NHMAX+1)], epst; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  nh = NHMAX; 
  a[0] = 10; 
  a[1] = -3; 
  a[2] = 10; 
  ij = (nh+1)*nh/2; 
  for (i=0;i<n-nh;i++) { 
    a[ij] = -6; 
    a[ij+1] = -3; 
    a[ij+2] = 10; 
    ij = ij+nh+1; 
  } 
  /* save copy of a */ 
  for (i=0;i<n*(nh+1)-nh*(nh+1)/2;i++) b[i] = a[i]; 
  /* find eigenvalues and eigenvectors */ 
  m = n; 
  nv = 0; 
  epst = -1; 
  ierr = c_dbseg(b, n, nh, m, nv, epst, e, (double*)ev, k, vw, &icon); 
  if (icon > 20000 ) { 
    printf("ERROR: c_dbseg failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvectors using dbsvec */ 
  nv = m; 
  ierr = c_dbsvec(a, n, nh, nv, e, (double*)ev, k, vw, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dbsvec failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[i][j]); 
    printf("\n"); 
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  } 
  return(0); 
} 

5. Method 

Consult the entry for BSVEC in the Fortran SSL II User's Guide. 
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c_dbtrid 
Reduction of a symmetric band matrix to a symmetric tridiagonal matrix 
(Rutishauser-Schwarz method). 
ierr = c_dbtrid(a, n, nh, d, sd, &icon); 

1. Function 

This routine reduces an nn  symmetric band matrix A with bandwidth h, to a symmetric tridiagonal matrix T using the 
Rutishauser-Schwarz orthogonal similarity transformation,  

 ss AQQT T , 

where sQ is an orthogonal matrix. Here 0   h << n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dbtrid(a, n, nh, d, sd, &icon); 

where: 
a double 

a[Alen] 

Input Matrix A. Stored in symmetric band storage format. See Array storage 
formats in the Introduction section for details. 

2/)1()1(  hhhnAlen . 
  Output The contents of a are changed on output. 
n int Input Order n of matrix A. 
nh int Input Bandwidth h of matrix A. 
d double d[n] Output Diagonal elements of tridiagonal matrix T. 
sd double sd[n] Output Subdiagonal elements of tridiagonal matrix T, stored in sd[i-1], 

i = 2,...,n, and sd[0] set to 0. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 nh = 0 or nh = 1  Reduction is not performed. 
30000 nh < 0 or nh   n Bypassed. 

3. Comments on use 

Compared with the Householder method which reduces a matrix to a symmetric tridiagonal matrix, the Rutishauser-
Schwarz method used in this routine is better both in terms of the amount of storage and the amount of computation, when 
the ratio of the bandwidth to the order, nhr / , is small. If the ratio exceeds 1/6, the Householder method is better. 

4. Example program 

This program reduces the matrix to tridiagonal form, and calculates the eigenvalues using two different methods. 
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#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 15 
#define NHMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, m, i, k, ij; 
  double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX]; 
  double sd[NMAX], d[NMAX], vw[NMAX+2*NMAX], epst; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  nh = NHMAX; 
  a[0] = 10; 
  a[1] = -3; 
  a[2] = 10; 
  ij = (nh+1)*nh/2; 
  for (i=0;i<n-nh;i++) { 
    a[ij] = -6; 
    a[ij+1] = -3; 
    a[ij+2] = 10; 
    ij = ij+nh+1; 
  } 
  /* reduce to tridiagonal form */ 
  ierr = c_dbtrid(a, n, nh, d, sd, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dbtrid failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues using c_dbsct1 */ 
  m = n; 
  epst = 1e-6; 
  ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dbsct1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf("eigenvalues:\n"); 
  for (i=0;i<m;i++) { 
    printf("%7.4f   ", e[i]); 
  } 
  printf("\n"); 
  /* find eigenvalues using c_dtrql */ 
  ierr = c_dtrql(d, sd, n, e, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dbtrql failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf("eigenvalues:\n"); 
  for (i=0;i<m;i++) { 
    printf("%7.4f   ", e[i]); 
  } 
  printf("\n"); 
  return(0); 
} 

5. Method 

Consult the entry for BTRID in the Fortran SSL II User's Guide. 

 



 c_dby0 

 247 

c_dby0 
Zero-order Bessel function of the second kind Y x0 ( ) . 
ierr = c_dby0(x, &by, &icon); 

1. Function 

This function computes the zero-order Bessel function of the second kind (1) by rational approximations and asymptotic 
expansion. 

   Y x J x x
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In (1), J x0 ( )  is the zero-order Bessel function of the first kind,   is Euler’s constant and x  0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dby0(x, &by, &icon); 

where: 
x double Input Independent variable x. 
by double Output Function value Y x0 ( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  tmax  by is set to zero. 
30000 x  0  by is set to zero. 

3. Comments on use 

x 
The range of  values of x is limited because both sin( )x  

4  and cos( )x  
4  lose accuracy when x  becomes too large. 

The limits are shown in the table of condition codes. For details on the constant, tmax , see the Machine constants section 
of the Introduction. 

4. Example program 

This program evaluates a table of function values for x from 1 to 100 in increments of 1. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, by; 
  int i; 
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  for (i=1;i<=100;i++) { 
    x = (double)i; 
    /* calculate Bessel function */ 
    ierr = c_dby0(x, &by, &icon); 
    if (icon == 0) 
      printf("x = %4.2f   by = %f\n", x, by); 
    else 
      printf("ERROR: x = %4.2f   by = %f   icon = %i\n", x, by, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the zero-order Bessel function of the second kind, Y x0 ( ) , is: 

 Power series expansion using rational approximations when 0 8 x . 
 Asymptotic expansion when x  8 . 
 
For further information consult the entry for BY0 in the Fortran SSL II User's Guide and [48]. 
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c_dby1 
First-order Bessel function of the second kind Y x1 ( ) . 
ierr = c_dby1(x, &by, &icon); 

1. Function 

This function computes the first-order Bessel function of the second kind (1) by rational approximations and asymptotic 
expansion. 
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In (1), J x1 ( )  is the first-order Bessel function of the first kind,   is Euler’s constant and x  0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dby1(x, &by, &icon); 

where: 
x double Input Independent variable x. 
by double Output Function value Y x1( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  tmax  by is set to zero. 
30000 x  0  by is set to zero. 

3. Comments on use 

x 
The range of values of x is limited here because both sin( )x  3

4
  and cos( )x  3

4
  lose accuracy when x  becomes too 

large. The limits are shown in the table of condition codes.  For details on the constant, tmax , see the Machine constants 
section of the Introduction. 

4. Example program 

This program evaluates a table of function values for x from 1 to 100 in increments of 1. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, by; 
  int i; 
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  for (i=1;i<=100;i++) { 
    x = (double)i; 
    /* calculate Bessel function */ 
    ierr = c_dby1(x, &by, &icon); 
    if (icon == 0) 
      printf("x = %4.2f   by = %f\n", x, by); 
    else 
      printf("ERROR: x = %4.2f   by = %f   icon = %i\n", x, by, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the first-order Bessel function of the second kind, Y x1 ( ) , is: 

 Power series expansion using rational approximations when 0 8 x . 
 Asymptotic expansion when x  8 . 
 
For further information consult the entry for BY1 in the Fortran SSL II User's Guide and [48]. 
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c_dbyn 
nth-order Bessel function of the second kind )(xYn . 
ierr = c_dbyn(x, n, &by, &icon); 

1. Function 

This function computes the nth-order Bessel function of the second kind (1) by recurrence formula for x  0 . 
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2. Arguments 

The routine is called as follows: 
ierr = c_dbyn(x, n, &by, &icon); 

where: 
x double Input Independent variable x. 
n int Input Order n of Y xn ( ) . 
by double Output Function value Y xn ( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  tmax  by is set to zero. 
30000 x  0  by is set to zero. 

3. Comments on use 

x 
The range of values of x is limited because both sin( )x  

4  and cos( )x  
4  lose accuracy when x  becomes too large. 

The limits are shown in the table of condition codes. For details on the constant, tmax , see the Machine constants section 
of the Introduction. 

Zero- and first-order Bessel function 
When computing either Y x0 ( )  or Y x1 ( ) , use the function c_dby0 or c_dby1 respectively, as they are more efficient. 
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4. Example program 

This program evaluates a table of function values for x from 1 to 10 in increments of 1 and n equal to 20 and 30. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, by; 
  int i, n; 
 
  for (n=20;n<=30;n=n+10) 
    for (i=1;i<=10;i++) { 
      x = (double)i; 
      /* calculate Bessel function */ 
      ierr = c_dbyn(x, n, &by, &icon); 
      if (icon == 0) 
        printf("x = %4.2f   n = %i   by = %e\n", x, n, by); 
      else 
        printf("ERROR: x = %4.2f   n = %i   by = %e   icon = %i\n",  
               x, n, by, icon); 
    } 
  return(0); 
} 

5. Method 

The recurrence formula is used to calculate the Bessel function Y xn ( )  of order n.  For orders of 0 and 1, the Fortran 
routines DBY0 and DBY1 are used to compute Y x0 ( )  and Y x1 ( ) .  For further information consult the entry for BYN in 
the Fortran SSL II User's Guide. 
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c_dbyr 
Real-order Bessel function of the second kind Y xv ( ) . 
ierr = c_dbyr(x, v, &by, &icon); 

1. Function 

This function computes the real-order Bessel function of the second kind (1) by a modified series expansion and the  -
method. 

 Y x
J x v J x

vv
v v( )

( ) cos( ) ( )
sin( )


 


 (1) 

In (1), J xv ( )  is the real-order Bessel function of the first kind, x  0  and v  0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dbyr(x, v, &by, &icon); 

where: 
x double Input Independent variable x. 
v double Input Order v of Y xv ( ) . 
by double Output Function value Y xv ( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 One of the following has occurred: 

 x  0  or by was large enough to overflow. 
 
 x  tmax  

 
 by is returned with the negative infinite 

floating point value. 
 by is set to zero. 

30000 x  0  or v  0  by is set to zero. 

3. Comments on use 

Zero- and first-order Bessel function 
When calculating either Y x0 ( )  or Y x1 ( ) , use the function c_dby0 or c_dby1 respectively, as they are more efficient. 

Evaluation sequence 
When all the values of Y x Y x Y x Y xv v v v M( ), ( ), ( ), , ( )  1 2   are required at the same time, it is more efficient to compute 
them in the following way.  First, compute the value of Y xv ( )  and Y xv1 ( )  with this function, then the others in the order 
of Y x Y x Y xv v v M  2 3( ), ( ), , ( )  by the recurrence formula (see Method). 

When the function is called repeatedly with the same value of v for large values of x, the common procedure is bypassed 
to calculate the value of )(xYv  effectively. 
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4. Example program 

This program evaluates a table of function values for x from 1 to 10 in increments of 1 and v equal to 0.5 and 0.8. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double v, x, by; 
  int nv, i; 
 
  for (i=1;i<=10;i++) { 
    x = (double)i; 
    for (nv=50;nv<=80;nv=nv+30) { 
      v = (double)nv/100; 
      /* calculate Bessel function */ 
      ierr = c_dbyr(v, x, &by, &icon); 
      if (icon == 0) 
        printf("x = %5.2f   v = %5.2f   by = %e\n", x, v, by); 
      else 
        printf("ERROR: x = %5.2f   v = %5.2f   by = %e   icon = %i\n",  
               x, v, by, icon); 
    } 
  } 
  return(0); 
} 

5. Method 

A modified series expansion and the  -method are used to compute the real-order Bessel function of the second kind, 
Y xv ( ) .  

When 5.2v , the recurrence formula used for the computation is 

Y x
x

Y x Y x  


  1 1
2( ) ( ) ( ) . 

For further information consult the entry for BYR in the Fortran SSL II User's Guide. 
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c_dcbin 
Modified nth-order Bessel function of the first kind with complex 
variable I zn ( ) . 
ierr = c_dcbin(z, n, &zbi, &icon); 

1. Function 

This function computes the modified nth-order Bessel function of the first kind with complex variable (1) by power series 
expansion and recurrence formula. 
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2. Arguments 

The routine is called as follows: 
ierr = c_dcbin(z, n, &zbi, &icon); 

where: 
z dcomplex Input Independent variable z. 
n int Input Order n of I zn ( ) . 
zbi dcomplex Output Function value I zn ( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Re( ) log( )maxz  fl  or Im( ) log( )maxz  fl  zbi is set to zero. 

3. Comments on use 

z 
The range of values of z is limited to avoid numerical underflow in the computations. The limits are shown in the table of 
condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction. 

Evaluation sequence 
When all the values of I z I z I z I zn n n n M( ), ( ), ( ), , ( )  1 2   are required at the same time, it is more efficient to compute 
them in the following way.  First, compute the value of I zn M ( )  and I zn M 1 ( )  with this function, then the others in 
the order I z I z I zn M n M n   2 3( ), ( ), , ( )  by repeating the recurrence formula (see Method). Conversely, computing 
these values in reverse order, i.e. I z I z I zn n n M  2 3( ), ( ), , ( )  by recurrence formula after I zn ( )  and I zn1 ( ) , should 
be avoided because of instability. 

4. Example program 

This program evaluates the function for n=1 and 2 and z = 10+5i. 
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#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z, zbi; 
  int n; 
 
  z.re = 10; 
  z.im = 5; 
  for (n=1;n<=2;n++) { 
    /* calculate Bessel function */ 
    ierr = c_dcbin(z, n, &zbi, &icon); 
    if (icon == 0) 
      printf("z = {%4.2f, %4.2f}   n = %i   zbi = {%4.2f, %4.2f}\n", 
             z, n, zbi); 
    else 
      printf("ERROR: z = {%4.2f, %4.2f}   n = %i" 
             "zbi = {%4.2f, %4.2f}   icon = %i\n",  
             z, n, zbi, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of z, the method used to compute the modified nth-order Bessel function of the first kind with 
complex variable, I zn ( ) , is: 

 Power series expansion, equation (1), when Re( ) Im( )z z  1. 
 Recurrence formula when Re( ) Im( )z z  1. 

Suppose m is an appropriately large integer (depends upon the required precision of z and n) and   an 
appropriately small constant (10 38 ).  With the initial values, 

G z G zm m  1 0( ) , ( )   

and repeating the recurrence equation, 
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For further information consult the entry for CBIN in the Fortran SSL II User's Guide. 
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c_dcbjn 
nth-order Bessel function of the first kind with complex variable J zn ( ) . 
ierr = c_dcbjn(z, n, &zbj, &icon); 

1. Function 

This function computes the nth-order Bessel function of the first kind with complex variable (1) by power series 
expansion and recurrence formula. 
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2. Arguments 

The routine is called as follows: 
ierr = c_dcbjn(z, n, &zbj, &icon); 

where: 
z dcomplex Input Independent variable z. 
n int Input Order n of J zn ( ) . 
zbj dcomplex Output Function value J zn ( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Re( ) log( )maxz  fl  or Im( ) log( )maxz  fl  zbj is set to zero. 

3. Comments on use 

z 
The range of values of z is limited to avoid numerical underflow in the computations. The limits are shown in the table of 
condition codes.  For details on the constant, flmax , see the Machine constants section of the Introduction. 

Evaluation sequence 
When all the values of J z J z J z J zn n n n M( ), ( ), ( ), , ( )  1 2   are required at the same time, it is more efficient to 
compute them in the following way.  First, compute the value of J zn M ( )  and J zn M 1 ( )  with this function, then the 
others in the order J z J z J zn M n M n   2 3( ), ( ), , ( )  by repeating the recurrence formula (see Method).  Conversely, 
computing these values in the reverse order, i.e. J z J z J zn n n M  2 3( ), ( ), , ( )  by recurrence formula after J zn ( )  and 
J zn1 ( ) , should be avoided because of instability. 

4. Example program 

This program evaluates the function for n=1 and 2 and z = 10+5i. 

#include <stdio.h> 
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#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z, zbj; 
  int n; 
 
  z.re = 10; 
  z.im = 5; 
  for (n=1;n<=2;n++) { 
    /* calculate Bessel function */ 
    ierr = c_dcbjn(z, n, &zbj, &icon); 
    if (icon == 0) 
      printf("z = {%4.2f, %4.2f}   n = %i   zbj = {%4.2f, %4.2f}\n", 
             z, n, zbj); 
    else 
      printf("ERROR: z = {%4.2f, %4.2f}   n = %i" 
             "zbj = {%4.2f, %4.2f}   icon = %i\n",  
             z, n, zbj, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of z, the method used to compute the nth-order Bessel function of the first kind with complex 
variable, J zn ( ) , is: 

 Power series expansion, equation (1), when Re( ) Im( )z z  1. 
 Recurrence formula when Re( ) Im( )z z  1. 

Suppose m is an appropriately large integer (depends upon the required precision of z and n) and   an 
appropriately small constant (here 10 38 ).  With the initial values, 

F z F zm m  1 0( ) , ( )   

and repeating the recurrence equation, 

F z k
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For further information consult the entry for CBJN in the Fortran SSL II User's Guide. 
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c_dcbjr 
Real-order Bessel function of the first kind with complex variable 
J zv ( ) . 
ierr = c_dcbjr(z, v, &zbj, &icon); 

1. Function 

This function computes the real-order Bessel function of the first kind with complex variable (1) using power series 
expansion and recurrence formula. 
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2. Arguments 

The routine is called as follows: 
ierr = c_dcbjr(z, v, &zbj, &icon); 

where: 
z dcomplex Input Independent variable z. 
v double Input Order v of J zv ( ) . 
zbj dcomplex Output Function value J zv ( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Re( ) log( )maxz  fl  or Im( ) log( )maxz  fl  zbj is set to zero. 
30000 v  0  zbj is set to zero. 

3. Comments on use 

z 
The range of values of z and v are limited to avoid numerical underflow in the computations. The limits are shown in the 
table of condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction. 

Evaluation sequence 
When all the values of J z J z J z J zv v v v M( ), ( ), ( ), , ( )  1 2   are required at the same time, it is more efficient to 
compute them in the following way.  First, compute the value of J zv M ( )  and J zv M 1 ( )  with this function, then the 
others in the order J z J z J zv M v M v   2 3( ), ( ), , ( )  by repeating the recurrence formula (see Method).  Conversely, 
computing these values in the reverse order, i.e. J z J z J zv v v M  2 3( ), ( ), , ( )  by recurrence formula after J zv ( )  and 
J zv1 ( ) , should be avoided because of instability. 
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4. Example program 

This program evaluates the function at z = 10+5i with v from 0.1 to 10 in increments of 0.1. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z, zbj; 
  int n; 
  double v; 
 
  z.re = 10; 
  z.im = 5; 
  for (n=1;n<=100;n++) { 
    v = (double)n/10; 
    /* calculate Bessel function */ 
    ierr = c_dcbjr(z, v, &zbj, &icon); 
    if (icon == 0) 
      printf("z = {%4.2f, %4.2f}   v = %5.2f   zbj = {%4.2f, %4.2f}\n", 
             z, v, zbj); 
    else 
      printf("ERROR: z = {%4.2f, %4.2f}   v = %5.2f" 
             "zbj = {%4.2f, %4.2f}   icon = %i\n",  
             z, v, zbj, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of z, the method used to compute the real-order Bessel function of the first kind with complex 
variable, J zv ( ) , is: 

 Power series expansion, equation (1), when Re( ) Im( )z z  1. 
 Recurrence formula when Re( ) Im( )z z  1. 

Suppose m is an appropriately large integer (depends upon the required precision of z and v) and   an 
appropriately small constant (10 38 ), and moreover that n and   are determined by 

v n   

where, n is an integer and 0 1  .  With the initial values, 
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For further information consult the entry for CBJR in the Fortran SSL II User's Guide. 
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c_dcbkn 
Modified nth-order Bessel function of the second kind with complex 
variable K zn ( ) . 
ierr = c_dcbkn(z, n, &zbk, &icon); 

1. Function 

This function computes the modified nth-order Bessel function of the second kind with complex variable (1) by 
recurrence formula and  -method. 
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In (1), I zn ( )  is the modified nth-order Bessel function of the first kind,   is Euler’s constant, the last term is zero when 
n  0  and   is: 

)1(1

0

1

0








L
m

L

m
L



 

2. Arguments 

The routine is called as follows: 
ierr = c_dcbkn(z, n, &zbk, &icon); 

where: 
z dcomplex Input Independent variable z. 
n int Input Order n of K zn ( ) . 
zbk dcomplex Output Function value K zn ( ) . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 One of the following has occurred: 

 Re( ) log( )maxz  fl  
 Re( )z  0  and Im( ) log( )maxz  fl  
 Re( )z  0  and Im( ) maxz  t  

zbk is set to zero. 

30000 z  0  zbk is set to zero. 
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3. Comments on use 

z 
The range of values of z are limited to avoid numerical overflow and underflow in the computations. The limits are 
shown in the table of condition codes. 

Evaluation sequence 
When Re( )z  0  and all the values of K z K z K z K zn n n n M( ), ( ), ( ), , ( )  1 2   are required at the same time, first 
compute the value of K zn ( )  and K zn1 ( )  with this function, then the others in the order 
K z K z K zn n n M  2 3( ), ( ), , ( )  by repeating the recurrence formula (see Method). When Re( )z  0 , since this is 
unstable, this function must be called for each required order. 

4. Example program 

This program evaluates the function for n=1 and 2,and z = 1+2i. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z, zbk; 
  int n; 
 
  z.re = 1; 
  z.im = 2; 
  for (n=1;n<=2;n++) { 
    /* calculate Bessel function */ 
    ierr = c_dcbkn(z, n, &zbk, &icon); 
    if (icon == 0) 
      printf("z = {%4.2f, %4.2f}   n = %i   zbk = {%4.2f, %4.2f}\n", 
             z, n, zbk); 
    else 
      printf("ERROR: z = {%4.2f, %4.2f}   n = %i" 
             "zbk = {%4.2f, %4.2f}   icon = %i\n",  
             z, n, zbk, icon); 
  } 
  return(0); 
} 

5. Method 

The methods used to compute the modified nth-order Bessel function of the second kind with complex variable, K zn ( ) , 
vary depending on the values of z. 

When  0)Re( z , K zn ( )  is computed by the recurrence formula, 

K z k
z

K z K zk k k  1 1
2( ) ( ) ( )  

for k n 1 2 1, , ,  with starting value of K z0 ( )  and K z1 ( )  computed depending on the value of )Im(z . 

For details of the other methods used, and further information consult the entry for CBKN in the Fortran SSL II User's 
Guide. 
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c_dcblnc 
Balancing of a complex matrix. 
ierr = c_dcblnc(za, k, n, dv, &icon); 

1. Function 

This routine applies the diagonal similarity transformation shown in (1) to an nn  complex matrix A, 

 ADDA 1
~ , (1) 

where D is a real diagonal matrix. By this transformation, the sum of the norm of the elements in the i-th row and 
that of the i-th column (i = 1,2,...,n) are almost equalized for the transformed complex matrix A~ . The norm of an 
element is ||||1 yxz  for the complex number iyxz  . Here, n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dcblnc((dcomplex *) za, k, n, dv, &icon); 

where: 
za dcomplex Input Complex matrix A. 
 za[n][k] Output Balanced complex matrix A~ . 

k int Input C fixed dimension of array za (  n). 
n int Input Order n of matrices A and A~ . 

dv double dv[n] Output Scaling factors (diagonal elements of D). 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 Balancing was not performed. 
30000 One of the following has occurred: 

 n < 1 
 k < n 

Bypassed. 

3. Comments on use 

If there are large differences in magnitude of the elements of a matrix, the precision of computed eigenvalues and 
eigenvectors of that matrix can be adversely affected. This routine can be used before computing the eigenvalues and 
eigenvectors to avoid loss of precision. 

If each element of a matrix is nearly the same in magnitude, this routine  performs no balancing and should not be used. 

If all elements except the diagonal element of a row (or column) are zero, balancing of the row (or column) and 
corresponding column (or row) is bypassed. 



Description of the C-SSL II Routines 

264 

In order to obtain the eigenvectors x of a complex matrix A which has been balanced by this routine, back transformation 
(2) must be applied to the eigenvectors x~  of A~ , 

 xDx ~ . (2) 

The back transformation (2) can be performed using routine c_dchbk2. 

4. Example program 

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then 
performs a back transformation and a normalisation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, m, mode, ip[NMAX], ind[NMAX]; 
  dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX], zaw[NMAX+1][NMAX]; 
  double dv[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    za[i][i].re = n-i; 
    za[i][i].im = 0; 
    for (j=0;j<i;j++) { 
      za[i][j].re = n-i; 
      za[j][i].re = n-i; 
      za[i][j].im = 0; 
      za[j][i].im = 0; 
    } 
  } 
  /* balance matrix A */ 
  ierr = c_dcblnc((dcomplex*)za, k, n, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dcblnc failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* reduce matrix to Hessenberg form */ 
  ierr = c_dches2((dcomplex*)za, k, n, ip, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dches2 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<n;i++)  
    for (j=0;j<n;j++) { 
      zaw[i][j].re = za[i][j].re; 
      zaw[i][j].im = za[i][j].im; 
    } 
  /* find eigenvalues */ 
  ierr = c_dchsqr((dcomplex*)zaw, k, n, ze, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dchsqr failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<m;i++) ind[i] = 1; 
  /* find eigenvectors for given eigenvalues */ 
  ierr = c_dchvec((dcomplex*)za, k, n, ze,  
    ind, m, (dcomplex*)zev, (dcomplex*)zaw, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dchvec failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation to find e-vectors of A */ 
  ierr = c_dchbk2((dcomplex*)zev, k, n, ind, m,  
    (dcomplex*)za, ip, dv, &icon); 
  if (icon > 10000 ) { 
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    printf("ERROR: c_dchbk2 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* normalize e-vectors */ 
  mode = 2; 
  ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dcnrml failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    if (ind[i] != 0) { 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", ze[i].re, ze[i].im); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
 printf("%7.4f+i*%7.4f  ", zev[i][j].re, zev[i][j].im); 
      printf("\n"); 
    } 
  } 
  return(0); 
} 

5. Method 

Consult the entry for CBLNC in the Fortran SSL II User's Guide and reference [119]. 
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c_dcbyn 
nth-order Bessel function of the second kind with complex variable 
Y zn ( ) . 
ierr = c_dcbyn(z, n, &zby, &icon); 

1. Function 

This function computes the nth-order Bessel function of the second kind with complex variable (1) by recurrence formula 
and  -method. 
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In (1), J zn ( )  is the nth-order Bessel function of the second kind,   is Euler’s constant, the last term is zero when n  0  
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2. Arguments 

The routine is called as follows: 
ierr = c_dcbyn(z, n, &zby, &icon); 

where: 
z dcomplex Input Independent variable z. 
n int Input Order n of Y zn ( ) . 
zby dcomplex Output Function value Y zn ( ) . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Re( ) log( )maxz  fl  or Im( ) log( )maxz  fl  zby is set to zero. 
30000 z  0  zby is set to zero. 

3. Comments on use 

z 
The range of values of z are limited to avoid numerical underflow in the computations. The limits are shown in the table 
of condition codes. For details on the constant, flmax , see the Machine constants section of the Introduction. 
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Evaluation sequence 
When all the values of Y z Y z Y z Y zn n n n M( ), ( ), ( ), , ( )  1 2   are required at the same time, the procedure provided in the 
Method section is recommended. 

4. Example program 

This program evaluates the function for n=1 and 2 and z = 1+2i. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z, zby; 
  int n; 
 
  z.re = 1; 
  z.im = 2; 
  for (n=1;n<=2;n++) { 
    /* calculate Bessel function */ 
    ierr = c_dcbyn(z, n, &zby, &icon); 
    if (icon == 0) 
      printf("z = {%4.2f, %4.2f}   n = %i   zby = {%4.2f, %4.2f}\n", 
             z, n, zby); 
    else 
      printf("ERROR: z = {%4.2f, %4.2f}   n = %i" 
             "zby = {%4.2f, %4.2f}   icon = %i\n",  
             z, n, zby, icon); 
  } 
  return(0); 
} 

5. Method 

The nth-order Bessel function of the second kind with complex variable, Y zn ( ) , is computed using equation (2). 

 )()1(2)()( 1 izKiizIizY n
nn

n
n

n 


   (2) 

In (2), the value of I izn ( )  is computed by the Fortran SSL II routine DCBIN (c_dcbin) using the recurrence formula, 
and similarly, K izn ( ) is computed by DCBKN (c_dcbkn) using the recurrence formula and  -method. 

When all the values of Y z Y z Y z Y zn n n n M( ), ( ), ( ), , ( )  1 2   are required at the same time, it is efficient to compute them 
in the following way.  First, compute the value of I izn M ( )  and I izn M  1 ( )  using function c_dcbin, then the 
others I iz I iz I izn M n M n     2 3( ), ( ), , ( )  by repeating the recurrence formula, in the order listed. Similarly, 
K izn ( )  and K izn 1 ( )  are first computed using the function c_dcbkn and then 
K iz K iz K izn n n M    2 3( ), ( ), , ( )  by recurrence formula. And with equation (2), Y zn ( )  is computed. 

For further information consult the entry for CBYN in the Fortran SSL II User's Guide. 
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c_dceig2 
Eigenvalues and corresponding eigenvectors of a complex matrix (QR 
method). 
ierr = c_dceig2(za, k, n, mode, ze, zev, vw, 

ivw, &icon); 

1. Function 

All eigenvalues and corresponding eigenvectors for an order n complex matrix A are determined  1n . The eigenvalues 
are normalised such that 12 x . 

2. Arguments 

The routine is called as follows: 
ierr = c_dceig2((dcomplex *)za, k, n, mode, ze, (dcomplex *)zev, vw, ivw, 

&icon); 

where: 
za dcomplex 

za[n][k] 

Input Matrix A.  
Output The contents are altered on output. 

k int Input C fixed dimension of matrix A ( nk  ). 
n int Input Order n of matrix A. 
mode int Input mode = 1 specifies no balancing. 1mode specifies that balancing is 

included. See Comments on use. 
ze dcomplex 

ze[n] 

Output The eigenvalues of A. 

zev dcomplex 

zev[n][k] 

Output Eigenvectors. They are stored in the rows of zev which correspond to 
their eigenvalues.  

vw double vw[n] Work  
ivw int ivw[n] Work  
icon int Output Condition codes. See below. 
The complete list of condition codes is. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 1n  ze[0] = za[0][0] 

zev[0][0].re = 1 

zev[0][0].im = 0 

20000 Eigenvalues and eigenvectors could not be 
calculated, as the matrix A could not be reduced 
to a triangular form. 

Discontinued 

30000 One of the following has occurred: 
 1n  
 nk   

Bypassed. 
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3. Comments on use 

Balancing and mode 
If the elements of matrix A vary greatly in magnitude, a solution of greater precision can be obtained using 
balancing, i.e. setting 1mode . If the magnitudes of the elements are similar, the balancing has little or no effect and 
should be skipped using 1mode . 

4. Example program 

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 complex matrix. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, mode, ivw[NMAX]; 
  dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX]; 
  double vw[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++)  
    for (j=0;j<=i;j++) { 
      za[i][j].re = n-i; 
      za[j][i].re = n-i; 
      za[i][j].im = 0; 
      za[j][i].im = 0; 
    } 
  mode = 0; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dceig2((dcomplex*)za, k, n, mode,  
                  ze, (dcomplex*)zev, vw, ivw, &icon); 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<n;i++) { 
    printf("eigenvalue:  {%7.4f, %7.4f}\n", ze[i].re, ze[i].im); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("{%7.4f, %7.4f}  ", zev[i][j].re, zev[i][j].im); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

For further information consult the entry for CEIG2 in the Fortran SSL II User's Guide, and also [118] and [119]. 
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c_dceli1 
Complete elliptic integral of the first kind K x( )  
ierr = c_dceli1(x, &celi, &icon); 

1. Function 

This function computes the complete elliptic integral of the first kind 
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using an approximation formula for 10  x . 

2. Arguments 

The routine is called as follows: 
ierr = c_dceli1(x, &celi, &icon); 

where: 
x double Input Independent variable x. 
celi double Output Function value K x( ) . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 0x  
 1x  

celi is set to zero. 

3. Example program 

This program evaluates a table of function values for x from 0.00 to 0.99 in increments of 0.01. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, celi; 
  int i; 
 
  for (i=0;i<100;i++) { 
    x = (double)i/100; 
    /* calculate complete elliptic integral */ 
    ierr = c_dceli1(x, &celi, &icon); 
    if (icon == 0) 
      printf("x = %4.2f   celi = %f\n", x, celi); 
    else 
      printf("ERROR: x = %4.2f   celi = %f   icon = %i\n", x, celi, icon); 
  } 
  return(0); 
} 
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4. Method 

For further information consult the entry for CELI1 in the Fortran SSL II User's Guide and [48]. 

 



Description of the C-SSL II Routines 

272 

c_dceli2 
Complete elliptic integral of the second kind E x( ) . 
ierr = c_dceli2(x, &celi, &icon); 

1. Function 

This function computes the complete elliptic integral of the second kind 
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using an approximation formula for 10  x . 

2. Arguments 

The routine is called as follows: 
ierr = c_dceli2(x, &celi, &icon); 

where: 
x double Input Independent variable x. 
celi double Output Function value E x( ) . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 x < 0 
 x > 1 

celi is set to zero. 

3. Example program 

This program evaluates a table of function values for x from 0.00 to 0.99 in increments of 0.01. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, celi; 
  int i; 
 
  for (i=0;i<100;i++) { 
    x = (double)i/100; 
    /* calculate complete elliptic integral */ 
    ierr = c_dceli2(x, &celi, &icon); 
    if (icon == 0) 
      printf("x = %4.2f   celi = %f\n", x, celi); 
    else 
      printf("ERROR: x = %4.2f   celi = %f   icon = %i\n", x, celi, icon); 
  } 
  return(0); 
} 
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4. Method 

For further information consult the entry for CELI2 in the Fortran SSL II User's Guide and [48]. 
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c_dcfri 
Cosine Fresnel integral )(xC . 
ierr = c_dcfri(x, &cf, &icon); 

1. Function 

This routine computes the Cosine Fresnel integral 
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where 0x , by series and asymptotic expansions. 

2. Arguments 

The routine is called as follows: 
ierr = c_dcfri(x, &cf, &icon); 

where: 
x double Input Independent variable x. See Comments on use for range of x. 
cf double Output Cosine Fresnel integral )(xC . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x   maxt  cf is set to 0.5. 
30000 x < 0 cf is set to 0. 

3. Comments on use 

Range of x 
The valid range of argument x is 0   x < maxt .This is because accuracy is lost if x is outside this range. For details on 

maxt  see the Machine constants section of the Introduction. 

4. Example program 

This program generates a range of function values for 101 points in the the interval [0,100]. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, cf; 
  int i; 
 
  for (i=0;i<=100;i++) { 
    x = i; 
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    /* calculate Cosine Fresnel integral */ 
    ierr = c_dcfri(x, &cf, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   cf = %f\n", x, cf); 
    else 
      printf("ERROR: x = %5.2f   cf = %f   icon = %i\n", x, cf, icon); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for CFRI in the Fortran SSL II User's Guide. 
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c_dcgsbm 
Storage format conversion of matrices (standard format to symmetric 
band format). 
ierr = c_dcgsbm(ag, k, n, asb, nh, &icon); 

1. Function 

This routine converts an nn  symmetric band matrix with bandwidth h from standard 2-D array format to symmetric 
band format (n>h 0). 

2. Arguments 

The routine is called as follows: 
ierr = c_dcgsbm((double*)ag, k, n, asb, nh, &icon); 

where: 
ag double 

ag[n][k] 

Input Symmetric band matrix A stored in the standard storage format. 

k int Input C fixed dimension of array ag ( n). 
n int Input The order n of matrix A. 
asb double 

asb[Asblen] 
Output Symmetric band matrix A stored in symmetric band storage format. See 

Array storage formats in the Introduction section for details. 
.2/)1()1(  hhhnAsblen  

nh int Input The bandwidth h of matrix A. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 nh < 0 
 n   nh 
 k < n 

Bypassed. 

3. Comments on use 

The symmetric band matrix in the standard format 
Only the elements of the diagonal and upper band portion need be assigned to array ag. The routine copies the upper 
band portion to the lower band portion. 

Saving on storage space 
If there is no need to keep the contents of array ag, then saving on storage space is possible by specifying the same array 
for argument asb. WARNING – make sure the array size is consistent with both arguments otherwise unpredictable 
results can occur. 
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4. Example program 

This program converts a matrix from standard to symmetric band format and prints the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b) ((a) < (b) ? (a) : (b)) 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
#define NMAX 5 
#define NHMAX 2 
 
/* print symmetric band matrix */ 
void prtsymbandmat(double a[], int n, int nh) 
{ 
  int ij, i, j, jmin; 
  printf("symmetric band matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh, 0); 
    for (j=jmin;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
/* print general matrix */ 
void prtgenmat(double *a, int k, int n, int m) 
{ 
  int i, j; 
  printf("general matrix format\n"); 
  for (i=0;i<n;i++) { 
    for (j=0;j<m;j++) 
      printf("%7.2f  ",a[i*k+j]); 
    printf("\n"); 
  } 
} 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, i, j, k, jmax; 
  double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], ag[NMAX][NMAX]; 
 
  /* zero matrix */ 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) 
      ag[i][j] = 0; 
  /* initialize symmetric band matrix  
     in upper half of general matrix storage format */ 
  nh = NHMAX; 
  for (i=0;i<n;i++) { 
    jmax = min(i+nh, n-1); 
    for (j=i;j<=jmax;j++) 
      ag[i][j] = j-i+1; 
  } 
  k = NMAX; 
  /* convert to symmetric band matrix storage format */ 
  ierr = c_dcgsbm((double*)ag, k, n, asb, nh, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dcgsbm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print matrices */ 
  printf("ag: \n"); 
  prtgenmat((double*)ag, k, n, n); 
  printf("asb: \n"); 
  prtsymbandmat(asb, n, nh); 
  return(0); 
} 
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5. Method 

Consult the entry for CGSBM in Fortran SSL II User's Guide. 
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c_dcgsm 
Storage format conversion of matrices (real standard format to 
symmetric format). 
ierr = c_dcgsm(ag, k, n, as, &icon); 

1. Function 

This function converts an n  n real symmetric matrix from standard 2-D array format to the original symmetric storage 
format (n  1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dcgsm((double*)ag, k, n, as, &icon); 

where: 
ag double 

ag[n][k] 

Input Symmetric matrix A stored in the standard format. 

k int Input C fixed dimension of array ag ( n). 
n int Input Order n of matrix A. 
as double 

as[Aslen] 
Output Symmetric matrix A stored in the symmetric format. Aslen=n(n+1)/2. 

See the Array storage formats section in the Introduction. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n < 1 
 k < n 

Bypassed. 

3. Comments on use 

The symmetric matrix in the standard format 
Only the elements of the diagonal and upper triangular portions need be assigned to array ag.  The function copies the 
upper triangular portion to the lower one. 

Saving on storage space 
If there is no need to keep the contents of array ag, then saving on storage space is possible by specifying the same array 
for both arguments. WARNING – make sure the array size is compliant for both arguments otherwise unpredictable 
results can occur. 

4. Example program 

This example program converts a matrix from real standard format to symmetric format, and prints out both matrices. 
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#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 5 
 
/* print symmetric matrix */ 
void prtsymmat(double a[], int n) 
{ 
  int ij, i, j; 
  printf("symmetric matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    for (j=0;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
/* print general matrix */ 
void prtgenmat(double *a, int k, int n, int m) 
{ 
  int i, j; 
  printf("general matrix format\n"); 
  for (i=0;i<n;i++) { 
    for (j=0;j<m;j++) 
      printf("%7.2f  ",a[i*k+j]); 
    printf("\n"); 
  } 
} 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij, k; 
  double as[NMAX*(NMAX+1)/2], ag[NMAX][NMAX]; 
 
  /* initialize general matrix storage format  */ 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=i;j<n;j++) { 
      ag[i][j] = n-i; 
    } 
  k = NMAX; 
  /* convert to symmetric matrix storage format */ 
  ierr = c_dcgsm((double*)ag, k, n, as, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dcgsm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print matrices */ 
  printf("ag: \n"); 
  prtgenmat((double*)ag, k, n, n); 
  printf("as: \n"); 
  prtsymmat(as, n); 
  return(0); 
} 

5. Method 

The conversion process from standard format to symmetric format consists of two stages: 

 With the diagonal as the axis of symmetry, the elements of the upper triangular portion are copied to the lower 
triangular part, such that ag[i][j]=ag[j][i].  Here, i < j. 

 The diagonal and lower triangular elements ag[i-1][j-1] are transferred to the i*(i-1)/2+j-1 position in 
array as. Here, i  j. Transfer begins with the first column of ag and continues column-by-column.  The 
correspondence between location is shown below, where NT=n(n+1)/2. 

  



 c_dcgsm  

 281 

Elements in 
standard format 

Elements of 
matrix 

Elements in 
symmetric format 

ag[0][0] 

ag[0][1] 

ag[1][1] 

: 

ag[i-1][j-1] 

: 

ag[n-2][n-1] 

ag[n-1][n-1] 

 
 
 
 
 
 
 
 

a11 

a21 
a22 

: 

aji 
: 

ann-1 
ann 

 
 
 
 
 
 
 
 

as[0] 

as[1] 

as[2] 

: 

as[i*(i-1)/2+j-1] 

: 

as[NT-2] 

as[NT-1] 
For further information consult the entry for CGSM in the Fortran SSL II User’s Guide. 
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c_dchbk2 
Back transformation of the eigenvectors of a complex Hessenberg matrix 
to the eigenvectors of a complex matrix. 
ierr = c_dchbk2(zev, k, n, ind, m, zp, ip, dv, 

&icon); 

1. Function 

This routine performs back transformation on m eigenvectors of an nn  complex Hessenberg matrix H to obtain the 
eigenvectors of a complex matrix A. H is assumed to be obtained from A using the stabilized elementary similarity 
transformation method. No eigenvectors of the complex matrix A are normalized. Here 1   m   n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dchbk2((dcomplex *) zev, k, n, ind, m, (dcomplex *) zp, ip, dv, 

&icon); 

where: 
zev dcomplex Input The m eigenvectors of the Hessenberg matrix H. 
 zev[m][k] Output The lm eigenvectors of complex matrix A, where lm  indicates the 

number of elements of ind whose value is 1. 
k int Input C fixed dimension of array zev and zp (  n). 
n int Input Order n of matrices A and H. 
ind int ind[m] Input Indicates which eigenvectors are to be back transformed: 

ind[j-1] = 0 if the eigenvector corresponding to the j-th eigenvalue is 
                           not to be back transformed. 
ind[j-1] = 1 if the eigenvector corrsponding to the j-th eigenvalue is 
                           to be back transformed. 

m int Input Number m of eigenvectors of the complex matrix A. 
zp dcomplex 

zp[n][k] 

Input Transformation matrix from the reduction of complex matrix A to 
complex Hessenberg matrix H. See Comments on use. 

ip int ip[n] Input Transformation information from the reduction of complex matrix A to 
complex Hessenberg matrix H. See Comments on use. 

dv double dv[n] Input Scaling factors used for balancing the matrix A. If matrix A was not 
balanced, set dv[0] = 0. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 zev[0][0] = (1,0). 
30000 One of the following has occurred: 

 m < 1 or m > n 
 k < n 

Bypassed. 
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3. Comments on use 

zev, ind and m 
The routine c_dchvec can be used to obtain the eigenvectors of a complex Hessenberg matrix. Input argument m and 
output arguments zev and ind of c_dchvec are the same as input arguments zev, ind, and m for this routine. 

zp and ip 
The routine c_dches2 can be used to reduce a complex matrix to a complex Hessenberg matrix. Output arguments za 
and ip of c_dches2 are the same as input arguments zp and ip of this routine. 

dv 
The output argument dv of c_dcblnc contains the scaling factors used for balancing the matrix A, and is the input 
argument dv of this routine. 

4. Example program 

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then 
performs a back transformation and a normalisation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, m, mode, ip[NMAX], ind[NMAX]; 
  dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX], zaw[NMAX+1][NMAX]; 
  double dv[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    za[i][i].re = n-i; 
    za[i][i].im = 0; 
    for (j=0;j<i;j++) { 
      za[i][j].re = n-i; 
      za[j][i].re = n-i; 
      za[i][j].im = 0; 
      za[j][i].im = 0; 
    } 
  } 
  /* balance matrix A */ 
  ierr = c_dcblnc((dcomplex*)za, k, n, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dcblnc failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* reduce matrix to Hessenberg form */ 
  ierr = c_dches2((dcomplex*)za, k, n, ip, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dches2 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<n;i++)  
    for (j=0;j<n;j++) { 
      zaw[i][j].re = za[i][j].re; 
      zaw[i][j].im = za[i][j].im; 
    } 
  /* find eigenvalues */ 
  ierr = c_dchsqr((dcomplex*)zaw, k, n, ze, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dchsqr failed with icon = %i\n", icon); 
    exit (1); 
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  } 
  for (i=0;i<m;i++) ind[i] = 1; 
  /* find eigenvectors for given eigenvalues */ 
  ierr = c_dchvec((dcomplex*)za, k, n, ze,  
    ind, m, (dcomplex*)zev, (dcomplex*)zaw, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dchvec failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation to find e-vectors of A */ 
  ierr = c_dchbk2((dcomplex*)zev, k, n, ind, m,  
    (dcomplex*)za, ip, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dchbk2 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* normalize e-vectors */ 
  mode = 2; 
  ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dcnrml failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    if (ind[i] != 0) { 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", ze[i].re, ze[i].im); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
 printf("%7.4f+i*%7.4f  ", zev[i][j].re, zev[i][j].im); 
      printf("\n"); 
    } 
  } 
  return(0); 
} 

5. Method 

Consult the entry for CHBK2 in the Fortran SSL II User's Guide and reference [119]. 
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c_dches2 
Reduction of a complex matrix to a complex Hessenberg matrix 
(stabilized elementary similarity transformation). 
ierr = c_dches2(za, k, n, ip, &icon); 

1. Function 

This routine reduces an nn  complex matrix A to a complex Hessenberg matrix H using the stabilized elementary 
similarity transformation method (Gaussian elimination method with partial pivoting) 

 ASSH 1 , 

where S is a transformation matrix. Here, n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dches2((dcomplex *) za, k, n, ip, &icon); 

where: 
za dcomplex Input Complex matrix A. 
 za[n][k] Output Complex upper Hessenberg matrix H. The remaining lower triangular 

portion contains the transformation matrix S. See Comments on use. 
k int Input C fixed dimension of array za (  n). 
n int Input Order n of matrix A. 
ip int ip[n] Output Information regarding the transformation matrix S. See Comments on 

use. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 or n = 2  Reduction is not performed. 
30000 One of the following has occurred: 

 n < 1 
 k < n 

Bypassed. 

3. Comments on use 

To determine eigenvalues of matrix H (and hence matrix A), output argument za of this routine is used as input argument 
za of c_dchsqr. 

To determine eigenvectors of matrix H, output argument za of this routine is used as input argument za of c_dchvec. 

To back transform and normalize the eigenvectors of matrix H (obtained from c_dchvec) to obtain the eigenvectors of 
matrix A, output arguments za and ip of this routine are used as input arguments zp and ip of c_dchbk2. 
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The precision of computed eigenvalues of a complex matrix A is determined in the Hessenberg matrix reduction process. 
Therefore, this routine has been implimented so that the Hessenberg matrix is determined with as high a precision as 
possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller 
eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process. 

4. Example program 

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, i, j, k, ip[NMAX]; 
  dcomplex za[NMAX][NMAX], ze[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    za[i][i].re = n-i; 
    za[i][i].im = 0; 
    for (j=0;j<i;j++) { 
      za[i][j].re = n-i; 
      za[j][i].re = n-i; 
      za[i][j].im = 0; 
      za[j][i].im = 0; 
    } 
  } 
  /* reduce matrix to Hessenberg form */ 
  ierr = c_dches2((dcomplex*)za, k, n, ip, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dches2 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues */ 
  ierr = c_dchsqr((dcomplex*)za, k, n, ze, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dchsqr failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf("eigenvalues:\n"); 
  for (i=0;i<m;i++) { 
    printf("%7.4f+i*%7.4f  ", ze[i].re, ze[i].im); 
  } 
  printf("\n"); 
  return(0); 
} 

5. Method 

Consult the entry for CHES2 in the Fortran SSL II User's Guide and reference [119]. 
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c_dchsqr 
Eigenvalues of a complex Hessenberg matrix (QR method). 
ierr = c_dchsqr(za, k, n, ze, &m, &icon); 

1. Function 

This routine obtains the eigenvalues of an nn  complex Hessenberg matrix A using the QR method. Here, n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dchsqr((dcomplex *) za, k, n, ze, &m, &icon); 

where: 
za dcomplex Input Matrix A.  
 za[n][k] Output The contents of za are changed on output. 
k int Input C fixed dimension of array za (  n). 
n int Input Order n of matrix A. 
ze dcomplex 

ze[n] 

Output Eigenvalues of matrix A. 

m int Output The number of eigenvalues obtained. 
icon int Output Condition code. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 ze[0] =za[0][0]. 
15000 Some of the eigenvalues could not be obtained. Discontinued. m is set to the number of 

eigenvalues obtained, 1   m < n. 
20000 No eigenvalues could be obtained. Discontinued. m is set to 0. 
30000 One of the following has occurred: 

 n < 1 
 k < n 

Bypassed. 

3. Comments on use 

A complex matrix A can be reduced to a complex Hessenberg matrix using routine c_dches2, before calling this 
routine to obtain the eigenvalues. The output argument za from c_dhes2 is the input argument za of this routine. 

The contents of array za are changed on output by this routine. Therefore, if eigenvectors are also required, a copy of 
array za should be made before calling this routine, so that the copy can be used later as input argument za of 
c_dchvec. 
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4. Example program 

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, i, j, k, ip[NMAX]; 
  dcomplex za[NMAX][NMAX], ze[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    za[i][i].re = n-i; 
    za[i][i].im = 0; 
    for (j=0;j<i;j++) { 
      za[i][j].re = n-i; 
      za[j][i].re = n-i; 
      za[i][j].im = 0; 
      za[j][i].im = 0; 
    } 
  } 
  /* reduce matrix to Hessenberg form */ 
  ierr = c_dches2((dcomplex*)za, k, n, ip, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dches2 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues */ 
  ierr = c_dchsqr((dcomplex*)za, k, n, ze, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dchsqr failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf("eigenvalues:\n"); 
  for (i=0;i<m;i++) { 
    printf("%7.4f+i*%7.4f  ", ze[i].re, ze[i].im); 
  } 
  printf("\n"); 
  return(0); 
} 

5. Method 

Consult the entry for CHSQR in the Fortran SSL II User's Guide and references [118] and [119]. 

 



 c_dchvec  

 289 

c_dchvec 
Eigenvectors of a complex Hessenberg matrix (inverse iteration method). 
ierr = c_dchvec(za, k, n, ze, ind, m, zev, 

zaw, &icon); 

1. Function 

This routine obtains eigenvectors jx  corresponding to selected eigenvalues j of an nn  complex Hessenberg matrix 
A, using the inverse iteration method. The eigenvectors are not normalized. Here, n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dchvec((dcomplex *) za, k, n, ze, ind, m, (dcomplex *) zev, 

(dcomplex *)zaw, &icon); 

where: 
za dcomplex 

za[n][k] 

Input Matrix A. 

k int Input C fixed dimension of arrays za, ev, and zaw (  n). 
n int Input Order n of matrix A. 
ze dcomplex 

ze[m] 

Input Eigenvalues, with ze[j-1] = j , mj ,...,1 . 

ind int ind[m] Input Indicates which eigenvectors are to be obtained 
ind[j-1] = 0 if an eigenvector corresponding to the j-th eigenvalue 
                          j is not to be obtained. 
ind[j-1] = 1 if an eigenvector corresponding to the j-th eigenvalue 
                          j  is to be obtained. 
See Comments on use. 

  Output The contents of array ind are changed on output. See Comments on use.
m int Input Number m ( n ) of eigenvalues stored in array ze. 
zev dcomplex 

zev[mk][k] 
Output Eigenvectors, where mk indicates the number of eigenvectors to be 

obtained. See Comments on use. 
zaw dcomplex 

zaw[n+1][k] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 zev[0][0] = (1,0). 
15000 An eigenvector corresponding to a specified 

eigenvalue cannot be determined. 
The elements of ind corresponding to the 
eigenvectors that could not be obtained are set to 
0. 

20000 No eigenvectors could be obtained. All elements of ind are set to 0. 
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Code  Meaning  Processing 
30000 One of the following has occurred: 

 m < 1 or m > n 
 k < n 

Bypassed. 

3. Comments on use 

ind and mk 
The number of elements of ind whose value is 1 is the number of eigenvectors to be determined, mk. 

If the j-th eigenvector cannot be determined, ind[j-1] is set to 0 and icon = 15000. 

General comments 
The eigenvalues used by this routine can be determined by routine c_dchsqr. The output arguments ze and m of 
c_dchsqr are the same as the input arguments ze and m of this routine. The input argument za of c_dchsqr (not the 
output argument za of c_dchsqr) is the same as the input argument za of this routine. 

When selected eigenvectors of a complex matrix are to be determined: 

 the complex matrix is first reduced to a complex Hessenberg matrix using c_dches2, 

 eigenvalues of the Hessenberg matrix are determined using routine c_dchsqr, 

 selected eigenvectors of the Hessenberg matrix are determined using this routine, 

 back transformation is applied to the above eigenvectors using routine c_dchbk2 to obtain the eigenvectors of the 
complex matrix. 

Note that c_dceig2 can be used to obtain all the eigenvectors of a complex matrix. 

The resulting eigenvectors of this routine have not been normalized. If necessary, routine c_dcnrml can be used to 
normalize complex eigenvectors. 

Output arguments ind, m and zev of this routine are the same as the input arguments ind, m and zev of routines 
c_dchbk2 and c_dcnrml. 

4. Example program 

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then 
performs a back transformation and a normalisation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, m, mode, ip[NMAX], ind[NMAX]; 
  dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX], zaw[NMAX+1][NMAX]; 
  double dv[NMAX]; 
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  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    za[i][i].re = n-i; 
    za[i][i].im = 0; 
    for (j=0;j<i;j++) { 
      za[i][j].re = n-i; 
      za[j][i].re = n-i; 
      za[i][j].im = 0; 
      za[j][i].im = 0; 
    } 
  } 
  /* balance matrix A */ 
  ierr = c_dcblnc((dcomplex*)za, k, n, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dcblnc failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* reduce matrix to Hessenberg form */ 
  ierr = c_dches2((dcomplex*)za, k, n, ip, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dches2 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<n;i++)  
    for (j=0;j<n;j++) { 
      zaw[i][j].re = za[i][j].re; 
      zaw[i][j].im = za[i][j].im; 
    } 
  /* find eigenvalues */ 
  ierr = c_dchsqr((dcomplex*)zaw, k, n, ze, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dchsqr failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<m;i++) ind[i] = 1; 
  /* find eigenvectors for given eigenvalues */ 
  ierr = c_dchvec((dcomplex*)za, k, n, ze,  
    ind, m, (dcomplex*)zev, (dcomplex*)zaw, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dchvec failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation to find e-vectors of A */ 
  ierr = c_dchbk2((dcomplex*)zev, k, n, ind, m,  
    (dcomplex*)za, ip, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dchbk2 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* normalize e-vectors */ 
  mode = 2; 
  ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dcnrml failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    if (ind[i] != 0) { 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", ze[i].re, ze[i].im); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
 printf("%7.4f+i*%7.4f  ", zev[i][j].re, zev[i][j].im); 
      printf("\n"); 
    } 
  } 
  return(0); 
} 

5. Method 

Consult the entry for CHVEC in the Fortran SSL II User's Guide and reference [119]. 
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c_dcjart 
Roots of a polynomial with complex coefficients (Jarratt method). 
ierr = c_dcjart(za, &n, z, &icon); 

1. Function 

This function finds the roots of a polynomial equation (1) with complex coefficients by the Jarratt method. 

 a z a z an n
n0 1

1 0      (1) 

In (1), ai  are the complex coefficients, 00 a  and n  1 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dcjart(za, &n, z, &icon); 

where: 
za dcomplex 

za[n+1] 

Input 
Output 

Coefficients of the polynomial equation, where za[i]= ai . 
The contents of the array are altered on output. 

n int Input Order n of the equation. 
  Output Number of roots found. See Comments on use. 
z dcomplex z[n] Output The n roots, returned in z[0] to z[n-1] and in the order they were 

found. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Not all the n roots could be found. The number of roots found is returned by the 

argument n and the roots themselves are returned 
in array z. 

30000 One of the following has occurred: 
 n < 1 
 a0  = 0 

Bypassed. 

3. Comments on use 

When the order of the equation, n, is 1 or 2, the root formula is used instead of the Jaratt method. 

An nth degree polynomial equation has n roots. However, it is possible, though rare, that not all the roots can be found. 
Therefore, it is good practice to check the arguments icon and n, to see whether or not all the roots have been found. 
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4. Example program 

This example program computes the roots of the polynomial 06116 23  zzz . 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z[N]; 
  dcomplex za[] = {{1, 0}, 
                   {-6, 0}, 
                   {11, 0}, 
                   {-6, 0}}; 
  int n, i; 
 
  /* initialize data */ 
  n = N; 
  /* find roots of polynomial */ 
  ierr = c_dcjart(za, &n, z, &icon); 
  printf("icon = %i   n = %i\n", icon, n); 
  for (i=0;i<n;i++) 
    printf("z[%i] = {%12.4e, %12.4e}\n", i, z[i].re, z[i].im); 
  printf("exact roots are: {1, 0}, {2, 0} and {3, 0}\n"); 
  return(0); 
} 

5. Method 

This function uses a slightly modified version of the Garside-Jarratt-Mack method to obtain the roots. For further 
information consult the entry for CJART in the Fortran SSL II User's Guide and [38]. 
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c_dclu 
LU-decomposition of a complex matrix (Crout’s method). 
ierr = c_dclu(za, k, n, epsz, ip, &is, zvw, 

&icon); 

1. Function 

This function LU-decomposes an n  n general complex matrix A using Crout’s method: 

 PA LU  (1) 

Where P is the permutation matrix that performs the row exchanges required in partial pivoting, L is a lower triangular 
matrix and U is a unit upper triangular matrix (n1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dclu((dcomplex*)za, k, n, epsz, ip, &is, zvw, &icon); 

where: 
za dcomplex 

za[n][k] 

Input 
Output 

Matrix A. 
Matrices L and U (suitable for input to the complex matrix inverse 
function, c_dcluiv).  See Comments on use. 

k int Input C fixed dimension of array za ( n). 
n int Input Order n of matrix A. 
epsn double Input Tolerance for relative zero test of pivots during the decomposition of A 

( 0).  When epsz is zero, a standard value is used.  See Comments on 
use. 

ip int ip[n] Output Transposition vector that provides the row exchanges which occurred 
during partial pivoting (suitable for input to the complex matrix inverse 
function, c_dcluiv).  See Comments on use. 

is int Output Information for obtaining the determinant of matrix A.  When the n 
elements of the calculated diagonal of array za are multiplied together, 
and the result is then multiplied by is, the determinant is obtained. 

zvw dcomplex 

zvw[n] 

Work  

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Either all of the elements of some row were zero 

or the pivot became relatively zero.  It is highly 
probable that the coefficient matrix is singular. 

Discontinued. 
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Code  Meaning  Processing 
30000 One of the following has occurred: 

 k < n 
 n < 1 
 epsz < 0 

Bypassed. 

3. Comments on use 

epsz 
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning: 

If both the real and imaginary parts of the pivot value lose more than s significant digits during LU-decomposition by 
Crout’s method, the pivot value is assumed to be zero and computation is discontinued with icon=20000. 

The standard value of epsz is normally 16µ, where µ is the unit round off. If processing is to proceed at a low pivot 
value, epsz will be given the minimum value but the result is not always guaranteed. 

ip 
The transposition vector corresponds to the permutation matrix P of LU-decomposition with partial pivoting.  In this 
function, the elements of the array za are actually exchanged in partial pivoting.  In the J-th stage (J = 1, …, n) of 
decomposition, if the I-th row has been selected as the pivotal row the elements of the I-th row and the elements of the J-
th row are exchanged.  Then, in order to record the history of this exchange, I is stored in ip[j-1]. 

Matrix inverse 
This function is the first stage in a two-stage process to compute the inverse of an n  n complex general matrix. After 
calling this function, calling c_dcluiv, will complete the task of matrix inversion. 

4. Example program 

This example program initialises A and x (from bAx  ), and then calculates b by multiplication. Matrix A is then 
decomposed into LU factors using the library routine. 1A  is then calculated and used to calculate x in the equation 

xbA 1  and this resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, is; 
  double epsz, eps; 
  dcomplex za[NMAX][NMAX]; 
  dcomplex zb[NMAX], zx[NMAX], zy[NMAX], zvw[NMAX]; 
  int ip[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    for (j=i;j<n;j++) { 
      za[i][j].re = n-j; 
      za[i][j].im = n-j; 
      za[j][i].re = n-j; 
      za[j][i].im = n-j; 
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    } 
    zx[i].re = i+1; 
    zx[i].im = i+1; 
  } 
  /* initialize constant vector zb = za*zx */ 
  ierr = c_dmcv((dcomplex*)za, k, n, n, zx, zb, &icon); 
  epsz = 1e-6; 
  /* perform LU decomposition */ 
  ierr = c_dclu((dcomplex*)za, k, n, epsz, ip, &is, zvw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvclu failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* find matrix inverse from LU factors */ 
  ierr = c_dcluiv((dcomplex*)za, k, n, ip, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dcluiv failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate zy = za*zb */ 
  ierr = c_dmcv((dcomplex*)za, k, n, n, zb, zy, &icon); 
  /* compare zx and zy */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((zy[i].re-zx[i].re)/zx[i].re) > eps ||  
        fabs((zy[i].im-zx[i].im)/zx[i].im) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Crout’s method with partial pivoting is used.  For further information consult the entry for CLU in the Fortran SSL II 
User’s Guide and [7], [34] and [83]. 
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c_dcluiv 
The inverse of a complex matrix decomposed into L and U factors. 
ierr = c_dcluiv(zfa, k, n, ip, &icon); 

1. Function 

This function computes the inverse A 1  of an n  n complex general matrix A given in decomposed form PA = LU. 

 A U L P  1 1 1  (1) 

Where L and U are the respective n  n lower and unit upper triangular matrices, P is the permutation matrix that 
performs the row exchanges in partial pivoting for LU-decomposition (n1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dcluiv((dcomplex*)zfa, k, n, ip, &icon); 

where: 
zfa dcomplex 

zfa[n][k] 

Input Matrices L and U (obtained from function c_dclu).  See Comments on 
use. 

  Output Inverse A 1 . 
k int Input C fixed dimension of array zfa ( n). 
n int Input Order n of matrices L and U. 
ip int ip[n] Input Transposition vector that provides the row exchanges which occurred 

during partial pivoting, obtained from function c_dclu.  See Comments 
on use. 

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Singular matrix. Discontinued. 
30000 One of the following has occurred: 

 k < n 
 n < 1 
 an error in array ip. 

Bypassed. 

3. Comments on use 

General comments 
Prior to calling this function, the LU-decomposed matrix and transposition vector must be obtained by the function, 
c_dclu, and passed into here via zfa and ip, to obtain the inverse. For solving linear equations use the c_dlcx 
function. This is far more efficient than the inverse matrix route. Users should only use this function when calculating the 
inverse matrix is unavoidable. 
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The transposition vector corresponds to the permutation matrix P, equation (1), for LU-decomposition with partial 
pivoting, Please see the notes for the c_dclu function. 

4. Example program 

This example program initialises A and x (from bAx  ), and then calculates b by multiplication. Matrix A is then 
decomposed into LU factors. The library routine is then called to calculate 1A  which is then used in the equation 

xbA 1  to calculate x, and this resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, is; 
  double epsz, eps; 
  dcomplex za[NMAX][NMAX]; 
  dcomplex zb[NMAX], zx[NMAX], zy[NMAX], zvw[NMAX]; 
  int ip[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    for (j=i;j<n;j++) { 
      za[i][j].re = n-j; 
      za[i][j].im = n-j; 
      za[j][i].re = n-j; 
      za[j][i].im = n-j; 
    } 
    zx[i].re = i+1; 
    zx[i].im = i+1; 
  } 
  /* initialize constant vector zb = za*zx */ 
  ierr = c_dmcv((dcomplex*)za, k, n, n, zx, zb, &icon); 
  epsz = 1e-6; 
  /* perform LU decomposition */ 
  ierr = c_dclu((dcomplex*)za, k, n, epsz, ip, &is, zvw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvclu failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* find matrix inverse from LU factors */ 
  ierr = c_dcluiv((dcomplex*)za, k, n, ip, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dcluiv failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate zy = za*zb */ 
  ierr = c_dmcv((dcomplex*)za, k, n, n, zb, zy, &icon); 
  /* compare zx and zy */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((zy[i].re-zx[i].re)/zx[i].re) > eps ||  
        fabs((zy[i].im-zx[i].im)/zx[i].im) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 
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5. Method 

Given LU-decomposed matrices L, U and permutation matrix P that indicates row exchanges during partial pivoting then 
the inverse of A is computed by calculating L1  and U 1 .  For further information consult the entry for CLUIV in the 
Fortran SSL II User’s Guide and [34]. 
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c_dclux 
Solution of a system of linear equations with a complex matrix in LU-
decomposed form. 
ierr = c_dclux(zb, zfa, k, n, isw, ip, &icon); 

1. Function 

This routine solves a system of linear equations with an nn  LU - decomposed complex matrix 

 PbLUx   (1) 

In (1), P is a permutation matrix that performs row exchange required in partial pivoting for the LU - decomposition, L is 
a lower triangular matrix, U is a unit upper triangular matrix, b is a complex constant vector, and x is the solution vector. 
Both vectors are of size n (n  1). 

One of the following equations can be solved instead of (1) 

 PbLy   (2) 

 bUz   (3) 

2. Arguments 

The routine is called as follows: 
ierr = c_dclux(zb, (dcomplex*)zfa, k, n, isw, ip, &icon); 

where: 
zb dcomplex Input Constant vector b. 
 zb[n] Output One of the solution vectors x, y, or z. 
zfa dcomplex 

zfa[n][k] 

Input Matrix )( IUL  . See Comments on use. 

k int Input C fixed dimension of array zfa ( n). 
n int Input Order of matrices L and U. 
isw int Input Control information. 

 isw = 1 when solution x in (1) is required 
 isw = 2 when solution y in (2) is required 
 isw = 3 when solution z in (3) is required 

ip int ip[n] Input Transposition vector that provides the row exchanges that occurred 
during partial pivoting. See Comments on use. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Coefficient matrix was singular. Discontinued. 
30000 One of the following occurred: 

 n < 1 
Bypassed. 
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Code  Meaning  Processing 
 k < n 
 isw  1,2, or 3 
 error found in ip 

3. Comments on use 

A system of linear equations with complex coefficient matrix can be solved by calling the routine c_dclu to LU-
decompose the coefficient matrix prior to calling this routine. The input arguments zfa and ip of this routine are the 
same as the output arguments za and ip of routine c_dclu. Alternatively, the system of linear equations can be solved 
by calling the single routine c_dlcx  

4. Example program 

This program solves a system of linear equations using LU decomposition and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, is, isw; 
  double epsz, eps; 
  dcomplex zfa[NMAX][NMAX]; 
  dcomplex zb[NMAX], zx[NMAX], zvw[NMAX]; 
  int ip[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    for (j=i;j<n;j++) { 
      zfa[i][j].re = n-j; 
      zfa[i][j].im = n-j; 
      zfa[j][i].re = n-j; 
      zfa[j][i].im = n-j; 
    } 
    zx[i].re = i+1; 
    zx[i].im = i+1; 
  } 
  /* initialize constant vector zb = za*zx */ 
  ierr = c_dmcv((dcomplex*)zfa, k, n, n, zx, zb, &icon); 
  epsz = 1e-6; 
  /* perform LU decomposition */ 
  ierr = c_dclu((dcomplex*)zfa, k, n, epsz, ip, &is, zvw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dclu failed with icon = %d\n", icon); 
    exit(1); 
  } 
  isw = 1; 
  /* solve system of equations using LU factors */ 
  ierr = c_dclux(zb, (dcomplex*)zfa, k, n, isw, ip, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dclux failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check result */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((zb[i].re-zx[i].re)/zx[i].re) > eps ||  
        fabs((zb[i].im-zx[i].im)/zx[i].im) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
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  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for CLUX in the Fortran SSL II User's Guide and [7], [34], and [83]. 
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c_dcnrml 
Normalization of the eigenvectors of a complex matrix. 
ierr = c_dcnrml(zev, k, n, ind, m, mode, 

&icon); 

1. Function 

This routine obtains eigenvectors jy  by normalizing m eigenvectors jx , j=1,2,...,m of an nn  complex matrix. 

Either (1) or (2) is used in the normalization process, 

 


 jjj xxy / , (1) 

 
2

/ jjj xxy  . (2) 

Here n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dcnrml((dcomplex *) zev, k, n, ind, m, mode, &icon); 

where: 
zev dcomplex Input The m eigenvectors jx , mj ,...,1 , stored by row. See Comments on 

use. 
 zev[m][k] Output The m normalized eigenvectors jy , mj ,...,1 . 
k int Input C fixed dimension of array zev (  n). 
n int Input Order n of the complex matrix. 
ind int ind[m] Input Indicates which eigenvectors are to be normalized. 

ind[j-1] = 0 if the eigenvector corresponding to the j-th eigenvalue is 
                           not to be normalized. 
ind[j-1] = 1 if the eigenvector corresponding to the j-th eigenvalue is 
                           to be normalized. 
See Comments on use. 

m int Input Number m of eigenvectors. See Comments on use. 
mode int Input Indicates method of normalization: 

mode = 1 if (1) is to be used, 
mode = 2 if (2) is to be used. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 zev[0][0] = (1,0). 
30000 One of the following has occurred: 

 m < 1 or m > n 
 k < n 

Bypassed. 
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Code  Meaning  Processing 
 mode  1 or 2 
 error found in ind 

3. Comments on use 

zev, ind and m 
If routine c_dchvec is called before this routine, input arguments zev, ind and m of this routine are the same as output 
arguments zev and ind and input argument m of c_dchvec. 

If routine c_dchbk2 is called before this routine, input arguments zev, ind and m of this routine are the same as output 
argument zev and input arguments ind and m of c_dchbk2. 

4. Example program 

This program finds the eigenvectors of a complex matrix, and then normalizes them such that 1


x . 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, mode, m, ind[NMAX], ivw[NMAX]; 
  dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX]; 
  double vw[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    za[i][i].re = n-i; 
    za[i][i].im = 0; 
    for (j=0;j<i;j++) { 
      za[i][j].re = n-i; 
      za[j][i].re = n-i; 
      za[i][j].im = 0; 
      za[j][i].im = 0; 
    } 
  } 
  mode = 2; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dceig2((dcomplex*)za, k, n, mode,  
                  ze, (dcomplex*)zev, vw, ivw, &icon); 
  /* initialize ind array */ 
  m = n; 
  for (i=0;i<m;i++) ind[i] = 1; 
  mode = 1; 
  /* normalize eigenvectors */ 
  ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dcnrml failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<n;i++) { 
    printf("eigenvalue:  %7.4f+i*%7.4f\n", ze[i].re, ze[i].im); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f+i*%7.4f  ", zev[i][j].re, zev[i][j].im); 
    printf("\n"); 
  } 
  return(0); 
} 
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5. Method 

Consult the entry for CNRML in the Fortran SSL II User's Guide. 
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c_dcosi 
Cosine integral )(xCi . 
ierr = c_dcosi(x, &ci, &icon); 

1. Function 

This routine computes the cosine integral 

 



x

i dt
t

t
xC

)cos(
)( , 

where 0x , by series and asymptotic expansions. If 0x , the cosine integral )(xCi is assumed to take a principal 
value. 

2. Arguments 

The routine is called as follows: 
ierr = c_dcosi(x, &ci, &icon); 

where: 
x double Input Independent variable x. See Comments on use fro range of x. 
ci double Output Cosine integral )(xCi . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 |x|   maxt  ci is set to 0. 
30000 x = 0 ci is set to 0. 

3. Comments on use 

Range of x 
The valid range of argument x is |x| < maxt .This is because accuracy is lost if |x| exceeds this limit. For details on maxt  
see the Machine constants section of the Introduction. 

4. Example program 

This program generates a range of function values for 100 points in the the interval [0.1,10.0]. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, ci; 
  int i; 
 
  for (i=1;i<=100;i++) { 



 c_dcosi  

 307 

    x = (double)i/10; 
    /* calculate integral */ 
    ierr = c_dcosi(x, &ci, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   ci = %f\n", x, ci); 
    else 
      printf("ERROR: x = %5.2f   ci = %f   icon = %i\n", x, ci, icon); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for COSI in the Fortran SSL II User's Guide. 
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c_dcqdr 
Roots of a quadratic with complex coefficients. 
ierr = c_dcqdr(z0, z1, z2, z, &icon); 

1. Function 

This function finds the roots of a quadratic equation with complex coefficients. 

 021
2

0  azaza  (1) 

where a0 0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dcqdr(z0, z1, z2, z, &icon); 

where: 
z0 dcomplex Input The zeroth coefficient 0a  of quadratic equation. 
z1 dcomplex Input The first coefficient 1a  of quadratic equation. 
z2 dcomplex Input The second coefficient 2a  of quadratic equation. 
z dcomplex z[2] Output Roots of quadratic equation. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 a0 0  a a2 1  is stored in z[0]. z[1] is undefined. 
30000 a0 0  and a1 0  Bypassed. 

3. Example program 

This example program computes the roots of the quadratic 0652  zz . 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z[2]; 
  dcomplex z0 = {1, 0}; 
  dcomplex z1 = {-5, 0}; 
  dcomplex z2 = {6, 0}; 
 
  /* find roots of quadratic */ 
  ierr = c_dcqdr(z0, z1, z2, z, &icon); 
  printf("icon = %i   z[0] = {%12.4e, %12.4e}   z[1] = {%12.4e, %12.4e}\n", 
         icon, z[0].re, z[0].im, z[1].re, z[1].im); 
  printf("exact roots are: {3, 0} and {2, 0}\n"); 
  return(0); 
} 
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4. Method 

For further information consult the entry for CQDR in the Fortran SSL II User's Guide. 
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c_dcsbgm 
Storage format conversion of matrices (symmetric band format to 
standard format). 
ierr = c_dcsbgm (asb, n, nh, ag, k, &icon); 

1. Function 

This routine converts an nn  symmetric band matrix with bandwidth h from symmetric band format to standard 2-D 
array format. (n>h 0). 

2. Arguments 

The routine is called as follows: 
ierr = c_dcsbgm(asb, n, nh, (double*)ag, k, &icon); 

where: 
asb double 

asb[Asblen] 
Input Symmetric band matrix A stored in symmetric band storage format. See 

Array storage formats in the Introduction section for details. 
.2/)1()1(  hhhnAsblen  

n int Input The order n of matrix A. 
nh int Input The bandwidth h of matrix A. 
ag double 

ag[n][k] 

Output Symmetric band matrix A stored in the standard storage format. 

k int Input C fixed dimension of array ag ( n). 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 nh < 0 
 n   nh 
 k < n 

Bypassed. 

3. Comments on use 

The symmetric band matrix in the standard format 
The symmetric band matrix in the standard form produced by this routine contains not only the upper band and diagonal 
portions but also the lower band portion and the zero elements. 

Saving on storage space 
If there is no need to keep the contents of array asb, then saving on storage space is possible by specifying the same array 
for argument ag. WARNING – make sure the array size is consistent with both arguments otherwise unpredictable results 
can occur. 
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4. Example program 

This program converts a matrix from symmetric band format to standard format and prints the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
#define NMAX 5 
#define NHMAX 2 
 
/* print symmetric band matrix */ 
void prtsymbandmat(double a[], int n, int nh) 
{ 
  int ij, i, j, jmin; 
  printf("symmetric band matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh, 0); 
    for (j=jmin;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
/* print general matrix */ 
void prtgenmat(double *a, int k, int n, int m) 
{ 
  int i, j; 
  printf("general matrix format\n"); 
  for (i=0;i<n;i++) { 
    for (j=0;j<m;j++) 
      printf("%7.2f  ",a[i*k+j]); 
    printf("\n"); 
  } 
} 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, i, j, ij, k, jmin; 
  double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], ag[NMAX][NMAX]; 
 
  n = NMAX; 
  /* initialize symmetric band matrix */ 
  nh = NHMAX; 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh, 0); 
    for (j=jmin;j<=i;j++) 
      asb[ij++] = i-j+1; 
  } 
  k = NMAX; 
  /* convert to general matrix storage format */ 
  ierr = c_dcsbgm(asb, n, nh, (double*)ag, k, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dcsbgm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print matrices */ 
  printf("asb: \n"); 
  prtsymbandmat(asb, n, nh); 
  printf("ag: \n"); 
  prtgenmat((double*)ag, k, n, n); 
  return(0); 
} 

5. Method 

Consult the entry for CSBGM in Fortran SSL II User's Guide. 
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c_dcsbsm 
Storage format conversion of matrices (symmetric band format to 
symmetric format). 
ierr = c_dcsbsm(asb, n, nh, as, &icon); 

1. Function 

This routine converts an nn  symmetric band matrix with bandwidth h from symmetric band format to symmetric 
format (n>h 0). 

2. Arguments 

The routine is called as follows: 
ierr = c_dcsbsm(asb, n, nh, as, &icon); 

where: 
asb double 

asb[Asblen] 
Input Symmetric band matrix A stored in symmetric band storage format. See 

Array storage formats in the Introduction section for details. 
.2/)1()1(  hhhnAsblen  

n int Input The order n of matrix A. 
nh int Input The bandwidth h of matrix A. 
as double 

as[Aslen] 
Output Symmetric band matrix A stored in symmetric storage format. See Array 

storage formats in the Introduction section for details. 
.2/)1(  nnAslen  

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 nh < 0 
 n   nh 

Bypassed. 

3. Comments on use 

Saving on storage space 
If there is no need to keep the contents of array asb, then saving on storage space is possible by specifying the same array 
for argument as. WARNING – make sure the array size is consistent with both arguments otherwise unpredictable results 
can occur. 

4. Example program 

This program converts a matrix from symmetric band format to symmetric format and prints the results. 

#include <stdlib.h> 
#include <stdio.h> 
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#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
#define NMAX 5 
#define NHMAX 2 
 
/* print symmetric matrix */ 
void prtsymmat(double a[], int n) 
{ 
  int ij, i, j; 
  printf("symmetric matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    for (j=0;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
/* print symmetric band matrix */ 
void prtsymbandmat(double a[], int n, int nh) 
{ 
  int ij, i, j, jmin; 
  printf("symmetric band matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh, 0); 
    for (j=jmin;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, i, j, ij, k, jmin; 
  double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], as[NMAX*(NMAX+1)/2]; 
 
  n = NMAX; 
  /* initialize symmetric band matrix */ 
  nh = NHMAX; 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh, 0); 
    for (j=jmin;j<=i;j++) 
      asb[ij++] = i-j+1; 
  } 
  k = NMAX; 
  /* convert to symmetric matrix storage format */ 
  ierr = c_dcsbsm(asb, n, nh, as, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dcsbsm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print matrices */ 
  printf("asb: \n"); 
  prtsymbandmat(asb, n, nh); 
  printf("as: \n"); 
  prtsymmat(as, n); 
  return(0); 
} 

5. Method 

Consult the entry for CSBSM in Fortran SSL II User's Guide. 
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c_dcsgm 
Storage format conversion of matrices (real symmetric format to 
standard format). 
ierr = c_dcsgm(as, n, ag, k, &icon); 

1. Function 

This function converts an n  n real symmetric matrix from the symmetric format to the standard 2-D array format (n  1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dcsgm(as, n, (double*)ag, k, &icon); 

where: 
as double 

as[Aslen] 
Input Symmetric matrix A stored in the symmetric format.  Aslen=n(n+1)/2. 

See the Array storage formats section of the Introduction. 
n int Input Order n of matrix A. 
ag double 

ag[n][k] 

Output Symmetric matrix A stored in standard format. 

k int Input C fixed dimension of array ag ( n). 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n < 1 
 k < n 

Bypassed. 

3. Comments on use 

The symmetric matrix in the standard format 
The symmetric matrix in the standard format produced by the function contains not only the upper triangular and diagonal 
portions but also the lower triangular portion. 

Saving on storage space 
If there is no need to keep the contents of array, as, then saving on storage space is possible by specifying the same array 
for argument ag.  WARNING – make sure the array size is compliant for both arguments otherwise unpredictable results 
can occur. 

4. Example program 

This example program converts a matrix from symmetric format to real standard format, and prints out both matrices. 

#include <stdlib.h> 
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#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 5 
 
/* print symmetric matrix */ 
void prtsymmat(double a[], int n) 
{ 
  int ij, i, j; 
  printf("symmetric matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    for (j=0;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
/* print general matrix */ 
void prtgenmat(double *a, int k, int n, int m) 
{ 
  int i, j; 
  printf("general matrix format\n"); 
  for (i=0;i<n;i++) { 
    for (j=0;j<m;j++) 
      printf("%7.2f  ",a[i*k+j]); 
    printf("\n"); 
  } 
} 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij, k; 
  double as[NMAX*(NMAX+1)/2], ag[NMAX][NMAX]; 
 
  /* initialize symmetric matrix storage format */ 
  n = NMAX; 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      as[ij++] = n-i; 
    } 
  k = NMAX; 
  /* convert to general matrix storage format */ 
  ierr = c_dcsgm(as, n, (double*)ag, k, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dcsgm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print matrices */ 
  printf("as: \n"); 
  prtsymmat(as, n); 
  printf("ag: \n"); 
  prtgenmat((double*)ag, k, n, n); 
  return(0); 
} 

5. Method 

The conversion process from the symmetic format to standard format consists of two stages: 

 The elements stored in array as are transferred to the diagonal and lower triangular portions sequentially from the 
highest address, i.e. the n-th column.  The correspondence between locations is shown below, where NT=n(n+1)/2. 

Elements in 
symmetric format 

Elements of 
matrix 

Elements in 
standard format 

as[NT-1] 

as[NT-2] 

: 

 
 
 

ann 

ann-1 
: 

 
 
 

ag[n-1][n-1] 

ag[n-2][n-1] 

: 
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as[i*(i-1)/2+j-1] 

: 

as[1] 

as[0] 

 
 
 
 

aij 
: 

a21 
a11 

 
 
 
 

ag[j-1][i-1] 

: 

ag[0][1] 

ag[0][0] 
 With the diagonal as the axis of symmetry, the elements of the lower triangular portion are copied to the upper 

triangular part, such that ag[i][j]=ag[j][i].  Here, j > i. 

For further information consult the entry for CSGM in the Fortran SSL II User’s Guide. 
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c_dcssbm 
Storage format conversion of matrices (symmetric format to symmetric 
band format). 
ierr = c_dcssbm(as, n, asb, nh, &icon); 

1. Function 

This routine converts an nn  symmetric band matrix with bandwidth h from symmetric format to symmetric band 
format (n>h 0). 

2. Arguments 

The routine is called as follows: 
ierr = c_dcssbm(as, n, asb, nh, &icon); 

where: 
as double 

as[Aslen] 
Input Symmetric band matrix A stored in symmetric stroage format. See Array 

storage formats in the Introduction section for details. 
.2/)1(  nnAslen  

n int Input The order n of matrix A. 
asb double 

asb[Asblen] 
Output Symmetric band matrix A stored in symmetric band storage format. See 

Array storage formats in the Introduction section for details. 
.2/)1()1(  hhhnAsblen  

nh int Input The bandwidth h of matrix A. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 nh < 0 
 n   nh 

Bypassed. 

3. Comments on use 

Saving on storage space 
If there is no need to keep the contents of array as, then saving on storage space is possible by specifying the same array 
for argument asb. WARNING – make sure the array size is consistent with both arguments otherwise unpredictable 
results can occur. 

4. Example program 

This program converts a matrix from symmetric to symmetric band format and prints the results. 

#include <stdlib.h> 
#include <stdio.h> 
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#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
#define NMAX 5 
#define NHMAX 2 
 
/* print symmetric matrix */ 
void prtsymmat(double a[], int n) 
{ 
  int ij, i, j; 
  printf("symmetric matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    for (j=0;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
/* print symmetric band matrix */ 
void prtsymbandmat(double a[], int n, int nh) 
{ 
  int ij, i, j, jmin; 
  printf("symmetric band matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh, 0); 
    for (j=jmin;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, i, j, ij, k; 
  double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], as[NMAX*(NMAX+1)/2]; 
 
  /* initialize band symmetric matrix in symmetric matrix storage format */ 
  n = NMAX; 
  nh = NHMAX; 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      if (abs(i-j) <= nh) 
 as[ij++] = i-j+1; 
      else 
 as[ij++] = 0; 
    } 
  k = NMAX; 
  /* convert to symmetric band matrix storage format */ 
  ierr = c_dcssbm(as, n, asb, nh, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dcssbm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print matrices */ 
  printf("as: \n"); 
  prtsymmat(as, n); 
  printf("asb: \n"); 
  prtsymbandmat(asb, n, nh); 
  return(0); 
} 

5. Method 

Consult the entry for CSSBM in the Fortran SSL II User's Guide. 
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c_dctsdm 
Root of a complex function (Muller’s method). 
ierr = c_dctsdm(&z, zfun, isw, eps, eta, &m, 

&icon); 

1. Function 

This function finds a root of a complex function (1) by Muller’s method. 

 f z( )  0  (1) 

An initial approximation to the root must be given. 

2. Arguments 

The routine is called as follows: 
ierr = c_dctsdm(&z, zfun, isw, eps, eta, &m, &icon); 

where: 
z dcomplex Input Initial value of the root to be obtained. 
  Output Approximate root. 
zfun function Input Name of the user defined function to evaluate f z( ) . Its prototype is: 

dcomplex zfun(dcomplex z); 

where: 
   z dcomplex Input Independent variable. 
isw int Input Control information. 

Specify the convergence criterion for finding the root; isw must be one 
of the following: 

   1 Criterion I: when the condition f zi( )  eps  is satisfied, zi  
becomes the root. 

2 Criterion II: when the condition z z zi i i  1 eta  is satisfied, 
zi  becomes the root. 

3 When either criterion I or II is satisfied, zi  becomes the root. 
   See Comments on use. 
eps double Input The tolerance value ( 0 ) for Criterion I. (See argument isw.) 
eta double Input The tolerance value ( 0 ) for Criterion II. (See argument isw.) 
m int Input Upper limit of iterations. See Comments on use. 
  Output Total number of iterations performed. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
1 The result satisfied convergence Criterion I. (See 

the argument isw.) 
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Code  Meaning  Processing 
2 The result satisfied convergence Criterion II. (See 

the argument isw.) 
 

10 Completed the m (m=-m) iterations. 
11 The condition f zi( )  0  was satisfied before 

finishing all the iterations (m = -m), therefore the 
iteration process was stopped and zi  returned as 
the root. 

12 The condition z z zi i i  1   was satisfied 
before finishing all the iterations (m = -m), 
therefore the iteration process was stopped and zi  
returned as the root. 

10000 The specified convergence criterion was not 
achieved after completing the given number of 
iterations. 

Return the last iteration value of zi  in argument 
z. 

20000 The case f z f z f zi i i( ) ( ) ( )  2 1  has 
occurred and perturbation of zi2 , zi1 , and zi  
was tried to overcome the problem. This proved 
unsuccessful even when perturbation continued 
more than five times. 

Processing stopped. 

30000 One of the following has occurred: 
when m > 0: 
isw = 1 and eps < 0 
isw = 2 and eta < 0 
isw = 3, eps < 0 or eta < 0 
otherwise: 
m = 0 
isw  1, 2 or 3 

Bypassed. 

3. Comments on use 

isw 
This function will stop the iteration with icon=2 whenever z z zi i i  1   is satisfied (where µ is the unit round off) 
even when isw=1 is given. Similarly with isw=2, it will stop the iteration with icon=1 whenever f zi( )  0  is 
satisfied. 

Note, when the root is a multiple root or very close to another root, eta must be set sufficiently large. If 0 < eta < µ, the 
function resets eta=µ. 

m 
Iterations are repeated m times when m is set as m=-m (m > 0). However, when either f zi( )  0  or z z zi i i  1   is 
satisfied before finishing m iterations, the iteration process is stopped and the result is output with icon=11 or 12. 

4. Example program 

This example program computes a root of the function iezf z )(  with a initial approximation of 000 iz  . 
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#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
dcomplex zfun(dcomplex z); /* user function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z; 
  double eps, eta; 
  int isw, m; 
 
  z.re = 0; 
  z.im = 0; 
  isw = 3; 
  eps = 0; 
  eta = 1.0e-6; 
  m = 100; 
  /* find zero of complex function */ 
  ierr = c_dctsdm(&z, zfun, isw, eps, eta, &m, &icon); 
  printf("icon = %i   m = %i   z = {%12.4e, %12.4e}\n", icon, m, z.re, z.im); 
  return(0); 
} 
 
/* complex user function: zfun(z) = z*z - zm */ 
dcomplex zfun(dcomplex z) 
{ 
  const dcomplex zm = {0, 1}; 
  dcomplex zres; 
  zres.re = z.re*z.re - z.im*z.im - zm.re; 
  zres.im = 2*z.re*z.im - zm.im; 
  return(zres); 
} 

5. Method 

This function uses Muller’s method for finding a root of a complex function. For further information consult the entry for 
CTSDM in the Fortran SSL II User's Guide and [111]. 
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c_decheb 
Evaluation of a Chebyshev series. 
ierr = c_decheb(a, b, c, n, v, &f, &icon); 

1. Function 

Given a truncated Chebyshev series (1) with n-terms, defined on the interval ],[ ba  

 
















1

0

)(2)( 'n

k
kk ab
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this routine obtains the value )(vf  at an arbitrary value ],[ bav .  '  denotes the sum in which the initial term 

is multiplied by a factor ½. Here, 1n and ba  . 

2. Arguments 

The routine is called as follows: 
ierr = c_decheb(a, b, c, n, v, &f, &icon); 

where: 
a double Input Lower limit a of the interval for the Chebyshev series. 
b double Input Upper limit b of the interval for the Chebyshev series. 
c double c[n] Input Coefficients kc  of the Chebyshev series, with c[k] = kc . 
n int Input Number of terms n of the Chebyshev series. 
v double Input Point v in the interval ],[ ba . 
f double Output Value )(vf  of the Chebyshev series. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n < 1 
 a = b 
 v ],[ ba  

Bypassed. 

3. Comments on use 

This routine obtains the value )(vf  of a Chebyshev series. The routine c_dfcheb can be called before this routine to 
obtain the Chebyshev series expansion of an arbitrary smooth function )(xf . 

