FUJITSU

FUJITSU Software

FUJITSU
 C-SSL II User's Guide

Preface

This manual describes the functions and use of the C Scientific Subroutine Library II (C-SSL II). C-SSL II is intended to be used on various systems from personal computers to vector supercomputers. The interface between the user's program and the C-SSL II library is the same regardless of system type, and therefore this manual can be used for all systems where the C-SSL II library is in use. Note that some of the C-SSL II routines may be unavailable or restricted on certain systems due to hardware restrictions.

When using the C-SSL II for the first time, the user should read the Introduction first.

The contents of the C-SSL II may be amended to keep up with the latest technology. That is, if new, revised or updated routines include or surpass the functionality of the current routines, then the current routines may then be deleted from the library.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or US export control laws.

Date of Publication and Version

Version	Manual code
February 2020, Version 11.1	J2UL-1907-02ENZ0(01)
June 2016, 11th Version	J2UL-1907-02ENZ0(00)
September 2015, 10th Version	J2UL-1907-01ENZ0(01)
October 2014, 9th Version	J2UL-1907-01ENZ0(00)
June 2013, 8th Version	-
March 2013, 7th Version	-
March 2006, 6th Version	-
December 2002, 5th Version	-
January 2001, 4th Version	-
September 1999, 3rd Version	-
January 1999, 2nd Version	-
December 1997, 1st Version	-

Copyright

Copyright FUJITSU LIMITED 1997-2020

Update History

Changes	Location	Version
The following routine was added. • c_dvcft3	Tables of routines, Transforms, Description of the C-SSL II Routines	$7^{\text {th }}$ Version
A note related to the Neumann preconditioner is appended.	c_dvcgd, c_dvcge	$8^{\text {th }}$ Version
Rework format	Cover, Preface	$9^{\text {th }}$ Version
A note related to the work area w is appended.	c_dvcfm1, c_dvcft3	$10^{\text {th }}$ Version
A description of isw is modified.	c_dvcpf1	$11^{\text {th }}$ Version
Rework format	Cover, Preface	$12^{\text {th }}$ Version

- All rights reserved.
- The information in this manual is subject to change without notice.

Acknowledgements

The SSL II library represents the work of many people over many years. Some of the people and organizations who have contributed to this work are:

People

Masatsugu Tanaka
Ichizo Ninomiya
Tatsuo Torii
Takemitsu Hasegawa
Kazuo Hatano
Yasuyo Hatano
Toshio Yoshida
Kaoru Tone
Takashi Kobayashi
Toshio Hosono
Richard Peirce Brent
Andrew James Cleary
Murray Leslie Dow
Markus Hegland
Judith Helen Jenkinson
Margaret Helen Kahn
Zbigniew Leyk
David John Miron
Michael Robert Osborne
Peter Frederick Price
Stephen Gwyn Roberts
David Barry Singleton
David Edward Stewart
Christopher Robert Dum
Lutz Grosz
David Lawrence Harrar II
Jeoffrey Keating
Gavin John Mercer
Ole Møller Nielsen

Organizations

Computation Centre, Hokkaido University
Computation Centre, Nagoya University
Computation Centre, Kyoto University
Computation Centre, Kyusyu University
Japan Atomic Energy Research Institute
Austrailian National University

The C-SSL II library was based on the SSL II, and developed jointly with fecit (Fujitsu European Centre for Information Technology Ltd).

How to use this manual

It is strongly recommended that the Introduction is read carefully by first time users of the C-SSL II, even if they are familiar with the Fortran SSL II. The Introduction provides:
an overview of the library,

- the library design,
- information on using the library,
- an annotated sample calling program,
- the array storage formats employed,
- an annotated example of what is contained in each routine description.

The Selection of routines chapter gives an overview of the functionality covered by the library and allows the user to select an appropriate routine for his/her own calculation. Each major section of the library, e.g. linear algebra, is covered separately to allow users to locate the relevant section more quickly.

After the Selection of routines chapter are Tables of routines, which contain summary information for every routine in the library, with cross references to the detailed routine desciptions. This is intended to allow experienced users to quickly locate the routine they require. The routines are listed by section and then by generality, e.g. general solution routines are listed before routines for more specific cases.

The bulk of the manual contains the routine descriptions. The routine descriptions are arranged in alphabetical order. Each description contains an overview, argument descriptions, sample calling program and important information on how to use each routine.

Detailed descriptions of the underlying numerical methods can be found in the manuals for the Fortran SSL II library and in the references specified in the Bibliography.

Further sources of information

There are three different manuals that describe underlying Fortran routines. These are:

1. SSL II User's Guide (Code 99SP4020E-1).
2. SSL II Extended Capabilities User's Guide (Code 99SP4070E-2).
3. SSL II Extended Capabilities User's Guide II.

There are extensive further references provided in the Bibliography.

Typographic conventions

Courier and Times fonts are used as follows:

- Courier regular font - used for routine names, arguments, program objects, such as arrays and code.
- Times regular font - standard font for text.
- Times italic font - emphasis, book titles, manual section references, e.g. See Comments on use , components of matrix and vector objects, e.g. $a_{i j}$.
- Times bold font - Whole matrix and vector objects, e.g. $\mathbf{A x}=\mathbf{b}$, as well as section titles.

Mathematical conventions

Throughout this manual, the distinction is made between matrices and arrays.

- Matrices and vectors are mathematical objects that are indexed from one, so the first element of a matrix \mathbf{A} is ${ }^{a_{11}}$.
- 2-D and 1-D arrays are C objects indexed from 0 , so that the first element of 2-D array a is $\mathrm{a}[0]$ [0].

When used in mathematical expressions, i is usually used to denote the imaginary part of a complex number, for example in $\mathrm{z}=5+i 10, i=\sqrt{-1}$.

The modulus function $|x|$ is used to denote absolute value, including complex absolute value. Unless otherwise delimited, norms such as $\|\mathbf{x}\|$ are the 2-norm (so $\|\mathbf{x}\|=\sqrt{\mathbf{x}^{T} \mathbf{x}}$).

Tables of routines

Linear algebra

1. Storage mode conversion of matrices

Routine name	Description	Page
c_dcgsm	Storage format conversion of matrices (real standard format to symmetric format).	279
c_dcsgm	Storage format conversion of matrices (real symmetric format to standard format).	314
c_dcgsbm	Storage format conversion of matrices (standard format to symmetric band format)	276
c_dcsbsm	Storage format conversion of matrices (symmetric band format to symmetric format).	312
c_dcsbgm	Storage format conversion of matrices (symmetric band format to standard format).	310
c_dcssbm	Storage format conversion of matrices (symmetric format to symmetric band format).	317

2. Matrix manipulation

Routine name		Page
c_daggm	Addition of two matrices (real + real).	98
c_dsggm	Subtraction of two matrices (real - real).	522
c_dvmggm	Multiplication of two matrices (real by real).	693
c_dmav	Multiplication of a real matrix by a real vector.	446
c_dmcv	Multiplication of a complex matrix by a complex vector.	448
c_dvmvsd	Multiplication of a real sparse matrix by a real vector (diagonal storage format).	707
c_dvmvse	Multiplication of a real sparse matrix by a real vector (ELLPACK storage format).	709
c_dmsgm	Multiplication of two matrices (symmetric by general).	463
c_dassm	Addition of two matrices (symmetric + symmetric).	138
c_dsssm	Subtraction of two matrices (symmetric - symmetric).	535
c_dmssm	Multiplication of two matrices (symmetric by symmetric).	465
c_dmgsm	Multiplication of two matrices (general by symmetric).	453
c_dmsv	Multiplication of a symmetric matrix and a vector.	467
c_dmsbv	Multiplication of a symmetric band matrix by a vector.	461
c_dvmbv	Multiplication of a band matrix by a vector.	680

3. Linear equations drivers

Routine name	Description	Page
c_dvlax	Solution of a system of linear equations with a real matrix (blocking LU-decomposition method).	645
c_dlcx	Solution of a system of linear equations with a complex matrix (Crout's method).	412
c_dlsix	Solution of a system of linear equations with an indefinite symmetric matrix (block diagonal pivoting method).	434
c_dvlsx	Solution of a system of linear equations with a symmetric positive definite matrix (modified Cholesky's method).	661