4. Example program 

This program evaluates xxf sin)(   using Chebyshev series. 

#include <stdio.h> 
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#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 257 /* default value */ 
 
double fun(double x); /* function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, nmin, nmax; 
  double epsa, epsr, err, a, b, pi, v, f, h; 
  double c[NMAX], tab[NMAX-2]; 
 
  /* initialize data */ 
  epsa = 5e-5; 
  epsr = 0; 
  nmin = 9; /* default value */ 
  nmax = NMAX; 
  pi = 2*asin(1); 
  a = 0; 
  b = pi; 
  /* expand function as Chebyshev series */ 
  ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, &n, &err, tab, &icon); 
  if (icon >= 20000) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  /* now evaluate Chebyshev series at 32 points */ 
  h = pi/(2*32); 
  printf("  v           f           error   \n");           
  for (i=0;i<32;i++) { 
    v = b*pow(cos(i*h),2); 
    ierr = c_decheb(a, b, c, n, v, &f, &icon); 
    if (icon != 0) { 
      printf("ERROR:  icon = %4i\n", icon); 
      exit(1); 
    } 
    err = fun(v) - f; 
    printf("%6.3f  %12.5e  %12.5e\n", v, f, err);           
  } 
  return(0); 
} 
 
/* function to expand */ 
double fun(double x) 
{ 
  double sum, xn, xp, p, term, eps; 
  int n; 
  eps = 1e-7; /* approx. amach */ 
  sum = x; 
  p = x*x; 
  xp = x*p; 
  xn = -6; 
  n = 3; 
  while (1) { 
    term = xp/xn; 
    sum = sum+term; 
    if (fabs(term) <= eps) break; 
    n = n+2; 
    xp = xp*p; 
    xn = -xn*n*(n-1); 
  } 
  return (sum); 
} 

5. Method 

Consult the entry for ECHEB in the Fortran SSL II User's Guide. 
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c_decosp 
Evaluation of a cosine series. 
ierr = c_decosp(th, a, n, v, &f, &icon); 

1. Function 

Given a truncated cosine series (1) with n terms and period 2T, 
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this routine obtains the value )(vf , for an arbitrary point v . Here 0T , and 1n . 

2. Arguments 

The routine is called as follows: 
ierr = c_decosp(th, a, n, v, &f, &icon); 

where: 
th double Input Half period T for the cosine series. 
a double a[n] Input Coefficients ka  of the cosine series, with a[k] = ka . 
n int Input Number of terms n of the cosine series. 
v double Input Point v. 
f double Output Value )(vf  of the cosine series. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n < 1 
 th   0 

Bypassed. 

3. Comments on use 

This routine evaluates the value )(vf  of the cosine series. The routine c_dfcosf that determines the Fourier cosine 
series expansion of a smooth even function )(tf  with period 2T can be called before this one to determine the 
coefficients ka of the cosine series. 

4. Example program 

This program integrates the function: 
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where  , using series expansion. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 257 /* default value */ 
 
double truefun(double t); /* prototytpe for check function */ 
double fun(double t); /* integral function prototype */ 
double w; /* auxiliary variable for function fun */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, nmin, nmax; 
  double epsa, epsr, err, th, pi, v, f, q, h; 
  double a[NMAX], tab[(NMAX-3)/2]; 
 
  /* initialize data */ 
  epsa = 0.5e-4; 
  epsr = epsa; 
  nmin = 0; /* default value */ 
  nmax = NMAX; 
  pi = 2*asin(1); 
  w = pi/4; 
  th = pi/w; 
  /* expand integral function as sine series */ 
  ierr = c_dfsinf(th, fun, epsa, epsr, nmin, nmax, a, &n, &err, tab, &icon); 
  if (icon >= 20000) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  /* integrate termwise */ 
  for (i=1;i<n;i++)  
    a[i] = -a[i]/(i*w); 
  /* evaluate cosine series at v=0 to find a0 value */ 
  v = 0; 
  ierr = c_decosp(th, a, n, v, &f, &icon); 
  if (icon != 0) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  a[0] = -f*2; /* notice factor of 2 */ 
  /* now evaluate cosine series to give integral */ 
  h = th/10; 
  printf("  v      f             exact   \n");           
  for (i=1;i<=10;i++) { 
    v = i*h; 
    ierr = c_decosp(th, a, n, v, &f, &icon); 
    if (icon != 0) { 
      printf("ERROR:  icon = %4i\n", icon); 
      exit(1); 
    } 
    q = truefun(v); /* exact integral */ 
    printf("%4.2f  %12.6e  %12.6e\n", v, f, q);           
  } 
  return(0); 
} 
 
/* function to integrate */ 
double fun(double t) 
{ 
  double p; 
  p = sin(w*t); 
  return p/sqrt(1+p*p); 
} 
 
/* exact integral function */ 
double truefun(double t) 
{ 
  double pi; 
  pi = 2*asin(1); 
  return (pi/4-asin(cos(w*t)*sqrt(0.5)))/w; 



Description of the C-SSL II Routines 

326 

} 

5. Method 

Consult the entry for ECOSP in the Fortran SSL II User's Guide. 
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c_deig1 
Eigenvalues and corresponding eigenvectors for a real matrix (double 
QR method). 
ierr = c_deig1(a, k, n, mode, er, ei, ev, vw, 

&icon); 

1. Function 

All eigenvalues and corresponding eigenvectors for an n order real matrix A are determined  1n . The eigenvalues are 
normalised such that 12 x . 

2. Arguments 

The routine is called as follows: 
ierr = c_deig1((double *)a, k, n, mode, er, ei, (double *)ev, vw, &icon); 

where: 
a double 

a[n][k] 

Input Matrix A.  
Output The contents are altered on output. 

k int Input C fixed dimension of matrix A ( nk  ). 
n int Input Order n of matrix A. 
mode int Input mode = 1 specifies no balancing. 1mode specifies that balancing is 

included. See Comments on use. 
er double er[n] Output The real parts of the eigenvalues. 
ei double ei[n] Output The imaginary parts of the eigenvalues. If the jth eigenvalue is complex, 

then its complex conjugate is stored in the (j + 1)th eigenvalue. 
ev double 

ev[n][k] 

Output Eigenvectors. They are stored in the rows of ev which correspond to 
their eigenvalues. When the jth eigenvalue is complex, its eigenvector is 
also complex, with the real part being stored in the jth row, and its 
imaginary part stored in the (j + 1)th row. See Comments on use. 

vw double vw[n] Work Used during balancing and when reducing A to a real Hessenberg 
matrix. 

icon int Output Condition codes. See below. 
The complete list of condition codes is. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 1n  er[0] = a[0][0] 

ev[0][0] = 1 

20000 Eigenvalues and eigenvectors could not be 
calculated, as the matrix A could not be reduced 
to a triangular form. 

Discontinued 

30000 One of the following has occurred: 
 1n  
 nk   

Bypassed. 
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3. Comments on use 

Complex eigenvalues and corresponding eigenvectors 
In general, real matrices can have real and/or complex eigenvalues, with the latter occurring in complex conjugate pairs. 
In this routine, if the jth eigenvalue )( j  is complex, then j  and  j  are stored as follows: 

 1]-ei[j1]-er[j  ij   

 
1]-ei[j1]-er[j

ei[j]er[j]





i

ij   

If the eigenvalue j  is complex, its corresponding eigenvector jx  is also complex, and is stored in two parts which are 
defined by: 

 jjj i vux    

where: 

 
]ev[j][

]1][-ev[j
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m

j

j





v

u
  

where m = 0,1,2, ,n-1. The eigenvector corresponding to the complex conjugate eigenvalue  j (or 1 j ) can be 
obtained simply using: 

 jjj i vux 1   

Balancing and mode 
If the elements of matrix A vary greatly in magnitude, a solution of greater precision can be obtained using 
balancing, i.e. setting 1mode . If the magnitudes of the elements are similar, the balancing has little or no effect and 
should be skipped using 1mode . 

4. Example program 

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 matrix. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, mode; 
  double a[NMAX][NMAX], er[NMAX], ei[NMAX], ev[NMAX][NMAX], vw[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++)  
    for (j=0;j<=i;j++) { 
      a[i][j] = i-n; 
      a[j][i] = n-i; 
    } 
  mode = 0; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_deig1((double*)a, k, n, mode, er, ei, (double*)ev, vw, &icon); 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  i = 0; 
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  while (i<n) { 
    if (ei[i] == 0) { 
      /* real eigenvector */ 
      printf("eigenvalue: %12.4f\n", er[i]); 
      printf("eigenvector:"); 
      for (j=0;j<n;j++) 
        printf("%7.4f  ", ev[i][j]); 
      printf("\n"); 
      i++; 
    } 
    else { 
      /* complex eigenvector pair */ 
      printf("eigenvalue:  {%7.4f, %7.4f}\n", er[i], ei[i]); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
        printf("{%7.4f, %7.4f}  ", ev[i][j], ev[i+1][j]); 
      printf("\n"); 
      printf("eigenvalue:  {%7.4f, %7.4f}\n", er[i+1], ei[i+1]); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
        printf("{%7.4f, %7.4f}  ", ev[i][j], -ev[i+1][j]); 
      printf("\n"); 
      i = i+2; 
    } 
  } 
  return(0); 
} 

5. Method 

For further information consult the entry for EIG1 in the Fortran SSL II User's Guide, and also [118] and [119]. 
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c_desinp 
Evaluation of a sine series. 
ierr = c_desinp(th, b, n, v, &f, &icon); 

1. Function 

Given a truncated sine series (1) with n terms and period 2T, 
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with 00 b , this routine obtains the value )(vf , for an arbitrary point v . Here 0T , and 1n . 

2. Arguments 

The routine is called as follows: 
ierr = c_desinp(th, b, n, v, &f, &icon); 

where: 
th double Input Half period T for the sine series. 
b double b[n] Input Coefficients kb  of the sine series, with  

b[0] = 0, b[1] = 1b , ..., b[n-1] = 1nb . 

n int Input Number of terms n of the sine series. 
v double Input Point v. 
f double Output Value )(vf  of the sine series. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n < 1 
 th   0 

Bypassed. 

3. Comments on use 

This routine evaluates the value )(vf  of the sine series. The routine c_dfsinf that determines the Fourier sine series 
expansion of a smooth odd function )(tf  of period 2T can be called before this one to determine the coefficients kb of 
the sine series. 

4. Example program 

This program integrates the function: 
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where  , using series expansion. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 257 /* default value */ 
 
double truefun(double t); /* prototytpe for check function */ 
double fun(double t); /* integral function prototype */ 
double w; /* auxiliary variable for function fun */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, nmin, nmax; 
  double epsa, epsr, err, th, pi, v, f, q, h; 
  double b[NMAX], tab[(NMAX-3)/2]; 
 
  /* initialize data */ 
  epsa = 0.5e-4; 
  epsr = epsa; 
  nmin = 0; /* default value */ 
  nmax = NMAX; 
  pi = 2*asin(1); 
  w = pi/4; 
  th = pi/w; 
  /* expand integral function as cosine series */ 
  ierr = c_dfcosf(th, fun, epsa, epsr, nmin, nmax, b, &n, &err, tab, &icon); 
  if (icon >= 20000) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  /* integrate termwise */ 
  for (i=1;i<n;i++)  
    b[i] = b[i]/(i*w); 
  /* now evaluate cosine series to give integral */ 
  h = th/10; 
  printf("  v      f             exact   \n");           
  for (i=1;i<=10;i++) { 
    v = i*h; 
    ierr = c_desinp(th, b, n, v, &f, &icon); 
    if (icon != 0) { 
      printf("ERROR:  icon = %4i\n", icon); 
      exit(1); 
    } 
    q = truefun(v); /* exact integral */ 
    printf("%4.2f  %12.6e  %12.6e\n", v, f, q);           
  } 
  return(0); 
} 
 
/* function to integrate */ 
double fun(double t) 
{ 
  double p; 
  p = cos(w*t); 
  return p/sqrt(1+p*p); 
} 
 
/* exact integral function */ 
double truefun(double t) 
{ 
  return asin(sin(w*t)*sqrt(0.5))/w; 
} 

5. Method 

Consult the entry for ESINP in the Fortran SSL II User's Guide. 
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c_dexpi 
Exponential integrals )(xEi and )(xEi . 
ierr = c_dexpi(x, &ei, &icon); 

1. Function 

This routine computes the exponential integrals )(xEi  and )(xEi for 0x defined as follows using an approximation 
formula. 

For x < 0: 
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For x > 0: 
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Here, P.V. means the principal value is taken at 0t . 

2. Arguments 

The routine is called as follows: 
ierr = c_dexpi(x, &ei, &icon); 

where: 
x double Input Independent variable x. See Comments on use for range of x. 
ei double Output Function value )(xEi  or )(xEi . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x > log( maxfl ) or x < -log( maxfl ) ei is set to maxfl  or ei is set to 0. 
30000 x = 0 ei is set to 0. 

3. Comments on use 

Range of x 
 x  0 as )(xEi  and )(xEi are undefined for x = 0. 

 |x|   log( maxfl ) since if |x| exceeds this limit, )(xEi  and )(xEi  would cause underflow and overflow respectively 
in the calculation of xe . For details on the constant maxfl , see the Machine constants section of the Introduction. 
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4. Example program 

This program generates a range of function values for 100 points in the interval [0.01,1.0]. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, ei; 
  int i; 
 
  for (i=1;i<=100;i++) { 
    x = (double)i/100; 
    /* calculate integral */ 
    ierr = c_dexpi(x, &ei, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   ei = %f\n", x, ei); 
    else 
      printf("ERROR: x = %5.2f   ei = %f   icon = %i\n", x, ei, icon); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for EXPI in the Fortran SSL II User's Guide and [22] and [23]. 
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c_dfcheb 
Chebyshev series expansion of a function (fast cosine transform). 
ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, 

nmax, c, &n, &err, tab, &icon); 

1. Function 

This routine performs the Chebyshev series expansion of a smooth function )(xf  on the interval ],[ ba . It determines n 
coefficients 1,10 ...,, nccc  which satisfy (1) 
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where a  (   0) is an absolute error tolerance, r  (  0) is a relative error tolerance, and  ' denotes the sum in 

which the initial term is multiplied by a factor ½. The norm f  of )(xf is defined by  
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using function values taken at sample points jx in the interval ],[ ba  and given by 
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Here ba  . 

2. Arguments 

The routine is called as follows: 
ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, &n, &err, tab, &icon); 

where: 
a double Input Lower limit a of the interval. 
b double Input Upper limit b of the interval. 
fun function Input User defined function to evaluate )(xf on the interval ],[ ba . 

Its prototype is: 
double fun(double x); 
where 

   x double Input Independent variable 

epsa double Input Absolute error tolerance a . See Comments on use. 
epsr double Input Relative error tolerance r . See Comments on use. 
nmin int Input Lower limit ( 0 ) on the number of terms of the Chebyshev series. 

nmin = 12 k  for some integer 0k . The default value is 9. See 
Comments on use. 
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nmax int Input Upper limit (  nmin) on the number of terms of the Chebyshev series. 
nmax = 12 k  for some integer 0k . The default value is 257. See 
Comments on use. 

c double 

c[nmax] 

Output Coefficients kc of the Chebyshev series, with  
c[k] = kc , 1,...,1,0  nk . 

n int Output Number of terms n ( 5 ) of the Chebyshev series. 
n = 12 k  for some integer 2k . 

err double Output Estimate of the absolute error of the series. See Comments on use. 
tab double 

tab[Tablen] 
Output A trigonometric function table used for the series expansion. 

0a ,  2/)3(,3max  nmaxTablen , 
0a ,  2,3max  nmaxTablen . See Comments on use. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 The required accuracy is too high and cannot be 

satisfied due to round-off error. 
c contains the resultant coefficients. The accuracy 
of the series is the maximum attainable. 

20000 The maximum number of terms was reached and 
the required accuracy was not satisfied. 

Stopped. c contains the resultant coefficients and 
err contains an estimate of the absolute error. 

30000 One of the following occurred: 
 a = b 
 epsa < 0 
 epsr < 0 
 nmin < 0 
 nmax < nmin 

Bypassed. 

3. Comments on use 

[a,b] and tab 
This routine normally changes the interval from ],[ ba  to [-1, 1], and then expands the function )(xf  using the 
Chebyshev polynomials. When the end point a of the interval is zero, the routine expands the function using shifted 
Chebyshev polynomials to avoid loss of significant digits while making the change of variable. The coefficients }{ kc  
using shifted Chebyshev polynomials are the same as those using the Chebyshev polynomials. However, the size of tab, 
the array for the trigonometric function table, must be nmax – 2 when using the shifted Chebyshev polynomials, and 

23( )/-nmax when using the Chebyshev polynomials. 

When the routine is called repeatedly, the trigonometic function table is produced only once. A new trigonometric 
function table entry is made on an as-required basis. Therefore tab must remain unchanged whenever a repeat call of the 
routine is made. 

Accuracy 
The accuracy of the expansion as the number of terms n increases, depends on the smoothness of )(xf  and the 
width of the interval ],[ ba . If )(xf  is an analytic function, the error decreases according to an exponential 

function )O( nr , 10  r , as n increases. If )(xf has up to k continuous derivatives, the error decreases 
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according to a rational function 












 


k

n
ba , as n increases. When 0k or 1k , an estimate of the absolute 

error is not usually accurate because the number of terms increases considerably, and so the routine should only be 
used with a function )(xf  that has at least continous second derivatives. 

epsa and epsr 
Given the two error tolerances a  and r , in arguments epsa and epsr, this routine determines a Chebyshev series 
satisfying (1). When 0 r , the absolute error criterion is used, and when 0 a  the relative error criterion is used. In 
all cases, care must be taken not to choose a and r  too small in comparison with the arithmetic precision of )(xf , as 
the effect of round-off error may become dominant before the maximum number of terms nmax in the expansion has 
been reached. In such a case, the routine terminates with icon = 10000. At this time the accuracy of the Chebyshev series 
has reached the attainable limit for the computer used. 

If the maximum number of terms nmax, is reached before the error criterion has been satisfied, due to the characteristics 
of the function )(xf  , the routine terminates with icon = 20000, and the coefficents obtained so far are not accurate. 

To determine the accuracy of the Chebyshev series, this routine outputs an estimate of the absolute error in err. 

nmin and nmax 
If the value of nmin or nmax is not of the form 12 k  for some integer 0k , this routine assumes the maximum 
number of the form 12 k  that does not exceed the given value. Also, if nmax < 5, then the routine assumes nmax = 5. 

4. Example program 

This program evaluates xxf sin)(   using Chebyshev series. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 257 /* default value */ 
 
double fun(double x); /* function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, nmin, nmax; 
  double epsa, epsr, err, a, b, pi, v, f, h; 
  double c[NMAX], tab[NMAX-2]; 
 
  /* initialize data */ 
  epsa = 5e-5; 
  epsr = 0; 
  nmin = 9; /* default value */ 
  nmax = NMAX; 
  pi = 2*asin(1); 
  a = 0; 
  b = pi; 
  /* expand function as Chebyshev series */ 
  ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, &n, &err, tab, &icon); 
  if (icon >= 20000) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  /* now evaluate Chebyshev series at 32 points */ 
  h = pi/(2*32); 
  printf("  v           f           error   \n");           
  for (i=0;i<32;i++) { 
    v = b*pow(cos(i*h),2); 
    ierr = c_decheb(a, b, c, n, v, &f, &icon); 
    if (icon != 0) { 
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      printf("ERROR:  icon = %4i\n", icon); 
      exit(1); 
    } 
    err = fun(v) - f; 
    printf("%6.3f  %12.5e  %12.5e\n", v, f, err);           
  } 
  return(0); 
} 
 
/* function to expand */ 
double fun(double x) 
{ 
  double sum, xn, xp, p, term, eps; 
  int n; 
  eps = 1e-7; /* approx. amach */ 
  sum = x; 
  p = x*x; 
  xp = x*p; 
  xn = -6; 
  n = 3; 
  while (1) { 
    term = xp/xn; 
    sum = sum+term; 
    if (fabs(term) <= eps) break; 
    n = n+2; 
    xp = xp*p; 
    xn = -xn*n*(n-1); 
  } 
  return (sum); 
} 

5. Method 

Consult the entry for FCHEB in the Fortran SSL II User's Guide. 
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c_dfcosf 
Cosine series expansion of an even function (fast cosine transform). 
ierr = c_dfcosf(th, fun, epsa, epsr, nmin, 

nmax, a, &n, &err, tab, &icon); 

1. Function 

This routine performs the cosine series expansion of a smooth even function )(tf with period 2T. It determines n 
coefficients 1,10 ...,, naaa  which satisfy (1) 
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where a  (   0) is an absolute error tolerance, r  (  0) is a relative error tolerance, and  ' denotes the sum in 

which the initial term is multiplied by a factor ½. The norm f  of )(tf is defined by  
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using function values taken at sample points within the half period [0,T] and given by 

 j
n
Tt j 1

 ,     j = 0,1,…,n-1. 

Here T > 0. 

2. Arguments 

The routine is called as follows: 
ierr = c_dfcosf(th, fun, epsa, epsr, nmin, nmax, a, &n, &err, tab, &icon); 

where: 
th double Input Half period T of the function )(tf . 
fun function Input User defined function to evaluate )(tf over the interval [0,T].  

Its prototype is: 
double fun(double t); 
where 

   t double Input Independent variable 

epsa double Input Absolute error tolerance a . See Comments on use. 
epsr double Input Relative error tolerance r . See Comments on use. 
nmin int Input Lower limit ( 0 ) on the number of terms of the cosine series. 

nmin = 12 k  for some integer 0k . The default value is 9. See 
Comments on use. 

nmax int Input Upper limit (  nmin) on the number of terms of the cosine series. 
nmax = 12 k  for some integer 0k . The default value is 257. See 
Comments on use. 
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a double 

a[nmax] 

Output Coefficients ka of the cosine series, with  
a[k] = ka , 1,...,1,0  nk . 

n int Output Number of terms n ( 5 ) of the cosine series. 
n = 12 k  for some integer 2k . 

err double Output Estimate of the absolute error of the series. See Comments on use. 
tab double 

tab[Tablen] 
Output A trigonometric function table used for the series expansion.  

 2/)3(,3max  nmaxTablen . See Comments on use. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 The required accuracy is too high and cannot be 

satisfied due to round-off error. 
a contains the resultant coefficients. The accuracy 
of the series is the maximum attainable. 

20000 The maximum number of terms was reached and 
the required accuracy was not satisfied. 

Stopped. a contains the resultant coefficients and 
err contains an estimate of the absolute error. 

30000 One of the following occurred: 
 th   0 
 epsa < 0 
 epsr < 0 
 nmin < 0 
 nmax < nmin 

Bypassed. 

3. Comments on use 

Accuracy 
The accuracy of the expansion as the number of terms n increases, depends on the smoothness of )(tf  over ),(  . If 

)(tf  is an analytic periodic function, the error decreases according to an exponential function )O( nr , 10  r , as n 
increases. If )(tf has up to k continuous derivatives, the error decreases according to a rational function )(O kn , as n 
increases. When 0k or 1k , an estimate of the absolute error is not usually accurate because the number of terms 
increases considerably, and so the routine should only be used with a function )(tf  that has at least continous second 
derivatives. 

epsa and epsr 
Given the two error tolerances a  and r , in arguments epsa and epsr, this routine determines a cosine series 
satisfying (1). When 0 r , the absolute error criterion is used, and when 0 a  the relative error criterion is used. In 
all cases, care must be taken not to choose a and r  too small in comparison with the arithmetic precision of )(tf , as 
the effect of round-off error may become dominant before the maximum number of terms nmax in the expansion has 
been reached. In such a case, the routine terminates with icon = 10000. At this time the accuracy of the cosine series has 
reached the attainable limit for the computer used. 

If the maximum number of terms nmax, is reached before the error criterion has been satisfied, due to the characteristics 
of the function )(tf  , the routine terminates with icon = 20000, and the coefficents obtained so far are not accurate. 

To determine the accuracy of the cosine series, this routine outputs an estimate of the absolute error in err. 
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nmin and nmax 
If the value of nmin or nmax is not of the form 12 k  for some integer 0k , this routine assumes the maximum 
number of the form 12 k  that does not exceed the given value. Also, if nmax < 5, then the routine assumes nmax = 5. 

tab 
When the routine is called repeatedly, the trigonometic function table is produced only once. A new trigonometric 
function table entry is made on an as-required basis.Therefore tab must remain unchanged whenever a repeat call of the 
routine is made. 

General comments 
When )(tf  is only periodic and not an even function, this routine can be used to perform cosine series expansion for the 
even function 2/))()(( tftf  . 

When )(tf  has no period and is absolutely integrable, see FCOSF in Fortran SSL II User's Guide. 

4. Example program 

This program integrates the function: 
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where  , using series expansion. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 257 /* default value */ 
 
double truefun(double t); /* prototytpe for check function */ 
double fun(double t); /* integral function prototype */ 
double w; /* auxiliary variable for function fun */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, nmin, nmax; 
  double epsa, epsr, err, th, pi, v, f, q, h; 
  double b[NMAX], tab[(NMAX-3)/2]; 
 
  /* initialize data */ 
  epsa = 0.5e-4; 
  epsr = epsa; 
  nmin = 0; /* default value */ 
  nmax = NMAX; 
  pi = 2*asin(1); 
  w = pi/4; 
  th = pi/w; 
  /* expand integral function as cosine series */ 
  ierr = c_dfcosf(th, fun, epsa, epsr, nmin, nmax, b, &n, &err, tab, &icon); 
  if (icon >= 20000) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  /* integrate termwise */ 
  for (i=1;i<n;i++)  
    b[i] = b[i]/(i*w); 
  /* now evaluate cosine series to give integral */ 
  h = th/10; 
  printf("  v      f             exact   \n");           
  for (i=1;i<=10;i++) { 
    v = i*h; 
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    ierr = c_desinp(th, b, n, v, &f, &icon); 
    if (icon != 0) { 
      printf("ERROR:  icon = %4i\n", icon); 
      exit(1); 
    } 
    q = truefun(v); /* exact integral */ 
    printf("%4.2f  %12.6e  %12.6e\n", v, f, q);           
  } 
  return(0); 
} 
 
/* function to integrate */ 
double fun(double t) 
{ 
  double p; 
  p = cos(w*t); 
  return p/sqrt(1+p*p); 
} 
 
/* exact integral function */ 
double truefun(double t) 
{ 
  return asin(sin(w*t)*sqrt(0.5))/w; 
} 

5. Method 

Consult the entry for FCOSF in the Fortran SSL II User's Guide. 
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c_dfcosm 
Discrete cosine transform (midpoint rule, radix 2 FFT). 
ierr = c_dfcosm(a, n, isn, tab, &icon); 

1. Function 

Given n data points }{ 2/1jx , obtained by dividing the first half of a 2  period, even function )(tx  such that 
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a discrete cosine transform or its inverse transform, based on the midpoint rule, is computed by a Fast Fourier 
Transform (FFT) algorithm. Here, 2n , where   is a non-negative integer. 

Cosine transform 
When }{ 2/1jx  is input, the transform defined below is calculated to obtain }

2
{ kan . 
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Cosine inverse transform 
When }{ ka  is input, the transform defined below is calculated to obtain }{ 2/1jx . 
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where  ' denotes the sum in which the initial term is multiplied by ½. 

2. Arguments 

The routine is called as follows: 
ierr = c_dfcosm(a, n, isn, tab, &icon); 

where: 
a double a[n] Input }{ 2/1jx  or }{ ka . 
  Output }

2
{ kan  or }{ 2/1jx . 

n int Input Number n of data points. 
isn int Input Control information. 

isn = 1 for transform, 
isn = -1 for inverse transform. 

tab double  

tab[n-1] 

Output Trigonometrc function table used in the transform. See Comments on 
use. 

icon int Output Condition code. 
The complete list of condition codes is: 
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Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 isn  1 or –1 
 n  2  with   a non-negative integer. 

Bypassed. 

3. Comments on use 

General definition of Fourier transform 
The discrete cosine transform and its inverse transform based on the midpoint rule are generally defined by the following: 
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The routine obtains }
2

{ kan and }{ 2/1jx respectively, and if  necessary the user must scale the results to obtain }{ ka . 

tab 
When the routine is called repeatedly for transforms of a fixed dimension, the trigonometric table is calculated and created 
only once. Therefore, tab must remain unchanged between calls to the routine. Even when the dimension varies, the 
trigonometric function table entry can be made on an as-required basis. 

4. Example program 

This program calculates the discrete Fourier coefficients for a set of random data, and checks the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 512 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps, cn; 
  double a[NMAX], b[NMAX], tab[NMAX-1];  
  int i, n, isn; 
 
  /* generate initial data */ 
  n = NMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (i=0;i<n;i++) { 
    ran = (i+1)*phai; 
    a[i] = ran - (int)ran; 
  } 
  for (i=0;i<n;i++)  
    b[i] = a[i]; 
  /* perform normal transform */ 
  isn = 1; 
  ierr = c_dfcosm(a, n, isn, tab, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dfcosm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* normalize */ 
  cn = 2.0/n; 
  for (i=0;i<n;i++)  
    a[i] = cn*a[i]; 
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  /* perform inverse transform */ 
  isn = -1; 
  ierr = c_dfcosm(a, n, isn, tab, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dfcosm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check results */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((a[i] - b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for FCOSM in the Fortran SSL II User's Guide. 
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c_dfsinf 
Sine series expansion of an odd function (fast sine transform). 
ierr = c_dfsinf(th, fun, epsa, epsr, nmin, 

nmax, b, &n, &err, tab, &icon); 

1. Function 

This routine performs the sine series expansion of a smooth odd function )(tf with period 2T. It determines n coefficients 

1,10 ...,, nbbb  which satisfy (1) 
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where a  (   0) is an absolute error tolerance and r  (  0) is a relative error tolerance. The norm f  of )(tf is 
defined by  
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using function values taken at sample points within the half period [0,T] and given by 
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Here T > 0. 

2. Arguments 

The routine is called as follows: 
ierr = c_dfsinf(th, fun, epsa, epsr, nmin, nmax, b, &n, &err, tab, &icon); 

where: 
th double Input Half period T of the function )(tf . 
fun function Input User defined function to evaluate )(tf over the interval [0,T].  

Its prototype is: 
double fun(double t); 
where 

   t double Input Independent variable 

epsa double Input Absolute error tolerance a . See Comments on use. 
epsr double Input Relative error tolerance r . See Comments on use. 
nmin int Input Lower limit ( 0 ) on the number of terms of the sine series. 

nmin = k2  for some integer 0k . The default value is 8. See 
Comments on use. 

nmax int Input Upper limit (  nmin) on the number of terms of the sine series. 
nmax = k2  for some integer 0k . The default value is 256. See 
Comments on use. 
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b double 

b[nmax] 

Output Coefficients kb of the sine series, with  
b[k] = kb , 1,...,1,0  nk . 

n int Output Number of terms n (  4) of the sine series. n = k2  for some integer 
2k . 

err double Output Estimate of the absolute error of the series. See Comments on use. 
tab double 

tab[Tablen] 
Output A trigonometric function table used for the series expansion.  

 12,3max  nmax/Tablen . See Comments on use. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 The required accuracy is too high and cannot be 

satisfied due to round-off error. 
b contains the resultant coefficients. The accuracy 
of the series is the maximum attainable. 

20000 The maximum number of terms was reached and 
the required accuracy was not satisfied. 

Stopped. b contains the resultant coefficients and 
err contains an estimate of the absolute error. 

30000 One of the following occurred: 
 th   0 
 epsa < 0 
 epsr < 0 
 nmin < 0 
 nmax < nmin 

Bypassed. 

3. Comments on use 

Accuracy 
The accuracy of the expansion as the number of terms n increases, depends on the smoothness of )(tf  over ),(  . If 

)(tf  is an analytic periodic function, the error decreases according to an exponential function )O( nr , 10  r , as n 
increases. If )(tf has up to k continuous derivatives, the error decreases according to a rational function )(O kn , as n 
increases. When 0k or 1k , an estimate of the absolute error is not usually accurate because the number of terms 
increases considerably, and so the routine should only be used with a function )(tf  that has at least continous second 
derivatives. 

epsa and epsr 
Given the two error tolerances a  and r , in arguments epsa and epsr, this routine determines a sine series satisfying 
(1). When 0 r , the absolute error criterion is used, and when 0 a  the relative error criterion is used. In all cases, 
care must be taken not to choose a and r  too small in comparison with the arithmetic precision of )(tf , as the effect 
of round-off error may become dominant before the maximum number of terms nmax in the expansion has been reached. 
In such a case, the routine terminates with icon = 10000. At this time the accuracy of the sine series has reached the 
attainable limit for the computer used. 

If the maximum number of terms nmax, is reached before the error criterion has been satisfied, due to the characteristics 
of the function )(tf  , the routine terminates with icon = 20000, and the coefficents obtained so far are not accurate. 

To determine the accuracy of the sine series, this routine outputs an estimate of the absolute error in err. 



 c_dfsinf  

 347 

nmin and nmax 
If the value of nmin or nmax is not of the form k2  for some integer 0k , this routine assumes the maximum number 
of the form k2  that does not exceed the given value. Also, if nmax < 4, then the routine assumes nmax = 4. 

tab 
When the routine is called repeatedly, the trigonometic function table is produced only once. A new trigonometric 
function table entry is made on an as-required basis.Therefore tab must remain unchanged whenever a repeat call of the 
routine is made. 

General comments 
When )(tf  is only periodic and not an odd function, this routine can be used to perform sine series expansion for the odd 
function 2/))()(( tftf  . 

When )(tf  has no period and is absolutely integrable, see FSINF in Fortran SSL II User's Guide. 

4. Example program 

This program integrates the function: 

 





x

dt
t

txF
0

2sin1

sin)(  (2) 

where  , using series expansion. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 257 /* default value */ 
 
double truefun(double t); /* prototytpe for check function */ 
double fun(double t); /* integral function prototype */ 
double w; /* auxiliary variable for function fun */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, nmin, nmax; 
  double epsa, epsr, err, th, pi, v, f, q, h; 
  double a[NMAX], tab[(NMAX-3)/2]; 
 
  /* initialize data */ 
  epsa = 0.5e-4; 
  epsr = epsa; 
  nmin = 0; /* default value */ 
  nmax = NMAX; 
  pi = 2*asin(1); 
  w = pi/4; 
  th = pi/w; 
  /* expand integral function as sine series */ 
  ierr = c_dfsinf(th, fun, epsa, epsr, nmin, nmax, a, &n, &err, tab, &icon); 
  if (icon >= 20000) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  /* integrate termwise */ 
  for (i=1;i<n;i++)  
    a[i] = -a[i]/(i*w); 
  /* evaluate cosine series at v=0 to find a0 value */ 
  v = 0; 
  ierr = c_decosp(th, a, n, v, &f, &icon); 
  if (icon != 0) { 
    printf("ERROR:  icon = %4i\n", icon); 



Description of the C-SSL II Routines 

348 

    exit(1); 
  } 
  a[0] = -f*2; /* notice factor of 2 */ 
  /* now evaluate cosine series to give integral */ 
  h = th/10; 
  printf("  v      f             exact   \n");           
  for (i=1;i<=10;i++) { 
    v = i*h; 
    ierr = c_decosp(th, a, n, v, &f, &icon); 
    if (icon != 0) { 
      printf("ERROR:  icon = %4i\n", icon); 
      exit(1); 
    } 
    q = truefun(v); /* exact integral */ 
    printf("%4.2f  %12.6e  %12.6e\n", v, f, q);           
  } 
  return(0); 
} 
 
/* function to integrate */ 
double fun(double t) 
{ 
  double p; 
  p = sin(w*t); 
  return p/sqrt(1+p*p); 
} 
 
/* exact integral function */ 
double truefun(double t) 
{ 
  double pi; 
  pi = 2*asin(1); 
  return (pi/4-asin(cos(w*t)*sqrt(0.5)))/w; 
} 

5. Method 

Consult the entry for FSINF in the Fortran SSL II User's Guide. 
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c_dfsinm 
Discrete sine transform (midpoint rule, radix 2 FFT). 
ierr = c_dfsinm(a, n, isn, tab, &icon); 

1. Function 

Given n data points }{ 2/1jx , obtained by dividing the first half of a 2  period, odd function )(tx  such that 

 1,...,1,0,
2
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22/1 













 


 njjxx j , 

a discrete sine transform or its inverse transform, based on the midpoint rule, is computed by a Fast Fourier 
Transform (FFT) algorithm. Here, 2n , where   is a non-negative integer. 

Sine transform 
When }{ 2/1jx  is input, the transform defined below is calculated to obtain }

2
{ kbn . 
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Sine inverse transform 
When }{ kb  is input, the transform defined below is calculated to obtain }{ 2/1jx . 
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2. Arguments 

The routine is called as follows: 
ierr = c_dfsinm(a, n, isn, tab, &icon); 

where: 
a double a[n] Input }{ 2/1jx  or }{ kb . 
  Output }

2
{ kbn  or }{ 2/1jx . 

n int Input Number n of data points. 
isn int Input Control information. 

isn = 1 for transform, 
isn = -1 for inverse transform. 

tab double  

tab[n-1] 

Output Trigonometrc function table used in the transform. See Comments on 
use. 

icon int Output Condition code. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: Bypassed. 
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Code  Meaning  Processing 
 isn  1 or –1 
 n  2  with   a non-negative integer. 

3. Comments on use 

General definition of Fourier transform 
The discrete sine transform and its inverse transform based on the midpoint rule are generally defined by the following: 
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The routine obtains }
2

{ kbn and }{ 2/1jx respectively, and if  necessary the user must scale the results to obtain }{ kb . 

Calculation of the trigonometric polynomial 

When obtaining the values 
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x  of the n-th order polynomial  
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by using the inverse transform, the highest order coefficient nb  must be doubled in advance. 

tab 
When the routine is called repeatedly for transforms of a fixed dimension, the trigonometric table is calculated and created 
only once. Therefore, tab must remain unchanged between calls to the routine. Even when the dimension varies, the 
trigonometric function table entry can be made on an as-required basis. 

4. Example program 

This program calculates the discrete Fourier coefficients for a set of random data, and checks the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 512 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps, cn; 
  double a[NMAX], b[NMAX], tab[NMAX-1];  
  int i, n, isn; 
 
  /* generate initial data */ 
  n = NMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (i=0;i<n;i++) { 
    ran = (i+1)*phai; 
    a[i] = ran - (int)ran; 
  } 
  for (i=0;i<n;i++)  
    b[i] = a[i]; 
  /* perform normal transform */ 
  isn = 1; 
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  ierr = c_dfsinm(a, n, isn, tab, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dfsinm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* normalize */ 
  cn = 2.0/n; 
  for (i=0;i<n;i++)  
    a[i] = cn*a[i]; 
  /* perform inverse transform */ 
  isn = -1; 
  ierr = c_dfsinm(a, n, isn, tab, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dfsinm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check results */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((a[i] - b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for FSINM in the Fortran SSL II User's Guide. 
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c_dgbseg 
Eigenvalues and corresponding eigenvectors of a symmetric band 
generalised eigenproblem (Jennings’ method). 
ierr = c_dgbseg(a, b, n, nh, m, epsz, epst, 

lm, e, ev, k, &it, vw, &icon); 

1. Function 

This routine obtains m eigenvalues, in descending (or ascending) order of absolute values, for the generalized 
eigenproblem (1), 

 BxAx  , (1) 

where A and B are nn  symmetric band matrices with n   1 and bandwidth h. When starting with the eigenvalue of 
smallest (or largest) absolute value, matrix A (or B) must be positive definite. Given m initial vectors, this routine also 
obtains m eigenvectors corresponding to the eigenvalues, usign Jennings’ simultaneous iteration method with Jennings’ 
acceleration. The eigenvectors mxxx ...,, ,21 . are normalized such that  

 IBXX T   

or 

 IAXX T .  

Here, nm 1  and nh 0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dgbseg(a, b, n, nh, m, epsz, epst, lm, e, (double *)ev, k, &it, vw, 

&icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric band storage format. See the Array 

storage formats of the Introduction section for details. 
2/)1()1(  hhhnAlen . 

  Output When eigenvalues are obtained in ascending order of absolute value, the 
contents of a are changed on output. See Comments on use. 

b double b[Blen] Input Matrix B. Stored in symmetric band storage format. See the Array 
storage formats section of the Introduction section for details. 

2/)1()1(  hhhnBlen . 
  Output The contents of b are changed on output. See Comments on use. 
n int Input Order n of matrices A and B. 
nh int Input Bandwidth h of matrices A and B. See Comments on use. 
m int Input Number m of eigenvalues and eigenvectors to be obtained. 

m > 0 if the m eigenvalues are obtained in descending order of absolute 
         value. 
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m <0 if the m eigenvalues are obtained in ascending order of absolute 
          value. See Comments on use. 

epsz double Input Tolerance for relative zero test of pivots in decomposition process of 
matrix A or B. When epsz   0, a standard value is used. See 
Comments on use. 

epst double Input Constant   used for convergence criterion of eigenvectors. When  
epst   0, a standard value is used. See Comments on use. 

lm int Input Upper limit for the number of iterations. If the number of iterations 
exceeds the limit, processing is stopped. See Comments on use. 

e double e[m] Output Eigenvalues, stored in descending or ascending order as specified by 
argument m. 

ev double 

ev[m+2][k] 

Input Initial vectors, stored by rows. See Comments on use. 

  Output Eigenvectors, stored by rows. See Comments on use. 
k int Input C fixed dimension of array ev (  n). 
it int Output Number of iterations performed to obtain the eigenvalues and 

eigenvectors. 
vw double 

vw[Vwlen] 
Work 2/)13(2  mmnVwlen . 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 The number of iterations exceeded the upper limit 

lm. 
Stopped. e and ev contain the eigenvalues and 
eigenvectors obtained so far. 

25000 Orthogonalization of eigenvectors at each 
iteration cannot be attained. 

Discontinued. 

28000 Matrix A or B is not positive definite. Discontinued. 
29000 Matrix A or B is singular. Discontinued. 
30000 One of the following has occurred: 

 nh < 0 or nh   n 
 k < n 
 m = 0 or |m| > n 

Bypassed. 

3. Comments on use 

a and b 
When eigenvalues are obtained in ascending order of absolute value, the contents of b are saved into array a. When 
several eigenproblems with the same matrix B are to be solved, this routine can utilize the contents of matrix B stored in 
array a. 

nh 
The bandwidth of matrix A must be equal to the bandwidth of matrix B. If the bandwidths are not the same, the greater 
bandwidth is assumed and zeros are added to the matrix of smaller bandwidth as required. 
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m 
The number of eigenvalues and eigenvectors m should be smaller than n such that m/n < 1/10. The numbering of 
eigenvalues is from the smallest (or largest) absolute value of eigenvalue, m ,...,, 21 . If possible, m should be chosen 
such that 1/1   mm   (or 1/1   mm ) to achieve faster convergence. 

epsz 
The standard value for epsz is 16 , where   is the unit round-off. 

If a pivot fails the relative zero test during decomposition of matrix A or B, the matrix is considered to be singular and 
processing is discontinued with icon = 29000. Processing may proceed with a smaller value for epsz, but the accuracy 
of the result cannot be guaranteed. 

If a pivot is negative during the decomposition of matrix A or B, the matrix is regarded as not positive definite and 
processing is discontinued with icon = 28000. 

epst 
When an eigenvector (normalized so that 12 x ) converges for the convergence criterion constant  , the 

corresponding eigenvalue converges at least with accuracy 2A , and in most cases with greater accuracy. The 

standard convergence criterion constant is  16 , where   is the unit round-off. However, when the eigenvalues 
are close together convergence may not be attained with this convergence criterion constant, and a more 
appropriate value would be  100 . 

lm 
The upper limit lm for the number of iterations is used to stop the processing when convergence is not attained. The value 
of lm should be chosen taking into account the required accuracy and how close together the eigenvalues are to each other. 
With the standard convergence criterion constant and well-separated eigenvalues a value for lm between 500 and 1000 
should be appropriate. 

Initial eigenvectors 
It is desirable for the initial vectors to be good approximations to the eigenvectors. However, if approximate eigenvectors 
are not available as initial vectors, the standard way to choose intial vectors is to use the first m column vectors of the 
identity matrix I. 

4. Example program 

This program finds the eigenvalues and corresponding eigenvectors of a symmetric band generalised eigenproblem 

#include <stdlib.h> 
#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
#define NMAX 5 
#define NHMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, nh, i, j, k, ij, lm, it, jmin; 
  double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2]; 
  double b[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2]; 
  double e[NMAX], ev[NMAX+2][NMAX], vw[2*NMAX+NMAX*(3*NMAX+1)/2], epsz, epst; 
 
  /* initialize matrix */ 
  n = NMAX; 
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  nh = NHMAX; 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh, 0); 
    for (j=jmin;j<i;j++) { 
      a[ij] = n-i; 
      b[ij++] = 0; 
    } 
    a[ij] = n-i; 
    b[ij++] = 1; 
  } 
  k = NMAX; 
  m = n; 
  /* initialize m eigenvectors */ 
  for (i=0;i<m;i++) 
    for (j=0;j<n;j++) 
      if (i == j) ev[i][j] = 1; 
      else ev[i][j] = 0; 
  lm = 1000; 
  epsz = 0; 
  epst = 0; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dgbseg(a, b, n, nh, m, epsz, epst, lm,  
    e, (double*)ev, k, &it, vw, &icon); 
  if (icon >= 20000) { 
    printf("ERROR: c_dgbseg failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("e-value %d: %10.4f\n",i+1,e[i]); 
    printf("e-vector:"); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ",ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for GBSEG in the Fortran SSL II User's Guide and [61]. 
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c_dgcheb 
Differentiation of a Chebyshev series. 
ierr = c_dgcheb(a, b, c, &n, &icon); 

1. Function 

Given a truncated Chebyshev series (1) with n-terms, defined on the interval ],[ ba  
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this routine obtains its derivative in a Chebyshev series (2)  
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where kc  2,...,1,0  nk  are its Chebyshev coefficients.  '  denotes the sum in which the initial term is 

multiplied by a factor ½. Here, 1n and ba  . 

2. Arguments 

The routine is called as follows: 
ierr = c_dgcheb(a, b, c, &n, &icon); 

where: 
a double Input Lower limit a of the interval for the Chebyshev series. 
b double Input Upper limit b of the interval for the Chebyshev series. 
c double c[n] Input Coefficients kc  of the Chebyshev series, with  

c[k] = kc , 1,...,1,0  nk . 
  Output Coefficients kc for the derivative, with  

c[k] = kc , 2,...,1,0  nk . 
n int Input Number of terms n of the Chebyshev series. 
  Output Number of terms n-1 of the derivative Chebyshev series. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n < 1 
 a = b 

Bypassed. 

3. Comments on use 

When the derivative of an arbitrary function is required, the routine c_dfcheb can be called before this one to obtain the 
Chebyshev series expansion for the function. 
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The routine c_decheb can be called after this routine to evaluate the derivative Chebyshev series at an arbitrary point 
],[ bav . See example. 

This routine can be called repeatedly to obtain derivatives of higher order. 

The error of a derivative can be estimated from the absolute sum of the last two terms of the series. Note that the error of a 
derivative increases as the order increases. 

4. Example program 

This program evaluates and differentiates the function xexf )(  using Chebyshev series. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 257 /* default value */ 
 
double fun(double x); /* function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, nmin, nmax; 
  double epsa, epsr, err, a, b, pi, v, f, h; 
  double c[NMAX], tab[(NMAX-3)/2]; 
 
  /* initialize data */ 
  epsr = 5e-5; 
  epsa = 0; 
  nmin = 9; /* default value */ 
  nmax = NMAX; 
  pi = 2*asin(1); 
  a = -2; 
  b = 2; 
  /* expand function as Chebyshev series */ 
  ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, &n, &err, tab, &icon); 
  if (icon >= 20000) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  /* now calculate derivative */ 
  ierr = c_dgcheb(a, b, c, &n, &icon); 
  if (icon != 0) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  /* now evaluate Chebyshev series at points */ 
  h = 0.05; 
  printf(" v      differential       error   \n");           
  for (i=0;i<=80;i++) { 
    v = a+i*h; 
    ierr = c_decheb(a, b, c, n, v, &f, &icon); 
    if (icon != 0) { 
      printf("ERROR:  icon = %4i\n", icon); 
      exit(1); 
    } 
    err = fun(v) - f; 
    printf("%5.2f  %12.5e  %12.5e\n", v, f, err);           
  } 
  return(0); 
} 
 
/* function to expand */ 
double fun(double x) 
{ 
  double sum, xn, xp, term, eps; 
  int n; 
  eps = 1e-7; /* approx. amach */ 
  sum = 1; 
  xp = x; 
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  xn = 1; 
  n = 1; 
  while (1) { 
    term = xp/xn; 
    sum = sum+term; 
    if (fabs(term) <= fabs(sum)*eps) break; 
    n = n+1; 
    xp = xp*x; 
    xn = xn*n; 
  } 
  return (sum); 
} 

5. Method 

Consult the entry for GCHEB in the Fortran SSL II User's Guide. 
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c_dginv 
Generalized inverse of a real matrix (singular value decomposition 
method). 
ierr = c_dginv(a, ka, m, n, sig, v, kv, eps, 

vw, &icon); 

1. Function 

This function computes the generalized inverse A   of an m  n real matrix A  using the singular value decomposition 
method (m  1 and n  1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dginv((double*)a, ka, m, n, sig, (double*)v, kv, eps, vw, &icon); 

where: 
a double 

a[m][ka] 

Input 
Output 

Matrix A. 
Transposed matrix A  .  See Comments on use. 

ka int Input C fixed dimension of array a ( n). 
m int Input The number of rows m in matrix A. 
n int Input The number of columns n in matrix A. 
sig double sig[n] Output Singular values of matrix A.  See Comments on use. 
v double 

v[n][kv] 

Output Orthogonal transformation matrix produced by the singular value 
decomposition. 

kv int Input C fixed dimension of array v ( min(m+1,n)). 
eps double Input Tolerance for relative zero test of the singular value.  When eps is zero, 

a standard value is used ( 0).  See Comments on use. 
vw double vw[n] Work  
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
15000 Some singular values could not be obtained. Stopped. 
29000 Memory allocation error. Bypassed. 
30000 One of the following has occurred: 

 ka < n 
 m < 1 
 n < 1 
 kv < min(n, m + 1) 
 eps < 0 

Bypassed. 
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3. Comments on use 

a 
Note that the transposed matrix ( )A  T  instead of the generalized inverse A   is placed in the a array. 

sig 
All singular values are non-negative and stored in descending order.  When icon=15000, the unobtainable singular 
values are set to –1 and the values are not arranged in any order. 

eps 
eps has a direct effect on the determination of the rank of A and must be specified carefully. 

When a singular value is less than the tolerance, eps, it is assumed to be zero.  The standard value of eps is 16µ, where 
µ is the unit round-off. A value less than zero results in icon=30000. 

Least squares solution 
The least squares minimal norm solution of a system of linear equations, Ax b , can be expressed as x A b   by using 
the generalized inverse A  .  However, this function should not be used except when generalized inverse A   is required.  
The function c_dlaxlm, is provided by the C-SSL II library for this purpose. 

4. Example program 

This example program initializes the matrix A, finds the generalized inverse, and displays the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define MMAX 7 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int m, n, i, j, ka, kv; 
  double a[MMAX][NMAX], sig[NMAX], v[NMAX][NMAX], vw[NMAX], eps; 
 
  /* initialize system */ 
  m = MMAX; 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=i;j<n;j++) { 
      a[i][j] = n-j; 
      a[j][i] = n-j; 
    } 
  for (i=n;i<m;i++) 
    for (j=0;j<n;j++) { 
      a[i][j] = 0; 
      if (i%n == j) a[i][j] = 1; 
    } 
  ka = NMAX; 
  kv = NMAX; 
  eps = 0; 
  /* generalized inverse */ 
  ierr = c_dginv((double*)a, ka, m, n, sig, (double*)v, kv, eps, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dginv failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print transposed generalized inverse */ 
  for (i=0;i<m;i++) { 
    for (j=0;j<n;j++) 
      printf("%7.4f  ",a[i][j]); 
    printf("\n"); 
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  } 
  return(0); 
} 

5. Method 

The singular value decomposition method is used to compute the Moore-Penrose generalized inverse A   of a given 
matrix A.  For further information consult the entry for GINV in the Fortran SSL II User’s Guide and Reference [41]. 
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c_dgsbk 
Back transformation of the eigenvectors of the standard form 
eigenproblem to the eigenvectors of the symmetric generalized 
eigenproblem. 
ierr = c_dgsbk(ev, k, n, m, b, &icon); 

1. Function 

This routine performs back transformation on m eigenvectors jy , j = 1,2...,m of an nn  symmetric matrix S to 

obtain the eigenvectors jx , j = 1,2,...,m for the generalized eigenproblem  

 BxAx  , 

where S is given by 

 T1  ALLS , 

with TLLB  , where L is a lower triangular matrix, and n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dgsbk((double *)ev, k, n, m, b, &icon); 

where: 
ev double Input The m eigenvectors jy  of matrix S. 
 ev[|m|][k] Output Eigenvectors jx  for the generalized eigenproblem BxAx  . See 

Comments on use. 
k int Input C fixed dimension of array ev (  n). 
n int Input Order n of the matrices. 
m int Input Number m of eigenvectors. If m < 0, then the absolute value of m is 

assumed. 
b double 

b[n(n+1)/2] 

Input Matrix L. Stored in symmetric storage format. See Array storage formats 
in the Introduction section for details. See Comments on use. 

The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 ev[0][0] = 1/b[0]. 
30000 One of the following has occurred: 

 m = 0 or |m| > n 
 k < n 

Bypassed. 

3. Comments on use 

If input eigenvectors jy , j=1,2,...,m are normalized such that IYY T , then output eigenvectors jx , j = 1,2,...,m are 
such that IBXX T , where ],...,,[ 21 myyyY   and ],...,,[ 21 mxxxX  . 
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b 
Output argument b of routine c_dgschl which reduces the symmetric eigenproblem to standard form, can be used as 
input argument b of this routine. 

4. Example program 

This program reduces a matrix to a standard form, finds the eigenvalues and eigenvectors, and then performs a back 
transformation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, ij, m; 
  double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], vw[2*NMAX]; 
  double e[NMAX], ev[NMAX][NMAX], epsz; 
 
  /* initialize matrix */ 
  n = NMAX; 
  ij = 0; 
  for (i=0;i<n;i++) { 
    for (j=0;j<i;j++) { 
      a[ij] = n-i; 
      b[ij++] = 0; 
    } 
    a[ij] = n-i; 
    b[ij++] = 1; 
  } 
  /* reduce to standard form */ 
  epsz = 0; 
  ierr = c_dgschl(a, b, n, epsz, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dgschl failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues and eigenvectors */ 
  k = NMAX; 
  ierr = c_dseig1(a, n, e, (double*)ev, k, &m, vw, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dseig1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation */ 
  ierr = c_dgsbk((double*)ev, k, n, m, b, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dgsbk failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for GSBK in the Fortran SSL II User's Guide and reference [119]. 
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c_dgschl 
Reduction of a symmetric matrix system BxAx   to a standard form. 
ierr = c_dgschl(a, b, n, epsz, &icon); 

1. Function 

For an nn  symmetric matrix A and an nn  positive definite symmetric matrix B, the generalized eigenvalue problem 

 BxAx  , 

is reduced to the standard form 

 ySy  , 

where S is a symmetric matrix and  n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dgschl(a, b, n, epsz, &icon); 

where: 
a double 

a[n(n+1)/2] 

Input Matrix A. Stored in symmetric storage format. See Array storage 
formats in the Introduction section for details. 

  Output Matrix S. Stored in symmetric storage format. See Array storage formats 
in the Introduction section for details. 

b double 

b[n(n+1)/2] 

Input Matrix B. Stored in symmetric storage format. See Array storage formats 
in the Introduction section for details. 

  Output Lower triangular matrix L, such that TLLB  . Stored in symmetric 
storage format. See Array storage formats in the Introduction section for 
details. 

n int Input Order n of the matrices. 
epsz double Input Tolerance ( 0) for relative zero test of pivots in the TLL  decomposition 

of matrix B. When epsz   0, a standard value is used. See Comments 
on use. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 a[0] = a[0]/b[0], 

b[0] = b[0]. 
28000 A pivot was negative in the TLL  decomposition 

of matrix B. Input matrix B is not positive 
definite. 

Discontinued. 

29000 A pivot was relatively zero in the TLL  
decomposition of matrix B. Input matrix B is 

Discontinued. 
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Code  Meaning  Processing 
possibly singular. 

30000 n < 1 Bypassed. 

3. Comments on use 

epsz 
The standard value of epsz is 16µ, where µ is the unit round-off. If, during the TLL decomposition of matrix B, a pivot 
value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=29000. 
Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the 
required accuracy. 

If a pivot becomes negative during the TLL decomposition of matrix B, matrix B is considered not to be positive definite, 
and processing is discontinued with icon = 28000. 

4. Example program 

This program reduces a matrix to a standard form, finds the eigenvalues and eigenvectors, and then performs a back 
transformation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, ij, m; 
  double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], vw[2*NMAX]; 
  double e[NMAX], ev[NMAX][NMAX], epsz; 
 
  /* initialize matrix */ 
  n = NMAX; 
  ij = 0; 
  for (i=0;i<n;i++) { 
    for (j=0;j<i;j++) { 
      a[ij] = n-i; 
      b[ij++] = 0; 
    } 
    a[ij] = n-i; 
    b[ij++] = 1; 
  } 
  /* reduce to standard form */ 
  epsz = 0; 
  ierr = c_dgschl(a, b, n, epsz, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dgschl failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues and eigenvectors */ 
  k = NMAX; 
  ierr = c_dseig1(a, n, e, (double*)ev, k, &m, vw, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dseig1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation */ 
  ierr = c_dgsbk((double*)ev, k, n, m, b, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dgsbk failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
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  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for GSCHL in the Fortran SSL II User's Guide and reference [119]. 
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c_dhbk1 
Back transformation and normalization of the eigenvectors of a 
Hessenberg matrix. 
ierr = c_dhbk1(ev, k, n, ind, m, p, pv, dv, 

&icon); 

1. Function 

This routine performs back transformation on m eigenvectors of an nn  Hessenberg matrix H to obtain the 
eigenvectors of a real matrix A. The resulting eigenvectors are then normalized such that 12 x . H is obtained 

from A using the Householder method. Here 1   m   n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dhbk1((double *)ev, k, n, ind, m, (double *)p, pv, dv, &icon); 

where: 
ev double 

ev[m][k] 

Input The m eigenvectors of the Hessenberg matrix H. 

  Output The m eigenvectors of matrix A. 
k int Input C fixed dimension of array ev and p (  n). 
n int Input Order n of matrices A and H. 
ind int ind[m] Input Indicates the type of each eigenvector: 

ind[j-1] = 1  if the j-1-st row of ev is a real eigenvector 
ind[j-1] = -1 if the j-1-st row of ev is the real part of a complex  
                           eigenvector 
ind[j-1] = 0  if the j-1-st row of ev is the imaginary part of a  
                           complex eigenvector. 
j = 1,...,m. 

m int Input Number m of eigenvectors. 
p double 

p[n][k] 

Input Transformation matrix provided by the Householder method. See 
Comments on use. 

pv double pv[n] Input Transformation matrix provided by the Householder method. See 
Comments on use. 

dv double dv[n] Input Scaling factors used for balancing the matrix A. If matrix A was not 
balanced, set dv[0] = 0. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 ev[0][0] = 1. 
30000 One of the following has occurred: 

 m < 1 or m > n 
Bypassed. 
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Code  Meaning  Processing 
 k < n 

3. Comments on use 

ev, ind and m 
The eigenvectors are stored in ev such that each real eigenvector occupies one row and each complex eigenvector 
occupies two rows (one for the real part and one for the imaginary part).  

The routine c_dhvec can be used to obtain the eigenvectors of a Hessenberg matrix. Input argument m and output 
arguments ev and ind of c_dhvec are the same as input arguments m, ev, and ind for this routine. 

p and pv 
The routine c_dhes1 can be used to reduce a matrix to a Hessenberg matrix. Output arguments a and pv of c_dhes1 
are the same as input arguments p and pv of this routine. 

dv 
The output argument dv of c_dblnc contains the scaling factors used for balancing the matrix A, and is the input 
argument dv of this routine. 

4. Example program 

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then 
performs a back transformation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, m, mk, ind[NMAX]; 
  double a[NMAX][NMAX], pv[NMAX], aw[NMAX+4][NMAX]; 
  double er[NMAX], ei[NMAX], ev[NMAX][NMAX]; 
  double dv[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  mk = NMAX; 
  for (i=0;i<n;i++) { 
    a[i][i] = n-i;  
    for (j=0;j<i;j++) { 
      a[i][j] = n-i; 
      a[j][i] = n-i; 
    } 
  } 
  /* balance matrix A */ 
  ierr = c_dblnc((double*)a, k, n, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dblnc failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* reduce matrix to Hessenberg form */ 
  ierr = c_dhes1((double*)a, k, n, pv, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dhes1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<n;i++)  
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    for (j=0;j<n;j++) 
      aw[i][j] = a[i][j]; 
  /* find eigenvalues */ 
  ierr = c_dhsqr((double*)aw, k, n, er, ei, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dhsqr failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<m;i++) ind[i] = 1; 
  /* find eigenvectors for given eigenvalues */ 
  ierr = c_dhvec((double*)a, k, n, er, ei,  
   ind, m, (double*)ev, mk, (double*)aw, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dhvec failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation to find e-vectors of A */ 
  ierr = c_dhbk1((double*)ev, k, n, ind, m, (double*)a, pv, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dhbk1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  i = 0; 
  k = 0; 
  while (i<m) { 
    if (ind[i] == 0) i++; 
    else if (ei[i] == 0) { 
      /* real eigenvector */ 
      printf("eigenvalue: %12.4f\n", er[i]); 
      printf("eigenvector:"); 
      for (j=0;j<n;j++) 
        printf("%7.4f  ", ev[k][j]); 
      printf("\n"); 
      i++; 
      k++; 
    } 
    else { 
      /* complex eigenvector pair */ 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", er[i], ei[i]); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
        printf("%7.4f+i*%7.4f   ", ev[k][j], ev[k+1][j]); 
      printf("\n"); 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", er[i+1], ei[i+1]); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
        printf("%7.4f+i*%7.4f   ", ev[k][j], -ev[k+1][j]); 
      printf("\n"); 
      i = i+2; 
      k = k+2; 
    } 
  } 
  return(0); 
} 

5. Method 

Consult the entries for HES1, BLNC, NRML, and HBK1 in the Fortran SSL II User's Guide and reference [119]. 
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c_dheig2 
Eigenvalues and corresponding eigenvectors for a Hermitian matrix 
(Householder, bisection and inverse iteration methods). 
ierr = c_dheig2(a, k, n, m, e, evr, evi, vw, 

&icon); 

1. Function 

The m largest (or smallest) eigenvalues and corresponding eigenvectors for an n order Hermitian matrix A are determined 
using the bisection method where nm 1 . The corresponding eigenvectors are then obtained using the inverse iteration 
method. The eigenvectors are then normalised such that 12 x . 

2. Arguments 

The routine is called as follows: 
ierr = c_dheig2((double *)a, k, n, m, e, (double *)evr, (double *)evi, vw, 

&icon); 

where: 
a double 

a[n][k] 

Input Hermitian matrix A, stored in the Hermitian storage format. See Array 
storage formats in the Introduction section.  

Output The contents are altered on output. 
k int Input C fixed dimension of matrix A ( nk  ). 
n int Input Order n of matrix A. 
m int Input If m is positive, the m largest eigenvalues are calculated. If m is negative, 

the m smallest eigenvalues are calculated. 
e double e[|m|] Output The eigenvalues. 
evr double 

evr[|m|][k] 

Output The real parts of the eigenvectors. They are stored in the rows 
corresponding to the relevant eigenvalue. 

evi double 

evi[|m|][k] 

Output The imaginary parts of the eigenvectors. They are stored in the rows 
corresponding to the relevant eigenvalue. 

vw double vw[9n] Work  
icon int Output Condition codes. See below. 
The complete list of condition codes is. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 1n  e[0] = a[0][0] 

evr[0][0] = 1 

evi[0][0] = 0 

15000 Some of the eigenvectors could not be calculated. The relevant rows of evr and evi are set to 0. 
20000 None of the eigenvectors could be calculated. evr and evi are set completely to 0. 
30000 One of the following has occurred: 

 mn   
 nk   

Bypassed. 
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Code  Meaning  Processing 
 0m   

3. Comments on use 

General Comments 
This routine is provided for Hermitian matrices only, and not for a general complex matrix where c_dceig2 should be 
used. 

4. Example program 

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 Hermitian matrix. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, i, j, k; 
  double a[NMAX][NMAX], e[NMAX], evr[NMAX][NMAX], evi[NMAX][NMAX], vw[9*NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++)  
    for (j=0;j<=i;j++) { 
      a[i][j] = n-i; 
      a[j][i] = n-i; 
    } 
  m = n; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dheig2((double*)a, k, n, m, e,  
                  (double*)evr, (double*)evi, vw, &icon); 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("{%7.4f, %7.4f}  ", evr[i][j], evi[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

For further information consult the entry for HEIG2 in the Fortran SSL II User's Guide, and also [74], [118] and [119]. 
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c_dhes1 
Reduction of a matrix to a Hessenberg matrix (Householder method). 
ierr = c_dhes1(a, k, n, pv, &icon); 

1. Function 

This routine reduces an nn  matrix A to a Hessenberg matrix H using the Householder method (orthogonal similarity 
method) 

 APPH T , 

where P is the transformation matrix. Here, n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dhes1((double *) a, k, n, pv, &icon); 

where: 
a double Input Matrix A. 
 a[n][k] Output Upper Hessenberg matrix H. The remaining lower triangular portion 

contains part of the transformation matrix P. See Comments on use. 
k int Input C fixed dimension of array a (  n). 
n int Input Order n of matrix A. 
pv double pv[n] Output Part of transformation matrix P. See Comments on use. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 or n = 2  Reduction is not performed. 
30000 One of the following has occurred: 

 n < 1 
 k < n 

Bypassed. 

3. Comments on use 

To determine eigenvalues of matrix H, and hence of matrix A, output argument a of this routine is used as input argument 
a of c_dhsqr. 

To determine eigenvectors of matrix H, output argument a of this routine is used as input argument a of c_dhvec. 

To back transform and normalize the eigenvectors of matrix H (obtained from c_dhvec) to obtain the eigenvectors of 
matrix A, output arguments a and pv of this routine are used as input arguments p and pv of c_dhbk1. 

The precision of computed eigenvalues of a real matrix A is determined in the Hessenberg matrix reduction process. 
Therefore, this routine has been implimented so that the Hessenberg matrix is determined with as high a precision as 
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possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller 
eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process. 

4. Example program 

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, m; 
  double a[NMAX][NMAX], er[NMAX], ei[NMAX], pv[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++)  
    for (j=0;j<=i;j++) { 
      a[i][j] = i-n; 
      a[j][i] = n-i; 
    } 
 
  /* reduce matrix to Hessenberg form */ 
  ierr = c_dhes1((double*)a, k, n, pv, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dhes1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues of Hessenberg matrix */ 
  ierr = c_dhsqr((double*)a, k, n, er, ei, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dhsqr failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  for (i=0;i<m;i++) { 
    printf("%7.4f+i*%7.4f \n", er[i], ei[i]); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for HES1 in the Fortran SSL II User's Guide and reference [119]. 

 



Description of the C-SSL II Routines 

374 

c_dhrwiz 
Assessment of Hurwitz polynomials. 
ierr = c_dhrwiz(a, na, isw, &iflg, &sa, vw, 

&icon); 

1. Function 

This routine assesses whether the polynomial in (1) of degree n )1(  with real coefficients is a Hurwitz polynomial (all 
zeros lying in the left-half plane Re(s) < 0 ). 

 1
1

21 ...)( 
  nn

nn asasasasP  (1) 

If )(sP  is not a Hurwitz polynomial, the routine searches for 0 ( )0 such that )( sP  is a Hurwitz polynomial for 

0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dhrwiz(a, na, isw, &iflg, &sa, vw, &icon); 

where: 
a double a[n+1] Input Coefficients ia  of )(sP , with a[i-1] = ia , 1,...,1  ni . 
na int Input Degree n of )(sP . 
isw int Input Control information. 

isw = 0: routine only judges whether )(sP is a Hurwitz polynomial, 
isw = 1: routine judges whether )(sP is a Hurwitz polynomial, 
               and if is not, searches for 0 , 
otherwise: 1 is assumed. 

iflg int Output Result of judgement. 
iflg = 0: )(sP is a Hurwitz polynomial, 
iflg = 1: )(sP is not a Hurwitz polynomial. 

sa double Output Value of 0 . sa = 0 when )(sP is a Hurwitz polynomial. 
vw double 

vw[n+1] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Value 0  has not been found. Bypassed. 
30000 One of the following has occurred: 

 na < 1 
 a[0] = 0 

Bypassed. 
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3. Comments on use 

Since the function of this routine relates to obtaining the inverse Laplace transform )(tf  of a rational function 
)(/)()( sPsQsF  , it can also be used to check roughly the characteristics of )(tf . This means that )(sF has 

singularities in the domain of 0)(Re s if )(sP  is not a Hurwitz polynomial, and the value of the inverse transform 
function )(tf  increases exponentially as the value of t approaches infinity. 

To obtain the inverse Laplace transform )(tf  of a rational function )(sF known to be regular in the domain Re(s) > 0, 
use routine c_dlaps1, and when )(sF is a general rational function use c_dlaps2. 

4. Example program 

Given the polynomial 811085412)( 234  sssssP , the following program determines whether or not it is a 
Hurwitz polynomial. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double sa, a[5], vw[5];  
  int isw, na, iflg, neps[9]; 
 
  /* generate initial data */ 
  na = 4; 
  a[0] = 1; 
  a[1] = -12; 
  a[2] = 54; 
  a[3] = -108; 
  a[4] = 81; 
  isw = 1; 
  /* is it a Hurwitz polynomial ? */ 
  ierr = c_dhrwiz(a, na, isw, &iflg, &sa, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dhrwiz failed with icon = %d\n", icon); 
    exit(1); 
  } 
  printf("iflg = %i   sa = %12.5e\n", iflg, sa); 
  return(0); 
} 

5. Method 

Consult the entry for HRWIZ and Chapter 8 in the Fortran SSL II User's Guide. 

 



Description of the C-SSL II Routines 

376 

c_dhsqr 
Eigenvalues of a Hessenberg matrix (double QR method). 
ierr = c_dhsqr(a, k, n, er, ei, &m, &icon); 

1. Function 

This routine obtains the eigenvalues of an nn  Hessenberg matrix A using the double QR method. Here, n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dhsqr((double *) a, k, n, er, ei, &m, &icon); 

where: 
a double Input Matrix A.  
 a[n][k] Output The contents of a are changed on output. 
k int Input C fixed dimension of array a (  n). 
n int Input Order n of matrix A. 
er double er[n] Output Real part of the eigenvalues of matrix A. 
ei double ei[n] Output Imaginary part of the eigenvalues of matrix A. 
m int Output The number of eigenvalues obtained. 
icon int Output Condition code. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 er[0] = a[0][0] and ei[0] = 0. 
15000 Some of the eigenvalues could not be obtained. Discontinued. m is set to the number of 

eigenvalues obtained, 1   m < n. 
20000 No eigenvalues could be obtained. Discontinued. m is set to 0. 
30000 One of the following has occurred: 

 n < 1 
 k < n 

Bypassed. 

3. Comments on use 

A real matrix A can be reduced to a real Hessenberg matrix using routine c_dhes1, before calling this routine to obtain 
the eigenvalues. The output argument a from c_dhes1 is the input argument a of this routine. 

The contents of array a are changed on output by this routine. Therefore, if eigenvectors are also required, a copy of array 
a should be made before calling this routine, so that the copy can be used later as input argument a of c_dhvec. 

4. Example program 

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results. 
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#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, m; 
  double a[NMAX][NMAX], er[NMAX], ei[NMAX], pv[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++)  
    for (j=0;j<=i;j++) { 
      a[i][j] = i-n; 
      a[j][i] = n-i; 
    } 
 
  /* reduce matrix to Hessenberg form */ 
  ierr = c_dhes1((double*)a, k, n, pv, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dhes1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues of Hessenberg matrix */ 
  ierr = c_dhsqr((double*)a, k, n, er, ei, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dhsqr failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  for (i=0;i<m;i++) { 
    printf("%7.4f+i*%7.4f \n", er[i], ei[i]); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for HSQR in the Fortran SSL II User's Guide and references [118] and [119]. 
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c_dhvec 
Eigenvectors of a Hessenberg matrix (inverse iteration method). 
ierr = c_dhvec(a, k, n, er, ei, ind, m, ev, 

mk, aw, &icon); 

1. Function 

This routine obtains eigenvectors jx  corresponding to selected eigenvalues j of an nn  Hessenberg matrix A, using 
the inverse iteration method. The eigenvectors are not normalized. Here, n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dhvec((double *)a, k, n, er, ei, ind, m, (double *)ev, mk, (double 

*)aw, &icon); 

where: 
a double 

a[n][k] 

Input Matrix A. 

k int Input C fixed dimension of arrays a, ev and aw (  n). 
n int Input Order n of matrix A. 
er double er[m] Input The real parts of the eigenvalues er[j-1] = Re( j ), mj ,...,1  of 

matrix A. See Comments on use. 
ei double ei[m] Input The imaginary parts of the eigenvalues ei[j-1] = Im( j ), mj ,...,1  

of matrix A. See Comments on use. 
ind int ind[m] Input Indicates which eigenvectors are to be obtained 

ind[j-1] = 0 if an eigenvector corresponding to the j-th eigenvalue  
                          j is not to be obtained. 
ind[j-1] = 1 if an eigenvector corresponding to the j-th eigenvalue 
                          j  is to be obtained. 
j = 1,...,m. See Comments on use. 

  Output Indicates the type of each eigenvector.  
ind[j-1] = 1 if the j-1-st row of ev is a real eigenvector 
ind[j-1] = -1 if the j-1-st row of ev is the real part of a complex  
                            eigenvector 
ind[j-1] = 0 if the j-1-st row of ev is the imaginary part of a  
                           complex eigenvector. 
j = 1,...,mk. 

m int Input Number of eigenvalues m of matrix A stored in arrays er and ei. 
ev double 

ev[mk][k] 

Output Eigenvectors x  corresponding to eigenvalues   of matrix A. Real 
eigenvectors of real eigenvalues are stored in one row of array ev, 
complex eigenvectors of complex eigenvalues are split into real and 
imaginary parts and stored in two consecutive rows. See Comments on 
use. 

mk int Input The number of rows of array ev. See Comments on use. 
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aw double 

aw[n+4][k] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 ev[0][0] = 1. 
15000 An eigenvector corresponding to a specified 

eigenvalue could not be obtained. 
The elements of ind corresponding to the 
eigenvectors that could not be obtained are set to 
0. 

16000 There are not enough rows in array ev to store all 
the eigenvectors that are requested. 

Only as many eigenvectors as can be contained in 
array ev are computed. The elements of ind 
corresponding to the eigenvectors that could not 
be computed are set to 0. 

20000 No eigenvectors could be obtained. All elements of ind are set to 0. 
30000 One of the following has occurred: 

 m < 1 or m > n 
 k < n 

Bypassed. 

3. Comments on use 

ind, er, ei, ev and mk 
If the j-th eigenvalue, j , is complex, then j and 1 j should be a pair of complex conjugate eigenvalues, stored in er 
and ei. 

The eigenvectors are stored successively in array ev from the first row. For example, if eigenvectors corresponding to the 
first two eigenvalues are not required, but the one corresponding to the third eigenvalue is, then the real part of that 
eigenvector is stored in ev[0][i], and the imaginary part (if it exists) is stored in ev[1][i], i = 0,...,n-1. 

Based on the eigenvector storage described above, argument mk should be set to the number of rows required to contain 
the eigenvectors. If the actual number of rows required for the eigenvectors is larger that the number specified in mk, as 
many eigenvectors as can be stored in the number of rows specified in mk are computed, the rest are ignored and icon is 
set to 16000. 

General comments 
The eigenvalues used by this routine can be determined by routine c_dhsqr. The output arguments er, ei, and m of 
c_dhsqr are the same as the input arguments er, ei, and m of this routine. The input argument a of c_dhsqr (not the 
output argument a of c_dhsqr) is the same as the input argument a of this routine. 

When selected eigenvectors of a real matrix are to be determined: 

 the real matrix is first reduced to a real Hessenberg matrix using c_dhes1, 

 eigenvalues of the Hessenberg matrix are determined using routine c_dhsqr, 

 selected eigenvectors of the Hessenberg matrix are determined using this routine, 
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 back transformation is applied to the above eigenvectors using routine c_dhbk1 to obtain the eigenvectors of the 
real matrix. 

Note that c_deig1 can be used to obtain all the eigenvectors of a real matrix. 

The resulting eigenvectors of this routine have not been normalized. If necessary, routine c_dnrml can be used to 
normalize eigenvectors. 

Output arguments ind, m and ev of this routine are the same as the input arguments ind, m and ev of routines 
c_dhbk1 and c_dnrml. 

4. Example program 

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then 
performs a back transformation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, m, mk, ind[NMAX]; 
  double a[NMAX][NMAX], pv[NMAX], aw[NMAX+4][NMAX]; 
  double er[NMAX], ei[NMAX], ev[NMAX][NMAX]; 
  double dv[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  mk = NMAX; 
  for (i=0;i<n;i++) { 
    a[i][i] = n-i;  
    for (j=0;j<i;j++) { 
      a[i][j] = n-i; 
      a[j][i] = n-i; 
    } 
  } 
  /* balance matrix A */ 
  ierr = c_dblnc((double*)a, k, n, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dblnc failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* reduce matrix to Hessenberg form */ 
  ierr = c_dhes1((double*)a, k, n, pv, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dhes1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<n;i++)  
    for (j=0;j<n;j++) 
      aw[i][j] = a[i][j]; 
  /* find eigenvalues */ 
  ierr = c_dhsqr((double*)aw, k, n, er, ei, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dhsqr failed with icon = %i\n", icon); 
    exit (1); 
  } 
  for (i=0;i<m;i++) ind[i] = 1; 
  /* find eigenvectors for given eigenvalues */ 
  ierr = c_dhvec((double*)a, k, n, er, ei,  
   ind, m, (double*)ev, mk, (double*)aw, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dhvec failed with icon = %i\n", icon); 
    exit (1); 
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  } 
  /* back transformation to find e-vectors of A */ 
  ierr = c_dhbk1((double*)ev, k, n, ind, m, (double*)a, pv, dv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dhbk1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  i = 0; 
  k = 0; 
  while (i<m) { 
    if (ind[i] == 0) i++; 
    else if (ei[i] == 0) { 
      /* real eigenvector */ 
      printf("eigenvalue: %12.4f\n", er[i]); 
      printf("eigenvector:"); 
      for (j=0;j<n;j++) 
        printf("%7.4f  ", ev[k][j]); 
      printf("\n"); 
      i++; 
      k++; 
    } 
    else { 
      /* complex eigenvector pair */ 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", er[i], ei[i]); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
        printf("%7.4f+i*%7.4f   ", ev[k][j], ev[k+1][j]); 
      printf("\n"); 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", er[i+1], ei[i+1]); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
        printf("%7.4f+i*%7.4f   ", ev[k][j], -ev[k+1][j]); 
      printf("\n"); 
      i = i+2; 
      k = k+2; 
    } 
  } 
  return(0); 
} 

5. Method 

Consult the entry for HVEC in the Fortran SSL II User's Guide and references [118] and [119]. 
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c_dicheb 
Indefinite integral of a Chebyshev series. 
ierr = c_dicheb(a, b, c, &n, &icon); 

1. Function 

Given a truncated Chebyshev series (1) with n-terms, defined on the interval ],[ ba  
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this routine obtains the indefinite integral in a Chebyshev series (2)  
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where kc  nk ,...,1,0  are its Chebyshev coefficients with arbitrary constant 0c  assumed to be zero.  '  denotes 

the sum in which the initial term is multiplied by a factor ½. Here, 1n and ba  . 

2. Arguments 

The routine is called as follows: 
ierr = c_dicheb(a, b, c, &n, &icon); 

where: 
a double Input Lower limit a of the interval for the Chebyshev series. 
b double Input Upper limit b of the interval for the Chebyshev series. 
c double c[n+1] Input Coefficients kc  of the Chebyshev series, with  

c[k] = kc , 1,...,1,0  nk . 
  Output Coefficients kc for the indefinite integral, with  

c[0] = 0, c[k] = kc , nk ,...,2,1 . 
n int Input Number of terms n of the Chebyshev series. 
  Output Number of terms n+1 of the indefinite integral Chebyshev series. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n < 1 
 a = b 

Bypassed. 

3. Comments on use 

When the indefinite integral of an arbitrary function is required, the routine c_dfcheb can be called before this one to 
obtain the Chebyshev series for the function. 
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The routine c_decheb can be called after this routine to evaluate the Chebyshev series of the indefinite integral at an 
arbitrary point ],[ bav . See example. 

Arbitrary constant 
This routine outputs zero as the arbitrary constant 0c  of the Chebyshev series for the indefinite integral. If the constant is 
to be defined so that the indefinite integral at a point ],[ bav  takes the value vy , then it should be computed as 

 )(20 y]c[  vy   

where y is the value of the Chebyshev series for the indefinite integral evaluated at the point v using routine c_decheb. 

Definite integral 
To obtain the definite integral 
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the value of the arbitrary constant 0c  is determined first, such that the value of the indefinite integral at the end point a is 
zero. Then the routine c_decheb is called m times repeatedly. See example. 

Error 
 The error of an indefinite integral can be estimated from the absolute sum of the last two terms of the series. 

4. Example program 

This program evaluates the Chebyshev sreies, and its integral, for the function: 

 ]1,0[,
10014

1)(
0
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  x

t
dtxf

x

 (3) 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 257 /* default value */ 
 
double fun(double x); /* function prototype */ 
double truefun(double x);  
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, nmin, nmax; 
  double epsa, epsr, err, a, b, v, f, h; 
  double c[NMAX], tab[NMAX-2]; 
 
  /* initialize data */ 
  epsr = 5e-5; 
  epsa = epsr; 
  nmin = 9; /* default value */ 
  nmax = NMAX; 
  a = 0; 
  b = 1; 
  /* expand function as Chebyshev series */ 
  ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, &n, &err, tab, &icon); 
  if (icon >= 20000) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  /* now calculate integral */ 
  ierr = c_dicheb(a, b, c, &n, &icon); 
  if (icon != 0) { 
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    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  /* set constant term c0 */ 
  ierr = c_decheb(a, b, c, n, a, &f, &icon); 
  if (icon != 0) { 
    printf("ERROR:  icon = %4i\n", icon); 
    exit(1); 
  } 
  c[0] = (0.25-f)*2; 
  /* now evaluate Chebyshev series at points */ 
  h = 0.05; 
  printf(" v      integral         error   \n");           
  for (i=0;i<=20;i++) { 
    v = a+i*h; 
    ierr = c_decheb(a, b, c, n, v, &f, &icon); 
    if (icon != 0) { 
      printf("ERROR:  icon = %4i\n", icon); 
      exit(1); 
    } 
    err = truefun(v) - f; 
    printf("%4.2f  %12.5e  %12.5e\n", v, f, err);           
  } 
  return(0); 
} 
 
/* function to expand */ 
double fun(double x) 
{ 
  return 1/(1+100*x*x); 
} 
 
/* true integral function */ 
double truefun(double x) 
{ 
  return 0.25+atan(10*x)/10; 
} 

5. Method 

Consult the entry for ICHEB in the Fortran SSL II User's Guide. 
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c_dierf 
Inverse error function )(erf 1 x . 
ierr = c_dierf(x, &f, &icon); 

1. Function 

This routine evaluates the inverse function, )(erf 1 x , of the error function  




x t dtex
0

22)(erf , using the 

minimax approximation formulas in the form of the polynomial and rational functions. Here 1|| x . 

2. Arguments 

The routine is called as follows: 
ierr = c_dierf(x, &f, &icon); 

where: 
x double Input Independent variable x. See Comments on use for range of x. 
f double Output Function value )(erf 1 x . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 |x|   1. f is set to 0. 

3. Comments on use 

Range of x 
The valid range of argument x is |x| < 1. 

c_dierf and c_dierfc 
Through the relationship  

 )1(erfc   (x)erf 11 x   

the inverse error function can be evaluated by the routine c_dierfc which caluclates the inverse complimentary error 
function )(erfc 1 x . However, if values of x are in the range |x|   0.8, this routine is more accurate and efficient than 
c_dierfc. 

4. Example program 

This program generates a range of function values for 101 points in the the interval [0,1]. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
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  double x, f; 
  int i; 
 
  for (i=0;i<100;i++) { 
    x = (double)i/100; 
    /* calculate inverse error function */ 
    ierr = c_dierf(x, &f, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   f = %f\n", x, f); 
    else 
      printf("ERROR: x = %5.2f   f = %f   icon = %i\n", x, f, icon); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for IERF in the Fortran SSL II User's Guide. 
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c_dierfc 
Inverse complimentary error function )(erfc 1 x . 
ierr = c_dierfc(x, &f, &icon); 

1. Function 

This routine evaluates the inverse function, )(erfc 1 x , of the complimentary error function 
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t dtex
22)(erfc , using the minimax approximation formulas in the form of the polynomial and rational 

functions. Here 20  x . 

2. Arguments 

The routine is called as follows: 
ierr = c_dierfc(x, &f, &icon); 

where: 
x double Input Independent variable x. See Comments on use for range of x. 
f double Output Function value )(erfc 1 x . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 x   0 or x   2. f is set to 0. 

3. Comments on use 

Range of x 
The valid range of argument x is 0 < x < 2. 

c_dierfc and c_dierf 
Through the relationship  

 )1(erf)(erfc 11 xx    

the inverse complimentary error function can be evaluated by the routine c_dierf which calculates the inverse error 
function )(erf 1 x . However, if values of x are in the range 0 < x < 0.2, this routine is more accurate and efficient than 
c_dierf. 

4. Example program 

This program generates a range of function values for 101 points in the the interval [0,1]. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
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{ 
  int ierr, icon; 
  double x, f; 
  int i; 
 
  for (i=1;i<=100;i++) { 
    x = (double)i/100; 
    /* calculate inverse complementary error function */ 
    ierr = c_dierfc(x, &f, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   f = %f\n", x, f); 
    else 
      printf("ERROR: x = %5.2f   f = %f   icon = %i\n", x, f, icon); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for IERFC in the Fortran SSL II User's Guide. 
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c_digam1 
Incomplete Gamma function of the first kind  ( , )x . 
ierr = c_digam1(v, x, &f, &icon); 

1. Function 

This function computes the incomplete Gamma function of the first kind 

  ( , )x e t dtt
x

   1

0
 

by series expansion, asymptotic expansion and numerical integration, where   0  and x  0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_digam1(v, x, &f, &icon); 

where: 
v double Input Independent variable  . 
x double Input Independent variable x. 
f double Output Function value  ( , )x . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 v ≤ 0 
 x < 0 

f is set to zero. 

3. Comments on use 

When x ≥ 46.0, the value of  ( , )x  may be obtained by the complete GAMMA( ) function, ( ) , in Fortran’s basic 
functions, because   ( , ) ( )x    in the above ranges. 

4. Example program 

This program evaluates a table of function values for a range of x and v values. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double v, x, f; 
  int iv, ix; 
 
  for (iv=1;iv<10;iv++) { 
    v = (iv+7*(iv-1.0)/3)/10; 
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    for (ix=1;ix<10;ix++) { 
      x = (ix+7*(ix-1.0)/3)/10; 
      /* calculate incomplete gamma function */ 
      ierr = c_digam1(v, x, &f, &icon); 
      if (icon == 0) 
        printf("v = %5.2f   x = %5.2f   f = %f\n", v, x, f); 
      else 
        printf("ERROR: v = %5.2f   x = %5.2f   f = %f   icon = %i\n",  
               v, x, f, icon); 
    } 
  } 
  return(0); 
} 

5. Method 

Depending on the values for x  and  , the method used to compute the function  ( , )x  with x1 55 .  is: 

 Power series expansion when x  2 1( )  or 1xx  . 
 The routine c_digam2 (asymptotic expansion and numerical integration) when x  2 1( )  and 1xx  . 
 
For further information consult the entry for IGAM1 in the Fortran SSL II User's Guide. 
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c_digam2 
Incomplete Gamma function of the second kind ( , ) x . 
ierr = c_digam2(v, x, &f, &icon); 

1. Function 

This function computes the incomplete Gamma function of the second kind 

( , ) ( )  x e t dt e e x t dtt x t      


 1 1

00
 

by series expansion, asymptotic expansion and numerical integration, where   0  and x  0  ( x  0  when   0 ). 

2. Arguments 

The routine is called as follows: 
ierr = c_digam2(v, x, &f, &icon); 

where: 
v double Input Independent variable  . 
x double Input Independent variable x. 
f double Output Function value ( , ) x . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 xv x  1e flmax  f is set to flmax  
30000 One of the following has occurred: 

 v < 0 
 x < 0 
 v = 0 and x = 0 

f is set to zero. 

3. Comments on use 

Numerical overflow/underflow 
For x  log( )maxfl , numerical underflow occurs in computing the value of ( , ) x . Similarly, numerical overflow 
occurs when max

1 flex x   with x  1  and   very large.  For details on the constant flmax , see the Machine 
constants section of the Introduction. 

4. Example program 

This program evaluates a table of function values for a range of x and v values. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
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{ 
  int ierr, icon; 
  double v, x, f; 
  int iv, ix; 
 
  for (iv=1;iv<10;iv++) { 
    v = (iv+7*(iv-1.0)/3)/10; 
    for (ix=1;ix<10;ix++) { 
      x = (ix+7*(ix-1.0)/3)/10; 
      /* calculate incomplete gamma function */ 
      ierr = c_digam2(v, x, &f, &icon); 
      if (icon == 0) 
        printf("v = %5.2f   x = %5.2f   f = %f\n", v, x, f); 
      else 
        printf("ERROR: v = %5.2f   x = %5.2f   f = %f   icon = %i\n",  
               v, x, f, icon); 
    } 
  } 
  return(0); 
} 

5. Method 

Depending on the values for x  and  , the method used to compute the function ( , ) x  is: 

 The Fortran routine DEXPI when   0  and x  0 . 
 Fortran’s basic function GAMMA when   0  and x  0 . 
 When   0  and x  0 , the approximation used with x1 40 0 .  are: 

 Asymptotic expansion when   integer  or x x 1 . 
 Numerical integration when   integer  and x x 1 . 

 
For further information consult the entry for IGAM2 in the Fortran SSL II User's Guide. 
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c_dindf 
Inverse normal distribution function )(1 x . 
ierr = c_dindf(x, &f, &icon); 

1. Function 

This routine computes the value of the inverse function, )(1 x , of the normal distribution function  

 dtex
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by the relation 

  xerfx 22)( 11   , 

where | x | < ½. 

2. Arguments 

The routine is called as follows: 
ierr = c_dindf(x, &f, &icon); 

where: 
x double Input Independent variable x. See Comments on use for range of x. 
f double Output Function value )(1 x . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 | x |   1/2 f is set to 0. 

3. Comments on use 

Range of x 
The valid range of argument x is | x | < ½. 

c_dindf and c_dindfc 
Using the relationship between the inverse normal distribution function )(1 x  and the inverse complimentary normal 
distribution function )(1 x  

 )2/1()( 11 xx   , 

the value of )(1 x  can be computed using the routine c_dindfc. However, in the range || x    0.4 this leads to less 
accuracy and less efficient computation than using this routine. 
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4. Example program 

This program generates a range of function values for 50 points in the the interval [0,0.49]. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, f; 
  int i; 
 
  for (i=0;i<50;i++) { 
    x = (double)i/100; 
    /* calculate inverse normal distribution function */ 
    ierr = c_dindf(x, &f, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   f = %f\n", x, f); 
    else 
      printf("ERROR: x = %5.2f   f = %f   icon = %i\n", x, f, icon); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for INDF in the Fortran SSL II User's Guide. 
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c_dindfc 
Inverse complimentary normal distribution function )(1 x . 
ierr = c_dindfc(x, &f, &icon); 

1. Function 

This routine computes the value of the inverse function, )(1 x , of the complimentary normal distribution function  

 dtex
x

t







 2

2

2
1)( , 

by the relation 

  xerfcx 22)( 11   , 

where 0 < x < 1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dindfc(x, &f, &icon); 

where: 
x double Input Independent variable x. See Comments on use for range of x. 
f double Output Function value )(1 x . 
icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 x   0 or x   1 f is set to 0. 

3. Comments on use 

Range of x 
The valid range of argument x is 0 < x < 1. 

c_dindfc and c_dindf 
Using the relationship between the inverse complimentary normal distribution function )(1 x  and the inverse normal 
distribution function )(1 x  

 )2/1()( 11 xx   , 

the value of )(1 x  can be computed using the routine c_dindf. However, in the range 0 < x < 0.1 this leads to less 
accuracy and less efficient computation than using this routine. 
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4. Example program 

This program generates a range of function values for 50 points in the the interval [0,0.49]. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, f; 
  int i; 
 
  for (i=1;i<=50;i++) { 
    x = (double)i/100; 
    /* calculate inverse complementary normal distribution function */ 
    ierr = c_dindfc(x, &f, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   f = %f\n", x, f); 
    else 
      printf("ERROR: x = %5.2f   f = %f   icon = %i\n", x, f, icon); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for INDFC in the Fortran SSL II User's Guide. 
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c_dlaps1 
Inversion of Laplace transform of a rational function (regular in the 
right-half plane). 
ierr = c_dlaps1(a, na, b, nb, t, delt, np, 

epsr, ft, t1, neps, errv, &icon); 

1. Function 

Given a rational function )(sF expressed by (1), that is regular in the domain Re(s) > 0, this routine calculates values of 
the inverse Laplace transform ))1((),...,(),( 000 ttfttftf   . 
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with real coefficents 1,...,1,  niai  and 1,...,1,  mjb j , and mn  . 

2. Arguments 

The routine is called as follows: 
ierr = c_dlaps1(a, na, b, nb, t, delt, np, epsr, ft, t1, neps, errv, &icon); 

where: 
a double a[n+1] Input Coefficients ia  of )(sP , with a[i-1] = ia , 1,...,1  ni . 
na int Input Degree n of )(sP . 
b double b[m+1] Input Coefficients jb  of )(sQ , with b[j-1] = jb , 1,..,.1  mj . 
nb int Input Degree m of )(sQ . 
t double Input Initial value 0t  (   0) from which the values of )(tf are required. 
delt double Input Increment t  (   0) of variable t. If delt = 0, only )( 0tf  is 

calculated. 
np int Input Number  of points   (   1) at which values of )(tf  are required. 
epsr double Input Relative error tolerance (  0) for the values )(tf .Values of epsr 

between 210  and 710  are typical. If epsr = 0, the default value of 
410  is used. 

ft double ft[np] Output Values )( 0 titf  , with ft[i] = )( 0 titf  . 
t1 double t1[np] Output Values tit 0  with t1[i] = tito  . 
neps int neps[np] Output Number of terms in the truncated expansions. The number of terms iN  

used to calculate ft[i] is stored in neps[i]. 
errv double 

errv[np] 

Output Estimates of the relative error. The estimate of the relative error in 
ft[i] is stored in errv[i]. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 
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Code  Meaning  Processing 
0 No error. Completed. 
10000 Some of the results did not meet the required 

accuracy. 
Continued. Values representing accuracy for 

)( 0 titf  , 1,...,1,0  i  are output in errv.
30000 One of the following has occurred: 

 nb < 0 or nb > na 
 t < 0 or delt < 0 
 np < 1 
 epsr < 0 
 a[0] = 0 

Bypassed. 

3. Comments on use 

The function )(sF  must be regular in the domain Re(s) > 0 . If )(sF  is singular or if its regularity is not known, the 
routine c_dlaps2 should be used. 

Initial value 
If 00 t , the value of )0(f  is calculated as 
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When n = m, (1) can be written as 
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The inverse transform )(1 tf  of )(1 sF is given as 

 )()(
1

1
1 t

a
b

tf    

where )(t is the delta function, and the inverse Laplace transform of )(2 sF  for 0t  can be calculated using this 
routine. When 0t , the maximum value of the floating point numbers maxfl is returned, see the Machine constants 
section in the Introduction. 

4. Example program 

For a rational function )(sF  is non-singular for real 0s , the inverse Laplace transform is obtained at certain points by 
the following program. )(sF is given by: 
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ssss
ssF  (2) 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double t, delt, epsr; 
  double a[5], b[3], t1[9], ft[9], errv[9];  
  int i, l, na, nb, neps[9]; 
 
  /* generate initial data */ 
  nb = 2; 
  b[0] = 1; 
  b[1] = 0; 
  b[2] = 4; 
  na = 4; 
  a[0] = 1; 
  a[1] = 12; 
  a[2] = 54; 
  a[3] = 108; 
  a[4] = 81; 
  t = 0.2; 
  delt = 0.2; 
  l = 9; 
  epsr = 1e-4; 
  /* calculate inverse Laplace transform */ 
  ierr = c_dlaps1(a, na, b, nb, t, delt, l, epsr, ft, t1, neps, errv, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dlaps1 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  printf("icon = %i\n", icon); 
  printf(" t1        ft          errv       neps   \n");           
  for (i=0;i<l;i++) { 
    printf("%4.2f  %12.5e %12.5e  %4i\n",  
    t1[i], ft[i], errv[i], neps[i]);           
  } 
  return(0); 
} 

5. Method 

Consult the entry for LAPS1 in the Fortran SSL II User's Guide. 
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c_dlaps2 
Inversion of Laplace transform of a general rational function. 
ierr = c_dlaps2(a, na, b, nb, t, delt, np, 

epsr, ft, t1, neps, errv, &iflg, 

vw, &icon); 

1. Function 

Given a rational function )(sF expressed by (1), this routine calculates values of the inverse Laplace transform 
))1((),...,(),( 000 ttfttftf   . 
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with real coefficents 1,...,1,  niai  and 1,...,1,  mjb j , and mn  . In this case, )(sF  need not be regular in the 
domain Re(s) > 0. 

2. Arguments 

The routine is called as follows: 
ierr = c_dlaps2(a, na, b, nb, t, delt, np, epsr, ft, t1, neps, errv, &iflg, 

vw, &icon); 

where: 
a double a[n+1] Input Coefficients ia  of )(sP , with a[i-1] = ia , 1,...,1  ni . 
na int Input Degree n of )(sP . 
b double b[m+1] Input Coefficients jb  of )(sQ , with b[j-1] = jb , 1,...,1  mj . 
nb int Input Degree m of )(sQ . 
t double Input Initial value 0t  (  0) from which the values of )(tf are required. 
delt double Input Increment t  (  0) of variable t. If delt = 0, only )( 0tf  is 

calculated. 
np int Input Number of points   ( 1) at which values of )(tf  are required. 
epsr double Input Relative error tolerance (  0) for the values )(tf .Values of epsr 

between 210  and 710  are typical. If epsr = 0, the default value of 
410  is used. 

ft double ft[np] Output Values )( 0 titf  , with ft[i] = )( 0 titf  . 
t1 double t1[np] Output Values tit 0  with t1[i] = tito  . 
neps int neps[np] Output Number of terms in the truncated expansions. The number of terms iN  

used to calculate ft[i] is stored in neps[i]. 
errv double 

errv[np] 

Output Estimates of the relative error.The estimate of the relative error in 
ft[i] is stored in errv[i]. 
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iflg int Output iflg = 0 if )(sF is regular in the domain Re(s) > 0, 
iflg = 1 otherwise. See Comments on use. 

vw double 

vw[na+nb+2] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Some of the results did not meet the required 

accuracy. 
Continued. Values representing accuracy for 

)( 0 titf  , 1,...,1,0  i  are output in errv.
20000 The subroutine failed to obtain a real value 

00  such that )(sF is regular in the domain 
Re(s) > 0 . 

Bypassed. 

30000 One of the following has occurred: 
 nb < 0 or nb > na 
 t < 0 or delt < 0 
 np < 1 
 epsr < 0 
 a[0] = 0 

Bypassed. 

3. Comments on use 

The rational function )(sF  need not be regular in the domain Re(s) > 0 . However, if it is known that )(sF  is regular 
routine c_dlaps1 should be used for efficiency. 

Initial value 
If 00 t , the value of )0(f  is calculated as 
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iflg 
If iflg= 1 is output, )(sF  is not regular in the domain Re(s) > 0. This means that )(tf increases exponentially as t 
approaches infinity. 

n = m 
When n = m, (1) can be written as 
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The inverse transform )(1 tf  of )(1 sF is given as 
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where )(t is the delta function, and the inverse transform of )(2 sF  for 0t  can be calculated by this routine When 
0t , the maximum value of the floating point numbers maxfl is returned, see the Machine constants section in the 

Introduction. 

4. Example program 

For a rational function )(sF  the inverse Laplace transform is calculated by the following program at certain points. 
)(sF is given by: 
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ssss
ssF  (2) 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double t, delt, epsr; 
  double a[5], b[3], t1[9], ft[9], errv[9], vw[8];  
  int i, l, na, nb, iflg, neps[9]; 
 
  /* generate initial data */ 
  nb = 2; 
  b[0] = 1; 
  b[1] = 0; 
  b[2] = 4; 
  na = 4; 
  a[0] = 1; 
  a[1] = -12; 
  a[2] = 54; 
  a[3] = -108; 
  a[4] = 81; 
  t = 0.2; 
  delt = 0.2; 
  l = 9; 
  epsr = 1e-4; 
  /* calculate inverse Laplace transform */ 
  ierr = c_dlaps2(a, na, b, nb, t, delt, l, epsr, ft, t1,  
    neps, errv, &iflg, vw, &icon); 
  if (icon >= 20000) { 
    printf("ERROR: c_dlaps2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  printf("icon = %i   iflg = %i\n", icon, iflg); 
  printf(" t1        ft          errv       neps   \n");           
  for (i=0;i<l;i++) { 
    printf("%4.2f  %12.5e %12.5e  %4i\n",  
    t1[i], ft[i], errv[i], neps[i]);           
  } 
  return(0); 
} 

5. Method 

Consult the entry for LAPS2 in the Fortran SSL II User's Guide. 
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c_dlaps3 
Inversion of Laplace transform of a general function. 
ierr = c_dlaps3(fun, t, delt, np, epsr, r0, 

ft, t1, neps, errv, &icon); 

1. Function 

Given a function )(sF  (including non-rational functions), this routine calculates values of the inverse Laplace transform 
))1((),...,(),( 000 ttfttftf   .In this case, )(sF  must be regular in the domain Re(s) > 0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dlaps3(fun, t, delt, np, epsr, r0, ft, t1, neps, errv, &icon); 

where: 
fun function Input Name of user defined function which calculates the imaginary part of 

)(sF for complex variable s. Its prototype is: 
double fun(dcomplex s); 

where 
   s dcomplex Input Complex independent variable s.
t double Input Initial value 0t  (> 0) from which the values of )(tf are required. 
delt double Input Increment t  (  0) of variable t. If delt = 0, only )( 0tf  is 

calculated. 
np int Input Number  of points   (  1) at which values of )(tf  are required. 
epsr double Input Relative error tolerance (  0) for the values )(tf .Values of epsr 

between 410  and 710  are typical. If epsr = 0 or epsr   1, the 
default value of 410  is used. 

r0 double Input Value of  which satisfies 0  when the function )(sF is regular in a 
domain Re(s) > 0 . If a negative value is input, r0 =0 is assumed. 

ft double ft[np] Output Values )( 0 titf  , with ft[i] = )( 0 titf  . 
t1 double t1[np] Output Values tit 0  with t1[i] = tito  . 
neps int neps[np] Output Number of terms in the truncated expansions. The number of terms iN  

used to calculate ft[i] is stored in neps[i]. 
errv double 

errv[np] 

Output Estimates of the relative error.The estimate of the relative error in 
ft[i] is stored in errv[i]. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Some of the results did not meet the required 

accuracy. 
Continued. Values representing accuracy for 

)( 0 titf  , 1,...,1,0  i  are output in errv.
20000 The value of 

exp(r0*t1[np]+0 )/t1[np], where 
Bypassed. The result may not be accurate. 
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Code  Meaning  Processing 

2
2

)epsrlog(
0 




 , may overflow for a 

certain value of np. 

30000 One of the following has occurred: 
 t   0 or delt < 0 
 np < 1 

Bypassed. 

3. Comments on use 

When )(sF  is a rational function, routine c_dlaps2 should be used for efficiency. 

When )(sF  is regular in the domain Re(s) > 0 , input 0  as argument r0. 

When 00  specify r0 = 0. If a negative value is input as argument r0, r0 = 0 is assumed in the routine. 

If the function )(tf  for r0 = 0 and the function )(tf  for r0 > 0 are significantly different, it is possible, because 0  > 0, 
to estimate the value 0  using this routine. Consult the entry for LAPS3 in the Fortran SSL II User's Guide. 

4. Example program 

This finds the inverse Laplace transform for the function )Im()( ssF   (where s is complex) at certain points. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define L 10 
 
double fun(dcomplex s); /* function  prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double t, delt, epsr, r0; 
  double t1[L], ft[L], errv[L];  
  int i, l, neps[L]; 
 
  /* generate initial data */ 
  t = 0.2; 
  delt = 0.2; 
  l = L; 
  epsr = 1e-4; 
  r0 = 0; 
  /* calculate inverse Laplace transform */ 
  ierr = c_dlaps3(fun, t, delt, l, epsr, r0, ft, t1,  
    neps, errv, &icon); 
  if (icon >= 20000) { 
    printf("ERROR: c_dlaps3 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  printf("icon = %i\n", icon); 
  printf(" t1        ft          errv       neps   \n");           
  for (i=0;i<l;i++) { 
    printf("%4.2f  %12.5e %12.5e  %4i\n",  
    t1[i], ft[i], errv[i], neps[i]);           
  } 
  return(0); 
} 
 
/* user function */ 
double fun(dcomplex s) 
{ 
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  return s.im; 
} 

5. Method 

Consult the entry for LAPS3 in the Fortran SSL II User's Guide. 
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c_dlaxl 
Least squares solution with a real matrix (Householder transformation). 
ierr = c_dlaxl(a, k, m, n, b, isw, vw, ivw, 

&icon); 

1. Function 

This function solves the over determined system of linear equation (1) for the least squares solution ~x  using Householder 
transformations. 

 Ax b  (1) 

In (1), A is an m  n real matrix of rank n and b is a real constant vector of size m, where m is not less than n. 

 b Ax 2  (2) 

The function determines the real solution vector x, such that equation (2) is minimized (n1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dlaxl((double*)a, k, m, n, b, isw, vw, ivw, &icon); 

where: 
a double 

a[m][k] 

Input Matrix A. 
The contents of the array are altered on output. 

k int Input C fixed dimension of array a ( n). 
m int Input The number of rows m in matrix A. 
n int Input The number of columns n in matrix A. 
b double b[m] Input Constant vector b. 
  Output Least squares solution vector ~x .  See Comments on use. 
isw int Input Control information. 

When solving several sets of equations that have the same coefficient 
matrix, set isw=1 for the first set, and isw=2 for the second and 
subsequent sets.  Only argument b is assigned a new constant vector b 
and the others are unchanged.  See Comments on use. 

vw double vw[2n] Work  
ivw int ivw[n] Work  
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Rank (A) < n Stopped. 
29000 Memory allocation error. Bypassed. 
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Code  Meaning  Processing 
30000 One of the following has occurred: 

 k < n 
 m < n 
 n < 1 
 isw  1 or 2 

Bypassed. 

3. Comments on use 

Least squares solution – b 
The least squares solution ~x  is stored in the first n elements of array b. 

isw 
When solving several sets of linear equations with same coefficient matrix, specify isw=2 for the second and subsequent 
sets after successfully completing the first with isw=1. This will bypass the Householder transformation section and go 
directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise. 

4. Example program 

This example program initializes A and x (from the overdetermined system bAx  ), and then calculates b by 
multiplication. A solution y is then obtained using the library routine, and this is then checked using the equation bAy  . 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define MMAX 110 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int m, n, i, j, k, isw; 
  double eps; 
  double a[MMAX][NMAX], aa[MMAX][NMAX], b[MMAX], bb[MMAX]; 
  double x[MMAX], vw[2*NMAX]; 
  int ivw[NMAX]; 
 
  /* initialize overdetermined system */ 
  m = MMAX; 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=i;j<n;j++) { 
      a[i][j] = n-j; 
      a[j][i] = n-j; 
    } 
  for (i=n;i<m;i++) 
    for (j=0;j<n;j++) { 
      a[i][j] = 0; 
      if (i%n == j) a[i][j] = 1; 
    } 
  for (i=0;i<m;i++) 
    for (j=0;j<n;j++) 
      aa[i][j] = a[i][j]; 
  for (i=0;i<n;i++) 
    x[i] = 1; 
  k = NMAX; 
  /* initialize constant vector b = a*x */ 
  ierr = c_dmav((double*)a, k, m, n, x, b, &icon); 
  for (i=0;i<m;i++) 
    bb[i] = b[i]; 
  isw = 1; 
  /* solve overdetermined system of equations */ 
  ierr = c_dlaxl((double*)a, k, m, n, b, isw, vw, ivw, &icon); 
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  if (icon != 0) { 
    printf("ERROR: c_dlaxl failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check least squares solution */ 
  ierr = c_dmav((double*)aa, k, m, n, b, x, &icon); 
  eps = 1e-6; 
  for (i=0;i<m;i++) 
    if (fabs((x[i]-bb[i])/bb[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The Householder transformation method is used.  For further information consult the entry for LAXL in the Fortran SSL 
II User’s Guide and [18]. 
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c_dlaxlm 
Least squares minimal norm solution with a real matrix (singular value 
decomposition method). 
ierr = c_dlaxlm(a, ka, m, n, b, isw, eps, sig, 

v, kv, vw, &icon); 

1. Function 

This function finds the least squares minimal norm solution x  for a system of linear equations (1). 

 Ax b  (1) 

In (1), A is an m  n real matrix and b is a real constant vector of size m.  The n-order real solution vector x is determined 
by minimizing equations (2) and (3). 

 x 2  (2) 

 b Ax 2  (3) 

2. Arguments 

The routine is called as follows: 
ierr = c_dlaxlm((double*)a, ka, m, n, b, isw, eps, sig, (double*)v, kv, vw, 

&icon); 

where: 
a double 

a[m][ka] 

Input 
Output 

Matrix A. 
The contents of the array are altered on output. 

ka int Input C fixed dimension of array a ( n). 
m int Input The number of rows m in matrix A. 
n int Input The number of columns n in matrix A. 
b double b[Blen] Input Constant vector b, with Blen=max(m,n).  See Comments on use. 
  Output Least squares minimal norm solution vector x . 
isw int Input Control information. 

When solving several sets of equations that have the same coefficient 
matrix, set isw=1 for the first set, and isw=2 for the second and 
subsequent sets.  Only argument b is assigned a new constant vector b 
and the others are unchanged.  Otherwise set isw=0 when there is only 
one system to solve.  See See Comments on use. 

eps double Input Tolerance for relative zero test of singular values ( 0).  When eps is 
zero, a standard value is used.  See Comments on use. 

sig double sig[n] Output Singular values of matrix A.  See Comments on use. 
v double 

v[n][kv] 

Work Working space for matrices U and V in the singular value 
decomposition, A U V  T . 

kv int Input C fixed dimension of array v ( min(m+1,n)). 
vw double vw[n] Work  
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icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
15000 Some singular values could not be obtained. Stopped. 
29000 Memory allocation error. Bypassed. 
30000 One of the following has occurred: 

 ka < n 
 m < 1 
 n < 1 
 kv < min(n, m + 1) 
 eps <0 
 isw  0, 1, or 2 

Bypassed. 

3. Comments on use 

Least squares solution – b 
The least squares minimal norm solution x  is stored in the first n elements of array b. 

isw 
When only one least squares minimal norm solution is required, if isw=0 is specified, this function does not compute the 
transformation by singular value decomposition.  Consequently, it is computationally more efficient than otherwise. 

When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for the second and 
subsequent sets after successfully completing the first with isw=1. This will bypass the singular value decomposition 
section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient 
than otherwise. 

sig 
All singular values are non-negative and stored in descending order.  When icon=15000, the unobtainable singular 
values are set to –1 and the values are not arranged in any order. 

eps 
The argument eps is used for determining the rank of A.  It must be carefully specified. 

When a singular value is less than the tolerance, eps, it is assumed to be zero.  The standard value of eps is 16µ, where 
µ is the unit round-off. A value less than zero results in icon=30000. 

When to use the function 
This function should be used when rank deficiency of A is or may be found (rank(A) in (m, n)).  When rank(A) = min(m, 
n) then the function c_dlaxl should be used. 

4. Example program 

This example program initializes A and x (from the overdetermined system bAx  ), and then calculates b by 
multiplication. A solution y is then obtained using the library routine, and this is then checked using the equation bAy  . 
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#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define MMAX 110 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int m, n, i, j, ka, kv, isw; 
  double eps; 
  double a[MMAX][NMAX], aa[MMAX][NMAX], b[MMAX], bb[MMAX]; 
  double x[MMAX], sig[NMAX], v[NMAX][NMAX], vw[NMAX]; 
 
  /* initialize overdetermined system */ 
  m = MMAX; 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=i;j<n;j++) { 
      a[i][j] = n-j; 
      a[j][i] = n-j; 
    } 
  for (i=n;i<m;i++) 
    for (j=0;j<n;j++) { 
      a[i][j] = 0; 
      if (i%n == j) a[i][j] = 1; 
    } 
  for (i=0;i<m;i++) 
    for (j=0;j<n;j++) 
      aa[i][j] = a[i][j]; 
  for (i=0;i<n;i++) 
    x[i] = 1; 
  ka = NMAX; 
  kv = NMAX; 
  /* initialize constant vector b = a*x */ 
  ierr = c_dmav((double*)a, ka, m, n, x, b, &icon); 
  for (i=0;i<m;i++) 
    bb[i] = b[i]; 
  isw = 0; 
  eps = 0; 
  /* solve overdetermined system of equations */ 
  ierr = c_dlaxlm((double*)a, ka, m, n, b, isw,  
                  eps, sig, (double*)v, kv, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dlaxlm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check least squares solution */ 
  ierr = c_dmav((double*)aa, ka, m, n, b, x, &icon); 
  eps = 1e-6; 
  for (i=0;i<m;i++) 
    if (fabs((x[i]-bb[i])/bb[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The singular value decomposition method is used.  For further information consult the entry for LAXLM in the Fortran 
SSL II User’s Guide and [41]. 
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c_dlcx 
Solution of a system of linear equations with a complex matrix (Crout’s 
method). 
ierr = c_dlcx(za, k, n, zb, epsz, isw, &is, 

zvw, ip, &icon); 

1. Function 

This function solves a system of linear equations (1) in complex numbers by Crout’s method. 

 Ax b  (1) 

In (1), A is an n  n non-singular complex matrix, b is a complex constant vector and x is the complex solution vector.  
Both the complex vectors are of size n (n1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dlcx((dcomplex*)za, k, n, zb, epsz, isw, &is, zvw, ip, &icon); 

where: 
za dcomplex 

za[n][k] 

Input 
Output 

Matrix A. 
The contents of the array are altered on output. 

k int Input C fixed dimension of array za ( n). 
n int Input Order n of matrix A. 
zb dcomplex 

zb[n] 

Input Constant vector b. 

  Output Solution vector x. 
epsz double Input Tolerance for relative zero test of pivots in decomposition process of A 

( 0).  When epsz is zero, a standard value is used.  See Comments on 
use. 

isw int Input Control information. 
When solving several sets of equations that have the same coefficient 
matrix, set isw=1 for the first set, and isw=2 for the second and 
subsequent sets.  Only argument b is assigned a new constant vector b 
and the others are unchanged.  See Comments on use. 

is int Output Information for obtaining the determinant of matrix A.  When the n 
elements of the calculated diagonal of array za are multiplied together, 
and the result multiplied by is, the determinant is obtained. 

zvw dcomplex 

zvw[n] 

Work  

ip int ip[n] Work  
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 
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Code  Meaning  Processing 
0 No error. Completed. 
20000 Either all of the elements of some row are zero or 

the pivot became relatively zero.  It is highly 
probable that the coefficient matrix is singular. 

Stopped. 

30000 One of the following has occurred: 
 k < n 
 n < 1 
 epsz < 0 
 isw 1 or 2 

Bypassed. 

3. Comments on use 

epsz 
If the value 10-s is given for epsz as the tolerance for the relative zero test then it has the following meaning: 

If both the real and imaginary parts of the pivot value lose more than s significant digits during LU-decomposition by 
Crout’s method, the pivot value is assumed to be zero and computation is discontinued with icon=20000. 

The standard value of epsz is normally 16µ, where µ is the unit round-off.  If processing is to proceed at a low pivot 
value, epsz will be given the minimum value but the result is not always guaranteed. 

isw 
When solving several sets of linear equations with same coefficient matrix, specify isw=2 for the second and subsequent 
sets after successfully completing the first with isw=1.  This will bypass the LU-decomposition section and go directly to 
solution stage.  Consequently, the computation for these subsequent sets is far more efficient then otherwise. The value of 
is is identical for all sets and any valid isw. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, is, isw; 
  double epsz, eps; 
  dcomplex za[NMAX][NMAX]; 
  dcomplex zb[NMAX], zx[NMAX], zvw[NMAX]; 
  int ip[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    for (j=i;j<n;j++) { 
      za[i][j].re = n-j; 
      za[i][j].im = n-j; 
      za[j][i].re = n-j; 
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      za[j][i].im = n-j; 
    } 
    zx[i].re = i+1; 
    zx[i].im = i+1; 
  } 
  /* initialize constant vector zb = za*zx */ 
  ierr = c_dmcv((dcomplex*)za, k, n, n, zx, zb, &icon); 
  epsz = 1e-6; 
  isw = 1; 
  /* solve system of equations */ 
  ierr = c_dlcx((dcomplex*)za, k, n, zb, epsz, isw, &is, zvw, ip, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dlcx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check result */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((zb[i].re-zx[i].re)/zx[i].re) > eps ||  
        fabs((zb[i].im-zx[i].im)/zx[i].im) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Crout’s method is used for matrix LU-decomposition before solving the system of linear equations by forward and 
backward substitutions.  For further information consult the entry for LCX in the Fortran SSL II User’s Guide and see [7], 
[34] and [83]. 
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c_dlesq1 
Polynomial least squares approximation. 
ierr = c_dlesq1(x, y, n, &m, w, c, vw, &icon); 

1. Function 

Given n observed data ),(,),,(),,( 2211 nn yxyxyx   and weighted function )( ixw  for ni ,,2,1  , this function 
obtains the polynomial least squares approximation of degree m, equation (1), by determining the coefficients 

mccc ,,, 10   such that (2) is minimized. 

 m
mm xcxccxy  10)(  (1) 

  



n

i
imiim xyyxw

1

22 )()(  (2) 

The degree m is selected so as to minimize (3) in the range km 0 . When (3) is minimized, m is considered the 
optimum degree for the least squares approximation. 

 mn m 2logAIC 2    (3) 

Here, 10  nk , the weight function must satisfy 0)( ixw  and 2n . 

2. Arguments 

The routine is called as follows: 
ierr = c_dlesq1(x, y, n, &m, w, c, vw, &icon); 

where: 
x double x[n] Input Discrete points xi . 
y double y[n] Input Observed data iy . 
n int Input Number of discrete points n. 
m int Input Upper limit k of degree of the approximation polynomial to be 

determined.  If m = -k (k>0) then degree k is unconditionally obtained. 
  Output Degree k of the approximation polynomial.  When m = -k, the output for 

m is k. 
w double w[n] Input Weighted function values )( ixw . 
c double c[Clen] Output Coefficients ic  of approximation polynomial with Clen = k+1.  If the 

output value of m is m for km 0 , the coefficients are stored in the 
following order: mccc ,,, 10  .  For m < k, all elements of c from m+1to 
k are set to zero. 

vw double 

vw[7*n] 

Work  

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 
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Code  Meaning  Processing 
0 No error. Completed. 
10000 When km  , )0( k the polynomial of order 

k could not be determined uniquely. 
A uniquely determined polynomial of order less 
than k is output. 

30000 One of the following has occurred: 
 n < 2 
 1-nk   
 At least one negative weight in w 

Bypassed. 

3. Comments on use 

Specifying weighted function values 
When observed data have nearly the same order, 1)( ixw  for ni ,,2,1   may be used.  But when they are ordered 
irregularly, the weights for the function should be specified as 21)( ii yxw   (specify 1)( ixw  when 0iy ). 

The number of discrete points, n, should be as high as possible compared to the upper limit k.  Theoretically, n is 
recommended to be equal to or greater than 10k. 

4. Example program 

This program approximates the function xxxf )sin()(   with a fifth order polynomial obtained by a least squares fit. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10 
#define MMAX 5 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m; 
  double x[NMAX], y[NMAX], w[NMAX], c[MMAX+1], vw[7*NMAX]; 
  double h, p; 
 
  /* initialize data */ 
  n = NMAX; 
  p = 0; 
  h = 1.0/n; 
  for (i=0;i<n;i++) { 
    w[i] = 1; 
    x[i] = p; 
    y[i] = sin(p)*sqrt(p); 
    p = p + h; 
  } 
  m = MMAX; 
  /* calculate polynomial least squares coefficients */ 
  ierr = c_dlesq1(x, y, n, &m, w, c, vw, &icon); 
  printf("icon = %i   m = %i\n", icon, m); 
  for (i=0;i<m;i++) 
    printf("%12.4e  ", c[i]); 
  printf("\n"); 
  return(0); 
} 

5. Method 

For further information consult the entry for LESQ1 in the Fortran SSL II User's Guide and see [89]. 
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c_dlminf 
Minimization of a function with a single variable (quadratic interpolation 
using function values only). 
ierr = c_dlminf(&a, b, fun, epsr, &max, &f, 

&icon); 

1. Function 

Given a real function )(xf of a single variable, the point x that gives a local minimum of )(xf  and its function value 
)( xf are obtained in the interval ],[ ba . 

The function )(xf  is assumed to have at least continuous second derivatives. 

2. Arguments 

The routine is called as follows: 
ierr = c_dlminf(&a, b, fun, epsr, &max, &f, &icon); 

where: 
a double  Input Left hand side of interval in which to find local minimum. 
  Output Point x . 
b double Input Right hand side of interval in which to find local minimum. 
fun function Input User defined function to evaluate )(xf . Its prototype is: 

double fun(double x); 

where: 
   x double  Input Independent variable. 
epsr double Input Convergence criteria. A default value is used when epsr = 0. See 

Comments on use. 
max int Input Upper limit on the number of evaluations of fun. max may be negative. 

See Comments on use.  
  Output Number of times actually evaluated. 
f double Output Value of )( xf .  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Convergence condition was not satisfied within 

the specified number of function evaluations. 
Stopped. Arguments a and f contain the last 
value obtained. 

30000 One of the following has occurred: 
 epsr < 0 
 max = 0 

Bypassed. 
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3. Comments on use 

epsr 
The function tests for  

epsr )~,1max(21 xxx  

for two points 1x  and 2x  that surround x . When the condition is satisfied, x~  is assumed to be the minimum point x  
and the iteration is stopped with 1

~ xx  for )()( 21 xfxf   and 2
~ xx  otherwise.  

This routine assumes that )(xf  is approximately quadratic in the vicinity of x . To obtain )( *xf  as accurately as the 
unit round-off, a value of epsr   is appropriate. The default value of epsr is 2 . 

max and recalling c_dlminf when icon=10000 
The number of function evaluations is calculated as the number of calls to the user defined function fun.  

The number of function evaluations required depends upon the characteristics of the function as well as the initial interval 
],[ ba  and the convergence criterion. Generally, from a good initial interval and the default convergence criteria, a value 

of max 400 is appropriate. 

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon 
= 10000, the iteration can be continued by calling c_dlminf again. In this case, max must be given a negative value, 
where its absolute value indicates the number of additional function evaluations to perform, and the value of the other 
arguments must remain unaltered. 

a and b 
If there is only one minimum point of )(xf  in the interval ],[ ba , then this function will obtain the value of this point to 
within the specified error tolerance. If there are several minimum points, it is not certain which point the iteration will 
converge to. This means that it is desirable to use values of a and b that are as near to x  as possible. 

4. Example program 

A minimum of the function 41664)( 234  xxxxxf is found in the interval ]5,5[ . The computed solution is 
output together with an accuracy check. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
double fun(double x); /* user function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double a, b, f, epsr, eps, exact; 
  int max; 
 
  /* initialize data */ 
  a = -5; 
  b = 5; 
  epsr = 0; 
  max = 400; 
  /* find minimum of function */ 
  ierr = c_dlminf(&a, b, fun, epsr, &max, &f, &icon); 
  printf("icon = %i   max = %i   a = %12.4e    f = %12.4e\n", icon, max, a, f); 
  /* check result */ 
  exact = 4; 
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  eps = 1e-6; 
  if (fabs((a-exact)/exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 
 
/* user function */ 
double fun(double x) 
{ 
  return((((x-4)*x-6)*x-16)*x+4); 
} 

5. Method 

For further information consult the entry for LMINF in the Fortran SSL II User's Guide. 
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c_dlming 
Minimization of a function with a single variable (cubic interpolation 
using function values and derivatives). 
ierr = c_dlming(&a, b, fun, grad, epsr, &max, 

&f, &icon); 

1. Function 

Given a real function )(xf  of a single variable and its derivative )(xg , the point *x that gives a local minimum of )(xf  
in the interval [a,b], and its function value )( *xf  are obtained. 

The function )(xf  is assumed to have at least continuous third derivatives. 

2. Arguments 

The routine is called as follows: 
ierr = c_dlming(&a, b, fun, grad, epsr, &max, &f, &icon); 

where: 
a double Input Left hand side of interval [a,b]. 
  Output Point *x . 
b double Input Right hand side of interval [a,b]. 
fun function Input User defined function to evaluate )(xf . Its protoytpe is: 

double fun(double x); 
where: 

   x double Input Independent variable. 
grad function Input User defined function to evaluate )(xg . Its prototype is: 

double grad(double x); 
where: 

   x double Input Independent variable. 
epsr double Input Convergence criterion ( 0). A default value is used when epsr=0. See 

Comments on use. 
max int Input Upper limit on the number of evaluations of fun and grad. max may 

be negative. See Comments on use. 
  Output Number of times fun and grad were actually evaluated. 
f double Output Value of )( *xf . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Convergence condition was not satisfied within 

the specified number of function evaluations. 
Stopped. Arguments a and f contain the last 
values obtained. 

20000 The value of epsr is too small. Bypassed. Arguments a and f contain the last 
values obtained. 
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Code  Meaning  Processing 
30000 One of the following has occurred: 

 epsr < 0 
 max = 0 

Bypassed. 

3. Comments on use 

epsr 
The routine tests for 

 epsr )|~|,1(max || 21 xxx  

for two points 1x  and 2x  that surround *x , where 1
~ xx   if )()( 21 xfxf   otherwise 2

~ xx  . When the condition is 
satisfied, x~  is assumed to be the minimum point *x  and the iteration is stopped. 

This routine assumes that )(xf  is approximately a cubic function in the vicinity of *x . To obtain )( *xf  as accurately as 
the unit round-off µ, a value of epsr µ 2/1  is appropriate. The default value of epsr is 2µ 2/1 . 

max and recalling c_dlming when icon=10000 
The number of  function evaluations is calculated as the total number of calls to the user defined functions (fun and 
grad). 

The number of function evaluations required depends upon the characteristics of the functions )(xf  and )(xg  as well as 
the initial interval [a,b] and the convergence criterion. Generally, from a good initial interval and with the default 
convergence criterion, a value of max = 400 is appropriate. 

If the convergence criterion is not satisfied within the specified number of evaluations and the routine returns with icon 
= 10000, the iteration can be continued by calling c_dlming again. In this case, max must be given a negative value, 
where its absolute value indicates the number of additional function evaluations to perform, and the values of the other 
arguments must remain unaltered. 

a and b 
If there is only one minimum point of )(xf in the interval [a,b], then this routine will obtain the value of this point to 
within the specified error tolerance. If there are several minimum points, the point to which the iteration will converge is 
not certain. This means that it is desirable to use values of a and b that are as near to *x  as possible. 

4. Example program 

This program finds the minimum value of the function 41664)( 234  xxxxxf  in the interval [-5,5]. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
double fun(double x); /* user function prototype */ 
double grad(double x); /* derivative prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double a, b, f, epsr, eps, exact; 
  int max; 
 
  /* initialize data */ 
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  a = -5; 
  b = 5; 
  epsr = 0; 
  max = 400; 
  /* find minimum of function */ 
  ierr = c_dlming(&a, b, fun, grad, epsr, &max, &f, &icon); 
  printf("icon = %i   max = %i   a = %12.4e    f = %12.4e\n", icon, max, a, f); 
  /* check result */ 
  exact = 4; 
  eps = 1e-6; 
  if (fabs((a-exact)/exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 
 
/* user function */ 
double fun(double x) 
{ 
  return((((x-4)*x-6)*x-16)*x+4); 
} 
 
/* derivative function */ 
double grad(double x) 
{ 
  return ((4*x-12)*x-12)*x-16; 
} 

5. Method 

Consult the entry for LMING in the Fortran SSL II User's Guide. 
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c_dlowp 
Roots of a low degree polynomial with real coefficients (fifth degree or 
lower). 
ierr = c_dlowp(a, n, z, &icon); 

1. Function 

This function finds the roots of a fifth or lower degree polynomial with real coefficients (1) by the successive substitution 
method, Newton method, Ferrari method, Bairstow method and the root formula for quadratic equations. 

 a x a x an n
n0 1

1 0      (1) 

where n  5  and a0 0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dlowp(a, n, z, &icon); 

where: 
a double a[n+1] Input Coefficients of the polynomial equation with a[i]= ai , where 

i=0,…,n. 
n int Input Degree n of polynomial equation. 
z dcomplex z[n] Output The n roots of polynomial equation. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 When determining a real root of a fifth degree 

equation, f x f xk k( ) ( ) 1 0  was not satisfied 
after 50 successive substitutions. 

Processing continues by using the last xk1  as 
the initial value in the Newton method. 

30000 One of the following has occurred: 
 a0  = 0 
 0n   
 n > 5 

Bypassed. 

3. Example program 

This example program computes the roots of the cubic polynomial 06116 23  zzz . 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z[NMAX]; 
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  double a[NMAX+1]; 
  int n, i; 
 
  /* initialize data */ 
  n = 3; 
  a[0] = 1; 
  a[1] = -6; 
  a[2] = 11; 
  a[3] = -6; 
  /* find roots of polynomial */ 
  ierr = c_dlowp(a, n, z, &icon); 
  printf("icon = %i\n", icon); 
  for (i=0;i<n;i++) 
    printf("z[%i] = {%12.4e, %12.4e}\n", i, z[i].re, z[i].im); 
  printf("exact roots are: {1, 0}, {2, 0} and {3, 0}\n"); 
  return(0); 
} 

4. Method 

Below are the methods used to find the roots for the different degrees ( 5) of a polynomial equation with real coefficients. 

Degree 1: by directly evaluation. 

Degree 2: by root formula for quadratic equation (See function c_drqdr). 

Degree 3: by Newton method and root formula. 

Degree 4: by Ferrari and Bairstow methods. 

Degree 5: by Newton and successive substitution methods. 

For further information consult the entry for LOWP in the Fortran SSL II User's Guide. 
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c_dlprs1 
Solution of a linear programming problem (revised simplex method). 
ierr = c_dlprs1(a, k, m, n, epsz, &imax, &isw, 

nbv, b, kb, vw, ivw, &icon); 

1. Function 

This function solves the linear programming problem below by the revised simplex method: 

Minimize (or maximize) 0
T
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The problem is solved in two phases: 
 Phase 1: obtain basic feasible solution, 
 Phase 2: obtain the optimal solution. 
This function allows the user to provide an initial feasible basis, bypassing Phase 1. There is no sign constraint on id . 

The following are input components: 
 egl mmmm 

. 
 

}{ ijaA
 is the nm  coefficient matrix. 

 
T

21 ),...,,( mdddd  is the constant vector. 
 

T
21 ),...,,( ncccc  is the coefficient vector. 

 0c  is the constant term. 
This input data is passed into the routine via the array a, as shown in Figure 32 in Comments on use. 

On successful completion, the relevant components are: 
 B, the mm  sub-matrix of A whose columns form a basis for the solution. 
 dBx 1B , the final m basic variables. 
 

},,1|{ mjk j k
, the indices of the m basic variables, which also correspond to the column indices of A 

contained in B. 
 

T),,(
1 mkkB cc c

, the sub-vector of elements of c that corresponds to Bx . 
 

1 BcB , the simplex multipliers, whose values determine when an optimal solution has been achieved. 
 0

T cq BB  xc , the associated objective function value. 
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In the following descriptions, it is assumed that: 1n , 0lm , 0gm , 0em  and 1m . 

2. Arguments 

The routine is called as follows: 
ierr = c_dlprs1((double *)a, k, m, n, epsz, &imax, &isw, nbv, (double *)b, kb, 

vw, ivw, &icon); 

where: 
a double 

a[m+1][k] 

Input Simplex tableaux containing coefficient matrix A, constant vector d, 
coefficient vector c and constant term 0c . See Figure 32 in Comments 
on use. 

k int Input The C fixed dimension of a, (k > n). 
m int m[3] Input Number of constraints, where m[0], m[1], m[2] contain lm , gm  and 

em  respectively. 
n int Input Number of variables n. 
epsz double Input Relative zero criterion for  

 elements (coefficient and constant term) to be used during iteration, 
 the pivot to be used when the basic inverse matrix 1B  is obtained. 
A default value is used when it equals zero. See Comments on use. 

imax int Input Maximum number of iterations in Phase 2. imax can be negative. See 
Comments on use. 

  Output Number of iterations performed in Phase 2. 
isw int Input Controls whether the objective function is to be minimized or maximized 

and whether an initial basic feasible solution is provided. 
isw 0110 dd  , where 0d  and 1d  are specified as follows: 

   0d Specifies whether the objective function is to be maximized or 
minimized. 

    0 Objective function minimized. 
    1 Objective function maximized. 
   1d Specifies whether an initial feasible basis is provided. 
    0 Basis not provided. 
    1 Basis provided. 
  Output When an optimal solution or basic feasible solution is obtained, isw has 

a value of 10 or 11 (depending on whether 0d was 0 or 1 on input). 
nbv int nbv[m] Input Initial feasible basis (when isw=10 or isw=11). See Comments on 

use. 
  Output Optimal or feasible basis. This corresponds to k defined in Function. 
b double 

b[m+1][kb] 

Output Basic inverse matrix 1B  for an optimal solution or basic feasible 
solution, basic variables xB, simplex multipliers  and objective function 
value q. See Figure 33 in Comments on use. 

kb int Input C fixed dimension of b, (kb 1 m ). 

vw double 

vw[Rlen] 
Work 12  gl mmmnRlen  

ivw int ivw[Ilen] Work gl mmnIlen   
icon int Output Condition code. See below. 
The complete list of condition codes is: 



 c_dlprs1  

 427 

Code  Meaning  Processing 
0 No error. Completed. 
10000 A basic feasible solution was obtained, but the 

problem has no optimal solution. 
Stopped. A basic feasible solution and the 
corresponding basic inverse matrix, simplex 
multiplier and objective function value are stored 
in b. The index set of the basic feasible solution is 
stored in nbv. 

11000 The number of iterations required exceeded the 
maximum specified during Phase 2. A basic 
feasible solution was obtained.  

20000 The problem is infeasible. The value of epsz 
may not be appropriate.  

Stopped. 
 

21000 isw = 10 or isw = 11, but the set of 
variables specifed by nbv is not a basis. 

22000 isw = 10 or isw = 11, but the set of 
variables specifed by nbv is infeasible. 

23000 A basic variable could not be interchanged during 
Phase 1. The value of epsz may not be 
appropriate. 

24000 The number of iterations required exceeded the 
maximum specified during Phase 1. 

29000 Memory allocation error. Bypassed. 
30000 One of the following has occurred: 

 m[0], m[1] or m[2] contained a negative 
value, 

 n < 1, 
 imax = 0, 
 epsz < 0, 
 m[0]+m[1]+m[2] < 1, 
 m[0]+m[1]+m[2]   k, 
 An element of nbv is smaller than 1 or larger 

than n+m[0]+m[2], 
 Two or more elements of nbv have the same 

value. 
 isw was incorrectly given. 

Bypassed. 

 

3. Comments on use 

nbv 
nbv is only defined on input if isw = 10 or 11 and on output if icon = 0, 10000 or 11000. Both input and output values 
are indices relating to the problem matrices and therefore output values need to be reduced by one if the user is accessing 
elements from the associated arrays. 

Exactly m variables are in the basis at any time. These may include slack variables, which are introduced by the routine to 
convert the gl mm  inequality constraints to equality constraints. When isw = 10 or 11, the index of the slack variable 
that corresponds to the ith inequality constraint ( gl mmi  ) must be n+i. On output, if the computed xB contains the ith 
slack variable, then the corresponding index value will be n+i.  
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On output, when a basic feasible solution has been obtained, but no optimal solution exists (icon = 10000) then nbv[i-
1] = 0 indicates that a nonsingular mm  basis matrix could not be found. The matrix B may be singular or too large a 
value for epsz was specified. 

If icon = 0 or 11000, and nbv[i-1] = 0 for some value of i, then it suggests that the ith constraint was redundant. In 
other words, one of the original constraints was just a linear combination of the other constaints. It might be useful to 
remove the ith constraint by altering the input arguments to the function and repeating the library call. 

a 
The required structure for array a on input to the routine is shown in Figure 32. Notice that it is necessary to provide the 
negative of the vector constraint values.  

 c0

d

-cT

A

n+1
n

          m
 m+1

k

 

Figure 32 Layout of input array a 

b 
The arrangement of the output array b is shown in Figure 33. 

  q

xB



B

m+1
m

          m
  m+1

kb

 

Figure 33 Layout of output array b 
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imax 
In Phase 1 of the computation, the number of iterations required is associated with moving from an artificial basis to a 
basic feasible solution by solving a special linear programming problem. The number of iterations required has a 
predetermined upper bound and imax is not used. In Phase 2, the number of iterations required is almost always linear 
with the number of constraints. However, it is theoretically possible for the simplex method to require far more iterations 
than this, so imax is useful. A standard value of imax to use is imax = 10 m. 

If the optimal solution could not be obtained in imax iterations, and if icon = 11000 on return, then the routine can be 
called again to continue with more iterations. In this case, imax must be reset to the negative of the number of additional 
iterations to be allowed, while other arguments remain unchanged.  

epsz 
epsz serves two functions within this routine. Firstly, it is used to define a threshold below which values of A are 
assumed to be zero and secondly it is used during the factorization of matrix B as the relative zero criterion value.  

In the first case, if njmiaa ij ,,1,,,1),|max(|max   , then a value smaller than maxaepsr  would be treated 
as zero. Scaling of rows or columns may be necessary if A contains elements that differ widely in magnitude. 

In the second case, a relative error criterion is needed to estimate when a pivot is numerically zero during LU-
decomposition, suggesting that the matrix is singular. More detail is provided in the Comments on use section for the 
function c_dvlax.  

The default value for epsz, is 16 , where  is the unit round-off.  

If the routine terminates with icon = 20000 or 23000, then the value of epsz may not be appropriate, in which case 
retrying the routine with the default value is recommended.  

Using c_dlprs1 when a variable is negative 
Variables are constrained to be non-negative, however users can still solve their linear programming problem with 
variables that may be negative by reformulating these variables. Assume that jx  in the user’s original problem can be 
negative, then replace jx  with 

jx and 
jx where   jjj xxx with the implicit constraints that both 

jx and 
jx  are 

non-negative. The routine can now be used, although some post-processing will be required on the user’s part to obtain 
the values of the original problem variables.  

4. Example program 

A linear programming problem with 3 variables and 5 constraints is solved. The final value of the objective function is 
output along with an accuracy check. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define ML 2 
#define MG 2 
#define ME 1 
#define M  ML+MG+ME 
#define N  3 
 
MAIN__()  
{ 
  int ierr, icon; 
  double a[M+1][N+1] = {{   2,    3,  -3,  210}, 
                        {  -1,   -3,   1,  -40}, 



Description of the C-SSL II Routines 

430 

                        { 2.5,    0,   5,   50}, 
                        {-1.5, -0.5, 1.5, -120}, 
                        {   1,    1,   1,   80}, 
                        {  -3,   -4,   1,  -70}}; 
  double epsz, b[M+1][M+1], vw[2*N+M+ML+MG+1], eps; 
  int k, n, imax, isw, kb, ivw[N+ML+MG], nbv[M]; 
  int m[] = {ML, MG, ME}; 
  const double minval = 222.5;  
 
  /* initialize data */ 
  n = N; 
  k = N+1; 
  kb = M+1; 
  isw = 1; 
  imax = 20; 
  epsz = 0; 
  /* minimize  */ 
  ierr = c_dlprs1((double*)a, k, m, n, epsz, &imax, &isw,  
                  nbv, (double*)b, kb, vw, ivw, &icon); 
  printf("icon = %i   imax = %i   isw = %i   obj. fun. value = %f\n", 
         icon, imax, isw, b[M][M]); 
  /* check result */ 
  eps = 1e-6; 
  if (fabs((b[M][M]-minval)/minval) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information consult the entry for  LPRS1 in the Fortran SSL II User's Guide or [26]. 
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c_dlsbix 
Solution of a system of linear equations with an indefinite symmetric 
band matrix (block diagonal pivoting method). 
ierr = c_dlsbix(a, n, nh, mh, b, epsz, isw, 

vw, ivw, &icon); 

1. Function 

This routine solves a system of linear equations (1) using the Gaussian-like block diagonal pivoting method. 

 bAx   (1) 

In (1), A is an nn  indefinite symmetric band matrix with bandwidth h, b is a constant vector, and x is the solution 
vector. Both the vectors are of size n (n > h  0). 

2. Arguments 

The routine is called as follows: 
ierr = c_dlsbix(a, n, nh, mh, b, epsz, isw, vw, ivw, &icon); 

where: 
a double 

a[Alen] 

Input Matrix A. Stored in symmetric band storage format. See Array storage 
formats in the Introduction section for details. 

2/)1()1(  hhhnAlen . 
n int Input Order n of matrix A. 
nh int Input Bandwidth h of matrix A. 
  Output Content altered on completion. 
mh int Input Maximum tolerable bandwidth mh  (n > mh   nh). See Comments on 

use. 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
epsz double Input Tolerance ( 0) for relative zero test of pivots in decomposition process 

of matrix A. When epsz is zero a standard value is used. See Comments 
on use. 

isw int Input Control information. 
isw=1, except when solving several sets of equations that have the same 
coefficient matrix, then isw=1 for the first set, and isw=2 for the 
second and subsequent sets. Only argument b is assigned a new constant 
vector b, the others are unchanged. See Comments on use. 

vw double 

vw[Vwlen] 

Work .2/)1()1(  mmm hhhnVwlen  

ivw int ivw[2n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 
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Code  Meaning  Processing 
0 No error. Completed. 
20000 Either all of the elements of some row are zero or 

a pivot is relatively zero. It is probable that the 
coefficient matrix is singular. 

Discontinued. 

25000 The maximum bandwidth was exceeded during 
decomposition. 

Discontinued. 

30000 One of the following has occurred: 
 nh < 0 
 mh < nh 
 mh   n 
 epsz < 0 
 isw  1 or 2 

Bypassed. 

3. Comments on use 

mh 
Generally, the matrix bandwidth increases when rows and columns are exchanged in the pivoting operation of the 
decomposition. Therefore, it is necessary to specify a maximum bandwidth mh  greater than or equal to the actual 
bandwidth h of A. If the maximum bandwidth is exceeded during decomposition, processing is discontinued with 
icon=25000. 

epsz 
The standard value of epsz is 16µ, where µ is the unit round-off. If, during the block diagonal pivoting decomposition, a 
pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000. 
Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the 
required accuracy. 

isw 
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify 
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution 
stage, thereby reducing the computation time. 

Saving on storage space 
Saving on storage space is possible by specifying the same array for arguments a and vw. WARNING – make sure the 
array size is consistent with both arguments otherwise unpredictable results can occur. 

c_dsbmdm and c_dbmdmx 
This routine is an interface to the routines c_dsbmdm, which MDM T - decomposes the matrix A, and c_dbmdmx, 
which then solves the equations.  

Calculation of determinant 
To calculate the determinant of matrix A, see the example program with c_dsbmdm. 

Eigenvalues 
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program with c_dsbmdm. 
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4. Example program 

This program solves a system of linear equations and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b) ((a) < (b) ? (a) : (b)) 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
#define NMAX 100 
#define NHMAX 50 
#define NRHS 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, mh, i, j, ij, jj, isw, jmin, cnt; 
  double epsz, eps; 
  double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], b[NRHS][NMAX], x[NRHS][NMAX]; 
  double vw[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2]; 
  int ivw[2*NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  nh = 2; 
  mh = NHMAX; 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh, 0); 
    for (j=jmin;j<=i;j++) 
      if (i-j == 0) 
 a[ij++] = 10; 
      else if (i-j == 1) 
 a[ij++] = -3; 
      else 
 a[ij++] = -6; 
  } 
  /* initialize RHS vectors */ 
  for (cnt=0;cnt<NRHS;cnt++) { 
    for (i=0;i<n;i++) 
      x[cnt][i] = (cnt+1)*(i+1); 
    /* initialize constant vector b = a*x */ 
    ierr = c_dmsbv(a, n, nh, &x[cnt][0], &b[cnt][0], &icon); 
  } 
  isw = 1; 
  epsz = 1e-6; 
  /* solve systems of equations */ 
  for (cnt=0;cnt<NRHS;cnt++) { 
    ierr = c_dlsbix(a, n, &nh, mh, &b[cnt][0], epsz, isw, vw, ivw, &icon); 
    if (icon != 0) { 
      printf("ERROR: c_dlsbix failed with icon = %d\n", icon); 
      exit(1); 
    } 
    /* check solution vector */ 
    eps = 1e-6; 
    for (i=0;i<n;i++) 
      if (fabs((x[cnt][i]-b[cnt][i])/b[cnt][i]) > eps) { 
 printf("WARNING: result inaccurate\n"); 
 exit(1); 
      } 
    printf("Result OK\n"); 
    if (cnt == 0) isw = 2;  
  } 
  return(0); 
} 

5. Method 

The block diagonal pivoting method is used for matrix decomposition before solving the system of linear equations using 
forward and backward substitutions. For further information consult the entry for LSBIX in the Fortran SSL II User's 
Guide and references [15]. 
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c_dlsix 
Solution of a system of linear equations with an indefinite symmetric 
matrix (block diagonal pivoting method). 
ierr = c_dlsix(a, n, b, epsz, isw, vw, ip, 

ivw, &icon); 

1. Function 

This routine solves a system of linear equations (1) using the Crout-like block diagonal pivoting method. 

 bAx   (1) 

In (1), A is an nn  indefinite symmetric matrix, b is a constant vector, and x is the solution vector. Both the vectors are 
of size n (n 1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dlsix(a, n, b, epsz, isw, vw, ip, ivw, &icon); 

where: 
a double 

a[Alen] 

Input Matrix A. Stored in symmetric storage format. See Array storage 
formats in the Introduction section for details. 2/)1(  nnAlen . 

  Output The contents of the array are altered on completion. 
n int Input Order n of matrix A. 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
epsz double Input Tolerance ( 0) for relative zero test of pivots in decomposition process 

of matrix A. When epsz is zero a standard value is used. See Comments 
on use. 

isw int Input Control information. 
isw=1, except when solving several sets of equations that have the same 
coefficient matrix, then isw=1 for the first set, and isw=2 for the 
second and subsequent sets. Only argument b is assigned a new constant 
vector b, the other arguments must not be altered. See Comments on use.

vw double vw[2n] Work  
ip int ip[n] Work  
ivw int ivw[n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Either all of the elements of some row are zero or 

a pivot is relatively zero. It is probable that the 
coefficient matrix is singular. 

Discontinued. 
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Code  Meaning  Processing 
30000 One of the following has occurred: 

 n < 1 
 epsz < 0 
 isw  1 or 2 

Bypassed. 

3. Comments on use 

epsz 
The standard value of epsz is 16µ, where µ is the unit round-off. If, during the block diagonal pivoting decomposition, a 
pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000. 
Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the 
required accuracy. 

isw 
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify 
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution 
stage, thereby reducing the computation time. 

c_dsmdm and c_dmdmx 
This routine is an interface to the routines c_dsmdm, which MDM T - decomposes the matrix A, and c_dmdmx, which 
then solves the equations.  

Calculation of determinant 
To calculate the determinant of matrix A, see the example program with c_dsmdm. 

Eigenvalues 
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program with c_dsmdm. 

4. Example program 

This program solves a system of linear equations and checks the result.  

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
 
#define NMAX 100 
#define NRHS 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij, isw, cnt; 
  double epsz, eps, pi, an, ar; 
  double a[NMAX*(NMAX+1)/2], b[NRHS][NMAX], x[NRHS][NMAX], vw[2*NMAX]; 
  int ip[NMAX], ivw[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  ij = 0; 
  pi = 2*asin(1); 
  an = 1.0/(n+1); 
  ar = pi*an; 
  an = sqrt(2*an); 
  for (i=1;i<=n;i++) 
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    for (j=1;j<=i;j++) { 
      a[ij++] = an*sin(i*j*ar); 
    } 
  isw = 1; 
  epsz = 1e-6; 
  /* initialize RHS vectors */ 
  for (cnt=0;cnt<NRHS;cnt++) { 
    for (i=0;i<n;i++) 
      x[cnt][i] = (cnt+1)*(i+1); 
    /* initialize constant vector b = a*x */ 
    ierr = c_dmsv(a, n, &x[cnt][0], &b[cnt][0], &icon); 
  } 
  /* solve systems of equations */ 
  for (cnt=0;cnt<NRHS;cnt++) { 
    ierr = c_dlsix(a, n, &b[cnt][0], epsz, isw, vw, ip, ivw, &icon); 
    if (icon != 0) { 
      printf("ERROR: c_dlsix failed with icon = %d\n", icon); 
      exit(1); 
    } 
    /* check solution vector */ 
    eps = 1e-6; 
    for (i=0;i<n;i++) 
      if (fabs((x[cnt][i]-b[cnt][i])/b[cnt][i]) > eps) { 
 printf("WARNING: result inaccurate\n"); 
 exit(1); 
      } 
    printf("Result OK\n"); 
    if (cnt == 0) isw = 2; 
  } 
  return(0); 
} 

5. Method 

The block diagonal pivoting method is used for matrix decomposition before solving the systerm of linear equations using 
forward and backward substitutions. For further information consult the entry for LSIX in the Fortran SSL II User's Guide 
and references [15]. 

 



 c_dlstx  

 437 

c_dlstx 
Solution of a system of linear equations with a symmetric positive 
definite tridiagonal matrix (Modified Cholesky’s method). 
ierr = c_dlstx(d, sd, n, b, epsz, isw, &icon); 

1. Function 

This function solves a system of linear equations (1) using the modified Cholesky’s method. 

 Ax b  (1) 

In (1), A is an n  n positive definite symmetric real tridiagonal matrix, b is a real constant vector and x is the real solution 
vector.  Both the real vectors are of size n (n1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dlstx(d, sd, n, b, epsz, isw, &icon); 

where: 
d double d[n] Input 

Output 
Diagonal elements of matrix A. 
The contents of the array are altered on output. 

sd double  

sd[n-1] 

Input 
Output 

Sub-diagonal elements of matrix A. 
The contents of the array are altered on output. 

n int Input Order n of matrix A. 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
epsz double Input Tolerance for relative zero test of pivots ( 0). 

When epsz is zero, a standard value is assigned.  See Comments on use.
isw int Input Control information. 

When solving several sets of equations that have the same coefficient 
matrix, set isw=1 for the first set, and isw=2 for the second and 
subsequent sets.  Only argument b is assigned a new constant vector b 
and the others are unchanged.  See Comments on use. 

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 A negative pivot occurred. 

The coefficient matrix is not positive definite. 
Processing continues. 

20000 Either all of the elements of some row are zero or 
the pivot became relatively zero.  It is highly 
probable that the coefficient matrix is singular. 

Discontinued. 
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Code  Meaning  Processing 
30000 One of the following has occurred: 

 n < 1 
 epsz < 0 
 isw 1 or 2 

Bypassed. 

3. Comments on use 

epsz 
If the value 10-s is given for epsz as the tolerance for the relative zero test then it has the following meaning: 

If the pivot value loses more than s significant digits during LDLT decomposition in the modified Cholesky’s method, the 
value is assumed to be zero and decomposition is discontinued with icon=20000. 

The standard value of epsz is normally 16µ, where µ is the unit round-off. If processing is to proceed at a low pivot 
value, epsz will be given the minimum value but the result is not always guaranteed. 

isw 
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and 
subsequent sets after successfully completing the first with isw=1.  This will bypass the LU-decomposition section and 
go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than 
otherwise. 

Calculation of determinant 
To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of the array d together. 

Negative pivot during the solution 
When a negative pivot occurs in the decomposition, the calculation error may possibly be large since no pivoting is 
performed in the function.  The function takes advantage of the characteristics in a positive definite symmetric tridiagonal 
matrix when performing the computation.  As a result, it is computationally more efficient compared to the standard 
modified Cholesky’s method that performs the same operations. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, isw; 
  double epsz, eps; 
  double d[NMAX], sd[NMAX-1], b[NMAX], x[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  for (i=0;i<n-1;i++) { 
    sd[i] = -1; 
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    d[i] = 10; 
  } 
  d[n-1] = 10; 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  /* initialize constant vector b */ 
  b[0] = d[0]*x[0] + sd[0]*x[1]; 
  for (i=1;i<n-1;i++) { 
    b[i] = sd[i-1]*x[i-1] + d[i]*x[i] + sd[i]*x[i+1]; 
  } 
  b[n-1] = sd[n-2]*x[n-2] + d[n-1]*x[n-1]; 
  epsz = 1e-6; 
  isw = 1; 
  /* solve system of equations */ 
  ierr = c_dlstx(d, sd, n, b, epsz, isw, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dlstx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The modified Cholesky’s method is used. For further information consult the entry for LSTX in the Fortran SSL II User’s 
Guide.
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c_dltx 
Solution of a system of linear equations with a tridiagonal matrix 
(Gaussian elimination method). 
ierr = c_dltx(sbd, d, spd, n, b, epsz, isw, 

&is, ip, vw, &icon); 

1. Function 

This function solves a system of linear equations (1) using the Gaussian elimination method. 

 Ax b  (1) 

In (1), A is an n  n real tridiagonal matrix, b is a real constant vector and x is the real solution vector.  Both the real 
vectors are of size n (n1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dltx(sbd, d, spd, n, b, epsz, isw, &is, ip, vw, &icon); 

where: 
sbd double  

sbd[n-1] 

Input 
Output 

Lower sub-diagonal elements of matrix A. 
The contents of the array are altered on output. 

d double d[n] Input 
Output 

Diagonal elements of matrix A. 
The contents of the array are altered on output. 

spd double  

spd[n-1] 

Input 
Output 

Upper sub-diagonal elements of matrix A. 
The contents of the array are altered on output. 

n int Input Order n of matrix A. 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
epsz double Input Tolerance for relative zero test of pivots ( 0). 

When epsz is zero, a standard value is assigned.  See Comments on use.
isw int Input Control information. 

When solving several sets of equations that have the same coefficient 
matrix, set isw=1 for the first set, and isw=2 for the second and 
subsequent sets.  Only argument b is assigned a new constant vector b 
and the others are unchanged.  See Comments on use. 

is int Output Information for obtaining the determinant of matrix A.  See Comments 
on use. 

ip int ip[n] Work  
vw double vw[n] Work  
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 
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Code  Meaning  Processing 
0 No error. Completed. 
20000 Either all of the elements of some row are zero or 

the pivot became relatively zero.  It is highly 
probable that the coefficient matrix is singular. 

Discontinued. 

30000 One of the following has occurred: 
 n < 1 
 epsz < 0 
 isw 1 or 2 

Bypassed. 

3. Comments on use 

epsz 
If the value 10-s is given for epsz as the tolerance for the relative zero test then it has the following meaning: 

If the pivot value loses more than s significant digits during LU-decomposition, the value is assumed to be zero and 
decomposition is discontinued with icon=20000. 

The standard value of epsz is normally 16µ, where µ is the unit round-off.  If processing is to proceed at a low pivot 
value, epsz will be given the minimum value but the result is not always guaranteed. 

isw 
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for the second and 
subsequent sets after successfully completing the first with isw=1.  This will bypass the LU-decomposition section and 
go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than 
otherwise. 

Calculation of determinant 
To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of the array d together, and 
then multiply by the value of is. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, isw, is; 
  double epsz, eps; 
  double sbd[NMAX-1], d[NMAX], spd[NMAX-1], b[NMAX], x[NMAX], vw[NMAX]; 
  int ip[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  for (i=0;i<n-1;i++) { 
    sbd[i] = -1; 
    spd[i] = -1; 
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    d[i] = 10; 
  } 
  d[n-1] = 10; 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  /* initialize constant vector b */ 
  b[0] = d[0]*x[0] + spd[0]*x[1]; 
  for (i=1;i<n-1;i++) { 
    b[i] = sbd[i-1]*x[i-1] + d[i]*x[i] + spd[i]*x[i+1]; 
  } 
  b[n-1] = sbd[n-2]*x[n-2] + d[n-1]*x[n-1]; 
  epsz = 1.0e-6; 
  isw = 1; 
  /* solve system of equations */ 
  ierr = c_dltx(sbd, d, spd, n, b, epsz, isw, &is, ip, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dltx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The Gaussian elimination method with partial pivoting is used. For further information consult the entry for LTX in the 
Fortran SSL II User’s Guide. 
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c_dlux 
Solution of a system of linear equations with a real matrix in LU-
decomposed form. 
ierr = c_dlux(b, fa, k, n, isw, ip, &icon); 

1. Function 

This routine solves a system of linear equations with an nn  LU - decomposed matrix 

 PbLUx   (1) 

In (1), P is a permutation matrix that performs the row exchanges required in partial pivoting for the LU - decomposition, 
L is a lower triangular matrix, U is a unit upper triangular matrix, b is a real constant vector, and x is the solution vector. 
Both vectors are of size n (n  1). 

One of the following equations can be solved instead of (1) 

 PbLy   (2) 

 bUz   (3) 

2. Arguments 

The routine is called as follows: 
ierr = c_dlux(b, (double*)fa, k, n, isw, ip, &icon); 

where: 
b double b[n] Input Constant vector b. 
  Output One of the solution vectors x, y, or z. 
fa double 

fa[n][k] 

Input Matrix )( IUL  . See Comments on use. 

k int Input C fixed dimension of array fa ( n). 
n int Input Order of matrices L and U. 
isw int Input Control information. 

 isw = 1 when solution x in (1)is required 
 isw = 2 when solution y in (2) is required 
 isw = 3 when solution z in (3) is required 

ip int ip[n] Input Transposition vector that provides the row exchanges that occurred 
during partial pivoting. See Comments on use. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Coefficient matrix was singular. Discontinued. 
30000 One of the following occurred: 

 n < 1 
Bypassed. 
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Code  Meaning  Processing 
 k < n 
 isw  1,2, or 3 
 error found in ip 

3. Comments on use 

A system of linear equations with a real coefficient matrix can be solved by calling the routine c_dvalu to LU-
decompose the coefficient matrix prior to calling this routine. The input arguments fa and ip of this routine are the same 
as the output arguments a and ip of routine c_dvalu. Alternatively, the system of linear equations can be solved by 
calling the single routine c_dvlax  

4. Example program 

This program solves a system of linear equations using LU decomposition and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, is, isw; 
  double epsz, eps; 
  double fa[NMAX][NMAX]; 
  double b[NMAX], x[NMAX], vw[NMAX]; 
  int ip[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    for (j=i;j<n;j++) { 
      fa[i][j] = n-j; 
      fa[j][i] = n-j; 
    } 
    x[i] = i+1; 
  } 
  /* initialize constant vector zb = za*zx */ 
  ierr = c_dmav((double*)fa, k, n, n, x, b, &icon); 
  epsz = 1e-6; 
  /* perform LU decomposition */ 
  ierr = c_dvalu((double*)fa, k, n, epsz, ip, &is, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dlu failed with icon = %d\n", icon); 
    exit(1); 
  } 
  isw = 1; 
  /* solve system of equations using LU factors */ 
  ierr = c_dlux(b, (double*)fa, k, n, isw, ip, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dlux failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check result */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((b[i]-x[i])/x[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 
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5. Method 

Consult the entry for LUX in the Fortran SSL II User's Guide and [7], [34] and [83]. 
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c_dmav 
Multiplication of a real matrix by a real vector. 
ierr = c_dmav(a, k, m, n, x, y, &icon); 

1. Function 

This function calculates the matrix-vector product of an m  n real matrix A with a real vector x of size n. 

 y Ax  (1) 

The solution y is a real vector of size m (m and n  1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dmav((double*)a, k, m, n, x, y, &icon); 

where: 
a double 

a[m][k] 

Input Matrix A. 

k int Input C fixed dimension of array a ( n). 
m int Input The number of rows m for matrices A. 
n int Input The number of columns n for matrices A. 

See Comments on use. 
x double x[n] Input Vector x. 
y double y[m] Input Vector y. 

Only applies to equation (2).  See Comments on use. 
  Output Solution vector of multiplication. 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m < 1 
 n = 0 
 k < n 

Bypassed. 

3. Comments on use 

General Comments 
The function primarily performs computation for equation (1) but it can also manage to do equation (2) that is very much 
like (1). 
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 y y Ax    (2) 

To tell the function to perform (2), specify argument n=-n and either copy or set the contents of the initial vector y  into y 
before calling the function.  Equation (2) is commonly use to compute the residual vector r of linear equations (3) with a 
right-hand-side vector b. 

 r b Ax   (3) 

4. Example program 

This example program performs a matrix-vector multiplication. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int m, n, i, j, k; 
  double eps; 
  double a[NMAX][NMAX], x[NMAX], y[NMAX]; 
 
  /* initialize matrix and vector */ 
  m = NMAX; 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    for (j=0;j<n;j++) 
      a[i][j] = 1.0/(j+1); 
    x[i] = i+1; 
  } 
  /* perform matrix vector multiply */ 
  ierr = c_dmav((double*)a, k, m, n, x, y, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dmav failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((y[i]-n)/n) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information consult the entry for MAV in the Fortran SSL II User’s Guide. 
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c_dmcv 
Multiplication of a complex matrix by a complex vector. 
ierr = c_dmcv(za, k, m, n, zx, zy, &icon); 

1. Function 

This function calculates the matrix-vector product of an m  n complex matrix A with a complex vector x of size n. 

 y Ax  (1) 

The solution y is a complex vector of size m (m and n  1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dmcv((dcomplex*)za, k, m, n, zx, zy, &icon); 

where: 
za dcomplex 

za[m][k] 

Input Matrix A. 

k int Input C fixed dimension of array za ( n). 
m int Input The number of rows m for matrices A. 
n int Input The number of columns n for matrices A. 

See Comments on use. 
zx dcomplex 

zx[n] 

Input Vector x. 

zy dcomplex 

zy[m] 

Input Vector y. 
Only applies to equation (2).  See Comments on use. 

  Output Solution vector of multiplication. 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m < 1 
 n = 0 
 k < n 

Bypassed. 

3. Comments on use 

General comments 
The function primarily performs computation for equation (1) but it can also manage to do equation (2) that is very much 
like (1). 
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 y y Ax    (2) 

To tell the function to perform (2), specify argument n=-n and either copy or set the contents of the initial vector y  into 
y before calling the function.  Equation (2) is commonly use to compute the residual vector r of linear equations (3) with a 
right-hand-side vector b. 

 r b Ax   (3) 

4. Example program 

This example program performs a complex matrix-vector multiplication. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int m, n, i, j, k; 
  double eps; 
  dcomplex za[NMAX][NMAX], zx[NMAX], zy[NMAX], sum; 
 
  /* initialize matrix and vector */ 
  m = NMAX; 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    for (j=0;j<n;j++) { 
      za[i][j].re = 1.0/(j+1); 
      za[i][j].im = 1.0/(j+1); 
    } 
    zx[i].re = i+1; 
    zx[i].im = i+1; 
  } 
  /* perform complex matrix vector multiply */ 
  ierr = c_dmcv((dcomplex*)za, k, m, n, zx, zy, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dmcv failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) { 
    sum.re = 0; 
    sum.im = 0; 
    for (j=0;j<n;j++) { 
      sum.re = sum.re + za[i][j].re*zx[j].re-za[i][j].im*zx[j].im; 
      sum.im = sum.im + za[i][j].im*zx[j].re+za[i][j].re*zx[j].im; 
    } 
    if (fabs((zy[i].re-sum.re)) > eps ||  
        fabs((zy[i].im-sum.im)) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information consult the entry for MCV in the Fortran SSL II User’s Guide. 
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c_dmdmx 
Solution of a system of linear equations with an indefinite symmetric 
matrix in MDM T - decomposed form. 
ierr = c_dmdmx(b, fa, n, ip, &icon); 

1. Function 

This routine solves a linear system of equations with an MDM T - decomposed nn  indefinite symmetric matrix 

 bxPMDMP  TT1  (1) 

In (1), P is a permutation matrix (which performs row exchanges of the coefficient matrix based on the pivoting during 
the MDM T - decomposition), M = ( ijm ) is a unit lower triangular matrix, and D = ( ijd ) is a symmetric block diagonal 
matrix with blocks of order at most 2, b is a constant vector, and x is the solution vector. Both vectors are of size n (n 1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dmdmx(b, fa, n, ip, &icon); 

where: 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
fa double 

fa[Falen] 
Input Matrix I)(MD  . Stored in symmetric storage format. See Array 

storage formats in the Introduction section for details, and Comments on 
use. .2/)1(  nnFalen  

n int Input Order n of matrices M and D, constant vector b and solution vector x. 
ip int ip[n] Input Transposition vector that provides the row exchanges that occurred 

during pivoting. See Comments on use. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Coefficient matrix was singular. Discontinued. 
30000 One of the following has occurred: 

 n < 1 
 error found in ip. 

Bypassed. 

3. Comments on use 

fa, ip and MDM T - decomposition 
A system of linear equations with an indefinite symmetric coefficient matrix A can be solved by calling the routine 
c_dsmdm to MDM T - decompose the coefficient matrix prior to calling this routine. The input arguments fa and ip of 
this routine are the same as the output arguments a and ip of routine c_dsmdm. Alternatively, the system of linear 
equations can be solved by calling the single routine c_dlsix. 
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Calculation of determinant 
The determinant of matrix A is the same as the determinant of matrix D, that is the product of the determinants of the 11  
and 22  blocks of D. See the example program with c_dsmdm. 

Eigenvalues 
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program with c_dsmdm. 

4. Example program 

This example program decomposes and solves a system of linear equations using MDM T  decomposition and checks the 
result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij; 
  double epsz, eps, pi, an, ar; 
  double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX]; 
  int ip[NMAX], ivw[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  ij = 0; 
  pi = 2*asin(1); 
  an = 1.0/(n+1); 
  ar = pi*an; 
  an = sqrt(2*an); 
  for (i=1;i<=n;i++) 
    for (j=1;j<=i;j++) { 
      a[ij++] = an*sin(i*j*ar); 
    } 
  epsz = 1e-6; 
  /* initialize RHS vector */ 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  /* initialize constant vector b = a*x */ 
  ierr = c_dmsv(a, n, x, b, &icon); 
  /* MDM decomposition of system */ 
  ierr = c_dsmdm(a, n, epsz, ip, vw, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dsmdm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* solve decomposed system of equations */ 
  ierr = c_dmdmx(b, a, n, ip, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dmdmx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 
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5. Method 

Consult the entry for MDMX in the Fortran SSL II User's Guide. 
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c_dmgsm 
Multiplication of two matrices (general by symmetric). 
ierr = c_dmgsm(a, ka, b, c, kc, n, vw, &icon); 

1. Function 

This routine performs multiplication of an nn  general matrix A by an nn  symmetric matrix B. 

 ABC   (1) 

In (1), the resultant C is also an nn  matrix (n 1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dmgsm((double*)a, ka, b, (double*)c, kc, n, vw, &icon); 

where: 
a double 

a[n][ka] 

Input Matrix A. 

ka int Input C fixed dimension of array a ( n). 
b double b[Blen] Input Matrix B. Stored in symmetric storage format. See Array storage formats 

in the Introduction section for details. .2/)1(  nnBlen  
c double 

c[n][kc] 

Output Matrix C. See Comments on use. 

kc int Input C fixed dimension of array c ( n). 
n int Input The order n of matrices A, B and C. 
vw double vw[n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n < 1 
 ka < n 
 kc < n 

Bypassed. 

3. Comments on use 

Efficient use of memory 
Storing the solution matrix C in the same memory area as matrix A is permitted if the array contents of matrix A can be 
discarded after computation. To take advantage of this efficient reuse of memory, the array and dimension arguments 
associated with matrix A need to appear in the locations reserved for matrix C in the function argument list, as indicated 
below. 
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ierr = c_dmgsm(a, ka, b, a, ka, n, vw, &icon); 

Note, if matrix A is required after the solution then a separate array must be supplied for storing matrix C. 

4. Example program 

This program multiplies a standard matrix by a symmetric matrix. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 5 
 
/* print symmetric matrix */ 
void prtsymmat(double a[], int n) 
{ 
  int ij, i, j; 
  printf("symmetric matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    for (j=0;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
/* print general matrix */ 
void prtgenmat(double *a, int k, int n, int m) 
{ 
  int i, j; 
  printf("general matrix format\n"); 
  for (i=0;i<n;i++) { 
    for (j=0;j<m;j++) 
      printf("%7.2f  ",a[i*k+j]); 
    printf("\n"); 
  } 
} 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij, ka, kc; 
  double a[NMAX][NMAX], b[NMAX*(NMAX+1)/2], c[NMAX][NMAX], vw[NMAX]; 
 
  n = NMAX; 
  /* initialize symmetric matrix */ 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      b[ij++] = i-j+1; 
    } 
  /* initialize general matrix */ 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) { 
      a[i][j] = j+1; 
    } 
  ka = NMAX; 
  kc = NMAX; 
  /* matrix matrix multiply */ 
  ierr = c_dmgsm((double*)a, ka, b, (double*)c, kc, n, vw, &icon); 
  /* print matrices */ 
  printf("a: \n"); 
  prtgenmat((double*)a, ka, n, n); 
  printf("b: \n"); 
  prtsymmat(b, n); 
  printf("c: \n"); 
  prtgenmat((double*)c, kc, n, n); 
  return(0); 
} 
 

 



 c_dminf1  

 455 

c_dminf1 
Minimization of a function of several variables (revised quasi-Newton 
method using function values only). 
ierr = c_dminf1(x, n, fun, epsr, &max, &f, g, 

h, vw, &icon); 

1. Function 

Given a real function )(xf of n variables and an initial vector 0x , the vector x that gives a local minimum of )(xf  and 
its function value )( xf are obtained by using the revised quasi-Newton method. 

The function )(xf  is assumed to have at least continuous second partial derivatives. 

2. Arguments 

The routine is called as follows: 
ierr = c_dminf1(x, n, fun, epsr, &max, &f, g, h, vw, &icon); 

where: 
x double x[n] Input Initial vector 0x . 
  Output Vector x . 
n int Input Number of variables n. 
fun function Input User defined function to evaluate )(xf . Its prototype is: 

double fun(double x[]); 

where: 
   x double 

x[n] 

Input Independent variable. 

epsr double Input Convergence criteria. A default value is used when epsr = 0. See 
Comments on use. 

max int Input Upper limit on the number of evaluations of fun. max may be negative. 
See Comments on use.  

  Output Number of times actually evaluated. 
f double Output Value of )( xf .  
g double g[n] Output Gradient vector at x . 
h double h[Hlen] Output Hessian matrix at x . Hlen 2/)1(  nn . This array is only used if 

c_dminf1 is called again after a value of 10000 has been returned in 
icon. See Comments on use. 

vw double 

vw[3n+1] 

Work This array must not be changed if c_dminf1 is called again. See 
Comments on use. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Convergence condition was not satisfied within Stopped. Arguments x, f, g and h each contain 
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Code  Meaning  Processing 
the specified number of function evaluations. the last value obtained. 

20000 A descent direction could not be found so that no 
decrease in function value could be obtained. 
epsr was too small or the error in difference 
approximation for a gradient vector was too large.

Stopped. Arguments x and f contain the last 
value obtained. 

30000 One of the following has occurred: 
 n < 1 
 epsr < 0 
 max = 0 

Bypassed. 

3. Comments on use 

epsr 
The function tests for  

epsr
 ),1max(1 kkk xxx  

for the iteration vector kx  and if the above condition is satisfied, 1kx  is taken as the local minimum point x . If the 
function value )( xf  is to be obtained as accurate as unit round-off, µ, then a value of epsr   is satisfactory. The 
default value of epsr is 2 . 

max and recalling c_dminf1 when icon=10000 
The number of function evaluations is calculated as the number of calls to the user defined function fun.  

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector 
and the convergence criterion. Generally, from a good initial vector, a value of max n 400 is appropriate. 

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon 
= 10000, the iteration can be continued by calling c_dminf1 again. In this case, max must be given a negative value, 
where its absolute value indicates the number of additional function evaluations to perform and the value of the other 
arguments must remain unaltered. 

4. Example program 

A minimum of the function 22
12

2
1 )(100)1()( xxxf x is found from an initial starting guess of Tx )0.1,2.1(0   

The computed solution is output together with an accuracy check. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 2 
 
double fun(double x[]); /* user function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double f, x[N], g[N], h[N*(N+1)/2], vw[3*N+1], epsr, eps, exact; 
  int max, n; 
 
  /* initialize data */ 
  x[0] = -1.2; 
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  x[1] = 1; 
  n = N; 
  epsr = 1e-3; 
  max = 400*n; 
  /* find minimum of function */ 
  ierr = c_dminf1(x, n, fun, epsr, &max, &f, g, h, vw, &icon); 
  printf("icon = %i   max = %i   x = (%12.4e, %12.4e)   f = %12.4e\n",  
         icon, max, x[0], x[1], f); 
  /* check result */ 
  exact = 0; 
  eps = 1e-6; 
  if (fabs(f-exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 
 
/* user function */ 
double fun(double x[]) 
{ 
  return(pow(1-x[0],2)+100*pow((x[1]-x[0]*x[0]),2)); 
} 

5. Method 

For further information consult the entry for MINF1 in the Fortran SSL II User’s Guide and [33]. 
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c_dming1 
Minimization of a function of several variables (quasi-Newton method 
using function values and derivatives). 
ierr = c_dming1(x, n, fun, grad, epsr, &max, 

&f, g, h, vw, &icon); 

1. Function 

Given a real function )(xf  of n variables (n  1), its derivative )(xg , and an initial vector 0x , the vector *x  that gives a 
local minimum of )(xf  and its function value )( *xf  are obtained using the quasi-Newton method. 

The function )(xf  is assumed to have at least continuous second partial derivatives. 

2. Arguments 

The routine is called as follows: 
ierr = c_dming1(x, n, fun, grad, epsr, &max, &f, g, h, vw, &icon); 

where: 
x double x[n] Input Initial vector 0x . 
  Output Vector *x . 
n int Input Number of variables n. 
fun function Input User defined function to evaluate )(xf . Its prototype is: 

double fun(double x[]); 

where 
   x double 

x[n] 

Input Independent variable. 

grad function Input User defined function to evaluate )(xg , that is ixf  / , i=1,...,n. Its 
prototype is 
void grad(double x[], double g[]); 

where 
   x double 

x[n] 

Input Independent variable. 

   g double 

g[n] 

Output Gradient vector, where  
g[i-1]= ixf  / , i=1,...,n. 

epsr double Input Convergence criterion ( 0). A default value is used when epsr = 0. 
See Comments on use. 

max int Input Upper limit on the number of evaluations of fun and grad. max may 
be negative. See Comments on use. 

  Output Number of times fun and grad were actually evaluated. 
f double Output Value of )( *xf . 

g double g[n] Output Gradient vector at *x . 
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h double h[Hlen] Output Inverse of the Hessian matrix at *x  stored in symmetric storage format. 
See Array storage formats in the Introduction section for details. 

2/)1(  nnHlen . This array is only used if c_dming1 is called 
again after a value of 10000 has been returned in icon. See Comments 
on use. 

vw double 

vw[3n+1] 

Work This array must not be changed if c_dming1 is called again after a 
value of 10000 has been returned in icon. See Comments on use. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Convergence criterion was not satisfied within the 

specified number of function evaluations. 
Stopped. Arguments x, f, g and h contain the last 
values obtained. 

20000 A descent direction could not be found such that a 
decrease in function value could be obtained. 
epsr was too small. 

Discontinued. Arguments x and f contain the last 
values obtained. 

25000 The function is monotonically decreasing along 
the search direction. 

Discontinued. 

30000 One of the following has occurred: 
 n < 1 
 epsr < 0 
 max = 0 

Bypassed. 

3. Comments on use 

epsr 
The routine tests for 

 epsr  )||||,1(max|||| 1 kkk xxx  

for the iteration vector kx , and if the above condition is satisfied, 1kx  is taken as the local minimum point *x . If the 
function value )( *xf  is to be obtained as accurate as unit round-off, µ, then a value of epsrµ 2/1  is satisfactory. The 
default value of epsr is µ 8/2/1 . 

max and recalling c_dming1 when icon = 10000 
The number of function evaluations is calculated as 1 for each call to the user defined function fun and n for each call to 
the user defined function grad. 

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector 
and the convergence criterion. Generally, from a good initial vector, a value of max = n400  is appropriate. 

If the convergence criterion is not satisfied within the specified number of evaluations and the routine returns with icon 
= 10000, the iteration can be continued by calling c_dming1 again. In this case, max must be given a negative value, 
where its absolute value indicates the number of additional function evaluations to perform, and the values of the other 
arguments must remain unaltered. 
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4. Example program 

The global minimum point x  for 22
12

2
1 )(100)1()( xxxf x  is obtained with the initial vector 

T)0.1,2.1(0x . 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 2 
 
double fun(double x[]); /* user function prototype */ 
void grad(double x[], double g[]); /* derivative prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x[N], g[N], h[N*(N+1)/2], vw[3*N+1], f, epsr; 
  int i, n, max; 
 
  /* initialize data */ 
  n = N; 
  x[0] = -1.2; 
  x[1] = 1; 
  epsr = 1e-4; 
  max = 400*n; 
  /* find minimum of function */ 
  ierr = c_dming1(x, n, fun, grad, epsr, &max, &f, g, h, vw, &icon); 
  if (icon >= 20000) { 
    printf("ERROR in c_dming1. icon = %i", icon); 
    exit(1); 
  } 
  printf("icon = %i   max = %i   f = %12.4e\n", icon, max, f); 
  printf("x: "); 
  for (i=0;i<n;i++) printf("%12.4e  ",x[i]); 
  printf("\n"); 
  return(0); 
} 
 
/* user function */ 
double fun(double x[]) 
{ 
  return pow(1-x[0],2)+100*pow(x[1]-x[0]*x[0],2); 
} 
 
/* derivative function */ 
void grad(double x[], double g[]) 
{ 
  g[0] = -2*(1-x[0])-400*x[0]*(x[1]-x[0]*x[0]); 
  g[1] = 200*(x[1]-x[0]*x[0]); 
} 

5. Method 

Consult the entry for MING1 in the Fortran SSL II User's Guide. and [95]. 

 



 c_dmsbv  

 461 

c_dmsbv 
Multiplication of a symmetric band matrix by a vector. 
ierr = c_dmsbv(a, n, nh, x, y, &icon); 

1. Function 

This routine calculates the matrix-vector product of an nn  symmetric band matrix A, with upper and lower bandwidths 
h, and a vector x of size n. 

 Axy   (1) 

The solution y is a real vector of size n. (n>h 0). 

2. Arguments 

The routine is called as follows: 
ierr = c_dmsbv(a, n, nh, x, y, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric band storage format. See Array storage 

formats in the Introduction section for details. 
.2/)1()1(  hhhnAlen  

n int Input The order n of matrix A. 
nh int Input The upper and lower bandwidths h of matrix A. 
x double x[n] Input Vector x. 
y double y[n] Output Solution  vector y. 
  Input Vector y  . Only applies to equation (2). See Comments on use. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n = 0 
 nh < 0 
 nh   |n| 

Bypassed. 