Routine name	Description	Page
c_dvlbx	Solution of a system of linear equations with a band matrix (Gaussian elimination).	648
c_dvlspx	Solution of a system of linear equations with a symmetric positive definite matrix (blocked Cholesky decomposition method).	658
c_dvlsbx	Solution of a system of linear equations with a symmetric positive definite band matrix (modified Cholesky decomposition).	655
c_dlsbix	Solution of a system of linear equations with an indefinite symmetric band matrix (block diagonal pivoting method).	431
c_dlstx	Solution of a system of linear equations with a symmetric positive definite tridiagonal matrix (modified Cholesky's method).	437
c_dltx	Solution of a system of linear equations with a tridiagonal matrix (Gaussian elimination method).	440
c_dvcgd	Solution of a system of linear equations with a symmetric positive definite sparse matrix (preconditioned CG method, diagonal storage format).	608
c_dvcge	Solution of a system of linear equations with a symmetric positive definite sparse matrix (preconditioned CG method, ELLPACK storage format).	612
c_dvtfqd	Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix (TFQMR method, diagonal storage format).	770
c_dvtfqe	Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix (TFQMR method, ELLPACK storage format).	773
c_dvqmrd	Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix (QMR method, diagonal storage format).	711
c_dvqmre	Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix (QMR method, ELLPACK storage format).	714
c_dvcrd	Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix (MGCR method, diagonal storage format).	627
c_dvcre	Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix (MGCR method, ELLPACK storage format).	630
c_dvbcsd	Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix (BICGSTAB (l) method, diagonal storage format).	569
c_dvbcse	Solution of a system of linear equations with a nonsymmetric or indefinite sparse matrix (BICGSTAB(l) method, ELLPACK storage format).	573
c_dvltqr	Solution of a system of linear equations with a tridiagonal matrix (QR factorization).	664
c_dvltx	Solution of a system of linear equations with a tridiagonal matrix (cyclic reduction method).	666
c_dvltx1	Solution of a system of linear equations with a constant-tridiagonal matrix (Dirichlet type and cyclic reduction method).	669
c_dvltx2	Solution of a system of linear equations with a constant-tridiagonal matrix (Neumann type and cyclic reduction method).	672
c_dvltx3	Solution of a system of linear equations with a constant almost tridiagonal matrix (periodic type and cyclic reduction method).	675

4. Matrix inversion

Routine name	Description	Page
c_dvluiv	The inverse of a real matrix decomposed into L and U factors.	678
c_dcluiv	The inverse of a complex matrix decomposed into L and U factors.	297

Routine name	Description	Page
c_dvldiv	The inverse of a positive definite matrix decomposed into LDL $^{\mathrm{T}}$ form.	651

5. Decomposition of matrices

Routine name	Description	Page
c_dvalu	LU-decomposition of a real matrix (blocking LU-decomposition method).	566
c_dclu	LU-decomposition of a complex matrix (Crout's method).	294
c_dsmdm	$\mathrm{MDM}^{\mathrm{T}}$ - decomposition of an indefinite symmetric matrix (block diagonal pivoting method).	528
c_dvsldl	LDL ${ }^{\mathrm{T}}$ decomposition of a symmetric positive definite matrix (modified Cholesky's method).	754
c_dvblu	LU - decomposition of a band matrix (Gaussian elimination).	583
c_dsbmdm	$\mathrm{MDM}^{\mathrm{T}}$ - decomposition of an indefinite symmetric band matrix (block diagonal pivoting method).	514
c_dvspll	LL^{T} decomposition of a symmetric positive definite matrix (blocked Cholesky decomposition method).	757
c_dvbldl	LDL $^{\mathrm{T}}$ decomposition of a symmetric positive definite band matrix (modified Cholesky's method).	577

6. Solution of decomposed systems

Routine name	Description	Page
c_dlux	Solution of a system of linear equations with a real matrix in LU-decomposed form.	443
c_dclux	Solution of a system of linear equations with a complex matrix in LU-decomposed form.	300
c_dmdmx	Solution of a system of linear equations with an indefinite symmetric matrix in $\mathrm{MDM}^{\mathrm{T}}$ decomposed form.	450
c_dvsplx	Solution of a system of linear equations with LL^{T}-decomposed positive definite matrix.	760
c_dvldlx	Solution of a system of linear equations with a symmetric positive definite matrix in $\mathrm{LDL}^{\mathrm{T}}$ decomposed form.	653
c_dvblux	Solution of a system of linear equations with LU - decomposed band matrix.	586
c_dbmdmx	Solution of a system of linear equations with an indefinite symmetric band matrix in MDM $^{\text {T }}$ - decomposed form.	210
c_dvbldx	Solution of a system of linear equations with a symmetric positive definite band matrix in LDL ${ }^{\mathrm{T}}$ - decomposed form.	580

7. Least squares solution

Routine name	Description	Page
c_dlaxl	Least squares solution with a real matrix (Householder transformation).	406
c_dlaxlm	Least squares minimal norm solution with a real matrix (singular value decomposition method).	409
c_dginv	Generalized inverse of a real matrix (singular value decomposition method).	359
c_dasvd1	Singular value decomposition of a real matrix (Householder and QR methods).	140

Eigenvalues and eigenvectors

1. Eigenvalue and eigenvector routines

Routine name	Description	Page
c_deig1	Eigenvalues and corresponding eigenvectors of a real matrix (double QR method).	327
c_dceig2	Eigenvalues and corresponding eigenvectors of a complex matrix (QR method).	268
c_dseig1	Eigenvalues and corresponding eigenvectors of a real symmetric matrix (QL method).	518
c_dvseg2	Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix (parallel bisection and inverse iteration methods).	744
c_dvsevp	Eigenvalues and eigenvectors of a real symmetric matrix (tridiagonalization, multisection method, and inverse iteration)	747
c_dheig2	Eigenvalues and corresponding eigenvectors of a Hermitian matrix (Householder, bisection and inverse iteration methods).	370
c_dvhevp	Eigenvalues and eigenvectors of a Hermitian matrix (tridiagonalization, multisection method, and inverse iteration)	636
c_dbseg	Eigenvalues and corresponding eigenvectors of a real symmetric band matrix (Rutishauser- Schwarz, bisection and inverse iteration methods).	229
c_dbsegj	Eigenvalues and corresponding eigenvectors of a symmetric band matrix (Jennings' method).	232
c_dvland	Eigenvalues and corresponding eigenvectors of a symmetric sparse matrix (Lanczos method, diagonal storage format).	640
c_dvtdev	Eigenvalues and eigenvectors of a tridiagonal matrix.	766
c_dteig1	Eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix (QL method).	537
c_dteig2	Selected eigenvalues and corresponding eigenvectors of a real symmetric tridiagonal matrix (bisection and inverse iteration methods).	539
c_dvgsg2	Selected eigenvalues and corresponding eigenvectors of a real symmetric generalized eigenvalue problem: Ax = $\lambda \mathbf{B x}$ (parallel bisection and inverse iteration methods).	633
c_dgbseg	Eigenvalues and corresponding eigenvectors of a symmetric band generalised eigenproblem (Jennings' method).	352

2. Eigenvalue routines

Routine name	Description	Page
c_dhsqr	Eigenvalues of a Hessenberg matrix (double QR method).	376
c_dchsqr	Eigenvalues of a complex Hessenberg matrix (QR method).	287
c_dtrql	Eigenvalues of a symmetric tridiagonal matrix (QL method).	552
c_dbsct1	Selected eigenvalues of a symmetric tridiagonal matrix (bisection method).	226

3. Eigenvector routines

Routine name	Description	Page
c_dhvec	Eigenvectors of a Hessenberg matrix (inverse iteration method).	378
c_dchvec	Eigenvectors of a complex Hessenberg matrix (inverse iteration method).	289
c_dbsvec	Eigenvectors of a symmetric band matrix (inverse iteration method).	242