3. Comments on use 

General Comments 
The routine is used primarily for the computation of equation (1) but it can also be used for equation (2) 

 Axyy   (2) 

by assigning –n to n and y   to y before calling the routine. Equation (2) is commonly used to compute a residual vector 
Axbr   of the linear equation Ax = b. 
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4. Example program 

This program multiplies a symmetric band matrix by a vector and prints the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
#define NMAX 5 
#define NHMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, i, j, ij, jmin; 
  double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], x[NMAX], y[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  nh = NHMAX; 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh, 0); 
    for (j=jmin;j<=i;j++) 
      a[ij++] = i-j+1; 
  } 
  for (i=0;i<n;i++) 
    x[i] = i; 
  /* perform matrix vector multiply */ 
  ierr = c_dmsbv(a, n, nh, x, y, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dmsbv failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print result */ 
  for (i=0;i<n;i++) 
      printf("%7.2f  ",y[i]); 
  printf("\n"); 
  return(0); 
} 

5. Method 

Consult the entry for MSBV in the Fortran SSL II User's Guide. 
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c_dmsgm 
Multiplication of two matrices (symmetric by general). 
ierr = c_dmsgm(a, b, kb, c, kc, n, vw, &icon); 

1. Function 

This routine performs multiplication of an nn  symmetric matrix A by an nn  general matrix B 

 ABC   (1) 

In (1), the resultant C is an nn  matrix (n 1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dmsgm(a, (double*)b, kb, (double*)c, kc, n, vw, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage 

formats in the Introduction section for details. .2/)1(  nnAlen  
b double 

b[n][kb] 

Input Matrix B. 

kb int Input C fixed dimension of array b ( n). 
c double 

c[n][kc] 

Output Matrix C. See Comments on use.  

kc int Input C fixed dimension of array c ( n). 
n int Input The order n of matrices A, B and C. 
vw double vw[n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n < 1 
 kb < n 
 kc < n 

Bypassed. 

3. Comments on use 

Saving on storage space 
If there is no need to keep the contents of array, as, then saving on storage space is possible by specifying the same array 
for argument c. WARNING – make sure the array size is compliant for both arguments otherwise unpredictable results 
can occur. 
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4. Example program 

This program multiplies a symmetric matrix by a standard matrix. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 5 
 
/* print symmetric matrix */ 
void prtsymmat(double a[], int n) 
{ 
  int ij, i, j; 
  printf("symmetric matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    for (j=0;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
/* print general matrix */ 
void prtgenmat(double *a, int k, int n, int m) 
{ 
  int i, j; 
  printf("general matrix format\n"); 
  for (i=0;i<n;i++) { 
    for (j=0;j<m;j++) 
      printf("%7.2f  ",a[i*k+j]); 
    printf("\n"); 
  } 
} 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij, kb, kc; 
  double b[NMAX][NMAX], a[NMAX*(NMAX+1)/2], c[NMAX][NMAX], vw[NMAX]; 
 
  n = NMAX; 
  /* initialize symmetric matrix */ 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      a[ij++] = i-j+1; 
    } 
  /* initialize general matrix */ 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) { 
      b[i][j] = i+1; 
    } 
  kb = NMAX; 
  kc = NMAX; 
  /* matrix matrix multiply */ 
  ierr = c_dmsgm(a, (double*)b, kb, (double*)c, kc, n, vw, &icon); 
  /* print matrices */ 
  printf("a: \n"); 
  prtsymmat(a, n); 
  printf("b: \n"); 
  prtgenmat((double*)b, kb, n, n); 
  printf("c: \n"); 
  prtgenmat((double*)c, kc, n, n); 
  return(0); 
} 
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c_dmssm 
Multiplication of two matrices (symmetric by symmetric). 
ierr = c_dmssm(a, b, c, kc, n, vw, &icon); 

1. Function 

This routine performs multiplication of two nn  symmetric matrices, A and B. 

 ABC   (1) 

In (1), the resultant matrix C is also an nn matrix (n 1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dmssm(a, b, (double *)c, kc, n, vw, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage 

formats in the Introduction section for details. .2/)1(  nnAlen  
b double b[Blen] Input Matrix B. Stored in symmetric storage format. See Array storage formats 

in the Introduction section for details. .2/)1(  nnBlen  
c double 

c[n][kc] 

Output Matrix C. See Comments on use. 

kc int Input C fixed dimension of array c ( n). 
n int Input The order n of matrices A, B and C. 
vw double vw[n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n < 1 
 kc < n 

Bypassed. 

3. Comments on use 

Saving on storage space 
If there is no need to keep the contents of array, a, then saving on storage space is possible by specifying the same array 
for argument c. WARNING – make sure the array size is compliant for both arguments otherwise unpredictable results 
can occur. 

4. Example program 

This program multiplies two symmetric matrices together. 
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#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 5 
 
/* print symmetric matrix */ 
void prtsymmat(double a[], int n) 
{ 
  int ij, i, j; 
  printf("symmetric matrix format\n"); 
  ij = 0; 
  for (i=0;i<n;i++) { 
    for (j=0;j<=i;j++) 
      printf("%7.2f  ",a[ij++]); 
    printf("\n"); 
  } 
} 
 
/* print general matrix */ 
void prtgenmat(double *a, int k, int n, int m) 
{ 
  int i, j; 
  printf("general matrix format\n"); 
  for (i=0;i<n;i++) { 
    for (j=0;j<m;j++) 
      printf("%7.2f  ",a[i*k+j]); 
    printf("\n"); 
  } 
} 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij, kc; 
  double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], c[NMAX][NMAX], vw[NMAX]; 
 
  n = NMAX; 
  /* initialize symmetric matrices */ 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      a[ij] = i-j+1; 
      b[ij++] = i-j+1; 
    } 
  kc = NMAX; 
  /* matrix matrix multiply */ 
  ierr = c_dmssm(a, b, (double*)c, kc, n, vw, &icon); 
  /* print matrices */ 
  printf("a: \n"); 
  prtsymmat(a, n); 
  printf("b: \n"); 
  prtsymmat(b, n); 
  printf("c: \n"); 
  prtgenmat((double*)c, kc, n, n); 
  return(0); 
} 
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c_dmsv 
Multiplication of a symmetric matrix and a vector. 
ierr = c_dmsv(a, n, x, y, &icon); 

1. Function 

This routine calculates the matrix-vector product of an nn  symmetric matrix A and a vector x of size n. 

 Axy   (1) 

The solution y is a real vector of size n (n 1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dmsv(a, n, x, y, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage 

formats in the Introduction section for details. .2/)1(  nnAlen  
n int Input The order n of matrix A. 
x double x[n] Input Vector x. 
y double y[n] Output 

Input 
Solution  vector y. 
Vector y  . Only applies to equation (2). See Comments on use. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 n = 0 Bypassed. 

3. Comments on use 

General Comments 
The routine is used primarily for the computation of equation (1) but it can also be used  for equation (2)  

 Axyy   (2) 

by assigning –n to n and y   to y before calling the routine. Equation (2) is commonly used to compute a residual vector 
Axbr   of the linear equation Ax = b. 

4. Example program 

This program multiplies a symmetric matrix by a vector and prints the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
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#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij; 
  double a[NMAX*(NMAX+1)/2], x[NMAX], y[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      a[ij++] = i-j+1; 
    } 
  for (i=0;i<n;i++) 
    x[i] = i; 
  /* perform matrix vector multiply */ 
  ierr = c_dmsv(a, n, x, y, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dmsv failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print result */ 
  for (i=0;i<n;i++) 
      printf("%7.2f  ",y[i]); 
  printf("\n"); 
  return(0); 
} 

5. Method 

Consult the entry for MSV in the Fortran SSL II User's Guide. 
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c_dndf 
Normal distribution function )(x . 
ierr = c_dndf(x, &f, &icon); 

1. Function 

This routine computes the value of the normal distribution function 

 dtex
x t
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by the relation 

   2/2/)( xerfx  . 

2. Arguments 

The routine is called as follows: 
ierr = c_dndf(x, &f, &icon); 

where: 
x double Input Independent variable x. 
f double Output Function value )(x . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 

3. Comments on use 

Range of x 
There is no restriction with respect to the range of argument x. 

c_dndf and c_dndfc 
Using the relationship between the normal distribution function )(x  and the complimentary normal distribution function 

)(x  

 )(2/1)( xx  , 

the value of )(x  can be computed using the routine c_dndfc. However, in the range || x  < 2 this leads to less 
accuracy and less efficient computation than using this routine. 

4. Example program 

This program generates a range of function values for 101 points in the the interval [0,10]. 
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#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, f; 
  int i; 
 
  for (i=0;i<=100;i++) { 
    x = (double)i/10; 
    /* calculate normal distribution function */ 
    ierr = c_dndf(x, &f, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   f = %f\n", x, f); 
    else 
      printf("ERROR: x = %5.2f   f = %f   icon = %i\n", x, f, icon); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for NDF in the Fortran SSL II User's Guide. 
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c_dndfc 
Complimentary normal distribution function )(x . 
ierr = c_dndfc(x, &f, &icon); 

1. Function 

This routine computes the value of the complimentary normal distribution function 

 dtex
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by the relationship 

   2/2/)( xerfcx  . 

2. Arguments 

The routine is called as follows: 
ierr = c_dndfc(x, &f, &icon); 

where: 
x double Input Independent variable x. 
f double Output Function value )(x . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 

3. Comments on use 

Range of x 
There is no restriction with respect to the range of argument x. 

c_dndfc and c_dndf 
Using the relationship between the complimentary normal distribution function )(x  and the normal distribution 
function )(x , 

 )(2/1)( xx  , 

the value of )(x  can be computed using the routine c_dndf. However, in the range || x  > 2 this leads to less accuracy 
and less efficient computation than using this routine. 

4. Example program 

This program generates a range of function values for 101 points in the the interval [0,10]. 
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#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, f; 
  int i; 
 
  for (i=0;i<=100;i++) { 
    x = (double)i/10; 
    /* calculate complementary normal distribution function */ 
    ierr = c_dndfc(x, &f, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   f = %f\n", x, f); 
    else 
      printf("ERROR: x = %5.2f   f = %f   icon = %i\n", x, f, icon); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for NDFC in the Fortran SSL II User's Guide. 
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c_dnlpg1 
Nonlinear programming (Powell’s method using function values and 
derivatives). 
ierr = c_dnlpg1(x, n, fun, grad, func, jac, m, 

epsr, &max, &f, vw, k, ivw, 

&icon); 

1. Function 

Given a real function )(xf of n variables, its gradient vector )(xg  and an initial vector 0x , the vector x that gives a 
local minimum of )(xf  and its function value )( xf are obtained subject to the constraints:  
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The Jacobian matrix )(xJ  of )}({ xic must be provided as a procedure and the function )(xf  is assumed to have at least 
continuous second partial derivatives.  

Furthermore, if we define 21 mmm  , where 1m  is the number of equality constraints and 2m is the number of 
inequality constraints, then 01 m , 02 m  and 1m . 

2. Arguments 

The routine is called as follows: 
ierr = c_dnlpg1(x, n, fun, grad, func, jac, m, epsr, &max, &f, vw, k, ivw, 

&icon); 

where: 
x double x[n] Input Initial vector 0x . 
  Output Vector x . 
n int Input Number of variables n. 
fun function Input User defined function to evaluate )(xf . Its prototype is: 

double fun(double x[]); 

where: 
   x double 

x[n] 

Input Independent variable. 

grad function Input User defined function to evaluate )(xg , that is nixf i ,...,1},/{  . Its 
prototype is: 
void grad(double x[], double g[]); 

where:  
   x double 

x[n] 

Input Independent variable. 

   g double 

g[n] 

Output Gradient vector, where: 
},/{ ixf 1]-g[i i=1,...,

n. 
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func function Input Name of the user defined function to evaluate )}({ xic . Its prototype is: 
void func(double x[], double c[]); 

where: 

   x double 

x[n] 

Input Independent variable. 

   c double 

c[m] 

Output Vector of constraint values. 

jac function Input The name of the function that evaluates the analytical Jacobian matrix: 
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The function prototype as:  
void jac(double x[],double cj[], int k);  

where: 
   x double 

x[n] 

Input The independent variable. 

   cj double 

cj[m*k] 

Output The Jacobian matrix. Stored by 
rows, i.e.  

ji xc
ji


 )]1(*)1[( k cj

 

where mi 1  and 
nj 1 . 

   k int Input The declared storage for each 
“row” of cj. The user must 
use the parameter passed by 
the library routine, as it may 
not be as expected. 

m int m[2] Input The number of constraints. m[0] = 1m  and m[1] = 2m . 
epsr double Input Convergence criteria. A default value is used when epsr = 0. See 

Comments on use. 
max int Input Upper limit on the number of function evaluations (fun, grad, func 

and jac). max may be negative. See Comments on use.  
  Output Number of times actually evaluated. 
f double Output Value of )( xf .  
vw double 

vw[Rlen] 
Work Rlen = k*(m[0]+m[1]+2*n+12). 

k int Input Control on size of vw, where k   m[0]+m[1]+n+4. 
ivw int ivw[Ilen] Work Ilen = 2*(m[0]+m[1]+n+4). 
icon int Output Condition code. See below. 
The complete list of condition codes is given below: 
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Code  Meaning  Processing 
0 No error. Completed. 
10000 Convergence condition was not satisfied within 

the specified number of function evaluations. 
Stopped. Arguments x and f, each contain the 
last value obtained. 

20000 A descent direction could not be found so that no 
decrease in function value could be obtained. 
epsr may have been too small. 

 

21000 There may not be a solution that satisfies the 
constraints, or 0x  may not be appropriate. Retry 
with a different initial value. 

Stopped. 

29000 Memory allocation error. Bypassed. 
30000 One of the following has occurred: 

 n < 1 
 epsr < 0 
 k < m[0]+m[1]+n+4 
 max = 0 
 0m[0]  
 0m[1]  
 1 m[i]m[0]  

Bypassed. 

3. Comments on use 

epsr 
The function tests for  

epsr
 ),1max(1 kkk xxx  

for the iteration vector kx  and if the above condition is satisfied, 1kx  is taken as the local minimum point x . If the 
function value )( xf  is to be obtained as accurate as unit round-off,  , then a value of epsr   is satisfactory. The 
default value of epsr is 2 . 

max and recalling c_dnlpg1 when icon=10000 
The number of function evaluations is incremented by one every time fun is called, by n every time grad is called, by m 
every time func is called and by  n*m every time jac is called.  

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector 
and the convergence criterion. Generally, from a good initial vector, a value of max mn  800 is appropriate. 

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon 
= 10000, the iteration can be continued by calling c_dnlpg1 again. In this case, max must be given a negative value, 
where its absolute value indicates the number of additional function evaluations to perform and the value of the other 
arguments must remain unaltered. 

4. Example program 

A minimum of the function 21
2
221

2
121 1022),( xxxxxxxxf  , subject to the constraints 
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0),(

025.15.0),(

12212

2
2

2
1211




xxxxc
xxxxc   

is found from an initial starting guess of Tx )2,2(0   The computed solution is output together with an accuracy check. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N   2 
#define M1  1 
#define M2  1 
 
double fun(double x[]); 
void grad(double x[], double g[]); 
void func(double x[], double c[]); 
void jac(double x[], double *cj, int k); 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x[N], epsr, f, vw[M1+M2+2*N+12][M1+M2+N+4], eps; 
  int n, m[2], max, k, ivw[2*(M1+M2+N+4)]; 
 
  /* initialize data */ 
  x[0] = -2; 
  x[1] = 2; 
  n = N; 
  m[0] = M1; 
  m[1] = M2; 
  epsr = 1e-3; 
  max = 800*(M1+M2)*N; 
  k = M1+M2+N+4; 
  /* minimize  */ 
  ierr = c_dnlpg1(x, n, fun, grad, func, jac,  
                  m, epsr, &max, &f, (double*)vw, k, ivw, &icon); 
  printf("icon = %i   max = %i   f = %f\n", icon, max, f); 
  printf("x[0] = %f   x[1] = %f\n", x[0], x[1]); 
  /* check result */ 
  eps = 1e-5; 
  if (fabs((f+8)/8) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 
 
/* objective function */ 
double fun(double x[]) 
{ 
  return((x[0]-2*x[1]-10)*x[0] + (2*x[1]+1)*x[1]); 
} 
 
/* gradient function */ 
void grad(double x[], double g[]) 
{ 
  g[0] = 2*x[0]-2*x[1]-10; 
  g[1] = -2*x[0]+4*x[1]+1; 
  return; 
} 
 
/* constraint function */ 
void func(double x[], double c[]) 
{ 
  c[0] = 0.5*x[0]*x[0]+1.5*x[1]*x[1]-2; 
  c[1] = -x[0]+x[1]; 
  return; 
} 
 
/* Jacobian function */ 
void jac(double x[], double *cj, int k) 
{ 
  cj[0] = x[0];    /* [0][0] */ 
  cj[1] = 3*x[1];  /* [0][1] */ 
  cj[k] = -1;      /* [1][0] */ 
  cj[k+1] = 1;     /* [1][1] */ 
  return; 
} 
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5. Method 

For further information consult the entry for NLPG1 in the Fortran SSL II User’s Guide and also [86] or [87]. 
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c_dnolbr 
Solution of a system of nonlinear equations (Brent’s method). 
ierr = c_dnolbr(x, n, fun, epsz, epst, fc, &m, 

&fnor, vw, &icon); 

1. Function 

This function solves a system of nonlinear equations (1) by Brent’s method. 
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If we let f x f f f n( ) ( ( ), ( ), , ( )) 1 2x x x T  and x  ( , , , )x x xn1 2  T  then equation (2) is solved with the initial vector, 
x0 , and a zero right-hand-side vector, 0 , of order n. 

 f ( )x 0  (2) 

2. Arguments 

The routine is called as follows: 
ierr = c_dnolbr(x, n, fun, epsz, epst, fc, &m, &fnor, vw, &icon); 

where: 
x double x[n] Input An initial vector x0  to solve equation (2). 
  Output Solution vector. 
n int Input Dimension n of the system. 
fun function Input Name of the user defined function to evaluate f k ( )x . Its prototype is: 

double fun(double x[], int k); 

where: 
   x double 

x[n] 

Input Vector x . 

   k int Input Evaluate the kth equation, 
f k ( )x . 

epsz double Input The tolerance (  0). The search for a solution vector is terminated when 
f ( )x i 

 epsz . See Comments on use. 
epst double Input The tolerance (  0). The iteration is considered to have converged when 

x x xi i i    1 epst . See Comments on use. 
fc double Input A value to indicate the range of search for the solution vector (> 0). The 

search is terminated when x xi 
 fc max( , )0 1 . See Comments on 

use. 
m int Input Upper limit of iterations (>0). See Comments on use. 
  Output Total number of iterations performed. 
fnor double Output The value of f ( )x i 

 for the solution vector obtained. 
vw double Work Vwlen = n*(n+3) 
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vw[Vwlen] 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
1 Satisfied the convergence criterion, 

f ( )x i 
 epsz . 

2 Satisfied the convergence criterion, 
x x xi i i    1 epst . 

10000 The specified convergence conditions were not 
satisfied for the given number of iterations. 

The last x i  is returned in x. 

20000 A solution vector was not found within the search 
range, see argument fc. 

25000 The Jacobian of f ( )x  reduced to 0 during 
iterations (singularity). 

30000 One of the following has occurred: 
n   0 
epsz < 0 
epst < 0 
fc   0 
m   0 

Bypassed. 

3. Comments on use 

epsz and epst 
Two convergence criteria are used in this function. When either one is met, the iteration terminates. if the user wishes to 
cancel one of the criteria then he needs to set the corresponding tolerance variable to zero. Below are all the possible 
options. 

epsz   A  (>0) and epst  0  

Unless x xi i  1 0  is satisfied, the iteration continues until f ( )x i A
   is satisfied or the upper limit 

on the number of iterations has been reached. 

epsz  0  and epst   B  (>0) 

Unless f ( )x i 
 0  is satisfied, the iteration continues until x x xi i B i    1   is satisfied or the 

upper limit on the number of iterations has been reached. 

epsz  0  and epst  0  

Unless f ( )x i 
 0  or x xi i  1 0 , the iteration continues until arriving at the set upper limit of 

iterations. 

This setting is useful for executing all the iterations, m. 
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fc 
Sometimes a solution vector cannot be found in the neighbourhood of the initial vector x0 . When this happens, x i  
diverges from x0  and numerical difficulties such as overflows may occur in evaluating f ( )x . The argument, fc, is set 
to make sure these anomalies don’t occur by limiting the range of search for solution. A standard value for fc is around 
100. 

m 
The number of iterations needed for convergence to the solution vector depends on the nature of the equation and the 
magnitude of tolerances. When the initial vector is improperly set or the tolerances are set too small, the argument m 
should be set to a large number. As a rule of thumb, m should be set to around 50 for n = 10. 

4. Example program 

A root of the system of nonlinear equations: 

 
625.2)1(
25.2)1(

3
21

2
21




xx
xx   

is computed from a starting guess of T)8.0,0.5(
0
x . The solutions are Tx )5.0,0.3(  and Tx )3/1,32/81(  . 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 2 
 
double fun(double x[], int k); /* user function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x[N], epsz, epst, fc, fnor, vw[N*(N+3)]; 
  int m, n; 
 
  n = N; 
  x[0] = 5.0; 
  x[1] = 0.8; 
  epsz = 1e-5; 
  epst = 0; 
  fc = 100; 
  m = 20; 
  /* solve equations */ 
  ierr = c_dnolbr(x, n, fun, epsz, epst, fc, &m, &fnor, vw, &icon); 
  printf("icon = %i   m = %i   fnor = %f   x[0] = %12.4e   x[1] = %12.4e\n",  
         icon, m, fnor, x[0], x[1]); 
  return(0); 
} 
 
/* user function */ 
double fun(double x[], int k) 
{ 
  double res; 
  switch (k) { 
  case (1): 
    res = x[0]*(1-x[1]*x[1])-2.25; 
    break; 
  case (2): 
    res = x[0]*(1-x[1]*x[1]*x[1])-2.625; 
    break; 
  } 
  return(res); 
} 
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5. Method 

A system of nonlinear equations (1) is solved using Brent’s method. For further information consult the entry for NOLBR 
in the Fortran SSL II User's Guide and [24]. 



Description of the C-SSL II Routines 

482 

c_dnolf1 
Minimization of the sum of squares of functions of several variables 
(revised Marquardt method using function values only). 
ierr = c_dnolf1(x, n, fun, m, epsr, &max, f, 

&sums, vw, k, &icon); 

1. Function 

Given m real functions )(1 xf , )(2 xf , …, )(xmf of n variables and an initial vector 0x , the vector x that gives a local 
minimum of  

 2

1

))(()( xx 



m

i
ifF  

and its function value )( xF are obtained by using the revised Marquardt method (Levenberg-Marquardt-Morrison or 
LMM method). 

This routine does not require the derivative of )(xF , but the functions )(xif  are assumed to have at least continuous first 
partial derivatives and 1 nm . 

2. Arguments 

The routine is called as follows: 
ierr = c_dnolf1(x, n, fun, m, epsr, &max, f, &sums, vw, k, &icon); 

where: 
x double x[n] Input Initial vector 0x . 
  Output Vector x . 
n int Input Number of variables n. 
fun function Input User defined function to evaluate )(xif . Its prototype is: 

void fun(double x[], double f[]); 

where: 
   x double 

x[n] 

Input Independent variable. 

   f double 

f[m] 

Output Function values )(xif , where   
)(xif1]-f[i ,  

i=1, 2, …, m. 
m int Input Number of functions m. 
epsr double Input Convergence criteria. A default value is used when epsr = 0. See 

Comments on use. 
max int Input Upper limit on the number of evaluations of fun. max may be negative. 

See Comments on use.  
  Output Number of times actually evaluated. 
f double f[m] Output Value of )( xf .  
sums double Output )( xF , the sums of squares of the )(xif  
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vw double 

vw[Rlen] 
Work Rlen = )2(  nk . 

k int Input Control on size of vw, where mnk  . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Convergence condition was not satisfied within 

the specified number of function evaluations. 
Stopped. Arguments x, f and sums each contain 
the last value obtained. 

20000 Computation broke down and was not able to 
proceed further. epsr was too small or the error 
in the difference approximation to the Jacobian 
was too large. 

Stopped. Arguments x, f and sums contain the 
last value obtained. 

30000 One of the following occurred: 
 n < 1 
 epsr < 0 
 max = 0 
 k < n+m 
 nm   

Bypassed. 

3. Comments on use 

epsr 
The function tests for  

epsr
 ),1max(1 kkk xxx  

for the iteration vector kx  and if the above condition is satisfied, 1kx  is taken as the local minimum point x . 

This routine assumes that )(xF is approximately quadratic in the neighbourhood of x , the local minimum. To obtain 
)( xF  as accurately as the unit round-off, then a value of epsr   is appropriate, where   is the unit round-off. The 

default value of epsr is 2 . 

max and recalling c_dnolf1 when icon=10000 
The number of function evaluations is calculated as the number of calls to the user defined function fun.  

The number of function evaluations required depends upon the characteristics of the )(xif  as well as the initial vector 
and the convergence criterion. Generally, with a good initial vector, a value of max nm 100  is appropriate. 

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon 
= 10000, the iteration can be continued by calling c_dnolf1 again. In this case, max must be given a negative value, 
where its absolute value indicates the number of additional function evaluations to perform and the value of the other 
arguments must remain unaltered. 
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4. Example program 

A minimum of the function ),(),(),( 21
2

221
2

121 xxfxxfxxF  , where: 

 
)(10),(

1),(
2
12212

1211

xxxxf
xxxf




  

is found from an initial starting guess of Tx )0.1,2.1(0   The computed solution is output together with an accuracy 
check. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 2 
#define M 2 
 
void fun(double x[], double y[]); /* user function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double f[N], x[N], vw[N+2][M+N], epsr, sums, eps, exact; 
  int max, n, m, k; 
 
  /* initialize data */ 
  x[0] = -1.2; 
  x[1] = 1; 
  n = N; 
  m= M; 
  epsr = 1e-3; 
  max = 100*n*m; 
  k = m+n; 
  /* find minimum of sum of squares */ 
  ierr = c_dnolf1(x, n, fun, m, epsr, &max, f, &sums, (double*)vw, k, &icon); 
  printf("icon = %i   max = %i   sums = %12.4e\n", icon, max, sums); 
  printf("x = (%12.4e, %12.4e)   f = (%12.4e, %12.4e)\n",  
         x[0], x[1], f[0], f[1]); 
  /* check result */ 
  exact = 0; 
  eps = 1e-6; 
  if (fabs(sums-exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 
 
/* user function */ 
void fun(double x[], double y[]) 
{ 
  y[0] = 1 - x[0]; 
  y[1] = (x[1] - x[0]*x[0])*10; 
  return; 
} 

5. Method 

For further information consult the entry for NOLF1 in the Fortran SSL II User’s Guide, [69] or [82]. 
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c_dnolg1 
Minimization of the sum of squares of functions of several variables 
(revised Marquardt method using function values and derivatives). 
ierr = c_dnolg1(x, n, fun, jac, m, epsr, &max, 

f, &sums, vw, k, &icon); 

1. Function 

Given m functions )(),...,(),( 21 xxx mfff of n variables, the Jacobian J(x), and an initial vector 0x , the vector x  that 
gives a local minimum of 

 



m

i
ifF

1

2))(()( xx  

and its function value )( xF  are obtained using the revised Marquardt method (Levenberg-Marquardt-Morrison or 
LMM method). 

The functions mif i ,...,1),( x  are assumed to have at least continuous first partial derivatives and m n 1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dnolg1(x, n, fun, jac, m, epsr, &max, f, &sums, vw, k, &icon); 

where: 
x double x[n] Input Initial vector 0x . 
  Output Vector x . 
n int Input Number of variables n. 
fun function Input User defined function to evaluate )(xif . Its prototype is: 

void fun(double x[], double f[]); 

where 
    
   x double 

x[n] 

Input Independent variable. 

   f double 

f[m] 

Output Function values )(xif , where  
f[i-1] = )(xif ,i=1,2,...,m.
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jac function Input The name of the function that evaluates the analytical Jacobian matrix: 
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The function prototype is:  
void jac(double x[],double g[], long k);  

where: 
   x double 

x[n] 

Input The independent variable, x. 

   g double 

g[m*k] 

Output The Jacobian matrix, J(x). 
Stored by rows, i.e.  
g[(i-1)*k+(j-1)] 

                          = ji xf  / , 
where mi ,...,1  and 

nj ,...,1 . 
   k int Input The declared storage for each 

“row” of g. The user must use 
the parameter passed by the 
library routine, as it may not 
be as expected. 

m int  Number m of functions. 
epsr double Input Convergence criterion (  0). A default value is used when epsr = 0. 

See Comments on use. 
max int Input Upper limit ( 0) on the number of evaluations of fun and jac. max 

may be negative. See Comments on use. 
  Output Actual number of evaluations. 
f double f[m] Output Value of )( xf . 
sums double Output )( xF , the sum of squares of )(xif , mi ,...,2,1 . 
vw double 

vw[Vwlen] 
Work )2(  nkVwlen . 

k int Input Control on size of array vw, where nmk  . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Convergence criterion was not satisfied within the 

specified number of function evaluations. 
Stopped. Arguments x, f and sums contain the 
last values obtained. 

20000 Computation broke down and was not able to 
proceed further. epsr was too small or the error 
in the difference approximation to the Jacobian 
was too large. 

Stopped. Arguments x, f and sums contain the 
last values obtained. 
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Code  Meaning  Processing 
30000 One of the following has occurred: 

 n < 1 
 m < n 
 epsr < 0 
 max = 0 
 k < m+n 

Bypassed. 

3. Comments on use 

epsr 
The routine tests for  

 epsr
 ),1max(1 kkk xxx  

for the iteration vector kx . When the above condition is satisfied, kx  is taken as the local minimum point x  if 
)()( 1 kk FF xx , and 1kx  is taken as x  if )()( 1 kk FF xx  . 

This routine assumes that )(xF is approximately quadratic in the neighbourhood of x , the local minimum. To obtain 
)( xF  as accurately as the unit round-off a value of epsr = µ 2/1  is appropriate, where µ is the unit round-off. The 

default value for epsr is 2µ 2/1 . 

max and recalling c_dnolg1 when icon = 10000 
The number of function evaluations is calculated as 1 for each call to the user defined function fun and n for each call to 
the user defined function jac. 

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector 
and the convergence criterion. Generally, from a good initial vector, a value of max = mn 100  is appropriate. 

If the convergence criterion is not satisfied within the specified number of evaluations and the routine returns with icon 
= 10000, the iteration can be continued by calling c_dnolg1 again. In this case, max must be given a negative value, 
where its absolute value indicates the number of additional function evaluations to perform, and the values of the other 
arguments must remain unaltered. 

4. Example program 

Given the function ),(),(),( 21
2

221
2

121 xxfxxfxxF  , where 1211 1),( xxxf   and )(10),( 2
12212 xxxxf  , 

the global minimum point x  is obtained with the initial vector T)0.1,2.1(0x . 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 2 
#define M 2 
 
void fun(double x[], double y[]); /* user function prototype */ 
void jac(double x[], double *g, int k); /* derivative prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x[N], f[M], sums, epsr, vw[N+2][M+N]; 
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  int i, n, m, k, max; 
 
  /* initialize data */ 
  n = N; 
  m = M; 
  k = M+N; 
  x[0] = -1.2; 
  x[1] = 1; 
  epsr = 1e-3; 
  max = 100*n*m; 
  /* find minimum of function */ 
  ierr = c_dnolg1(x, n, fun, jac, m, epsr, &max,  
    f, &sums, (double*)vw, k, &icon); 
  if (icon >= 20000) { 
    printf("ERROR in c_dnolg1. icon = %i", icon); 
    exit(1); 
  } 
  printf("icon = %i   max = %i   sums = %12.4e\n", icon, max, sums); 
  printf("x: "); 
  for (i=0;i<n;i++) printf("%12.4e  ",x[i]); 
  printf("\n"); 
  printf("f: "); 
  for (i=0;i<m;i++) printf("%12.4e  ",f[i]); 
  printf("\n"); 
  return(0); 
} 
 
/* user function */ 
void fun(double x[], double y[]) 
{ 
  y[0] = 1-x[0]; 
  y[1] = 10*(x[1]-x[0]*x[0]); 
  return; 
} 
 
/* derivative function */ 
void jac(double x[], double *g, int k) 
{ 
  g[0] = -1; 
  g[1] = 0; 
  g[k] = -20*x[0]; 
  g[k+1] = 10; 
  return; 
} 

5. Method 

Consult the entry for NOLG1in the Fortran SSL II User's Guide and references [69], and [82]. 
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c_dnrml 
Normalization of the eigenvectors of a real matrix. 
ierr = c_dnrml(ev, k, n, ind, m, mode, &icon); 

1. Function 

This routine obtains eigenvectors jy  by normalizing m eigenvectors jx , j=1,2,...,m of an nn  real matrix. Either 
(1) or (2) is used in the normalization process, 

 


 jjj xxy / , (1) 

 
2

/ jjj xxy  . (2) 

Here n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dnrml((double *) ev, k, n, ind, m, mode, &icon); 

where: 
ev double Input The m eigenvectors jx , mj ,...,1 . See Comments on use. 
 ev[m][k] Output The m normalized eigenvectors jy , mj ,...,1 . 
k int Input C fixed dimension of array ev (  n). 
n int Input Order n of the matrix. 
ind int ind[m] Input Indicates the type of each eigenvector: 

ind[j-1] = 1  if the j-th row of ev is a real eigenvector 
ind[j-1] = -1 if the j-th row of ev is the real part of a complex  
                       eigenvector 
ind[j-1] = 0  if the j-th row of ev is the imaginary part of a complex 
                       eigenvector. 
j = 1,2,...,m. 

m int Input Number m of eigenvectors. 
mode int Input Indicates method of normalization: 

mode = 1 if (1) is to be used, 
mode = 2 if (2) is to be used. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 ev[0][0] = 1. 
30000 One of the following has occurred: 

 m < 1 or m > n 
 k < n 
 mode  1 or 2 

Bypassed. 
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Code  Meaning  Processing 
 error found in ind 

3. Comments on use 

ev, ind and m 
The eigenvectors are stored in ev such that each real eigenvector occupies one row and each row eigenvector occupied 
two columns (one for the real part and one for the imaginary part). 

When the eigenvectors of a symmetrix matrix are to be normalized, all of the elements of ind are set to 1. 

If routine c_dhvec is called before this routine, input arguments ev, ind and m of this routine are the same as output 
arguments ev and ind and input argument m of c_dhvec. 

If routine c_dhbk1 is called before this routine, input arguments ev, ind and m of this routine are the same as output 
argument ev and input arguments ind and m of c_dhbk1. 

4. Example program 

This program finds the eigenvectors of a real matrix, and then such that 1


x . 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, mode, m, ind[NMAX]; 
  double a[NMAX][NMAX], er[NMAX], ei[NMAX], ev[NMAX][NMAX], vw[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    a[i][i] = n-i; 
    for (j=0;j<i;j++) { 
      a[i][j] = n-i; 
      a[j][i] = n-i; 
    } 
  } 
  mode = 0; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_deig1((double*)a, k, n, mode, er, ei, (double*)ev, vw, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_deig1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* initialize ind array */ 
  m = n; 
  mode = 1; 
  i = 0; 
  while (i<m) { 
    if (ei[i] == 0) ind[i++] = 1; 
    else { 
      ind[i++] = -1; 
      ind[i++] = 0; 
    } 
  } 
  /* normalize eigenvectors */ 
  ierr = c_dnrml((double*)ev, k, n, ind, m, mode, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dnrml failed with icon = %i\n", icon); 
    exit (1); 
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  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  i = 0; 
  k = 0; 
  while (i<m) { 
    if (ind[i] == 0) i++; 
    else if (ei[i] == 0) { 
      /* real eigenvector */ 
      printf("eigenvalue: %12.4f\n", er[i]); 
      printf("eigenvector:"); 
      for (j=0;j<n;j++) 
        printf("%7.4f  ", ev[k][j]); 
      printf("\n"); 
      i++; 
      k++; 
    } 
    else { 
      /* complex eigenvector pair */ 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", er[i], ei[i]); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
        printf("%7.4f+i*%7.4f   ", ev[k][j], ev[k+1][j]); 
      printf("\n"); 
      printf("eigenvalue:  %7.4f+i*%7.4f\n", er[i+1], ei[i+1]); 
      printf("eigenvector:  "); 
      for (j=0;j<n;j++) 
        printf("%7.4f+i*%7.4f   ", ev[k][j], -ev[k+1][j]); 
      printf("\n"); 
      i = i+2; 
      k = k+2; 
    } 
  } 
  return(0); 
} 

5. Method 

Consult the entry for NRML in the Fortran SSL II User's Guide. 
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c_dodam 
Solution of a non-stiff system of first order initial value ordinary 
differential equations (Adams method). 
ierr = c_dodam(&x, y, fun, n, xend, &isw, 

&epsa, &epsr, vw, ivw, &icon); 

1. Function 

This subroutine solves a system of non-stiff first order ordinary differential equations of the form: 

 y f y = (x, ) , y y( )x0 0  (1) 

when written in vector notation, or in scalar notation: 
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by Adams method, given 

 The function f . 
 the initial values x0  and y y( )x0 0 . 
 and the final value of x, namely xe . 
 
That is, it obtains approximations ( , , , )y y ym m nm1 2  T  to the solution y( )xm  at points: 
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Where the step size hj  is modified to give the required accuracy. This function provides two types of output mode that 
the user can choose between. These are: 

1. Final value output: the function returns to the user when the solution at the final value xe  has been 
obtained. 

2. Step output: the function returns to the user at the end of each successful step as solutions at x x xe1 2, , ,  
are obtained. 

2. Arguments 

The routine is called as follows: 
ierr = c_dodam(&x, y, fun, n, xend, &isw, &epsa, &epsr, vw, ivw, &icon); 

where: 
x  double  Input Starting value x0 . 

Output Final value xe . When the step output is specified, an interim point to 
which the solution is advanced by a single step. 

y double y[n] Input Initial values y y yn10 20 0, , , , which are specified in the obvious order: 
y[0],y[1],…,y[n-1]. 
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Output Solution vector at final value xe . When the step output is specified, y 
contains the solution vector at the returned value of x. 

fun function Input A user defined function that evaluates f i ni : , , , 1 2   in equation (1). 
Its prototype is:  
void fun(double x, double y[], double yp[]); 

where: 
   x double Input Independent variable x. 

y double 

y[n] 
Input Solution vector y associated 

with x. y[0] contains the 
first value and so on. 

yp double 

yp[n] 
Output The result of the mathematical 

function y f y = (x, ) . In other 
words, yp[0] contains the 
first value of the derivative. 

n int Input The number of equations in the system. 
xend double Input The final point xe  to which the system should be solved. See Comments 

on use. 
isw int Input Variable to specify conditions in integration. isw is a non-negative 

integer with 3 digits that can be expressed as: 
isw= d d d100 103 2 1   
where each di  should be specified as follows: 

 d1  Specifies whether or not this is the first call. 

0 First call. 

1 Successive calls. 

The first call means that c_dodam is called for the first time for 
this particular system of differential equations. 

d2  Specifies the output mode.  
0 Final value output. 
1 Step output. 

d3  Indicates whether or not the derivative function f  can be 
evaluated beyond the final point xe . 
0 Permissible. 
1 Not permissible. This value is specified when the derivatives 

are not defined beyond xe  or there is a discontinuity there. 
However, setting this value to 1 may lead to unexpected 
computational inefficiencies. 

Output When the solutions at xe  or at an interim point are returned to the user 
program, the individual digits of isw are altered as follows: 

   d1  Set to 1. On subsequent calls d1  should not be altered by the user. 
Resetting d1  to zero is only needed when the user starts solving 
another system of equations.  

d3  When d3 =1 on input, change it to d3 =0 when the solution at 
xe is obtained.  
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epsa double Input 
Output 

Absolute error tolerance. 
If epsa is too small, it is set to an appropriate value. See Comments on 
use. 

epsr double Input Relative error tolerance. 
  Output If epsr is too small, it is set to an appropriate value. See Comments on 

use. 
vw double 

vw[RelLen] 
Work RelLen must be at least 21n+110. The contents of vw must not be altered 

on subsequent calls.  
ivw int ivw[IntLen] Work IntLen must be at least 11. The contents of ivw must not be altered on 

subsequent calls. 
icon int Output Condition code. See below. 
The complete list of condition codes: 

Code  Meaning  Processing 
0 When in step output mode, a single step has been 

completed. 
Subsequent calls are possible. 

10 Solution at xend was obtained. Subsequent calls are possible after altering xend.
100 A single step has been taken. It has been 

calculated that more than 500 steps will be 
required to reach xend. 

To continue, simply recall the routine. The 
function evaluation counter will be reset to 0. 

200 A single step has been completed, but it has been 
calculated that the given equations exhibit strong 
stiffness. 

Though subsequent calls are possible, it is 
advisable to use the C-SSL II routine c_dodge 
which is designed for stiff equations. 

10000 epsa and epsr were too small for the arithmetic 
precision. 

epsa and epsr are set to appropriate values 
(which should be checked by the user). 
Subsequent calls are possible. 

30000 One of the following has occurred: 
 0n . 
 xendx  . 
 isw specification error. 
 epsr < 0, or epsa < 0. 
 ivw was changed between calls. 

Bypassed. 

3. Comments on use 

General comments 
This routine solves a system of non-stiff or partially stiff ordinary differential equations. If the equations are known to be 
stiff the C-SSL II routine c_dodge should be used instead. 

This routine is most effective when: 

 evaluating the functions takes a long time. 
 a sequence of solutions is required. 
 the derivatives of the functions have discontinuities. 
 a highly accurate solution is required. 
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icon 
When the user specifies the final value output mode by setting the second digit of isw to 0, he can obtain the solution at 
xe  only when icon = 10. However the subroutine may return control to the user when icon = 100, 200, or 10000 
before xe  is reached. 

When the step output mode is specified by setting the second digit of isw to 1, the user can receive the output at each step 
not only when icon = 0, but also when icon = 100 or 200. When icon = 10, the final solution at xe  has been reached. 

epsa and epsr 
If y[ ]L  is the Lth component of the solution vector, and l Le[ ]  is its local error, then c_dodam produces the solution 
vector such that: 

 l L Le[ ] [ ]  epsr y epsa   

where L  0 1 2 1, , , , n . Note that when epsa is set to zero, the relative error is used, and when epsr is set to zero, 
the absolute error is used. 

The relative error test is suitable when the magnitude of the components of the solution vary greatly, whereas the absolute 
error is suitable for components with similar magnitudes, or are too small to be of interest. It is most stable however, to set 
neither error argument to zero, so that large components are tested against the relative error, and small components against 
the absolute error. When both epsa and epsr are set to zero, c_dodam sets the value of epsr to 16 , where μ is the 
unit round-off. 

xend 
If a sequence of solutions is required, the library function should be called repeatedly, with xend changed each time. The 
library routine is designed to be called repeatedly, and so sets the arguments necessary for subsequent calls on returning to 
the user program. The user simply has to change xend. Note that epsa and epsr can be changed between calls. 

Discontinuities 
If there are discontinuities in the solution or its derivatives, these need to be detected to produce an accurate solution. This 
library function will detect these points automatically, and perform any appropriate calculations. However, if the user 
specifies the location of any discontinuities using the method described below, the computation time can be reduced and 
the accuracy of the solution improved. 

To specify a discontinuity, firstly call the routine with xend set to the discontinuous point with d3  in isw (See 
Arguments) set to 1. Once the solution at xend has been reached, c_dodam returns to the user’s program with d3  set to 
0. Then recall c_dodam after advancing xend and setting d1  to 0. Setting isw in this way causes c_dodam to treat the 
solution at the discontinuity as a new initial value, with new equations to solve. 

4. Example program 

This program produces an approximate solution to the initial value ordinary differential equation problem: 
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 iix   

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 4 /* order of system */ 
 
/* user function prototypes */ 
void fun(double x, double y[], double yp[]); 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, isw, ivw[11]; 
  double x, y[N], pi, dx, xend, epsa, epsr, vw[21*N+110]; 
 
  x = 0; 
  y[0] = 1; 
  y[1] = 0;     
  y[2] = 0; 
  y[3] = 1;     
  n = N; 
  epsa = 1e-8; 
  epsr = 1e-5; 
  isw = 0; 
  pi = 4*atan(1); 
  dx = pi/32; 
  printf("    x            y[0]         y[1]        y[2]         y[3]\n"); 
  for (i=1;i<65;i++) { 
    xend = dx*(double)i; 
    while(1) { 
      /* solve system */ 
      ierr = c_dodam(&x, y, fun, n, xend, &isw, &epsa, &epsr,  
                     vw, ivw, &icon); 
      if (icon == 10) break; 
      if (icon == 100) printf("too many steps\n"); 
      if (icon == 200) printf("the equations appear to be stiff\n"); 
      if (icon == 10000)  
        printf("tolerance reset; epsa = %12.4e epsr = %12.4e\n", epsa, epsr); 
      if (icon == 30000) { 
        printf("invalid input\n"); 
        exit(1); 
      } 
    } 
    printf("%12.4e %12.4e %12.4e %12.4e %12.4e\n",  
           x, y[0], y[1], y[2], y[3]); 
  } 
  return(0); 
} 
 
/* user function */ 
void fun(double x, double y[], double yp[]) 
{ 
  double r3; 
  r3 = pow((y[0]*y[0]+y[1]*y[1]),1.5); 
  yp[0] = y[2]; 
  yp[1] = y[3]; 
  yp[2] = -y[0]/r3; 
  yp[3] = -y[1]/r3; 
  return; 
} 
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5. Method 

For further information on Adams method, consult the entry for ODAM in the Fortran SSL II User’s Guide, and also [94].
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c_dodge 
Solution of a stiff or non-stiff system of first order initial value ordinary 
differential equations (Gear’s or Adams method). 
ierr = c_dodge(&x, y, fun, n, xend, &isw, 

epsv, &epsr, mf, &h, jac, vw, ivw, 

&icon); 

1. Function 

This function solves a system of first order ordinary differential equations of the form: 

 y f y = (x, ) , y y( )x0 0  (1) 

when written in vector notation, or in scalar notation: 
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by Gear’s method or Adams method, given 

 the function f . 
 the initial values x0  and y y( )x0 0 . 
 and the final value of x, namely xe . 
 
That is, it obtains approximations, ( , , , )y y ym m nm1 2  T to the solution y( )xm at points: 
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The step size is controlled so that solutions satisfy the desired accuracy. 

Gear’s method is suitable for stiff equations, whereas Adams method is suitable for non-stiff equations. The user may 
select either of these methods depending on the stiffness of the equations. This function provides two types of output 
mode, which the user can choose between according to his need. These are: 

1. Final value output: the function returns to the user when the solution at the final value xe  has been 
obtained. 

2. Step output: the function returns to the user at the end of each successful step as solutions at x x xe1 2, , ,  
are obtained. 

2. Arguments 

The routine is called as follows: 
ierr = c_dodge(&x, y, fun, n, xend, &isw, epsv, &epsr, mf, &h, jac, vw, ivw, 

&icon); 

where: 
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x  double  Input Starting value x0 . 
Output Final value xe . When the step output is specified, an interim point to 

which the solution is advanced by a single step. 
y double y[n] Input Initial values y y yn10 20 0, , , , which are specified in the obvious order: 

y[0],y[1],…,y[n-1]. 
Output Solution vector at final value xe . When the step output is specified, y 

contains the solution vector at the returned value of x. 
fun function Input A user defined function that evaluates f  in equation (1). Its prototype is: 

void fun(double x, double y[], double yp[]); 

where: 
   x double Input Independent variable x. 

y double 

y[n] 
Input Solution vector y associated 

with x. y[0] contains the first 
value and so on. 

yp double 

yp[n] 
Output The result of the mathematical 

function y f y = (x, ) . In other 
words, yp[0] contains the 
first value of the derivative. 

n int Input The number of equations in the system. 
xend double Input The final point xe  to which the system should be solved. See Comments 

on use. 
isw int Input 

 
Variable to specify conditions in integration. isw is a non-negative 
integer with 4 digits that can be expressed as: 
isw= d d d d1000 100 104 3 2 1    
where each di  should be specified as follows: 

 d1  Specifies whether or not this is the first call. 
0 First call. 
1 Successive calls. 
The first call means that c_dodge is called for the first time for 
this particular system of differential equations. 

d2  Specifies the output mode. 
0 Final value output. 
1 Step output. 

d3  Indicates whether or not the derivative function f  can be 
evaluated beyond the final point xe .  
0 Permissible. 
1 Not permissible. This value is specified when the derivatives 

are not defined beyond xe  or there is a discontinuity there. 
However, setting this value to 1 may lead to unexpected 
computational inefficiencies. 

d4  Indicates whether or not the user has altered some of the values of 
mf, epsv, epsr or  n: 
0 Not altered. 
1 Altered. 
See Comments on use. 
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Output When the solutions at xe  or at an interim point are returned to the user 
program, the individual digits of isw are altered as follows: 

   d1  Set to 1. On subsequent calls, d1  should not be altered by the 
user. Resetting d1  to zero is only needed when the user starts 
solving another system of equations.  

d3  When d3 =1 on input, change it to d3 = 0 when the solution at 
xe is obtained.  

d4  When d4 =1 on input, change it to d4 = 0. 
epsv double 

epsv[n]  

Input 
Output 

Absolute error tolerances. 
If epsv is too small, it is set to an appropriate value. See Comments on 
use. 

epsr double Input Relative error tolerance. 
  Output If epsr is too small, it is set to an appropriate value. See Comments on 

use. 
mf int  Input Method indicator. mf is an input only argument. It is a 2-digit integer 

comprised as follows: 
mf  10meth iter  
where: 

   meth This is the basic method indicator, which can take the following 
values: 
1 Gear’s method, suitable for stiff equations. 
2 Adams method, suitable for non-stiff equations. 

iter This is the corrector iteration method indicator, which can take 
the following values: 
0 Newton method in which the analytical Jacobian matrix 

calculated in the jac function. This is the most suitable 
value for stiff equations. 

1 Newton method in which the Jacobian matrix is internally 
approximated by finite differences. Used for stiff equations 
where the analytical Jacobian matrix cannot be prepared. 

2 Same as iter = 1 except that the Jacobian matrix is 
approximated by a diagonal matrix. Used for stiff equations 
where the Jacobian is known to be a diagonally dominant 
matrix. 

3 Function iteration in which the Jacobian matrix is not used. 
Used for non-stiff equations. 

h double Input Initial step size  h  0  to be attempted for the first step of the first call. 
The sign of h must be the same as that of x xe  0 . A typical value of the 
modulus of h is given by: h   min( , max( , ))10 105 4

0 0x x xe  
The value of h is controlled to satisfy the required accuracy. 

  Output The step size last used. 
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jac function Input The name of the function that evaluates the analytical Jacobian matrix: 
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The function prototype is:  
void jac(double x, double y[], double pd[], 

int k);  

where: 
   x double Input The independent variable. 

y double 

y[n] 

Input Vector containing 

nyyy ,,, 21   in the obvious 
order. 

pd double 

pd[k*k] 

Output The Jacobian matrix. Stored by 
rows, i.e.  

ji yf
ji


 )]1(*)1[( kpd

 

where ni 1  and nj 1 .
k int Input The number of equations in the  

original system (if n is reduced 
on subsequent calls). 

vw double 

vw[RelLen] 
Work RelLen must be at least n*(n+17)+70. The contents of vw must not be 

altered on subsequent calls.  
ivw int ivw[IntLen] Work IntLen must be at least n+25. The contents of ivw must not be altered on 

subsequent calls. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Single step completed. Further calls are possible. 

See Comments on use. 
10 No error. Solution completed. Further calls are possible if 

xend is changed. See Comments on use. 
10000 epsr and epsv[l] : l = 0, 1, 2, … n-1 are too 

small for the arithmetic precision. 
epsr and epsv[l] : l = 0, 1, 2, … n-1 were 
increased to suitable values. 

15000 The requested accuracy could not be achieved 
with a step size of 10 10 times the initial step size.

16000 The corrector iteration did not converge even 
when the step size was 10 10 times the initial step 
size. 

The methods specified by argument mf may not 
be appropriate for the given equations. Alter mf 
and retry. 

30000 One of the following has occurred: 
 n  0 . 
 x xend . 

Bypassed. 
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Code  Meaning  Processing 
 isw specification error. 
 epsr < 0, or there exists a value of l for 

which epsv[l] < 0. 
 ( ) *xend x h  0 . 
 ivw was changed between calls. 

3. Comments on use 

c_dodge can be used for stiff equations, or those that are initially non-stiff, but which become stiff within the integration 
interval. For purely non-stiff equations c_dodam should be used for efficiency. 

icon 
When the user specifies the final value output mode, using the isw argument, he can obtain the solution at xe  only when 
icon = 10. When the step output mode is specified, a solution after each step can be obtained when icon = 0. When 
icon = 10, the final solution at xe  has been obtained. 

The error arguments epsv and epsr 
If y[ ]L  is the Lth component of the solution vector, and l Le[ ]  is its local error, then c_dodge produces the solution 
vector such that: 

 l L L Le[ ] [ ] [ ]  epsr y epsv   

where L  0 1 2 1, , , , n . Note that when the relevant component of epsv is set to zero, the relative error is used, and 
when epsr is set to zero, the absolute error vector is used. 

The relative error test is suitable for components that range over several orders of magnitude over the integration interval, 
whereas the absolute error is suitable for components with similar orders of magnitude, or are too small to be of interest. It 
is most stable however, to set neither error argument to zero, so that large components are tested against the relative error, 
and small components against the absolute error. Also, for stiff equations, the components of the solution may be greatly 
different in magnitude, and therefore setting different values to the absolute error arguments may be advisable. When both 
epsv and epsr are set entirely to zero, c_dodge sets the value of epsr to 16 , where μ is the unit round-off . 

Note that changing epsv and epsr between calls to c_dodge (during the solution) is also possible. 

xend 
If a sequence of solutions is required at several values of the independent variable, the routine automatically retains the 
arguments required for the second and subsequent calls. Therefore the user simply has to change xend and recall the 
routine. 

Changing mf during the solution 
If the given equations are non-stiff initially, but become stiff during the integration integral, it is desirable to change the 
value of mf from 23 to 10 (or 11 or 12). This is achieved by setting the value of d4 in isw to 1 (see above), resetting the 
mf argument to the desired value, setting xend to the value of the next required output, and recalling c_dodge. If this is 
accomplished successfully, the value of d4  is reset to 0 on output. 

If the solution at xend can be obtained without changing mf, then the routine will execute normally. 
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Changing n during the solution 
In the solution of stiff equations, some components of the solution will vary very little compared to others, or will become 
small enough to be neglected. If these values are of no interest to the user, he can reduce the value of n between the 
different calls to the subroutine to reduce the number of calculations. If n is reduced to cn , then the solution is stored in 
the first cn  elements of vector y, with the remaining elements being unaltered on output. The responsibility for the 
modification of fun and jac to accommodate the new value of n is left to the user. 

4. Example program 

This program produces an approximate solution to the initial value ordinary differential equation problem: 
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over the interval ]100,0[ , with output at 5,,2,1,10 3   ix i . Options to solve a stiff problem with an explicit 
Jacobian matrix are used. 

#include <stdlib.h> 
#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 2 /* order of system */ 
 
/* user function prototypes */ 
void fun(double x, double y[], double yp[]); 
void jac(double x, double y[], double *pd, int k); 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, isw, mf, ivw[N+25]; 
  double x, y[N], xend, epsv[N], epsr, h, vw[N*(N+17)+70]; 
 
  mf = 10; 
  n = N; 
  x = 0; 
  h = 1.0e-5; 
  y[0] = 1; 
  y[1] = -1;     
  isw = 0; 
  epsv[0] = 0; 
  epsv[1] = 0; 
  epsr = 1.0e-6; 
  xend = 1.0e-3; 
  printf("    x            y[0]         y[1]\n"); 
  for (i=0;i<5;i++) { 
    xend = xend*10; 
    while(1) { 
      /* solve system */ 
      ierr = c_dodge(&x, y, fun, n, xend, &isw, epsv, &epsr,  
                     mf, &h, jac, vw, ivw, &icon); 
      if (icon == 10) break; 
      if (icon == 16000){ 
        printf("ERROR: no convergence\n"); 
        exit(1); 
      } 
      if (icon == 10000 || icon == 15000){ 
        /* repeat with new tolerances */ 
        printf("WARNING: tolerance reset\n"); 
        printf("epsr = %12.4e epsv[0] = %12.4e epsv[1] = %12.4e\n", 
               epsr, epsv[0], epsv[1]); 
      } 
    } 
    printf("%12.4e %12.4e %12.4e\n", x, y[0], y[1]); 
  } 
  return(0); 
} 
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/* user function */ 
void fun(double x, double y[], double yp[]) 
{ 
  yp[0] = y[1]; 
  yp[1] = -11*y[1]-10*y[0]; 
  return; 
} 
 
/* user Jacobian function */ 
void jac(double x, double y[], double *pd, int k) 
{ 
  pd[0] = 0;    /* [0][0] */ 
  pd[1] = 1;    /* [0][1] */ 
  pd[2] = -10;  /* [1][0] */ 
  pd[3] = -11;  /* [1][1] */ 
  return; 
} 

5. Method 

This routine uses Gear’s or Adams methods with step size and order controls. For further information consult the entry for 
ODGE in the Fortran SSL II User’s Guide, and also [19], [39], and [55]. 
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c_dodrk1 
Solution of a system of first order ordinary differential equations 
(Runge-Kutta-Verner method). 
ierr = c_dodrk1(&x, y, fun, n, xend, &isw, 

epsa, &epsr, vw, ivw, &icon); 

1. Function 

This routine solves a system of first order ordinary differential equations of the form: 

 y f y = (x, ) , y y( )x0 0 , (1) 

when written in vector notation, or in scalar notation: 
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by the Runge-Kutta-Verner method, given 

 the function f , 
 the initial values x0  and y y( )x0 0 , 
 and the final value of x, namely xe . 
The routine obtains approximations, ( , , , )y y ym m nm1 2  T to the solution y( )xm at points 
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The step size is controlled so that solutions satisfy the desired accuracy. 

This routine provides two types of output mode. These are: 

1. Final value output: the routine returns to the user when the solution at the final value xe  has been 
obtained. 

2. Step output: the routine returns to the user at the end of each successful step as solutions at x x xe1 2, , ,  
are obtained. 

 

2. Arguments 

The routine is called as follows: 
ierr = c_dodrk1(&x, y, fun, n, xend, &isw, epsa, &epsr, vw, ivw, &icon); 

where: 
x  double  Input Starting value x0 . 
  Output Final value xe . When the step output is specified, an interim point mx to 

which the solution is advanced by a single step. 
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y double y[n] Input Initial values y y yn10 20 0, , , , with y[i-1] = 0iy , i=1,2,...,n. 

  Output Solution vector at final value xe . When the step output is specified, y 
contains the solution vector at the returned value of x. 

fun function Input User defined function that evaluates f  in equation (1). Its prototype is: 
void fun(double x, double y[], double yp[]); 

where: 
   x double Input Independent variable x. 
   y double 

y[n] 
Input Solution vector y associated with 

x. 
y[i-1] = iy ,  i=1,2,...,n 

   yp double 

yp[n] 
Output Derivative vector f associated 

with x. 
yp[i-1]= ),...,,,( 21 ni yyyxf  
i=1,2,...,n. 

n int Input Number of equations n in the system. 
xend double Input Final point xe  to which the system should be solved. See Comments on 

use. 
isw int Input 

 
Variable to specify conditions in integration. isw is a non-negative integer 
with 2 digits that can be expressed as: 

1210 dd= isw  
where 

   d1  Specifies whether or not this is the first call. 
    0 First call. 
    1 Subsequent calls. 
    The first call means that c_dodrk1 is called for the first time for 

this particular system of differential equations. 
   d2  Specifies the output mode. 
    0 Final value output. 
    1 Step output. 
  Output When the solution vector at xe  or at an interim point is returned to the 

user program, the digit d1  is set to 1. On subsequent calls, d1  should not 
be altered by the user. Resetting d1  to zero is only needed when the user 
starts solving another system of equations.  

epsa double Input Absolute error tolerances. See Comments on use. 
epsr double Input Relative error tolerance. See Comments on use. 
  Output If epsr is too small, it is set to an appropriate value. 
vw double 

vw[9n+40] 

Work When calling this routine repeatedly, the contents of vw should not be 
changed. 

ivw int ivw[5] Work When calling this routine repeatedly, the contents of ivw should not be 
changed. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 A single step has been taken. Normal. Subsequent calls are possible. 
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Code  Meaning  Processing 
10 Solution at xend obtained. Normal. Subsequent calls are possible after 

changing xend. 
10000 Integration was not completed because epsr was 

too small in comparison with the arithmetic 
precision of the computer used. See Comments on 
use. 

Returns to user program. Subsequent calls are 
possible. 

11000 Integration was not completed because more than 
4000 derivative evaluations were needed to reach 
xend. 

Returns to user program. The function counter 
willl be reset to 0 on subsequent calls. 

15000 Integration was not completed because the 
requested accuracy could not be achieved using 
the smallest allowable stepsize, minh . See 
Comments on use. 

Returns to user program. The user must increase 
epsa or epsr before calling the routine again. 

16000 (When epsa = 0) Integration was not completed 
because the solution vanished, making a pure 
relative error test impossible. 

Returns to user program. The user must increase 
epsa before calling the routine again. 

30000 One of the following has occurred: 
 n   0 
 x = xend 
 isw was set to an invalid value 
 epsa < 0 or epsr < 0 
 After icon = 15000 or 16000, subsequent 

calling is done without changing epsa or 
epsr. 

Bypassed. 

3. Comments on use 

This routine may be used to solve non-stiff and mildly stiff differential equations when derivative evaluations are 
inexpensive, but it cannot be used if high accuracy is desired. 

icon 
Solutions may be acceptable only when icon is 0 or 10. When icon = 10000 to 11000, the routine returns control to the 
user program, and the user can call this routine sucessively after identifying the event that has occurred. When icon = 
15000 to 16000 the routine returns control to the user program, but in these cases the user must increase epsa or epsr 
before calling the routine subsequently. 

espr and epsa 
The relative error tolerance espr is required to satisfy  

   210 12
minrespr , (2) 

where   is the unit round-off. When epsr does not satisfy (2), the routine increases epsr so that epsr = minr , and 
returns control to the user program with icon = 10000. The user may call the routine subsequently to continue the 
integration. 

Smallest stepsize 
In this routine, the smallest stepsize minh  is defined to satisfy 
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  |||,|max26min dxh  ,  

where x is the independent variable, and 100/)( 0xxd e  . When the desired accuracy is not achieved using the 
smallest stepsize, the routine returns control to the user program with icon = 15000. To continue the integration, the user 
may call the routine again after increasing epsa or epsr to an appropriate value. 

4. Example program 

A system of ODE's: 
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is integrated from 0.00 x  to 0.4ex . Results are output at each step. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 2 /* order of system */ 
 
/* user function prototypes */ 
void fun(double x, double y[], double yp[]); 
 
MAIN__()  
{ 
  int ierr, icon; 
  int n, isw, ivw[5]; 
  double x, y[N], xend, epsa, epsr, vw[9*N+40]; 
 
  x = 0; 
  y[0] = 1; 
  y[1] = 1;     
  n = N; 
  xend = 4; 
  epsa = 0; 
  epsr = 1e-5; 
  isw = 10; 
  while(1) { 
    /* solve system */ 
    ierr = c_dodrk1(&x, y, fun, n, xend, &isw, epsa, &epsr,  
      vw, ivw, &icon); 
    if (icon == 0 || icon == 10) { 
      printf("x = %12.4e y[0] = %12.4e y[1] = %12.4e \n",  
      x, y[0], y[1]); 
      if (icon == 10) break; 
    } 
    else if (icon == 10000)  
      printf("relative error tolerance too small\n"); 
    else if (icon == 11000)  
      printf("too many steps\n"); 
    else if (icon == 15000) { 
      printf("tolerance reset\n"); 
      epsr = 10*epsr; 
    } 
    else if (icon == 16000) { 
      printf("tolerance reset\n"); 
      epsa = 1e-5; 
    } 
    else if (icon == 30000) { 
      printf("invalid input\n"); 
      exit(1); 
    } 
  } 
  return(0); 
} 
 
/* user function */ 
void fun(double x, double y[], double yp[]) 
{ 
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  yp[0] = y[0]*y[0]*y[1]; 
  yp[1] = -1/y[0]; 
  return; 
} 

5. Method 

Consult the entry for ODRK1 in the Fortran SSL II User's Guide and [57] and [114]. 

 



Description of the C-SSL II Routines 

510 

c_drjetr 
Roots of a polynomial with real coefficients (Jenkins-Traub method). 
ierr = c_drjetr(a, &n, z, vw, &icon); 

1. Function 

This function finds the roots of a polynomial equation (1) with real coefficients by the Jenkins-Traub three-stage 
algorithm. 

 a x a x an n
n0 1

1 0      (1) 

In (1), ai  are the real coefficients, a0 0  and n  1 . 

2. Arguments 

The routine is called as follows: 
ierr = c_drjetr(a, &n, z, vw, &icon); 

where: 
a double a[n+1] Input 

Output 
Coefficients of the polynomial equation, where a[i]= ai . 
The contents of the array are altered on output. 

n int Input Order n of the equation. 
  Output Number of roots found. See Comments on use. 
z dcomplex z[n] Output The n roots, returned in z[0] to z[n-1]. 
vw double 

vw[Vwlen] 
Work Vwlen = 6*(n+1). 

icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Not all the n roots could be found. The number of roots found is returned by the 

argument n and the roots themselves are returned 
in array z. 

30000 One of the following has occurred: 
 n < 1 
 a0  = 0 

Bypassed. 

3. Comments on use 

An n-th degree polynomial equation has n roots. However, it is possible, though rare, that not all the roots can be found. 
Therefore, it is good practice to check the arguments icon and n, to see whether or not all the roots have been found. 
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4. Example program 

This example program computes the roots of the polynomial 06116 23  xxx . 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z[N]; 
  double a[N+1], vw[6*(N+1)]; 
  int n, i; 
 
  /* initialize data */ 
  n = N; 
  a[0] = 1; 
  a[1] = -6; 
  a[2] = 11; 
  a[3] = -6; 
  /* find roots of polynomial */ 
  ierr = c_drjetr(a, &n, z, vw, &icon); 
  printf("icon = %i   n = %i\n", icon, n); 
  for (i=0;i<n;i++) 
    printf("z[%i] = {%12.4e, %12.4e}\n", i, z[i].re, z[i].im); 
  printf("exact roots are: {1, 0}, {2, 0} and {3, 0}\n"); 
  return(0); 
} 

5. Method 

This function uses the Jenkins-Traub three-stage algorithm to find the roots of the polynomial equation. For further 
information consult the entry for RJETR in the Fortran SSL II User's Guide and [59] and [60]. 
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c_drqdr 
Roots of a quadratic with real coefficients. 
ierr = c_drqdr(a0, a1, a2, z, &icon); 

1. Function 

This function finds the roots of a quadratic equation with real coefficients. 

 a x a x a0
2

1 2 0    (1) 

where a0 0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_drqdr(a0, a1, a2, z, &icon); 

where: 
a0 double Input The zeroth coefficient 0a  of quadratic equation. 
a1 double Input The first coefficient 1a  of quadratic equation. 
a2 double Input The second coefficient 2a  of quadratic equation. 
z dcomplex z[2] Output Roots (both the real and imaginary parts) of quadratic equation. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 a0 0  a a2 1  is stored in the real part of z[0], and 0 

in the imaginary part. 
z[1] is undefined. 

30000 a0 0  and a1 0  Bypassed. 

3. Example program 

This example program computes the roots of the quadratic 0652  xx . 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  dcomplex z[2]; 
  double a0, a1, a2; 
 
  /* initialize data */ 
  a0 = 1; 
  a1 = -5; 
  a2 = 6; 
  /* find roots of quadratic */ 
  ierr = c_drqdr(a0, a1, a2, z, &icon); 
  printf("icon = %i   z[0] = {%12.4e, %12.4e}   z[1] = {%12.4e, %12.4e}\n", 
         icon, z[0].re, z[0].im, z[1].re, z[1].im); 
  printf("exact roots are: {3, 0} and {2, 0}\n"); 
  return(0); 
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} 

4. Method 

The roots of a quadratic equation (1) are obtained by the root formula. For further information consult the entry for RQDR 
in the Fortran SSL II User's Guide or [16]. 
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c_dsbmdm 
MDM T - decomposition of an indefinite symmetric band matrix (block 
diagonal pivoting method). 
ierr = c_dsbmdm(a, n, &nh, mh, epsz, ip, ivw, 

&icon); 

1. Function 

This routine performs MDM T -decomposition of an nn  indefinite symmetric band matrix A with bandwidth h 
(n>h 0), using the Gaussian-like block diagonal pivoting method. 

 TT MDMPAP   (1) 

In (1), P is a permutation matrix that performs the row exchanges of the matrix A required during pivoting, M = ( ijm ) is 
a unit lower band matrix, and D = ( ijd ) is a symmetric block diagonal matrix with blocks of order at most 2. 

2. Arguments 

The routine is called as follows: 
ierr = c_dsbmdm(a, n, &nh, mh, epsz, ip, ivw, &icon); 

where: 
a double 

a[Alen] 

Input Matrix A. Stored in symmetric band storage format. See Array storage 
formats in the Introduction section for details. A must be stored as if it 
had bandwidth mh . See Comments on use. 

2/)1()1(  mmm hhhnAlen . 
  Output Matrix I)(MD  . Stored in symmetric band storage format. (Suitable 

for input to the linear equations routine c_dbmdmx.) See Comments on 
use. 

n int Input Order n of matrix A. 
nh int Input Bandwidth h of matrix A. 
  Output Bandwidth h

~
of matrix M. See Comments on use. 

mh int Input Maximum bandwidth mh  (n > mh  nh). See Comments on use. 
epsz double Input Tolerance ( 0) for relative zero test of pivots in decomposition process 

of matrix A. When epsz is zero a standard value is used. See Comments 
on use. 

ip int ip[n] Output Transposition vector that provides the row exchanges that occurred 
during pivoting. (Suitable for input to the linear equations routine 
c_dbmdmx.) See Comments on use. 

ivw int ivw[n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Either all of the elements of some row are zero or Discontinued. 
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Code  Meaning  Processing 
a pivot is relatively zero. It is probable that matrix 
A is singular. 

25000 The maximum bandwidth was exceeded during 
decomposition. 

Discontinued. 

30000 One of the following has occurred: 
 nh < 0 
 mh < nh 
 mh   n 
 epsz < 0 

Bypassed. 

3. Comments on use 

a, nh and mh 
Generally, the matrix bandwidth increases when rows and columns are exchanged in the pivoting operation of the 
decomposition. Therefore, it is necessary to specify a maximum bandwidth mh  greater than or equal to the actual 
bandwidth h of A, and to store A in symmetric band storage format assuming A has bandwidth mh . The output of nh is 
the actual bandwidth h

~
of matrix M. If the maximum bandwidth is exceeded during decomposition, processing is 

discontinued with icon=25000. 

epsz 
The standard value of epsz is 16µ. where µ is the unit round-off. If, during the block diagonal pivoting decomposition, a 
pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000. 
Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the 
required accuracy. 

ip 
The transposition vector corresponds to the permutation matrix P of the MDM T - decomposition with pivoting. In this 
routine the elements of the array a are exchanged in the pivoting and the history of the exchanges is recorded in ip. At 
the k-th step of the decomposition, for a 11  pivot, no row is exchanged and k is stored in ip[k-1], and for a 22  
pivot, -k is stored in ip[k-1] and the negative value of the row (and column) number s ( k+1) that is exchanged 
with the (k+1)-st row (and column) is stored in ip[k], i.e. -k is stored in ip[k-1] and –s is stored in ip[k]. 

Solution of linear equations 
To solve a system of linear equations with an indefinite symmetric band matrix A, c_dsbmdm can be called to perform 
the decomposition, followed by c_dbmdmx to solve the equations. Alternatively, the system of linear equations can be 
solved by calling the single routine c_dlsbix. 

 Eigenvalues 
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program below. 

Calculation of determinant 
The determinant of matrix A is the same as the determinant of matrix D, that is the product of the determinants of the 11  
and 22  blocks of D. See the example program below. 
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4. Example program 

This example program decomposes the matrix, calculates the number of positive and negative eigenvalues, and the 
determinant. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define min(a,b) ((a) < (b) ? (a) : (b)) 
 
#define NMAX 100 
#define NHMAX 50 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, mh, i, j, ij, jj, jmin, peig, neig; 
  double epsz, det; 
  double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2]; 
  int ivw[NMAX], ip[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  nh = 2; 
  mh = NHMAX; 
  ij = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-mh, 0); 
    for (j=jmin;j<=i;j++) 
      if (i-j == 0) 
 a[ij++] = 10; 
      else if (i-j == 1) 
 a[ij++] = -3; 
      else if (i-j == 2) 
 a[ij++] = -6; 
      else 
 a[ij++] = 0; 
  } 
  epsz = 1e-6; 
  /* MDM decomposition of system */ 
  ierr = c_dsbmdm(a, n, &nh, mh, epsz, ip, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dsbmdm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* find number of positive and negative eigenvalues */ 
  peig = 0; 
  neig = 0; 
  i = 1; 
  j = 1; 
  while (j<=n) { 
    if (ip[j-1] != j) { 
      peig++; 
      neig++; 
      i = min(mh,j)+min(mh,j+1)+2+i; 
      j = j+2; 
    } 
    else { 
      if (a[i-1] > 0) peig++; 
      else if (a[i-1] < 0) neig++; 
      i = min(mh,j)+1+i; 
      j++; 
    } 
  } 
  printf("Positive e-values: %i\n", peig); 
  printf("Negative e-values: %i\n", neig); 
  /* calculate determinant */ 
  det = 1; 
  i = 1; 
  j = 1; 
  while (i<=n) { 
    if (ivw[i-1] == i) { 
      det = det*a[j-1]; 
      j = min(mh, i)+1+j; 
      i++; 
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    } 
    else { 
      jj = min(mh, i)+1+j; 
      det = det*(a[j-1]*a[jj-1]-a[jj-2]*a[jj-2]); 
      j = min(mh,i+1)+1+jj; 
      i = i+2; 
    } 
  } 
  printf("Determinant: %12.5e\n", det); 
  return(0); 
} 

5. Method 

Consult the entry for SBMDM in the Fortran SSL II User's Guide and references [15]. 
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c_dseig1 
Eigenvalues and corresponding eigenvectors of a real symmetric matrix 
(QL method). 
ierr = c_dseig1(a, n, e, ev, k, &m, vw, 

&icon); 

1. Function 

All eigenvalues and corresponding eigenvectors for an n order real symmetric matrix A are determined  1n . The 
eigenvalues are normalised such that 12 x . 

2. Arguments 

The routine is called as follows: 
ierr = c_dseig1(a, n, e, (double *)ev, k, &m, vw, &icon); 

where: 
a double a[Alen] Input Matrix A, stored in the symmetric storage format. See Array storage 

formats in the Introduction section. Alen is defined as n(n+1)/2. 
  Output The contents are altered on output. 
n int Input Order n of matrix A. 
e double e[n] Output The eigenvalues. 
ev double 

ev[n][k] 

Output Eigenvectors. They are stored in the rows of ev that correspond to their 
eigenvalues.  

k int Input C fixed dimension of matrix ev. ( nk  ). 
m int Output Number of eigenvalues/eigenvectors obtained. 
vw double vw[2n] Work  
icon int Output Condition codes. See below. 
The complete list of condition codes is. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 1n  e[0] = a[0][0] 

ev[0][0] = 1 

15000 Some of the eigenvalues and eigenvectors could 
not be determined. 

m is set to the number of eigenvalues/eigenvectors 
that were obtained. 

20000 None of the eigenvalues and eigenvectors could 
be determined. 

m = 0 

30000 One of the following has occurred: 
 1n  
 nk   

Bypassed. 
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3. Comments on use 

General Comments 
The eigenvalues and eigenvectors are stored in the order that they are determined. 

m 
The argument m is set to n when the routine completes successfully, i.e. icon = 0. When icon = 15000, m is set to the 
number of eigenvalues and eigenvectors that were obtained. 

4. Example program 

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 matrix in the symmetric storage format. 

#include <stdlib.h> 
#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, i, j, k; 
  double a[NMAX*(NMAX+1)/2], e[NMAX], ev[NMAX][NMAX], vw[2*NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = 0; 
  for (i=0;i<n;i++)  
    for (j=0;j<=i;j++) { 
      a[k] = n-i; 
      k = k+1; 
    } 
  k = NMAX; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dseig1(a, n, e, (double*)ev, k, &m, vw, &icon); 
  if (icon == 10000 || icon == 30000) { 
    printf("ERROR: c_dseig1 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("e-value %d: %10.4f\n",i+1,e[i]); 
    printf("e-vector:"); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ",ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

For further information consult the entry for SEIG1 in the Fortran SSL II User's Guide, and also [118] and [119]. 
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c_dsfri 
Sine Fresnel integral )(xS . 
ierr = c_dsfri(x, &sf, &icon); 

1. Function 

This routine computes the Sine Fresnel integral 
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where 0x , by series and asymptotic expansions. 

2. Arguments 

The routine is called as follows: 
ierr = c_dsfri(x, &sf, &icon); 

where: 
x double Input Independent variable x. See Comments on use for range of x. 
sf double Output Sine Fresnel integral )(xS . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x   maxt  sf is set to 0.5. 
30000 x < 0 sf is set to 0. 

3. Comments on use 

range of x 
The valid range of argument x is 0   x < maxt .This is because accuracy is lost if x is outside this range. For details on 

maxt  see the Machine constants section of the Introduction. 

4. Example program 

This program generates a range of function values for 101 points in the the interval [0,100]. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, sf; 
  int i; 
 
  for (i=0;i<=100;i++) { 
    x = i; 
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    /* calculate Sine Fresnel integral */ 
    ierr = c_dsfri(x, &sf, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   sf = %f\n", x, sf); 
    else 
      printf("ERROR: x = %5.2f   sf = %f   icon = %i\n", x, sf, icon); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for SFRI in the Fortran SSL II User's Guide. 
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c_dsggm 
Subtraction of two matrices (real – real). 
ierr = c_dsggm(a, ka, b, kb, c, kc, m, n, 

&icon); 

1. Function 

This function performs subtraction of two m  n general real matrices, A and B. 

 C A B   (1) 

In (1), the resultant C is also an m  n matrix (m,n  1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dsggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, &icon); 

where: 
a double 

a[m][ka] 

Input Matrix A. 

ka int Input C fixed dimension of array a ( n). 
b double 

b[m][kb] 

Input Matrix B. 

kb int Input C fixed dimension of array b ( n). 
c double 

c[m][kc] 

Output Matrix C.  See Comments on use. 

kc int Input C fixed dimension of array c ( n). 
m int Input The number of rows m for matrices A, B and C. 
n int Input The number of columns n for matrices A, B and C. 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m < 1 
 n < 1 
 ka < n 
 kb < n 
 kc < n 

Bypassed. 
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3. Comments on use 

Efficient use of memory 
Storing the solution matrix C in the same memory area as matrix A (or B) is permitted if the array contents of matrix A (or 
B) can be discarded after computation.  To take advantage of this efficient reuse of memory, the array and dimension 
arguments associated for matrix A need to appear in the locations reserved for C in the function argument list, as indicated 
below. 

For A: 

ierr = c_dsggm(a, ka, b, kb, a, ka, m, n, &icon); 

And for B: 

ierr = c_dsggm(a, ka, b, kb, b, kb, m, n, &icon); 

Note, if both matrices A and B are required after the solution then a separate array must be supplied for storing matrix C. 

4. Example program 

This example program performs a matrix subtraction and checks the results. Each matrix is 100 by 100 elements. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, ka, kb, kc, i, j; 
  double eps; 
  double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX]; 
 
  /* initialize matrices*/ 
  m = NMAX; 
  n = NMAX; 
  ka = NMAX; 
  kb = NMAX; 
  kc = NMAX; 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) { 
      a[i][j] = n+i+j; 
      b[i][j] = i+j; 
    } 
  /* subtract matrices */ 
  ierr = c_dsggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dsggm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check matrix */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) 
      if (fabs((c[i][j]-n)/n) > eps) { 
        printf("WARNING: result inaccurate\n"); 
        exit(1); 
      } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_dsimp1 
Integration of a tabulated function (Simpson’s rule, equally spaced 
points). 
ierr = c_dsimp1(y, n, h, &s, &icon); 

1. Function 

Given function values y f xi i ( )  at equally spaced points x x i h i ni    1 1 1 2( ) , , , , , this function obtains the 
integral: 

 S f x dx n h
x

xn

   ( ) ,
1

2 0   

by Simpson’s rule, where h is the increment, as defined above. 

2. Arguments 

The routine is called as follows: 
ierr = c_dsimp1(y, n, h, &s, &icon); 

where: 
y double y[n] Input Function values yi . 
n int Input Number of points n. 
h double Input Distance between successive points on the x axis.  
s double Output Approximation to the integral S. 
icon int Output Condition codes. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 2. Calculation is based on the trapezoidal rule. See 

Method. 
30000 n < 2 or h ≤ 0. Bypassed. s is set to 0. 

3. Example program 

This program produces an integral approximation from 100 equally spaced points and compares the result with the true 
integral of the underlying function. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 100 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n; 
  double x, h, y[NMAX], s, eps, exact; 
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  /* initialize data */ 
  n = NMAX; 
  x = 0; 
  h = 1.0/(n-1); 
  for (i=0;i<n;i++) { 
    y[i] = x*x; 
    x = x + h; 
  } 
  /* calculate integral */ 
  ierr = c_dsimp1(y, n, h, &s, &icon); 
  printf("icon = %i integral = %12.4e\n", icon, s); 
  /* check result */ 
  eps = 1e-6; 
  exact = 1.0/3.0; 
  if (fabs((s-exact)/exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 

4. Method 

In Simpson’s rule, the first 3 points are approximated using a second degree interpolating polynomial and the integration 
over this interval is approximated by: 

 f x dx
h

y y y
x

x

( ) ( )
1

3

3
41 2 3      

This is repeated over successive sets of points, with the results summed to give: 

 f x dx
h

y y y y y y y
x
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n n

n

( ) ( )
1

3
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This calculation can only be completed if the number of points is odd. If there are an even number of points, the above 
formula is used over the interval x1 to xn3 , and the Newton-Cotes 3/8 rule is used over the remaining interval xn3 to xn  
given by: 

 f x dx
h
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When n = 2 the trapezoidal rule is used (as Simpson’s rule requires at least 3 points). This is given by: 
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For further information, see [89]. 
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c_dsini 
Sine integral S xi ( ) . 
ierr = c_dsini(x, &si, &icon); 

1. Function 

This function computes the Sine integral 

S x t
t

dti

x
( ) sin( )

 0  

by series and asymptotic expansions. 

2. Arguments 

The routine is called as follows: 
ierr = c_dsini(x, &si, &icon); 

where: 
x double Input Independent variable x.  See Comments on use. 
si double Output Function value of S xi ( ) . 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 x  tmax . 2/)sign(  xsi . 

3. Comments on use 

x 
The range of values of x is limited because both sin( )x  and cos( )x  lose accuracy when x exceeds maxt . For details on 
the constant, tmax , see the Machine constants section of the Introduction. 

4. Example program 

This program evaluates a table of function values for x from 0.0 to 10.0 in increments of 0.1. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, si; 
  int i; 
 
  for (i=0;i<100;i++) { 
    x = (double)i/10; 
    /* calculate complete elliptic integral */ 
    ierr = c_dsini(x, &si, &icon); 
    if (icon == 0) 
      printf("x = %5.2f   si = %f\n", x, si); 
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    else 
      printf("ERROR: x = %5.2f   si = %f   icon = %i\n", x, si, icon); 
  } 
  return(0); 
} 

5. Method 

Depending on the values of x, the method used to compute the Sine integral, S xi ( ) , is: 

 Power series expansion when 0 4 x . 
 Asymptotic expansion when x  4 . 
 
For further information consult the entry for SINI in the Fortran SSL II User's Guide. 
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c_dsmdm 
MDM T - decomposition of an indefinite symmetric matrix (block 
diagonal pivoting method). 
ierr = c_dsmdm(a, n, epsz, ip, vw, ivw, 

&icon); 

1. Function 

This routine performs MDM T - decomposition of an nn  indefinite symmetric matrix A (n 1), using the Crout-like 
block diagonal pivoting method. 

 TT MDMPAP   (1) 

In (1), P is a permutation matrix that performs the row exchanges of the matrix A required during pivoting, M = ( ijm ) is 
a unit lower triangular matrix, and D = ( ijd ) is a symmetric block diagonal matrix with blocks of order at most 2. 

2. Arguments 

The routine is called as follows: 
ierr = c_dsmdm(a, n, epsz, ip, vw, ivw, &icon); 

where: 
a double 

a[Alen] 

Input Matrix A. Stored in symmetric storage format. See Array storage 
formats in the Introduction section for details. 2/)1(  nnAlen . 

  Output Matrix I)(MD  . Stored in symmetric storage format. (Suitable for 
input to the linear equations routine c_dmdmx.) See Comments on use. 

n int Input Order n of matrix A. 
epsz double Input Tolerance ( 0) for relative zero test of pivots in decomposition process 

of matrix A. When epsz is zero a standard value is used. See Comments 
on use. 

ip int ip[n] Output Transposition vector that provides the row exchanges that occurred 
during pivoting. (Suitable for input to the linear equations routine 
c_dmdmx.) See Comments on use. 

vw double vw[2n] Work  
ivw int ivw[n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Either all of the elements of some row are zero or 

a pivot is relatively zero. It is probable that matrix 
A is singular. 

Discontinued. 

30000 One of the following has occurred: 
 n < 1 
 epsz < 0 

Bypassed. 
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3. Comments on use 

epsz 
The standard value of epsz is 16µ. where µ is the unit round-off. If, during the block diagonal pivoting decomposition, a 
pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000. 
Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the 
required accuracy. 

ip 
The transposition vector corresponds to the permutation matrix P of the MDM T - decomposition with pivoting. In this 
routine the elements of the array a are exchanged in the pivoting and the history of the exchanges is recorded in ip. At 
the k-th step of the decomposition, for a 11  pivot, the row (and column) number r ( k) that is exchanged with the k-th 
row (and column) is stored in ip[k-1], and for a 22  pivot, the negative value of the row (and column) number s 
( k+1) that is exchanged with the (k+1)-st row (and column) is also stored in ip[k], i.e. r is stored in ip[k-1] and 
–s is stored in ip[k]. 

Solution of linear equations 
To solve a system of linear equations with an indefinite symmetric matrix A, c_dsmdm can be called to perform the 
decomposition, followed by c_dmdmx to solve the equations. Alternatively, the system of linear equations can be solved 
by calling the single routine c_dlsix. 

 Eigenvalues 
The number of positive and negative eigenvalues of matrix A can be obtained. See the example program below. 

Calculation of determinant 
The determinant of matrix A is the same as the determinant of matrix D, that is the product of the determinants of the 11  
and 22  blocks of D. See the example program below. 

4. Example program 

This example program decomposes the matrix, calculates the number of positive and negative eigenvalues, and the 
determinant. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij, cnt, peig, neig; 
  double epsz, eps, pi, an, ar, det; 
  double a[NMAX*(NMAX+1)/2], vw[2*NMAX]; 
  int ip[NMAX], ivw[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  ij = 0; 
  pi = 2*asin(1); 
  an = 1.0/(n+1); 
  ar = pi*an; 
  an = sqrt(2*an); 
  for (i=1;i<=n;i++) 
    for (j=1;j<=i;j++) { 
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      a[ij++] = an*sin(i*j*ar); 
    } 
  epsz = 1e-6; 
  /* MDM decomposition of system */ 
  ierr = c_dsmdm(a, n, epsz, ip, vw, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dsmdm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* find number of positive and negative eigenvalues */ 
  peig = 0; 
  neig = 0; 
  i = 1; 
  j = 1; 
  while (j<n) { 
    if (ip[j] <= 0) { 
      peig++; 
      neig++; 
      j = j+2; 
      i = i+j-1+j; 
    } 
    else { 
      if (a[i-1] > 0) peig++; 
      else if (a[i-1] < 0) neig++; 
      j++; 
      i = i+j; 
    } 
  } 
  if (j == n) { 
    if (a[i-1] > 0) peig++; 
    else if (a[i-1] < 0) neig++; 
  } 
  printf("Positive e-values: %i\n", peig); 
  printf("Negative e-values: %i\n", neig); 
  /* calculate determinant */ 
  det = 1; 
  i = 1; 
  j = 1; 
  while (j<n) { 
    if (ip[j] <= 0) { 
      det = det*(a[i-1]*a[i+j]-a[i+j-1]*a[i+j-1]); 
      j = j+2; 
      i = i+j-1+j; 
    } 
    else { 
      det = det*a[i-1]; 
      j++; 
      i = i+j; 
    } 
  } 
  printf("Determinant: %12.5e\n", det); 
  return(0); 
} 

5. Method 

Consult the entry for SMDM in the Fortran SSL II User's Guide and reference [15]. 
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c_dsmle1 
Data smoothing by local least squares polynomials (equally spaced 
points). 
ierr = c_dsmle1(y, n, m, l, f, &icon); 

1. Function 

Given a set of observed data at equally spaced points, this function obtains the smoothed values based on polynomial local 
least squares fit. 

Each of the data is smoothed by a fitting a least squares polynomial of specified degree, not over all data, but over a 
subrange of specified data points centred at the point to be smoothed.  This process is applied to all observed values.  A 
limitation exists concerning the degree m (either 1 or 3) and the number of observed values l, that can only be 3 or 5 when 
m = 1, and 5 or 7 when m = 3. 

2. Arguments 

The routine is called as follows: 
ierr = c_dsmle1(y, n, m, l, f, &icon); 

where: 
y double y[n] Input Observed data iy . 
n int Input Number of observed data n. 
m int Input Degree of local least squares polynomial m. 
l int Input Number of observed data to fit. 
f double f[n] Output Smoothed values. 
Icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m  1 or 3 
 with m = 1, l  3 or 5 
 with m = 3, l  5 or 7 
 n < l 

Bypassed. 

3. Comments on use 

This function presupposes that the original function cannot be approximated by a single polynomial, but can be 
approximated locally by a certain degree of polynomial. 

The choice of m and l should be done carefully after considering the scientific information of the observed data and the 
experience of the user. 
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It is possible to repeat calling this function, that is, to apply the mth degree least squares polynomial relevant to l points to 
the smoothed values.  But if repeated too many times, the result tends to approach to one that is produced by applying the 
mth degree least squares polynomial over all observed data.  So, when it is repeated, the user must decide when to stop. 

4. Example program 

This program approximates the function xxxf )sin()(   at 10 equally spaced points in the interval ]1,0[  with a 
piecewise-linear function obtained by a least squares fit. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, l; 
  double y[NMAX], f[NMAX]; 
  double h, p; 
 
  /* initialize data */ 
  n = NMAX; 
  p = 0; 
  h = 1.0/n; 
  for (i=0;i<n;i++) { 
    y[i] = sin(p)*sqrt(p); 
    p = p + h; 
  } 
  m = 1; 
  l = 5; 
  /* smooth data */ 
  ierr = c_dsmle1(y, n, m, l, f, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dsmle1 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  for (i=0;i<n;i++) 
    printf("%12.4e %12.4e \n", y[i], f[i]); 
  return(0); 
} 

5. Method 

For further information consult the entry for SMLE1 in the Fortran SSL II User's Guide and see [54] and [89]. 
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c_dsmle2 
Data smoothing by local least squares polynomials (unequally spaced 
data points). 
ierr = c_dsmle2(x, y, n, m, l, w, f, vw, 

&icon); 

1. Function 

Given a set of observed data iy , ni ,...,2,1 at unequally spaced data points nxxx  ...21 , and corresponding 
weights )( ixw 0 , ni ,...,2,1 , this routine obtains the smoothed data values based on a polynomial local least squares 
fit. 

Each data value is smoothed by fitting the least squares polynomial of a specified degree m ( 1 ), not over all the data, 
but over a subrange of  ( n ) data points centered at the point to be smoothed, where  is an odd integer such that 

2 m . 

2. Arguments 

The routine is called as follows: 
ierr = c_dsmle2(x, y, n, m, l, w, f, vw, &icon); 

where: 
x double x[n] Input Discrete points ix . 
y double y[n] Input Observed data iy . 
n int Input Number n of observed values. 
m int Input Degree m of local least squares poynomials. 
l int Input Number  of observed values to which least squares polynomial is to fit.
w double w[n] Input Weights )( ixw . Normally, 1)( ixw . 
f double f[n] Output Smoothed data. 
vw double vw[2l] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 x[0]< x[1]<...< x[n-1] is not satisfied
 l is even or l > n 
 m < 1 or l < m+2 
 w[i] < 0 for some i 
 

Bypassed. 
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3. Comments on use 

It is assumed that the original function cannot be approximated by a single polynomial, but can be approximated locally 
by a certain degree of polynomial. 

The values of m and  should be chosen carefully based on scientific information about the observed data and the 
experience of the user. 

Note that the extent of smoothing increases as  increases, but decreases as m increases. 

It is possible to repeat the calling of this routine, that is, to apply the m-th degree least squares polynomial over  points to 
the smoothed data. However, if repeated too many times, the result tends to one that is produced by applying the m-th 
degree least squares polynomial over all the observed data. Therefore, the user must decide when it is appropriate to stop 
repeating. 

4. Example program 

This program approximates the function xxxf )sin()(   at 10 equally spaced points in the interval ]1,0[  using a 
quadratic polynomial. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10 
#define M 3 
 
MAIN__()  
{ 
  int ierr, icon; 
  int i, n, m, l; 
  double x[N], y[N], w[N], f[N], vw[21]; 
  double p, h; 
 
  /* initialize data */ 
  n = N; 
  p = 0; 
  h = 1.0/(n-1); 
  for (i=0;i<n;i++) { 
    w[i] = 1; 
    x[i] = p+i*h; 
    y[i] = sin(x[i])*sqrt(x[i]); 
  } 
  l = 5; 
  m = 2; 
 
  /* smooth data */ 
  ierr = c_dsmle2(x, y, n, m, l, w, f, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dsmle2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  for (i=0;i<n;i++) 
    printf("%12.4e %12.4e \n", y[i], f[i]); 
  return(0); 
} 

5. Method 

Consult the entry for SMLE2 in the Fortran SSL II User's Guide, and [89] and [54]. 

 



 c_dsssm  

 535 

c_dsssm 
Subtraction of two matrices (symmetric - symmetric). 
ierr = c_dsssm(a, b, c, n, &icon); 

1. Function 

This routine performs the subtraction of two nn  symmetric matrices, A and B. 

 BAC   (1) 

In (1), the resultant matrix C is also an nn matrix (n 1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dsssm(a, b, c, n, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage 

formats in the Introduction section for details. .2/)1(  nnAlen  
b double b[Blen] Input Matrix B. Stored in symmetric storage format. See Array storage formats 

in the Introduction section for details. .2/)1(  nnBlen  
c double c[Clen] Input Matrix C. Stored in symmetric storage format. See Array storage 

formats in the Introduction section for details. .2/)1(  nnClen  
See Comments on use. 

n int Input The order n of matrices A, B and C. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 n < 1 Bypassed. 

3. Comments on use 

Efficient use of memory 
Storing the solution matrix C in the same memory area as matrix A (or B) is permitted if the array contents of matrix A (or 
B) can be discarded after computation. To take advantage of this efficient reuse of memory, the array arguments associated 
with matrix A (or B) need to appear in the locations reserved for matrix C in the function argument list, as indicated below. 

For A: 

ierr = c_dsssm(a, b, a, n, &icon); 

For B: 

ierr = c_dsssm(a, b, b, n, &icon); 
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Note, if both matrices A and B are required after the solution then a separate array must be supplied for storing C. 

4. Example program 

This program performs the subtraction of two symmetric matrices and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij; 
  double eps, err; 
  double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], c[NMAX*(NMAX+1)/2]; 
 
  /* initialize matrices*/ 
  n = NMAX; 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      a[ij] = n+i-j+1; 
      b[ij++] = i-j+1; 
    } 
  /* add matrices */ 
  ierr = c_dsssm(a, b, c, n, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dsssm failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check matrix */ 
  eps = 1e-6; 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      err = fabs((c[ij++]-n)/n); 
      if (err > eps) { 
        printf("WARNING: result inaccurate\n"); 
        exit(1); 
      } 
    } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_dteig1 
Eigenvalues and corresponding eigenvectors of a symmetric tridiagonal 
matrix (QL method). 
ierr = c_dteig1(d, sd, n, e, ev, k, &m, 

&icon); 

1. Function 

This routine obtains the eigenvalues and corresponding eigenvectors of an nn  symmetric tridiagonal matrix T, using 
the QL method. The eigenvectors are normalized such that 12 x . Here, 1n . 

2. Arguments 

The routine is called as follows: 
ierr = c_dteig1(d, sd, n, e, (double *)ev, k, &m, &icon); 

where: 
d double d[n] Input Diagonal elements of matrix T. 
  Output The contents of d are changed on output. 
sd double sd[n] Input Subdiagonal elements of matrix T, stored in sd[i-1], i = 2,...,n, with 

sd[0] set to 0. 
  Output The contents of sd are changed on output. 
n int Input Order n of matrix T. 
e double e[n] Output Eigenvalues, stored in the order determined. 
ev double 

ev[n][k] 

Output Eigenvectors, stored by row, in the order the eigenvalues are determined.

k int Input C fixed dimension of array ev (  n). 
m int Output Number of eigenvalues/eigenvectors that were determined. See 

Comments on use. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 e[0] = d[0], ev[0][0] = 1 
15000 Some eigenvalues/eigenvectors could not be 

determined. 
m is set to the number of eigenvalues/eigenvectors 
that were determined. 

20000 None of the eigenvalues/eigenvectors could be 
determined. 

m = 0. 

30000 One of the following has occurred: 
 n < 1 
 k < n 

Bypassed. 
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3. Comments on use 

m 
Argument m is set to n when icon = 0, and is set to the number of eigenvalues/eigenvectors that were determined when 
icon = 15000. 

General comments 
This routine is used to determine all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix. To 
determine all eigenvalues and corresponding eigenvectors of a symmetric matrix, routine c_dseig1 should be used. To 
determine all eigenvalues of a symmetric tridiagonal matrix, c_dtrql should be used. 

4. Example program 

This program finds the eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix and prints the 
results. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, i, j, k; 
  double d[NMAX], sd[NMAX], e[NMAX], ev[NMAX][NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    d[i] = n-i; 
  } 
  for (i=1;i<n;i++) { 
    sd[i] = (double)(n-i)/2; 
  } 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dteig1(d, sd, n, e, (double*)ev, k, &m, &icon); 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for TEIG1 in the Fortran SSL II User's Guide and references [118] and [119]. 
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c_dteig2 
Selected eigenvalues and corresponding eigenvectors of a real symmetric 
tridiagonal matrix (bisection and inverse iteration methods). 
ierr = c_dteig2(d, sd, n, m, e, ev, k, vw, 

&icon); 

1. Function 

The m largest (or smallest) eigenvalues and corresponding eigenvectors for an n order real symmetric tridiagonal matrix T 
are determined using the bisection method where nm 1 . The corresponding eigenvectors are then obtained using the 
inverse iteration method. The eigenvectors are then normalised such that 12 x . 

2. Arguments 

The routine is called as follows: 
ierr = c_dteig2(d, sd, n, m, e, (double *)ev, k, vw, &icon); 

where: 
d double d[n] Input The diagonal elements of T. 
sd double sd[n] Input The subdiagonal elements of T, stored in sd[1] to sd[n-1]. 
n int Input The order n of matrix T. 
m int Input If m is positive, the m largest eigenvalues are calculated. If m is negative, 

the m smallest eigenvalues are calculated. 
e double e[|m|] Output Eigenvalues. 
ev double 

ev[|m|][k] 

Output Eigenvectors. They are stored in the rows of ev that correspond to their 
eigenvalues. 

k int Input C fixed dimension of array ev. ( nk  ). 
vw double vw[5n] Work  
icon int Output Condition codes. See below. 
The complete list of condition codes is. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 1n  e[0] = d[0] 

ev[0][0] = 1 

15000 After calculation of the eigenvalues, some of the 
eigenvectors could not be determined. 

The eigenvectors that were not obtained are set to 
0. 

20000 None of the eigenvectors could be determined. All the eigenvectors are set to 0. 
30000 One of the following has occurred: 

 mn   
 nk   
 0m   

Bypassed. 
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3. Example program 

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 symmetric tridiagonal matrix. 

#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, i, j, k; 
  double d[NMAX], sd[NMAX], e[NMAX], ev[NMAX][NMAX], vw[5*NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    d[i] = n-i; 
  } 
  for (i=1;i<n;i++) { 
    sd[i] = (double)(n-i)/2; 
  } 
  m = n; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dteig2(d, sd, n, m, e, (double*)ev, k, vw, &icon); 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

4. Method 

For further information consult the entry for TEIG2 in the Fortran SSL II User's Guide, and also [118] and [119]. 
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c_dtrap 
Integration of a tabulated function (trapezoidal rule, unequally spaced 
points). 
ierr = c_dtrap(x, y, n, &s, &icon); 

1. Function 

Given unequally spaced points x x xn1 2, , , , where x x xn1 2   , and the corresponding function values, 
y f x i ni i ( ) , , , ,1 2  , then this library function calculates: 

 S f x dx
x

xn

  ( )
1

  

2. Arguments 

The routine is called as follows: 
ierr = c_dtrap(x, y, n, &s, &icon); 

where: 
x double x[n] Input Discrete points x. 
y double y[n] Input Function values y. 
n int Input Number of points n. 
s double Output The result of the integration S. 
icon int Output Condition Code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 Either n < 2 or x xi i 1 . Bypassed. s is set to 0. 

3. Comments on use 

When the discrete points are equally spaced, this routine can be used, although it is preferable to use Simpson’s rule, i.e. 
library function c_dsimp1. 

4. Example program 

This program produces an integral approximation from 100 equally spaced points and compares the result with the true 
integral of the underlying function. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 100 
 
MAIN__()  
{ 
  int ierr, icon; 
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  int i, n; 
  double h, p, x[NMAX], y[NMAX], s, eps, exact; 
 
  /* initialize data */ 
  n = NMAX; 
  p = 0; 
  h = 1.0/(n-1); 
  for (i=0;i<n;i++) { 
    x[i] = p; 
    y[i] = p*p; 
    p = p + h; 
  } 
  /* calculate integral */ 
  ierr = c_dtrap(x, y, n, &s, &icon); 
  printf("icon = %i integral = %12.4e\n", icon, s); 
  /* check result */ 
  eps = 1e-4; 
  exact = 1.0/3.0; 
  if (fabs((s-exact)/exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The integral is approximated in this library function using the trapezoidal rule given below: 
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For further information, see [89]. 
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c_dtrbk 
Back transformation of the eigenvectors of a symmetric tridiagonal 
matrix to the eigenvectors of a symmetric matrix. 
ierr = c_dtrbk(ev, k, n, m, p, &icon); 

1. Function 

This routine applies back transformation to m eigenvectors of an nn  symmetric tridiagonal matrix T to form 
eigenvectors of a symmetric matrix A. T must have been obtained by the Householder reduction of A. Here,  

1   m   n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dtrbk((double *) ev, k, n, m, p, &icon); 

where: 
ev double Input The m eigenvectors of the symmetric tridiagonal matrix T. 
 ev[|m|][k] Output The m eigenvectors of the symmetric matrix A. 
k int Input C fixed dimension of array ev (   n). 
n int Input Order n of matrices T and A. 
m int Input Number m of eigenvectors. If m < 0, then the absolute value of m is 

assumed. 
p double 

p[n(n+1)/2] 

Input Transformation matrix obtained by Householder’s reduction of matrix A 
to matrix T. Stored in symmetric storage format. See Array storage 
formats in the Introduction section for details, and Comments on use. 

icon int Output Condition code. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 ev[0][0] = 1. 
30000 One of the following has occurred: 

 m = 0 or |m| > n 
 k < n 

Bypassed. 

3. Comments on use 

This routine is usually called after routine c_dtrid1. Output argument a of c_dtrid1 can be used as input argument 
p of this routine. 

The eigenvectors are normalized, 12 ix . 
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4. Example program 

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back 
transformation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, ij, m; 
  double a[NMAX*(NMAX+1)/2], sd[NMAX], d[NMAX]; 
  double e[NMAX], ev[NMAX][NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      a[ij++] = n-i; 
    } 
  /* reduce matrix A to symmetric tridiagonal form */ 
  ierr = c_dtrid1(a, n, d, sd, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dtrid1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues and eigenvectors */ 
  k = NMAX; 
  ierr = c_dteig1(d, sd, n, e, (double*)ev, k, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dteig1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation to find e-vectors of A */ 
  ierr = c_dtrbk((double*)ev, k, n, m, a, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dtrbk failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for TRBK in the Fortran SSL II User's Guide and reference [119]. 
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c_dtrbkh 
Back transformation of the eigenvectors of a symmetric tridiagonal 
matrix to the eigenvectors of a Hermitian matrix. 
ierr = c_dtrbkh(evr, evi, k, n, m, p, pv, 

&icon); 

1. Function 

This routine applies back transformation (1) to m eigenvectors jy , j = 1,2,...,m of an nn  symmetric tridiagonal matrix 
T to form eigenvectors jx , j = 1,2,...,m of a Hermitian matrix A. 

 yPVx * , (1) 

where P and V are transformation matrices obtained from the transformation of Hermitian matrix A to tridiagonal matrix 
T by Householder reduction and diagonal unitary transformation. Here, 1   m   n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dtrbkh((double *) evr, (double *) evi, k, n, m, (double *) p, pv, 

&icon); 

where: 
evr double Input The m eigenvectors jy  of matrix T. 
 evr[|m|][k] Output The real parts of the m eigenvectors jx  of matrix A. See Comments on 

use. 
evi double 

evi[|m|][k] 

Output The imaginary parts of the m eigenvectors jx of matrix A. See 
Comments on use. 

k int Input C fixed dimension of arrays evr, evi and p (  n). 
n int Input Order n of matrices T and A. 
m int Input Number m of eigenvectors. If m < 0, then the absolute value of m is 

assumed. 
p double 

p[n][k] 

Input Transformation matrix P obtained by Householder reduction of matrix A 
to matrix T. Stored in Hermitian storage format. See Array storage 
formats in the Introduction section for details. See Comments on use. 

pv double pv[2n] Input Transformation matrix V obtained by diagonal unitary transformation of 
matrix A to matrix T. See Comments on use. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 evr[0][0] = 1, evi[0][0] = 0. 
30000 One of the following has occurred: 

 m = 0 or |m| > n 
Bypassed. 
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Code  Meaning  Processing 
 k < n 

3. Comments on use 

This routine is for a Hermitian matrix and is not to be applied to a general complex matrix. 

evr and evi 
If input eigenvector jy  is normalized such that 1

2
jy ,then output eigenvector jx  is normalized such that 

1
2
jx . 

The  -th element of the eigenvector that corresponds to the j-th eigenvalue is represented  

evr[ j -1][  -1] + i evi[ j -1][  -1], where 1i , n,...,2,1 , mj ,..,2,1 . 

p and pv 
Normally, this routine is used after routine c_dtridh. Output arguments a and pv of routine c_dtridh can be used as 
input arguments p and pv of this routine. 

Note that array p does not directly represent transformation matrix P for reduction of matrix A to matrix T. 

4. Example program 

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back 
transformation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, m; 
  double a[NMAX][NMAX], sd[NMAX], d[NMAX], pv[2*NMAX]; 
  double e[NMAX], evr[NMAX][NMAX], evi[NMAX][NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    a[i][i] = n-i; 
    for (j=0;j<i;j++) { 
      a[i][j] = n-i; 
      a[j][i] = n-i; 
    } 
  } 
  /* reduce matrix A to symmetric tridiagonal form */ 
  ierr = c_dtridh((double*)a, k, n, d, sd, pv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dtridh failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dteig1(d, sd, n, e, (double*)evr, k, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dteig1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation to find e-vectors of A */ 
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  ierr = c_dtrbkh((double*)evr, (double*)evi, k, n, m, (double*)a, pv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dtrbkh failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f+i*%7.4f  ", evr[i][j], evi[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for TRBKH in the Fortran SSL II User's Guide and reference [74]. 
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c_dtrid1 
Reduction of a symmetric matrix to a symmetric tridiagonal matrix 
(Householder method). 
ierr = c_dtrid1(a, n, d, sd, &icon); 

1. Function 

This routine reduces an nn  symmetric matrix A to a symmetric tridiagonal matrix T using the Householder method 
(orthogonal similarity transformation), 

 APPT T , 

where P is the transformation matrix. Here, n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dtrid1(a, n, d, sd, &icon); 

where: 
a double 

a[n(n+1)/2] 

Input Matrix A. Stored in symmetric storage format. See Array storage 
formats in the Introduction section for details. 

  Output Transformation matrix P. Stored in symmetric storage format. See Array 
storage formats in the Introduction section for details. 

n int Input Order n of matrix A. 
d double d[n] Output Diagonal elements of tridiagonal matrix T. 
sd double sd[n] Output Subdiagonal elements of tridiagonal matrix T, stored in sd[i-1], 

i = 2,...,n, and sd[0] set to 0. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 or n = 2 Reduction is not performed. 
30000 n < 1 Bypassed. 

3. Comments on use 

Output argument a can be used as input argument p for routine c_dtrbk when determining the eigenvectors of a 
symmetric matrix A using routine c_dteig1. 

The precision of computed eigenvalues of a symmetric matrix A is determined in the tridiagonal matrix reduction process. 
Therefore, this routine has been implimented so that the tridiagonal matrix is determined with as high a precision as 
possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller 
eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process. 
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4. Example program 

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back 
transformation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, ij, m; 
  double a[NMAX*(NMAX+1)/2], sd[NMAX], d[NMAX]; 
  double e[NMAX], ev[NMAX][NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  ij = 0; 
  for (i=0;i<n;i++) 
    for (j=0;j<=i;j++) { 
      a[ij++] = n-i; 
    } 
  /* reduce matrix A to symmetric tridiagonal form */ 
  ierr = c_dtrid1(a, n, d, sd, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dtrid1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues and eigenvectors */ 
  k = NMAX; 
  ierr = c_dteig1(d, sd, n, e, (double*)ev, k, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dteig1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation to find e-vectors of A */ 
  ierr = c_dtrbk((double*)ev, k, n, m, a, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dtrbk failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for TRID1 in the Fortran SSL II User's Guide and reference [119]. 
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c_dtridh 
Reduction of a Hermitian matrix to a real symmetric tridiagonal matrix 
(Householder method and diagonal unitary transformation). 
ierr = c_dtridh(a, k, n, d, sd, pv, &icon); 

1. Function 

This routine reduces an nn  Hermitian matrix A first to a Hermitian tridiagonal matrix H,  

 APPH * , 

by the Householder method, and then it is further reduced to a real symmetric tridiagonal matrix T by a diagonal unitary 
transformation 

 HVVT * , 

where P and V are transformation matrices and  n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dtridh((double *) a, k, n, d, sd, pv, &icon); 

where: 
a double 

a[n][k] 

Input Hermitian matrix A. Stored in Hermitian storage format. See Array 
storage formats in the Introduction section for details. See Comments on 
use. 

  Output Transformation matrix P. Stored in Hermitian storage format. See Array 
storage formats in the Introduction section for details. See Comments on 
use. 

k int Input C fixed dimension of array a (   n). 
n int Input Order n of matrix A. 
d double d[n] Output Diagonal elements of tridiagonal matrix T. 
sd double sd[n] Output Subdiagonal elements of tridiagonal matrix T, stored in sd[i-1], 

i = 2,...,n and sd[0] set to 0. 
pv double pv[2n] Output Transformation vector V, with pv[2(i-1)] = Re( iiv ),  

pv[2(i-1)+1] = Im( iiv ), ni ,...,1 . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 Reduction is not performed. 
30000 n < 1 or k < n Bypassed. 

3. Comments on use 

This routine is used for a Hermitian matrix, and not for a general complex matrix. 
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Output arrays a and pv are needed for determining the eigenvectors of the Hermitian matrix A. They correspond 
respectively to p and pv in routine c_dtrbkh which is used to obtain eigenvectors of a Hermitian matrix.  

The precision of computed eigenvalues of a Hermitian matrix A is determined in the tridiagonal matrix reduction process. 
Therefore, this routine has been implimented so that the tridiagonal matrix is determined with as high a precision as 
possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller 
eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process. 

4. Example program 

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back 
transformation to obtain the eigenvectors of the original matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, m; 
  double a[NMAX][NMAX], sd[NMAX], d[NMAX], pv[2*NMAX]; 
  double e[NMAX], evr[NMAX][NMAX], evi[NMAX][NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  for (i=0;i<n;i++) { 
    a[i][i] = n-i; 
    for (j=0;j<i;j++) { 
      a[i][j] = n-i; 
      a[j][i] = n-i; 
    } 
  } 
  /* reduce matrix A to symmetric tridiagonal form */ 
  ierr = c_dtridh((double*)a, k, n, d, sd, pv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dtridh failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dteig1(d, sd, n, e, (double*)evr, k, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dteig1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* back transformation to find e-vectors of A */ 
  ierr = c_dtrbkh((double*)evr, (double*)evi, k, n, m, (double*)a, pv, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dtrbkh failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("eigenvalue:  %7.4f\n", e[i]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f+i*%7.4f  ", evr[i][j], evi[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for TRIDH in the Fortran SSL II User's Guide and references [74] and [119]. 



Description of the C-SSL II Routines 

552 

c_dtrql 
Eigenvalues of a symmetric tridiagonal matrix (QL method). 
ierr = c_dtrql(d, sd, n, e, &m, &icon); 

1. Function 

This routine obtains the eigenvalues of an nn  symmetric tridiagonal matrix T using the QL method. Here n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dtrql(d, sd, n, e, &m, &icon); 

where: 
d double d[n] Input Diagonal elements of matrix T. 
  Output The contents of d are changed on output. 
sd double sd[n] Input Subdiagonal elements of matrix T, stored in sd[i-1], i = 2,...,n, with 

sd[0] set to 0. 
  Output The contents of sd are changed on output. 
n int Input Order n of matrix T. 
e double e[n] Output Eigenvalues of matrix T. 
m int Output Number of eigenvalues obtained. See Comments on use. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 e[0] = d[0]. 
15000 Some of the eigenvalues could not be obtained. m is set to the number of eigenvalues obtained. 

1   m < n. 
20000 None of the eigenvalues could be obtained. m = 0. 

30000 n < 1 Bypassed. 

3. Comments on use 

m 
m is set to n when icon = 0, or to the number of eigenvalues obtained when icon = 15000. 

General comments 
This routine uses the QL method which is best suited for tridiagonal matrices in which the magnitude of the elements 
increases down the diagonals. 

When approximately n/4 or less eigenvalues are required, it is generally faster to use routine c_dbsct1. 

When the eigenvectors of matrix T are also required, routine c_dteig1 should be used. 
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When eigenvalues of a real symmetric matrix are required the matrix can be reduced to a tridiagonal matrix using the 
routine c_dtrid1, before calling this routine or c_dbsct1. 

4. Example program 

This program reduces the matrix to tridiagonal form, and calculates the eigenvalues using two different methods. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 15 
#define NHMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, m, i, k, ij; 
  double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX]; 
  double sd[NMAX], d[NMAX], vw[NMAX+2*NMAX], epst; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  nh = NHMAX; 
  a[0] = 10; 
  a[1] = -3; 
  a[2] = 10; 
  ij = (nh+1)*nh/2; 
  for (i=0;i<n-nh;i++) { 
    a[ij] = -6; 
    a[ij+1] = -3; 
    a[ij+2] = 10; 
    ij = ij+nh+1; 
  } 
  /* reduce to tridiagonal form */ 
  ierr = c_dbtrid(a, n, nh, d, sd, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dbtrid failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* find eigenvalues using c_dbsct1 */ 
  m = n; 
  epst = 1e-6; 
  ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); 
  if (icon > 10000 ) { 
    printf("ERROR: c_dbsct1 failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf("eigenvalues:\n"); 
  for (i=0;i<m;i++) { 
    printf("%7.4f   ", e[i]); 
  } 
  printf("\n"); 
  /* find eigenvalues using c_dtrql */ 
  ierr = c_dtrql(d, sd, n, e, &m, &icon); 
  if (icon >= 20000 ) { 
    printf("ERROR: c_dbtrql failed with icon = %i\n", icon); 
    exit (1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf("eigenvalues:\n"); 
  for (i=0;i<m;i++) { 
    printf("%7.4f   ", e[i]); 
  } 
  printf("\n"); 
  return(0); 
} 
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5. Method 

Consult the entry for TRQL in the Fortran SSL II User's Guide and references [118] and [119]. 
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c_dtsd1 
Root of a real function which changes sign in a given interval (derivative 
not required). 
ierr = c_dtsd1(ai, bi, fun, epst, &x, &icon); 

1. Function 

This function finds a root of the real transcendental equation (1), between two limits, a and b, such that f a f b( ) ( )  0 . 

 f x( )  0  (1) 

The derivatives of f x( )  are not required when determining the root. The bisection method, linear interpolation method, 
and inverse quadratic interpolation method are used depending on the behaviour of f x( )  during the calculations. 

2. Arguments 

The routine is called as follows: 
ierr = c_dtsd1(ai, bi, fun, epst, &x, &icon); 

where: 
ai double Input The lower limit a of the interval. 
bi double Input The upper limit b of the interval. 
fun function Input Name of the user defined function to evaluate f x( ) . Its prototype is: 

double fun(double x); 

where: 
   x double Input Independent variable. 
epst double Input The tolerance of absolute error (  0) of the approximated root to be 

determined. See Comments on use. 
x double Output The approximated root. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 f a f b( ) ( )  > 0 
 epst < 0 

Bypassed. 

3. Comments on use 

General Comments 
If there are several roots in the interval [a, b], it is uncertain which root will be obtained. 
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epst 
The required accuracy of the root being determined is defined by argument epst. If the interval [a, b] includes the origin, 
it is unwise to set epst=0 since there is a possibility that the exact root is the origin. Otherwise, epst can be set to zero 
and the function will calculate the root as precisely as possible. 

4. Example program 

One root of the function 5.0)(sin)( 2  xxf  is calculated in the interval ]5.1,0.0[ . The computed root is output along 
with an accuracy check.  

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
double fun(double x); /* user function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double ai, bi, x, epst, exact; 
 
  /* initialize data */ 
  ai = 0; 
  bi = 1.5; 
  epst = 1e-6; 
  /* find zero of function */ 
  ierr = c_dtsd1(ai, bi, fun, epst, &x, &icon); 
  printf("icon = %i   x = %12.4e\n", icon, x); 
  /* check result */ 
  exact = asin(sqrt(0.5)); 
  if (fabs((x-exact)/exact) > epst) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 
 
/* user function */ 
double fun(double x) 
{ 
  return(pow(sin(x),2)-0.5); 
} 

5. Method 

With some modifications, this function uses what is widely known as the Dekker algorithm. The method to be used at 
each iteration stage (bisection method, linear interpolation method or inverse quadratic interpolation method) is 
determined by examining the behaviour of f x( ) , where the function f x( )  is a real function that is continuous in the 
interval [a, b] and f a f b( ) ( )  0 . For further information consult the entry for TSD1 in the Fortran SSL II User's Guide 
and [9]. 
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c_dtsdm 
Root of a real function (Muller’s method). 
ierr = c_dtsdm(&x, fun, isw, eps, eta, &m, 

&icon); 

1. Function 

This function finds a root of a real function (1) by Muller’s method. 

 f x( )  0  (1) 

An initial approximation to the root must be given. 

2. Arguments 

The routine is called as follows: 
ierr = c_dtsdm(&x, fun, isw, eps, eta, &m, &icon); 

where: 
x double Input Initial value of the root to be obtained. 
  Output Approximate root. 
fun function Input Name of the user defined function to evaluate f x( ) . Its prototype is: 

double fun(double x); 

where: 
   x double Input Independent variable. 
isw int Input Control information. 

Specify the convergence criterion for finding the root; isw must be one 
of the following: 

   1 Criterion I: when the condition f xi( )  eps  is satisfied, xi  
becomes the root. 

2 Criterion II: when the condition x x xi i i  1 eta  is satisfied, 
xi  becomes the root. 

3 When either criterion I or II is satisfied, xi  becomes the root. 
   See Comments on use. 
eps double Input The tolerance value ( 0 ) for Criterion I. (See argument isw.) 
eta double Input The tolerance value ( 0 ) for Criterion II. (See argument isw.) 
m int Input Upper limit of iterations. See Comments on use. 
  Output Total number of iterations performed. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
1 The result satisfied convergence Criterion I. (See 

the argument isw.) 
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Code  Meaning  Processing 
2 The result satisfied convergence Criterion II. (See 

the argument isw.) 
 

10 Completed the m (m=-m) iterations. 
11 The condition f xi( )  0  was satisfied before 

finishing all the iterations (m = -m), therefore the 
iteration process was stopped and xi  returned as 
the root. 

12 The condition x x xi i i  1   was satisfied 
before finishing all the iterations (m = -m), 
therefore the iteration process was stopped and 
xi  returned as the root. 

10000 The specified convergence criterion was not 
achieved after completing the given number of 
iterations. 

Return the last iteration value of xi  in argument 
x. 

20000 The case f x f x f xi i i( ) ( ) ( )  2 1  has 
occurred and perturbation of xi2 , xi1 , and xi  
was tried to overcome the problem. This proved 
unsuccessful even when perturbation continued 
more than five times. 

Processing stopped. 

30000 One of the following has occurred: 
When m > 0: 
 isw = 1 and eps < 0 
 isw = 2 and eta < 0 
 isw = 3, eps < 0 or eta < 0 
otherwise: 
 m = 0 
 isw   1, 2 or 3 

Bypassed. 

3. Comments on use 

isw 
This function will stop the iteration with icon=2 whenever x x xi i i  1   is satisfied (where µ is the unit round-
off) even when isw=1 is given. Similarly with isw=2, it will stop the iteration with icon=1 whenever f xi( )  0  is 
satisfied. 

Note, when the root is a multiple root or very close to another root, eta must be set sufficiently large. If 0   eta < µ, the 
function resets eta=µ. 

m 
Iterations are repeated m times when m is set as m=-m (m > 0). However, when either f xi( )  0  or x x xi i i  1   is 
satisfied before finishing m iterations, the iteration process is stopped and the result is output with icon=11 or 12. 
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4. Example program 

This example program computes a root of the function 1)(  xexf  with a starting point of 10 x  and displays the 
result along with an accuracy check. 

#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
double fun(double x); /* user function prototype */ 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x, eps, eta, exact; 
  int isw, m; 
 
  /* initialize data */ 
  x = 1; 
  isw = 3; 
  eps = 0; 
  eta = 1e-6; 
  m = 100; 
  /* find zero of function */ 
  ierr = c_dtsdm(&x, fun, isw, eps, eta, &m, &icon); 
  printf("icon = %i   m = %i   x = %12.4e\n", icon, m, x); 
  /* check result */ 
  eps = 1e-6; 
  exact = 0; 
  if (fabs(x-exact) > eps) 
    printf("Inaccurate result\n"); 
  else 
    printf("Result OK\n"); 
  return(0); 
} 
 
/* user function */ 
double fun(double x) 
{ 
  return(exp(x)-1); 
} 

5. Method 

This function uses Muller’s method for finding a root of a real function. For further information consult the entry for 
TSDM in the Fortran SSL II User's Guide and [111]. 
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c_dv1dwt 
One-dimensional wavelet transform. 
ierr = c_dv1dwt(x, n, y, isn, f, k, ls, 

&icon); 

1. Function 

This routine performs a one-dimensional wavelet transform or its inverse. The transform is defined by its high- and low-
pass filter coefficients. 

2. Arguments 

The routine is called as follows: 
ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon); 

where: 
x double x[n] Input Data to be transformed in the case of wavelet transform (isn = 1). 
  Output Transformed data in the case of the inverse transform (isn = -1). 
n int Input Size (  2) of the transformed data. n must be a power of 2. See 

Comments on use. 
y double y[n] Input Data to be transformed in the case of the inverse transform (isn = -1). 
  Output Transformed data in the case of wavelet transform (isn = 1). See 

Comments on use. 
isn int Input Control information. 

isn =   1 for wavelet transform, 
isn = -1 for inverse transform. 

f double f[2k] Input Wavelet filter coefficients used for transform. See Comments on use. 
k int Input Number of wavelet filter coefficients. k must be positive and even. 
ls int Input Depth of transform. n   2ls . When n = 2ls , a full wavelet transform is 

performed. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 isn   1 or –1 Bypassed. 
30002 n < 2 Bypassed. 
30004 n is not a power of 2. Bypassed. 
30008 One of the following has occurred: 

 k is not an even number 
 ls < 0 or ls > log 2 n 

Bypassed. 
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3. Comments on use 

n 
When the size of the data to be transformed is not a power of 2, the wavelet transform can be performed by storing the 
data in an array with length n the smallest power of 2 that is greater than the size of the data, setting to zero the remaining 
array elements. 

Storing the transform result 
For input vector x (isn = 1) or y (isn = -1), the result of the high-pass filter in each wavelet transform is stored in 
y[n i2 ],...,y[n 12 1  i ], or x[n i2 ],...,x[n 12 1  i ], i = 1,...,ls. 

f 
The user can either supply the filter coefficients f, or call routine c_dvwflt before this routine to specify filter 
coefficients for the wavelet transform. Input argument n and output argument f of c_dvwflt are the same as input 
arguments k and f of this routine. 

The orthogonal filter used for this routine generally has vector of size 2k with f[0], f[1], ... , f[k-1] defining the low-
pass filter coefficients and f[k], f[k+1], ... , f[2k-1] defining the high-pass filter coefficients. These coefficients have the 
following relationships: 

 



1-k

 i

f[i]
0

2 1
 

,            f[2k-1-i] = (-1) 1i f[i],    i = 0,1, ...,k-1. 

4. Example program 

This program forms the wavelet filter and performs the one-dimensional wavelet transform. The inverse transform is then 
performed and the result checked. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 1024 
#define KMAX 6 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps; 
  double x[NMAX], y[NMAX], f[2*KMAX], xx[NMAX];  
  int isn, i, k, ls, n; 
 
  /* generate initial data */ 
  n = NMAX; 
  ls = 10; 
  k = KMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (i=0;i<n;i++) { 
    ran = (i+1)*phai; 
    x[i] = ran - (int)ran; 
  } 
  for (i=0;i<n;i++)  
    xx[i] = x[i]; 
  /* generate wavelet filter */ 
  ierr = c_dvwflt(f, k, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dvwflt failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* perform normal wavelet transform */ 
  isn = 1; 
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  ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dv1dwt failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* perform inverse wavelet transform */ 
  isn = -1; 
  ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dv1dwt failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* check results */ 
  eps = 1e-6; 
  for (i=0;i<n;i++)  
    if (fabs((x[i]-xx[i])/xx[i]) > eps) {       
      printf("Inaccurate result\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for V1DWT in the Fortran SSL II Extended Capabilities User's Guide II, and [20], [27], [43], [93], and 
[105]. 

 



 c_dv2dwt  

 563 

c_dv2dwt 
Two-dimensional wavelet transform. 
ierr = c_dv2dwt(x, m, n, y, isn, f, k, lsx, 

lsy, &icon); 

1. Function 

This routine performs a two-dimensional wavelet transform or its inverse. The transform is defined by its high- and low-
pass filter coefficients. 

2. Arguments 

The routine is called as follows: 
ierr = c_dv2dwt((double *) x, m, n, (double *) y, isn, f, k, lsx, lsy, 

&icon); 

where: 
x double 

x[n][m] 

Input Data to be transformed in the case of wavelet transform (isn = 1). 

  Output Transformed data in the case of the inverse transform (isn = -1). 
m int Input Number (  2) of columns containing data to be transformed. m must be 

a power of 2. See Comments on use. 
n int Input Number (  2) of rows containing data to be transformed. n must be a 

power of 2. See Comments on use. 
y double 

y[m][n] 

Input Data to be transformed in the case of the inverse transform (isn = -1). 

  Output Transformed data in the case of wavelet transform (isn = 1). See 
Comments on use. 

isn int Input Control information. 
isn =   1 for wavelet transform, 
isn = -1 for inverse transform. 

f double f[2k] Input Wavelet filter coefficients used for transform. See Comments on use. 
k int Input Number of wavelet filter coefficients. k must be positive and even. 
lsx int Input Depth of transform for each row. m   2lsx . When m = 2lsx , a full 

wavelet transform is performed. 
lsy int Input Depth of transform for each column. n   2lsy . When n = 2lsy , a full 

wavelet transform is performed. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 isn   1 or –1 Bypassed. 
30002 m < 2 or n < 2 Bypassed. 
30004 Either m or n is not a power of 2. Bypassed. 
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Code  Meaning  Processing 
30008 One of the following has occurred: 

 k is not an even number 
 lsx < 0 or lsx > log 2 m 
 lsy < 0 or lsy > log 2 n 

Bypassed. 

3. Comments on use 

m and n 
When the size of the data to be transformed is not a power of 2, the wavelet transform can be performed by storing the 
data in an array with lengths m and n the smallest powers of 2 that is greater than the size of the data, setting to zero the 
remaining array elements. 

Storing the transform result 
For column vector jc  and row vector kr  in two-dimensional input data, the result of the high-pass filter in each wavelet 
transform column is stored in: 

jc [ in 2 ],..., jc [ 12 1  in ], i = 1,...,lsy 

and the result in each wavelet row is stored in: 

kr [ im  2 ],..., kr [ 12 1  im ], i = 1,...,lsx. 

The result of the two-dimensional wavelet transform is transposed and stored in array y. For example, the output result of 
the high-pass filter for partial wavelet transform in the first stage is stored in y[k][j], k = m/2,…,m-1 and j = 
n/2,…,n-1. 

f 
The user can either supply the filter coefficients f, or call routine c_dvwflt before this routine to specify filter 
coefficients for the wavelet transform. Input argument n and output argument f of c_dvwflt are the same as input 
arguments k and f of this routine. 

The orthogonal filter used for this routine generally has vector of size 2k with f[0], f[1], ... , f[k-1] defining the low-
pass filter coefficients and f[k], f[k+1], ... , f[2k-1] defining the high-pass filter coefficients. These coefficients have the 
following relationships: 
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,            f[2k-1-i] = (-1) 1i f[i],    i = 0,1, ...,k-1. 

4. Example program 

This program forms the wavelet filter and performs the two-dimensional wavelet transform. The inverse transform is then 
performed and the result checked. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define MMAX 512 
#define NMAX 256 
#define KMAX 6 
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MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps; 
  double x[NMAX][MMAX], y[MMAX][NMAX], f[2*KMAX], xx[NMAX][MMAX];  
  int isn, i, j, k, lsx, lsy, m, n; 
 
  /* generate initial data */ 
  m = MMAX; 
  n = NMAX; 
  lsx = 3; 
  lsy = 4; 
  k = KMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (j=0;j<n;j++) { 
    for (i=0;i<m;i++) { 
      ran = ((i*n+1)+j+1)*phai; 
      x[j][i] = ran - (int)ran; 
    } 
  } 
  for (j=0;j<n;j++) 
    for (i=0;i<m;i++)  
      xx[j][i] = x[j][i]; 
  /* generate wavelet filter */ 
  ierr = c_dvwflt(f, k, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dvwflt failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* perform normal wavelet transform */ 
  isn = 1; 
  ierr = c_dv2dwt((double*)x, m, n, (double*)y, isn, f, k, lsx, lsy, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dv2dwt failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* perform inverse wavelet transform */ 
  isn = -1; 
  ierr = c_dv2dwt((double*)x, m, n, (double*)y, isn, f, k, lsx, lsy, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dv2dwt failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* check results */ 
  eps = 1e-6; 
  for (j=0;j<n;j++) 
    for (i=0;i<m;i++)  
      if (fabs((x[j][i]-xx[j][i])/xx[j][i]) > eps) {       
 printf("Inaccurate result\n"); 
 exit(1); 
      } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for V2DWT in the Fortran SSL II Extended Capabilities User's Guide II, and [20], [27], [43], [93], and 
[105]. 
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c_dvalu 
LU-decomposition of a real matrix (blocking LU-decomposition 
method). 
ierr = c_dvalu(a, k, n, epsz, ip, &is, vw, 

&icon); 

1. Function 

This function LU-decomposes an n  n non-singular matrix A using the blocking LU-decomposition method (Gaussian 
elimination method). 

 PA LU  (1) 

In (1), P is the permutation matrix that performs the row exchanges required during partial pivoting, L is a lower 
triangular matrix and U is a unit upper triangular matrix (n1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dvalu((double*)a, k, n, epsz, ip, &is, vw, &icon); 

where: 
a double 

a[n][k] 

Input Matrix A. 

  Output Matrices L and U (suitable for input to the matrix inverse function, 
c_dvluiv).  See Comments on use. 

k int Input C fixed dimension of array a ( n). 
n int Input Order n of matrix A. 
epsz double Input Tolerance for relative zero test of pivots during the decomposition of A 

( 0).  When epsz is zero, a standard value is used.  See Comments on 
use. 

ip int ip[n] Output Transposition vector that provides the row exchanges that occurred 
during partial pivoting (suitable for input to the matrix inverse function, 
c_dvluiv).  See Comments on use. 

is int Output Information for obtaining the determinant of matrix A.  When the n 
elements of the calculated diagonal of array a are multiplied together, 
and the result multiplied by is, the determinant is obtained. 

vw double vw[n] Work  
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Either all of the elements of some row were zero 

or the pivot became relatively zero.  It is highly 
probable that the coefficient matrix is singular. 

Discontinued. 



 c_dvalu  

 567 

Code  Meaning  Processing 
30000 One of the following has occurred: 

 k < n 
 n < 1 
 epsz < 0 

Bypassed. 

3. Comments on use 

epsz 
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning: 

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix A = ( )aij , that 
is: 

epsz ij
k
kk aa max  

then the relative pivot value is assumed to be zero and processing terminates with icon=20000.  The standard value of 
epsz is 16µ, where µ is the unit round off.  If the processing is to proceed at a lower pivot value, epsz will be given the 
minimum value but the result is not always guaranteed. 

ip 
The transposition vector corresponds to the permutation matrix P of LU-decomposition with partial pivoting.  In this 
function, the elements of the array a are actually exchanged in partial pivoting.  In the J-th stage (J = 1, …, n) of 
decomposition, if the I-th row has been selected as the pivotal row the elements of the I-th row and the elements of the J-
th row are exchanged.  Then, in order to record the history of this exchange, I is stored in ip[j-1]. 

Matrix inverse 
This function is the first stage in a two-stage process to compute the inverse of an n  n real general matrix. After calling 
this function, calling function c_dvluiv completes the task for matrix inversion. 

4. Example program 

This example program initializes A and x (from bAx  ), and then calculates b by multiplication. Matrix A is then 
decomposed into LU factors using the library routine. 1A  is then calculated and used to calculate x in the equation 

xbA 1  and this resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, is; 
  double epsz, eps; 
  double a[NMAX][NMAX], ai[NMAX][NMAX]; 
  double b[NMAX], x[NMAX], y[NMAX], vw[NMAX]; 
  int ip[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=i;j<n;j++) { 
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      a[i][j] = n-j; 
      a[j][i] = n-j; 
    } 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  k = NMAX; 
  /* initialize constant vector b = a*x */ 
  ierr = c_dmav((double*)a, k, n, n, x, b, &icon); 
  epsz = 1e-6; 
  /* perform LU decomposition */ 
  ierr = c_dvalu((double*)a, k, n, epsz, ip, &is, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvalu failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* find matrix inverse from LU factors */ 
  ierr = c_dvluiv((double*)a, k, n, ip, (double*)ai, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvluiv failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate y = ai*b */ 
  ierr = c_dmav((double*)ai, k, n, n, b, y, &icon); 
  /* compare x and y */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-y[i])/y[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The blocking LU-decomposition method is applied by blocking the outer-product Gaussian elimination method. For 
further information consult the entry for VALU in the Fortran SSL II Extended Capabilities User’s Guide as well as [5], 
[7], [34] and [83]. 

 



 c_dvbcsd  

 569 

c_dvbcsd 
Solution of a system of linear equations with a nonsymmetric or 
indefinite sparse matrix (BICGSTAB(l) method, diagonal storage 
format). 
ierr = c_dvbcsd(a, k, ndiag, n, nofst, b, 

itmax, eps, iguss, l, x, &iter, 

vw, &icon); 

1. Function 

This function solves a system of linear equations (1) using the Bi-Conjugate Gradient Stabilized(l) (BICGSTAB(l)) 
method. 

 Ax b  (1) 

In (1), A is an n  n real nonsymmetric or indefinite sparse matrix, b is a real constant vector, and x is the real solution 
vector.  Both the real vectors are of size n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvbcsd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, l, x, 

&iter, vw, &icon); 

where: 
a double 

a[ndiag][k] 

Input Sparse matrix A stored in diagonal storage format.  See Comments on 
use. 

k int Input C fixed dimension of array a ( n). 
ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements. 
n int Input Order n of matrix A. 
nofst int 

nofst[ndiag] 

Input Distance from the main diagonal vector corresponding to diagonal 
vectors in array a.  Super-diagonal vector rows have positive values.  
Sub-diagonal vector rows have negative values.  See Comments on use. 

b double b[n] Input Constant vector b. 
itmax int Input Upper limit of iterations in BICGSTAB(l).(>0) 
eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 10-6.  See Comments on use. 
iguss int Input Control information about whether to start the iterative computation 

from the approximate value of the solution vector specified in array x. 
iguss = 0 : Approximate value of the solution vector is not specified. 
iguss  0 : The iterative computation starts from the approximate value 

of the solution vector specified in array x. 
l int Input The order of stabiliser in the BICGSTAB(l) algorithm.(1  l  8) 

The value of l should usually be set to 1 or 2.  See Comments on use. 
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x double x[n] Input The starting values for the computation.  This is optional and relates to 
argument iguss. 

  Output Solution vector x. 
iter int Output Number of iteration performed using the BICGSTAB(l) method. 
vw double 

vw[Vwlen] 
Work Vwlen = k*(4+2*l)+n+NBANDL+NBANDR 

NBANDL indicates a lower bandwidth; NBANDR indicates an upper 
bandwidth.  If the order or the bandwidth of the matrix are not constant 
parameters, it is enough to set the size of vw array to be 
k*(4+2*l)+3*k. 

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Break-down occurred. Processing stopped. 
20001 Reached the set maximum number of iterations. Processing stopped. 

The approximate solution obtained up to this 
stage is returned, but its precision is not 
guaranteed. 

30000 One of the following has occurred: 
 n < 1 
 k < 1 
 n > k 
 l < 1 
 l > 8 
 ndiag < 1 
 ndiag > k 
 itmax   0 

Bypassed. 

32001 abs(nofst[i]) > n-1; 0   i < ndiag 

3. Comments on use 

Convergent criterion 
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less than the product of the initial residual 
Euclidean norm and eps, it is judged as having converged.  The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of Matrix A and eps. 

The residual which used for convergence judgement is computed recursively and it may differ from the true residual. 

l 
The maximum value of l is set to 8.  For l=1, this algorithm coincides with BiCGSTAB.  Using smaller l usually results 
in faster speed, but in some situations larger l brings a good convergence, although the steps of an iteration are more 
expensive for larger l. 

Notes on using the diagonal format 
A diagonal vector element outside coefficient matrix A must be set to zero. 
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There is no restriction in the order in which diagonal vectors are stored in array a. 

The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of 
indirect indices.  The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this 
method. 

Diagonal scaling 
Scaling the equations so that the main diagonal to be 1 may results in better convergence. 

Break-down 
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the 
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula.  In such cases, routine 
c_dvcrd which uses the MGCR method should be used. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    100 
#define UBANDW    2 
#define LBANDW    1 
#define L         2 
 
MAIN__() 
{ 
  double one=1.0, bcoef=10.0, eps=1.e-6; 
  int    ierr, icon, ndiag, nub, nlb, n, i, j, k; 
  int    itmax, iguss, l, iter; 
  int    nofst[UBANDW + LBANDW + 1]; 
  double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX]; 
  double vw[NMAX * (4 + 2 * L) + NMAX + UBANDW + LBANDW]; 
 
  nub   = UBANDW; 
  nlb   = LBANDW; 
  ndiag = nub + nlb + 1; 
  n     = NMAX; 
  k     = NMAX; 
 
  /* Set A-mat & b */ 
  for (i=1; i<=nub; i++) { 
    for (j=0  ; j<n-i; j++) a[i][j] = -1.0; 
    for (j=n-i; j<n  ; j++) a[i][j] =  0.0; 
    nofst[i] = i; 
  } 
  for (i=1; i<=nlb; i++) { 
    for (j=0  ; j<i+1; j++) a[nub + i][j] =  0.0; 
    for (j=i+1; j<n  ; j++) a[nub + i][j] = -2.0; 
    nofst[nub + i] = -i; 
  } 
  nofst[0] = 0; 
  for (j=0; j<n; j++) { 
    b[j]    = bcoef; 
    a[0][j] = bcoef; 
    for (i=1; i<ndiag; i++) b[j] += a[i][j]; 
  } 
  /* solve the nonsymmetric system of linear equations */ 
  itmax = n; 
  iguss = 0; 
  l     = L; 
  ierr = c_dvbcsd ((double*)a, k, ndiag, n, nofst, b, itmax, eps, 
                  iguss, l, x, &iter, vw, &icon); 
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  if (icon != 0) { 
    printf("ERROR: c_dvbcsd failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check result */ 
  for (i=0;i<n;i++) 
    if (fabs(x[i]-one) > eps*10.0) { 
      printf("WARNING: result maybe inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VBCSD in the Fortran SSL II Extended Capabilities User’s Guide II  and references [101] and [112]. 
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c_dvbcse 
Solution of a system of linear equations with a nonsymmetric or 
indefinite sparse matrix (BICGSTAB(l) method, ELLPACK storage 
format). 
ierr = c_dvbcse(a, k, iwidt, n, icol, b, 

itmax, eps, iguss, l, x, &iter, 

vw, &icon); 

1. Function 

This function solves a system of linear equations (1) using the Bi-Conjugate Gradient Stabilized(l) (BICGSTAB(l)) 
method. 

 Ax b  (1) 

In (1), A is an n  n real nonsymmetric or indefinite sparse matrix, b is a real constant vector and x is the real solution 
vector.  Both the real vectors are of size n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvbcse((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss, l, 

x, &iter, vw, &icon); 

where: 
a double 

a[iwidt][k] 

Input Sparse matrix A stored in ELLPACK storage format.  See Comments on 
use. 

k int Input C fixed dimension of array a ( n). 
iwidt int Input The maximum number of non-zero elements in any row vectors of A 

(0). 
n int Input Order n of matrix A. 
icol int 

icol[iwidt][k] 

Input Column indices used in the ELLPACK format, showing to which 
column the elements corresponding to a belong.  See Comments on use. 

b double b[n] Input Constant vector b. 
itmax int Input Upper limit of iterations in BICGSTAB(l) method.(>0) 
eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 10-6.  See Comments on use. 
iguss int Input Control information about whether to start the iterative computation 

from the approximate value of the solution vector specified in array x. 
iguss = 0 : Approximate value of the solution vector is not set. 
iguss  0 : The iterative computation starts from the approximate value 

of the solution vector specified in array x. 
l int Input The order of stabiliser in the BICGSTAB(l) algorithm.(1  l  8) 

The value of l should usually be set to 1 or 2.  See Comments on use. 
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x double x[n] Input The starting values for the computation.  This is optional and relates to 
argument iguss. 

  Output Solution vector x. 
iter int Output The real number of iteration steps in BICGSTAB(l) method. 
vw double 

vw[Vwlen] 
Work Vwlen = k*(4+2*l) 

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Break-down occurred Processing stopped. 
20001 Reached the set maximum number of iterations. Processing stopped. 

The approximate solution obtained up to this 
stage is returned, but its precision is not 
guaranteed. 

30000 One of the following has occurred: 
 n < 1 
 k < 1 
 n > k 
 l < 1 
 l > 8 
 iwidt < 1 
 iwidt > k 
 itmax  0 

Bypassed. 

3. Comments on use 

Convergent criterion 
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less than the product of the initial residual 
Euclidean norm and eps, it is judged as having converged.  The difference between the precise solution and obtained 
approximate solution is equal to the product of the condition number of matrix A and eps. 

The residual which used for convergence judgement is computed recursively and it may differ from the true residual. 

l 
The maximum value of l is set to 8.  For l=1, this algorithm coincides with BiCGSTAB.  Using smaller l usually results 
in faster speed, but in some situations larger l brings a convergence, although the steps of a iteration are more expensive 
for larger l. 

Diagonal scaling 
Scaling the equations so that the main diagonal to be 1 may results in better convergence. 

Break-down 
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the 
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula.  In such cases, routine 
c_dvcre which uses the MGCR method should be used. 
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4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX     100 
#define UBANDW     2 
#define LBANDW     1 
#define L          2 
 
MAIN__() 
{ 
  double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6; 
  int    ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, l, iter, i, j, ix; 
  int    icol[UBANDW + LBANDW + 1][NMAX]; 
  double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX]; 
  double vw[NMAX * (4 + 2 * L)]; 
 
  nub   = UBANDW; 
  nlb   = LBANDW; 
  iwidt = UBANDW + LBANDW + 1; 
  n     = NMAX; 
  k     = NMAX; 
  for (i=0; i<iwidt; i++) 
    for (j=0; j<n; j++) { 
      a[i][j] = 0.0; 
      icol[i][j] = j+1; 
    } 
  /* Set A-mat & b */ 
  for (j=0; j<nlb; j++) { 
    for (i=0; i<j; i++) a[i][j] = lcf; 
    a[j][j] = bcoef; 
    b[j]    = bcoef + (double) j * lcf + (double) nub * ucf; 
    for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf; 
    for (i=0; i<=nub+j; i++) icol[i][j] = i+1; 
  } 
  for (j=nlb; j<n-nub; j++) { 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef; 
    b[j]      = bcoef + (double) nlb * lcf + (double) nub * ucf; 
    for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf; 
    for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb; 
  } 
  for (j=n-nub; j<n; j++){ 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef; 
    b[j]      = bcoef + (double) nlb * lcf + (double) (n-j-1) * ucf; 
    for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf; 
    ix = n - (j+nub-nlb-1); 
    for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i; 
  } 
  /* solve the nonsymmetric system of linear equations */ 
  itmax = 2000; 
  iguss = 0; 
  l     = L; 
  ierr = c_dvbcse ((double*)a, k, iwidt, n, (int*)icol, b, itmax, 
                  eps, iguss, l, x, &iter, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvbcse failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check result */ 
  for (i=0; i<n; i++) 
    if (fabs(x[i]-one) > eps*10.0) { 
      printf("WARNING: result maybe inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 
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5. Method 

Consult the entry for VBCSE in the Fortran SSL II Extended Capabilities User’s Guide II  and references [101] and [112]. 
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c_dvbldl 
LDL T  decomposition of a symmetric positive definite band matrix 
(modified Cholesky’s method). 
ierr = c_dvbldl(a, n, nh, epsz, &icon); 

1. Function 

This routine performs LDL T  decomposition of an nn  symmetric positive definite band matrix A, with bandwidth h, 
using the modified Cholesky’s method, 

 TLDLA  . (1) 

In (1) L is a unit lower band matrix and D is a diagonal matrix. Here, nh 0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dvbldl(a, n, nh, epsz, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric positive definite band storage format. See 

Array storage formats in the Introduction section for further details. 
).1(  hnAlen  

  Output Matrix D + (L – I). Stored in symmetric positive definite band storage 
format. See Array storage formats in the Introduction section for further 
details. 

n int Input Order n of matrix A. 
nh int Input Bandwidth h of matrix A. 
epsz double Input Tolerance (  0) for relative zero test of pivots in the decomposition 

process of matrix A. When epsz = 0, a standard value is used. See 
Comments on use. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 A pivot was negative. Matrix A is not positive 

definite. 
Continued. 

20000 A pivot is relatively zero. It is probable that 
matrix A is singular. 

Discontinued. 

30000 One of the following has occurred: 
 nh < 0 or nh   n 
 epsz < 0 

Bypassed. 
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3. Comments on use 

epsz 
The standard value of epsz is 16 , where   is the unit round-off. If, during the decomposition process, a pivot value fails 
the relative zero test, it is considered to be zero and decomposition is discontinued with icon = 20000. Decomposition 
can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy. 

icon 
If a pivot is negative during decomposition, the matrix A is not positive definite and icon = 10000 is set. Processing is 
continued, however no further pivoting is performed and the resulting calculation error may be significant. 

Calculation of determinant 
The determinant of matrix A is the same as the determinant of matrix D, and can be calculated by forming the product of 
the elements of output array a corresponding to the diagonal elements of D. 

4. Example program 

This program solves a system of linear equations using LDL T  decomposition, and checks the result. The determinant is 
also obtained. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(i,j) (i<j) ? i : j 
 
#define NMAX 100 
#define HMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, i, j, imax, jmax; 
  double epsz, det, eps, sum; 
  double a[(HMAX+1)*NMAX], b[NMAX], x[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  nh = HMAX; 
  for (j=0;j<n;j++) { 
    imax = min(j+nh,n-1); 
    for (i=j;i<=imax;i++) 
      a[j*(nh+1)+i-j] = n-(j-i); 
  } 
  for (i=0;i<n;i++) { 
    x[i] = i+1; 
    b[i] = 0; 
  } 
  /* initialize constant vector b = a*x */ 
  for (i=0;i<n;i++) { 
    sum = a[i*(nh+1)]*x[i]; 
    jmax = min(i+nh,n-1); 
    for (j=i+1;j<=jmax;j++) { 
      b[j] = b[j] + a[i*nh+j]*x[i]; 
      sum = sum + a[i*nh+j]*x[j]; 
    } 
    b[i] = b[i]+sum; 
  } 
  epsz = 1e-6; 
  /* LDL decomposition of system of equations */ 
  ierr = c_dvbldl(a, n, nh, epsz, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvbldl failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate determinant */ 
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  det = 1; 
  for (i=0;i<n;i++) { 
    det = det*a[i*(nh+1)]; 
  } 
  printf("Determinant: %7.4e\n", det);   
  /* solve decomposed system of equations */ 
  ierr = c_dvbldx(b, a, n, nh, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvbldx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VBLDL in the Fortran SSL II Extended Capabilities User's Guide II and reference [79]. 
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c_dvbldx 
Solution of a system of linear equations with a symmetric positive 
definite band matrix in LDL T  - decomposed form. 
ierr = c_dvbldx(b, fa, n, nh, &icon); 

1. Function 

This routine solves a system of linear equations with an LDL T  decomposed nn  symmetric positive definite band 
coefficient matrix, 

 bxLDL T . (1) 

In (1) L is a unit lower band matrix with bandwidth h, D is a diagonal matrix, b is a constant vector, and x is the solution 
vector. Here, nh 0 . 

2. Arguments 

The routine is called as follows: 
ierr = c_dvbldx(b, fa, n, nh, &icon); 

where: 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
fa double 

fa[Falen] 
Input Matrix D + (L - I). Stored in symmetric positive definite band storage 

format. See Array storage formats in the Introduction section for further 
details. ).1(  hnFalen  

n int Input Order n of matrices L and D. 
nh int Input Bandwidth h of matrix L. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Coefficient matrix is not positive definite. Continued. 
30000 One of the following has occurred: 

 nh < 0 or nh   n 
Bypassed. 

3. Comments on use 

A system of linear equations can be solved by calling the routine c_dvbldl to LDL T  - decompose the coefficient 
matrix before calling this routine. The input argument fa of this routine is the same as the output argument a of 
c_dvbldl. Alternatively the system of linear equations can be solved by calling the single routine c_dvlsbx. 
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4. Example program 

This program solves a system of linear equations using LDL T  decomposition, and checks the result. The determinant is 
also obtained. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(i,j) (i<j) ? i : j 
 
#define NMAX 100 
#define HMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, i, j, imax, jmax; 
  double epsz, det, eps, sum; 
  double a[(HMAX+1)*NMAX], b[NMAX], x[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  nh = HMAX; 
  for (j=0;j<n;j++) { 
    imax = min(j+nh,n-1); 
    for (i=j;i<=imax;i++) 
      a[j*(nh+1)+i-j] = n-(j-i); 
  } 
  for (i=0;i<n;i++) { 
    x[i] = i+1; 
    b[i] = 0; 
  } 
  /* initialize constant vector b = a*x */ 
  for (i=0;i<n;i++) { 
    sum = a[i*(nh+1)]*x[i]; 
    jmax = min(i+nh,n-1); 
    for (j=i+1;j<=jmax;j++) { 
      b[j] = b[j] + a[i*nh+j]*x[i]; 
      sum = sum + a[i*nh+j]*x[j]; 
    } 
    b[i] = b[i]+sum; 
  } 
  epsz = 1e-6; 
  /* LDL decomposition of system of equations */ 
  ierr = c_dvbldl(a, n, nh, epsz, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvbldl failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate determinant */ 
  det = 1; 
  for (i=0;i<n;i++) { 
    det = det*a[i*(nh+1)]; 
  } 
  printf("Determinant: %7.4e\n", det);   
  /* solve decomposed system of equations */ 
  ierr = c_dvbldx(b, a, n, nh, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvbldx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 



Description of the C-SSL II Routines 

582 

5. Method 

The solution is obtained through forward and backward substitutions. Consult the entry for VBLDX in the Fortran SSL II 
Extended Capabilities User's Guide II. 
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c_dvblu 
LU - decomposition of a band matrix (Gaussian elimination). 
ierr = c_dvblu(a, n, nh1, nh2, epsz, &is, ip, 

vw, &icon); 

1. Function 

This routine performs LU - decomposition of an nn  band matrix A, with lower bandwidth 1h  and upper bandwidth 

2h  using Gaussian elimination, 

 LUPA  , 

where P is a permutation matrix that performs the row exchanges of the matrix A required during pivoting, L is a unit 
lower band matrix, and U is an upper band matrix. Here, 0   1h  < n and 0   2h  < n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvblu(a, n, nh1, nh2, epsz, &is, ip, vw, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in band storage format. See Array storage formats in 

the Introduction section for details. nhhAlen )12( 21  . 
  Output Matrix (L - I) + U. Stored in band storage format. See Array storage 

formats in the Introduction section for details. 
n int Input Order n of matrix A. 
nh1 int Input Lower bandwidth 1h  of matrix A. 
nh2 int Input Upper bandwidth 2h  of matrix A. 
epsz double Input Tolerance (  0) for relative zero test of pivots in the decomposition 

process of matrix A. When epsz = 0, a standard value is used. See 
Comments on use. 

is int Output Information available when calculating the determinant of matrix A. See 
Comments on use. 

ip int ip[n] Output Transposition vector that provides the row exchanges that occurred 
during pivoting. See Comments on use. 

vw double vw[n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 All the elements of a row of matrix A are zero, or 

a pivot is relatively zero. It is probable that the 
matrix is singular. 

Discontinued. 

30000 One of the following has occurred: 
 nh1 < 0 or nh1   n 

Bypassed. 
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Code  Meaning  Processing 
 nh2 < 0 or nh2   n 
 epsz < 0 

3. Comments on use 

epsz 
The standard value of epsz is 16 , where   is the unit round-off. If, during the decomposition process, a pivot value fails 
the relative zero test, it is considered to be zero and decomposition is discontinued with icon = 20000. Decomposition 
can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy. 

Calculating the determinant 
The determinant of matrix A is calculated by multiplying the value of argument is by the n diagonal elements of U stored 
in array a in the same locations as the diagonal elements of A. 

ip 
In partial pivoting, this routine performs the actual exchange of the rows of array a. If at the j-th step of the decomposition 
(j=1,2,...,n-1), the i-th row (i   j) is selected as the pivot row, the elements of array a corresponding to the i-th and j-th 
rows are interchanged. To show the history of exchanges, i is stored in ip[j-1]. 

Array storage area 
In order to save on storage, this routine stores the matrices in band storage format. However, when nhh  12 21 , the 
routine c_dvalu requires less storage than this routine. 

4. Example program 

This program solves a system of linear equations using LU decomposition, and checks the result. The determinant is also 
obtained. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(i,j) (i<j) ? i : j 
#define max(i,j) (i>j) ? i : j 
 
#define NMAX 100 
#define H1MAX 2 
#define H2MAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh1, nh2, i, j, jmin, jmax, is, ip[NMAX]; 
  double epsz, det, eps, sum; 
  double a[(2*H1MAX+H2MAX+1)*NMAX], b[NMAX], x[NMAX], vw[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  nh1 = H1MAX; 
  nh2 = H2MAX; 
  for (i=0;i<n*(2*nh1+nh2+1);i++) 
    a[i] = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh1,0); 
    jmax = min(i+nh2,n-1); 
    for (j=jmin;j<=jmax;j++) 
      a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i); 
  } 
  for (i=0;i<n;i++) { 
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    x[i] = i+1; 
  } 
  /* initialize constant vector b = a*x */ 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh1,0); 
    jmax = min(i+nh2,n-1); 
    sum = 0; 
    for (j=jmin;j<=jmax;j++) 
      sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j]; 
    b[i] = sum; 
  } 
  epsz = 1e-6; 
  /* LU decomposition of system of equations */ 
  ierr = c_dvblu(a, n, nh1, nh2, epsz, &is, ip, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvblu failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate determinant */ 
  det = is; 
  for (i=0;i<n;i++) { 
    det = det*a[i*(2*nh1+1+nh2)+nh1]; 
  } 
  printf("Determinant: %7.4e\n", det);   
  /* solve decomposed system of equations */ 
  ierr = c_dvblux(b, a, n, nh1, nh2, ip, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvblux failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

LU decomposition is performed through LU decomposition of the outer product type. Consult the entry for VBLU in the 
Fortran SSL II Extended Capabilities User's Guide II and [42]. 
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c_dvblux 
Solution of a system of linear equations with LU - decomposed band 
matrix. 
ierr = c_dvblux(b, fa, n, nh1, nh2, ip, 

&icon); 

1. Function 

This routine solves the linear system of equations 

 bAx  , 

where A is an nn  band matrix, with lower bandwidth 1h  and upper bandwidth 2h , through forward-substitution and 
backward-substitution, based on the decomposition 

 LUPA  , 

obtained by LU-decomposition using Gaussian elimination. 

P is a permutation matrix that performs the row exchanges of the matrix A required during pivoting, L is a unit lower 
band matrix, and U is an upper band matrix. Here, b is a constant vector, x is the solution vector, and 0   1h  < n and 0   

2h  < n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvblux(b, fa, n, nh1, nh2, ip, &icon); 

where: 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
fa double 

fa[Falen] 
Input Matrix (L - I) + U. Stored in band storage format. See Array storage 

formats in the Introduction section for details. nhhFalen )12( 21   
n int Input Order n of matrix A. 
nh1 int Input Lower bandwidth 1h  of matrix A. 
nh2 int Input Upper bandwidth 2h  of matrix A. 
ip int ip[n] Output Transposition vector that provides the row exchanges that occurred 

during pivoting. See Comments on use. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 The coefficient matrix is singular. Discontinued. 
30000 One of the following has occurred: 

 nh1 < 0 or nh1   n 
 nh2 < 0 or nh2   n 

Bypassed. 
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Code  Meaning  Processing 
 error occurred in ip 

3. Comments on use 

A system of linear equations can be solved by calling the routine c_dvblu to LU-decompose the coefficient matrix 
before calling this routine. The input arguments fa and ip of this routine are the same as the output arguments a and ip 
of c_dvblu. Alternatively the system of linear equations can be solved by calling the single routine c_dvlbx. 

4. Example program 

This program solves a system of linear equations using LU decomposition, and checks the result. The determinant is also 
obtained. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(i,j) (i<j) ? i : j 
#define max(i,j) (i>j) ? i : j 
 
#define NMAX 100 
#define H1MAX 2 
#define H2MAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh1, nh2, i, j, jmin, jmax, is, ip[NMAX]; 
  double epsz, det, eps, sum; 
  double a[(2*H1MAX+H2MAX+1)*NMAX], b[NMAX], x[NMAX], vw[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  nh1 = H1MAX; 
  nh2 = H2MAX; 
  for (i=0;i<n*(2*nh1+nh2+1);i++) 
    a[i] = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh1,0); 
    jmax = min(i+nh2,n-1); 
    for (j=jmin;j<=jmax;j++) 
      a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i); 
  } 
  for (i=0;i<n;i++) { 
    x[i] = i+1; 
  } 
  /* initialize constant vector b = a*x */ 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh1,0); 
    jmax = min(i+nh2,n-1); 
    sum = 0; 
    for (j=jmin;j<=jmax;j++) 
      sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j]; 
    b[i] = sum; 
  } 
  epsz = 1e-6; 
  /* LU decomposition of system of equations */ 
  ierr = c_dvblu(a, n, nh1, nh2, epsz, &is, ip, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvblu failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate determinant */ 
  det = is; 
  for (i=0;i<n;i++) { 
    det = det*a[i*(2*nh1+1+nh2)+nh1]; 
  } 
  printf("Determinant: %7.4e\n", det);   
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  /* solve decomposed system of equations */ 
  ierr = c_dvblux(b, a, n, nh1, nh2, ip, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvblux failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The solution is obtained through forward and backward substitutions. Consult the entry for VBLUX in the Fortran SSL II 
Extended Capabilities User's Guide II. 
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c_dvccvf 
Discrete convolution or correlation of complex data. 
ierr = c_dvccvf(zx, k, n, m, zy, ivr, isw, 

tab, &icon); 

1. Function 

This function performs one-dimensional complex discrete convolutions or correlations between a filter and multiple input 
data using discrete Fourier method. 

The convolution and correlation of a filter y with a single input data x are defined as follows: 

Convolution 
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n
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Correlation 
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where, xj is a cyclic data with period n. See Comments on use. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvccvf((dcomplex*)zx, k, n, m, zy, ivr, isw, tab, &icon); 

where: 
zx dcomplex 

zx[m][k] 

Input  The m complex data sequences {xj} are stored in zx[i][j], i = 0, ... , 
m1, j = 0, ... , n1. 

  Output  The m complex sequences {zk} are stored in zx[i][k] , i = 0, ... , 
m1, k = 0, ... , n1. 

k int Input  C fixed dimension of array zx( n). 
n int Input The number of elements in one data sequence or in filter y. See 

Comments on use. 
m int Input The number of rows in the array zx. 
zy dcomplex 

zy[n] 

Input Filter vector {yi}. The values of this array will be altered after calling 
with isw = 0 or 2. See Comments on use. 

ivr int Input Specify either convolution or correlation. 
   0 Convolution is calculated. 
   1 Correlation is calculated. 
isw int Input  Control information. 

0 all the procedure will be done at once. 
If the calculation should be divided into step-by-step procedure, 
specify as follows. See Comments on use. 

1 to prepare the array tab. 
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2 to perform the Fourier transform in array zy using the 
trigonometric function table tab. 

   3 to perform the convolution or correlation using the array zy and 
tab which are prepared in advance. 

tab double 

tab[2n] 
Work Trigonometric function table used for the transformation is stored. 

icon int Output Condition code. See below. 
The complete list of condition codes  is:  

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n  0 
 k < n 
 m  0 
 isw  0, 1, 2, 3 
 ivr  0, 1 

Bypassed. 

3. Comments on use 

To compute non-periodic convolution or correlation 
Non-periodic convolution or correlation can be calculated by this routine with padding the value of zx[i][j], i = 0, ... , 
m  1, j = nx, ... , n  1 and zy[k], k = ny, ... , n  1 with zeros, where nx is the actual length of the data sequence, ny is 
the actual length of the filter y and n must be larger or equal to nx  ny  1. See Example Program. 

The values of correlation zk, corresponding to k = ny  1, ... , 1 are stored in zx[i][j], i = 0, ... , m  1, j = n  ny  
1, ... , n  1 in this non-periodic case. 

Recommended value of n 
The n can be an arbitrary number, but the calculation is fast with the sizes which can be expressed as products of the 
powers of 2, 3, and 5. 

Efficient use of the array tab and zy 
When this routine will calculate convolution or correlation successively for a fixed value of n, the trigonometric function 
table tab should be initialized once at first call with isw = 0 or 1 and should be kept intact for second and subsequent 
calls with isw = 2 and 3.  This saves initialization procedure of array tab. 

Furthermore, if the filter vector y is also fixed, the array zy which is transformed with isw = 0 or 2 can be reused for 
second and subsequent calls with isw = 3. 

In these cases, the array zy must be transformed surely once. 

To compute autocorrelation 
Autocorrelation or autoconvolution can be calculated by this routine with letting the filter array zy be identical to the data 
array zx. In this case, specifying isw = 2 will be ignored. See Example Program. 



 c_dvccvf 

 591 

Stack size 
This function exploits work area internally on stack area.  Therefore an abnormal termination could occur when the stack 
area runs out. The necessary size is 16  n byte. 

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command under consideration that 
the stack area could be used for another work area of fixed size and for user’s program also. 

4. Example program 

Example 1) In this example, periodic convolution of a filter with three data vectors is calculated with n=8. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define K 8 
#define M 3 
 
int MAIN__(void) 
{ 
    dcomplex zx[M][K], zy[K]; 
    double   tab[K*2]; 
    int      i, j, n; 
    int      ivr, isw, icon; 
 
    n=K; 
 
    for (j=0; j<M; j++) { 
      for (i=0; i<n; i++) { 
        zx[j][i].re = i+j+1; 
        zx[j][i].im = i-j; 
      } 
    } 
 
    for (i=0; i<n; i++) { 
      zy[i].re = (i+1)*(i+1); 
      zy[i].im = 9-i; 
    } 
 
    printf("--INPUT DATA--\n"); 
 
    for (j=0; j<M; j++) { 
      printf("zx[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        if(i%4==0) printf("\n            "); 
        printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im); 
      } 
      printf("\n"); 
    } 
 
    printf("Filter zy : "); 
    for (i=0; i<n ; i++) { 
      if(i%4==0) printf("\n            "); 
      printf("(%8.2f,%8.2f) ", zy[i].re, zy[i].im); 
    } 
 
    ivr = 0; 
    isw = 0; 
    c_dvccvf((dcomplex*)zx, K, n, M, zy, ivr, isw, tab, &icon); 
 
    printf("\n\n--OUTPUT DATA--\n"); 
    for (j=0; j<M; j++) { 
      printf("zx[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        if(i%4==0) printf("\n            "); 
        printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im); 
      } 
      printf("\n"); 
    } 
} 
 

Example 2) In this example, non-periodic convolution is calculated with nx=7, ny=9 and n=16. 
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#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define K 16 
#define M 3 
 
int MAIN__(void) 
{ 
    dcomplex zx[M][K], zy[K]; 
    double   tab[K*2]; 
    int      i, j, n, nx, ny; 
    int      ivr, isw, icon; 
 
    nx=7, ny=9, n=nx+ny-1; 
    if(n%2) n=n+1; 
 
    for (j=0; j<M; j++) { 
      for (i=0; i<nx; i++) { 
        zx[j][i].re = i+j+1; 
        zx[j][i].im = i-j; 
      } 
      for (i=nx; i<n; i++) { 
        zx[j][i].re = 0.0; 
        zx[j][i].im = 0.0; 
      } 
    } 
 
    for (i=0; i<ny; i++) { 
      zy[i].re = (i+1)*(i+1); 
      zy[i].im = 9-i; 
    } 
    for (i=ny; i<n; i++) { 
      zy[i].re = 0.0; 
      zy[i].im = 0.0; 
    } 
 
    printf("--INPUT DATA--\n"); 
 
    for (j=0; j<M; j++) { 
      printf("zx[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        if(i%4==0) printf("\n            "); 
        printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im); 
      } 
      printf("\n"); 
    } 
 
    printf("Filter zy : "); 
    for (i=0; i<n ; i++) { 
      if(i%4==0) printf("\n            "); 
      printf("(%8.2f,%8.2f) ", zy[i].re, zy[i].im); 
    } 
 
    ivr = 0; 
    isw = 0; 
    c_dvccvf((dcomplex*)zx, K, n, M, zy, ivr, isw, tab, &icon); 
 
    printf("\n\n--OUTPUT DATA--\n"); 
    for (j=0; j<M; j++) { 
      printf("zx[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        if(i%4==0) printf("\n            "); 
        printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im); 
      } 
      printf("\n"); 
    } 
} 
 

Example 3) In this example, autocorrelation is calculated with nx=4. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define K 8 
#define M 3 
 
int MAIN__(void) 
{ 
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    dcomplex zx[M][K]; 
    double   tab[K*2]; 
    int      i, j, n, nx; 
    int      ivr, isw, icon; 
 
    nx=4, n=nx*2; 
 
    for (j=0; j<M; j++) { 
      for (i=0; i<nx; i++) { 
        zx[j][i].re = i+j+1; 
        zx[j][i].im = i-j; 
      } 
      for (i=nx; i<n; i++) { 
        zx[j][i].re = 0.0; 
        zx[j][i].im = 0.0; 
      } 
    } 
 
    printf("--INPUT DATA--\n"); 
 
    for (j=0; j<M; j++) { 
      printf("zx[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        if(i%4==0) printf("\n            "); 
        printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im); 
      } 
      printf("\n"); 
    } 
 
    ivr = 1; 
    isw = 1; 
    c_dvccvf((dcomplex*)zx, K, n, M, (dcomplex*)zx, ivr, isw, tab, &icon); 
    isw=3; 
    c_dvccvf((dcomplex*)zx, K, n, M, (dcomplex*)zx, ivr, isw, tab, &icon); 
 
    printf("\n--OUTPUT DATA--\n"); 
    for (j=0; j<M; j++) { 
      printf("zx[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        if(i%4==0) printf("\n            "); 
        printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im); 
      } 
      printf("\n"); 
    } 
} 

5. Method 

For further information consult the entry for VCCVF in the Fortran SSL II Extended Capabilities User’s Guide. 
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c_dvcfm1 
One-dimensional discrete complex Fourier transforms (mixed radices of 
2, 3, 5 and 7). 
ierr = c_dvcfm1(x, n, &isw, isn, w, &icon); 

1. Function 

This function performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT. 

The length of data transformed n is a product of the powers of 2, 3, 5 and 7. 

The one-dimensional Fourier transform 
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}. 
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The one-dimensional Fourier inverse transform 
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}. 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvcfm1(x, n, &isw, isn, w, &icon); 

where: 
x dcomplex x[n] Input  Complex data. 
n int Input The length of the data transformed. 
isw int Input Control information. 
   isw = 1 For the first call, to generate a trigonometric function table 

and control information in w and perform Fourier transform.
   isw  1 For the second or consecutive call, to perform Fourier 

transform for the data of the same length as in the first call.  
The contents in w must not be changed as the second or 
consecutive call uses the values in w generated in the first 
call. 

  Output When isw is set to 1, isw is set to zero after performing transform. 
isn int Input  Either the transform or the inverse transform is indicated. 

1 for the transform. 
1 for the inverse transform. 
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w dcomplex 

w[2n+70] 
Work When isw is set to 1, the trigonometric function table for data length n 

is generated into w. 
Otherwise the contents generated in the first call is reused. 
See Comments on use. 

icon int Output Condition code. See below. 
The complete list of condition codes  is:  

Code  Meaning  Processing 
0 No error. Completed. 
20000 The value of n in second or consecutive call is 

different from that of first call. 
Bypassed. 

30000 The value of isn is incorrect. 
30008 The order of transform is not radix 2/3/5/7. 

3. Comments on use 

General definition of Fourier transform 
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4). 
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where, n = exp(2i/n). 

This function calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively.  Normalization of the 
results may be required. 

Use of the array w 
When this routine is called successively with a fixed value of n, the trigonometric function table in w, which is initialized 
at the first call with isw=1, is reused for the subsequent calls with isw1. 
Note that the array w is also used as a read-write work area even for the sebsequent calls. 

4. Example program 

A one-dimensional FFT is computed. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define N 640 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
int MAIN__(void) 
{ 
    dcomplex x[N], w[N*2+70], tmp; 
    double   error; 
    int      isw, isn, icon, i; 
 
    for (i=0; i<N; i++) { 
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      x[i].re=(double)(i+1)/(double)N; 
      x[i].im=0.0; 
    } 
 
    /* do the forward transform */ 
    isw=1, isn=1; 
    c_dvcfm1(x, N, &isw, isn, w, &icon); 
 
    if (icon != 0) { 
      printf("icon = %d",icon); 
      exit(1); 
    } 
 
    /* do the reverse transform */ 
    isn=-1; 
    c_dvcfm1(x, N, &isw, isn, w, &icon); 
 
    if (icon != 0) { 
      printf("icon = %d",icon); 
      exit(1); 
    } 
 
    error = 0.0; 
    for (i=0; i<N; i++) { 
      tmp.re = fabs(x[i].re/(double)N - (double)(i+1)/(double)N); 
      tmp.im = fabs(x[i].im/(double)N); 
      tmp.re += tmp.im; 
      error=max(error,tmp.re); 
    } 
 
    printf("error = %e\n", error); 
 
} 

5. Method 

For further information consult the entry for VCFM1 in the Fortran SSL II Extended Capabilities User’s Guide. 
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c_dvcft1 
Discrete complex Fourier transform (radix 2 FFT). 
ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw, 

&icon); 

1. Function 

Given one dimensional (n-term) complex time series data { }x j , this function computes the discrete complex Fourier 
transform or its inverse by the Fast Fourier Transform (FFT) using a method suited to a vector processor. It is assumed 
that 2n , where  is a non-negative integer. 

Fourier transform 
When { }x j is provided, the transform defined below is used to obtain { }nak . 
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Fourier inverse transform 
When { }ak is provided, the transform defined below is used to obtain { }x j . 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw, &icon); 

where: 
a double a[n] Input  Real part of { }x j  or { }ak  
  Output  Real part of { }nak  or { }x j  
b double b[n] Input  Imaginary part of { }x j  or { }ak  
  Output  Imaginary part of { }nak  or { }x j  
n int Input Number of terms n of the transform. 
isn int Input Indicates that the transform (isn=+1) or the inverse transform 

 (isn=-1) is to be performed. See Comments on use 
isw int Input  Information controlling the initial state of the transform. Specified by: 

0 for the first call 
1 for the second and subsequent calls. 
See Comments on use. 

vw double 

vw[Rlen] 
Work Rlen  max( , )n  1 . 
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ivw int ivw[Ilen] Work Ilen   n max( , ) 3 2 . 
icon int Output Condition code. See below. 
The complete list of condition codes  is:  

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 isn = 0 
 isw  0 or 1  
 2n (   0  is an integer). 

Bypassed. 

3. Comments on use 

Use of this function 
This function performs the high-speed calculation of a complex FFT on a vector processor. Other routines might be more 
appropriate on a general purpose computer. 

isw 
When multiple transforms are calculated, specify isw = 1 for the second and subsequent function calls. This enables 
the function to bypass the steps for generating a trigonometric table and a list vector, both of which are needed for the 
transform, thus improving processing efficiency. The contents of arrays vw and ivw must not be modified between 
function calls. 

Even if the number of terms n of each of the multiple transforms varies, specifying isw = 1 improves processing 
efficiency. However, transforms with the same number of terms should be executed consecutively for the highest 
efficiency. 

When calling this function together with the real Fourier transform function c_dvrft1, specifying isw = 1 improves 
processing efficiency. 

isn 
Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used 
for strided access through data. Therefore, if the real and imaginary parts of { }x j or { }nak are stored at intervals of 
length i, specify isn = +i for a transform and isn = -i for an inverse transform. The results will be stored at intervals 
of length i. Note however that when i > 1, it is also necessary for the length of the work array vw to be at least 
n  ( ) 2 . 

When using a vector processor, the interval stride i should take the values i = 2p+1, for p = 1,2,3,…. 

Work array size conversion table 
The table for 16 4096 n is as follows. Figures in ( ) are the lengths when |isn| > 1. 

  n Length of vw Length of 
ivw 

4 16 64 (   96) 32
5 32 160 (  224) 64
6 64 384 (  512) 192
7 128 896 ( 1152) 512
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  n Length of vw Length of 
ivw 

8 256 2048 ( 2560) 1280
9 512 4608 ( 5632) 3072

10 1024 10240 (12288) 7168
11 2048 22528 (26624) 16384
12 4096 49152 (57344) 36864

 

General definition of Fourier transform 
The discrete complex Fourier transform and its inverse transform can be defined as shown below in (1) and in (2) 
respectively. 
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where nie /2 . 

This function computes { }nak  or { }x j corresponding to the left hand side of (1) or (2). The user is responsible for 
normalizing the result, if required. 

4. Example program 

This program computes a 1-D FFT on 1024 elements, where the real and imaginary parts are chosen at random. The 
inverse transform is then computed and the normalized results of this are compared with the original data values. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 1024 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps; 
  double a[NMAX], b[NMAX], aa[NMAX], bb[NMAX], vw[NMAX*10];  
  int i, n, isw, isn, ivw[NMAX*(10-3)]; 
 
  /* generate initial data */ 
  n = NMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (i=0;i<n;i++) { 
    ran = (i+1)*phai; 
    a[i] = ran - (int)ran; 
    ran = (i+n+1)*phai; 
    b[i] = ran - (int)ran; 
  } 
  for (i=0;i<n;i++) { 
    aa[i] = a[i]; 
    bb[i] = b[i]; 
  } 
  /* perform normal transform */ 
  isw = 0; 
  isn = 1; 
  ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw, &icon); 
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  /* perform inverse transform */ 
  isw = 1; 
  isn = -1; 
  ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw, &icon); 
  /* check results */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if ((fabs((a[i]/n - aa[i])/aa[i]) > eps) || 
        (fabs((b[i]/n - bb[i])/bb[i]) > eps)) { 
      printf("Inaccurate result\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information consult the entry for VCFT1 in the Fortran SSL II Extended Capabilities User’s Guide and [110]. 
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c_dvcft2 
Discrete complex Fourier transform (memory efficient, radix 2 FFT). 
ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw, 

&icon); 

1. Function 

Given one dimensional (n-term) complex time-series data }{ jx , this routine computes the discrete complex 
Fourier transform or its inverse transform by the Fast Fourier Transform (FFT) using a method suited to a vector 
processor. It is assumed that 2n , where   is a non-negative integer. 

Fourier transform 
When }{ jx  is input, the transform defined below is used to obtain the Fourier coefficients }{ kna . 
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Fourier inverse transform 
When }{ ka  is input, the transform defined below is used to obtain }{ jx . 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw, &icon); 

where: 
a double a[n] Input Real part of }{ jx  or }{ ka . 
  Output Real part of }{ kna  or }{ jx . 
b double b[n] Input Imaginary part of }{ jx  or }{ ka . 
  Output Imaginary part of }{ kna  or }{ jx . 
n int Input Number of terms n of the transform. 
isn int Input Control information, indicating that the transform or the inverse 

transform is to be performed (isn  0). 
isn = 1 for transform, 
isn = -1 for inverse transform. 
See Comments on use. 

isw int Input Control information, indicating the initial state of the transform. 
isw = 0 for first call, 
isw = 1 for the second and subsequent calls. 
See Comments on use. 
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vw double vw[5n] Work  
ivw int ivw[3n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 isn = 0 
 isw  0 or 1 
 n  2 , with   a non-negative integer. 

Bypassed. 

3. Comments on use 

Use of this routine 
This routine performs the high-speed calculation of a complex Fourier transform on a vector processor. On a general-
purpose computer other routines may be more appropriate. 

This routine is suitable for calculating only a single transform. The work array area is limited to the required minimum; it 
is a memory-efficient routine. For multiple transforms, if there is sufficient work array area available, the high-
performance routine c_dvcft1 is more suitable. 

isn 
Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used 
for strided access through data. Therefore, if the real and imaginary parts of }{ jx  or }{ ka  are stored at intervals of length 
i, specify isn = +i for a transform and isn = -i for an inverse transform. The results will be stored at intervals of length i. 
Note, however, that when i > 1, it is also necessary for the length of the work array vw to be at least 7n. 

When using a vector processor, the interval stride i should take a value of the form i = 2p + 1, p = 1,2,3,... for more 
efficient memory access. 

isw 
When multiple transforms are calculated, specify isw = 1 for the second and subsequent routine calls. This enables the 
routine to bypass the steps generating a trigonometric table and a list vector, both of which are needed for the transform, 
thus improving processing efficiency. The contents of arrays vw and ivw must not be changed between routine calls. 

Even if the number of terms n of each of the multiple transforms varies, specifying isw = 1 improves processing 
efficiency. However, transforms with the same number of terms should be executed consecutively for the highest 
efficiency. 

When calling this routine together with the real Fourier transform routine c_dvrft2, specifying isw = 1 improves 
processing efficiency. 

Work array size conversion table 
The table for 16   n   4096 is as follows. Figures in ( ) are the lengths when |isn| > 1. 
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  n Length of vw Length of 
ivw 

4 16 80( 112) 48

5 32 160( 224) 96

6 64 320 (448) 192

7 128 640 (896) 384

8 256 1280 (1792) 768

9 512 2560 (3584) 1536

10 1024 5120 (7168) 3072

11 2048 10240(14336) 6144

12 4096 20480 (28672) 12288

 

General definition of Fourier transform 
The discrete complex Fourier transform and its inverse transform can be defined as in (1) and (2) respectively: 
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where nie /2  . 

This routine obtains }{ kna  or }{ jx  corresponding to the left hand side of (1) or (2) respectively. The user is responsible 
for normalizing the result, if required. 