4. Other routines

Routine name	Description	Page
c_dblnc	Balancing of a real matrix.	207
c_dcblnc	Balancing of a complex matrix.	263
c_dhes1	Reduction of a matrix to a Hessenberg matrix (Householder method).	372
c_dches2	Reduction of a complex matrix to a complex Hessenberg matrix (stabilized elementary similarity transformation).	285
c_dhbk1	Back transformation and normalization of the eigenvectors of a Hessenberg matrix.	367
c_dchbk2	Back transformation of the eigenvectors of a complex Hessenberg matrix to the eigenvectors of a complex matrix.	282
c_dtrid1	Reduction of a symmetric matrix to a symmetric tridiagonal matrix (Householder method).	548
c_dtridh	Reduction of a Hermitian matrix to a real symmetric tridiagonal matrix (Householder method and diagonal unitary transformation).	550
c_dbtrid	Reduction of a symmetric band matrix to a symmetric tridiagonal matrix (Rutishauser- Schwarz method).	245
c_dtrbk	Back transformation of the eigenvectors of a symmetric tridiagonal matrix to the eigenvectors of a symmetric matrix.	543
c_dtrbkh	Back transformation of the eigenvectors of a symmetric tridiagonal matrix to the eigenvectors of a Hermitian matrix.	545
c_dnrml	Normalization of the eigenvectors of a real matrix.	489
c_dcnrml	Normalization of the eigenvectors of a complex matrix.	303
c_dgschl	Reduction of a symmetric matrix system Ax = λ Bx to a standard form.	364
c_dgsbk	Back transformation of the eigenvectors of the standard form eigenproblem to the eigenvectors of the symmetric generalized eigenproblem.	362

Nonlinear equations

Routine name	Description	Page
c_drqdr	Roots of a quadratic with real coefficients.	512
c_dcqdr	Roots of a quadratic with complex coefficients.	308
c_dlowp	Roots of a low degree polynomial with real coefficients (fifth degree or lower).	423
c_drjetr	Roots of a polynomial with real coefficients (Jenkins-Traub method).	510
c_dcjart	Roots of a polynomial with complex coefficients (Jarratt method).	292
c_dtsd1	Root of a real function which changes sign in a given interval (derivative not required).	555
c_dtsdm	Root of a real function (Muller's method).	557
c_dctsdm	Root of a complex function (Muller's method).	319
c_dnolbr	Solution of a system of nonlinear equations (Brent's method).	478

Extrema

Routine name	Description	Page
c_dlminf	Minimization of a function with a single variable (quadratic interpolation using function values only).	417
c_dlming	Minimization of a function with a single variable (cubic interpolation using function values and derivatives).	420

Routine name	Description	Page
c_dminf1	Minimization of a function of several variables (revised quasi-Newton method using function values only).	455
c_dming1	Minimization of a function of several variables (quasi-Newton method using function values and derivatives).	458
c_dnolf1	Minimization of the sum of squares of functions of several variables (revised Marquardt method using function values only).	482
c_dnolg1	Minimization of the sum of squares of functions of several variables (revised Marquardt method using function values and derivatives).	485
c_dlprs1	Solution of a linear programming problem (revised simplex method).	425
c_dnlpg1	Nonlinear programming (Powell's method using function values and derivatives).	473

Interpolation and approximation

1. Interpolation

Routine name		Description
c_daklag	Aiken-Lagrange interpolation.	104
c_dakher	Aitken-Hermite interpolation.	100
c_dbif1	B-spline interpolation, differentiation and integration (I).	166
c_dbif2	B-spline interpolation, differentiation and integration (II).	169
c_dbif3	B-spline interpolation, differentiation and integration (III).	172
C_dbif4	B-spline interpolation, differentiation and integration (IV).	175
c_dbifd1	Two-dimensional B-spline interpolation, differentiation and integration (I-I).	178
c_dbifd3	B-spline two dimensional interpolation (III-III).	182
c_dakmid	Two-dimensional quasi-Hermite interpolation.	107
c_dakmin	Quasi-Hermite interpolation coefficient calculation.	110
c_dbic1	B-spline interpolation coefficient calculation (I).	148
c_dbic2	B-spline interpolation coefficient calculation (II).	151
c_dbic3	B-spline interpolation coefficient calculation (III).	154
c_dbic4	B-spline interpolation coefficient calculation (IV).	156
c_dbicd1	Two-dimensional B-spline interpolation coefficient calculation (I-I).	159
c_dbicd3	B-spline two-dimensional interpolation coefficient calculation (III-III).	163

2. Approximations

Routine name	Description	Page
c_dlesq1	Polynomial least squares approximation.	415

3. Smoothing

Routine name	Description	Page
c_dsmle1	Data smoothing by local least squares polynomials (equally spaced points).	531
c_dsmle2	Data smoothing by local least squares polynomials (unequally spaced data points).	533
c_dbsf1	B-spline smoothing.	235

Routine name	Description	Page
c_dbsc1	B-spline smoothing coefficient calculation.	213
c_dbsc2	B-spline smoothing coefficient calculation (variable knots).	217
c_dbsfd1	B-spline two-dimensional smoothing.	238
c_dbscd2	B-spline two-dimensional smoothing coefficient calculation (variable knots)	221

4. Series

Routine name	Description	Page
c_dfcheb	Chebyshev series expansion of a function (fast cosine transform).	334
c_decheb	Evaluation of a Chebyshev series.	322
c_dgcheb	Differentiation of a Chebyshev series.	356
c_dicheb	Indefinite integral of a Chebyshev series.	382
c_dfcosf	Cosine series expansion of an even function (fast cosine transform).	338
c_decosp	Evaluation of a cosine series.	324
c_dfsinf	Sine series expansion of an odd function (fast sine transform).	345
c_desinp	Evaluation of a sine series.	330

Transforms

Routine name	Description	Page
c_dvcfm1	One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7).	594
c_dvmcf2	Singlevariate, multiple and multivariate discrete complex Fourier transform (complex array, mixed radix).	683
c_dvmcft	Singlevariate, multiple and multivariate discrete complex Fourier transform (real and imaginary array separated, mixed radix).	686
c_dvmrf2	Singlevariate, multiple and multivariate discrete real Fourier transform (mixed radix).	695
c_dvmrft	Multiple and multivariate discrete real Fourier transform (mixed radices of 2, 3, and 5).	700
c_dvsrft	One-dimensional and multiple discrete real Fourier transform (mixed radices of 2, 3, and 5).	763
c_dvcft1	Discrete complex Fourier transform (radix 2 FFT).	597
$c _d v c f t 2$	Discrete complex Fourier transform (memory efficient, radix 2 FFT).	601
c_dvcft3	One-dimensional discrete complex Fourier transforms (Radix 2, for data sequence with a constant stride).	605
c_dvrft1	Discrete real Fourier transform (radix 2 FFT).	732
$c _d v r f t 2$	Discrete real Fourier transform (memory efficient, radix 2 FFT).	736
c_dvmest	Discrete cosine transform.	690
c_dvcos1	Discrete cosine transform (radix 2 FFT).	617
c_dfcosm	Discrete cosine transform (midpoint rule, radix 2 FFT).	342
c_dvmsnt	Discrete sine transform.	704
c_dvsin1	Discrete sine transform (radix 2 FFT).	751
c_dfsinm	Discrete sine transform (midpoint rule, radix 2 FFT).	349
c_dvcpf1	One-dimensional prime factor discrete complex Fourier transforms.	620
c_dvcpf3	Three-dimensional prime factor discrete complex Fourier transform.	623
c_dvrpf3	Three-dimensional prime factor discrete real Fourier transform.	740
c_dvccvf	Discrete convolution or correlation of complex data.	589
c_dvrcvf	Discrete convolution or correlation of real data.	727

Routine name	Description	Page
c_dvwflt	Wavelet filter generation.	776
c_dv1dwt	One-dimensional wavelet transform.	560
c_dv2dwt	Two-dimensional wavelet transform.	563
c_dlaps1	Inversion of Laplace transform of a rational function (regular in the right-half plane).	397
c_dlaps2	Inversion of Laplace transform of a general rational function.	400
c_dlaps3	Inversion of Laplace transform of a general function.	403
c_dhrwiz	Assessment of Hurwitz polynomials.	374