4. Example program 

This program performs the Fourier transform followed by the inverse transform and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 1024 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps; 
  double a[NMAX], b[NMAX], aa[NMAX], bb[NMAX], vw[NMAX*5];  
  int i, n, isw, isn, ivw[NMAX*3]; 
 
  /* generate initial data */ 
  n = NMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (i=0;i<n;i++) { 
    ran = (i+1)*phai; 
    a[i] = ran - (int)ran; 
    ran = (i+n+1)*phai; 
    b[i] = ran - (int)ran; 
  } 
  for (i=0;i<n;i++) { 
    aa[i] = a[i]; 
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    bb[i] = b[i]; 
  } 
  /* perform normal transform */ 
  isw = 0; 
  isn = 1; 
  ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw, &icon); 
  /* perform inverse transform */ 
  isw = 1; 
  isn = -1; 
  ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw, &icon); 
  /* check results */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if ((fabs((a[i]/n - aa[i])/aa[i]) > eps) || 
        (fabs((b[i]/n - bb[i])/bb[i]) > eps)) { 
      printf("Inaccurate result\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VCFT2 in the Fortran SSL II Extended Capabilities User's Guide. 
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c_dvcft3 
One-dimensional discrete complex Fourier transforms  
(Radix 2, for data sequence with a constant stride). 
ierr = c_dvcft3(x, n, ndist, &isw, isn, w, 

&icon); 

1. Function 

This routine c_dvcft3 performs a one-dimensional complex Fourier transform or its inverse transform using a radix 
2 FFT. 

 The length of data transformed n is a power of 2. 

The one-dimensional Fourier transform 
When }{ jx  is input, the transform defined below is calculated to obtain {nk}. 
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The one-dimensional Fourier inverse transform 
When {k} is input, the transform defined below is calculated to obtain {xj}. 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvcft3(x, n, ndist, &isw, isn, w, &icon); 

where: 
x dcomplex 

x[(n-1)*ndist 
+1] 

Input Complex data. The data {xj} or {k} to be transformed is stored in 
x[0], x[ndist], …,  x[(n-1)*ndist]. 

  Output Complex data. Transformed data  {nk}or {xj}  is stored in x[0], 
x[ndist],  …,x[(n-1)*ndist]. 
This is a complex one-dimensional array. 

n int Input Number of terms n of the transform. 
ndist int Input The stride size of data sequence in the array x . Positive integer. 

ndist = 1 : Data sequence is stored consecutively in the array x. 
isw  int Input Control information. 

isw = 1 : For the first call, to generate a trigonometric function table 
and control information in w and perform Fourier transform. 
isw  1 : For the second or consecutive call, to perform Fourier 
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transform for the data of the same length as in the first call.  The 
contents in w must not be changed as the second or consecutive call 
uses the values in w generated in the first call. 

  Output When isw is set to 1, isw is set to zero after performing transform. 
Therefore the second or consecutive transform for new data in x can 
be performed easily without setting isw. 

isn  Input Either the transform or the inverse transform is indicated. 
isn = 1 for the transform 
isn = -1 for the inverse transform 

w dcomplex   

w[2n+70] 

Work When isw is set to 1, the trigonometric function table for data length 
n is generated into w. 
Otherwise the contents generated in the first call is reused. 
See Comments on use. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 The value of n in second or consecutive call is 

different from that of first call. 
Bypassed. 

30000 The value of isn is incorrect. ndist is not a positive 
integer. 

30008 The length of data sequence to be transformed is 
not a power of 2. 

3. Comments on use 

General definition of Fourier transform 
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (1) and (2): 
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This routine calculates }{ kna  or }{ jx  corresponding to the left term of (1) or (2) respectively. Normalization of the 
results may be required. 

Use of the array w 
When this routine is called successively with a fixed value of n, the trigonometric function table in w, which is initialized 
at the first call with isw=1, is reused for the subsequent calls with isw1. 
Note that the array w is also used as a read-write work area even for the sebsequent calls. 
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4. Example program 

One-dimensional FFTs are computed for plural data sequences with a constant stride. 

 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" 
 
#define N     1024 
#define MULT  16 
#define NPAD  3 
#define NDIST (MULT+NPAD) 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
MAIN__() 
{ 
  dcomplex x[N][NDIST],w[2*N+70]; 
  int i,j; 
  int isw,icon,ierr; 
  double tmp; 
 
  for(j=0;j<MULT;j++)  
    for(i=0;i<N;i++) { 
      x[i][j].re=i/((double)N)+j; 
      x[i][j].im=0.0; 
    } 
/* 
   multiple forward transform 
*/ 
  isw=1; 
  for(j=0;j<MULT;j++) { 
    ierr=c_dvcft3((dcomplex*)&x[0][j],N,NDIST,&isw,1,w,&icon); 
    if(icon!=0) printf("icon=%d\n",icon); 
  } 
/* 
   multiple reverse transform 
*/ 
  for(j=0;j<MULT;j++) { 
    ierr=c_dvcft3((dcomplex*)&x[0][j],N,NDIST,&isw,-1,w,&icon); 
    if(icon!=0) printf("icon=%d\n",icon); 
  }  
 
  tmp=0.0; 
  for(j=0;j<MULT;j++) { 
    for(i=0;i<N;i++) { 
      tmp=max(tmp,fabs(x[i][j].re/N-(i/((double)N)+j))+fabs(x[i][j].im/N)); 
    } 
  } 
  printf("error = %le\n",tmp); 
  return 0; 
} 

 

5. Method 

Consult the entry for VCFT3 in the Fortran SSL II Extended Capabilities User's Guide. 
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c_dvcgd 
Solution of a system of linear equations with a symmetric positive 
definite sparse matrix (preconditioned CG method, diagonal storage 
format). 
ierr = c_dvcgd(a, k, nw, n, ndlt, b, ipc, 

itmax, isw, omega, eps, iguss, x, 

&iter, &rz, vw, ivw, &icon); 

1. Function 

This function solves a system of linear equations (1) using the preconditioned conjugate gradient (CG) method. 

 Ax b  (1) 

In (1), A is an n  n real normalized symmetric positive definite sparse matrix, b is a real constant vector and x is the real 
solution vector.  Both the real vectors are of size n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvcgd((double*)a, k, nw, n, ndlt, b, ipc, itmax, isw, omega, eps, 

iguss, x, &iter, &rz, vw, ivw, &icon); 

where: 
a double 

a[nw][k] 

Input 
 
Output 

Sparse matrix A stored in diagonal normalized symmetric positive 
definite storage format. See Comments on use. 
The contents of the array are altered on output when ipc=3. 

k int Input C fixed dimension of array a ( n). 
nw int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements (excluding the main diagonal), i.e. the lower bandwidth 
plus the upper bandwidth. 

n int Input Order n of matrix A. 
ndlt int ndlt[nw] Input Indicate the distance from the main diagonal vector.  See Comments on 

use. 
b double b[n] Input Constant vector b. 
ipc int Input Preconditioner control information.  See Comments on use. 

1 No preconditioner. 
2 Neumann preconditioner. 
3 Preconditioner with incomplete Cholesky decomposition. 

In this case, omega must be specified. 
itmax int Input Upper limit of iterations. 
isw int Input Control information.  See Comments on use. 

1 Initial call. 
2 Subsequent calls. 

The arrays, a, ndlt, vw and ivw, must NOT be changed as the 
values set on the initial call are reused. 
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omega double Input Modification factor for incomplete Cholesky decomposition, 0  omega 
 1.  Only use when ipc=3.  See Comments on use. 

eps double Input Tolerance for convergence test. 
When eps is zero or less, eps is set to   b , with   10 6 .  See 
Comments on use. 

iguss int Input Control information on whether to start the computation with input 
values in array x.  When iguss0 then starts computation with input 
from array. 

x double x[n] Input The starting values for the computation.  This is optional, see iguss. 
  Output Solution vector x. 
iter int Output Total number of iterations performed. 
rz double Output The square root of residual, rz, after convergence.  See Comments on use.
vw double 

vw[Vwlen] 
Work When ipc=3, Vwlen=k*(nw+6)+2*nband otherwise 

Vwlen=k*5+2*nband 
nband is size of the lower or upper bandwidth. 

ivw int ivw[Ivwlen] Work Ivwlen = (k+1)*4 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20001 Reached set maximum number of iterations. Processing stopped. 

The approximate solution obtained up to this 
stage is returned, but its precision is not 
guaranteed. 

20003 Break down occurred. 

30003 itmax  0 Processing stopped. 
30005 k < n 
30006 Could not perform incomplete 

LLT decomposition. 
30007 Pivot is negative. 
30089 nw is not an even number. 
30091 nband = 0 
30092 nw  0, n  0 
30093 k  0 
30096 omega < 0 or omega > 1 
30097 ipc < 1 or ipc > 3 
30102 Upper triangular part is not correctly stored. 
30103 Lower triangular part is not correctly stored. 
30104 The number of super-diagonals in upper 

triangular part is not equal to sub-diagonals in the 
lower triangular part. 

30105 isw  1 or 2 
30200 abs(ndlt[i]) > n-1 or 

ndlt[i] = 0;  0   i < nw 
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3. Comments on use 

a and ndlt 
The sparse matrix A is normalized in such a way that the main diagonal elements are ones. The non-zero elements other 
than the main diagonal elements are stored using the diagonal storage format. For details on normalization of systems of 
linear equations and the diagonal normalized symmetric positive definite storage format, see the Array storage formats 
section of the Introduction. 

isw 
When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with 
ipc=3, the solution on the first call is with isw=1, and solutions on subsequent calls are with isw=2.  In subsequent 
calls, the result of the incomplete Cholesky decomposition obtained on the initial call is reused. 

eps and  rz 
The solution is assumed to have converged in the m-th iteration when (2), the square root of residual rz is less than the set 
tolerance, eps: 

 rz eps  rz  (2) 

 r b Ax  m  (3) 

The residual vector r for the solution at the m-th iteration is obtained from (3) and with the preconditioner matrix 
M, rz is calculated by equation (4). 
 rz  r M rT 1  (4) 

ipc and omega 
Two types of preconditioners and a no-preconditioner option are provided. 

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a 
preconditioner based on an incomplete Cholesky decomposition to obtain the solution. 

If A I N  , the preconditioner M of the linear equation ( )I N x b  is as follows for the different values of ipc: 

1. No preconditioner, M I . 
2. Neumann, M I N  1 ( ) . 
3. Incomplete Cholesky decomposition, M LL T . 

 
When ipc=2, the preconditioner also must be a positive definite matrix.  For example, diagonal dominance of the matrix 
(I+N) is a sufficient condition for the positive definiteness.  Additionally, note that using a preconditioner may not 
improve the convergence when the preconditioner does not approximate the inverse matrix of A in some situations such 
that the maximum absolute value of the eigenvalues of the matrix N is larger than one. 

When ipc=3, the user must provide a value for omega (0  omega  1).  For values of omega, 0 gives the incomplete 
Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the 
two decompositions. 

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was 
found empirically to be in the range of 0.92 to 1.00. 
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4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    100 
#define UBANDW    2 
 
MAIN__() 
{ 
  double one=1.0, bcoef=10.0, eps=1.e-6; 
  int   ierr, icon, nw, nub, n, i, j, k; 
  int   ipc, itmax, isw, iguss, iter; 
  int   ndlt[2 * UBANDW], ivw[4 * (NMAX + 1)]; 
  double sum, omega, rz; 
  double a[2 * UBANDW][NMAX], b[NMAX], x[NMAX]; 
  double vw[NMAX*(2 * UBANDW + 6) + 2 * UBANDW]; 
 
  /* initialize normalized symmetric matrix and vector */ 
  nub = UBANDW; 
  nw  = nub + nub; 
  n   = NMAX; 
  k   = NMAX; 
  for (i=0; i<nub; i++) { 
    for (j=0  ; j<n-i; j++) a[i][j] = -1.0; 
    for (j=n-i; j<n  ; j++) a[i][j] =  0.0; 
    ndlt[i] = i; 
    for (j=0; j<i; j++) a[nub + i][j] =  0.0; 
    for (j=i; j<n; j++) a[nub + i][j] = -1.0; 
    ndlt[nub + i] = -i; 
  } 
  for (j=0; j<n; j++) { 
    sum = bcoef; 
    for (i=0; i<nw; i++) sum -= a[i][j]; 
    for (i=0; i<nw; i++) a[i][j] /= sum; 
    b[j] = bcoef / sum; 
  } 
  /* solve the system of linear equations */ 
  ipc   = 3; 
  itmax = 8 * (int) sqrt ((double) n + 0.1); 
  isw   = 1; 
  omega = 0.98; 
  iguss = 0; 
  ierr = c_dvcgd ((double*)a, k, nw, n, ndlt, b, ipc, itmax, isw, 
                  omega, eps, iguss, x, &iter, &rz, vw, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvcgd failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check vector */ 
  for (i=0;i<n;i++) 
    if (fabs(x[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The standard conjugate gradient algorithm is used, see [42]. For the preconditioner method based on the incomplete 
Cholesky decomposition, see [77]. For further information consult the entry for VCGD in the Fortran SSL II Extended 
Capabilities User’s Guide II. 
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c_dvcge 
Solution of a system of linear equations with a symmetric positive 
definite sparse matrix (preconditioned CG method, ELLPACK storage 
format). 
ierr = c_dvcge(a, k, nw, n, icol, b, ipc, 

itmax, isw, omega, eps, iguss, x, 

&iter, &rz, vw, ivw, &icon); 

1. Function 

This function solves a system of linear equations (1) using the preconditioned conjugate gradient (CG) method. 

 Ax b  (1) 

In (1), A is an n  n real normalized symmetric positive definite sparse matrix, b is a real constant vector and x is the real 
solution vector.  Both the real vectors are of size n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvcge((double*)a, k, nw, n, (int*)icol, b, ipc, itmax, isw, omega, 

eps, iguss, x, &iter, &rz, vw, ivw, &icon); 

where: 
a double 

a[nw][k] 

Input 
 
Output 

Sparse matrix A stored in the ELLPACK normalized symmetric positive 
definite storage format. See Comments on use. 
The contents of the array are altered on output when ipc=3. 

k int Input C fixed dimension of array a ( n). 
nw int Input The size of the first dimension of array a. 

When the maximum number of non-zero elements of the row vector for 
the upper triangular matrix is NSU and NSL for the lower triangular, then 
nw=2·max(NSU,NSL).  See Comments on use. 

n int Input Order n of matrix A. 
icol int 

icol[nw][k] 

Input Column indices used in the ELLPACK format, showing to which column 
vector the elements corresponding to a belong.  See Comments on use. 

b double b[n] Input Constant vector b. 
ipc int Input Preconditioner control information.  See Comments on use. 

1 No preconditioner. 
2 Neumann preconditioner. 
3 Preconditioner with incomplete Cholesky decomposition. 

In this case, omega must be specified. 
itmax int Input Upper limit of iterations. 
isw int Input Control information.  See Comments on use. 

1 Initial call. 
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2 Subsequent calls. 
The arrays, a, icol, vw and ivw, must NOT be changed as the 
values set on the initial call are reused. 

omega double Input Modification factor for incomplete Cholesky decomposition, 0  omega 
 1.  Only use when ipc=3.  See Comments on use. 

eps double Input Tolerance for convergence test. 
When eps is zero or less, eps is set to   b , with   10 6 .  See 
Comments on use. 

iguss int Input Control information on whether to start the computation with input 
values in array x.  When iguss0 then starts computation with input 
from array. 

x double x[n] Input The starting values for the computation.  This is optional, see iguss. 
  Output Solution vector x. 
iter int Output Total number of iterations performed. 
rz double Output The square root of residual, rz, after convergence.  See Comments on use.
vw double 

vw[Vwlen] 
Work When ipc=3, Vwlen=k*nw+4*n otherwise Vwlen=n*3 

ivw int ivw[Ivwlen] Work When ipc=3, Ivwlen=k*nw+4*n otherwise Ivwlen=n*4 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 a, icol elements are permuted to U/L format. Processing continues. 
20001 Reached set maximum number of iterations. Processing stopped. 

The approximate solution obtained up to this 
stage is returned, but its precision is not 
guaranteed. 

20003 Break down occurred. 

30003 itmax  0 Processing stopped. 
30005 k < n 
30006 Could not perform incomplete 

LLT decomposition. 
30007 Pivot is negative. 
30092 nw  0 
30093 k  0, n  0 
30096 omega < 0 or omega > 1 
30097 ipc < 1 or ipc > 3 
30098 isw  1 or 2 
30100 nw  2 * max(NSU, NSL) 
30104 Either the upper or lower triangular part is not 

stored correctly. 
negative 
number 

One of the rows in matrix A was found with a 
non-zero diagonal element.  The row number on 
which it occurred is returned by icon as a 
negative value 

Processing stopped. 
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3. Comments on use 

a, nw and icol 
The sparse matrix A is normalized in such a way that the main diagonal elements are ones.  The non-zero elements other 
than the main diagonal elements are stored using the ELLPACK storage format. For details on normalization of systems 
of linear equations and ELLPACK normalized symmetric positive definite storage format, see the Array storage formats 
section of the Introduction. 

Apart from the incomplete Cholesky decomposition preconditioner (ipc=3), both the storage formats for ELLPACK, 
normalized and unnormalized, are acceptable for the function.  In the standard case (unnormalized), nw=2·max(NSU, 
NSL) is not required.  For further information consult the Array storage formats section of the Introduction. 

isw 
When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with 
ipc=3, the solution on the first call is with isw=1, and solutions on subsequent calls are with isw=2.  In subsequent 
calls, the result of the incomplete Cholesky decomposition obtained on the initial call is reused. 

eps and rz 
The solution is assumed to have converged in the m-th iteration when (2), the square root of residual rz is less than the set 
tolerance, eps: 

 rz eps  rz  (2) 

 r b Ax  m  (3) 

The residual vector r for the solution at the m-th iteration is obtained from (3) and with the preconditioner matrix M, rz is 
calculated by equation (4). 

 rz  r M rT 1  (4) 

ipc and omega 
Two types of preconditioners and a no-preconditioner option are provided. 

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a 
preconditioner based on an incomplete Cholesky decomposition to obtain the solution. 

If A I N  , the preconditioner M of the linear equation ( )I N x b  is as follows for the different values of ipc: 

1. No preconditioner, M I . 
2. Neumann, M I N  1 ( ) . 
3. Incomplete Cholesky decomposition, M LL T . 

 
When ipc=2, the preconditioner also must be a positive definite matrix.  For example, diagonal dominance of the matrix 
(I+N) is a sufficient condition for the positive definiteness.  Additionally, note that using a preconditioner may not 
improve the convergence when the preconditioner does not approximate the inverse matrix of A in some situations such 
that the maximum absolute value of the eigenvalues of the matrix N is larger than one. 

When ipc=3, the user must provide a value for omega (0  omega  1).  For values of omega, 0 gives the incomplete 
Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the 
two decompositions. 
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For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was 
found empirically to be in the range of 0.92 to 1.00. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    100 
#define UBANDW    1 
 
MAIN__() 
{ 
  double cf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6; 
  int   ierr, icon; 
  int   nw, n, k, id, ipc, itmax, isw, iter, iguss, i, j; 
  int   icol[2 * UBANDW][NMAX], ivw[NMAX * (2 * UBANDW + 5)]; 
  double sum, omega, rz; 
  double a[2 * UBANDW][NMAX], b[NMAX], x[NMAX]; 
  double vw[NMAX * (2 * UBANDW + 5)]; 
 
  /* initialize matrix and vector */ 
  nw  = 2 * UBANDW; 
  n   = NMAX; 
  k   = NMAX; 
  id  = 1; 
  for (i=0; i<nw; i++) 
    for (j=0; j<n; j++) { 
      a[i][j] = 0.0; 
      icol[i][j] = j+1; 
    } 
  for (j=0; j<n-id; j++) { 
    a[0][j] = cf; 
    icol[0][j] = j+id+1; 
  } 
  for (j=id; j<n; j++) { 
    a[1][j] = cf; 
    icol[1][j] = j-id+1; 
  } 
  for (j=0; j<n; j++) { 
    sum = bcoef; 
    for (i=0; i<nw; i++) sum -= a[i][j]; 
    for (i=0; i<nw; i++) a[i][j] /= sum; 
    b[j] = bcoef / sum; 
  } 
  /* solve the system of linear equations */ 
  ipc   = 3; 
  itmax = 8 * (int) sqrt ((double) n + 0.1); 
  isw   = 1; 
  omega = 0.98; 
  iguss = 0; 
  ierr = c_dvcge ((double*)a, k, nw, n, (int*)icol, b, ipc, itmax, 
                  isw, omega, eps, iguss, x, &iter, &rz, vw, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvcge failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check vector */ 
  for (i=0; i<n; i++) 
    if (fabs(x[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 
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5. Method 

The standard conjugate gradient algorithm is used, see [42]. For the preconditioner method based on the incomplete 
Cholesky decomposition, see [77]. For further information consult the entry for VCGE in the Fortran SSL II Extended 
Capabilities User’s Guide II. 
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c_dvcos1 
Discrete cosine transform (radix 2 FFT). 
ierr = c_dvcos1(a, n, tab, vw, ivw, &icon); 

1. Function 

Given n+1 data points { }x j , obtained by dividing the first half of a 2 period, even function x(t) into n equal parts, that is 

n
njjxx j


 ,,...,1,0),( . 

The discrete cosine transform or its inverse transform is computed by a Fast Fourier Transform (FFT) algorithm suited to 
a vector processor. 

 It is assumed that n  2  , where  is a non-negative integer. 

Cosine transform 
When { }x j is input, the transform defined below is calculated to obtain }2{ kna . 

nkjkxkxxna
n

j
jnk ,...,1,0),cos(4)cos(222

1

1
0  





  

where n/ . 

Cosine inverse transform 
When { }ak  is input, the transform defined below is calculated to obtain }4{ jx . 

njjkajaax
n

k
knj ,...,1,0,)cos(4)cos(224
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where n/ . 

2. Arguments 

The routine is called as follows: 
ierr = c_dvcos1(a, n, tab, vw, ivw, &icon); 

where: 
a double a[n+2] Input  { }x j  or { }ak  where a[n+1] is ignored. 
  Output  }2{ kna  or }4{ jx  where a[n+1] always contains zero. 
n int Input Number of terms n of the transform. 
tab double 

tab[Tlen] 
Output Trigonometric function table used in the transformation. Tlen = 2n+4. 

vw double 

vw[Rlen] 
Work Rlen  max( ( ) / , )n  1 2 1 . 

ivw int ivw[Ilen] Work Ilen   n max( , ) / 4 2 2 . 
icon int Output Condition code. See below. 
The complete list of condition codes is:  
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Code  Meaning  Processing 
0 No error Completed. 
30000 n  2  (   0  is an integer) Bypassed. 

3. Comments on use 

Use of this function 
This function performs the high-speed calculation of a discrete cosine transform on a vector processor. Other routines 
might be more appropriate on a general purpose computer. 

Multiple transforms 
Multiple transforms are performed efficiently because the generation of the trigonometric table and list vector are only 
performed on the first call to the function. It is therefore essential that tab, vw and ivw remain unchanged between calls 
to this function. 

The contents of these three arguments are valid even when the number of terms n are different for the multiple transforms. 
However, transforms with the same number of terms should be executed consecutively for the highest efficiency. 

Work array size conversion table 
The table for 16 4096 n is as follows: 

  n Length of 
tab 

Length of 
vw 

Length of 
ivw 

4 16 36 40 16
5 32 68 96 32
6 64 132 224 64
7 128 260 512 192
8 256 516 1152 512
9 512 1028 2560 1280

10 1024 2052 5632 3072
11 2048 4100 12288 7168
12 4096 8196 26624 16384

 
General definition of discrete cosine transform 
The discrete cosine transform and its inverse transform can be defined as shown below in (1) and in (2) respectively. 
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where n/ .  

This function computes }2{ kna  or }4{ jx corresponding to the left hand side of (1) or (2). The user is responsible for 
normalizing the result, if required. 
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4. Example program 

This program computes a cosine transform on 1024 elements, where the input elements are chosen at random. The inverse 
transform is then computed and the normalized results of this are compared with the original data values. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 1024 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, scale, eps; 
  double a[NMAX+2], b[NMAX+2], tab[2*NMAX+4], vw[NMAX*(10+1)/2];  
  int i, n, ivw[NMAX*(10-4)/2]; 
 
  /* generate initial data */ 
  n = NMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (i=0;i<n+1;i++) { 
    ran = (i+1)*phai; 
    a[i] = ran - (int)ran; 
  } 
  for (i=0;i<n+1;i++)  
    b[i] = a[i]; 
  /* perform normal transform */ 
  ierr = c_dvcos1(a, n, tab, vw, ivw, &icon); 
  /* perform inverse transform */ 
  ierr = c_dvcos1(a, n, tab, vw, ivw, &icon); 
  /* check results */ 
  scale = 1.0/(8*n); 
  eps = 1e-6; 
  for (i=0;i<n+1;i++)  
    if (fabs((scale*a[i]-b[i])/b[i]) > eps) {       
      printf("Inaccurate result\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information consult the entry for VCOS1 in the Fortran SSL II Extended Capabilities User’s Guide and [108]. 
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c_dvcpf1 
One-dimensional prime factor discrete complex Fourier transforms. 
ierr = c_dvcpf1(x, n, &isw, isn, &iout, y, w, 

iw, &icon); 

1. Function 

This function performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT. 

The length of data transformed n must satisfy the following condition. 

The size must be expressed by a product of a mutual prime factor p, selected from the following numbers: 
factor p (p  {2, 3, 4, 5, 7, 8, 9, 16, 25}) 

 
The one-dimensional Fourier transform 
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}. 
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The one-dimensional Fourier inverse transform 
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}. 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvcpf1(x, n, &isw, isn, &iout, y, w, iw, &icon); 

where: 
x dcomplex 

x[n] 

Input Complex data. 

n int Input The length of the data transformed. 
isw int Input Control information. 
   isw = 1 For the first call, to generate a trigonometric function table in W 

and  a control information in IW and perform Fourier transform.
   isw  1 For the second or consecutive call, to perform Fourier transform 

for the data of the same length as in the first call.  In this time the 
contents set in w and iw is used, therefore the values in n, isn, 
w and iw must not be changed after the first call. 

  Output When isw is set to 1, isw is set to zero after performing transform. 
Therefore the second or consecutive transform for new data in x can be 
performed easily without setting isw. 
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isn int Input Either the transform or the inverse transform is indicated. 
isn = 1 for the transform 
isn = 1 for the inverse transform. 

iout int Output Information about where for transformed data to be stored. The transformed 
data is stored into different area due to the length of data n. 

   iout = 1 Transformed data is stored into y[i], i = 0, ... , n  1. 
   iout  1 Transformed data is stored into x[i], i = 0, ... , n  1. 
y dcomplex 

y[n] 

Output When iout = 1, the complex data transformed is stored. The area of this 
array must be different from that of array x. 

w dcomplex 

w[n] 

Work When isw is set to 1, the trigonometric function table for the transform 
specified by n and isn is stored. 
Otherwise the contents in the trigonometric function table generated in the 
first call with isw = 1 is used as input. 

iw int iw[20] Work Control information for transform. 
When isw = 1, the control information regarding transform with data length 
n and specific isn is stored. 
Otherwise the control information set in the first call with isw = 1 is used as 
input. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 The number n can not be factored into the 

product of the mutual prime factor in {2, 3, 4, 5, 
7, 8, 9, 16, 25}. 

Bypassed. 

20100 The value of n or isn in the second or 
consecutive call is different from that in the first 
call. 

3. Comments on use 

General definition of Fourier transform 
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4). 
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where, n = exp(2i / n). 

This subroutine calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the 
results may be required. 
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4. Example program 

A one-dimensional FFT is computed. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define N 560 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
int MAIN__(void) 
{ 
    dcomplex w[N], x[N], y[N], tmp; 
    double   error; 
    int      iw[20], isw, isn, iout, icon, i; 
 
    for (i=0; i<N; i++) { 
      x[i].re=(double)(i+1)/(double)N; 
      x[i].im=0.0; 
    } 
 
    /* do the forward transform */ 
    isw=1, isn=1; 
    c_dvcpf1(x, N, &isw, isn, &iout, y, w, iw, &icon); 
 
    if (icon != 0) { 
      printf("icon = %d",icon); 
      exit(1); 
    } 
 
    /* do the reverse transform */ 
    if (iout != 1) { 
      isw=1, isn=-1; 
      c_dvcpf1(x, N, &isw, isn, &iout, y, w, iw, &icon); 
    } else { 
      isw=1, isn=-1; 
      c_dvcpf1(y, N, &isw, isn, &iout, x, w, iw, &icon); 
    } 
 
    if (icon != 0) { 
      printf("icon = %d",icon); 
      exit(1); 
    } 
 
    error = 0.0; 
    for (i=0; i<N; i++) { 
      tmp.re = fabs(x[i].re/(double)N - (double)(i+1)/(double)N); 
      tmp.im = fabs(x[i].im/(double)N); 
      tmp.re += tmp.im; 
      error=max(error,tmp.re); 
    } 
 
    printf("error = %e\n", error); 
} 

5. Method 

Consult the entry for VCPF1 in the Fortran SSL II Extended Capabilities User's Guide II. 
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c_dvcpf3 
Three-dimensional prime factor discrete complex Fourier transform. 
ierr = c_dvcpf3(a, b, l, m, n, isn, vw1, vw2, 

&icon); 

1. Function 

Given three-dimension complex time-series data }{
321 jjjx , where the size of each dimension is ,,, 321 nnn  this routine 

performs discrete complex Fourier transform or the inverse transform by using the prime factor Fourier transform (prime 
factor FFT). The size of each dimension must satisfy the following conditions: 

 the size must be a product of mutually prime factors selected from }16,9,8,7,5,4,3,2{ . 
 the size of  the first dimension must be an even number 2 , where  satisfies the previous condition. 
 
Three-dimensional complex Fourier transform 
When }{

321 jjjx  is provided, the transform defined below is used to obtain }{
321321 kkknnn   
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where 1,...,0  rr nk , and )/2exp( rr ni  , r = 1, 2, 3. 

Three-dimensional complex Fourier inverse transform 
 When }{

321 kkk is provided, the inverse transform defined below is used to obtain }{
321 jjjx . 
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where 1,...,0  rr nj , and )/2exp( rr ni  , r = 1, 2, 3. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvcpf3((double *) a, (double *) b, l, m, n, isn, vw1, vw2, &icon); 

where: 
a double 

a[n][m][l] 

Input Real part of }{
321 jjjx  or }{

321 kkk . 
See Comments on use for data storage. 

  Output Real part of }{
321321 kkknnn   or }{

321 jjjx . 
See Comments on use for data storage. 

b double 

b[n][m][l] 

Input Imaginary  part of }{
321 jjjx  or }{

321 kkk . 
See Comments on use for data storage. 

  Output Imaginary part of }{
321321 kkknnn   or }{

321 jjjx . 
See Comments on use for data storage. 

l int Input Number of data items of the third array dimension 1n , with l   5040. 
m int Input Number of data items of the second dimension 2n , with m   5040. 
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n int Input Number of data items of the first array dimension 3n , with n   5040. 
isn int Input Control information. 

isn   0 for the transform 
isn   0 for the inverse transform. 

vw1 double 

vw1[l*m*n] 

Work  

vw2 double 

vw2[l*m*n] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 One of the following has occurred: 

 l, m, or n exceeds 5040 
 l, m, or n cannot be factored into the product 

of mutually prime factors in 
{2,3,4,5,7,8,9,16} 

Bypassed. 

30000 l, m, or n is zero or a negative number Bypassed. 

3. Comments on use 

Data storage 
The real parts of data }{

321 jjjx , }{
321321 kkknnn   or }{

321 kkk are stored in array a, with  

a[j3][j2][j1] = Re(
321 jjjx ),             1,...,1,0  ii nj ,    i = 1, 2, 3. 

or a[k3][k2][k1] = Re(
321321 kkknnn  ) or Re(

321 kkk ),       1,...,1,0  ii nk ,   i = 1, 2, 3. 

The imaginary parts of }{
321 jjjx , }{

321321 kkknnn   or }{
321 kkk  are stored in array b, with 

b[j3][j2][j1] = Im(
321 jjjx ),             1,...,1,0  ii nj ,    i = 1, 2, 3. 

or b[k3][k2][k1] = Im(
321321 kkknnn  ) or Im(

321 kkk ),       1,...,1,0  ii nk ,   i = 1, 2, 3. 

Number of terms 
The number of terms in a dimension is a product of mutually prime factors from {2,3,4,5,7,8,9,16}. The maximum 
number for each dimension is 5 7 9 16 = 5040. 

When this routine is called with input argument n = 1, a two-dimensional complex prime factor fast Fourier transform is 
determined. 

When this routine is called with input arguments n = 1 and m = 1, a one-dimensional complex prime factor fast Fourier 
transform is determined. 

General definition of three-dimensional complex Fourier transform 
The three dimensional discrete complex Fourier transform and its inverse transform can be defined as shown below in (1) 
and (2) respectively. 
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where 1,...,0  rr nj , and )/2exp( rr ni  , r = 1, 2, 3. 

This routine calculates }{
321321 kkknnn   or }{

321 jjjx  corresponding to the left hand terms of (1) or (2) respectively. The 
user must normalize the results, if required. 

4. Example program 

This program performs the Fourier transform followed by the inverse transform and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N1 4 
#define N2 3 
#define N3 2 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps; 
  double a[N3][N2][N1], b[N3][N2][N1], vw1[N3][N2][N1], vw2[N3][N2][N1]; 
  double aa[N3][N2][N1], bb[N3][N2][N1]; 
  int i, j, k, cnt, l, m, n, isn, pr; 
 
  /* generate initial data */ 
  l = N1; 
  m = N2; 
  n = N3; 
  pr = l*m*n; 
  phai = (sqrt(5.0)-1.0)/2; 
  cnt = 1; 
  for (k=0;k<n;k++) { 
    for (j=0;j<m;j++) { 
      for (i=0;i<l;i++) { 
 ran = cnt*phai; 
 a[k][j][i] = ran - (int)ran; 
 b[k][j][i] = a[k][j][i] - 0.5; 
 cnt++; 
      } 
    } 
  } 
  /* keep copy */ 
  for (k=0;k<n;k++) { 
    for (j=0;j<m;j++) { 
      for (i=0;i<l;i++) { 
 aa[k][j][i] = a[k][j][i]; 
 bb[k][j][i] = b[k][j][i]; 
      } 
    } 
  } 
  /* perform normal transform */ 
  isn = 1; 
  ierr = c_dvcpf3((double*)a, (double*)b, l, m, n, isn,  
    (double*)vw1, (double*)vw2, &icon); 
  /* perform inverse transform */ 
  isn = -1; 
  ierr = c_dvcpf3((double*)a, (double*)b, l, m, n, isn,  
    (double*)vw1, (double*)vw2, &icon); 
  /* check results */ 
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  eps = 1e-6; 
  for (k=0;k<n;k++) { 
    for (j=0;j<m;j++) { 
      for (i=0;i<l;i++) { 
 if ((fabs((a[k][j][i]/pr - aa[k][j][i])/aa[k][j][i]) > eps) || 
     (fabs((b[k][j][i]/pr - bb[k][j][i])/bb[k][j][i]) > eps)) { 
   printf("WARNING: result inaccurate\n"); 
   exit(1); 
 } 
      } 
    } 
  } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VCPF3 in the Fortran SSL II Extended Capabilities User's Guide II and references [17] and [120]. 
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c_dvcrd 
Solution of a system of linear equations with a nonsymmetric or 
indefinite sparse matrix (MGCR method, diagonal storage format). 
ierr = c_dvcrd(a, k, ndiag, n, nofst, b, 

itmax, eps, iguss, ndirv, x, 

&iter, vw, &icon); 

1. Function 

This function solves a system of linear equations (1) using the modified generalized conjugate residuals (MGCR) method. 

 Ax b  (1) 

In (1), A is an n  n real nonsymmetric or indefinite sparse matrix, b is a real constant vector, and x is the real solution 
vector.  Both the real vectors are of size n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvcrd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, ndirv, x, 

&iter, vw, &icon); 

where: 
a double 

a[ndiag][k] 

Input Sparse matrix A stored in diagonal storage format.  See Comments on 
use. 

k int Input C fixed dimension of array a ( n). 
ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements. 
n int Input Order n of matrix A. 
nofst int 

nofst[ndiag] 

Input Distance from the main diagonal vector corresponding to diagonal 
vectors in array a.  Super-diagonal vector rows have positive values.  
Sub-diagonal vector rows have negative values.  See Comments on use. 

b double b[n] Input Constant vector b. 
itmax int Input Upper limit of iterations. 
eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 10-6.  See Comments on use. 
iguss int Input Control information on whether to start the computation with input 

values in array x.  When iguss0 then starts computation with input 
from array. 

ndirv int Input The number of search direction vectors used in the MGCR method (1).  
Generally, a small number between 10 and 100. 

x double x[n] Input The starting values for the computation.  This is optional and relates to 
argument iguss. 

  Output Solution vector x. 
iter int Output Total number of iterations performed. 
vw double Work Vwlen = n*(ndirv+5)+ndirv*(ndirv+1) 
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vw[Vwlen] 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20001 Reached the set maximum number of iterations. Processing stopped. 

The approximate solution obtained up to this 
stage is returned, but its precision is not 
guaranteed. 

30000 One of the following has occurred: 
 n < 1 
 k < 1 
 n > k 
 ndiag < 1 
 itmax   0 

Bypassed. 

30004 ndirv < 1 
32001 abs(nofst[i]) > n-1; 0   i < ndiag 

3. Comments on use 

a and nofst 
The coefficients of matrix A are stored in two arrays using the diagonal storage format.  For full details, see the Array 
storage formats section of the Introduction. 

eps 
In the MGCR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and 
eps, the solution is judged to have converged.  The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of matrix A and eps. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    100 
#define UBANDW    2 
#define LBANDW    1 
#define NSDIR    50 
 
MAIN__() 
{ 
  double one=1.0, bcoef=10.0, eps=1.e-6; 
  int   ierr, icon, ndiag, nub, nlb, n, i, j, k; 
  int   itmax, iguss, ndirv, iter; 
  int   nofst[UBANDW + LBANDW + 1]; 
  double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX]; 
  double vw[NMAX * (NSDIR + 5) + NSDIR * (NSDIR + 1)]; 
 
  /* initialize nonsymmetric matrix and vector */ 
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  nub   = UBANDW; 
  nlb   = LBANDW; 
  ndiag = nub + nlb + 1; 
  n     = NMAX; 
  k     = NMAX; 
  for (i=1; i<=nub; i++) { 
    for (j=0  ; j<n-i; j++) a[i][j] = -1.0; 
    for (j=n-i; j<n  ; j++) a[i][j] =  0.0; 
    nofst[i] = i; 
  } 
  for (i=1; i<=nlb; i++) { 
    for (j=0  ; j<i+1; j++) a[nub + i][j] =  0.0; 
    for (j=i+1; j<n  ; j++) a[nub + i][j] = -2.0; 
    nofst[nub + i] = -(i + 1); 
  } 
  nofst[0] = 0; 
  for (j=0; j<n; j++) { 
    a[0][j] = bcoef; 
    for (i=1; i<ndiag; i++) a[0][j] -= a[i][j]; 
    b[j] = bcoef; 
  } 
  /* solve the system of linear equations */ 
  itmax = n; 
  iguss = 0; 
  ndirv = NSDIR; 
  ierr = c_dvcrd ((double*)a, k, ndiag, n, nofst, b, itmax, eps, 
                  iguss, ndirv, x, &iter, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvcrd failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check vector */ 
  for (i=0;i<n;i++) 
    if (fabs(x[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For the MGCR method, see [66]. The algorithm is a modification of the generalized conjugate residuals method. The 
algorithm is robust and is always faster than the GMRES method, see [92]. For further information consult the entry for 
VCRD in the Fortran SSL II Extended Capabilities User’s Guide II. 
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c_dvcre 
Solution of a system of linear equations with a nonsymmetric or 
indefinite sparse matrix (MGCR method, ELLPACK storage format). 
ierr = c_dvcre(a, k, iwidt, n, icol, b, itmax, 

eps, iguss, ndirv, x, &iter, vw, 

&icon); 

1. Function 

This function solves a system of linear equations (1) using the modified generalized conjugate residuals (MGCR) method. 

 Ax b  (1) 

In (1), A is an n  n real nonsymmetric or indefinite sparse matrix, b is a real constant vector and x is the real solution 
vector.  Both the real vectors are of size n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvcre((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss, 

ndirv, x, &iter, vw, &icon); 

where: 
a double 

a[iwidt][k] 

Input Sparse matrix A stored in ELLPACK storage format.  See Comments on 
use. 

k int Input C fixed dimension of array a ( n). 
iwidt int Input The maximum number of non-zero elements in any row vectors of A 

(0). 
n int Input Order n of matrix A. 
icol int 

icol[iwidt][k

] 

Input Column indices used in the ELLPACK format, showing to which 
column the elements corresponding to a belong.  See Comments on use. 

b double b[n] Input Constant vector b. 
itmax int Input Upper limit of iterations. 
eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 10-6.  See Comments on use. 
iguss int Input Control information on whether to start the computation with input 

values in array x.  When iguss0 then starts computation with input 
from array. 

ndirv int Input The number of search direction vectors used in the MGCR method (1).  
Generally, a small number between 10 and 100. 

x double x[n] Input The starting values for the computation.  This is optional and relates to 
argument iguss. 

  Output Solution vector x. 
iter int Output Total number of iterations performed. 
vw double Work Vwlen = n*(ndirv+5)+ndirv*(ndirv+1) 
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vw[Vwlen] 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20001 Reached the set maximum number of iterations. Processing stopped. 

The approximate solution obtained up to this 
stage is returned, but its precision is not 
guaranteed. 

30000 One of the following has occurred: 
 n < 1 
 k < 1 
 n > k 
 iwidt < 0 
 itmax  0 

Bypassed. 

30004 ndirv < 1 

3. Comments on use 

a and icol 
The coefficients of matrix A are stored in two arrays using the ELLPACK storage format.  For full details, see the Array 
storage formats section of the Introduction. 

eps 
In the MGCR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and 
eps, the solution is judged to have converged.  The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of matrix A and eps. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX     100 
#define UBANDW     2 
#define LBANDW     1 
#define NSDIR     50 
 
MAIN__() 
{ 
  double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6; 
  int   ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, ndirv, iter, i, j, ix; 
  int   icol[UBANDW + LBANDW + 1][NMAX]; 
  double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX]; 
  double vw[NMAX * (NSDIR + 5) + NSDIR * (NSDIR + 1)]; 
 
  /* initialize matrix and vector */ 
  nub   = UBANDW; 
  nlb   = LBANDW; 
  iwidt = UBANDW + LBANDW + 1; 
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  n     = NMAX; 
  k     = NMAX; 
  for (i=0; i<n; i++) b[i] = bcoef; 
  for (i=0; i<iwidt; i++) 
    for (j=0; j<n; j++) { 
      a[i][j] = 0.0; 
      icol[i][j] = j+1; 
    } 
  for (j=0; j<nlb; j++) { 
    for (i=0; i<j; i++) a[i][j] = lcf; 
    a[j][j] = bcoef - (double) j * lcf - (double) nub * ucf; 
    for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf; 
    for (i=0; i<=nub+j; i++) icol[i][j] = i+1; 
  } 
  for (j=nlb; j<n-nub; j++) { 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef - (double) nlb * lcf - (double) nub * ucf; 
    for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf; 
    for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb; 
  } 
  for (j=n-nub; j<n; j++){ 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef - (double) nlb * lcf - (double) (n-j-1) * ucf; 
    for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf; 
    ix = n - (j+nub-nlb-1); 
    for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i; 
  } 
  /* solve the system of linear equations */ 
  itmax = n; 
  iguss = 0; 
  ndirv = NSDIR; 
  ierr = c_dvcre ((double*)a, k, iwidt, n, (int*)icol, b, itmax, 
                  eps, iguss, ndirv, x, &iter, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvcre failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check vector */ 
  for (i=0; i<n; i++) 
    if (fabs(x[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For the MGCR method, see [66]. The algorithm is a modification of the generalized conjugate residuals method. The 
algorithm is robust and is always faster than the GMRES method, see [92]. For further information consult the entry for 
VCRE in the Fortran SSL II Extended Capabilities User’s Guide II. 

 



 c_dvgsg2  

 633 

c_dvgsg2 
Selected eigenvalues and corresponding eigenvectors of a real symmetric 
generalized eigenvalue problem: BxAx   (parallel bisection and 
inverse iteration methods). 
ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, ev, 

k, vw, ivw, &icon); 

1. Function 

This function calculates m eigenvalues for the generalized eigenvalue problem expressed by (1) for an n order real 
symmetric matrix A and n order real positive definite matrix B in descending (or ascending) order, using the parallel 
bisection method. 

 Ax Bx   (1) 

It also calculates the corresponding m eigenvectors, x1, x2 , …, xm using the inverse iteration method. Eigenvectors must 
satisfy the relation expressed by: 

 X BX IT    

where  X x x x 1 2, , , m  with 1 m n . 

2. Arguments 

The routine is called as follows: 
ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, (double *)ev, k, vw, ivw, &icon); 

where: 
a double a[Alen] Input Symmetric matrix A with dimension of Alen = n(n+1)/2. The 

matrix is stored in symmetric storage format. See the Array storage 
formats section in the Introduction. 

Output The content is altered on output. 
b double b[Blen] Input Positive definite matrix B with dimension of Blen = n(n+1)/2. The 

matrix is stored in symmetric storage format. See the Array storage 
formats section in the Introduction. 

Output The content is altered on output. 
n int Input Order n of matrix A. 
m int  Input Number m of the eigenvalues to be calculated. Calculate in descending 

order when m = +m. Calculate in ascending order when m = -m. 
epsz double Input Relative error test of the pivot in the LLT decomposition of B. A default 

value is used when a non-positive value is specified. See Comments on 
use. 

epst double  Input  Upper bound of the absolute error used in eigenvalue convergence test. A 
default value is used when a non-positive value is specified. See 
Comments on use. 
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e double e[|m|] Output  Contains eigenvalues stored in descending or ascending order depending 
on the sign of m. 

ev double 

ev[|m|][k] 

Output Eigenvector corresponding to eigenvalue e[i] is stored at ev[i][j], 
j=0,1,…,n-1. 

k int Input C fixed dimension of array ev ( n ). 
vw double 

vw[15*n] 

Work   

ivw int ivw[7*n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 n = 1 ev[0][0] is set to 1/sqrt(b[0]) and e[0] 

is set to a[0]/b[0] 
15000 Some eigenvectors were not calculated. The uncalculated eigenvectors are set to zero. 
20000 No eigenvectors were calculated. All eigenvectors are set to zero. 
28000 Pivot became negative during LLT decomposition 

of B. B is indefinite. 
Stopped. 

29000 Pivot became relatively zero during LLT 

decomposition of B. B may be singular. 
Stopped. 

30000 One of the following has occurred: 
 m = 0 
 n < m 
 k < n 

Bypassed. 

3. Comments on use 

epsz 
The default value for epsz is 16 , where   is the unit round-off. 

If epsz for this routine is set at 10s , the condition code (icon=29000) is set assuming that the pivot is zero and 
processing is terminated when the pivot value is zero to s decimal digits of accuracy during the LLT decomposition of the 
symmetric matrix B. 

Even when the pivot becomes small, calculation can continue if a sufficiently small value of epsz is specified, but the 
calculation accuracy cannot be guaranteed. 

When the pivot value becomes negative during decomposition, the matrix B is assumed to be indefinite and calculation is 
terminated, setting the condition code appropriately (icon=28000). 

epst 
The default value of the argument epst is expressed by (2) where   is the unit round-off. 

 epst    max( , )max min  (2) 

where max  and min  are the upper and lower bounds of the existence range (given by Gerschgorin’s theorem) of the 
eigenvalues of BxAx  . 
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When very large and small absolute eigenvalues co-exist and a convergence test is performed using (2), it is generally 
difficult to calculate smaller eigenvalues with adequate precision. In such cases, smaller eigenvalues may be calculated 
with higher precision by setting epst to a smaller value. However, processing speed decreases as the number of 
iterations increases. 

See the entry for VSEG2 in the Fortran SSL II Extended Capability User’s Guide I to obtain details on the convergence 
criterion. 

4. Example program 

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 matrix. 

#include <stdlib.h> 
#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, i, j, k, ij, ivw[7*NMAX]; 
  double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2]; 
  double e[NMAX], ev[NMAX][NMAX], vw[15*NMAX], epsz, epst; 
 
  /* initialize matrix */ 
  n = NMAX; 
  ij = 0; 
  for (i=0;i<n;i++) { 
    for (j=0;j<i;j++) { 
      a[ij] = n-i; 
      b[ij++] = 0; 
    } 
    a[ij] = n-i; 
    b[ij++] = 1; 
  } 
  k = NMAX; 
  m = n; 
  epsz = 0; 
  epst = 0; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, (double*)ev, k, vw, ivw, &icon); 
  if (icon >= 20000) { 
    printf("ERROR: c_dvgsg2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("e-value %d: %10.4f\n",i+1,e[i]); 
    printf("e-vector:"); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ",ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

This function calculates m eigenvalues and eigenvectors of a generalized eigenvalue problem (1) with an n by n real 
symmetric matrix A and an n by n positive definite matrix B. For more information consult the entry for VGSG2 for the 
generalized eigenvalue problem and VSEG2 for the related symmetric eigenvalue value in the Fortran SSL II Extended 
Capabilities User's Guide as well as [16] or [118]. 
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c_dvhevp 
Eigenvalues and eigenvectors of a Hermitian matrix 
(tridiagonalization, multisection method, and inverse iteration) 
ierr = c_dvhevp(ar, ai, k, n, nf, nl, ivec, 

&etol, &ctol, nev, e, maxne, m, 

evr, evi, vw, iw, &icon); 

1. Function 

This routine calculates specified eigenvalues and, optionally, eigenvectors of an n-dimensional Hermitian matrix. 

 Ax = x. (1) 

2. Arguments 

The routine is called as follows: 
ierr = c_dvhevp((double *)ar, (double *)ai, k, n, nf, nl, ivec, &etol, &ctol, 

nev, e, maxne, (int *)m, (double *)evr, (double *)evi, vw, iw, 

&icon); 

where: 
ar double 

ar[n][k] 

Input The real part of Hermitian matrix A, stored in the Hermitian storage 
format. See Array storage formats in the Introduction section. 

ai double 

ai[n][k] 

Input The imaginary part of Hermitian matrix A, stored in the Hermitian 
storage format. See Array storage formats in the Introduction section. 

k int Input C fix dimension of matrix A. (k  n) 
n int Input Order n of matrix A. 
nf int Input Number assigned to the first eigenvalue to be acquired by numbering 

eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 
that one number is assigned to one eigenvalue.) 

nl int Input Number assigned to the last eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 
that one number is assigned to one eigenvalue.) 

ivec int Input Control information. 
ivec = 1 if both the eigenvalues and eigenvectors are sought. 
ivec  1 if only the eigenvalues are sought. 

etol double Input Tolerance for determining whether an eigenvalue is distinct or 
numerically multiple.  

  Output etol is set to the default value of 16103   when etol is set to less 
than it. See Comments on use. 

ctol double Input Tolerance (  etol) for determining whether adjacent eigenvalues are 
approximately multiple, i.e. clustered. 

  Output When ctol is less than etol, ctol is set to etol. See Comments 
on use. 

nev int nev[3] Output Number of eigenvalues calculated. 
nev[0] indicates the number of distinct eigenvalues, 
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nev[1] indicates the number of distinct clusters, 
nev[2] indicates the total number of eigenvalues including 
multiplicities. 

e double 

e[maxne] 

Output Eigenvalues. Stored in e[i-1], i = 1,...,nev[2]. 

maxne int Input Maximum number of eigenvalues that can be computed. See Comments 
on use. 

m int 

m[2][maxne] 

Output Information about the multiplicity of the computed eigenvalues.  
m[0][i-1] indicates the multiplicity of the i-th eigenvalue = i , 
m[1][i-1] indicates the size of the i-th cluster of eigenvalues, 
i = 1,...,min{maxne, nev[2]}. 

evr double 

evr[maxne][k] 

Output When ivec = 1, the real part of the eigenvectors corresponding to the 
computed eigenvalues. Stored by row in evr[i-1][j-1], 
i = 1, ... ,nev[2], j = 1,...,n. 

evi double 

evi[maxne][k] 

Output When ivec = 1, the imaginary part of the eigenvectors corresponding 
to the computed eigenvalues. Stored by row in evi[i-1][j-1], 
i = 1, ... , nev[2], j = 1,...,n. 

vw double vw[17k] Work  
iw int iw[Ivwlen] Work 1289  maxneIvwlen . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 The total number of eigenvalues exceeded 

maxne during computation of multiple and/or 
clustered eigenvalues. 

Discontinued. The eigenvectors cannot be 
computed. Eigenvalues are returned but are not 
stored taking into account multiplicities. See 
Comments on use. 

30000 One of the following has occurred: 
 n < 1 
 k < n 
 nf < 1 
 nl > n 
 nl < nf 
 maxne < nl-nf+1 

Bypassed. 

30100 The input matrix may not be a Hermitian matrix. Bypassed. 

3. Comments on use 

etol and ctol 
If the eigenvalues j , ksssj  ,...,1, , )0( k satisfy 
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with   = etol, and if 1s  and 1ks  do not satisfy (2), then the eigenvalues j , ksssj  ,...,1, , are considered 
to be identical, that is, a single eigenvalue of multiplicity 1k . 
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The default value of etol is 16103  . Using this value, the eigenvalues are refined to machine precision. 

When (2) is not satisfied for   = etol, 1i  and i  are assumed to be distinct eigenvalues. 

If (2) is satisfied for   = ctol (but is not satisfied with   = etol) for eigenvalues j , ktttj  ,...,1, , but not for 

1t  and 1kt , then eigenvalues j , ktttj  ,...,1, , are considered to be approximately multiple, that is, clustered, 
though distinct (not numerically multiple). In order to obtain an invariant subspace, eigenvectors corresponding to 
clustered eigenvalues are computed using orthogonal starting vectors and are re-orthogonalized. 

If ctol < etol, then ctol = etol is set. 

maxne 
Assume r eigenvalues are requested. Note that if the first or last requested eigenvalue has a multiplicity greater than 1 then 
more than r eigenvalues, are obtained. The corresponding eigenvectors can be computed only when the corresponding 
eigenvector storage area is sufficient. 

The maximum number of computable eigenvalues can be specified in maxne. If the total number of eigenvalues exceeds 
maxne, icon = 20000 is returned. The corresponding eigenvectors cannot be computed. In this case, the eigenvalues are 
returned, but they are not stored repeatedly according to multiplicities. 

When all eigenvalues are distinct, it is sufficient to set  maxne = nl–nf+1. 

When the total number of eigenvalues to be sought exceeds maxne, the necessary value for maxne for seeking 
eigenvalues again is returned in nev[2]. 

4. Example program 

This program obtains eigenvalues and prints the results. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define K              512 
#define N                K 
#define NF               1 
#define NL              28 
#define MAXNE      NL-NF+1 
#define NVW           19*K 
#define NIW    9*MAXNE+128 
 
MAIN__() 
{ 
  double ar[N][K], ai[N][K]; 
  double e[MAXNE], evr[MAXNE][K], evi[MAXNE][K]; 
  double vw[NVW]; 
  double etol, ctol; 
  int    nev[3], m[2][MAXNE], iw[NIW]; 
  int    ierr, icon; 
  int    i, j, k, n, nf, nl, maxne, ivec; 
 
  n     = N; 
  k     = K; 
  nf    = NF; 
  nl    = NL; 
  ivec  = 1; 
  maxne = MAXNE; 
  etol  = 1.0e-14; 
  ctol  = 5.0e-12; 
 
  printf(" Number of data points = %d\n", n); 
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  printf(" Parameter k = %d\n", k); 
  printf(" Eigenvalue calculation tolerance = %12.4e\n", etol); 
  printf(" Cluster tolerance = %12.4e\n", ctol); 
  printf(" First eigenvalue to be found is %d\n", nf); 
  printf(" Last eigenvalue to be found is %d\n", nl); 
 
  /* Set up real and imaginary parts of matrix in AR and AI */ 
  for(i=0; i<n; i++) { 
    for(j=0; j<n; j++) { 
      ar[i][j] = (double)(i+j+2)/(double)n; 
      if(i==j) { 
        ai[i][j] = 0.0; 
        ar[i][j] = (double)(j+1); 
      } else { 
        ai[i][j] = (double)((i+1)*(j+1))/(double)(n*n); 
      } 
    } 
  } 
  for(i=0; i<n; i++) { 
    for(j=0; j<n; j++) { 
      if(i > j) ai[i][j] = -ai[i][j]; 
    } 
  } 
  /* Call complex eigensolver */ 
  ierr = c_dvhevp ((double*)ar, (double*)ai, k, n, nf, nl, ivec, &etol, &ctol, nev, e, 
                  maxne, (int*)m, (double*)evr, (double*)evi, vw, iw, &icon); 
  if (icon > 20000) { 
    printf("ERROR: c_dvhevp failed with icon = %d\n", icon); 
    exit(1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf(" Number of Hermitian eigenvalues = %d\n", nev[2]); 
  printf(" Eigenvaluse of complex Hermitian matrix\n"); 
  for(i=0; i<nev[2]; i++) { 
    printf("  e[%d] = %12.4e\n", i, e[i]); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for VHEVP in the Fortran SSL II Extended Capabilities User's Guide II and [81], [118]. 
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c_dvland 
Eigenvalues and corresponding eigenvectors of a symmetric sparse 
matrix (Lanczos method, diagonal storage format). 
ierr = c_dvland(a, k, ndiag, n, nofst, ivec, 

ix, eps, nmin, nmax, nlmin, nlmax, 

kr, maxc, e, indx, &ncmin, &ncmax, 

ev, vw, ivw, &icon); 

1. Function 

This routine computes a few of the largest and/or smallest eigenvalues and corresponding eigenvectors of a large-
scale symmetric sparse matrix A using the Lanczos method. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvland((double *) a, k, ndiag, n, nofst, ivec, ix, eps, nmin, nmax, 

nlmin, nlmax, kr, maxc, e, indx, &ncmin, &ncmax, (double *) ev, 

vw, iwv, &icon); 

where: 
a double 

a[ndiag][k] 

Input Matrix A. Stored in diagonal storage format for general sparse matrices. 
See Array storage formats in the Introduction section for details. 

k int Input C fixed dimension of arrays a and ev (  n). 
ndiag int Input Number (  1) of diagonals of matrix A that contain non-zero elements.
n int Input Order n (   1) of matrix A. 

nofst int 

nofst[ndiag] 

Input Offsets from the main diagonal corresponding to diagonals stored in A. 
Upper diagonals have positive offsets, the main diagonal has a zero 
offset, and the lower diagonals have negative offsets. See Array storage 
formats in the Introduction section for details. 

ivec int Input Control information indicating whether an initial vector is specified in 
ev[0][i], i = 0,…,n-1. 
ivec = 1 when the initial vector in ev is to be used 
ivec   1 when the initial vector is to be generated randomly. 

ix int Input Seed value used to generate a random number sequence when an initial 
vector is generated randomly for ivec   1. ix must be an integer 
value from 1 to 100,000. 

eps double Input Tolerance to decide whether the computed eigenpair ),( ii x  is to be 
accepted. When eps is zero or less, eps is set to 610 . See Comments 
on use. 

nmin int Input Number (  0) of smallest eigenvalues and corresponding eigenvectors 
to be computed. nmin should be a small number and can be 0 if  
nmax   1. 

nmax int Input Number (  0) of largest eigenvalues and corresponding eigenvectors to 
be computed. nmax should be a small number and can be 0 if 
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nmin   1. 
nlmin int Input Number of eigenvalues (  nmin) to be used in the search for the 

nmin smallest eigenvalues. Generally, nlmin = 2 nmin. See 
Comments on use. 

nlmax int Input Number of eigenvalues (  nmax) to be used in the search for the 
nmax largest eigenvalues. Generally, nlmax = 2 nmax. See 
Comments on use. 

kr int Input Maximum dimension (  nlmin + nlmax) of the Krylov subspace 
generated in the Lanczos method. See Comments on use. 

maxc int Input Maximum number (  0) of eigenvalues in a cluster, for example 10. 
See Comments on use. 

e double e[Elen] Output Largest and smallest eigenvalues stored in ascending order using the 
indirect index list indx. Elen = nlmin + nlmax. The smallest are 
stored in e[indx[i-1]], i = 1,...,ncmin, the largest are stored in 
e[indx[nmin+nmax–i]], i = 1,...,ncmax. 

indx int indx 

[nmin+nmax] 

Output Stores indirect indices of arrays e and ev. The eigenvector 
corresponding to eigenvalue e[indx[i]] is stored in 
ev[indx[i]][j], j = 0,...,n-1; i = 0,...,nmin+nmax - 1. 

ncmin int Output Number of smallest eigenvalues and corresponding eigenvectors 
computed. 

ncmax int Output Number of largest eigenvalues and corresponding eigenvectors 
computed. 

ev double 

ev[Evlen][k] 
Input When ivec = 1, an initial vector is stored in ev[0][j],  

j = 0,...,n - 1. Evlen = nlmin + nlmax. 
  Output Computed eigenvectors. The eigenvector corresponding to eigenvalue 

e[indx[i]] is stored in ev[indx[i]][j], j = 0,...,n - 1;  
i = 0,...,nmin+nmax - 1. 

vw double 

vw[Vwlen] 
Work kkrkrmaxc 7)1)(14()2)((  mdmnlVwlen , with 

mnl = max{nlmin, nlmax}, md = nlmin+nlmax. 
ivw int ivw[Ivwlen] Work 128)(11  mdmnlIvwlen maxc , with  

mnl = max{nlmin, nlmax}, md = nlmin+nlmax. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Number of eigenvalues in a cluster exceeded 

maxc. Eigenvectors cannot be computed. 
Discontinued. 

30000 One of the following has occurred: 
 n < 1 
 k < n 
 ndiag < 1 
 ix < 1 or ix > 100000 
 nlmin < nmin or nlmax < nmax 
 nmin < 0 or nmax < 0 
 nmin = nmax = 0 

Bypassed. 
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Code  Meaning  Processing 
30004 kr < nlmin + nlmax Bypassed. 
32001 |nofst[i-1]| > n – 1, i = 1,...,ndiag Bypassed. 
39001 The initial vector is 0 or near 0. Bypassed. 
39006 The input matrix is not symmetric. Bypassed. 

3. Comments on use 

ivec and ix 
The results obtained using the Lanczos method depend on the choice of initial vector. If the initial vector contains large 
components in the directions of the requested eigenvectors, then good approximations to the requested eigenvalues and 
eigenvectors will be computed. If these components are small or absent in the initial vector then the desired eigenpairs 
may not be obtained; however, the returned values may be good approximations to some eigenpairs of the matrix A. 

In most cases, a good initial vector is not known and in these instances the initial vector is generated randomly. 

Accuracy 
When the eigenpair ),( ii x  satisfies |||||| iiii   xAx , it is accepted as an eigenvalue and eigenvector of matrix 
A. Otherwise, the pair is rejected. Here, eps , and  indicates the dimension of the Krylov subspace. 

nlmin and nlmax 
In the Lanczos method spurious eigenvalues and eigenvectors, not belonging to the original matrix A, may be obtained. 
As these values will be rejected, the number of eigenvalues and eigenvectors used in the search must be sufficiently large. 
The values of nlmin and nlmax should be chosen carefully. In most cases, nlmin = nmin and nlmax = nmax are too 
small. Generally, nlmin = 2 nmin and nlmax = 2 nmax will suffice. 

kr 
The quality of the computed eigenvalues and eigenvectors depends on the dimension kr of the Krylov subspace and the 
initial vector. Increasing kr enables the user to obtain better approximate eigenvalues and eigenvectors. However, since 
memory and computional costs are increased, kr should be chosen as small as possible. In some cases, it is not possible to 
choose kr smaller than n (for example, the one-dimensional discrete Laplacian). When kr is equal to n, this routine 
works correctly but may be unacceptably slow. kr should exceed n. 

maxc 
A cluster is a set of very close eigenvalues with the distance between adjacent eigenvalues (relative to the eigenvalue 
magnitude) of order machine epsilon. 

General comments 
The Lanczos method is not a deterministic procedure, and hence is not as robust as, for example, the method based on the 
tridiagonalization by Householder reduction. 

4. Example program 

This program finds the largest and smallest eigenvalues and corresponding eigenvectors, and prints the result. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NDIM 15 
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#define NDIAG 5 
#define NMIN 1 
#define NMAX 1 
#define NEV NMIN+NMAX 
#define NLMIN 2*NMIN 
#define NLMAX 2*NMAX 
#define NEVL NLMIN+NLMAX 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k; 
  int ivec, ix, nmin, nmax, nlmin, nlmax, kr, maxc, ncmin, ncmax; 
  double a[NDIAG][NDIM], e[NEVL], ev[NEVL][NDIM]; 
  int ndiag, nofst[NDIAG], indx[NEV], *iw, mnl, md; 
  double *wv, eps; 
 
  /* initialize matrix */ 
  ndiag = NDIAG; 
  n = NDIM; 
  k = NDIM; 
 
  for (i=0;i<n;i++) { 
    a[0][i] = -6; 
    a[1][i] = -3; 
    a[2][i] = 10; 
    a[3][i] = -3; 
    a[4][i] = -6; 
  } 
  a[0][0] = 0; 
  a[0][1] = 0; 
  a[1][0] = 0; 
  a[3][n-1] = 0; 
  a[4][n-2] = 0; 
  a[4][n-1] = 0; 
  nofst[0] = -2; 
  nofst[1] = -1; 
  nofst[2] = 0 ; 
  nofst[3] = 1; 
  nofst[4] = 2; 
  ivec = 0; 
  ix = 1; 
  eps = 1e-6; 
  nmin = NMIN; 
  nmax = NMAX; 
  nlmin = NLMIN; 
  nlmax = NLMAX; 
  kr = n; 
  maxc = 10; 
  mnl = max(nlmin,nlmax); 
  md = nlmin+nlmax; 
  wv = (double*)malloc(((maxc+mnl)*(kr+2)+md*(kr+1)+7*k+14*(kr+1)) 
         *sizeof(double)); 
  iw = (int*)malloc((11*(maxc+mnl)+md+128)*sizeof(int)); 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dvland((double*)a, k, ndiag, n, nofst, ivec, ix, eps, nmin, nmax, 
    nlmin, nlmax, kr, maxc, e, indx, &ncmin, &ncmax,  
    (double*)ev, wv, iw, &icon); 
  printf("icon = %i\n", icon); 
  /* print smallest eigenvalues and eigenvectors */ 
  for (i=0;i<ncmin;i++) { 
    printf("eigenvalue:  %7.4f\n", e[indx[i]]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[indx[i]][j]); 
    printf("\n"); 
  } 
  /* print largest eigenvalues and eigenvectors */ 
  for (i=0;i<ncmax;i++) { 
    printf("eigenvalue:  %7.4f\n", e[indx[NEV-ncmax+i]]); 
    printf("eigenvector:  "); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ", ev[indx[NEV-ncmax+i]][j]); 
    printf("\n"); 
  } 
  free(wv); 
  free(iw); 
  return(0); 
} 
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5. Method 

For information on the Lanczos method consult [25] and [42]. The algorithm used for this routine generates a tridiagonal 
matrix T of size less than (or equal) to that of the matrix A. The eigenvalues and eigenvectors of this tridiagonal matrix are 
computed using a multisection sturm count procedure and inverse iteration, respectively. See the entry for VTDEV in the 
Fortran SSL II Extended Capabilities User's Guide II. The eigenvectors of matrix A are recovered from those of T using 
the Krylov subspace basis vectors generated by the Lanczos process. 
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c_dvlax 
Solution of a system of linear equations with a real matrix (blocking LU-
decomposition method). 
ierr = c_dvlax(a, k, n, b, epsz, isw, &is, vw, 

ip, &icon); 

1. Function 

This function solves a system of linear equations (1) using the blocking LU-decomposition (Gaussian elimination 
method). 

 Ax b  (1) 

In (1), A is an n  n regular real matrix, b is a real constant vector and x is the real solution vector.  Both the real vectors 
are of size n (n1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dvlax((double*)a, k, n, b, epsz, isw, &is, vw, ip, &icon); 

where: 
a double 

a[n][k] 

Input 
Output 

Matrix A. 
The contents of the array are altered on output. 

k int Input C fixed dimension of array a ( n). 
n int Input Order n of matrix A. 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
epsz double Input Tolerance for relative zero test of pivots in decomposition process of A 

( 0).  When epsz is zero, a standard value is used.  See Comments on 
use. 

isw int Input Control information. 
When solving several sets of equations that have the same coefficient 
matrix, set isw=1 for the first set, and isw=2 for the second and 
subsequent sets.  Only argument b is assigned a new constant vector b 
and the others are unchanged.  See Comments on use. 

is int Output Information for obtaining the determinant of matrix A.  When the n 
elements of the calculated diagonal of array a are multiplied together, 
and the result is then multiplied by is, the determinant is obtained. 

vw double vw[n] Work  
ip int ip[n] Work  
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
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Code  Meaning  Processing 
20000 Either all of the elements of some row are zero or 

the pivot became relatively zero.  It is highly 
probable that the coefficient matrix is singular. 

Discontinued. 

30000 One of the following has occurred: 
 k < n 
 n < 1 
 epsz < 0 
 isw 1 or 2 

Bypassed. 

3. Comments on use 

epsz 
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning: 

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix A  ( )aij , that 
is: 

epsz ij
k
kk aa max  

then the relative pivot value is assumed to be zero and processing terminates with icon=20000.  The standard value of 
epsz is 16µ, where µ is the unit round-off.  If the processing is to proceed at a lower pivot value, epsz will be given the 
minimum value but the result is not always guaranteed. 

isw 
When solving several sets of linear equations with same coefficient matrix, specify isw=2 for any second and subsequent 
sets after successfully completing the first with isw=1.  This will bypass the LU-decomposition section and go directly to 
the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise. The value 
of is is identical for all sets and any valid isw. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, isw, is; 
  double epsz, eps; 
  double a[NMAX][NMAX], b[NMAX], x[NMAX], vw[NMAX]; 
  int ip[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=i;j<n;j++) { 
      a[i][j] = n-j; 
      a[j][i] = n-j; 
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    } 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  k = NMAX; 
  /* initialize constant vector b = a*x */ 
  ierr = c_dmav((double*)a, k, n, n, x, b, &icon); 
  epsz = 1e-6; 
  isw = 1; 
  /* solve system of equations */ 
  ierr = c_dvlax((double*)a, k, n, b, epsz, isw, &is, vw, ip, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvlax failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The blocking LU-decomposition method is used for matrix decomposition before solving the system of linear equations 
by forward and backward substitutions.  For further information consult the entry for VLAX in the Fortran SSL II 
Extended Capabilities User’s Guide. 
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c_dvlbx 
Solution of a system of linear equations with a band matrix (Gaussian 
elimination). 
ierr = c_dvlbx(a, n, nh1, nh2, b, epsz, isw, 

&is, ip, vw, &icon); 

1. Function 

This function solves a system of linear equations (1) using the Gaussian elimination method. 

 Ax b  (1) 

In (1), A is an n  n real band matrix with lower bandwidth h1 and upper bandwidth h2, b is a real constant vector and x is 
the real solution vector.  Both the real vectors are of size n (n>h10, n>h20). 

2. Arguments 

The routine is called as follows: 
ierr = c_dvlbx(a, n, nh1, nh2, b, epsz, isw, &is, ip, vw, &icon); 

where: 
a double a[Alen] Input Matrix A sored in band storge format, with Alen=(2*nh1+nh2+1)*n 
  Output LU-decomposed matrices L and U. Suitable for subsequent calls to this 

routine. See Comments on use. 
n int Input Order n of matrix A. 
nh1 int Input Lower bandwidth h1 of matrix A. 
nh2 int Input Upper bandwidth h2 of matrix A. 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
epsz double Input Value for relative zero test of pivots ( 0).  When epsz is zero, a 

standard value is used.  See Comments on use. 
isw int Input Control information. 

When solving several sets of equations that have the same coefficient 
matrix, set isw=1 for the first set, and isw=2 for the second and 
subsequent sets.  Only argument b is assigned a new constant vector b 
and the others are unchanged.  See Comments on use. 

is int Output Information for obtaining the determinant of matrix A.  See Comments 
on use. 

ip int ip[n] Output Transposition vector that shows the history of the exchanges of rows 
performed during partial pivoting. 

vw double vw[n] Work  
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
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Code  Meaning  Processing 
20000 All the elements of a row of matrix A are zero, or 

pivot is relative zero.  Strong possibility that 
matrix A is singular. 

Processing stopped. 

30000 One of the following has occurred: 
 n  nh1 
 n  nh2 
 nh1 < 0 
 nh2 < 0 
 epsz < 0 
 isw  1 or 2 

Bypassed. 

3. Comments on use 

a 
The band matrix A is stored in band storage format, for details see the Array storage formats section of the Introduction. 

epsz 
In this function, the case of the pivot value being less than epsz is considered relative zero and processing is stopped 
with icon=20000. 

The standard value of epsz is 16µ, where µ is the unit round-off. 

isw 
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and 
subsequent sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and 
go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than 
otherwise. 

Calculation of determinant - is 
The elements of matrix U are stored in array a. Therefore, the determinant is obtained by multiplying the is value by n 
diagonal elements, that is, the multiplication of a[(2*h1+h2+1)*i+h1], i=0,…,n-1. 

Storage space 
In order to save space in the data storage area, this function stores band matrices by taking advantage of their 
characteristics.  However, depending on bandwidth size, a data storage area that is larger than c_dvalu may be required.  
In such cases, space in the data storage area can be save by using c_dvalu. 

Characteristics of this function can be exploited when 12 21  hhn . 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
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#define min(i,j) (i<j) ? i : j 
#define max(i,j) (i>j) ? i : j 
 
#define NMAX 100 
#define H1MAX 2 
#define H2MAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh1, nh2, i, j, jmin, jmax, isw, is, ip[NMAX]; 
  double epsz, eps, sum; 
  double a[(2*H1MAX+H2MAX+1)*NMAX], b[NMAX], x[NMAX], vw[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  nh1 = H1MAX; 
  nh2 = H2MAX; 
  for (i=0;i<n*(2*nh1+nh2+1);i++) 
    a[i] = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh1,0); 
    jmax = min(i+nh2,n-1); 
    for (j=jmin;j<=jmax;j++) 
      a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i); 
  } 
  for (i=0;i<n;i++) { 
    x[i] = i+1; 
  } 
  /* initialize constant vector b = a*x */ 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh1,0); 
    jmax = min(i+nh2,n-1); 
    sum = 0; 
    for (j=jmin;j<=jmax;j++) 
      sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j]; 
    b[i] = sum; 
  } 
  epsz = 1e-6; 
  isw = 1; 
  /* solve system of equations */ 
  ierr = c_dvlbx(a, n, nh1, nh2, b, epsz, isw, &is, ip, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvlbx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

After LU-decomposition of the outer product type (see [42]) is performed, equation (1) is solved through forward and 
backward substitutions.  For further information consult the entry for VLBX in the Fortran SSL II Extended Capabilities 
User’s Guide II. 
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c_dvldiv 
The inverse of a real symmetric positive definite matrix decomposed into 

TLDL  factors. 
ierr = c_dvldiv(a, n, vw, &icon); 

1. Function 

The inverse matrix 1A   of an nn  symmetric positive definite matrix A given in the decomposed form of TLDLA   
is given by: 

   1111   LDLA T  (1) 

where L is the unit lower triangular matrix, and D is the diagonal matrix. 1n . 

2. Arguments 

The routine is called as follows: 
ierr = c_dvldiv(a, n, vw, &icon); 

where: 
a double a[Alen] Input Matrices L and 1D  (obtained from routine c_dvsldl). Stored in 

symmetric positive definite storage format. See Array storage formats in 
the Introduction section for further details. .2/)1(  nnAlen  

  Output Lower triangular part of inverse A 1  stored by columns. 
n int Input Order n of matrix A. 
vw double vw[n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Matrix was not positive definite. Continued. 
30000 1n  Bypassed. 

3. Comments on use 

General comments 
Prior to calling this function, the factors L and 1D  must be obtained by the function, c_dvsldl, and passed into this 
routine via parameter a to obtain the inverse. For solving linear equations use the c_dvlsx function. This is far more 
efficient than calculating the inverse matrix. Users should only use this function when calculating the inverse matrix is 
unavoidable. 

4. Example program 

This program solves a system of linear equations by calculating the inverse matrix and then checks the result. 
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#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij; 
  double epsz, eps, sum; 
  double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX],  y[NMAX], vw[2*NMAX]; 
  int ivw[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  ij = 0; 
  for (j=0;j<n;j++) 
    for (i=j;i<n;i++)  
      a[ij++] = n-i; 
  for (i=0;i<n;i++) { 
    x[i] = i+1; 
    b[i] = 0; 
    y[i] = 0; 
  } 
  /* initialize constant vector b = a*x */ 
  ij = 0; 
  for (i=0;i<n;i++) { 
    sum = a[ij++]*x[i]; 
    for (j=i+1;j<n;j++) { 
      b[j] = b[j] + a[ij]*x[i]; 
      sum = sum + a[ij++]*x[j]; 
    } 
    b[i] = b[i]+sum; 
  } 
  epsz = 1e-6; 
  /* LDL decomposition of system of equations */ 
  ierr = c_dvsldl(a, n, epsz, vw, ivw, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvsldl failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* find matrix inverse from LDL factors */ 
  ierr = c_dvldiv(a, n, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvldiv failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate y = a*b */ 
  ij = 0; 
  for (i=0;i<n;i++) { 
    sum = a[ij++]*b[i]; 
    for (j=i+1;j<n;j++) { 
      y[j] = y[j] + a[ij]*b[i]; 
      sum = sum + a[ij++]*b[j]; 
    } 
    y[i] = y[i]+sum; 
  } 
  /* compare x and y */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-y[i])/y[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information on the algorithm used consult the entry for LDIV in the Fortran SSL II User's Guide, and [71]. 
Note that the storage format used in LDIV is different from that used in this routine, but the underlying algorithm is the 
same. 
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c_dvldlx 
Solution of a system of linear equations with a symmetric positive 
definite matrix in LDL T  - decomposed form. 
ierr = c_dvldlx(b, fa, n, &icon); 

1. Function 

This routine solves a system of linear equations with an LDL T  decomposed nn  symmetric positive definite coefficient 
matrix, 

 bxLDL T . (1) 

In (1) L is a unit lower triangular matrix, D is a diagonal matrix, b is a constant vector, and x is the solution vector. Here, 
1n .  

2. Arguments 

The routine is called as follows: 
ierr = c_dvldlx(b, fa, n, &icon); 

where: 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
fa double 

fa[Falen] 
Input Matrix D 1  + (L – I). Stored in symmetric positive definite storage 

format. See Array storage formats in the Introduction section for further 
details. .2/)1(  nnFalen  

n int Input Order n of matrices L and D. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Coefficeint matrix is not positive definite. Continued. 
30000 n < 1 Bypassed. 

3. Comments on use 

A system of linear equations can be solved by calling the routine c_dvsldl to LDL T -decompose the coefficient matrix 
before calling this routine. The input argument fa of this routine is the same as the output argument a of c_dvsldl. 
Alternatively the system of linear equations can be solved by calling the single rotuine c_dvlsx. 

4. Example program 

This program solves a system of linear equations using LDL T  decomposition, and checks the result. 

#include <stdlib.h> 
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#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij; 
  double epsz, eps, sum; 
  double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX]; 
  int ivw[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  ij = 0; 
  for (j=0;j<n;j++) 
    for (i=j;i<n;i++)  
      a[ij++] = n-i; 
  for (i=0;i<n;i++) { 
    x[i] = i+1; 
    b[i] = 0; 
  } 
  /* initialize constant vector b = a*x */ 
  ij = 0; 
  for (i=0;i<n;i++) { 
    sum = a[ij++]*x[i]; 
    for (j=i+1;j<n;j++) { 
      b[j] = b[j] + a[ij]*x[i]; 
      sum = sum + a[ij++]*x[j]; 
    } 
    b[i] = b[i]+sum; 
  } 
  epsz = 1e-6; 
  /* LDL decomposition of system of equations */ 
  ierr = c_dvsldl(a, n, epsz, vw, ivw, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvsldl failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* solve decomposed system of equations */ 
  ierr = c_dvldlx(b, a, n, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvldlx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VLDLX in the Fortran SSL II Extended Capabilities User's Guide. 
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c_dvlsbx 
Solution of a system of linear equations with a symmetric positive 
definite band matrix (modified Cholesky decomposition). 
ierr = c_dvlsbx(a, n, nh, b, epsz, isw, 

&icon); 

1. Function 

This function solves a system of linear equations (1) using the modified Cholesky method. 

 Ax b  (1) 

In (1), A is an n  n symmetric positive definite real band matrix with upper and lower bandwidths, h, b is a real constant 
vector and x is the real solution vector.  Both the real vectors are of size n (n>h0). 

2. Arguments 

The routine is called as follows: 
ierr = c_dvlsbx(a, n, nh, b, epsz, isw, &icon); 

where: 
a double a[Alen] Input Symmetric band matrix A with Alen=(nh+1)*n.  The diagonal and 

lower triangular elements of the band matrix. 
  Output Decomposed matrices D and L 
   See Comments on use. 
n int Input Order n of matrix A. 
nh int Input Lower bandwidth h. 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
epsz double Input Value for relative zero test of pivots ( 0).  When epsz is zero, a 

standard value is used.  See Comments on use. 
isw int Input Control information. 

When solving several sets of equations that have the same coefficient 
matrix, set isw=1 for the first set, and isw=2 for the second and 
subsequent sets.  Only argument b is assigned a new constant vector b 
and the others are unchanged.  See Comments on use. 

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Pivot is negative.  Matrix A is not positive 

definite. 
Processing continues. 

20000 Pivot is relatively zero.  Strong possibility that 
matrix A is singular. 

Processing stopped. 
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Code  Meaning  Processing 
30000 One of the following has occurred: 

 nh < 0 
 nh  n 
 epsz < 0 
 isw  1 or 2 

Bypassed. 

3. Comments on use 

a 
Matrix A is stored in symmetric positive definite band storage format. For details see the Array storage formats section of 
the Introduction. 

epsz 
In this function, the case of the pivot value being less than epsz is considered relative zero and processing is stopped 
with icon=20000. 

The standard value of epsz is 16µ, where µ is the unit round-off. 

isw 
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and 
subsequent sets after successfully completing the first with isw=1. This will bypass the LDLT  decomposition section 
and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than 
otherwise. 

Negative pivot during the solution 
When the pivot becomes negative during the decomposition process, the coefficient matrix is not positive definite.  In this 
function, processing continues, but icon is set to 10000. 

Calculation of determinant 
The elements of matrix L are stored in array a, for storage details see above.  Therefore, the determinant is obtained by 
multiplying the n diagonal elements, that is, the multiplication of  a[(h+1)*i], i=0,…,n-1. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(i,j) (i<j) ? i : j 
 
#define NMAX 100 
#define HMAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh, i, j, jmax, imax, isw; 
  double epsz, eps, sum; 
  double a[(HMAX+1)*NMAX], b[NMAX], x[NMAX]; 
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  /* initialize matrix */ 
  n = NMAX; 
  nh = HMAX; 
  for (j=0;j<n;j++) { 
    imax = min(j+nh,n-1); 
    for (i=j;i<=imax;i++) 
      a[j*(nh+1)+i-j] = n-(j-i); 
  } 
  for (i=0;i<n;i++) { 
    x[i] = i+1; 
    b[i] = 0; 
  } 
  /* initialize constant vector b = a*x */ 
  for (i=0;i<n;i++) { 
    sum = a[i*(nh+1)]*x[i]; 
    jmax = min(i+nh,n-1); 
    for (j=i+1;j<=jmax;j++) { 
      b[j] = b[j] + a[i*nh+j]*x[i]; 
      sum = sum + a[i*nh+j]*x[j]; 
    } 
    b[i] = b[i]+sum; 
  } 
  epsz = 1e-6; 
  isw = 1; 
  /* solve system of equations */ 
  ierr = c_dvlsbx(a, n, nh, b, epsz, isw, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvlsbx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

After LDLT  decomposition of the outer product type (see [42]) is performed, the equation is solved through forward and 
backward substitutions. For further information consult the entry for VLSBX in the Fortran SSL II Extended Capabilities 
User’s Guide II and [79]. 
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c_dvlspx 
Solution of a system of linear equations with a symmetric positive 
definite matrix (blocked Cholesky decomposition method). 
ierr = c_dvlspx(a, k, n, b, epsz, isw, &icon); 

1. Function 

This function decomposes the coefficient matrix A of a system of a real coefficient linear equation (1) as shown in (2) 
using the blocked Cholesky decomposition of outer products. 

 Ax = b (1) 

 A = LLT (2) 

In (1) and (2), A is an n  n positive definite symmetric real matrix, b is a real constant vector, x is the real solution vector, 
and L is a lower triangular matrix.  It is assumed that n1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvlspx((double*)a, k, n, b, epsz, isw, &icon); 

where: 
a double 

a[n][k] 

Input The upper triangular part {aij, i  j} of A is stored in the upper triangular 
part {a[i-1][j-1], i  j} of a for input. 
See Figure dvlspx-1. 
The contents of the array are altered on output. 

  Output Decomposed matrix. After the first set of equations has been solved, the 
upper triangular part of a[i-1][j-1](i  j) contains lij ( i  j) of the 
upper triangular matrix LT. 

k int Input A fixed dimension of matrix A. ( n) 
n int Input Order n of matrix A. 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
epsz double Input Tolerance for relative zero test ( 0). 

When epsz is zero, a standard value is assigned.  See Comments on use.
isw int Input Control information. 

When solving several sets of equations that have the same coefficient 
matrix, set isw=1 for the first set, and isw=2 for the second and 
subsequent sets.  When specifying isw=2, only argument b is assigned 
a new constant vector b and the others are unchanged.  See Comments 
on use. 

icon int Output Condition code.  See below. 
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Figure dvlspx-1. Storing the data for the Cholesky decomposition method 

The diagonal elements and upper triangular part (aij) of the LLT-decomposed positive definite matrix are stored in array 
a[i-1][j-1], i=1,...,n, j=i,...,n. 
After LLT decomposition, the upper triangular matrix LT is stored in the upper triangular part of the array a. 
 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Pivot became relatively zero.  Coefficient matrix 

might be singular. 
Discontinued. 

20100 Pivot became negative. 
Coefficient matrix is not positive definite. 

30000 One of the following has occurred: 
 n < 1 
 epsz < 0 
 k < n 
 isw  1 or 2 

3. Comments on use 

epsz 
If a value is set for the judgment of relative zero, it has the following meaning: 

If the value of the selected pivot is positive and less than epsz during LLT decomposition by the Cholesky 
decomposition, the pivot is assumed to be relatively zero and decomposition is discontinued with icon=20000. When 
unit round off is µ, the standard value of epsz is 16µ. 

When the computation is to be continued even if the pivot becomes small, assign the minimum value to epsz. In this 
case, however the result is not assured. 

isw 
When several sets of linear equations having an identical coefficient matrix are solved, the value of isw should be 2 from 
the second time on. This reduces the execution time because LLT decomposition for coefficient matrix A is bypassed. 
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Negative pivot during the solution 
If the pivot value becomes negative during decomposition, the coefficient matrix is no longer positive definite. Processing 
is discontinued with icon=20100. 

Calculation of determinant 
After the calculation has been completed, the determinant of the coefficient matrix is computed by multiplying all the n 
diagonal elements of the array a and taking the square of the result. 

4. Example program 

A system of linear equations with a 2000  2000 coefficient matrix is solved. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX     2000 
#define KMAX     NMAX+1 
 
MAIN__() 
{ 
  int    epsz, isw, icon, ierr, i, j; 
  double a[NMAX][KMAX], b[NMAX]; 
 
  for (i=0; i<NMAX; i++) { 
    for (j=i; j<NMAX; j++) { 
      a[i][j] = i+1; 
    } 
  } 
 
  for (i=0; i<NMAX; i++) { 
    b[i] = (i+1)*(i+2)/2+(i+1)*(NMAX-i-1); 
  } 
 
  isw = 1, epsz = 1e-13; 
  ierr = c_dvlspx((double*)a, KMAX, NMAX, b, epsz, isw, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dvlspx failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  printf ("Solution vector\n"); 
  for (i=0; i<10; i++) { 
    printf ("b[%d] = %15.10le\n", i, b[i]); 
  } 
} 

5. Method 

For further information consult the entry for VLSPX in the Fortran SSL II Extended Capabilities User’s Guide. 
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c_dvlsx 
Solution of a system of linear equations with a symmetric positive 
definite matrix (modified Cholesky’s method). 
ierr = c_dvlsx(a, n, b, epsz, isw, vw, ivw, 

&icon); 

1. Function 

This function solves a system of linear equations (1) with a real coefficient matrix by modified Cholesky’s method. 

 Ax b  (1) 

In (1), A is an n  n positive definite symmetric real matrix, b is a real constant vector, and x is the real solution vector.  
Both the real vectors are of size n (n1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dvlsx(a, n, b, epsz, isw, vw, ivw, &icon); 

where: 
a double a[Alen] Input 

 
Output 

Matrix A stored insymmetric positive definite storage format. See the 
Array storage formats section in the Introduction. Alen=n(n+1)/2.  
The contents of the array are altered on output. 

n int Input Order n of matrix A. 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
epsz double Input Tolerance for relative zero test ( 0). 

When epsz is zero, a standard value is assigned.  See Comments on use.
isw int Input Control information. 

When solving several sets of equations that have the same coefficient 
matrix, set isw=1 for the first set, and isw=2 for the second and 
subsequent sets.  Only argument b is assigned a new constant vector b 
and the others are unchanged.  See Comments on use. 

vw double 

vw[2*n] 

Work  

ivw int ivw[n] Work  
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Pivot became negative. 

Coefficient matrix is not positive definite. 
Processing continues. 

20000 Pivot became smaller then relative zero value.  
Coefficient matrix might be singular. 

Discontinued. 
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Code  Meaning  Processing 
30000 One of the following has occurred: 

 n < 1 
 epsz < 0 
 isw  1 or 2 

Bypassed. 

3. Comments on use 

epsz 
If the value 10-s is given for epsz as the tolerance for relative zero test then it has the following meaning: 

If the pivot value loses more than s significant digits during LDLT decomposition in the modified Cholesky’s method, the 
value is assumed to be zero and decomposition is discontinued with icon=20000.  The standard value of epsz is 
normally 16µ, where µ is the unit round-off. 

Decomposition can be continued by assigning the smallest value (e.g. 10-70) to epsz even when pivot values become 
smaller than the standard value, however the result obtained may not be of the desired accuracy. 

isw 
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and 
subsequent sets after successfully completing the first with isw=1. This will bypass the LDLT decomposition section and 
go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than 
otherwise. 

Negative pivot during the solution 
If the pivot value becomes negative during decomposition, it means the coefficient matrix is no longer positive definite.  
The calculation is to continued and icon=10000 is returned on exit. Note, however, that the resulting calculation error 
may be significant, because no pivoting is performed. 

Calculation of determinant 
To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of the array a together(i.e., 
diagonal elements of D-1) after calculation is completed, and take the reciprocal of this result. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the 
resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij, isw; 
  double epsz, eps, sum; 
  double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX]; 
  int ivw[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
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  ij = 0; 
  for (j=0;j<n;j++) 
    for (i=j;i<n;i++)  
      a[ij++] = n-i; 
  for (i=0;i<n;i++) { 
    x[i] = i+1; 
    b[i] = 0; 
  } 
  /* initialize constant vector b = a*x */ 
  ij = 0; 
  for (i=0;i<n;i++) { 
    sum = a[ij++]*x[i]; 
    for (j=i+1;j<n;j++) { 
      b[j] = b[j] + a[ij]*x[i]; 
      sum = sum + a[ij++]*x[j]; 
    } 
    b[i] = b[i]+sum; 
  } 
  epsz = 1e-6; 
  isw = 1; 
  /* solve system of equations */ 
  ierr = c_dvlsx(a, n, b, epsz, isw, vw, ivw, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvlsx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

The modified Cholesky’s method is used for matrix decomposition before solving the system of linear equations by 
forward and backward substitutions.  For further information consult the entry for VLSX in the Fortran SSL II Extended 
Capabilities User’s Guide. 
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c_dvltqr 
Solution of a system of linear equations with a tridiagonal matrix (QR 
factorization). 
ierr = c_dvltqr(su, d, sl, n, b, vw, &icon); 

1. Function 

This routine solves a system of linear equations  

 bTx  , 

using QR factorization, where T is an nn  tridiagonal matrix, b is a constant vector, and x is the solution vector. Here, 
1n . 

2. Arguments 

The routine is called as follows: 
ierr = c_dvltqr(su, d, sl, n, b, vw, &icon); 

where: 
su double su[n] Input Upper diagonal of matrix T, stored in su[i], i = 0,...,n-2, with 

su[n-1] = 0. 
d double d[n] Input Diagonal of matrix T. 
sl double sl[n] Input Lower diagonal of matrix T, stored in sl[i], i = 1,...,n-1, with  

sl[0] = 0. 
n int Input Order n of matrix T. 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
vw double vw[7n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 Matrix T is near singular. Completed. 
20000 It is probable that the matrix is singular. Discontinued. 
30000 n < 1 Bypassed. 

3. Comments on use 

icon 
When icon = 10000, the matrix T is near singular, but processing continues and a solution is obtained. When icon = 
20000, the matrix T is probably singular and processing is discontinued. 
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4. Example program 

This program solves a system of linear equations and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i; 
  double eps, vw[7*NMAX]; 
  double sl[NMAX], d[NMAX], su[NMAX], b[NMAX], x[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  for (i=0;i<n;i++) { 
    sl[i] = -1; 
    su[i] = -1; 
    d[i] = 10; 
  } 
  sl[0] = 0; 
  su[n-1] = 0; 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  /* initialize constant vector b=a*x */ 
  b[0] = d[0]*x[0] + su[0]*x[1]; 
  for (i=1;i<n-1;i++) { 
    b[i] = sl[i]*x[i-1] + d[i]*x[i] + su[i]*x[i+1]; 
  } 
  b[n-1] = sl[n-1]*x[n-2] + d[n-1]*x[n-1]; 
  /* solve system of equations */ 
  ierr = c_dvltqr(su, d, sl, n, b, vw, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvltqr failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VLTQR in the Fortran SSL II Extended Capabilities User's Guide II. and [42] and [51]. 
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c_dvltx 
Solution of a system of linear equations with a tridiagonal matrix (cyclic 
reduction method). 
ierr = c_dvltx(sbd, d, spd, n, b, isw, ind, 

ivw, &icon); 

1. Function 

This routine solves a tridiagonal matrix equation 

 bAx  , (1) 

using the cyclic reduction method, where A is an nn  irreducible diagonally dominant tridiagonal matrix of the form: 
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where 01  nfe , and for at least one i a strict inequality holds.  

In (1) b is a constant vector, x is the solution vector, and n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvltx(sbd, d, spd, n, b, isw, ind, ivw, &icon); 

where: 
sbd double Input Sub-diagonal of matrix A, with sbd[i-1] = ie , ni ,...,2 . 
 sbd[2n] Output The contents of sbd are changed on output. See Comments on use. 
d double d[2n] Input Diagonal of matrix A, with d[i-1] = id , ni ,...,1 . 
  Output The contents of d are changed on output. See Comments on use. 
spd double Input Super-diagonal of matrix A, with spd[i-1] = if , 1,...,1  ni . 
 spd[2n] Output The contents of spd are changed on output. See Comments on use. 
n int Input Order n of matrix A. 
b double b[2n] Input Constant vector b, with b[i-1] = ib , ni ,...,1 . 
  Output Solution vector x, with b[i-1] = ix , ni ,...,1 . See Comments on 

use. 
isw int Input Control information. 

isw=1, except when solving several sets of equations that have the same 
coefficient matrix, then isw=1 for the first set, and isw=2 for the 
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second and subsequent sets. Only argument b is assigned a new constant 
vector b, the other arguments must not be changed. See Comments on 
use. 

ind int Input Control information: 
ind = 0 to check the coefficient matrix is irreducibly diagonally  
              dominant, 
ind = 1 not to check the coefficient matrix is irreducibly diagonally 
              dominant. 
Normally, ind = 0 is specified. 

ivw int ivw[Ivwlen] Work   10log 2  nIvwlen  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Coefficient matrix is not irreducibly diagonally 

dominant. 
Discontinued. 

30000 One of the following has occurred: 
 n < 1 
 isw   1 or 2 
 ind   0 or 1 

Bypassed. 

3. Comments on use 

sbd, d, spd and b 
Elements sbd[n], sbd[n+1],..., sbd[2n-1] are used as work areas. The same elements of arrays d, spd, and b 
are also used as work areas. 

If the routine is called with isw = 1, arrays sbd, d, and spd on output are as follows: 

sbd[i-1] = ii de / , ni ,...,2 ,         d[i-1] = id/1 , ni ,...,1 ,       spd[i-1] = ii df / , 1,...,1  ni . 

isw 
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify 
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution 
stage, thereby reducing the computation time. 

ind 
If the coefficient matrix is known in advance to be irreducibly diagonally dominant, specify ind = 1 to bypass testing for 
irreducible diagonal dominance, thereby reducing the computation time. If ind = 1 is specified for a matrix that is not 
irreducibly diagonally dominant, the solution may not be as accurate as desired. 

General comments 
This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor 
has the following features: 

 It is much faster than the Gaussian elimination method used in routine c_dltx. 
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 Processing time increases almost linearly with n. 

 The more diagonally dominant the matrix is, the faster it is processed. 

 This routine is about as accurate as routine c_dltx when processing irreducible diagonally dominant matrices. 

4. Example program 

This program solves a system of linear equations and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, isw, ind, ivw[20]; 
  double eps; 
  double sbd[2*NMAX], d[2*NMAX], spd[2*NMAX], b[2*NMAX], x[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  for (i=0;i<n;i++) { 
    sbd[i] = -1; 
    spd[i] = -1; 
    d[i] = 10; 
  } 
  sbd[0] = 0; 
  spd[n-1] = 0; 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  /* initialize constant vector b=a*x */ 
  b[0] = d[0]*x[0] + spd[0]*x[1]; 
  for (i=1;i<n-1;i++) { 
    b[i] = sbd[i]*x[i-1] + d[i]*x[i] + spd[i]*x[i+1]; 
  } 
  b[n-1] = sbd[n-1]*x[n-2] + d[n-1]*x[n-1]; 
  isw = 1; 
  ind = 0; 
  /* solve system of equations */ 
  ierr = c_dvltx(sbd, d, spd, n, b, isw, ind, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvltx failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VLTX in the Fortran SSL II Extended Capabilities User's Guide and reference [104]. 
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c_dvltx1 
Solution of a system of linear equations with a constant-tridiagonal 
matrix (Dirichlet type and cyclic reduction method). 
ierr = c_dvltx1(d, sd, n, b, isw, vw, ivw, 

&icon); 

1. Function 

This routine solves a tridiagonal matrix equation 

 bAx  , (1) 

using the cyclic reduction method, where A is an nn  irreducible diagonally dominant constant-tridiagonal matrix of the 
form: 
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with d   0, || d   2 || e . 

In (1) b is a constant vector, x is the solution vector, and n   1. 

This routine restricts the coefficient matrix to the form in (2) in order to achieve high performance. Routine c_dvltx 
processes a general tridiagonal matrix. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvltx1(d, sd, n, b, isw, vw, ivw, &icon); 

where: 
d double Input Diagonal element d of matrix A. 
sd double Input Off-diagonal element e of matrix A. 
n int Input Order n of matrix A. 
b double b[2n] Input Constant vector b, with b[i-1] = ib , ni ,...,1 . 
  Output Solution vector x, with b[i-1] = ix , ni ,...,1 . See Comments on 

use. 
isw int Input Control information. 

isw=1, except when solving several sets of equations that have the same 
coefficient matrix, then isw=1 for the first set, and isw=2 for the 
second and subsequent sets. Only argument b is assigned a new constant 
vector b, the other arguments must not be changed. See Comments on 
use. 

vw double Work   )1log(2 2  nVwlen . 
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vw[Vwlen] 
ivw int ivw[Ivwlen] Work   10)1log(2 2  nIvwlen . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Coefficient matrix is not irreducibly diagonally 

dominant. 
Discontinued. 

30000 One of the following has occurred: 
 n < 1 
 isw   1 or 2 

Bypassed. 

3. Comments on use 

A 
This form of coefficient matrix (2) arises from the discretization of simple Dirichlet boundary value problems. 

b 
Elements b[n], b[n+1],..., b[2n-1] are used as work areas. 

isw 
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify 
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution 
stage, thereby reducing the computation time. 

General comments 
This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor 
has the following features: 

 It is much faster than the Gaussian elimination method used in routine c_dltx or c_dlstx. 

 Processing time increases almost linearly with n. 

 The more diagonally dominant the matrix is, the faster it is processed. 

 This routine is about as accurate as routine c_dltx or c_dlstx when processing irreducible diagonally dominant 
matrices. 

4. Example program 

This program solves a system of linear equations and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
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  int ierr, icon; 
  int n, i, isw, ivw[50]; 
  double eps; 
  double d, sd, b[2*NMAX], x[NMAX], vw[30]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  d = 10; 
  sd = -1; 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  /* initialize constant vector b=a*x */ 
  b[0] = d*x[0] + sd*x[1]; 
  for (i=1;i<n-1;i++) { 
    b[i] = sd*x[i-1] + d*x[i] + sd*x[i+1]; 
  } 
  b[n-1] = sd*x[n-2] + d*x[n-1]; 
  isw = 1; 
  /* solve system of equations */ 
  ierr = c_dvltx1(d, sd, n, b, isw, vw, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvltx1 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VLTX1 in the Fortran SSL II Extended Capabilities User's Guide. 
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c_dvltx2 
Solution of a system of linear equations with a constant-tridiagonal 
matrix (Neumann type and cyclic reduction method). 
ierr = c_dvltx2(d, sd, n, b, isw, ind, vw, 

ivw, &icon); 

1. Function 

This routine solves a tridiagonal matrix equation 

 bAx  , (1) 

using the cyclic reduction method, where A is an nn  irreducible diagonally dominant constant-tridiagonal matrix of 
one of the following forms: 
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In (1) b is a constant vector, x is the solution vector, and n   1. 

This routine restricts the coefficient matrix to the form above in order to achieve high performance. Routine c_dvltx 
processes a general tridiagonal matrix. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvltx2(d, sd, n, b, isw, ind, vw, ivw, &icon); 

where: 
d double Input Diagonal element d of matrix A. 
sd double Input Off-diagonal element e of matrix A. 
n int Input Order n of matrix A. 
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b double b[Blen] Input Constant vector b, with b[i-1] = ib , ni ,...,1 . 

 nnBlen 2log2  . 
  Output Solution vector x, with b[i-1] = ix , ni ,...,1 .See Comments on use.
isw int Input Control information. 

isw=1, except when solving several sets of equations that have the same 
coefficient matrix, then isw=1 for the first set, and isw=2 for the 
second and subsequent sets. Only argument b is assigned a new constant 
vector b, the other arguments must not be changed. See Comments on 
use. 

ind int Input Control information specifying the form of matrix A. 
ind = 1 for (2), 
ind = 2 for (3), 
ind = 3 for (4). 

vw double 

vw[Vwlen] 
Work   )1log(2 2  nVwlen . 

ivw int ivw[Ivwlen] Work   10)1log(2 2  nIvwlen . 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Coefficient matrix is not irreducibly diagonally 

dominant. 
Discontinued. 

30000 One of the following has occurred: 
 n < 1 
 isw   1 or 2 
 ind   1, 2 or 3 

Bypassed. 

3. Comments on use 

A 
These forms of coefficient matrices arise from the discretization of simple Neumann boundary value problems. 

b 
Elements b[n], b[n+1],..., b[Blen-1] are used as work areas. 

isw 
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify 
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution 
stage, thereby reducing the computation time. 

General comments 
This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor 
has the following features: 

 It is much faster than the Gaussian elimination method used in routine c_dltx. 

 Processing time increases almost linearly with n. 
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 The more diagonally dominant the matrix is, the faster it is processed. 

 This routine is about as accurate as routine c_dltx when processing irreducible diagonally dominant matrices. 

4. Example program 

This program solves a system of linear equations and checks the result. ind is set to 3. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, isw, ind, ivw[30]; 
  double eps; 
  double d, sd, b[2*NMAX+10], x[NMAX], vw[20]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  d = 10; 
  sd = -1; 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  /* initialize constant vector b=a*x */ 
  ind = 3; 
  b[0] = d*x[0] + 2*sd*x[1]; 
  for (i=1;i<n-1;i++) { 
    b[i] = sd*x[i-1] + d*x[i] + sd*x[i+1]; 
  } 
  b[n-1] = 2*sd*x[n-2] + d*x[n-1]; 
  isw = 1; 
  /* solve system of equations */ 
  ierr = c_dvltx2(d, sd, n, b, isw, ind, vw, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvltx2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      printf("%12.5e  %12.5e\n", x[i], b[i]); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VLTX2 in the Fortran SSL II Extended Capabilities User's Guide. 
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c_dvltx3 
Solution of a system of linear equations with a constant almost 
tridiagonal matrix (periodic type and cyclic reduction method). 
ierr = c_dvltx3(d, sd, n, b, isw, vw, ivw, 

&icon); 

1. Function 

This routine solves a tridiagonal matrix equation 

 bAx  , (1) 

using the cyclic reduction method, where A is an nn  irreducible diagonally dominant constant almost tridiagonal 
matrix of the form: 
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with d   0, || d  > 2 || e . 

In (1) b is a constant vector, x is the solution vector, and n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvltx3(d, sd, n, b, isw, vw, ivw, &icon); 

where: 
d double Input Diagonal element d of matrix A. 
sd double Input Off-diagonal element e of matrix A. 
n int Input Order n of matrix A. 
b double b[Blen] Input Constant vector b, with b[i-1] = ib , ni ,...,1 . 

 nnBlen 2log2  . 
  Output Solution vector x, with b[i-1] = ix , ni ,...,1 . See Comments on 

use. 
isw int Input Control information. 

isw=1, except when solving several sets of equations that have the same 
coefficient matrix, then isw=1 for the first set, and isw=2 for the 
second and subsequent sets. Only argument b is assigned a new constant 
vector b, the other arguments must not be changed. See Comments on 
use. 

vw double 

vw[Vwlen] 
Work   )1log(3 2  nVwlen . 

ivw int ivw[Ivwlen] Work   10)1log(4 2  nIvwlen . 
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icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Coefficient matrix is not irreducibly diagonally 

dominant. 
Discontinued. 

30000 One of the following has occurred: 
 n < 1 
 isw   1 or 2 

Bypassed. 

3. Comments on use 

A 
This form of coefficient matrix (2) arises from the discretization of simple periodic boundary value problems. 

b 
Elements b[n], b[n+1],..., b[Blen-1] are used as work areas. 

isw 
When solving several sets of equations with the same coefficient matrix A, solve the first set with isw=1, then specify 
isw=2 for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution 
stage, thereby reducing the computation time. 

General comments 
This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor 
has the following features: 

 It is much faster than the Gaussian elimination method. 

 Processing time increases almost linearly with n. 

 The more diagonally dominant the matrix is, the faster it is processed. 

 This routine is about as accurate as the Gaussian elimination method when processing irreducible diagonally 
dominant matrices. 

4. Example program 

This program solves a system of linear equations and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, isw, ivw[50]; 
  double eps; 
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  double d, sd, b[2*NMAX+10], x[NMAX], vw[30]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  d = 10; 
  sd = -1; 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  /* initialize constant vector b=a*x */ 
  b[0] = d*x[0] + sd*x[1] + sd*x[n-1]; 
  for (i=1;i<n-1;i++) { 
    b[i] = sd*x[i-1] + d*x[i] + sd*x[i+1]; 
  } 
  b[n-1] = sd*x[0] + sd*x[n-2] + d*x[n-1]; 
  isw = 1; 
  /* solve system of equations */ 
  ierr = c_dvltx3(d, sd, n, b, isw, vw, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvltx3 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VLTX3 in the Fortran SSL II Extended Capabilities User's Guide. 

 



Description of the C-SSL II Routines 

678 

c_dvluiv 
The inverse of a real matrix decomposed into L and U factors. 
ierr = c_dvluiv(fa, k, n, ip, ai, &icon); 

1. Function 

This function computes the inverse A 1  of an n  n real general matrix A given in decomposed form PA = LU. 

 A U L P  1 1 1  (1) 

In (1), L and U are the respective n  n lower and unit upper triangular matrices, P is the permutation matrix that performs 
the row exchanges in partial pivoting for LU-decomposition (n1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dvluiv((double*)fa, k, n, ip, (double*)ai, &icon); 

where: 
fa double 

fa[n][k] 

Input Matrices L and U, the obtained from function c_dvalu.  See 
Comments on use. 

k int Input C fixed dimension of array fa ( n). 
n int Input Order n of matrices L and U. 
ip int ip[n] Input Transposition vector that provides the row exchanges that occurred in 

partial pivoting, the output obtained from function c_dvalu.  See 
Comments on use. 

ai double 

ai[n][k] 

Output Inverse A 1 . 

icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Singular matrix. Discontinued. 
30000 One of the following has occurred: 

 k < n 
 n < 1 
 an error in array ip 

Bypassed. 

3. Comments on use 

General comments 
Prior to calling this function, the LU-decomposed matrix and transposition vector must be obtained by the function, 
c_dvalu, and passed into this function via fa and ip, to obtain the inverse. For the solution of linear equations use the 
c_dvlax function. This is far more efficient than the inverse matrix route. Users should only use this function when the 
use of the inverse matrix is unavoidable. 
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The transposition vector corresponds to the permutation matrix P, equation (1), for LU-decomposition with partial 
pivoting, please see the notes for the c_dvalu function. 

4. Example program 

This example program initializes A and x (from bAx  ), and then calculates b by multiplication. Matrix A is then 
decomposed into LU factors. The library routine is then called to calculate 1A  which is then used in the equation 

xbA 1  to calculate x, and this resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, k, is; 
  double epsz, eps; 
  double a[NMAX][NMAX], ai[NMAX][NMAX]; 
  double b[NMAX], x[NMAX], y[NMAX], vw[NMAX]; 
  int ip[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=i;j<n;j++) { 
      a[i][j] = n-j; 
      a[j][i] = n-j; 
    } 
  for (i=0;i<n;i++) 
    x[i] = i+1; 
  k = NMAX; 
  /* initialize constant vector b = a*x */ 
  ierr = c_dmav((double*)a, k, n, n, x, b, &icon); 
  epsz = 1e-6; 
  /* perform LU decomposition */ 
  ierr = c_dvalu((double*)a, k, n, epsz, ip, &is, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvalu failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* find matrix inverse from LU factors */ 
  ierr = c_dvluiv((double*)a, k, n, ip, (double*)ai, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvluiv failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate y = ai*b */ 
  ierr = c_dmav((double*)ai, k, n, n, b, y, &icon); 
  /* compare x and y */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-y[i])/y[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Given LU-decomposed matrices L, U and permutation matrix P that indicates row exchanges in partial pivoting then the 
inverse of A is computed by calculating L1  and U 1 .  For further information consult the entry for VLUIV in the 
Fortran SSL II Extended Capabilities User’s Guide 
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c_dvmbv 
Multiplication of a real banded matrix by a real vector. 
ierr = c_dvmbv(a, n, nh1, nh2, x, y, &icon); 

1. Function 

This function calculates the matrix-vector product of an n  n real band matrix A with lower bandwidth 1h  and upper 
bandwidth 2h  (0   1h  < n and 0   2h  < n) with a real vector x of size n. 

 y Ax  (1) 

The solution y is a real vector of size n (n  1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dvmbv(a, n, nh1, nh2, x, y, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in band storage format. See Array storage formats in 

the Introduction section for details. nhhAlen )12( 21  . 
n int Input Order n of matrix A. 
nh1 int Input Lower bandwidth 1h  of matrix A. 
nh2 int Input Upper bandwidth 2h  of matrix A. 
x double x[n] Input Vector x. 
y double y[n] Output Result vector y. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n = 0 
 nh1 < 0 or nh1   n 
 nh2 < 0 or nh2   n 

 

3. Comments on use 

The function primarily performs computation for equation (1) but it can also perform a residual calculation as shown in 
equation (2). 

 y y Ax    (2) 

To perform this operation, specify argument n=-n and set the contents of the initial vector y  into argument y before 
calling the function. 
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4. Example program 

This program multiplies a band matrix by a vector and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(i,j) (i<j) ? i : j 
#define max(i,j) (i>j) ? i : j 
 
#define NMAX 100 
#define H1MAX 2 
#define H2MAX 2 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, nh1, nh2, i, j, jmin, jmax; 
  double eps, sum; 
  double a[(2*H1MAX+H2MAX+1)*NMAX], x[NMAX], y[NMAX], yy[NMAX]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  nh1 = H1MAX; 
  nh2 = H2MAX; 
  for (i=0;i<n*(2*nh1+nh2+1);i++) 
    a[i] = 0; 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh1,0); 
    jmax = min(i+nh2,n-1); 
    for (j=jmin;j<=jmax;j++) 
      a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i); 
  } 
  for (i=0;i<n;i++) { 
    x[i] = i+1; 
  } 
  /* multiply directly for checking: yy = a*x */ 
  for (i=0;i<n;i++) { 
    jmin = max(i-nh1,0); 
    jmax = min(i+nh2,n-1); 
    sum = 0; 
    for (j=jmin;j<=jmax;j++) 
      sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j]; 
    yy[i] = sum; 
  } 
  /* perform matrix vector multiply using c_dvmbv */ 
  ierr = c_dvmbv(a, n, nh1, nh2, x, y, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvmbv failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check result */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((y[i]-yy[i])/y[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

This  routine performs the multiplication )( iyy  of an n  n real band matrix )( ijaA  (A with lower bandwidth 1h  
and upper bandwidth 2h ) by a vector )( jxx  given by: 
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c_dvmcf2 
Singlevariate, multiple and multivariate discrete complex Fourier 
transform (complex array, mixed radix). 
ierr = c_dvmcf2(z, n, m, isn, &icon); 

1. Function 

This function performs singlevariate, multiple and multivariate discrete complex Fourier transforms using complex array. 

For each dimension, it is possible to specify whether the Fourier transform is to be performed, and whether it is normal or 
inverse. 

The size of each dimension can be an arbitrary number, but the transform is fast when the size has factors 2, 3 or 5. 

Multivariate Fourier transform 
By inputting m-dimensional data {xj1 j2...jm} and performing the transform defined in (1), {k1 k2...km} is obtained. 
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where, n1, n2, ..., nm is the size of each dimension. 

When ri = 1, the transform is normal.  When ri = 1, the transform is inverse. 

If r = (1, 1, 1) for example, the following three-dimensional transform is obtained: 
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Multiple transform 
For ri = 0, the summation 



1

0

in

ij
is omitted, and index ji of x in (1) is changed to ki. 

For example, a singlevariate multiple transform has only one summation. When performing the following transform with 
respect to only the second dimension of a three-dimensional data, specify r = (0, 1, 0). 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvmcf2((dcomplex*)z, n, m, isn, &icon); 
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where: 
 
z dcomplex  

z[nm]...[n2][n1] 
Input Complex data {xj1 j2...jm} is stored in x[jm]...[j2][j1], jm = 

0, ... , n[m1]1, ... , j2 = 0, ... , n[1]1, j1 = 0, ... , n[0]1. 
  Output Complex data {k1 k2...km} is stored in x[km]...[k2][k1], km = 

0, ... , n[m1]1, ... , k2 = 0, ... , n[1]1, k1 = 0, ... , n[0]1. 
n int n[m] Input n[i1] is the size of the ith dimension. 
m int Input Number of dimensions m of the multivariate Fourier transform. 
isn int isn[m] Input isn[i-1] shows the direction ri of the Fourier transform in the ith 

dimension, and can take the following values: 
1 Normal transform. 
0 No transform. 
1 Inverse transform. 

icon int Output Condition code. See below. 
The complete list of condition codes is given below: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 m  0. Processing is stopped. 
30002 isn[i] > 1 or isn[i]< 1. 
30003 n[i] < 1. 
30004 isn[i] were all zero. 

3. Comments on use 

General definition of the Fourier transform 
The multivariate discrete complex Fourier transform and inverse transform are generally defined in (2) and (3). 
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The routine calculates {n1 n2 ... nm k1k2...km} or {xj1j2...jm} corresponding to the left-hand-side terms in equations (2) and (3). 
The user must normalize the terms if necessary. 

Stack size 
This function exploits work area internally on stack area. Therefore an abnormal termination could be occur when the 
stack area runs out. The necessary size is shown below. 



 c_dvmcf2  

 685 

If ni can be expressed as products of powers of 2, 3, and 5, then the work area size is 16  max{ni | i = 1, ..., m and 
isn[i]  0.} byte. 

If there are numbers among ni that cannot be expressed as products of powers of 2, 3, and 5, then the work area size is 80 
 max{ni | i = 1, ..., m and isn[i]  0.} byte. 

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command  under consideration that 
the stack area could be used for another work area of fixed size and for user’s program also. 

4. Example program 

In this example, a singlevariate fast Fourier transform is computed. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100000 
#define NDIM 1 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
int MAIN__(void) 
{ 
    int nval[6] = { 16199,16200,16201,16383,16384,16385 }; 
 
    dcomplex z[NMAX], tmp; 
    double   pi, error, theta; 
    int      m, n[NDIM], isn[NDIM], icon; 
    int      n1, in, i, k, l; 
 
    pi = 4.0 * atan(1.0); 
 
    for (in=0; in<6; in++) { 
      n1   = nval[in]; 
      n[0] = n1; 
      l    = 79; 
 
      for (i=0; i<n1; i++) { 
        z[i].re = 0.0; 
        z[i].im = 0.0; 
      } 
 
      z[l].re   = 1.0; 
      z[l].im   = 0.0; 
      isn[0]    = 1; 
      m         = 1; 
 
      c_dvmcf2(z, n, m, isn, &icon); 
 
      if (icon != 0) { 
        printf("icon = %d\n",icon); 
      } 
 
      error = 0.0; 
      for (k=0; k<n1; k++) { 
        theta  = pi*2*l*k/(double)n1; 
        tmp.re = fabs(z[k].re-cos(theta)); 
        tmp.im = fabs(z[k].im+sin(theta)); 
        error  = max(error,tmp.re+tmp.im); 
      } 
 
      printf("n = %d, error = %10.3e\n", n1, error); 
    } 
} 

5. Method 

For further information consult the entry for VMCF2 in the Fortran SSL II Extended Capabilities User's Guide II. 
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c_dvmcft 
Singlevariate, multiple and multivariate discrete complex Fourier 
transform (real and imaginary array separated, mixed radix). 
ierr = c_dvmcft(xr, xi, n, m, isn, w, &iw, 

&icon); 

1. Function 

This routine performs singlevariate, multiple and multivariate discrete complex Fourier transforms. For each dimension, it 
is possible to specify whether the Fourier transform is to be performed, and whether it will be normal or inverse. The size 
of any dimension can be an arbitrary number, but decomposition is faster if it has factors of 2, 3 or 5. 

Singlevariate Fourier transform 
By inputting }{

21 mjjjx   and performing the transform described in (1), }{
21 mkkk   is obtained. 
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When 1ir  the transform is normal, and when 1ir  the transform is inverse. When 0ir , the summation over ij  
(from 0 to 1in ) is omitted, and ij  is changed to ik , where ij  is an index of x in equation (1). Therefore if )1,1,0(r , 
the following equation is obtained: 
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Multiple transform 
A multiple transform has only one summation. When performing the second dimension transform, the following equation 
is obtained: 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvmcft(xr, xi, n, m, isn, w, &iw, &icon); 

where: 
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xr double 

xr[Xlen] 
Input 
Output 

Real part of 
mjjjx 21

. mnnnXlen  21 . 
Real part of 

mkkk 21
 . 

xi double 

xi[Xlen] 
Input 
Output 

Imaginary part of 
mjjjx 21

. mnnnXlen  21 . 
Imaginary part of 

mkkk 21
 . 

n int n[m] Input n[i-1] is the size of the ith dimension. 
m int Input Number of dimensions m of the multivariate Fourier transform. 
isn int isn[m] Input isn[i-1] shows the direction ir  of the Fourier transform in the ith 

dimension, and can take the following values: 
1 Normal transform. 
0 No transform. 
-1 Inverse transform. 

w double w[iw] Work  
iw int Input 

Output 
Size of the workspace. See Comments on use. 
If the workspace is too small, the minimum required size is output. 

icon int Output Condition code. See below. 
The complete list of condition codes is given below: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 0m . Processing is stopped. 
30001 Insufficient work area. 
30002 1isn[i]  or 1isn[i] . 
30003 1n[i] . 
30004 0isn[i]  for all dimensions. 

3. Comments on use 

General definition of the Fourier transform 
The multivariate discrete complex Fourier transform and inverse transform are generally defined in (2) and (3) 
respectively: 
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The routine calculates }{
2121 mkkkmnnn    or }{

21 mjjjx   corresponding to the left-hand-side terms in equations 
(2) and (3). The user must normalize the terms if necessary. 
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Size of the workspace iw 
The size of the workspace required by the routine is calculated as follows: 

Define: 

 RADIX is the set of natural numbers that can be expressed as powers of 2, 3 and 5 only. 
 NORAD is the set of natural numbers, which are the differences between the elements of RADIX and any 

other natural numbers, i.e. NORAD = any natural number - RADIX. 
 minrad(n) is the smallest member of RADIX that is larger than the dimension size n. 
 relfac(n) is the smallest member of NORAD which can be multiplied by any member of RADIX to give the 

dimension size n, i.e. relfec(n) is the minimum natural number q where: qpn   and RADIXp  and 
NORADq . 

 NP is the product of all the dimension sizes. i.e. mnnnNP  21 . 
 
For each dimension i, where mi ,,2,1  , provided that 01]-isn[i . 

1. If RADIXni  , then the size required by dimension i is: in2 . 
2. If ii nnrelfac )( , then the size required by dimension i is: )(4/)(2 iii nminradnnminradNP  . 
3. Otherwise, the size required is: )2),((4max()(/))((2 iiii nnrelfacminradnrelfacnrelfacminradNP  . 

 
From the set of sizes obtained above, the maximum size is taken as the size of the workspace array. 

If the routine is called with no workspace (i.e. with iw = 0) then the minimum required size is returned in iw. 

4. Example program 

This program computes a 1-D FFT on 16384 elements where all of the elements are zero, except for the 101st  element, 
which has the value 1+i0. The results are checked against the correct transform values. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define M    1 
#define N    16384  
#define W    2*N 
 
#define max(i,j) (i>j) ? i : j 
 
MAIN__()  
{ 
  int ierr, icon; 
  double xr[N], xi[N], w[W], eps, pi;  
  int i, k, n[M], m, isn[M], iw; 
 
  /* generate initial data */ 
  m = M; 
  n[0] = N; 
  k = 100; 
  for (i=0;i<n[0];i++) { 
    xr[i] = 0; 
    xi[i] = 0; 
  } 
  xr[k] = 1; 
  isn[0] = 1; 
  iw = W; 
  /* perform transform */ 
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  ierr = c_dvmcft(xr, xi, n, m, isn, w, &iw, &icon); 
  /* check results */ 
  if (icon != 0) { 
    printf("ERROR: c_dvmcft failed with icon = %d\n", icon); 
    exit(1); 
  } 
  pi = 4*atan(1); 
  eps = 1e-6; 
  for (i=0;i<n[0];i++) 
    if ((xr[i]-cos(2*pi*i*k/n[0]) > eps) || 
        (xi[i]+sin(2*pi*i*k/n[0]) > eps)) { 
      printf("Inaccurate result\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information consult the entry for VMCFT in the Fortran SSL II Extended Capabilities User's Guide II and [49] 
and [50]. 
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c_dvmcst 
Discrete cosine transforms 
ierr = c_dvmcst(x, k, n, m, isw, tab, &icon); 

1. Function 

This function performs one-dimensional, multiple discrete cosine transforms. 

Given one-dimensional n1 sample data {xj} defined on both end points and internal points dividing a half of 2 period of 
even-function x(t) into n parts equally as follows: 
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this function calculate the discrete cosine transform defined as follows in each row of the array: 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvmcst((double*)x, k, n, m, isw, tab, &icon); 

where: 
 
x double 

x[m][k] 

Input The m sequences of {xj}, j = 0, ... , n are stored in x[i1][i2], i1 = 
0, ... , m  1, i2 = 0, ... , n. 

  Output The m sequences of {ak}, k = 0, ... , n are stored in x[i1][i2], i1 = 
0, ... , m  1, i2 = 0, ... , n. 

k int Input C fixed dimension of array x (  n  1). 
n int Input The number of partition of the half period.  n must be an even number. 

See Comments on use. 
m int Input The multiplicity m of the transform. 
isw int isw Input Control information. See Comments on use. 

isw should be set as follows. 
0 to generate the array tab and perform the cosine transforms.. 
1 to prepare the array tab only. 
2 to perform the cosine transforms using the array tab prepared 

before calling. 
tab double 

tab[2n] 
Work Trigonometric function table used for the transformation is stored. 

icon int Output Condition code. See below. 
The complete list of condition codes is given below: 
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Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n  0 
 k < n  1 
 m  0 
 isw  0, 1, 2 
 n is not an even number. 

Processing is stopped. 

3. Comments on use 

Recommended value of n 
The n can be an arbitrary even number, but the transform is fast with the sizes which can be expressed as products of the 
powers of 2, 3, and 5. 

Efficient use of the array tab 
When this routine is called successively with a fixed value of n, the trigonometric function table tab should be initialized 
once at first call with isw = 0 or 1 and should be kept intact for second and subsequent calls with isw = 2. This saves 
initialization procedure of array tab. 

Normalization 
The cosine transform defined as in (1) is also an inverse transform itself. Applying the transform twice results in the 
original sequences multiplied by 2  n. 

If necessary, the user must normalize the results. 

Stack size 
This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack 
area runs out. The necessary size is 8  n byte. 

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command under consideration that 
the stack area could be used for another work area of fixed size and for user’s program also. 

4. Example program 

In this example, cosine transforms are calculated with multiplicity of 5. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define N 1024 
#define K (1024+1) 
#define M 5 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
int MAIN__(void) 
{ 
    double x[M][K], tab[N*2]; 
    double vnrm, error, t1, t2; 
    int    isw, icon; 
    int    i, j; 
 
    for (j=0; j<M; j++) { 
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      for (i=0; i<N+1; i++) { 
        x[j][i]=(double)max(i,(N-i)/(j+1)); 
      } 
    } 
 
    /* FORWARD TRANSFORM */ 
    isw=0; 
    c_dvmcst((double*)x, K, N, M, isw, tab, &icon); 
 
    printf("icon = %d\n",icon); 
 
    /* BACKWARD TRANSFORM */ 
    isw=2; 
    c_dvmcst((double*)x, K, N, M, isw, tab, &icon); 
 
    printf("icon = %d\n",icon); 
 
    for (j=0; j<M; j++) { 
      error=0.0; 
      vnrm =0.0; 
      for (i=0; i<N+1; i++) { 
        t1=x[j][i]/(double)(N*2); 
        t2=t1-(double)(max(i,(N-i)/(j+1))); 
        vnrm +=t1*t1; 
        error+=t2*t2; 
      } 
      printf("error = %e\n",sqrt(error/vnrm)); 
    } 
} 

5. Method 

For further information consult the entry for VMCST in the Fortran SSL II Extended Capabilities User's Guide II. 
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c_dvmggm 
Multiplication of two matrices (real by real). 
ierr = c_dvmggm(a, ka, b, kb, c, kc, m, n, l, 

&icon); 

1. Function 

This function performs multiplication of an m  n real matrix A by an n  l real matrix B. 

 C AB  (1) 

In (1), the resultant C is an m  l matrix (m, n, l   1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dvmggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, l, 

&icon); 

where: 
a double 

a[m][ka] 

Input Matrix A. 

ka int Input C fixed dimension of array a ( n). 
b double 

b[n][kb] 

Input Matrix B. 

kb int Input C fixed dimension of array b ( l). 
c double 

c[m][kc] 

Output Matrix C.  See Comments on use. 

kc int Input C fixed dimension of array c ( l). 
m int Input The number of rows m in matrices A and C. 
n int Input The number of columns n in matrix A and number of rows n in matrix B.
l int Input The number of columns l in matrices B and C. 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m < 1 
 n < 1 
 l < 1 
 ka < n 
 kb < l 
 kc < l 

Bypassed. 
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3. Comments on use 

This function is design to perform high-speed computations on a vector processor. 

Storage space 
Storing the solution matrix C in the same memory area used for matrix A or B is NOT permitted. C must be stored in a 
separate array otherwise the result will be incorrect.  

4. Example program 

This example program performs a matrix-matrix multiplication and checks the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j; 
  double eps; 
  double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX]; 
 
  /* initialize matrices */ 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) { 
      a[i][j] = j+1; 
      b[j][i] = 1.0/(j+1); 
    } 
  /* matrix matrix multiply */ 
  ierr = c_dvmggm((double*)a, NMAX, (double*)b, NMAX,  
                  (double*)c, NMAX, n, n, n, &icon); 
  /* check result */ 
  eps = 1e-5; 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) 
      if (fabs((c[i][j]-n)/n) > eps) { 
        printf("WARNING: result inaccurate\n"); 
        exit(1); 
      } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_dvmrf2 
Singlevariate, multiple and multivariate discrete real Fourier transform 
(mixed radix). 
ierr = c_dvmrf2(x, n, m, isin, isn, &icon); 

1. Function 

This function performs singlevariate, multiple and multivariate discrete real Fourier transforms. 

Whether the Fourier transform is to be performed, and its direction, can be specified for each dimension. For the 1-st 
dimension, "no transform"  cannot be specified, and the size of  the 1-st dimension must be an even number. The sizes of 
all other dimension can be arbitrary numbers, but the transform is fast with the sizes which can be expressed as products 
of the powers of 2, 3, and 5. 

The result of a multiple and multivariate discrete real Fourier transform has a complex conjugate relation. For the 1-st 
dimension, the first n1 / 2 + 1 complex elements are stored. 

Multivariate Fourier Transform 
Transform: Inputting m-dimensional data {xj1j2...jm} and performing the transform defined in (1) obtains {k1k2...km}. 
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where, n1, n2 , ... , nm is the size of each dimension. ri = 1 or ri = 1 can be specified for the transform direction. 

If r = (1, 1, 1) for example, the following three-dimensional Fourier transform is obtained: 

 33
3

22
2

11
1

13

03
321

12

02

11

01
321 . kj-

n
kj-

n
kj-

n

n

j
jjj

n

j

n

j
kkk x  













 

Inverse transform: Inputting {k1k2...km} and performing the transform defined in (2), obtains {xj1j2...jm}. 
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where, n1,n2,..., nm is the size of each dimension. 

In an inverse transform, a direction that is inverse to that specified in the transform must be specified. ri = 1 or ri = 1 
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Multiple transform 

When ri = 0 is specified, the summation




1

0

ni

ji

is omitted. 

In the case of real-to-complex transform,  index ji of x in (1) is changed to ki. In the case of complex-to-real transform, 
index ki of  in (2) is changed to ji. 

For example, singlevariate multiple transform has only one summation. When performing the following transform with 
respect to only the first-dimension of a three-dimensional data, specify r = (1, 0, 0) 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvmrf2((double*)x, n, m, isin, isn, &icon); 

where: 
x double  

x[nm]...[n2][n1+2] 

Input If isn = 1 (transform from real to complex). 
The real data {xj1j2...jm} is stored in x[jm]...[j2][j1], jm = 
0, ... , n[m1]1, ... , j2 = 0, ... , n[1]1, j1 = 0, ... , n[0]1.

If isn = 1 (transform from complex to real). 
The real and imaginary part of {k1k2...km} are stored in 
x[km]...[k2][k1], km = 0, ... , n[m1]1, ... , k2 = 0, ... , 
n[1]1, k1 = 0, ... , n[0]1 by turns. 

  Output If isn = 1 (transform from real to complex). 
The real and imaginary part of {k1k2...km} are stored in 
x[km]...[k2][k1], km = 0, ... , n[m1]1, ... , k2 = 0, ... , 
n[1]1, k1 = 0, ... , n[0]1 by turns. 

If isn = 1 (transform from complex to real). 
The real data {xj1j2...jm} is stored in x[jm]...[j2][j1], jm = 
0, ... , n[m1]1, ... , j2 = 0, ... , n[1]1, j1 = 0, ... , n[0]1.

n int n[m] Input Sizes ni, i = 1, 2, ... , m of the dimensions, with n[i-1] = ni, i = 1, 
2 , ... , m. The size of the 1-st dimension must be an even number. 

m int Input The number of dimensions m of the multivariate Fourier transform. 
isin int isin[m] Input Direction ri of the Fourier transform in the i-th dimension, i = 1, 

2, ... , m. 
isin[0] cannot be 0. 
isin[i-1] = 1 for ri = 1 
isin[i-1] = 0 for no transform 
isin[i-1] = -1 for ri = 1 

isn int Input Control information. 
isn = 1 for the normal transform (real to complex) 
isn = 1 for the inverse transform (complex to real). 

icon int Output Condition code. See below. 
The complete list of condition codes is: 
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Code  Meaning  Processing 
0 No error. Completed. 
30001 One of the following has occurred: 

 n[i]  0 for some i 
 m  0. 

Bypassed. 

30016 One of the following has occurred: 
 isin[i] < 1 
 isin[i] > 1 
 isin[0] = 0 

30032 isn   1 or 1. 
30512 The size of first dimension is odd number. 

3. Comments on use 

General definition of Fourier transform 
The multivariate discrete Fourier transform and inverse transform are generally defined as in (3) and (4). 
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The routine calculates {n1 n2...nm k1k2...km} or {xj1j2...jm} corresponding to the left-hand terms of (3) and (4).  For i, where 
isin[i] = 0, ni is replaced with 1. If necessary, the user must normalize the results. 

Complex conjugate relation 
The result of the multivariate discrete real Fourier transform has the following complex conjugate relation: 

 kmnmknknkkk m  ...2211...21
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In the case of ki = 0, niki is regarded as 0. For h, where isin[h] = 0, the h-th index in the right-hand terms is still kh. 
The rest of terms can be calculated using this relation. 
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Stack size 
This function exploits work area internally on stack area. Therefore an abnormal termination could be occur when the 
stack area runs out. The necessary size is shown below. 

If ni can be expressed as products of powers of 2, 3, and 5, then the work area size is 24  max{ni | i = 1, ..., m and 
isn[i]  0.} byte. 

If there are numbers among ni that cannot be expressed as products of powers of 2, 3, and 5, then the work area size is 80 
 max{ni | i = 1, ..., m and isn[i]  0.} byte. 

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command  under consideration that 
the stack area could be used for another work area of fixed size and for user’s program also. 

4. Example program 

In this example, a two-dimensional real Fourier transform is calculated. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define N1 1024 
#define N2 1024 
#define M  2 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
 
int MAIN__(void) 
{ 
    double x[N2][N1+2], error, tmp; 
    int    n[M], isn, isin[M], icon; 
    int    i, j; 
 
    for (i=0; i<N2; i++) { 
      for (j=0; j<N1; j++) { 
        x[i][j]=(double)(N1*i+j+1); 
      } 
    } 
 
    n[0]    = N1; 
    n[1]    = N2; 
    isin[0] = 1; 
    isin[1] = 1; 
    isn     = 1; 
 
    /* REAL TO COMPLEX TRANSFORM */ 
    c_dvmrf2((double*)x, n, M, isin, isn, &icon); 
 
    printf("icon = %d\n",icon); 
 
    n[0]    = N1; 
    n[1]    = N2; 
    isin[0] = -1; 
    isin[1] = -1; 
    isn     = -1; 
 
    /* COMPLEX TO REAL TRANSFORM */ 
    c_dvmrf2((double*)x, n, M, isin, isn, &icon); 
 
    printf("icon = %d\n",icon); 
 
    error = 0.0; 
    for (i=0; i<N2; i++) { 
      for (j=0; j<N1; j++) { 
        tmp   = fabs(x[i][j]/(double)(N1*N2)-(double)(N1*i+j+1)); 
        error = max(error,tmp); 
      } 
    } 
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    printf("error = %e\n",error); 
} 

5. Method 

For further information consult the entry for VMRF2 in the Fortran SSL II Extended Capabilities User's Guide II. 
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c_dvmrft 
Multiple and multivariate discrete real Fourier transform (mixed radices 
of 2, 3, and 5). 
ierr = c_dvmrft(x, n, m, isin, isn, w, &icon); 

1. Function 

This routine performs multiple and multivariate discrete real Fourier transforms (or the inverse transforms). Whether the 
Fourier transform is to be performed, and its direction, can be specified for each of m dimensions. All dimensions on 
which a transform is to be performed must have sizes that are products of the powers 2, 3, and 5. 

At least one of the first m-1 dimensions must be an even number. A transform must be specified for the m-th dimension. 

The result of a multiple and multivariate discrete real Fourier transform has a complex conjugate relation. By using this 
relation, it is only necessary to store the first   12/floor mn elements for the m-th dimension, where mn  is the size of 
the m-th dimension. 

Multivariate Fourier Transform 
Transform: When }{ ...21 mjjjx  is provided, the transform defined below is used to obtain }...{ ...21 21 mkkkmnnn   
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where 1,...,0   nk , )/2exp( 
nin   , r  = 1 or –1,   = 1,2,...,m, and r  specifies the transform direction in the 

 -th dimension. 

For r  = 0, the summation 
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is omitted, the j -th index of x is changed to k , and n  on the left hand side of 

the above definition is replaced with 1. For example, for r = (0, 1, 1), the following is obtained: 
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Fourier inverse transform: When }{ ...21 mkkk is provided, the inverse transform defined below is used to obtain 
}{ ...21 mjjjx . 
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where 1,...,0   nj , )/2exp( 
nin   , r  = -1 or 1,   = 1,2,...,m, and r  specifies the transform direction in the 

 -th dimension. With an inverse transform, a direction that is the inverse to that specified in the transform must be 
specified. 

For r  = 0, the summation 
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is omitted, the k -th index of   is changed to j . For example, for  

r = (0, -1,-1), the following is obtained: 
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Multiple transform 
A multiple transform has only one summation. With a three-dimensional transform, the following is obtained: 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvmrft((double *)x, n, m, isin, isn, w, &icon); 

where: 
x double x[Nmlen] 

[n[m-2]]…[n[0]] 

Input If isn = 1 (transform from real to complex), real data }{ ...21 mjjjx .  
If isn = -1 (transform from complex to real), complex data 

}{ ...21 mkkk . Nmlen =   12/floor2  mn  = 2(n[m-1]/2+1). 
See Comments on use for data storage. 

  Output If isn = 1 (transform from real to complex), complex data 
}...{ ...21 21 mkkkmnnn  .  

If isn = -1 (transform from complex to real) real data }{ ...21 mjjjx . 
See Comments on use for data storage. 

n int n[m] Input Sizes in , i = 1,2,...,m of the dimensions, with n[i-1] = in ,  
i = 1,2,...,m. If isin[i-1] is non-zero, n[i-1] must be a 
product of powers of 2,3, and 5. At least one of the first m-1 
elements of n must be an even number. 

m int Input The number of dimensions m of the multivariate Fourier transform. 
isin int isin[m] Input Direction ir  of the Fourier transform in the i-th dimension,  

i = 1,2,...,m. 
isin[i-1] = 1 for ir  = 1 
isin[i-1] = 0 for no transform 
isin[i-1] = -1 for ir  = -1 
isin[m-1] cannot be 0. 

isn int Input Control information. 
isn = 1 for the transform (real to complex) 
isn = -1 for the inverse transform (complex to real). 

w double w[Wlen] Work   .)12/(floor...),...,,max(2 12121   mmm nnnnnnnWlen  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30001 One of the following has occurred: 

 n[i]   0 for some i 
 m < 2. 

Bypassed. 

30008 n[i] is not a product of powers of 2,3, and 5, Bypassed. 
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Code  Meaning  Processing 
when isin[i]   0 for some i. 

30016 isin[i]   -1, 0, or 1 for some i or 
isin[m-1] = 0. 

Bypassed. 

30032 isn   -1 or 1. Bypassed. 
30512 The first m-1 elements of array n are odd 

numbers. 
Bypassed. 

3. Comments on use 

Data storage 
The real data (transform input and inverse transform output) is stored in array x with  

x[jm]…[j2][j1] = 
mjjjx ...21

, 1,...,1,0  ii nj ,  i = 1,2,...,m. 

For complex data (transform output and inverse transform input), the real part is stored in one half of array x and the 
imaginary part in the other half of x. 

x[km]…[k2][k1] = Re(
mkkk ...21

 ) or Re(
mkkkmnnn ...21 21

...  ),   1,...,1,0  ii nk ,  i = 1,2,...,m-1, 
x[km+n[m-1]/2+1]…[k2][k1] = Im(

mkkk ...21
 ) or Im(

mkkkmnnn ...21 21
...  ),  2/floor,...,0 mm n k   

 
An alternative way to reference the imaginary part of the data, as a separate array that is aliased to x, is shown in the 
sample calling program. For isin[i-1] = 0, in  in }...{ ...21 21 mkkkmnnn   is replaced with 1, i = 1,...,m. 
 
Complex conjugate relation 
The result of the multivariate discrete real Fourier transform has the following complex conjugate relation: 

 
1121 ... knkkk m 

22 kn  ... mm kn  , 

1,...,1,0  ii nk , ,1,...,2,1  mi   .2/floor,...,2,1 mm nk   In the case of 0ik , ii kn   is regarded as 0. 

For h, where isin[h] = 0, the h-th index in the right hand terms is hk . 

Only the terms }...{ ...21 21 mkkkmnnn  , 1,...,1,0  ii nk , ,1,...,1  mi   .2/floor,...,2,1 mm nk   need be stored, as this 
relation can be used to determine the remaining terms. 

General definition of Fourier transform 
The multivariate discrete Fourier transform and inverse transform can be defined as in (1) and (2). 
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where 1,...,0   nk , )/2exp( 
nin   , r  = 1 or –1,   = 1,2,...,m, 
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where 1,...,0   nj , )/2exp( 
nin   , r  = -1 or 1,   = 1,2,...,m. 
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This routine calculates }...{ ...21 21 mkkkmnnn   or }{ ...21 mjjjx  corresponding to the left hand terms of (1) or (2) respectively. 
For i, where isin[i-1] = 0, in  is replaced with 1. The user must normalize the results, if required. 

4. Example program 

This program performs the Fourier transform and prints out the transformed data. It then performs the inverse transform 
and checks the result. Both the normal and inverse transforms are performed on the second dimension only. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define M    2 
#define N1   4 
#define N2   4 
#define LDIM 2*(N2/2+1) 
#define WLEN 2*N1+N1*LDIM 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x[LDIM][N1], xx[LDIM][N1], w[WLEN], eps;  
  double (*cx)[2][LDIM/2][N1]; /* pointer to complex data */ 
  int i, j, n[M], isn, isin[M], m, pr; 
 
  /* generate initial data */ 
  m = M; 
  n[0] = N1; 
  n[1] = N2; 
  for (j=0;j<n[1];j++) 
    for (i=0;i<n[0];i++) 
      x[j][i] = (i+1)*(j+1); 
  /* keep copy */ 
  for (j=0;j<N2;j++) 
    for (i=0;i<N1;i++) 
      xx[j][i] = x[j][i]; 
  /* perform normal transform */ 
  isn = 1; 
  isin[0] = 0; 
  isin[1] = 1; 
  pr = n[1]; 
  ierr = c_dvmrft((double*)x, n, m, isin, isn, w, &icon); 
  /* check results */ 
  if (icon != 0) { 
    printf("ERROR: c_dvmrft failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print complex transformed data */ 
  cx = (double(*)[2][LDIM/2][N1])x; /* complex data overwrites real data */ 
  for (j=0;j<N2/2+1;j++) { 
    for (i=0;i<N1;i++) { 
      printf("%8.5f + i*%8.5f ", (*cx)[0][j][i], (*cx)[1][j][i]); 
    } 
    printf("\n"); 
  } 
  /* perform inverse transform */ 
  isn = -1; 
  isin[0] = 0; 
  isin[1] = -1; 
  ierr = c_dvmrft((double*)x, n, m, isin, isn, w, &icon); 
  /* check results */ 
  eps = 1e-6; 
  for (j=0;j<n[1];j++) 
    for (i=0;i<n[0];i++) 
      if (fabs((x[j][i]/pr - xx[j][i])/xx[j][i]) > eps) { 
 printf("Inaccurate result\n"); 
 exit(1); 
      } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_dvmsnt 
Discrete sine transforms 
ierr = c_dvmsnt(x, k, n, m, isw, tab, &icon); 

1. Function 

This function performs one-dimensional, multiple discrete sine transforms. 

Given one-dimensional n1 sample data {xj} defined on the internal points except both end points dividing a half of 2 
period of odd-function x(t) into n parts equally as follows: 

 1,...,2,1, 





  njj

n
xx j  

this function calculate the discrete sine transform defined as follows in each row of the array: 

 








1

1

1,...,2,1,sin2
n

j
jk nkkj

n
xa  (1) 

2. Arguments 

The routine is called as follows: 
ierr = c_dvmsnt((double*)x, k, n, m, isw, tab, &icon); 

where: 
 
x double 

x[m][k] 

Input The m sequences of {xj}, j = 1, ... , n1 are stored in x[i1][i2], i1 = 
0, ... , m  1, i2 = 0, ... , n2. 

  Output The m sequences of {ak}, k = 1, ... , n1 are stored in x[i1][i2], i1 
= 0, ... , m  1, i2 = 0, ... , n2. 

k int Input C fixed dimension of array x (  n  1). 
n int n Input The number of partition of the half period. n must be an even number. 

See Comments on use. 
m int Input The multiplicity m of the transform. 
isw int isw Input Control information. See Comments on use. 

isw should be set as follows. 
0 to generate the array tab and perform the cosine transforms.. 
1 to prepare the array tab only. 
2 to perform the cosine transforms using the array tab prepared 

before calling. 
tab double 

tab[2n] 
Work Trigonometric function table used for the transformation is stored. 

icon int Output Condition code. See below. 
The complete list of condition codes is given below: 
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Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n  0 
 k < n  1 
 m  0 
 isw  0, 1, 2 
 n is not an even number. 

Processing is stopped. 

3. Comments on use 

Recommended value of n 
The n can be an arbitrary even number, but the transform is fast with the sizes which can be expressed as products of the 
powers of 2, 3, and 5. 

Efficient use of the array tab 
When this routine is called successively with a fixed value of n, the trigonometric function table tab should be initialized 
once at first call with isw = 0 or 1 and should be kept intact for second and subsequent calls with isw = 2. This saves 
initialization procedure of array tab. 

Normalization 
The cosine transform defined as in (1) is also an inverse transform itself. Applying the transform twice results in the 
original sequences multiplied by 2  n. 

If necessary, the user must normalize the results. 

Stack size 
This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack 
area runs out. The necessary size is 16  n byte. 

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command under consideration that 
the stack area could be used for another work area of fixed size and for user’s program also. 

4. Example program 

In this example, sine transforms are calculated with multiplicity of 5. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define N 1024 
#define K (N-1) 
#define M 5 
#define min(a,b) ((a) < (b) ? (a) : (b)) 
 
int MAIN__(void) 
{ 
    double x[M][K], tab[N*2]; 
    double vnrm, error, t1, t2; 
    int    isw, icon, i, j; 
 
    for (j=0; j<M; j++) { 
      for (i=0; i<N-1; i++) { 
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        x[j][i]=(double)min(i+1,(N-i-1)/(j+1)); 
      } 
    } 
 
    /* FORWARD TRANSFORM */ 
    isw = 0; 
    c_dvmsnt((double*)x, K, N, M, isw, tab, &icon); 
 
    printf("icon = %d\n", icon); 
 
    /* BACKWARD TRANSFORM */ 
    isw = 2; 
    c_dvmsnt((double*)x, K, N, M, isw, tab, &icon); 
 
    printf("icon = %d\n", icon); 
 
    for (j=0; j<M; j++) { 
      error = 0.0; 
      vnrm  = 0.0; 
      for (i=0; i< N-1; i++) { 
        t1=x[j][i]/(double)(N*2); 
        t2=t1-(double)(min(i+1,(N-i-1)/(j+1))); 
        vnrm +=t1*t1; 
        error+=t2*t2; 
      } 
      printf("error = %e\n",sqrt(error/vnrm)); 
    } 
} 

5. Method 

For further information consult the entry for VMSNT in the Fortran SSL II Extended Capabilities User's Guide II. 
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c_dvmvsd 
Multiplication of a real sparse matrix by a real vector (diagonal storage 
format). 
ierr = c_dvmvsd(a, k, ndiag, n, nofst, nlb, x, 

y, &icon); 

1. Function 

This function computes the product in equation (1). 

 y Ax  (1) 

In (1), A is an n  n real sparse matrix with x and y both real vectors of size n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvmvsd((double*)a, k, ndiag, n, nofst, nlb, x, y, &icon); 

where: 
a double 

a[ndiag][k] 

Input Sparse matrix A stored in diagonal storage format.  See Comments on 
use. 

k int Input C fixed dimension of array a ( n). 
ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements. 
n int Input Order n of matrix A. 
nofst int 

nofst[ndiag] 

Input Distance from the main diagonal vector corresponding to diagonal 
vectors in array a.  Super-diagonal vectors have positive values.  Sub-
diagonal vectors have negative values.  See Comments on use. 

nlb int Input Lower bandwidth of matrix A. 
x double x[Xlen] Input Vector x is stored in x[i], nlb ≤ i < nlb+n. 

Xlen = n + ndiag-1. 
y double y[n] Output Product vector y. 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 k < 1 
 n < 1 
 n > k 
 ndiag < 1 
 nlb  max(-nofst[i]);  0   i < ndiag
 abs(nofst[i]) > n-1; 0 i < ndiag 

Bypassed. 
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3. Comments on use 

a and nofst 
The coefficients of matrix A are stored in two arrays using the diagonal storage format.  For full details, see the Array 
storage formats section of the Introduction. 

The advantage of this method lies in the fact that the matrix-vector product can be computed without the use of indirect 
indices.  The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method. 

4. Example program 

This example program calculates a matrix-vector multiplication and checks the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX   100 
#define UBANDW   2 
#define LBANDW   1 
 
MAIN__() 
{ 
  double one=1.0, eps=1.e-6; 
  int   ierr, icon; 
  int   ndiag, nlb, nub, n, i, j, k; 
  int   nofst[UBANDW + LBANDW + 1]; 
  double a[UBANDW + LBANDW + 1][NMAX], x[NMAX + UBANDW + LBANDW], y[NMAX]; 
 
  /* initialize matrix and vector */ 
  ndiag = UBANDW + LBANDW + 1; 
  nlb   = LBANDW; 
  nub   = UBANDW; 
  n     = NMAX; 
  k     = NMAX; 
  for (i=1; i<=nub; i++) { 
    for (j=0  ; j<n-i; j++) a[i][j] = -1.0; 
    for (j=n-i; j<n  ; j++) a[i][j] =  0.0; 
    nofst[i] = i; 
  } 
  for (i=1; i<=nlb; i++) { 
    for (j=0; j<i; j++) a[nub + i][j] =  0.0; 
    for (j=i; j<n; j++) a[nub + i][j] = -2.0; 
    nofst[nub + i] = -i; 
  } 
  for (i=0; i<n+nlb+nub; i++) x[i] = 0.0; 
  nofst[0] = 0; 
  for (j=0; j<n; j++) { 
    a[0][j] = one; 
    for (i=1; i<ndiag; i++) a[0][j] -= a[i][j]; 
    x[nlb + j] = one; 
  } 
  /* perform matrix-vector multiply */ 
  ierr = c_dvmvsd((double*)a, k, ndiag, n, nofst, nlb, x, y, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvmvsd failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check vector */ 
  for (i=0;i<n;i++) 
    if (fabs(y[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_dvmvse 
Multiplication of a real sparse matrix by a real vector (ELLPACK 
storage format). 
ierr = c_dvmvse(a, k, nw, n, icol, x, y, 

&icon); 

1. Function 

This function computes the product of equation (1). 

 y Ax  (1) 

In (1), A is an n  n real sparse matrix with x and y both real vectors of size n. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvmvse((double*)a, k, nw, n, (int*)icol, x, y, &icon); 

where: 
a double 

a[nw][k] 

Input Sparse matrix A stored in ELLPACK storage format.  See Comments on 
use. 

k int Input C fixed dimension of array a ( n). 
nw int Input The maximum number of non-zero elements in any row of matrix A 

(0). 
n int Input Order n of matrix A. 
icol int 

icol[nw][k] 

Input Column indices used in the ELLPACK format, showing to which 
column the elements corresponding to a belong.  See Comments on use. 

x double x[n] Input Vector x. 
y double y[n] Output Solution vector y. 
icon int Output Condition code.  See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 k < 1 
 n  0 
 nw < 1 
 n > k 

Bypassed. 

3. Comments on use 

a and icol 
The coefficients of matrix A are stored in two arrays using the ELLPACK storage format. For full details, see the Array 
storage formats section of the Introduction. 
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Before storing data in the ELLPACK format, it is recommended that the user initialize the arrays a and icol with zero 
and the row number, respectively. 

4. Example program 

This example program calculates a matrix-vector multiplication and checks the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    1000 
#define UBANDW     2 
#define LBANDW     1 
 
MAIN__() 
{ 
  double lcf=-2.0, ucf=-1.0, one=1.0, eps=1.e-6; 
  int   ierr, icon; 
  int   nlb, nub, nw, n, i, j, k, ix; 
  int   icol[UBANDW + LBANDW + 1][NMAX]; 
  double a[UBANDW + LBANDW + 1][NMAX], x[NMAX], y[NMAX]; 
 
  /* initialize matrix and vector */ 
  nub = UBANDW; 
  nlb = LBANDW; 
  nw  = UBANDW + LBANDW + 1; 
  n   = NMAX; 
  k   = NMAX; 
  for (i=0; i<n; i++) x[i] = one; 
  for (i=0; i<nw; i++) 
    for (j=0; j<n; j++) { 
      a[i][j] = 0.0; 
      icol[i][j] = j+1; 
    } 
  for (j=0; j<nlb; j++) { 
    for (i=0; i<j; i++) a[i][j] = lcf; 
    a[j][j] = one - (double) j * lcf - (double) nub * ucf; 
    for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf; 
    for (i=0; i<=nub+j; i++) icol[i][j] = i+1; 
  } 
  for (j=nlb; j<n-nub; j++) { 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = one - (double) nlb * lcf - (double) nub * ucf; 
    for (i=nlb+1; i<nw; i++) a[i][j] = ucf; 
    for (i=0; i<nw; i++) icol[i][j] = i+1+j-nlb; 
  } 
  for (j=n-nub; j<n; j++){ 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = one - (double) nlb * lcf - (double) (n-j-1) * ucf; 
    for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf; 
    ix = n - (j+nub-nlb-1); 
    for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i; 
  } 
  /* perform matrix-vector multiply */ 
  ierr = c_dvmvse((double*)a, k, nw, n, (int*)icol, x, y, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvmvse failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check vector */ 
  for (i=0; i<n; i++) 
    if (fabs(y[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_dvqmrd 
Solution of a system of linear equations with a nonsymmetric or 
indefinite sparse matrix (QMR method, diagonal storage format). 
ierr = c_dvqmrd(a, k, ndiag, n, nofst, at, 

ntofst, b, itmax, eps, iguss, x, 

&iter, vw, &icon); 

1. Function 

This routine solves a system of linear equations (1) using the quasi-minimal residual (QMR) method. 

 Ax b  (1) 

In (1), A is an n  n  nonsymmetric or indefinite sparse matrix, b is a constant vector, and x is the solution vector. Both the 
vectors are of size n, and n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvqmrd((double *) a, k, ndiag, n, nofst, (double *) at, ntofst, b, 

itmax, eps, iguss, x, &iter, vw, &icon); 

where: 
a double 

a[ndiag][k] 

Input Matrix A. Stored in diagonal storage format for general sparse matrices. 
See Array storage formats in the Introduction section for details. See 
Comments on use. 

k int Input C fixed dimension of arrays a and at (  n). 
ndiag int Input Number (> 0) of diagonals of matrix A that contain non-zero elements. 
n int Input Order n of matrix A. 
nofst int 

nofst[ndiag] 

Input Offsets from the main diagonal corresponding to diagonals stored in A. 
Upper diagonals have positive offsets, the main diagonal has a zero 
offset, and the lower diagonals have negative offsets. See Array storage 
formats in the Introduction section for details. See Comments on use. 

at double 

at[ndiag][k] 

Input Matrix TA . Stored in diagonal storage format for general sparse 
matrices. See Array storage formats in the Introduction section for 
details. See Comments on use. 

ntofst int 

ntofst[ndiag] 

Input Offsets from the main diagonal corresponding to diagonals stored in 
TA . Upper diagonals have positive offsets, the main diagonal has a zero 

offset, and the lower diagonals have negative offsets. See Array storage 
formats in the Introduction section for details. See Comments on use. 

b double b[n] Input Constant vector b. 
itmax int Input Upper limit (> 0) on the number of iteration steps in the QMR method. 
eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 10-6. See Comments on use. 
iguss int Input Control information on whether to start the computation with 

approximate solution values in array x. When iguss  0, computation 
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is to start from approximate solution values in x. 
x double x[n] Input The starting approximations for the computation. This is optional and 

relates to argument iguss. 
  Output Solution vector. 
iter int Output Total number of iteration steps performed in QMR method. 
vw double 

vw[Vwlen] 
Work Vwlen = 9k + n + ndiag - 1. 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Break-down occurred. See Comments on use. Discontinued. 
20001 Upper limit of number of iteration steps was 

reached. 
Stopped. The approximate solution obtained up to 
this stage is returned, but its precision is not 
guaranteed. 

30000 One of the following has occurred: 
 n < 1 
 k < 1 or k < n 
 ndiag < 1 or ndiag > k 
 itmax   0 

Bypassed. 

32001 |nofst[i-1]| > n-1 or  
|ntofst[i-1]| > n-1 
for some i = 1,...,ndiag 

Bypassed. 

3. Comments on use 

a, at, nofst and ntofst 
The coefficients of matrix A (and TA ) are stored using two arrays a and nofst (at and ntoftst) and the diagonal 
storage format. For full details, see the Array storage formats section of the Introduction. 

eps 
In the QMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and 
eps, the solution is judged to have converged. The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of matrix A and eps. 

Break-down 
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the 
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine 
c_dvcrd which uses the MGCR method should be used. 

General comments 
The speed of the QMR method is generally higher than the MGCR method. 

4. Example program 

This program solves a system of linear equations and checks the result. 
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#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    100 
#define UBANDW    2 
#define LBANDW    1 
 
MAIN__() 
{ 
  double one=1.0, zero=0.0, lcoef=-2.0, ucoef=-1.0, bcoef=10.0, eps=1.e-06; 
  int    ierr, icon, ndiag, nub, nlb, n, itmax, iguss, iter, i, j, k; 
  int    nofst[UBANDW + LBANDW + 1], ntofst[UBANDW + LBANDW + 1]; 
  double a[UBANDW + LBANDW + 1][NMAX], at[UBANDW + LBANDW + 1][NMAX]; 
  double b[NMAX], x[NMAX], vw[NMAX * 9 + NMAX + UBANDW + LBANDW]; 
 
  nub   = UBANDW; 
  nlb   = LBANDW; 
  ndiag = nub + nlb + 1; 
  n     = NMAX; 
  k     = NMAX; 
 
/* Set A-mat & b */ 
  for (i=1; i<=nub; i++) { 
    for (j=0  ; j<n-i; j++) a[i][j] = ucoef; 
    for (j=n-i; j<n  ; j++) a[i][j] = zero; 
    nofst[i] = i; 
  } 
  for (i=1; i<=nlb; i++) { 
    for (j=0; j<i; j++) a[nub + i][j] = zero; 
    for (j=i; j<n; j++) a[nub + i][j] = lcoef; 
    nofst[nub + i] = -i; 
  } 
  nofst[0] = 0; 
  for (j=0; j<n; j++) { 
    b[j]    = bcoef; 
    a[0][j] = bcoef; 
    for (i=1; i<ndiag; i++) b[j] += a[i][j]; 
  } 
/* Set A-mat transpose */ 
  ntofst[0] = 0; 
  for (j=0; j<n; j++) at[0][j] = a[0][j]; 
  for (i=1; i<ndiag; i++) { 
    ntofst[i] = - nofst[i]; 
    for (j=0; j<n; j++) at[i][j] = a[i][n-j-1]; 
  } 
/* solve the nonsymmetric system of linear equations */ 
  itmax = 2000; 
  iguss = 0; 
  ierr = c_dvqmrd ((double*)a, k, ndiag, n, nofst, (double*)at, 
                   ntofst, b, itmax, eps, iguss, x, &iter, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvqmrd failed with icon = %d\n", icon); 
    exit(1); 
  } 
/* check result */ 
  for (i=0;i<n;i++) 
  if (fabs(x[i]-one) > eps*10.0) { 
    printf("WARNING: result maybe inaccurate\n"); 
    exit(1); 
  } 
  printf("Result OK\n"); 
  exit(0); 
} 

5. Method 

For the QMR method consult [37]. 
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c_dvqmre 
Solution of a system of linear equations with a nonsymmetric or 
indefinite sparse matrix (QMR method, ELLPACK storage format). 
ierr = c_dvqmre(a, k, iwidt, n, icol, at, 

iwidtt, icolt, b, itmax, eps, 

iguss, x, &iter, vw, &icon); 

1. Function 

This routine solves a system of linear equations (1) using the quasi-minimal residual method (QMR) method. 

 Ax b  (1) 

In (1), A is an n  n  nonsymmetric or indefinite sparse matrix, b is a constant vector and x is the solution vector.  Both the 
vectors are of size n and n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvqmre((double *) a, k, iwidt, n, (double *) icol, (double *) at, 

iwidtt, (double *) icolt, b, itmax, eps, iguss, x, &iter, vw, 

&icon); 

where: 
a double 

a[iwidt][k] 

Input Matrix A. Stored in ELLPACK storage format for general sparse 
matrices. See Array storage formats in the Introduction section for 
details. See Comments on use. 

k int Input C fixed dimension of arrays a, at, icol and icolt ( n). 
iwidt int Input The maximum number ( > 0) of non-zero elements in any row vectors 

of A. 
n int Input Order n of matrices A and TA . 
icol int 

icol[iwidt][k] 

Input Column indices used in the ELLPACK format, showing to which 
column the elements corresponding to a belong.  See Comments on 
use. 

at double 

at[iwidtt][k] 

Input Matrix TA . Stored in ELLPACK storage format for general sparse 
matrices. See Array storage formats in the Introduction section for 
details. See Comments on use. 

iwidtt int Input The maximum number ( > 0) of non-zero elements in any row vectors 
of TA . 

icolt int icolt 

[iwidtt][k] 

Input Column indices used in the ELLPACK format, showing to which 
column the elements corresponding to at belong.  See Comments on 
use. 

b double b[n] Input Constant vector b. 
itmax int Input Upper limit (> 0) on the number of iteration steps in the QMR 

method. 
eps double Input Tolerance for convergence test. 
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When eps is zero or less, eps is set to 10-6. See Comments on use. 
iguss int Input Control information on whether to start the computation with 

approximate solution values in array x. When iguss  0 
computation is to start from approximate solution values in x. 

x double x[n] Input The starting values for the computation. This is optional and relates to 
argument iguss. 

  Output Solution vector x. 
iter int Output Total number of iteration steps performed in QMR method. 
vw double vw[12k] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Break-down occurred. See Comments on use. Discontinued. 
20001 Upper limit of number of iteration steps was 

reached. 
Stopped. The approximate solution obtained up to 
this stage is returned, but its precision is not 
guaranteed. 

30000 One of the following has occurred: 
 n < 1 
 k < 1 or k < n 
 iwidt < 1 or iwidt > k 
 iwidtt < 1 or iwidtt > k 
 itmax   0 

Bypassed. 

3. Comments on use 

a, at, icol, and icolt 
The coefficients of matrix A (and TA ) are stored using two arrays a and icol (at and icolt) and the ELLPACK 
storage format for general sparse matrices. For full details, see the Array storage formats section of the Introduction. 

eps 
In the QMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and 
eps, the solution is judged to have converged. The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of matrix A and eps. 

Break-down 
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the 
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine 
c_dvcre which uses the MGCR method should be used. 

General comments 
The speed of the QMR method is generally higher than the MGCR method. 

4. Example program 

This program solves a system of linear equations and checks the result. 
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#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX     100 
#define UBANDW     2 
#define LBANDW     1 
 
MAIN__() 
{ 
  double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, zero = 0.0, eps=1.e-06; 
  int    ierr, icon, nlb, nub, iwidt, iwidtt, n, k, itmax, iguss, iter, i, j, ix; 
  int    icol[UBANDW + LBANDW + 1][NMAX], icolt[UBANDW + LBANDW + 1][NMAX]; 
  double a[UBANDW + LBANDW + 1][NMAX], at[UBANDW + LBANDW + 1][NMAX]; 
  double b[NMAX], x[NMAX], vw[NMAX * 12]; 
 
  nub    = UBANDW; 
  nlb    = LBANDW; 
  iwidt  = UBANDW + LBANDW + 1; 
  iwidtt = iwidt; 
  n      = NMAX; 
  k      = NMAX; 
 
/* Initialize A-mat and A-mat transpose */ 
  for (i=0; i<iwidt; i++) 
    for (j=0; j<n; j++) { 
      a [i][j] = zero; 
      at[i][j] = zero; 
      icol [i][j] = j+1; 
      icolt[i][j] = j+1; 
    } 
/* Set A-mat & b */ 
  for (j=0; j<nlb; j++) { 
    for (i=0; i<j; i++) a[i][j] = lcf; 
    a[j][j] = bcoef; 
    b[j]    = bcoef + (double) j * lcf + (double) nub * ucf; 
    for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf; 
    for (i=0; i<=nub+j; i++) icol[i][j] = i+1; 
  } 
  for (j=nlb; j<n-nub; j++) { 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef; 
    b[j]      = bcoef + (double) nlb * lcf + (double) nub * ucf; 
    for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf; 
    for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb; 
  } 
  for (j=n-nub; j<n; j++){ 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef; 
    b[j]      = bcoef + (double) nlb * lcf + (double) (n-j-1) * ucf; 
    for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf; 
    ix = n - (j+nub-nlb-1); 
    for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i; 
  } 
/* Set A-mat transpose */ 
  for (j=0; j<nub; j++) { 
    for (i=0; i<j; i++) at[i][j] = ucf; 
    at[j][j] = bcoef; 
    for (i=j+1; i<j+1+nlb; i++) at[i][j] = lcf; 
    for (i=0; i<=nlb+j; i++) icolt[i][j] = i+1; 
  } 
  for (j=nub; j<n-nlb; j++) { 
    for (i=0; i<nub; i++) at[i][j] = ucf; 
    at[nub][j] = bcoef; 
    for (i=nub+1; i<iwidtt; i++) at[i][j] = lcf; 
    for (i=0; i<iwidtt; i++) icolt[i][j] = i+1+j-nub; 
  } 
  for (j=n-nlb; j<n; j++){ 
    for (i=0; i<nub; i++) at[i][j] = ucf; 
    at[nub][j] = bcoef; 
    for (i=1; i<nlb-1+n-j; i++) at[i+nub][j] = lcf; 
    ix = n - (j+nlb-nub); 
    for (i=n; i>=j+nlb-nub; i--) icolt[ix--][j] = i; 
  } 
/* solve the nonsymmetric system of linear equations */ 
  itmax = 2000; 
  iguss = 0; 
  ierr = c_dvqmre ((double*)a, k, iwidt, n, (int*)icol, (double*)at, 
                   iwidtt, (int*)icolt, b, itmax, eps, iguss, x, 
                   &iter, vw, &icon); 
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  if (icon != 0) { 
    printf("ERROR: c_dvqmre failed with icon = %d\n", icon); 
    exit(1); 
  } 
/* check result */ 
  for (i=0; i<n; i++) 
  if (fabs(x[i]-one) > eps*10.0) { 
    printf("WARNING: result maybe inaccurate\n"); 
    exit(1); 
  } 
  printf("Result OK\n"); 
  exit(0); 
} 

5. Method 

For QMR method consult [37]. 
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c_dvran3 
Normal pseudo-random numbers. 
Ierr = c_dvran3(dam, dsd, &ix, da, n, dwork, 

nwork, &icon); 

1. Function 

This subroutine generates pseudo-random numbers from a normally distributed probability density function with a mean 
of m and a standard deviation  : 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvran3(dam, dsd, &ix, da, n, dwork, nwork, &icon); 

where: 
dam double Input The mean m of the normal distribution. 
dsd double Input Standard deviation   of the normal distribution. 
ix int Input Starting value, or ‘seed’. Set 0ix  on the first call. See Comments on 

use. 
Output Return value is 0. Should not be changed on subsequent calls. See 

Comments on use. 
da double da[n] Output Pseudo-random numbers. 
n int Input Number of pseudo-random numbers to be generated. 
dwork double 

dwork[nwork] 

Work Contents should not be changed on subsequent calls. 

nwork int Input Size of workspace. 156,1nwork . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30001 nwork is too small. Bypassed. 
30002 0ix . 
30003 to 30008 dwork was modified between calls or ix was set 

to 0 on the first call. 

3. Comments on use 

This routine generates normally distributed pseudo-random numbers using the Polar method, which uses uniform random 
numbers with a long period of at least 1052. A different starting value, or ‘seed’ gives a different sequence of numbers (see 
ix below). That is, a random number sequence is generated from different random number subsequences. These 
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subsequences are created through the segmentation of a long period random number sequence, and are separated by a 
distance of at least 260 (> 1018) intervals. For details, see the entry for DVRAU4 in the Fortran SSL II Extended 
Capabilities User's Guide II. 

ix 
Since a sequence of pseudo-random numbers is to be generated by a deterministic program, there must be some form of 
random input. This is provided by ix. It should be set to a positive integer on the first call, and then left unaltered to 
generate more numbers in the same sequence on subsequent calls, i.e. it is output as 0 after each call, and should be left 
unaltered. 

n 
This argument controls the number of pseudo-random numbers generated from the infinite sequence defined by the 
starting value of ix. If 0n , no random numbers are returned. For efficiency, n should be set to a large number, e.g. 
100,000. This reduces the overheads involved in calling the routine several times, and allows vectorization. n can be 
changed between successive calls provided that the size of da is as large as the maximum value of n. 

dwork 
This work space array is used to store the state information required for repeated calls to the library function. Therefore its 
contents should not be altered between successive calls. 

nwork 
The size of the work space array, nwork should be at least 1,156 and should remain unchanged between successive calls 
to the library function. For efficiency on vector processors however, nwork should be large, e.g. 100,000. 

Repeated generation of the same random numbers 
As dwork contains all the state information for the routine, it can be saved and reused to generate precisely the same 
numbers from the same point in a particular sequence of random numbers, provided that ix is set to 0. That is, if ix is set 
to 0, and a particular state is input in dwork, the same pseudo-random numbers will always be generated. 

4. Example program 

This program calculates 10000 normally distributed pseudo-random numbers, and their mean and standard deviation is 
then determined. These observed values and the expected values of the mean and standard deviation are displayed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10000 
 
MAIN__()  
{ 
  int ierr, icon; 
  int n, nwork, ix, i; 
  double dsd, dam, dwork[NMAX], da[NMAX], sum, sumsq, mean, dev; 
 
  /* initialize parameters */ 
  n = NMAX; 
  nwork = NMAX; 
  ix = 12345; 
  dsd = 1; 
  dam = 0; 
 
  /* generate pseudo-random numbers */ 
  ierr = c_dvran3(dam, dsd, &ix, da, n, dwork, nwork, &icon); 
  if (icon != 0) { 
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    printf("ERROR: c_dvran3 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate mean and normal deviation */ 
  sum = 0; 
  sumsq = 0; 
  for (i=0;i<n;i++) { 
    sum = sum+da[i]; 
    sumsq = sumsq+da[i]*da[i]; 
  } 
  mean = sum/n; 
  dev = sqrt(sumsq/n - mean*mean); 
  printf("observed mean = %12.4e   deviation = %12.4e\n", 
         mean, dev); 
  printf("calculated mean = %12.4e   deviation = %12.4e\n",  
         dam, dsd); 
  return(0); 
} 

5. Method 

To generate normally distributed pseudo-random numbers, this routine uses the Polar method, with fast elementary 
function evaluation. The uniform pseudo-random numbers are generated by the Fortran routine DVRAU4. 

The Polar method is described in [64]. Implementation details and comparison with other methods are discussed in [10]. 
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c_dvran4 
Generation of normal random numbers.(Wallace’s method) 
Ierr = c_dvran4(dam, dsd, &ix, da, n, dwork, 

nwork, &icon); 

1. Function 

This subroutine generates pseudo-random numbers from a normal distribution density function with a given mean  m and 
standard deviation  : 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvran4(dam, dsd, &ix, da, n, dwork, nwork, &icon); 

where: 
dam double Input The mean m of the normal distribution. 
dsd double Input Standard deviation   of the normal distribution. 
ix int Input Starting value, or ‘seed’. Set 0ix  on the first call. See Comments on 

use. 
Output Return value is 0. Should not be changed on subsequent calls. See 

Comments on use. 
da double da[n] Output Pseudo-random numbers. 
n int Input Number of pseudo-random numbers to be generated. 
dwork double 

dwork[nwork] 

Work Contents should not be changed on subsequent calls. 

nwork int Input Size of workspace. nwork  1,350. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30001 nwork is too small. Bypassed. 
30002 Internal check failed. 
30003 to 30008 dwork was modified between calls or ix was set 

to 0 on the first call. 
30009 ix is too large. 
40001 to 40002 dwork was over written or ix was set to zero on 

the initial call. 
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3. Comments on use 

ix 
Since a sequence of pseudo-random numbers is to be generated by a deterministic program, there must be some form of 
random input. This is provided by ix. It should be set to a positive integer on the first call, and then left unaltered to 
generate more numbers in the same sequence on subsequent calls, i.e. it is output as 0 after each call, and should be left 
unaltered. 

n 
This argument controls the number of pseudo-random numbers generated from the infinite sequence defined by the 
starting value of ix. If 0n , no random numbers are returned. For efficiency, n should be set to a large number, e.g. 
100,000. This reduces the overheads involved in calling the routine several times, and allows vectorization. n can be 
changed between successive calls provided that the size of da is as large as the maximum value of n. 

dwork 
This work space array is used to store the state information required for repeated calls to the library function. Therefore its 
contents should not be altered between successive calls. 

nwork 
The size of the work space array, nwork should be at least 1,350 and should remain unchanged between successive calls 
to the library function. For efficiency on vector processors however, nwork should be large, e.g. 500,000. 

Repeated generation of the same random numbers 
If dwork[0], ..., dwork[nwork-1] is saved, the same sequence of random numbers can be generated again (from the 
point where dwork was saved) by reusing dwork[0], ..., dwork[nwork] and calling this subroutine with argument 
ix = 0. 

Wallace’s method 
The implementation of Wallace's method in c_dvran4 is about three times faster than the implementation of the Polar 
method in c_dvran3. 

4. Example program 

This program calculates 10000 normally distributed pseudo-random numbers, and their mean and standard deviation is 
then determined. These observed values and the expected values of the mean and standard deviation are displayed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10000 
 
MAIN__()  
{ 
  int ierr, icon; 
  int n, nwork, ix, i; 
  double dsd, dam, dwork[NMAX], da[NMAX], sum, sumsq, mean, dev; 
 
  /* initialize parameters */ 
  n = NMAX; 
  nwork = NMAX; 
  ix = 12345; 
  dam = 0; 
  dsd = 1; 
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  /* generate pseudo-random numbers */ 
  ierr = c_dvran4(dam, dsd, &ix, da, n, dwork, nwork, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvran4 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate mean and normal deviation */ 
  sum = 0; 
  sumsq = 0; 
  for (i=0;i<n;i++) { 
    sum = sum+da[i]; 
    sumsq = sumsq+da[i]*da[i]; 
  } 
  mean = sum/n; 
  dev = sqrt(sumsq/n - mean*mean); 
  printf("observed mean = %12.4e   deviation = %12.4e\n", 
         mean, dev); 
  printf("calculated mean = %12.4e   deviation = %12.4e\n",  
         dam, dsd); 
  return(0); 
} 

5. Method 

This routine uses a variant of Wallace’s method to generate normally distributed pseudo-random numbers.  The uniform 
pseudo-random numbers are generated by the Fortran routine DVRAU4.  For further information consult the entry for 
DVRAN4 and DVRAU4 in the Fortran SSL II Extended Capabilities User’s Guide II, and also [8], [10] and [115]. 
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c_dvrau4 
Uniform [0.1) pseudo-random numbers. 
ierr = c_dvrau4(&ix, da, n, dwork, nwork, 

&icon); 

1. Function 

This subroutine generates pseudo-random numbers from a uniform distribution on [0,1). 

2. Arguments 

The routine is called as follows: 
ierr = c_dvrau4(&ix, da, n, dwork, nwork, &icon); 

where: 
ix int Input Starting value, or ‘seed’. Set 0ix  on the first call. See Comments on 

use. 
Output Return value is 0. Should not be changed on subsequent calls. See 

Comments on use. 
da double da[n] Output Pseudo-random numbers. 
n int Input Number of pseudo-random numbers to be generated. 
dwork double 

dwork[nwork] 

Work Contents should not be changed on subsequent calls. 

nwork int Input Size of workspace. 388nwork . 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30001 nwork is too small. Bypassed. 
30002 0ix . 
30003 to 30008 dwork was modified between calls or ix was set 

to 0 on the first call. 

3. Comments on use 

ix 
Since a sequence of pseudo-random numbers is to be generated by a deterministic program, there must be some form of 
random input. This is provided by ix. It should be set to a positive integer on the first call, and then left unaltered to 
generate more numbers in the same sequence on subsequent calls, i.e. it is output as 0 after each call, and should be left 
unaltered. 

n 
This argument controls the number of pseudo-random numbers generated from the infinite sequence defined by the 
starting value of ix. If 0n , no random numbers are returned. For efficiency, n should be set to a large number, e.g. 
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100,000. This reduces the overheads involved in calling the routine several times, and allows vectorization. n can be 
changed between successive calls provided that the size of da is as large as the maximum value of n. 

dwork 
This work space array is used to store the state information required for repeated calls to the library function. Therefore its 
contents should not be altered between successive calls. 

nwork 
The size of the work space array, nwork should be at least 388 and should remain unchanged between successive calls to 
the library function. For efficiency on vector processors however, nwork should be large, e.g. 45,000. 

Repeated generation of the same random numbers 
As dwork contains all the state information for the routine, it can be saved and reused to generate precisely the same 
numbers from the same point in a particular sequence of random numbers, provided that ix is set to 0. That is, if ix is set 
to 0, and a particular state is input in dwork, the same pseudo-random numbers will always be generated. 

4. Example program 

This program calculates 10000 pseudo-random numbers, and their mean and standard deviation is then determined. These 
observed values and the expected values of the mean and standard deviation are displayed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10000 
 
MAIN__()  
{ 
  int ierr, icon; 
  int n, nwork, ix, i; 
  double dwork[NMAX], da[NMAX], sum, sumsq, mean, dev; 
 
  /* initialize parameters */ 
  n = NMAX; 
  nwork = NMAX; 
  ix = 12345; 
  /* generate pseudo-random numbers */ 
  ierr = c_dvrau4(&ix, da, n, dwork, nwork, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvrau4 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate mean and normal deviation */ 
  sum = 0; 
  sumsq = 0; 
  for (i=0;i<n;i++) { 
    sum = sum+da[i]; 
    sumsq = sumsq+da[i]*da[i]; 
  } 
  mean = sum/n; 
  dev = sqrt(sumsq/n - mean*mean); 
  printf("observed mean = %12.4e   deviation = %12.4e\n", 
         mean, dev); 
  printf("calculated mean = %12.4e   deviation = %12.4e\n",  
         0.5, sqrt(1.0/12)); 
  return(0); 
} 
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5. Method 

For more information on the methods used in this routine, see the entry for DVRAU4 in the Fortran SSL II Extended 
Capabilities User's Guide II, and also [11] and [12]. For a comparison with other methods, see [6], [32], [58] and [70]. 
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c_dvrcvf 
Discrete convolution or correlation of real data. 
ierr = c_dvrcvf(x, k, n, m, y, ivr, isw, tab, 

&icon); 

1. Function 

This function performs one-dimensional discrete convolutions or correlations between a filter and multiple input data 
using discrete Fourier method. 

The convolution and correlation of a filter y with a single input data x are defined as follows: 

Convolution 
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where, xj is a cyclic data with period n. See Comments on use. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvrcvf((double*)x, k, n, m, y, ivr, isw, tab, &icon); 

where: 
x double 

x[m][k] 

Input  The m data sequences {xj}, j = 0, ... , n1, are stored in x[i][j] , i = 
0, ... , m1, j = 0, ... , n1. 

  Output  The m sequences {zk}, k = 0, ... , n1, are stored in x[i][k] , i = 0, ... , 
m1, k = 0, ... , n1. 

k int Input  C fixed dimension of array x( n). 
n int Input The number of elements in one data sequence or in filter y. n must be an 

even number. See Comments on use. 
m int Input The number of rows in the array x. 
y double y[n] Input Filter vector {yi}. The values of this array will be altered after calling 

with isw = 0 or 2. See Comments on use. 
ivr int Input Specify either convolution or correlation. 
   0 Convolution is calculated. 
   1 Correlation is calculated. 
isw int Input  Control information. 

0 all the procedure will be done at once. 
If the calculation should be divided into step-by-step procedure, 
specify as follows. See Comments on use. 

1 to prepare the array tab. 
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2 to perform the Fourier transform in array y using the trigonometric 
function table tab. 