Numerical quadrature

Routine name	Description	Page
c_dsimp1	Integration of a tabulated function (Simpson's rule, equally spaced points).	524
c_dtrap	Integration of a tabulated function (trapezoidal rule, unequally spaced points).	541
c_daqn9	Integration of a function (adaptive Newton-Cotes 9-point rule).	135
c_daqc8	Integration of a function by a modified Clenshaw-Curtis rule.	112
c_daqe	Integration of a function (double exponential formula).	115
c_daqeh	Integration of a function over a semi-infinite interval (double exponentiation formula).	119
c_daqei	Integration of a function over an infinite interval (double exponentiation formula).	122
c_daqmc8	Multiple integration of a function (modified Clenshaw-Curtis integration rule).	125
c_daqme	Multiple integration of a function by double exponential formula.	129

Differential equations

Routine name	Description	Page
C_dodge	Solution of a stiff or non-stiff system of first order initial value ordinary differential equations (Gear's or Adams methods).	498
c_dodam	Solution of a non-stiff system of first order initial value ordinary differential equations (Adams method).	492
c_dodrk1	Solution of a system of first order ordinary differential equations (Runge-Kutta-Verner method).	505

Special functions

Routine name	Description	Page
C_dceli1	Complete elliptic integral of the first kind $K(x)$.	270
c_dceli2	Complete elliptic integral of the second kind $E(x)$.	272
c_dexpi	Exponential integrals $E_{i}(x)$ and $\bar{E}_{i}(x)$.	332
c_dsini	Sine integral $S_{i}(x)$.	526
c_dcosi	Cosine integral $C_{i}(x)$.	306
c_dsfri	Sine Fresnel integral $S(x)$.	520
c_dcfri	Cosine Fresnel integral $C(x)$.	274
C_digam1	Incomplete Gamma function of the first kind $\gamma(v, x)$.	389
c_digam2	Incomplete Gamma function of the second kind $\Gamma(v, x)$.	391
c_dierf	Inverse error function $\operatorname{erf}^{-1}(x)$.	385

Routine name	Description	Page
c_dierfc	Inverse complimentary error function $\operatorname{erfc}^{-1}(x)$.	387
c_dbj0	Zero-order Bessel function of the first kind $J_{0}(x)$.	190
c_dbj1	First-order Bessel function of the first kind $J_{1}(x)$.	192
c_dby 0	Zero-order Bessel function of the second kind $Y_{0}(x)$.	247
c_dby1	First-order Bessel function of the second kind $Y_{1}(x)$.	249
c_dbi0	Modified zero-order Bessel function of the first kind $I_{0}(x)$.	144
c_dbi1	Modified first-order Bessel function of the first kind $I_{1}(x)$.	146
c_dbk0	Modified zero-order Bessel function of the second kind $K_{0}(x)$.	199
c_dbk1	Modified first-order Bessel function of the second kind $K_{1}(x)$.	201
c_dbjn	n th-order Bessel function of the first kind $J_{n}(x)$.	194
c_dbyn	n th-order Bessel function of the second kind $Y_{n}(x)$.	251
c_dbin	Modified n th-order Bessel function of the first kind $I_{n}(x)$.	186
c_dbkn	Modified n th-order Bessel function of the second kind $K_{n}(x)$.	203
c_dcbin	Modified n th-order Bessel function of the first kind with complex variable $I_{n}(z)$.	255
c_dcbkn	Modified n th-order Bessel function of the second kind with complex variable $K_{n}(z)$.	261
c_dcbjn	n th-order Bessel function of the first kind with complex variable $J_{n}(z)$.	257
c_dcbyn	n th-order Bessel function of the second kind with complex variable $Y_{n}(z)$.	266
c_dbjr	Real-order Bessel function of the first kind $J_{v}(x)$.	196
c_dbyr	Real-order Bessel function of the second kind $Y_{v}(x)$.	253
c_dbir	Modified real-order Bessel function of the first kind $I_{v}(x)$.	188
c_dbkr	Modified real-order Bessel function of the second kind $K_{v}(x)$.	205
c_dcbjr	Real-order Bessel function of the first kind with complex variable $J_{v}(z)$.	259
c_dndf	Normal distribution function $\phi(x)$.	469
c_dndfc	Complimentary normal distribution function $\psi(x)$.	471
c_dindf	Inverse normal distribution function $\phi^{-1}(x)$.	393
c_dindfc	Inverse complimentary normal distribution function $\psi^{-1}(x)$.	395

Pseudo-random numbers

Routine name	Description	Page
c_dvrau4	Uniform [0,1) pseudo-random numbers.	724
c_dvran3	Normal pseudo-random numbers.	718
c_dvran4	Generation of normal random numbers. (Wallace's method)	721
c_rane2	Exponential pseudo-random numbers (single precision).	780
c_ranp2	Poisson pseudo-random numbers.	782
c_ranb2	Binomial pseudo-random numbers.	778

Auxiliary routines

Routine name	Description	Page
c_dmach	Unit round-off.	790
c_dsum	Inner product (real vector).	791
c_dcsum	Inner product (complex vector).	786
c_iradix	Radix of the floating-point number system.	793

Routine name	Description	Page
c_dfmax	Positive maximum value of the floating-point number system.	788
c_dfmin	Positive minimum value of the floating-point number system.	789

Contents

How to use this manual vii
Tables of routines ix
Linear algebra ix
Eigenvalues and eigenvectors xii
Nonlinear equations xiii
Extrema xiii
Interpolation and approximation xiv
Transforms xv
Numerical quadrature xvi
Differential equations. xvi
Special functions xvi
Pseudo-random numbers. xvii
Auxiliary routines xvii
Introduction 1
Overview of the C-SSL II library. 1
Array storage formats. 6
Unit round-off 14
Machine constants 14
Sample routine documentation with annotation 15
Selection of Routines 19
Linear algebra 20
Eigenvalues and eigenvectors 33
Nonlinear equations 44
Extrema 48
Interpolation and approximation 56
Transforms 69
Numerical differentiation and quadrature 80
Differential equations 85
Special functions 90
Pseudo-random numbers 95
Description of the C-SSL II Routines 97
c_daggm 98
c_dakher 100
c_daklag 104
c_dakmid 107
c_dakmin 110
c_daqc8 112
c_daqe 115
c_daqeh 119
c_daqei 122
c_daqmc8 125
c_daqme 129
c_daqn9. 135
c_dassm 138
c_dasvd1 140
c_dbi0. 144
c_dbi1 146
c_dbic1 148
c_dbic2 151
c_dbic3 154
c_dbic4 156
c_dbicd1 159
c_dbicd3 163
c_dbif1 166
c_dbif2 169
c_dbif3 172
c_dbif4 175
c_dbifd1 178
c dbifd3 182
c_dbin. 186
c_dbir 188
c_dbj0 190
c_dbj1 192
c_dbjn. 194
c_dbjr 196
c_dbk0 199
c_dbk1 201
c dbkn 203
c_dbkr 205
c_dblnc 207
c_dbmdmx 210
c_dbsc1 213
c_dbsc2 217
c_dbscd2 221
c_dbsct1 226
c_dbseg 229
c_dbsegj 232
c_dbsf1 235
c_dbsfd1 238
c_dbsvec 242
c_dbtrid 245
c_dby0 247
c_dby1 249
c_dbyn 251
c_dbyr 253
c_dcbin 255
c_dcbjn 257
c_dcbjr 259
c_dcbkn 261
c_dcblnc 263
c_dcbyn 266
c_dceig2 268
c_dceli1 270
c_dceli2 272
c_dcfri 274
c_dcgsbm 276
c_dcgsm 279
c_dchbk2 282
c_dches2 285
c_dchsqr 287
c_dchvec 289
c_dcjart 292
c_dclu. 294
c_dcluiv. 297
c_dclux 300
c_dcnrml 303
c_dcosi 306
c_dcqdr. 308
c_dcsbgm 310
c_dcsbsm 312
c_dcsgm 314
c_dcssbm 317
c_dctsdm 319
c_decheb 322
c_decosp 324
c_deig1 327
c_desinp 330
c_dexpi 332
c_dfcheb 334
c_dfcosf 338
c_dfcosm 342
c_dfsinf 345
c dfsinm 349
c_dgbseg 352
c_dgcheb 356
c_dginv 359
c_dgsbk 362
c_dgschl 364
c_dhbk1 367
c_dheig2 370
c_dhes1 372
c_dhrwiz 374
c_dhsqr 376
c_dhvec 378
c_dicheb 382
c_dierf 385
c_dierfc 387
c_digam1 389
c_digam2 391
c_dindf 393
c_dindfc 395
c_dlaps1 397
c_dlaps2 400
c_dlaps3 403
c dlaxl 406
c_dlaxlm 409
c_dlcx 412
c_dlesq1 415
c_dlminf 417
c_dlming 420
c_dlowp 423
c_dlprs1 425
c_dlsbix 431
c dlsix 434
c_dlstx 437
c_dltx. 440
c_dlux. 443
c_dmav 446
c_dmcv 448
c_dmdmx 450
c_dmgsm 453
c_dminf1 455
c_dming1 458
c_dmsbv 461
c_dmsgm 463
c_dmssm 465
c_dmsv 467
c_dndf 469
c_dndfc 471
c_dnlpg1 473
c_dnolbr 478
c_dnolf1 482
c_dnolg1 485
c_dnrml 489
c_dodam 492
c_dodge 498
c_dodrk1 505
c_drjetr 510
c_drqdr 512
c_dsbmdm 514
c_dseig1 518
c dsfri 520
c_dsggm 522
c_dsimp1 524
c_dsini 526
c_dsmdm 528
c_dsmle1 531
c_dsmle2 533
c_dsssm 535
c_dteig1 537
c_dteig2 539
c_dtrap 541
c_dtrbk 543
c_dtrbkh 545
c_dtrid1 548
c_dtridh 550
c_dtrql 552
c_dtsd1 555
c_dtsdm 557
c dv1dwt 560
c_dv2dwt 563
c_dvalu 566
c_dvbcsd 569
c_dvbcse 573
c_dvbldl. 577
c_dvbldx 580
c_dvblu 583
c_dvblux 586
c_dvccvf 589
c dvcfm1 594
c_dvcft1. 597
c_dvcft2 601
c_dvcft3. 605
c_dvcgd 608
c_dvcge 612
c_dvcos1 617
c_dvcpf1 620
c_dvcpf3 623
c_dverd 627
c_dvcre 630
c_dvgsg2 633
c_dvhevp 636
c_dvland 640
c_dvlax 645
c_dvlbx 648
c_dvldiv 651
c_dvldlx. 653
c dvlsbx 655
c_dvlspx 658
c_dvlsx 661
c_dvltqr 664
c_dvltx 666
c_dvltx1 669
c_dvltx2. 672
c_dvltx3 675
c_dvluiv 678
c_dvmbv 680
c_dvmcf2 683
c_dvmcft. 686
c_dvmcst 690
c_dvmggm 693
c dvmrf2 695
c_dvmrft 700
c_dvmsnt 704
c dvmvsd 707
c_dvmvse 709
c_dvqmrd 711
c_dvqmre 714
c_dvran3 718
c_dvran4 721
c_dvrau4 724
c_dvrcvf 727
c_dvrft1 732
c_dvrft2 736
c_dvrpf3 740
c_dvseg2 744
c_dvsevp 747
c_dvsin1 751
c dvsld 754
c_dvspll 757
c_dvsplx 760
c_dvsrft 763
c_dvtdev 766
c_dvtfqd 770
c_dvtfqe. 773
c_dvwflt 776
c_ranb2 778
c_rane2 780
c_ranp2 782
Description of the auxiliary routines 785
c_dcsum 786
c_dfmax. 788
c_dfmin 789
c_dmach 790
c_dsum 791
c_iradix 793
Bibliography 795

Introduction

Overview of the C-SSL II library

1. Background

The main aims in the design of the C-SSL II are to provide a high-performance scientific library with an ANSI C user interface, while exploiting the existing Fortran SSL II to minimize the effort involved in the port and to ease future maintenance. This section details the implementation of the C library; outlining general techniques and focusing on specific problem areas. The most important aspect of the library is that it consists primarily of C interface routines to existing Fortran library codes. This has implications for the routine names and the calling sequences employed, as is discussed later. Despite the similarity between the two libraries, if the user already has C-code containing calls to Fortran SSL II routines then all of these calls should be replaced with calls to the C-SSL II. Mixing direct calls to the Fortran SSL II and calls to the C-SSL II might not work correctly.

The C-SSL II only supports double precision double functionality; single precision float is not supported except in three random number routines. Double precision complex numbers are also supported via a special dcomplex type definition. In addition, all integer arguments and results are of type int.

The coverage of the C-SSL II is similar to that of the Fortran SSL II, except that float will not be widely supported. Furthermore, where Extended Capability Fortran routines reproduce the functionality of the original routines, only the Extended Capability routines are supported.

The areas covered are:
A. Linear algebra

- Array storage format conversion,
- Basic matrix manipulation,
- Solutions of linear equations for a variety of matrix types, including complex, banded, indefinite, symmetric, positive definite, tridiagonal and sparse matrices,
- Matrix decomposition, inversion and solver routines for a variety of matrix types,
- Singular value decomposition, generalized inverses and linear least squares.
B. Eigenvalues and eigenvectors
- Eigenvalues and eigenvectors for a range of matrix types including symmetric, Hermitian and symmetric band, and also the generalized eigenvalue problem,
- Routines for matrix balancing and reduction, as well as back transformation and normalization of eigenvectors.
C. Nonlinear equations
- Roots of polynomials and nonlinear functions, with one routine for nonlinear systems.
D. Extrema
- Minimization of nonlinear functions of one or several variables,
- Constrained minimization of nonlinear systems,
- Nonlinear least squares,
- Linear and nonlinear programming.
E. Interpolation and approximation
- Interpolation with a variety of functions including B-splines,
- Smoothing using B-splines and least squares,
- Series expansion including sine, cosine and Chebyshev,
- Least squares approximation.
F. Transforms
- Real and complex FFTs, including singlevariate, multiple and multivariate, with fixed, prime factor or mixed radices,
- Cosine and sine transforms,
- Laplace transforms,
- Wavelet transforms,
G. Numerical quadrature
- 1-D quadrature for finite, infinite and semi-infinite ranges,
- Two routines for multidimensional quadrature,
- Integration of tabulated functions.
H. Differential equations
- Solutions of systems of stiff and non-stiff initial value ordinary differential equations.
I. Special functions
- Extensive support for Bessel and other special functions.
J. Pseudo-random numbers
- Support for uniform, normal, exponential, Poisson and binomial pseudo-random numbers.
K. Auxiliary routines
- Summation
- Machine constants

Each major section (with the exception of the auxilliary routines) is described in detail within the Selection of routines chapter following the Introduction chapter.

2. Details on the C-SSL II interface

Routines in the C library have names consistent with the Fortran library with the C function name constructed by adding the prefix C_ to the underlying Fortran routine name in lower case. As nearly all of the routines deal with double precision arguments, this means that the nearly all routines start with c_d. The next letter for enhanced capability routines is v, hence c_dvalu. The remaining letters (at most 5) attempt to convey some description of the underlying function. For instance, nearly all routines that involve arguments with type dcomplex follow the c_d (c_dv with extended capability routines) with the letter c , hence c _dclu, which performs the LU-decomposition of a dcomplex array. This is not always true, but is a useful guideline; for instance c _dvcos1 performs a 1-D, radix-2 cosine transform on real data.

From the users' viewpoint the C-SSL II consists of C routines using standard C conventions for argument passing, argument types and return values. Input-only scalars are passed by value; output and input / output arguments are passed by pointer. Input-only arguments are not altered and can be reused by the user. Output arguments do not have to be initialized by the user before the function call. Input / output arguments need to be defined before function calls and are altered as a result of the call. The values are not necessarily meaningful to the user. Work arrays are labelled as such, which implies that no user action is required on the initial call, but their output contents may be significant. It is often possible to recall a function to carry on with a computation (for instance, a new end point can be specified in one of the differential equation routines) and in almost all such cases, work arguments must remain unchanged between calls.

Argument names follow the traditional Fortran implicit typing conventions, so that arguments of type int begin with the letters i to n . Arguments of type double start with the letters a to h and o to y . The letter z is the exception and is usually reserved for arguments of type dcomplex.