   3 to perform the convolution or correlation using the array y and tab 
which are prepared in advance. 

tab double 

tab[2n] 
Work Trigonometric function table used for the transformation is stored. 

icon int Output Condition code. See below. 
The complete list of condition codes  is:  

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 n  0 
 k < n 
 m  0 
 ivr  0, 1 
 isw  0, 1, 2, 3 
 n is not an even number. 

Bypassed. 

3. Comments on use 

To compute non-periodic convolution or correlation 
Non-periodic convolution or correlation can be calculated by this routine with padding the value of x[i][j], i = 0, ... , 
m  1, j = nx, ... , n  1 and y[k], k = ny, ... , n  1 with zeros, where nx is the actual length of the data sequence, ny is the 
actual length of the filter y and n must be larger or equal to nx  ny  1. See Example Program. 

The values of correlation zk, corresponding to k = ny  1, ... , 1 are stored in x[i][j], i = 0, ... , m  1, j = n  ny  
1, ... , n  1 in this non-periodic case. 

Recommended value of n 
The n can be an arbitrary even number, but the calculation is fast with the sizes which can be expressed as products of the 
powers of 2, 3, and 5. 

Efficient use of the array tab and y 
When this routine will calculate convolution or correlation successively for a fixed value of n, the trigonometric function 
table tab should be initialized once at first call with isw = 0 or 1 and should be kept intact for second and subsequent 
calls with isw = 2 and 3.  This saves initialization procedure of array tab. 

Furthermore, if the filter vector y is also fixed, the array y which is transformed with isw = 0 or 2 can be reused for 
second and subsequent calls with isw = 3. 

In these cases, the array y must be transformed surely once. 

To compute autocorrelation 
Autocorrelation or autoconvolution can be calculated by this routine with letting the filter array y be identical to the data 
array x. In this case, specifying isw = 2 will be ignored. See Example Program. 
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Stack size 
This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack 
area runs out. The necessary size is 8  n byte. 

It is recommended to specify the sufficiently large stacksize with “limit” or “ulimit” command under consideration that 
the stack area could be used for another work area of fixed size and for user’s program also. 

4. Example program 

Example 1) In this example, periodic convolution of a filter with three data vectors is calculated with n=8. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define K 8 
#define M 3 
 
int MAIN__(void) 
{ 
    double x[M][K], y[K], tab[K*2]; 
    int    ivr, isw, icon; 
    int    i, j, n; 
 
    n = 8; 
 
    for (j=0; j<M; j++) { 
      for (i=0; i<n; i++) { 
        x[j][i] = (double)(i+j+1); 
      } 
    } 
 
    for (i=0; i<n; i++) { 
      y[i] = (double)(i+11); 
    } 
 
    printf("--INPUT DATA--\n"); 
 
    for (j=0; j<M; j++) { 
      printf("x[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        printf("%8.2f ",x[j][i]); 
      } 
      printf("\n"); 
    } 
 
    printf("Filter y : "); 
    for (i=0; i<n ; i++) { 
      printf("%8.2f ", y[i]); 
    } 
 
    ivr = 0; 
    isw = 0; 
    c_dvrcvf((double*)x, K, n, M, y, ivr, isw, tab, &icon); 
 
    printf("\n\n--OUTPUT DATA--\n"); 
    for (j=0; j<M; j++) { 
      printf("x[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        printf("%8.2f ",x[j][i]); 
      } 
      printf("\n"); 
    } 
} 
 

Example 2) In this example, non-periodic convolution is calculated with nx=7, ny=9 and n=16. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL header file */ 
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#define K 16 
#define M 3 
 
int MAIN__(void) 
{ 
    double x[M][K], y[K], tab[K*2]; 
    int    ivr, isw, icon; 
    int    i, j, n, nx, ny; 
 
    nx=7, ny=9, n=nx+ny-1; 
    if(n%2) n=n+1; 
 
    for (j=0; j<M; j++) { 
      for (i=0; i<nx; i++) { 
        x[j][i] = (double)(i+j+1); 
      } 
      for (i=nx; i<n; i++) { 
        x[j][i] = 0.0; 
      } 
    } 
 
    for (i=0; i<ny; i++) { 
      y[i] = (double)(i+11); 
    } 
    for (i=ny; i<n; i++) { 
      y[i] = 0.0; 
    } 
 
    printf("--INPUT DATA--\n"); 
 
    for (j=0; j<M; j++) { 
      printf("x[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        if(i%8==0) printf("\n           "); 
        printf("%8.2f ",x[j][i]); 
      } 
      printf("\n"); 
    } 
 
    printf("Filter y : "); 
    for (i=0; i<n ; i++) { 
      if(i%8==0) printf("\n           "); 
      printf("%8.2f ", y[i]); 
    } 
 
    ivr = 0; 
    isw = 0; 
    c_dvrcvf((double*)x, K, n, M, y, ivr, isw, tab, &icon); 
 
    printf("\n\n--OUTPUT DATA--\n"); 
    for (j=0; j<M; j++) { 
      printf("x[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        if(i%8==0) printf("\n           "); 
        printf("%8.2f ",x[j][i]); 
      } 
      printf("\n"); 
    } 
} 
 

Example 3) In this example, autocorrelation is calculated with nx=4. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define K 8 
#define M 3 
 
int MAIN__(void) 
{ 
    double x[M][K], tab[K*2]; 
    int    ivr, isw, icon; 
    int    i, j, n, nx; 
 
    nx=4, n=nx*2; 
 
    for (j=0; j<M; j++) { 
      for (i=0; i<nx; i++) { 
        x[j][i] = (double)(i+j+1); 



 c_dvrcvf  

 731 

      } 
      for (i=nx; i<n; i++) { 
        x[j][i] = 0.0; 
      } 
    } 
 
    printf("--INPUT DATA--\n"); 
 
    for (j=0; j<M; j++) { 
      printf("x[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        printf("%8.2f ",x[j][i]); 
      } 
      printf("\n"); 
    } 
 
    ivr = 1; 
    isw = 1; 
    c_dvrcvf((double*)x, K, n, M, (double*)x, ivr, isw, tab, &icon); 
 
    isw = 3; 
    c_dvrcvf((double*)x, K, n, M, (double*)x, ivr, isw, tab, &icon); 
 
    printf("\n--OUTPUT DATA--\n"); 
    for (j=0; j<M; j++) { 
      printf("x[%d][*]  : ",j); 
      for (i=0; i<n; i++) { 
        printf("%8.2f ",x[j][i]); 
      } 
      printf("\n"); 
    } 
} 

5. Method 

For further information consult the entry for VRCVF in the Fortran SSL II Extended Capabilities User’s Guide. 
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c_dvrft1 
Discrete real Fourier transform (radix 2 FFT). 
ierr = c_dvrft1(a, n, isn, isw, vw, ivw, 

&icon); 

1. Function 

Given one dimensional (n-term) real time series data { }x j ,this function computes the discrete real Fourier transform or 
its inverse by the Fast Fourier Transform (FFT) using a method suited to a vector processor. It is assumed that n  2  , 
where  is a non-negative integer. 

Fourier transform 
When { }x j is input, the transform defined below is calculated to obtain { }nak  and { }nbk . 
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Fourier inverse transform 
When { }ak and { }bk  are input, the transform defined below is calculated to obtain { }2x j . 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvrft1(a, n, isn, isw, vw, ivw, &icon); 

where: 
a double a[n+2] Input  { }x j  or { }ak , { }bk . See Comments on use for data storage. 
  Output  { }nak , { }nbk  or { }x j  
n int Input Number of terms n of the transform. 
isn int Input Indicates that the transform (isn=+1) or the inverse transform  

(isn=-1) is to be performed. See Comments on use. 
isw int Input  Information controlling the initial state of the transform. Specified by: 

0 for the first call 
1 for the second and subsequent calls. 
See Comments on use. 

vw double Work Rlen  max( ( ) / , )n  1 2 1 . 
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vw[Rlen] 
ivw int ivw[Ilen] Work Ilen   n max( , ) / 4 2 2 . 
icon int Output Condition code. See below. 
The complete list of condition codes :  

Code  Meaning  Processing 
0 No error Completed. 
30000 One of the following has occurred: 

 isn = 0, 
 isw  0 or 1  
 2n (   0  is an integer) 

Bypassed. 

3. Comments on use 

Use of this function 
This function performs the high-speed calculation of a real FFT on a vector processor. Other routines might be more 
appropriate on a general purpose computer. 

Data storage for input data in array a 
Array { }x j { }ak ,

{ }bk  
a[0] x0 a0

a[1] x1  
a[2] x2 a1 
a[3] x3 b1

        
        
        
a[n-2] xn-2 an/2-1

a[n-1] xn-1 bn/2-1

a[n] * an/2

a[n+1] * * 
The elements indicated by * are ignored on input and are set to zero on output. 

isw 
When multiple transforms are calculated, specify isw = 1 for the second and subsequent function calls. This enables 
the function to bypass the steps for generating a trigonometric table and a list vector, both of which are needed for the 
transform, thus improving processing efficiency. The contents of arrays vw and ivw must not be modified between 
function calls. 

Even if the number of terms n of each of the multiple transforms varies, specifying isw = 1 improves processing 
efficiency. However, it is desirable that transforms with the same number of terms are executed consecutively for the 
highest efficiency. 

When calling this function together with the complex Fourier transform function c_dvcft1, specifying isw = 1 
improves processing efficiency. 
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isn 
Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used 
for strided access through data. Therefore, if the real and imaginary parts of { }x j or { }ak , { }bk are stored at intervals of 
length i, specify isn = +i for a transform and isn = -i for an inverse transform. The results will be stored at intervals of 
length i. 

When using a vector processor, the interval stride i should take the values i = 2p+1, for p = 1,2,3,…. 

Work array size conversion table 
The table for 16 4096 n is as follows: 

  n Length of 
vw 

Length of 
ivw 

4 16 40 16
5 32 96 32
6 64 224 64
7 128 512 192
8 256 1152 512
9 512 2560 1280

10 1024 5632 3072
11 2048 12288 7168
12 4096 26624 16384

 

General definition of Fourier transform 
The discrete real Fourier transform and its inverse transform can be defined as shown below in (1) and in (2) respectively. 
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where   2 / n .  

This function computes { }nak , { }nbk  or { }x j corresponding to the left hand side of (1) or (2). The user is responsible 
for normalizing the result, if required. 

4. Example program 

This program computes a 1-D real FFT on 1024 elements, where the input elements are chosen at random. The inverse 
transform is then computed and the normalized results of this are compared with the original data values. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
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#define NMAX 1024 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps; 
  double a[NMAX+2], b[NMAX+2], vw[NMAX*(10+1)/2];  
  int i, n, isw, isn, ivw[NMAX*(10-4)/2]; 
 
  /* generate initial data */ 
  n = NMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (i=0;i<n;i++) { 
    ran = (i+1)*phai; 
    a[i] = ran - (int)ran; 
  } 
  for (i=0;i<n;i++)  
    b[i] = a[i]; 
  /* perform normal transform */ 
  isw = 0; 
  isn = 1; 
  ierr = c_dvrft1(a, n, isn, isw, vw, ivw, &icon); 
  /* perform inverse transform */ 
  isw = 1; 
  isn = -1; 
  ierr = c_dvrft1(a, n, isn, isw, vw, ivw, &icon); 
  /* check results */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((a[i]/(2*n) - b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information consult the entries for VCFT1 and VRFT1 in the Fortran SSL II Extended Capabilities User’s 
Guide.
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c_dvrft2 
Discrete real Fourier transform (memory efficient, radix 2 FFT). 
ierr = c_dvrft2(a, n, isn, isw, vw, ivw, 

&icon); 

1. Function 

Given one dimensional (n-term) real time-series data {xj}, this routine computes the discrete real Fourier transform 
or its inverse transform by the Fast Fourier Transform (FFT) using a method suited to a vector processor. It is 
assumed that n = 2l, where l is a non-negative integer. 

Fourier transform 
When {xj} is input, the transform defined below is used to obtain the Fourier coefficients {nak} and {nbk}. 

  





1

0

,cos2
n

j
jk kjxna          ,2/,...,1,0 nk        ,/2 n   

  





1

0

,sin2
n

j
jk kjxnb          ,12/,...,1  nk       n/2  . 

Fourier inverse transform 
When }{ ka  and }{ kb  are input, the transform defined below is used to obtain }2{ jx . 
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2. Arguments 

The routine is called as follows: 
ierr = c_dvrft2(a, n, isn, isw, vw, ivw, &icon); 

where: 
a double a[n+2] Input }{ jx  or }{ ka , }{ kb . See Comments on use for data storage. 
  Output }{ kna , }{ knb or }2{ jx . 

n int Input Number of terms n of the transform. 
isn int Input Control information, indicating that the transform or the inverse 

transform is to be performed (isn  0). 
isn = 1 for transform, 
isn = -1 for inverse transform. 
See Comments on use. 

isw int Input Control information, indicating the initial state of the transform. 
isw = 0 for first call, 
isw = 1 for the second and subsequent calls. 
See Comments on use. 

vw double 

vw[7n/2] 

Work  
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ivw int ivw[3n/2] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 isn = 0 
 isw  0 or 1 
 n  2 , with   a non-negative integer. 

Bypassed. 

3. Comments on use 

Use of this routine 
This routine performs the high-speed calculation of a real Fourier transform on a vector processor. On a general-purpose 
computer other routines may be more appropriate. 

The function of this routine is the same as that of routine c_dvrft1, which is also suited to a vector processor. This 
routine is suitable for calculating only a single transform. The work array area is limited to the required minimum; it is a 
memory-efficient routine. For multiple transforms, if there is sufficient work array area available, the high-performance 
routine c_dvrft1 is more suitable. 

Data storage for input data in array a 
Array }{ jx  }{ ka , 

}{ kb  

a[0] 0x  0a  

a[1] 1x  * 

a[2] 2x  1a  

a[3] 3x  1b  

. . . 

. . . 

. . . 

a[n-2] 2nx  12/ na  

a[n-1] 1nx  12/ nb  

a[n] * 2/na  

a[n+1] * * 

 

The elements indicated by * are ignored on input and are set to zero on output. 

isn 
Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used 
for strided access through data. Therefore, if }{ jx  or }{ ka , }{ kb  are stored at intervals of length i, specify isn = +i for 
a transform and isn = -i for an inverse transform. The results will be stored at intervals of length i. 
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When using a vector processor, the interval stride i should take a value of the form i = 2p + 1, p = 1,2,3,... for more 
efficient memory access. 

isw 
When multiple transforms are calculated, specify isw = 1 for the second and subsequent routine calls. This enables the 
routine to bypass the steps generating a trigonometric table and a list vector, both of which are needed for the transform, 
thus improving processing efficiency. The contents of arrays vw and ivw must not be changed between routine calls. 

Even if the number of terms n of each of the multiple transforms varies, specifying isw = 1 improves processing 
efficiency. However, transforms with the same number of terms should be executed consecutively for the highest 
efficiency. 

When calling this routine together with the complex Fourier transform routine c_dvcft2, specifying isw = 1 improves 
processing efficiency. 

Work array size conversion table 
The table for 16   n   4096 is as follows. 

  n Length of 
vw 

Length of 
ivw 

4 16 56 24

5 32 112 48

6 64 224 96

7 128 448 192

8 256 896 384

9 512 1792 768

10 1024 3584 1536

11 2048 7168 3072

12 4096 14336 6144

 

General definition of Fourier transform 
The discrete Fourier transform and its inverse transform can be defined as in (1) and (2): 

  





1

0

,cos2 n

j
jk kjx

n
a                2/,...,1,0 nk  ,       n/2    

  (1) 

  





1

0

,sin2 n

j
jk kjx

n
b                 2/,...,1 nk  ,       n/2    

   )cos(
2
1)],sin(cos[

2
1

2/

12/

1
0 jakjbkjaax n

n

k
kkj   





,     ,1,...,1,0  nj      n/2  . (2) 

This routine obtains }{ kna , { knb } or }2{ jx  corresponding to the left hand side of (1) or (2) respectively. The user is 
responsible for normalizing the result, if required. 
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4. Example program 

This program performs the Fourier transform followed by the inverse transform and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 1024 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps; 
  double a[NMAX+2], b[NMAX+2], vw[7*NMAX/2];  
  int i, n, isw, isn, ivw[3*NMAX/2]; 
 
  /* generate initial data */ 
  n = NMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (i=0;i<n;i++) { 
    ran = (i+1)*phai; 
    a[i] = ran - (int)ran; 
  } 
  for (i=0;i<n;i++)  
    b[i] = a[i]; 
  /* perform normal transform */ 
  isw = 0; 
  isn = 1; 
  ierr = c_dvrft2(a, n, isn, isw, vw, ivw, &icon); 
  /* perform inverse transform */ 
  isw = 1; 
  isn = -1; 
  ierr = c_dvrft2(a, n, isn, isw, vw, ivw, &icon); 
  /* check results */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((a[i]/(2*n) - b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VRFT2 in the Fortran SSL II Extended Capabilities User's Guide. 
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c_dvrpf3 
Three-dimensional prime factor discrete real Fourier transform. 
ierr = c_dvrpf3(a, l, m, n, isn, vw, &icon); 

1. Function 

Given three-dimension real time-series data }{
321 jjjx , where the size of each dimension is ,,, 321 nnn  this routine 

performs discrete real Fourier transform or the inverse transform by using the prime factor Fourier transform (prime factor 
FFT). The size of each dimension must satisfy the following conditions: 

-the size must be a product of mutually prime factors selected from }16,9,8,7,5,4,3,2{ . 

-the size of  the first dimension must be an even number 2 , where  satisfies the previous condition. 

Three-dimensional Fourier transform 
When }{

321 jjjx  is provided, the transform defined below is used to obtain }{
321321 kkknnn   
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where 1,...,0  rr nk , and )/2exp( rr ni  , r = 1, 2, 3. 

For a three-dimensional real Fourier transform }{
321 kkk  is needed only for  2/floor,..,1,0 11 nk  . A conjugate relation 

can be used to calculate the remaining elements of the first dimension,   1,...,12/floor 111  nnk . 

 
3211321 kkknkkk  ,  

Three-dimensional Fourier inverse transform: When }{
321 kkk is provided, the inverse transform defined below is 

used to obtain }{
321 jjjx . 
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where 1,...,0  rr nj , and )/2exp( rr ni  , r = 1, 2, 3. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvrpf3((double *) a, l, m, n, isn, vw, &icon); 

where: 
a double 

a[n][m][l] 

Input If isn   0 (transform from real to complex), real data }{
321 jjjx .  

If isn < 0 (transform from complex to real), complex data }{
321 kkk . 

See Comments on use for data storage. 
  Output If isn  0 (transform from real to complex), complex data 

}{
321321 kkknnn  . 

If isn < 0 (transform from complex to real) real data }{
321 jjjx . 
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See Comments on use for data storage. 
l int Input Number of data items of the third array dimension 1n + 2 with l even and    

(l – 2)/2   5040. 
m int Input Number of data items of the second dimension 2n , with m   5040. 
n int Input Number of data items of the first array dimension 3n , with n   5040. 
isn int Input Control information. 

isn   0 for the transform (real to complex) 
isn   0 for the inverse transform (complex to real). 

vw double 

vw[n*m*l] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 One of the following has occurred: 

 (l –2)/2, m or n exceeds 5040 
 (l –2)/2, m or n cannot be factored into the 

product of mutually prime factors in 
{2,3,4,5,7,8,9,16} 

Bypassed. 

30000 One of the following has occurred: 
 l – 2 is not an even number 
 l, m, or n is zero or a negative number 

Bypassed. 

3. Comments on use 

Data storage 
The real data (transform input and inverse transform output) is stored in array a with  

a[j3][j2][j1] = 
321 jjjx ,     1,...,1,0  ii nj ,    i = 1, 2, 3. 

For complex data (transform output and inverse transform input), the real part is stored in one half of array a and the 
imaginary part in the other half of a. 

a[k3][k2][k1] = Re(
321 kkk ) or Re(

321321 kkknnn  ),   2/floor,...,1,0 11 nk  , 
a[k3+1+n1/2][k2][k1] = Im(

321 kkk ) or Im(
321321 kkknnn  ), 1,...,1,0  ii nk ,   i = 2, 3. 

 
The sample calling program shows how it is possible to alias the portion of array a containing the imaginary part with a 
second array, which makes it easier to work with the data.  
 
Number of terms 
The number of terms in a dimension is a product of mutually prime factors from {2,3,4,5,7,8,9,16}. The maximum 
number for the second and third dimensions is 5 7 9 16 = 5040. The number of terms in the last dimension must be 
an even number up to 2 5040. 

When this routine is called with input argument n = 1, a two-dimensional prime factor fast Fourier transform is 
determined. 
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When this routine is called with input arguments n = 1 and m = 1, a one-dimensional prime factor fast Fourier transform is 
determined. 

General definition of three-dimensional Fourier transform 
The three dimensional discrete Fourier transform and its inverse transform can be defined as shown below in (1) and (2) 
respectively. 
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where 1,...,0  rr nj , and )/2exp( rr ni  , r = 1, 2, 3. 

This routine calculates }{
321321 kkknnn   or }{

321 jjjx  corresponding to the left hand terms of (1) or (2) respectively. The 
user must normalize the results, if required. 

4. Example program 

This program performs the Fourier transform followed by the inverse transform and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
/* problem dimensions */ 
#define N1 4 
#define N2 3 
#define N3 2 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps; 
  double a[N3][N2][N1+2]; /* allocate real data */ 
  double (*b)[2][N3][N2][(N1+2)/2]; /* pointer to complex data */ 
  double aa[N3][N2][N1+2], vw[N3][N2][N1+2]; 
  int i, j, k, cnt, l, m, n, isn, pr; 
 
  /* generate initial real data */ 
  l = N1+2; 
  m = N2; 
  n = N3; 
  pr = (l-2)*m*n; 
  phai = (sqrt(5.0)-1.0)/2; 
  cnt = 1; 
  for (k=0;k<N3;k++) { 
    for (j=0;j<N2;j++) { 
      for (i=0;i<N1;i++) { 
 ran = cnt*phai; 
 a[k][j][i] = ran - (int)ran; 
 cnt++; 
      } 
    } 
  } 
  /* keep copy */ 
  for (k=0;k<N3;k++) { 
    for (j=0;j<N2;j++) { 
      for (i=0;i<N1;i++) 
 aa[k][j][i] = a[k][j][i]; 
    } 
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  } 
  /* perform normal transform */ 
  isn = 1; 
  ierr = c_dvrpf3((double*)a, l, m, n, isn, (double*)vw, &icon); 
  /* print complex transformed data */ 
  b = (double(*)[2][N3][N2][(N1+2)/2])a; /* complex data overwrites real data */ 
  for (k=0;k<N3;k++) { 
    for (j=0;j<N2;j++) { 
      for (i=0;i<=N1/2;i++) { 
 printf("%8.5f + i*%8.5f ", (*b)[0][k][j][i], (*b)[1][k][j][i]); 
      } 
      printf("\n"); 
    } 
    printf("\n"); 
  } 
  /* perform inverse transform */ 
  isn = -1; 
  ierr = c_dvrpf3((double*)a, l, m, n, isn, (double*)vw, &icon); 
  /* check results */ 
  eps = 1e-6; 
  for (k=0;k<N3;k++) { 
    for (j=0;j<N2;j++) { 
      for (i=0;i<N1;i++) { 
 if (fabs((a[k][j][i]/pr - aa[k][j][i])/aa[k][j][i]) > eps) { 
   printf("WARNING: result inaccurate\n"); 
   exit(1); 
 } 
      } 
    } 
  } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VRPF3 in the Fortran SSL II Extended Capabilities User's Guide II and references [17] and [120]. 
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c_dvseg2 
Selected eigenvalues and corresponding eigenvectors of a real symmetric 
matrix (parallel bisection and inverse iteration methods). 
ierr = c_dvseg2(a, n, m, epst, e, ev, k, vw, 

ivw, &icon); 

1. Function 

This function calculates m eigenvalues of an n order real symmetric matrix A given by: 

 xAx    

in descending (or ascending) order, using the parallel bisection method. It also calculates the corresponding m 
eigenvectors, using the inverse iteration method. Eigenvectors are normalised such that x 2 1 . The result must be such 
that 1 m n . 

2. Arguments 

The routine is called as follows: 
ierr = c_dvseg2(a, n, m, epst, e, (double *)ev, k, vw, ivw, &icon); 

where: 
a  double a[Alen] Input Symmetric matrix A with dimension of Alen = n(n+1)/2. The matrix 

is stored in symmetric storage format. See the Array storage formats 
section in the Introduction. 

Output The content is altered on output. 
n int Input Order n of the symmetric matrix A. 
m int  Input Number m of the eigenvalues to be calculated. Calculate in descending 

order when m = +m. Calculate in ascending order when m = -m. 
epst double  Input  Upper bound of the absolute errors used in eigenvalue convergence test. 

A default value is used when a non-positive value is specified. See 
Comments on use. 

e double e[|m|] Output  Contains eigenvalues stored in ascending or descending order depending 
on the sign of m. 

ev double 

ev[|m|][k] 

Output Eigenvector corresponding to eigenvalue e[i] is stored at 
ev[i][j], j=0,1,…,n-1. 

k int Input C fixed dimension of array ev ( n ). 
vw double 

vw[15*n] 

Work   

ivw int ivw[7*n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
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Code  Meaning  Processing 
10000 n = 1 ev[0][0] is set to 1.0, and e[0] is set to 

a[0]. 
15000 Some eigenvectors were not calculated. The uncalculated eigenvectors are set to zero. 
20000 No eigenvectors were calculated. All of the eigenvectors are set to zero. 
30000 One of the following has occurred: 

 m = 0. 
 n < m. 
 k < n. 

Bypassed. 

3. Comments on use 

epst 
The default value of the argument epst is expressed by (1) where   is the unit round-off: 

 epst    max( , )max min  (1) 

where max  and min  are the upper and lower bounds of the existence range (given by Gerschgorin’s theorem) of the 
eigenvalues of Ax x  . 

When very large and small absolute eigenvalues co-exist and a convergence test is performed using (1), it is generally 
difficult to calculate smaller eigenvalues with adequate precision. In such cases, smaller eigenvalues may be calculated 
with higher precision by setting epst to a smaller value. However, processing speed decreases as the number of 
iterations increases. 

See the entry for VSEG2 in the Fortran SSL II Extended Capability User’s Guide to obtain details on the convergence 
criterion. 

4. Example program 

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 symmetric matrix. 

#include <stdlib.h> 
#include <stdio.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 5 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m, i, j, ij, k, ivw[7*NMAX]; 
  double a[NMAX*(NMAX+1)/2], e[NMAX], ev[NMAX][NMAX], vw[15*NMAX], epst; 
 
  /* initialize matrix */ 
  n = NMAX; 
  ij = 0; 
  for (i=0;i<n;i++)  
    for (j=0;j<=i;j++) { 
      a[ij++] = n-i; 
    } 
  k = NMAX; 
  m = n; 
  epst = 0; 
  /* find eigenvalues and eigenvectors */ 
  ierr = c_dvseg2(a, n, m, epst, e, (double*)ev, k, vw, ivw, &icon); 
  if (icon >= 20000) { 
    printf("ERROR: c_dvseg2 failed with icon = %d\n", icon); 
    exit(1); 
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  } 
  /* print eigenvalues and eigenvectors */ 
  for (i=0;i<m;i++) { 
    printf("e-value %d: %10.4f\n",i+1,e[i]); 
    printf("e-vector:"); 
    for (j=0;j<n;j++) 
      printf("%7.4f  ",ev[i][j]); 
    printf("\n"); 
  } 
  return(0); 
} 

5. Method 

This function calculates m eigenvalues of an n by n real symmetric matrix A in descending (or ascending) order using the 
parallel bisection method and their corresponding eigenvectors using the inverse iteration method. 

For further information consult the entry for VSEG2 in the Fortran SSL II Extended Capability User’s Guide. 
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c_dvsevp 
Eigenvalues and eigenvectors of a real symmetric matrix 
(tridiagonalization, multisection method, and inverse iteration) 
ierr = c_dvsevp(a, k, n, nf, nl, ivec, &etol, 

&ctol, nev, e, maxne, m, ev, vw, 

iw, &icon); 

1. Function 

This routine calculates specified eigenvalues and, optionally, eigenvectors of an n-dimensional real symmetric 
matrix A. 

First, the matrix is reduced to tridiagonal form using the Householder reductions. Then, the specified eigenvalues are 
obtained by the multisection method. The eigenvectors are obtained by the inverse iteration. 

 Ax = x. (1) 

2. Arguments 

The routine is called as follows: 
ierr = c_dvsevp((double *)a, k, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne, 

(int *)m, (double *)ev, vw, iw, &icon); 

where: 
a double a[n][k] Input Real symmetric matrix A, stored in the real symmetric storage format. 

See Array storage formats in the Introduction section. 
k int Input C fix dimension of matrix A. (k  n) 
n int Input Order n of matrix A. 
nf int Input Number assigned to the first eigenvalue to be acquired by numbering 

eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 
that one number is assigned to one eigenvalue.) 

nl int Input Number assigned to the last eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 
that one number is assigned to one eigenvalue.) 

ivec int Input Control information. 
ivec = 1 if both the eigenvalues and eigenvectors are sought. 
ivec  1 if only the eigenvalues are sought. 

etol double Input Tolerance for determining whether an eigenvalue is distinct or 
numerically multiple. 

  Output etol is set to the default value of 16103   when etol is set to less 
than it. See Comments on use. 

ctol double Input Tolerance (  etol) for determining whether adjacent eigenvalues are 
approximately multiple, i.e. clustered. 

  Output When ctol is less than etol, ctol is set to etol. See Comments 
on use. 
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nev int nev[3] Output Number of eigenvalues calculated. 
nev[0] indicates the number of distinct eigenvalues, 
nev[1] indicates the number of distinct clusters, 
nev[2] indicates the total number of eigenvalues including 
multiplicities. 

e double 

e[maxne] 

Output Eigenvalues. Stored in e[i-1], i = 1,...,nev[2]. 

maxne int Input Maximum number of eigenvalues that can be computed. See Comments 
on use. 

m int 

m[2][maxne] 

Output Information about the multiplicity of the computed eigenvalues.  
m[0][i-1] indicates the multiplicity of the i-th eigenvalue = i , 
m[1][i-1] indicates the size of the i-th cluster of eigenvalues, 
i = 1,...,min{maxne, nev[2]}. 

ev double 

ev[maxne][k] 

Output When ivec = 1, the eigenvectors corresponding to the computed 
eigenvalues. Stored by row in ev[i-1][j-1], i = 1,...,nev[2],  
j = 1,...,n. 

vw double vw[17n] Work  
iw int iw[Ivwlen] Work Ivwlen  =  9  k + 128. 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 The total number of eigenvalues exceeded 

maxne during computation of multiple and/or 
clustered eigenvalues. 

Discontinued. The eigenvectors cannot be 
computed. Eigenvalues are returned but are not 
stored taking into account multiplicities. See 
Comments on use. 

30000 One of the following has occurred: 
 n < 1 
 k < n 
 nf < 1 
 nl > n 
 nl < nf 
 maxne < nl-nf+1 

Bypassed. 

30100 The input matrix may not be a symmetric matrix. Bypassed. 

3. Comments on use 

etol and ctol 
If the eigenvalues j , ksssj  ,...,1, , )0( k satisfy 

 












|)||,max(|1
||

1

1

ii

ii , (2) 

with   = etol, and if 1s  and 1ks  do not satisfy (2), then the eigenvalues j , ksssj  ,...,1, , are considered 
to be identical, that is, a single eigenvalue of multiplicity 1k . 
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The default value of etol is 16103  . Using this value, the eigenvalues are refined to machine precision. 

When (2) is not satisfied for   = etol, 1i  and i  are assumed to be distinct eigenvalues. 

If (2) is satisfied for   = ctol (but is not satisfied with   = etol) for eigenvalues j , ktttj  ,...,1, , but not for 

1t  and 1kt , then eigenvalues j , ktttj  ,...,1, , are considered to be approximately multiple, that is, clustered, 
though distinct (not numerically multiple). In order to obtain an invariant subspace, eigenvectors corresponding to 
clustered eigenvalues are computed using orthogonal starting vectors and are re-orthogonalized. 

If ctol < etol, then ctol = etol is set. 

maxne 
Assume r eigenvalues are requested. Note that if the first or last requested eigenvalue has a multiplicity greater than 1 then 
more than r eigenvalues, are obtained. The corresponding eigenvectors can be computed only when the corresponding 
eigenvector storage area is sufficient. 

The maximum number of computable eigenvalues can be specified in maxne. If the total number of eigenvalues exceeds 
maxne, icon = 20000 is returned. The corresponding eigenvectors cannot be computed. In this case, the eigenvalues are 
returned, but they are not stored repeatedly according to multiplicities. 

When all eigenvalues are distinct, it is sufficient to set  maxne = nl–nf+1. 

When the total number of eigenvalues to be sought exceeds maxne, the necessary value for maxne for seeking 
eigenvalues again is returned in nev[2]. 

4. Example program 

This program obtains eigenvalues and prints the results. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define K              500 
#define N                K 
#define NF               1 
#define NL             100 
#define MAXNE      NL-NF+1 
#define NVW           17*K 
#define NIW    9*MAXNE+128 
 
MAIN__() 
{ 
  double a[N][K], ab[N][K]; 
  double e[MAXNE], ev[MAXNE][K], vw[NVW]; 
  double vv[N][K]; 
  double etol, ctol, pi; 
  int    nev[3], m[2][MAXNE], iw[NIW]; 
  int    ierr, icon; 
  int    i, j, k, n, nf, nl, maxne, ivec; 
 
  n     = N; 
  k     = K; 
  nf    = NF; 
  nl    = NL; 
  ivec  = 1; 
  maxne = MAXNE; 
  etol  = 3.0e-16; 
  ctol  = 5.0e-12; 
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  /* Generate real symmetric matrix with known eigenvalues */ 
  /* Initialization                                        */ 
  pi = 4.0 * atan(1.0); 
  for(i=0; i<n; i++) { 
    for(j=0; j<n; j++) { 
      vv[i][j] = sqrt(2.0/(double)(n+1))*sin((double)(i+1)*pi* 
                      (double)(j+1)/(double)(n+1)); 
      a[i][j] = 0.0; 
    } 
  } 
 
  for(i=0; i<n; i++) { 
    a[i][i] = (double)(-n/2+(i+1)); 
  } 
 
  printf(" Input matrix size is %d\n", n); 
  printf(" Matrix calculations use k = %d\n", k); 
  printf(" Desired eigenvalues are nf to nl %d %d\n", nf, nl); 
  printf(" That is, request %d eigenvalues.\n", maxne) ; 
  printf(" True eigenvalues are as follows\n"); 
  for(i=nf-1; i<nl; i++) { 
    printf("a(%d,%d) = %12.4e\n", i, i, a[i][i]); 
  } 
 
  ierr = c_dvmggm ((double*)a, k, (double*)vv, k, (double*)ab, k, n, n, n, &icon); 
  ierr = c_dvmggm ((double*)vv, k, (double*)ab, k, (double*)a, k, n, n, n, &icon); 
 
  /* Calculate the eigendecomposition of A */ 
  ierr = c_dvsevp ((double*)a, k, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne, 
                  (int*)m, (double*)ev, vw, iw, &icon); 
  if (icon > 0) { 
    printf("ERROR: c_dvsevp failed with icon = %d\n", icon); 
    exit(1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf(" Number of eigenvalues %d\n", nev[2]); 
  printf(" Number of distinct eigenvalues %d\n", nev[0]); 
  printf(" Solution to eigenvalues\n"); 
  for(i=0; i<nev[2]; i++) { 
    printf("  e[%d] = %12.4e\n", i, e[i]); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for VSEVP in the Fortran SSL II Extended Capabilities User's Guide II and [81]. 
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c_dvsin1 
Discrete sine transform (radix 2 FFT). 
ierr = c_dvsin1(b, n, tab, vw, ivw, &icon); 

1. Function 

Given  n data points { }x j , obtained by dividing  the first half of a 2 period, odd function )(tx into n equal parts, that is 

n
njjxx j


 ,1,...,1,0),( . 

The discrete sine transform or its inverse transform is computed by a Fast Fourier Transform (FFT) algorithm suited to a 
vector processor. 

 It is assumed that n  2  , where  is a non-negative integer. 

Sine transform 
When { }x j is input, the transform defined below is calculated to obtain }2{ knb . 

1,...,1,0),sin(42
1

1

 




nkjkxnb
n

j
jk   

where n/  and x0 = 0. 

Sine inverse transform 
When }{ kb  is input, the transform defined below is calculated to obtain }4{ jx . 

1,...,1,0,)sin(44
1

1

 




njjkbx
n

k
kj  

where n/  and b0 = 0. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvsin1(b, n, tab, vw, ivw, &icon); 

where: 
b double b[n+2] Input  }{ jx  or }{ kb . As x0 and b0 are assumed to be zero; b[0], b[n] and 

b[n+1] are ignored. 
  Output  }2{ knb  or }4{ jx ; b[0], b[n] and b[n+1] are set to zero. 
n int Input Number of  samples n. 
tab double 

tab[Tlen] 
Output Trigonometric function table used in the transformation. Tlen = 2n+4. 

vw double 

vw[Rlen] 
Work Rlen  max( ( ) / , )n  1 2 1 . 

ivw int ivw[Ilen] Work Ilen   n max( , ) / 4 2 2 . 
icon int Output Condition code. See below. 
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The complete list of condition codes is:  

Code  Meaning  Processing 
0 No error. Completed. 
30000 2n (   0  is an integer). Bypassed. 

3. Comments on use 

Use of this function 
This function performs the high-speed calculation of a discrete sine transform on a vector processor. Other routines might 
be more appropriate on a general purpose computer. 

Multiple transforms 
Multiple transforms are performed efficiently because the generation of the trigonometric table and list vector are only 
performed on the first call to the function. It is therefore essential that tab, vw and ivw remain unchanged between calls 
to this function. 

The contents of these three arguments are valid even when the number of terms n are different for the multiple transforms. 
However, it is desirable that transforms with the same number of terms are executed consecutively for the highest 
efficiency. 

Work array size conversion table 
The table for 16 4096 n is as follows: 

  n Length of 
tab 

Length of 
vw 

Length of 
ivw 

4 16 36 40 16
5 32 68 96 32
6 64 132 224 64
7 128 260 512 192
8 256 516 1152 512
9 512 1028 2560 1280

10 1024 2052 5632 3072
11 2048 4100 12288 7168
12 4096 8196 26624 16384

 
General definition of discrete sine transform 
The discrete sine transform and its inverse transform can be defined as shown below in (1) and in (2) respectively. 

 1,...,1,0),sin(2 1

1
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where n/ .  
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This function computes }2{ knb  or }4{ jx corresponding to the left hand side of (1) or (2). The user is responsible for 
normalizing the result, if required. 

4. Example program 

This program computes a sine transform on 1024 elements, where the input elements are chosen at random. The inverse 
transform is then computed and the normalized results of this are compared with the original data values. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 1024 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, scale, eps; 
  double a[NMAX+2], b[NMAX+2], tab[2*NMAX+4], vw[NMAX*(10+1)/2];  
  int i, n, ivw[NMAX*(10-4)/2]; 
 
  /* generate initial data */ 
  n = NMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (i=1;i<n;i++) { 
    ran = (i+1)*phai; 
    a[i] = ran - (int)ran; 
  } 
  for (i=1;i<n;i++)  
    b[i] = a[i]; 
  /* perform normal transform */ 
  ierr = c_dvsin1(a, n, tab, vw, ivw, &icon); 
  /* perform inverse transform */ 
  ierr = c_dvsin1(a, n, tab, vw, ivw, &icon); 
  /* check results */ 
  scale = 1.0/(8*n); 
  eps = 1e-6; 
  for (i=0;i<n+1;i++) 
    if (fabs((scale*a[i]-b[i])) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For further information consult the entry for VSIN1 in the Fortran SSL II Extended Capabilities User’s Guide and [88] 
and [108]. 
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c_dvsldl 
LDL T  decomposition of a symmetric positive definite matrix (modified 
Cholesky’s method). 
ierr = c_dvsldl(a, n, epsz, vw, ivw, &icon); 

1. Function 

This routine performs LDL T  decomposition of an nn  symmetric positive definite matrix A, using the modified 
Cholesky’s method, 

 TLDLA  . (1) 

In (1) L is a unit lower triangular matrix and D is a diagonal matrix. Here, 1n .  

2. Arguments 

The routine is called as follows: 
ierr = c_dvsldl(a, n, epsz, vw, ivw, &icon); 

where: 
a double a[Alen] Input Matrix A. Stored in symmetric positive definite storage format. See 

Array storage formats in the Introduction section for further details. 
.2/)1(  nnAlen  

  Output Matrix D 1  + (L – I). Stored in symmetric positive definite storage 
format. See Array storage formats in the Introduction section for further 
details. 

n int Input Order n of matrix A. 
epsz double Input Tolerance (  0) for relative zero test of pivots in the decomposition 

process of matrix A. When epsz = 0, a standard value is used. See 
Comments on use. 

vw double vw[2n] Work  
ivw int ivw[n] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
10000 A pivot was negative. Matrix A is not positive 

definite. 
Continued. 

20000 A pivot is relatively zero. It is probable that 
matrix A is singular. 

Discontinued. 

30000 One of the following has occurred: 
 n < 1 
 epsz < 0 

Bypassed. 
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3. Comments on use 

epsz 
The standard value of epsz is 16 , where   is the unit round-off. If, during the decomposition process, a pivot value fails 
the relative zero test, it is considered to be zero and decomposition is discontinued with icon = 20000. Decomposition 
can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy. 

icon 
If a pivot is negative during decomposition, the matrix A is not positive definite and icon = 10000 is set. Processing is 
continued, however no further pivoting is performed and the resulting calculation error may be significant. 

Calculation of determinant 
The determinant of matrix A is the same as the determinant of matrix D, and can be calculated by forming the product of 
the elements of output array a corresponding to the diagonal elements of D 1 , and then taking the reciprocal of the result. 

4. Example program 

This program solves a system of linear equations using LDL T  decomposition, and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j, ij; 
  double epsz, eps, sum; 
  double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX]; 
  int ivw[NMAX]; 
 
  /* initialize matrix and vector */ 
  n = NMAX; 
  ij = 0; 
  for (j=0;j<n;j++) 
    for (i=j;i<n;i++)  
      a[ij++] = n-i; 
  for (i=0;i<n;i++) { 
    x[i] = i+1; 
    b[i] = 0; 
  } 
  /* initialize constant vector b = a*x */ 
  ij = 0; 
  for (i=0;i<n;i++) { 
    sum = a[ij++]*x[i]; 
    for (j=i+1;j<n;j++) { 
      b[j] = b[j] + a[ij]*x[i]; 
      sum = sum + a[ij++]*x[j]; 
    } 
    b[i] = b[i]+sum; 
  } 
  epsz = 1e-6; 
  /* LDL decomposition of system of equations */ 
  ierr = c_dvsldl(a, n, epsz, vw, ivw, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvsldl failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* solve decomposed system of equations */ 
  ierr = c_dvldlx(b, a, n, &icon); 
  if (icon > 10000) { 
    printf("ERROR: c_dvldlx failed with icon = %d\n", icon); 
    exit(1); 
  } 



Description of the C-SSL II Routines 

756 

  /* check solution vector */ 
  eps = 1e-6; 
  for (i=0;i<n;i++) 
    if (fabs((x[i]-b[i])/b[i]) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for VSLDL in the Fortran SSL II Extended Capabilities User's Guide. 
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c_dvspll 
LLT decomposition of symmetric positive definite matrix (blocked 
Cholesky decomposition method). 
ierr = c_dvspll(a, k, n, epsz, &icon); 

1. Function 

This function executes LLT decomposition for an n  n positive definite matrix A using the blocked Cholesky 
decomposition of outer products. 

 A = LLT 

where, L is a lower triangular matrix.  It is assumed that n1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvspll((double*)a, k, n, epsz, &icon); 

where: 
a double 

a[n][k] 

Input The upper triangular part {aij, i  j} of A is stored in the upper triangular 
part {a[i-1][j-1], i  j} of a for input. 
See Figure dvspll-1. 
The contents of the array are altered on output. 

  Output Decomposed matrix. After the first set of equations has been solved, the 
upper triangular part of a[i-1][j-1](i  j) contains lij ( i  j) of the 
upper triangular matrix LT. 

k int Input A fixed dimension of matrix A. ( n) 
n int Input Order n of matrix A. 
epsz double Input Tolerance for relative zero test ( 0). 

When epsz is zero, a standard value is assigned.  See Comments on use.
icon int Output Condition code.  See below. 
 

 

k 
n 

n 
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Output Array a 
 

Figure dvspll-1. Storing the data by Cholesky decomposition 
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The diagonal elements and upper triangular part aij of the positive definite matrix for whith LLT decomposition is 
performed is stored in array a[i-1][j-1], i=1,...,n, j=i,...,n. 
After LLT decomposition, the upper triangular matrix LT is stored in the upper triangular part. 
 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Pivot became relatively zero.  Coefficient matrix 

might be singular. 
Discontinued. 

20100 Pivot became negative. 
Coefficient matrix is not positive definite. 

30000 One of the following has occurred: 
 n < 1 
 epsz < 0 
 k < n 

3. Comments on use 

epsz 
If a value is set for the judgment of relative zero, it has the following meaning: 

If the value of the selected pivot is positive and less than epsz during LLT decomposition by the Cholesky 
decomposition, the pivot is assumed to be relatively zero and decomposition is discontinued with icon=20000. When 
unit round off is µ, the standard value of epsz is 16µ. 

When the computation is to be continued even if the pivot becomes small, assign the minimum value to epsz. In this 
case, however the result is not assured. 

Negative pivot during the solution 
If the pivot value becomes negative during decomposition, the coefficient matrix is no longer positive definite. Processing 
is discontinued with icon=20100. 

Calculation of determinant 
After the calculation has been completed, the determinant of the coefficient matrix is computed by multiplying all the n 
diagonal elements of the array a and taking the square of the result. 

4. Example program 

LLT decomposition is executed for a 2000  2000 matrix. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX     2000 
#define KMAX     NMAX+1 
 
MAIN__() 
{ 
  int    epsz, icon, ierr, i, j; 
  double a[NMAX][KMAX], b[NMAX], s, det; 
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  for (i=0; i<NMAX; i++) { 
    for (j=i; j<NMAX; j++) { 
      a[i][j] = i+1; 
    } 
  } 
 
  epsz = 0.0; 
  ierr = c_dvspll((double*)a, KMAX, NMAX, epsz, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dvspll failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  for (i=0, s=1.0; i<NMAX; i++) { 
    s = s*a[i][i]; 
  } 
 
  det = s*s; 
  printf ("Determinant of matrix = %15.10le\n\n", det); 
  printf ("Decomposed matrix\n"); 
 
  for (i=0; i<5; i++) { 
    printf ("i=%d ",i); 
    for (j=i; j<5; j++) { 
      printf ("%15.10le ", a[i][j]); 
    } 
    printf ("\n"); 
  } 
} 

5. Method 

For further information consult the entry for VSPLL in the Fortran SSL II Extended Capabilities User’s Guide. 
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c_dvsplx 
Solution of a system of linear equations with LLT-decomposed positive 
definite matrix. 
ierr = c_dvsplx(b, fa, kfa, n, &icon); 

1. Function 

This function solves a system of linear equations with LLT-decomposed symmetric positive definite coefficient matrix. 

 LLTx = b (1) 

Where, L is a lower triangular matrix, b is a real constant vector, and x is the real solution vector.  It is assumed that n1. 

This function receives the LLT-decomposed matrix from function c_dvspll and calculates the solution of a system of 
linear equations. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvsplx(b, (double*)fa, kfa, n, &icon); 

where: 
b double b[n] Input Constant vector b. 
  Output Solution vector x. 
fa double 

fa[n][k] 

Input The LLT-decomposed matrix LT is stored. 
The upper triangular matrix LT{ lij , i  j} is stored in the upper triangular 
part {fa[i-1][j-1], i  j} of fa. 
See Figure dvsplx-1. 

kfa int Input A fixed dimension of array fa. ( n) 
n int Input Order n of matrix L. 
icon int Output Condition code.  See below. 
 

Array fa 

kfa
n

n 

l11 l1nl12

lnn

l22 l2n

Altered 

 
Figure dvsplx-1. Storing the data for the Cholesky decomposition method 

After LLT decomposition, the upper triangular matrix L is stored in the upper triangular part of the array. 
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The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
20000 The coefficient matrix is singular. Discontinued. 
30000 One of the following has occurred: 

 n < 1 
 kfa < n 

3. Comments on use 

A system of linear equations with a positive definite coefficient matrix can be solved by calling this function after calling 
function c_dvspll. However, function c_dvlspx should be usually used to solve a system of linear equations in one 
step. 

4. Example program 

A 2000  2000 coefficient matrix is decomposed into LLT-decomposed matrix, then the system of linear equations is 
solved. 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX     2000 
#define KMAX     NMAX+1 
 
MAIN__() 
{ 
  int    epsz, isw, icon, ierr, i, j; 
  double a[NMAX][KMAX], b[NMAX], s, det; 
 
  for (i=0; i<NMAX; i++) { 
    for (j=i; j<NMAX; j++) { 
      a[i][j] = i+1; 
    } 
  } 
 
  for (i=0; i<NMAX; i++) { 
    b[i] = (i+1)*(i+2)/2+(i+1)*(NMAX-i-1); 
  } 
 
  epsz = 0.0; 
  ierr = c_dvspll((double*)a, KMAX, NMAX, epsz, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dvspll failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  ierr = c_dvsplx(b, (double*)a, KMAX, NMAX, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dvsplx failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  printf ("Solution vector\n"); 
  for (i=0; i<10; i++) { 
    printf ("b[%d] = %23.16le\n", i, b[i]); 
  } 
 
  for (i=0, s=1.0; i<NMAX; i++) { 
    s = s*a[i][i]; 
  } 
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  det = s*s; 
  printf ("\nDeterminant of coefficient matrix = %15.10le\n", det); 
} 

5. Method 

For further information consult the entry for VSPLX in the Fortran SSL II Extended Capabilities User’s Guide. 
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c_dvsrft 
One-dimensional and multiple discrete real Fourier transform (mixed 
radices of 2, 3, and 5). 
ierr = c_dvsrft(x, m, n, isin, isn, w, &icon); 

1. Function 

This routine performs one-dimensional discrete real Fourier transforms (for m multiplicity). The size of the data to be 
transformed n must be a product of powers of 2, 3, and 5, and either m or n must be an even integer. 

Fourier transform 
When }{ kjx  is provided, }{ kn  is defined by the transform (1). 
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  , (1) 

where )/2exp( nin   , 1,...,0  mk ,  1,...,0  n , and r = 1 or –1 for the transform direction. 

Only the terms kn , 1,...,0  mk , 2/,...,0 n  are computed by (1), as the remaining terms kn , 1,...,0  mk , 
1,...,12/  nn  are computed using the complex conjugate relation (2). 

   knk  . (2) 

Fourier inverse transform 
When }{ k  is provided, the inverse transform defined below is used to obtain }{ kjx . 
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where )/2exp( nin   , 1,...,0  mk ,  1,...,0  nj , and r = –1 or 1. With the inverse transform, the direction r 
must be the inverse to that specified in the transform. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvsrft(x, n, m, isin, isn, w, &icon); 

where: 
x double x[Nlen][m] Input  2/floor4 nnNlen  . 

If isn = 1 (transform from real to complex), real data }{ kjx , with 
x[j][k] = kjx , 1,...,0  mk ,  1,...,0  nj . 
If isn = -1 (transform from complex to real), complex data }{ k , 
with x[  ][k] = Re( k ),                   1,...,0  mk ,  
and  x[ 1)2/(  n ][k] = Im( k ), 2/,...,0 n ,  

  Output If isn = 1 (transform from real to complex), complex data }{ kn , 
with x[  ][k] = Re( kn ),                    1,...,0  mk , ,  
and  x[ 1)2/(  n ][k] = Im( kn ), 2/,...,0 n , 
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If isn = -1 (transform from complex to real), real data }{ kjx , with 
x[j][k]= kjx , 1,...,0  mk ,  1,...,0  nj . 

m int Input Multiplicity m. Either m or n must be an even integer. 
n int Input Size of data n, which must be a product of powers of 2, 3, and 5. 

Either m or n must be an even integer. 
isin int Input Fourier transform direction. 

isin =   1 for r = 1, 
isin = -1 for r = -1. 

isn int Input Control information. 
isn = 1 for the transform (real to complex) 
isn = -1 for the inverse transform (complex to real). 

w double w[Wlen] Work   2/floor42 nnmnWlen   
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30001 n   0 or m   0. Bypassed. 
30008 n is not a product of powers of 2, 3, and 5. Bypassed. 
30016 isin   1 or –1. Bypassed. 
30032 isn   1 or –1 Bypassed. 
30512 Both n and m are odd integers. Bypassed. 

3. Comments on use 

n and m 
Two methods are used, one for when n is an even number and one for when m is an even number. The method when n is 
even has a vector length of about nm . The method when m is even has a vector length of 2/m , but it performs less 
data movement. The routine performs transforms at maximum speed when m is a large even number. 

Accessing the imaginary part of complex data 
The sample calling program demonstrates how the imaginary part of complex data can be more easily manipulated by 
defining an array that is aliased to the part of array x that contains the imaginary data. 

General definition of Fourier transform 
The multiple discrete Fourier transform and its inverse transform can be defined as in (3) and (4). 
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where )/2exp( nin   , 1,...,0  mk ,  1,...,0  n , and r = 1 or –1. 
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where )/2exp( nin   , 1,...,0  mk ,  1,...,0  nj , and r = –1 or 1. 
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The routine calculates kn  or kjx  corresponding to the left hand sides of (3) or (4) respectively. The user must 
normalize the results, if required. 

4. Example program 

This program performs the Fourier transform and prints out the transformed data. It then performs the inverse transform 
and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define M 2 
#define N 8 
#define LDIM (N+4*2) 
#define WLEN 2*N+M*LDIM 
 
MAIN__()  
{ 
  int ierr, icon; 
  double x[LDIM][M], xx[LDIM][M], eps;  
  double (*cx)[2][N/2+1][M]; /* pointer to complex data */ 
  double w[WLEN]; 
  int i, j, n, isn, isin, m; 
 
  /* generate initial data */ 
  m = M; 
  n = N; 
  for (j=0;j<n;j++) 
    for (i=0;i<m;i++) 
      x[j][i] = (i+1)*(j+1); 
  /* keep copy */ 
  for (j=0;j<n;j++) 
    for (i=0;i<m;i++) 
      xx[j][i] = x[j][i]; 
  /* perform normal transform */ 
  isn = 1; 
  isin = 1; 
  ierr = c_dvsrft((double*)x, m, n, isin, isn, w, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvsrft failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* print complex transformed data */ 
  cx = (double(*)[2][N/2+1][M])x; /* complex data overwrites real data */ 
  for (j=0;j<n/2+1;j++) { 
    for (i=0;i<m;i++) { 
      printf("%8.5f + i*%8.5f ", (*cx)[0][j][i], (*cx)[1][j][i]); 
    } 
    printf("\n"); 
  } 
  /* perform inverse transform */ 
  isn = -1; 
  isin = -1; 
  ierr = c_dvsrft((double*)x, m, n, isin, isn, w, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvsrft failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check results */ 
  eps = 1e-6; 
  for (j=0;j<n;j++) 
    for (i=0;i<m;i++) 
      if (fabs((x[j][i]/n - xx[j][i])/xx[j][i]) > eps) { 
 printf("Inaccurate result\n"); 
 exit(1); 
      } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_dvtdev 
Eigenvalues and eigenvectors of a tridiagonal matrix. 
ierr = c_dvtdev(d, sl, su, n, &nf, ivec, etol, 

ctol, nev, e, &maxne, ev, k, m, 

vw, ivw, &icon); 

1. Function 

This routine computes the eigenvalues and, optionally, the corresponding eigenvectors of a tridiagonal matrix. 

 xTx  . (1) 

The lower diagonal and upper diagonal elements of the tridiagonal matrix T must satisfy the following condition: 

 01 iiul ,      ni ,...,2 ,  

where 11)(   iiiiiii xuxdxlTx , ni ,...,1 , with 01  nul . 

2. Arguments 

The routine is called as follows: 
ierr = c_dvtdev(d, sl, su, n, &nf, ivec, etol, ctol, nev, e, &maxne,  

(double *) ev, k, (int *) m, vw, ivw, &icon); 

where: 
d double d[n] Input Diagonal of matrix T. 
sl double sl[n] Input Lower diagonal of matrix T, with sl[i-1] = il , ni ,...,1 . 
su double su[n] Input Upper diagonal of matrix T, with su[i-1] = iu , ni ,...,1 . 
n int Input Order n of matrix T. 
nf int Input Index of the first eigenvalue sought, where eigenvalues are numbered in 

ascending order. Eigenvalues with indices in the range nf to 
nf + nev[0] – 1 are computed. 

  Output Index of the first eigenvalue obtained, taking into account the case in 
which the first obtained eigenvalue is multiple and/or part of a cluster. 

ivec int Input Control information. 
ivec = 1 if both the eigenvalues and eigenvectors are sought. 
ivec  1 if only the eigenvalues are sought. 

etol double Input Tolerance for determining whether an eigenvalue is distinct or 
numerically multiple. The default value is 16103  , and etol is set to 
the default whenever a smaller value is specified. See Comments on 
use. 

ctol double Input Tolerance (  etol) for determining whether adjacent eigenvalues are 
approximately multiple, i.e. clustered. When ctol is less than etol, 
ctol is set to etol. See Comments on use. 

nev int nev[3] Input nev[0] indicates the number of eigenvalues to be computed. 
  Output nev[0] indicates the number of distinct eigenvalues, 

nev[1] indicates the number of distinct clusters, 
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nev[2] indicates the total number of eigenvalues including 
multiplicities. 

e double 

e[maxne] 

Output Eigenvalues. Stored in e[i-1], i = 1,...,nev[2]. 

maxne int Input Maximum number of eigenvalues that can be computed. See Comments 
on use. 

  Output When nev[2] is greater than maxne, eigenvectors cannot be 
computed, and maxne contains the smallest number, nev[2], required 
to compute the eigenvectors. 

ev double 

ev[maxne][k] 

Output When ivec = 1, the eigenvectors corresponding to the computed 
eigenvalues. Stored by row in ev[i-1][j-1], i = 1,...,nev[2],  
j = 1,...,n. 

k int Input C fixed dimension of array ev (  n). 
m int 

m[2][maxne] 

Output Information about the multiplicity of the computed eigenvalues.  
m[0][i-1] indicates the multiplicity of the i-th eigenvalue = i , 
m[1][i-1] indicates the size of the i-th cluster of eigenvalues, 
i = 1,...,min{maxne, nev[2]}. 

vw double vw[12n] Work  
ivw int 

ivw[Ivwlen] 

Work 1289  maxneIvwlen . 

icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 The total number of eigenvalues exceeded 

maxne during computation of multiple and/or 
clustered eigenvalues. 

Discontinued. The eigenvectors cannot be 
computed. Eigenvalues are returned but are not 
stored taking into account multiplicities. See 
Comments on use. 

30000 One of the following has occurred: 
 n < 1 
 k < 1 or k < n 
 nf < 1 
 nev[0] < 1 
 nf + nev[0] > n 

Bypassed. 

30100 sl[i]  su[i-1] 0 , for some i. The 
matrix cannot be reduced to symmetric form. 

Bypassed. 

3. Comments on use 

etol and ctol 
If the eigenvalues j , ksssj  ,...,1, , )0( k satisfy 
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with   = etol, and if 1s  and 1ks  do not satisfy (2), then the eigenvalues j , ksssj  ,...,1, , are considered 
to be identical, that is, a single eigenvalue of multiplicity 1k . 

The default value of etol is 16103  . Using this value, the eigenvalues are refined to machine precision. 

When (2) is not satisfied for   = etol, 1i  and i  are assumed to be distinct eigenvalues. 

If (2) is satisfied for   = ctol (but is not satisfied with   = etol) for eigenvalues j , ktttj  ,...,1, , but not for 

1t  and 1kt , then eigenvalues j , ktttj  ,...,1, , are considered to be approximately multiple, that is, clustered, 
though distinct (not numerically multiple). In order to obtain an invariant subspace, eigenvectors corresponding to 
clustered eigenvalues are computed using orthogonal starting vectors and are re-orthogonalized. 

If ctol < etol, then ctol = etol is set. 

maxne 
If r eigenvalues are requested, then, depending on the multiplicities of the eigenvalues, more than r eigenvalues may be 
obtained. The corresponding eigenvectors can be computed only when the corresponding eigenvector storage area is 
sufficient. 

The maximum number of eigenvalues to be computed can be specified in maxne. If the total number of eigenvalues 
exceeds maxne, processing is discontinued with icon = 20000. The corresponding eigenvectors cannot be computed. 
The eigenvalues are returned, but they are not stored repeatedly according to multiplicities. 

When all eigenvalues are known to be distinct, it is sufficient to set maxne = nev[0], the number of eigenvalues to be 
computed. 

General comments 
This routine requires only that 01 iiul . The eigenvalue problem (1) can be reduced to a symmetric generalized 
eigenvalue problem, 

 0xD(DT  ) ,  

where D is a diagonal matrix with 11 D  and iiii lu /11  DD , .,...,2 ni   If iD  can cause a scaling problem, it is 
preferable to consider the symmetric problem, 

 0wITDD  )( 2/12/1  ,  

where xDw 2/1 . 

This routine can also be used to solve the generalized eigenvalue problem  

 DxTx  ,  

by the replacement 1 TDT , where the diagonal matrix must satisfy 0D  . 

4. Example program 

This program obtains 103 eigenvalues and prints the results. 



 c_dvtdev  

 769 

#include <stdio.h> 
#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define P1 350  
#define Q1 2 
#define NMAX P1*Q1 
#define N0 584 
#define N1 686 
#define NE N1-N0+1 
#define MAXNE NE+2*Q1 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, m[2][NMAX], nf, ivec, maxne, nev[3], i, j, k, ii; 
  double d[NMAX], sl[NMAX], su[NMAX], e[MAXNE], ev[MAXNE][NMAX]; 
  double etol, ctol, vw[12*NMAX]; 
  int ivw[9*MAXNE+128]; 
 
  /* initialize matrix */ 
  n = NMAX; 
  k = NMAX; 
  j = (P1+1)/2; 
  d[j-1] = 0; 
  for (i=1;i<j;i++) { 
    sl[i] = 1; 
    su[i-1] = 1; 
    sl[j+i-1] = 1; 
    su[j+i-2] = 1; 
    d[i-1] = j-i; 
    d[2*j-i-1] = d[i-1]; 
  } 
  sl[0] = 0; 
  su[P1-1] = 0; 
  for (j=2;j<=Q1;j++) { 
    ii = (j-1)*P1; 
    for (i=1;i<=P1;i++) { 
      sl[ii+i-1] = sl[i-1]; 
      su[ii+i-1] = su[i-1]; 
      d[ii+i-1] = d[i-1]; 
    } 
  } 
  sl[0] = 0; 
  su[n-1] = 0; 
  nf = N0; 
  ivec = 1; 
  etol = 0; 
  ctol = 0; 
  nev[0] = NE; 
  maxne = MAXNE; 
  /* find eigenvalues only */ 
  ierr = c_dvtdev(d, sl, su, n, &nf, ivec, etol, ctol, nev, e, &maxne,  
    (double*)ev, k, (int*)m, vw, ivw, &icon); 
  if (icon > 20000) { 
    printf("ERROR: c_dvtdev failed with icon = %d\n", icon); 
    exit(1); 
  } 
  printf("icon = %i\n", icon); 
  /* print distinct eigenvalues */ 
  ii = 0; 
  for (i=0;i<nev[0];i++) { 
    printf("eigenvalue %i :  %7.4f with multiplicity %i\n", nf+ii, e[ii], m[0][ii]); 
    if (icon == 20000) ii = ii+1; 
    else ii = ii+m[0][ii]; 
  } 
  return(0); 
} 

5. Method 

Consult the entry for VTDEV in the Fortran SSL II Extended Capabilities User's Guide II and [31], [81], [96] and [118]. 
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c_dvtfqd 
Solution of a system of linear equations with a nonsymmetric or 
indefinite sparse matrix (TFQMR method, diagonal storage format). 
ierr = c_dvtfqd(a, k, ndiag, n, nofst, b, 

itmax, eps, iguss, x, &iter, vw, 

&icon); 

1. Function 

This routine solves a system of linear equations (1) using the transpose-free quasi-minimal residual method (TFQMR). 

 Ax b  (1) 

In (1), A is an n  n  nonsymmetric or indefinite sparse matrix, b is a constant vector, and x is the solution vector.  Both 
the vectors are of size n and n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvtfqd((double *) a, k, ndiag, n, nofst, b, itmax, eps, iguss, x, 

&iter, vw, &icon); 

where: 
a double 

a[ndiag][k] 

Input Matrix A. Stored in diagonal storage format for general sparse matrices. 
See Array storage formats in the Introduction section for details. See 
Comments on use. 

k int Input C fixed dimension of array a ( n). 
ndiag int Input The number (> 0) of diagonals in the coefficient matrix A having non-zero 

elements. 
n int Input Order n of matrix A. 
nofst int 

nofst[ndiag] 

Input Offsets from the main diagonal corresponding to diagonals stored in A. 
Upper diagonals have positive offsets, the main diagonal has a zero offset, 
and the lower diagonals have negative offsets. See Array storage formats 
in the Introduction section for details. See Comments on use. 

b double b[n] Input Constant vector b. 
itmax int Input Upper limit (> 0) on the number of iteration steps in the TFQMR method. 
eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 10-6.  See Comments on use. 
iguss int Input Control information on whether to start the computation with approximate 

solution values in array x. When iguss  0, computation is to start from 
approximate solution values in x. 

x double x[n] Input The starting values for the computation. This is optional and relates to 
argument iguss. 

  Output Solution vector x. 
iter int Output Total number of iterations performed in the TFQMR method. 
vw double Work Vwlen = 10k + n + ndiag - 1. 
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vw[Vwlen] 
icon int Output Condition code.  See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Break-down occurred. See Comments on use. Discontinued. 
20001 Upper limit of number of iteration steps was 

reached. 
Stopped. The approximate solution obtained up to 
this stage is returned, but its precision is not 
guaranteed. 

30000 One of the following has occurred: 
 n < 1 
 k < 1 or k < n 
 ndiag < 1 or ndiag > k 
 itmax   0 

Bypassed. 

32001 |nofst[i-1]| > n-1 for some i = 1,...,ndiag Bypassed. 

3. Comments on use 

a and nofst 
The coefficients of matrix A are stored using two arrays a and nofst and the diagonal storage format. For full details, 
see the Array storage formats section of the Introduction. 

eps 
In the TFQMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and 
eps, the solution is judged to have converged. The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of matrix A and eps. 

Break-down 
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the 
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine 
c_dvcrd which uses the MGCR method should be used. 

General comments 
The speed of the TFQMR method is generally higher than the MGCR method. 

4. Example program 

This program solves a system of linear equations and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    100 
#define UBANDW    2 
#define LBANDW    1 
 
MAIN__() 
{ 
  double one=1.0, bcoef=10.0, eps=1.e-6; 
  int ierr, icon, ndiag, nub, nlb, n, i, j, k; 



Description of the C-SSL II Routines 

772 

  int itmax, iguss, iter; 
  int nofst[UBANDW + LBANDW + 1]; 
  double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX]; 
  double vw[NMAX*10+NMAX+UBANDW+LBANDW]; 
 
  /* initialize nonsymmetric matrix and vector */ 
  nub   = UBANDW; 
  nlb   = LBANDW; 
  ndiag = nub + nlb + 1; 
  n     = NMAX; 
  k     = NMAX; 
  for (i=1; i<=nub; i++) { 
    for (j=0  ; j<n-i; j++) a[i][j] = -1.0; 
    for (j=n-i; j<n  ; j++) a[i][j] =  0.0; 
    nofst[i] = i; 
  } 
  for (i=1; i<=nlb; i++) { 
    for (j=0  ; j<i+1; j++) a[nub + i][j] =  0.0; 
    for (j=i+1; j<n  ; j++) a[nub + i][j] = -2.0; 
    nofst[nub + i] = -(i + 1); 
  } 
  nofst[0] = 0; 
  for (j=0; j<n; j++) { 
    a[0][j] = bcoef; 
    for (i=1; i<ndiag; i++) a[0][j] -= a[i][j]; 
    b[j] = bcoef; 
  } 
  /* solve the system of linear equations */ 
  itmax = n; 
  iguss = 0; 
  ierr = c_dvtfqd ((double*)a, k, ndiag, n, nofst, b, itmax, eps, 
                  iguss, x, &iter, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvtfqd failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check vector */ 
  for (i=0;i<n;i++) 
    if (fabs(x[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For the TFQMR method consult [36]. 
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c_dvtfqe 
Solution of a system of linear equations with a nonsymmetric or 
indefinite sparse matrix (TFQMR method, ELLPACK storage format). 
ierr = c_dvtfqe(a, k, iwidt, n, icol, b, 

itmax, eps, iguss, x, &iter, vw, 

&icon); 

1. Function 

This routine solves a system of linear equations (1) using the transpose-free quasi-minimal residual (TFQMR) method. 

 Ax b  (1) 

In (1), A is an n  n  nonsymmetric or indefinite sparse matrix, b is a constant vector and x is the solution vector.  Both the 
vectors are of size n and n   1. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvtfqe((double *) a, k, iwidt, n, (double *) icol, b, itmax, eps, 

iguss, x, &iter, vw, &icon); 

where: 
a double 

a[iwidt][k] 

Input Matrix A. Stored in ELLPACK storage format for general sparse 
matrices. See Array storage formats in the Introduction section for 
details. See Comments on use. 

k int Input C fixed dimension of arrays a and icol ( n). 
iwidt int Input The maximum number ( > 0) of non-zero elements in any row vectors 

of A. 
n int Input Order n of matrix A. 
icol int 

icol[iwidt][k] 

Input Column indices used in the ELLPACK format, showing to which 
column the elements corresponding to a belong.  See Comments on 
use. 

b double b[n] Input Constant vector b. 
itmax int Input Upper limit (> 0) on the number of iteration steps in the TFQMR 

method. 
eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 10-6. See Comments on use. 
iguss int Input Control information on whether to start the computation with 

approximate solution values in array x. When iguss  0 
computation is to start from approximate solution values in x. 

x double x[n] Input The starting values for the computation. This is optional and relates to 
argument iguss. 

  Output Solution vector x. 
iter int Output Total number of iteration steps performed in TFQMR method. 
vw double vw[13k] Work  
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icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
20000 Break-down occurred. See Comments on use. Discontinued. 
20001 Upper limit of number of iteration steps was 

reached. 
Stopped. The approximate solution obtained up to 
this stage is returned, but its precision is not 
guaranteed. 

30000 One of the following has occurred: 
 n < 1 
 k < 1 or k < n 
 iwidt < 1 or iwidt > k 
 itmax   0 

Bypassed. 

3. Comments on use 

a and icol 
The coefficients of matrix A are stored using two arrays a and icol and the ELLPACK storage format for general sparse 
matrices. For full details, see the Array storage formats section of the Introduction. 

eps 
In the TFQMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and 
eps, the solution is judged to have converged. The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of matrix A and eps. 

Break-down 
Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the 
coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine 
c_dvcre which uses the MGCR method should be used. 

General comments 
The speed of the TFQMR method is generally higher than the MGCR method. 

4. Example program 

This program solves a system of linear equations and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX     100 
#define UBANDW     2 
#define LBANDW     1 
 
MAIN__() 
{ 
  double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6; 
  int ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, iter, i, j, ix; 
  int icol[UBANDW + LBANDW + 1][NMAX]; 
  double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX]; 
  double vw[NMAX * 13]; 
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  /* initialize matrix and vector */ 
  nub   = UBANDW; 
  nlb   = LBANDW; 
  iwidt = UBANDW + LBANDW + 1; 
  n     = NMAX; 
  k     = NMAX; 
  for (i=0; i<n; i++) b[i] = bcoef; 
  for (i=0; i<iwidt; i++) 
    for (j=0; j<n; j++) { 
      a[i][j] = 0.0; 
      icol[i][j] = j+1; 
    } 
  for (j=0; j<nlb; j++) { 
    for (i=0; i<j; i++) a[i][j] = lcf; 
    a[j][j] = bcoef - (double) j * lcf - (double) nub * ucf; 
    for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf; 
    for (i=0; i<=nub+j; i++) icol[i][j] = i+1; 
  } 
  for (j=nlb; j<n-nub; j++) { 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef - (double) nlb * lcf - (double) nub * ucf; 
    for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf; 
    for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb; 
  } 
  for (j=n-nub; j<n; j++){ 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef - (double) nlb * lcf - (double) (n-j-1) * ucf; 
    for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf; 
    ix = n - (j+nub-nlb-1); 
    for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i; 
  } 
  /* solve the system of linear equations */ 
  itmax = n; 
  iguss = 0; 
  ierr = c_dvtfqe ((double*)a, k, iwidt, n, (int*)icol, b, itmax, 
                   eps, iguss, x, &iter, vw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvtfqe failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* check vector */ 
  for (i=0; i<n; i++) 
    if (fabs(x[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

For TFQMR method consult [36]. 
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c_dvwflt 
Wavelet filter generation. 
ierr = c_dvwflt(f, n, &icon); 

1. Function 

This routine generates a filter corresponding to the Daubechies wavelet (order n) having a compact support. A filter of 
order 2, 4, 6, 12 or 20 can be generated. 

2. Arguments 

The routine is called as follows: 
ierr = c_dvwflt(f, n, &icon); 

where: 
f double f[2n] Input Wavelet filter coefficients used for transform. See Comments on use. 
n int Input Order n (2,4,6,12, or 20) of wavelet filter. (Number of wavelet filter 

coefficients.) 
icon int Output Condition code. See below. 
The complete list of condition codes is: 

Code  Meaning  Processing 
0 No error. Completed. 
30000 n is not 2, 4, 6, 12, or 20. Bypassed. 

3. Comments on use 

The orthogonal filter used for this routine generally has a vector of size 2n with f[0], f[1], ... , f[n-1] defining the low-
pass filter coefficients and f[n], f[n+1], ... , f[2n-1] defining the high-pass filter coefficients. These coefficients have the 
following relationships: 
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f[i]
0
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,            f[2n-1-i] = (-1) 1i f[i],    i = 0,1, ...,n-1. 

c_dv1dwt and c_dv2dwt 
The filter coefficients generated by this routine can be used with routine c_dv1dwt or c_dv2dwt to perform one or 
two dimensional wavelet transforms or inverse transforms. Input argument n and output argument f of this routine are the 
same as input arguments k and f of c_dv1dwt and c_dv2dwt. 

4. Example program 

This program forms the wavelet filter and performs the one-dimensional wavelet transform. The inverse transform is then 
performed and the result checked. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
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#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 1024 
#define KMAX 6 
 
MAIN__()  
{ 
  int ierr, icon; 
  double phai, ran, eps; 
  double x[NMAX], y[NMAX], f[2*KMAX], xx[NMAX];  
  int isn, i, k, ls, n; 
 
  /* generate initial data */ 
  n = NMAX; 
  ls = 10; 
  k = KMAX; 
  phai = (sqrt(5.0)-1.0)/2; 
  for (i=0;i<n;i++) { 
    ran = (i+1)*phai; 
    x[i] = ran - (int)ran; 
  } 
  for (i=0;i<n;i++)  
    xx[i] = x[i]; 
  /* generate wavelet filter */ 
  ierr = c_dvwflt(f, k, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dvwflt failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* perform normal wavelet transform */ 
  isn = 1; 
  ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dv1dwt failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* perform inverse wavelet transform */ 
  isn = -1; 
  ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon); 
  if (icon != 0 ) { 
    printf("ERROR: c_dv1dwt failed with icon = %i\n", icon); 
    exit (1); 
  } 
  /* check results */ 
  eps = 1e-6; 
  for (i=0;i<n;i++)  
    if (fabs((x[i]-xx[i])/xx[i]) > eps) {       
      printf("Inaccurate result\n"); 
      exit(1); 
    } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult references [20] and [27]. 
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c_ranb2 
Binomial pseudo-random numbers. 
ierr = c_ranb2(m, p, &ix, ia, n, vw, ivw, 

&icon); 

1. Function 

This library function generates a sequence of n pseudo-random numbers from the probability density function of the 
binomial distribution with moduli m and p, as given below: 
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where n  1. A sequence of uniformly distributed pseudo-random numbers is used to generate a sequence of values for k, 
where },,2,1,0{ mk  . 

2. Arguments 

The routine is called as follows: 
ierr = c_ranb2(m, p, &ix, ia, n, vw, ivw, &icon); 

where: 
m int Input Modulus m. 
p float Input Modulus p. 
ix int Input 

 
Output 

Starting value or ‘seed’. Must be non-negative integer. See Comments on 
use. 
Starting value for subsequent call. 

ia int ia[n] Output The pseudo-random numbers. 
n int Input Number of pseudo-random numbers to be produced. 
vw float vw[m+1] Work  
ivw int ivw[m+1] Work  
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 m  1  
 p  0  or p  1  
 ix 0  
 n 1  

Bypassed. 
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3. Comments on use 

ix 
This library function converts uniformly distributed pseudo-random numbers into binomial random numbers. ix is used 
as the starting value, or ‘seed’, to generate the uniform random numbers.  

vw and ivw 
vw and ivw should not be altered as long as m and p are unchanged between subsequent calls. 

4. Example program 

This program calculates 10000 binomial pseudo-random numbers, and their mean and standard deviation is then 
determined. These observed values and the expected values of the mean and standard deviation are displayed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N 10000 
#define M 20 
 
MAIN__()  
{ 
  int ierr, icon; 
  int m, n, ix, i, ia[N], ivw[M+1], sum, sumsq; 
  float p, vw[M+1], mean, dev; 
 
  /* initialize parameters */ 
  n = N; 
  ix = 12345; 
  m = M; 
  p = 0.75; 
  /* generate pseudo-random numbers */ 
  ierr = c_ranb2(m, p, &ix, ia, n, vw, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_ranb2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate mean and deviation */ 
  sum = 0; 
  sumsq = 0; 
  for (i=0;i<n;i++) { 
    sum = sum+ia[i]; 
    sumsq = sumsq+ia[i]*ia[i]; 
  } 
  mean = (double)sum/n; 
  dev = sqrt((double)sumsq/n - mean*mean); 
  printf("observed mean = %12.4e   deviation = %12.4e\n", 
         mean, dev); 
  printf("calculated mean = %12.4e   deviation = %12.4e\n",  
         m*p, sqrt(m*p*(1-p))); 
  return(0); 
} 

5. Method 

For further information, see the entry for RANB2 in the Fortran SSL II User's Guide. 
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c_rane2 
Exponential pseudo-random numbers (single precision). 
ierr = c_rane2(am, &ix, a, n, &icon); 

1. Function 

This library function generates a sequence of n pseudo-random numbers from the probability density function of the 
exponential distribution with a mean value of m, as given below: 

 mxe
m

xg 
1)(   

where x  0 , m 0 , and n  1. A sequence of uniform pseudo-random numbers is used to generate a sequence of values 
for x. 

2. Arguments 

The routine is called as follows: 
ierr = c_rane2(am, &ix, a, n, &icon); 

where: 
am float Input Mean value of the exponential distribution m. 
ix int Input 

Output 
Starting value, or ‘seed’. 
Starting value for the next call. See Comments on use. 

a float a[n] Output n exponentially distributed pseudo-random numbers. 
n int Input Number n of pseudo-random numbers to be generated. 
icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 One of the following has occurred: 

 0am . 
 0ix . 
 1n . 

Bypassed. 

3. Comments on use 

ix 
This library function generates uniformly distributed pseudo-random numbers and then converts then into exponentially 
distributed random numbers. ix is used as the starting value, or ‘seed’, to generate the uniform random numbers.  

4. Example program 

This program calculates 10000 exponential pseudo-random numbers, and their mean and standard deviation is then 
determined. These observed values and the expected values of the mean and standard deviation are displayed. 
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#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10000 
 
MAIN__()  
{ 
  int ierr, icon; 
  int n, ix, i; 
  float a[NMAX], am, sum, sumsq, mean, dev; 
 
  /* initialize parameters */ 
  n = NMAX; 
  ix = 12345; 
  am = 1; 
  /* generate pseudo-random numbers */ 
  ierr = c_rane2(am, &ix, a, n, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_rane2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate mean and deviation */ 
  sum = 0; 
  sumsq = 0; 
  for (i=0;i<n;i++) { 
    sum = sum+a[i]; 
    sumsq = sumsq+a[i]*a[i]; 
  } 
  mean = sum/n; 
  dev = sqrt(sumsq/n - mean*mean); 
  printf("observed mean = %12.4e   deviation = %12.4e\n", 
         mean, dev); 
  printf("calculated mean = %12.4e   deviation = %12.4e\n",  
         1.0, 1.0); 
  return(0); 
} 

5. Method 

For further information, see the entry for RANE2 in the Fortran SSL II User's Guide. 
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c_ranp2 
Poisson pseudo-random numbers. 
ierr = c_ranp2(am, &ix, ia, n, vw, ivw, 

&icon); 

1. Function 

This library function generates a sequence of n pseudo-random numbers from the probability density function of the 
Poisson distribution with a mean value of m, as given below: 

 m
k

k e
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where 0m , and },2,1{ k . Thus a sequence of uniform pseudo-random numbers is used to generate a sequence of 
values for k. 

2. Arguments 

The routine is called as follows: 
ierr = c_ranp2(am, &ix, ia, n, vw, ivw, &icon); 

where: 
am float Input Mean value m of the Poisson distribution. See Comments on use. 
ix int Input 

Output 
Starting value, or ‘seed’. 
Starting value for the next call. See Comments on use. 

ia int ia[n] Output n Poisson pseudo-random numbers. 
n int Input Number n of pseudo-random numbers to be generated. 
vw float 

vw[2m+10] 

Work  

ivw int 

ivw[2m+10] 

Work  

icon int Output Condition code. See below. 
The complete list of condition codes is given below. 

Code  Meaning  Processing 
0 No error. Completed. 
30000 am  0 , ix  0 , n  1 , or am> fllog( )max . 

See Comments on use. 
Bypassed. 

3. Comments on use 

am 
The criterion that )log( maxflam  is required in this routine, as otherwise an underflow could occur during the 
calculation of me  in the cumulative Poisson distribution. For details of maxfl  see the Machine Constants section in the 
Introduction. Note that where am is large )20(am , Poisson pseudo-random numbers can be approximated by normally 
distributed pseudo-random numbers, with mean m and standard deviation m. 
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ix 
This library function converts uniformly distributed pseudo-random numbers into Poisson random numbers. ix is used as 
the starting value, or ‘seed’, to generate the uniform random numbers.  

4. Example program 

This program calculates 10000 Poisson pseudo-random numbers, and their mean and standard deviation is then 
determined. These observed values and the expected values of the mean and standard deviation are displayed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define NMAX 10000 
#define MMAX 20 
 
MAIN__()  
{ 
  int ierr, icon; 
  int n, ix, i, ia[NMAX], ivw[2*MMAX+10], sum, sumsq; 
  float am, vw[2*MMAX+10], mean, dev; 
 
  /* initialize parameters */ 
  n = NMAX; 
  am = 1; 
  ix = 12345; 
  /* generate pseudo-random numbers */ 
  ierr = c_ranp2(am, &ix, ia, n, vw, ivw, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_ranp2 failed with icon = %d\n", icon); 
    exit(1); 
  } 
  /* calculate mean and deviation */ 
  sum = 0; 
  sumsq = 0; 
  for (i=0;i<n;i++) { 
    sum = sum+ia[i]; 
    sumsq = sumsq+ia[i]*ia[i]; 
  } 
  mean = (double)sum/n; 
  dev = sqrt((double)sumsq/n - mean*mean); 
  printf("observed mean = %12.4e   deviation = %12.4e\n", 
         mean, dev); 
  printf("calculated mean = %12.4e   deviation = %12.4e\n",  
         am, sqrt(am)); 
  return(0); 
} 

5. Method 

For further information consult the entry for RANP2 in the Fortran SSL II User's Guide. 
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c_dcsum 
Inner product (complex vector). 
ierr = c_dcsum(za, zb, n, ia, ib, &zsum); 

1. Function 

Given n-dimensional complex vectors a and b, this routine computes the inner product (product sum)  , 
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2. Arguments 

The routine is called as follows: 
ierr = c_dcsum(za, zb, n, ia, ib, &zsum); 

where: 
za dcomplex 

za[Alen] 
Input Vector a. nia *Alen . 

zb dcomplex 

zb[Blen] 
Input Vector b. nib *Blen . 

n int Input Dimension n of vectors a and b. 
ia int Input Interval ( 0) in array za between consecutive elements of vector a. 

Generally, ia = 1. See Comments on use. 
ib int Input Interval ( 0) in array zb between consecutive elements of vector b. 

Generally, ib = 1. See Comments on use. 
zsum dcomplex Output Inner product  . See Comments on use. 

3. Comments on use 

Data spacing in arrays za and zb 
Set ia = p when elements of vector a are stored in array za with spacing p. Likewise set ib = q when elements of 
vector b are stored in array zb with spacing q. If p, q < 0, care must be taken in assigning arrays za and zb. 

4. Example program 

This program finds the sum of a row and a column of a matrix and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
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  int n, i, j, ia, ib; 
  double eps; 
  dcomplex zsum, zsum2; 
  dcomplex zmat[NMAX][NMAX], *za, *zb; 
 
  /* initialize matrix */ 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) { 
      zmat[i][j].re = i+j+1; 
      zmat[i][j].im = i-j+1; 
    } 
  /* calculate the product sum of row 6 and column 3 */ 
  za = &zmat[6][0]; 
  ia = 1; 
  zb = &zmat[0][3]; 
  ib = NMAX; 
  c_dcsum(za, zb, n, ia, ib, &zsum); 
  /* check sum */ 
  eps = 1e-6; 
  zsum2.re = 0; 
  zsum2.im = 0; 
  for (i=0;i<n;i++) { 
    zsum2.re = zsum2.re + za[i*ia].re*zb[i*ib].re-za[i*ia].im*zb[i*ib].im; 
    zsum2.im = zsum2.im + za[i*ia].re*zb[i*ib].im+za[i*ia].im*zb[i*ib].re; 
  } 
  if ((fabs((zsum2.re-zsum.re)/zsum.re) > eps) || 
      (fabs((zsum2.im-zsum.im)/zsum.im) > eps)) { 
    printf("WARNING: result inaccurate\n"); 
    exit(1); 
  } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_dfmax 
Positive maximum value of the floating-point number system. 
result = c_dfmax(); 

1. Function 

This routine returns the positive maximum value maxfl , of the floating-point number system. 

2. Arguments 

The routine returns a result of type double and is called as follows: 
result = c_dfmax(); 

3. Comments on use 

Values of maxfl are given below. 

Arithmetic Maximum values Application 
Hexadecimal 6314 16)161(    FACOM M series 

FACOM S series 
SX/G 200 series 

Binary 102453 2)21(    VPP series 
FM series 

25256 2)21(    SX/G 100 series 
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c_dfmin 
Positive minimum value of the floating-point number system. 
result = c_dfmin(); 

1. Function 

This routine returns the positive minimum value minfl , of the floating-point number system. 

2. Arguments 

The routine returns a result of type double and is called as follows: 
result = c_dfmin(); 

3. Comments on use 

Values of minfl are given below. 

Arithmetic Minimum values Application 
Hexadecimal 641 1616    FACOM M series 

FACOM S series 
SX/G 200 series 

Binary 10211 22    VPP series 
FM series 

2591 22    SX/G 100 series 
 



Description of the auxiliary routines  

790 

c_dmach 
Unit round-off. 
result = c_dmach(); 

1. Function 

This routine defines the unit round-off   in normalized floating-point arithmetic.  

                    2/L1M       for correctly rounded arithmetic, 

      L1M          for chopped arithmetic, 

where M is the radix of the number system, and L is the number of digits contained in the mantissa. 

2. Arguments 

The routine returns a result of type double and is called as follows: 
result = c_dmach(); 

3. Comments on use 

Values of the unit round-off are given below. 

Arithmetic method  dmach Application 

Hexadecimal: M = 16 Chopped arithmetic L = 14,   1316  FACOM M series 
FACOM S series 
SX/G 200 series 

Binary: M = 2 Rounded arithmetic L = 52    512
2
1   VPP series 

FM series 
SX/G series 
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c_dsum 
Inner product (real vector). 
ierr = c_dsum(a, b, n, ia, ib, &sum); 

1. Function 

Given n-dimensional real vectors a and b, this routine computes the inner product (product sum)  , 
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2. Arguments 

The routine is called as follows: 
ierr = c_dsum(a, b, n, ia, ib, &sum); 

where: 
a double a[Alen] Input Vector a. nia *Alen . 
b double b[Blen] Input Vector b. nib *Blen . 
n int Input Dimension n of vectors a and b. 
ia int Input Interval ( 0) in array a between consecutive elements of vector a. 

Generally, ia = 1. See Comments on use. 
ib int Input Interval ( 0) in array b between consecutive elements of vector b. 

Generally, ib = 1. See Comments on use. 
sum double Output Inner product  . See Comments on use. 

3. Comments on use 

Data spacing in arrays a and b 
Set ia = p when elements of vector a are stored in array a with spacing p. Likewise set ib = q when elements of 
vector b are stored in array b with spacing q. If p, q < 0, care must be taken in assigning arrays a and b. 

4. Example program 

This program finds the sum of a row and a column of a matrix and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX 100 
 
MAIN__() 
{ 
  int n, i, j, ia, ib; 
  double eps, err, sum, sum2; 
  double mat[NMAX][NMAX], *a, *b; 
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  /* initialize matrix */ 
  n = NMAX; 
  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) 
      mat[i][j] = i+j+1; 
  /* calculate the product sum of row 6 and column 3 */ 
  a = &mat[6][0]; 
  ia = 1; 
  b = &mat[0][3]; 
  ib = NMAX; 
  c_dsum(a, b, n, ia, ib, &sum); 
  /* check sum */ 
  eps = 1e-6; 
  sum2 = 0; 
  for (i=0;i<n;i++) 
    sum2 = sum2 + a[i*ia]*b[i*ib]; 
  err = fabs((sum2-sum)/sum); 
  if (err > eps) { 
    printf("WARNING: result inaccurate\n"); 
    exit(1); 
  } 
  printf("Result OK\n"); 
  return(0); 
} 
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c_iradix 
Radix of the floating-point number system. 
radix = c_iradix(); 

1. Function 

This routine returns the radix of the floating-point number system. 

2. Arguments 

The routine returns a result of type int and is called as follows: 
radix = c_iradix(); 

3. Comments on use 

Values of the iradix are given below. 

Arithmetic iradix Application 

Binary iradix = 2 VPP Series 
FM series 
SX/G series 

Hexadecimal iradix = 16 FACOM M series 
FACOM S series 
SX/G 200 series 
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