Every (non-auxiliary) library routine returns a standard int error value. If the routine completed successfully then 0 is returned; if there was some error detected in the routine, or if the results may not be reliable, 1 is returned. The user program can check the error return value and if an error occurred more information about the error condition can be obtained from the icon parameter.

As much as possible, the arguments in each C library routine are identical to the arguments in the Fortran library routine, and they are specified in the same order. Generally, main arguments are listed first, control arguments are in the middle and workspaces are located towards the last of the arguments. The last argument is always icon, the error condition code (note that this argument is not present in the auxiliary routines). Some argument types are described more fully elsewhere in this document: multidimensional-arrays (Section 4), user functions (Section 5), and complex numbers (Section 6).

Notice that where temporary work array arguments are required by a Fortran library routine, the C interface routine also includes these arguments. This is not normal C programming, where work space is generally allocated within a routine using malloc. However, as mentioned above, there are several instances where data stored in the work area is actually required on subsequent calls to the same function.

The C-SSL II is provided with a header file cssl. h which contains prototypes for all of the user-accessible functions, and other information such as the dcomplex data type definition. Every user program which calls the C library must include this header file. The function name of the user main program is main or MAIN__(two underscores after MAIN).

3. Sample calling program

The following program calls the routine c_dvlax to solve a dense system of linear equations using LU-decomposition. The program also calls the matrix-vector routine c_dmav. The array a is declared larger than the actual matrix used in this example. By doing so, the user could generate matrices of different sizes in the same program and call a C-SSL II routine repeatedly with different matrices, but the same array storage. On many modern architectures, particularly vector supercomputers, the user needs to consider one more thing: it is possible to choose the number of columns, COLS to improve performance by reducing cache bank or memory bank conflicts. On vector supercomputers, one guideline is to use an odd number for COLS. On most systems, declaring COLS to be a power of two should be avoided. One final point, in order to access elements of a correctly within a routine, the value of COLS must be passed to it as one of the arguments. In the documentation, the number of columns of a 2-D array is called the C fixed dimension.

```
#include <stdio.h>
#include "cssl.h" \longleftarrow C-SSL II standard header file.
#define ROWS 100 «_Use #define to declare constants. It
#define COLS 101 « makes life much easier!
MAIN__() Non-standard C required- there are 2 underscores
{ present after MAIN.
    int ierr, icon;
    int n, i, j, isw, is;
    double epsz, eps;
    double a[ROWS][COLS], b[ROWS], x[ROWS], vw[ROWS];
    int ip[ROWS];
    n = 50;
    /* Initialize matrix a */
```

```
    n = 50;
    /* Initialize matrix a */
    /* Initialize solution vector x */
    ... Notice the C fixed dimension!
    /* Initialize constant vector b =a*x */
    ierr = c_dmav((double*)a, coLs, n, n, x, b, &icon);
    epsz = 0.0; Notice the recast!
    isw = 1;
    /* solve system of equations */
    ierr = c_dvlax((double*)a, COLS, n, b, epsz, isw, &is, vw, ip, &icon);
    if (icon != 0) { < <t is good practice to always check the value of icon.
        printf("ERROR: c_dvlax failed with icon = %d\n", icon);
        exit(1);
    }
    /* check solution vector */
}
```


4. Multidimensional arrays

As shown in the above example, the library expects users to declare matrices as 2-D arrays. These arrays must be recast as a pointer to type double in calls to a library routines and it is also necessary to specify the C fixed dimension of the array.

The approach taken incurs a small performance penalty. This is because the user's code will use C row-ordered arrays, but before these are passed to the Fortran code, they must be transformed to Fortran column-ordered format. Also, before exiting from the C wrapper, the arrays may need to be transformed back again to C row-ordered format if the user is expected to access the array data.

With most library routines the output array data is not accessed directly by the user program but instead the array is passed to another library routine for further processing, e.g. c_dvalu and c_dvluiv. This means that the wrapper for the first routine, e.g. c_dvalu, does not need to transpose the array on exit; and the second wrapper routine, e.g. C_dvluiv, does not need to transpose the array on entry or exit. This definition of the array data differs from that for the Fortran library.

See the Array storage formats section for further details about arrays.

5. User defined functions

User defined functions work as C programmers would expect. Thus a user function expects scalar arguments to be passed by value. When the result is a scalar, this is returned as the function value. When the desired result is a 1-D array, the function is a void function, and the result is passed back via one of the function arguments. Some of the Fortran routines expect a 2-D array to be returned. The associated arguments are recast as double pointers and the documentation shows users how to assign entries to the array elements.

With simple scalar functions, the user's program will be normal C code:

```
/* include C SSL header file */
#include "cssl.h"
/* user function prototype 8/
double func(double x);
/* user's main program */
```

```
MAIN__()
{
    int ierr, nmin, nmax, n, icon;
    double epsa, epsr, a, b, s, err;
    /* call C library routine */
    ierr = c_daqn9(a, b, func, epsa, epsr, nmin, nmax,
                                    &s, &err, &n, &icon);
}
/* user function */
double func(double x)
{
    double res;
    res = x*sin(x);
    return res;
}
```

When the user must return values through a double pointer that will be interpreted as a 2-D array, the user's program would resemble:

```
#include <stdlib.h>
#include <stdio.h>
#include "cssl.h" /* standard C-SSL II header file */
#define N 2 /* order of system */
/* user function prototypes */
void fun(double x, double y[], double yp[]);
void jac(double x, double y[], double *pd, int k);
MAIN__()
{
    int ierr, icon;
    int i, n, isw, mf, ivw[N+25];
    double x, y[N], xend, epsv[N], epsr, h, vw[N*(N+17)+70];
    /* Define the input to the routine */
    ;* solve system */
    ierr = c_dodge(&x, y, fun, n, xend, &isw, epsv, &epsr,
                        mf, &h, jac, vw, ivw, &icon);
    /* Check for errors, print results etc. */'
}
/* user function */
void fun(double x, double y[], double yp[])
{
    yp[0] = y[1];
    yp[1] = -11*y[1]-10*y[0];
    return;
}
/* user Jacobian function */
void jac(double x, double y[], double *pd, int k)
{ /* [i][j] -> [i*k+j] */
    pd[0*k+0] = 0; /* [0][0] */
    pd[0*k+1] = 1; /* [0][1] */
    pd[1*k+0] = -10; /* [1][0] */
    pd[1*k+1] = -11; /* [1][1] */
    return;
}
```


6. Complex numbers

ANSI C does not provide a complex data type, but it is common C practice to define a complex type using a typedef:

```
typedef struct {
    double re, im;
} dcomplex;
```

The C-SSL II supports complex numbers defined in this manner. Only double precision real and imaginary parts are supported. An example of user code to handle such complex numbers is:

```
/* include C-SSL II header file */
#include "cssl.h"
#define NMAX 1000
MAIN__()
{
    dcomplex za[NMAX][NMAX];
    dcomplex zvw[NMAX];
    %*initialize matrix from file */
    for (i=0;i<n,i++)
        for (j=0;j<n;j++)
        fscanf(in, "%le, %le", &za[i][j].re, &za[i][j].im);
    ierr
    ierr = c_dclu(za, k, n, epsz, ip, &is, zvw, &icon);
}
```


7. Condition codes

The icon argument indicates the resultant status after execution of the library function (the condition code) and should always be checked on output. To make this slightly easier, the C library routines also provide a return code. As suggested in Section 2, the error return value is 0 only if the result is considered to be reliable (i.e. icon <10000). A value of 1 is returned if the result may be unreliable ($20000 \leq$ icon <30000) or if the routine detected an error in the input arguments (icon $=30000$).

The following table shows the range into which the icon value normally falls, and how users should interpret the reliability of the processing results. A small number of routines return icon values that are negative or larger than 30000 . With such routines, it is important that the user checks the routine documentation for the range of such icon values and their meaning.

Code	Explanation	Reliability of result	Result
0	Processing terminated normally.	Result is reliable as far as the routine can determine.	Normal
$1-9999$	Processing terminated normally, but additional information is included.	Processing terminated due to an internal restriction imposed during processing.	The result is reliable, subject to restrictions.
$10000-$			
19999	Processing is stopped due to an error that occurred during processing.	The result is not to be relied upon.	Error
$20000-$ 29999	Processing is bypassed due to an error in the input argument(s).		
30000			

Array storage formats

The methods for storing matrices in arrays depends on the structure and form of the matrices as well as the computation in which it is involved. Viewed as a mathematical object class, the C-SSL II library at present supports the following matrix class structure:

Therefore there are matrices, there are sparse matrices and there are symmetric positive definite sparse matrices. This structure only represents the matrix classes that are exploited in this library. For each class or sub-class there are one or more array storage formats. Some of the different formats are only used in one or two routines in order to obtain better performance from a vector processor. The storage formats for tridiagonal are routine specific and are described only in the relevant routine documentation.

1. Storage formats for general matrices

When an argument is defined as a matrix, that is from the parent-class and not a child-class, such as symmetric, all of the elements of a matrix are assumed significant. A standard 2-D array is used to store the matrix, so that matrix element $a_{i j}$ is stored in array element $\mathrm{a}[\mathrm{i}-1][j-1]$. Matrices are indexed from 1, which is standard mathematical usage, while array dimensions are indexed from 0 , which is standard C. This also applies to vectors. Again, the mathematical tradition numbers the elements from 1 , so that vector element y_{i} would be stored in array element y [i-1].

Another feature of the 2-D arrays used in the C-SSL II library is that most routines are designed so that users can specify a larger memory area for a 2-D array than is required for a particular problem. Consider the example in Figure 1, where a 5 by 5 matrix \mathbf{A} has been stored in an m by k array a . In order for this matrix to be used in a function call, in addition to the matrix size (in this case 5), it is also necessary to specify k, the number of columns of a. In the documentation, this is referred to as the C fixed dimension.

Figure 1 Storage format for general matrices

2. Storage formats for symmetric matrices

Symmetric matrices

As shown in Figure 2, the elements of the diagonal and the lower triangular portions of an n by n symmetric matrix are stored row by row in a 1-D array with $n t=n(n+1) / 2$ elements.

Note: This storage format might also be used in eigenvalue routines where the matrix is required to be symmetric positive definite.

Figure 2 Storage format for symmetric matrices

Symmetric positive definite matrices

The storage format for symmetric positive definite matrices stores the lower triangular part of an n by n matrix column by column into a 1-D array with $n t=n(n+1) / 2$ elements, as shown in Figure 3.

Figure 3 Storage format for symmetric positive definite matrices

3. Storage format for Hermitian matrices

The real parts of the elements of a Hermitian matrix are stored on the diagonal and lower triangular portions of a 2-D array, as shown in Figure 4. The imaginary parts of the lower triangular elements of a Hermitian matrix are stored in the upper triangular portion of the same 2-D.

Figure 4 Storage format for Hermitian matrices

4. Storage formats for band matrices

Band storage format

A band matrix is one in which only a certain range of diagonals above and below the main diagonal contain non-zeros. The total range of non-zeros is referred to as the matrix bandwidth, designated by w in the following discussion. Generally, $w=\min \left(h_{1}+h_{2}+1, n\right)$ where h_{1} is defined to be the lower bandwidth (that is the diagonal farthest below the main diagonal that contain non-zeros) and h_{2} is the upper bandwidth. With symmetric matrices, by convention, $h=h_{1}=h_{2}$ is referred to as the lower bandwidth, so that $w=2 \cdot h+1$.

The band storage format is designed to ensure that sufficient storage is available for fill-ins caused during matrix factorizations, such as LU-decompositions. This necessitates providing additional storage than that required to just store the original matrix. A typical layout is shown in Figure 5. In this example, h_{1}, the lower band width has the value 2 and h_{2}, the upper bandwidth, has the value 1 . The matrix is stored by row, with a total of $2 \cdot h_{1}+h_{2}+1$ array elements set aside for each row. When this total is larger than n, a routine for the general n by n matrix should be used rather than a specialized matrix routine for band matrices. Notice that leading elements of the first h_{1} rows need not be defined (denoted by asterisks or * in Figure 5). Similarly, the trailing $h_{1}+h_{2}$ elements of the last row do not need to be defined, but all other array values that do not initially contain matrix elements must be initialized to zero.

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{llll}
a_{11} & a_{12} & \\
a_{21} & a_{22} & a_{23} & \\
a_{31} & a_{32} & a_{33} & a_{34} \\
& a_{42} & a_{43} & a_{44} \\
0 & & a_{53} & a_{54}
\end{array}\right. \\
& \\
& \begin{array}{l}
\mathrm{n}=5 \\
\mathrm{~h}_{1}=2 \\
\mathrm{~h}_{2}=1 \\
\mathrm{nt}=(2 \times 2+1+1) \times 5 \\
\\
*=30 \\
\\
\text { - undefined }
\end{array}
\end{aligned}
$$

$a[0]$
$a[1]$
$a[2]$
$a[3]$
$a[4]$
$a[5]$
$a[6]$
$a[7]$
$a[8]$
$a[9]$
$a[10]$
$a[11]$
$a[12]$
$a[13]$
$a[14]$
$a[15]$
$a[16]$
$a[17]$
$a[18]$
$a[19]$
$a[20]$
$a[21]$
$a[22]$
$a[23]$
$a[24]$
$a[25]$
$a[26]$
$a[27]$
$a[28]$
$a[29]$

Figure 5 Storage format for band matrices

Symmetric band storage format

The elements of the diagonal and lower band portions of a symmetric band matrix are stored row by row in a 1-D array as shown in Figure 6. Only the elements on the main diagonal and h sub-diagonals need to be stored, so that the 1-D array has $\mathrm{nt}=\mathrm{n}(\mathrm{h}+1)-\mathrm{h}(\mathrm{h}+1) / 2$ elements.

Note: This storage format might also be used in eigenvalue routines where the matrix is required to be symmetric positive definite.

Figure 6 Storage format for symmetric band matrices

Symmetric positive definite band storage format

The mapping of a symmetric postive definite band matrix onto a 1-D array is shown in Figure 7. The elements of the lower triangular matrix are stored column by column into the array, which must have $n t=n(h+1)$ elements. The upper triangular portion of the matrix is ignored. The trailing elements of the last h columns of the mapped matrix do not have to be defined, so the contents of these elements in the array are marked by asterisks.

Figure 7 Storage format for symmetric positive definite band matrices

5. Storage formats for general sparse matrices

ELLPACK storage format

The ELLPACK storage format is a sparse matrix format that is best suited to those situations where either the matrix nonzeros are spread over a wide range of the matrix or the matrix diagonals are themselves very sparse (see [63] and [90] for further details on ELLPACK). Two 2-D arrays are used to represent the matrix. The array referred to as coef in Figure 8
contains the non-zeros of the matrix, stored so that the i-th column of the array contains the non-zeros on the matrix row $i+1$ and the array icol contains the matrix column index of the corresponding non-zero element in coef. Another input variable is iwidt, the maximum number of non-zeros in any row of \mathbf{A}. If a row has fewer than iwidt non-zeros, then the associated column of coef must be padded with zeros. The corresponding elements of icol must contain the row number of the row in question.

In Figure 8, row 1 of \mathbf{A} has non-zeros in columns 1 and 4 . Therefore, coef [0] [0] has the value 1 and icol [0] [0] has the value 1 , because $a_{11}=1$. Similarly, coef[1][0] has the value 2 and icol[1][0] = 4 , because $a_{14}=2$. Row 3 of matrix \mathbf{A} has fewer than iwidt non-zeros. Therefore, coef[1] [2] is zero and icol[1][2] = 3 . Row 4 of matrix \mathbf{A} is treated similarly. Although not illustrated in the example, the ordering of non-zero elements within a column of coef is not important, provided that the same ordering is used in icol.

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 3 & 4 & 0 \\
0 & 0 & 5 & 0 \\
6 & 0 & 0 & 0
\end{array}\right] \Rightarrow \text { icoef }=\left[\begin{array}{llll}
1 & 3 & 5 & 6 \\
2 & 4 & 0 & 0
\end{array}\right] \\
& \text { iwidt }=2
\end{aligned}
$$

Figure 8 ELLPACK storage format for sparse matrices

Diagonal storage format

The diagonal storage format is effective for those sparse matrices where the non-zero elements all lie along a small number of diagonals. This format is intended to be used with preconditioned iterative linear equation solvers and it only stores the main diagonal and those off-diagonals that contain non-zeros. Notice however that all of such diagonals are stored, including the zero elements.

Two arrays are used to store this matrix. The first array, referred to as diag in Figure 9, is a 2-D array whose rows contain the diagonal elements and the second is a 1-D array, referred to as nofst whose i-th element contains the offset of the diagonal stored in the i-th row of diag. The upper diagonals have a positive offset, the main diagonal an offset of zero and the lower diagonals a negative offset. There is no special restriction on the order in which the diagonals are stored, although it is essential that the elements within a diagonal are stored consecutively.

Also notice that leading zeros on the lower diagonals and trailing zeros on the upper diagonals must be explicitly included. The reason for these is illustrated in Figure 9. For further information, see [68] and [78].

Figure 9 Diagonal storage format for sparse matrices

6. Storage formats for symmetric positive definite sparse matrices

ELLPACK storage format

This version of the ELLPACK storage format is intended to be used with symmetric positive definite matrices, where the main diagonal has been normalized to ones. There are some important differences between the way elements are stored for this matrix sub-class and its parent class. In particular, the main diagonal elements are not stored, because they are assumed to be 1 and the upper triangular non-zeros are stored separately from the lower triangular non-zeros. Both the upper and lower triangular elements are stored, even though one could be determined from the other. The maximum number of non-zeros in each row vector of the upper triangular matrix is nsu and the maximum number of non-zeros in each row vector of the lower triangular matrix is nsl . If $n s h=\max (\mathrm{nsl}, \mathrm{nsu})$, then the non-zeros of the upper triangular matrix are stored in rows 0 to $\mathrm{nsh}-1$ and the non-zeros of the lower triangular matrix are stored in rows nsh to $2 *$ nsh- 1 . In other words, occasionally, one or other of the sub-matrix entries will be padded by zeros.

The indexing for non-zeros (and row numbers for explicit zeros in coef) is still in terms of the original matrix. For instance, in Figure 10, coef[2][2] has the value 6, icol[2][2] has the value 2, so that we know $a_{32}=6$. Similarly, coef[0][2] has the value 7, icol[0][2] has the value 4, so that $a_{34}=7$.

It is the user's responsibility to ensure that the normalization of the matrix and right hand sides are correct. To obtain the solution to $\mathbf{A x}=\mathbf{b}$, obtain the solution to the normalized problem $\mathbf{A}^{*} \mathbf{y}=\mathbf{b}^{*}$, where $\mathbf{A}^{*}=\mathbf{D}^{1 / 2} \mathbf{A} \mathbf{D}^{1 / 2}$ and $\mathbf{b}^{*}=\mathbf{D}^{1 / 2} \mathbf{b}$ and then obtain the solution from $\mathbf{x}=\mathbf{D}^{1 / 2} \mathbf{y}$, where \mathbf{D} is the diagonal matrix containing the inverse of the diagonal elements of \mathbf{A}.

Figure 10 ELLPACK storage format for normalized symmetric positive definite sparse matrices

Diagonal storage format

The data structures used for symmetric positive definite matrices is similar to those in the general case. As with the ELLPACK storage format, only normalized matrices are supported, where the main diagonal of the matrix is assumed to consist of ones. Therefore, the main diagonal is not explicitly stored because its values are known. An example is provided in Figure 11. The order in which the diagonals are stored is now important, with the upper diagonals being stored first in diag. Diagonals are given in order from nearest to the main diagonal for both of the upper and lower triangular matrices. The entries for the upper diagonals have trailing zeros, so diagonal j will have j trailing zeros. The entries for the lower diagonals have leading zeros, so diagonal $-j$ will have j leading zeros.

Figure 11 Diagonal storage format for normalized symmetric positive definite sparse matrices

Unit round-off

C-SSL II routines frequently use the unit round-off. This value is a basic concept in the error analysis of floating point arithmetic. It is defined to be the largest floating point value μ such that $1+\mu=1$. The unit round-off is often used in the C-SSL II as part of a convergence criterion or to test for the loss of significant figures. Its value can be obtained using the auxiliary function c_dmach.

Error analysis for floating point arithmetic is covered in depth in [117] and [122]. A more basic treatment is found in [16].

Machine constants

There are several references in this manual (particularly in the discussion about special functions) to symbols that express computer constants that are hardware dependent. These include:

- $f l_{\text {min }}$ - the positive minimum value for the floating point number system (on hardware supporting the IEEE floating point standard, the double value for this is approximately 2.2×10^{-308}). Its value can be obtained using the auxiliary function c_dfmin.
- $f l_{\text {max }}$ - the positive maximum value for the floating point number system (on hardware supporting the IEEE floating point standard, the double value for this is approximately $\left.1.8 \times 10^{308}\right)$. Its value can be obtained using the auxiliary function c_dfmax.
- $t_{\text {max }}$ - the upper limit of an argument for a trigonometric function (\sin and \cos). This is typically around 3.53×10^{15} for double data types.

It should be noted that the large size of $f l_{\text {max }}$ means that it is unlikely that values near this limit will occur in the course of normal computation. The same cannot be said about $t_{\max }$. Values of the size of $t_{\max }$ can occur in practice. Due care must be taken with trigonometric functions to ensure that the input values are in a meaningful range. Even greater care must be taken with the transcendental functions (for example e^{710} will produce an overflow when evaluated as a double). Such care also applies to the special functions supported in the C-SSL II, which is why the range information supplied in the documentation is so important.

Sample routine documentation with annotation

The following is a complete routine description. The layout shown is used throughout the manual.

1. Function $\longleftarrow \quad$ Mathematical description of the function.

This function performs matrix-vector product of an $m \times n$ real matrix \mathbf{A} with a real vector \mathbf{x} of size n.

$$
\begin{equation*}
\mathbf{y}=\mathbf{A x} \tag{1}
\end{equation*}
$$

The solution \mathbf{y} is a real vector of size m (m and $n \geq 1$)
2. Arguments $\longleftarrow \quad$ Full sample call and argument description.

The routine is called as follows:
ierr = c_dmav((double*)a, k, m, n, x, y, \&icon);

Notice the recast operation. where:

Usage Description of the arguments

$\|$| a | double a[m][k] |
| :--- | :--- |
| k | int |
| m | int |
| n | int |

Input
Input
Matrix \mathbf{A}.
C fixed dimension of array a $(\geq n)$.
The number of rows m for matrices \mathbf{A}.
The number of columns n for matrices \mathbf{A}.
\downarrow See Comments on use.
Vector \mathbf{x}.
Vector \mathbf{y}.
Only applies to equation (2). See Comments on use.
Output Solution vector of multiplication.
Output Condition code. See below.
The complete list of condition codes is given below. \qquad Values routine dependent

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	$\bullet \quad \mathrm{m}<1$	
$\bullet \quad \mathrm{n}=0$		
	$\bullet \quad \mathrm{k}<\mathrm{n}$	

```
3. Comments on use « Additional details on arguments and use of function
General Comments
The function primarily performs computation for equation (1) but it can also manage to do equation (2) that is very much like (1).
                                    y= ',}-\mathbf{Ax
To tell the function to perform (2), specify argument \(n=-n\) and either copy or set the contents of the arbitrary vector \(\mathbf{y}^{\prime}\) into \(\mathbf{y}\) before calling the
function. Equation (2) is commonly use to compute the residual vector \(\mathbf{r}\) of linear equations (3) with a right-hand-side vector \(\mathbf{b}\).
\[
\begin{equation*}
\mathbf{r}=\mathbf{b}-\mathbf{A x} \tag{3}
\end{equation*}
\]
Note, to comply with the same functionality of the Fortran routine. The same style for specifying the operation is followed in the C function.
```


4. Example program
 Programs show basic use; source is available.

```
This example program calculates a matrix-vector multiplication. The matrix has 10000 elements, and the vector has 100 .
```

```
#include <stdlib.h>
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <stdio.h>
\#include <math.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define NMAX 100
MAIN__()
MAIN__()
{
{
int ierr, icon;
int ierr, icon;
int m, n, i, j, k;
int m, n, i, j, k;
double eps;
double eps;
double a[NMAX][NMAX], x[NMAX], y[NMAX];
double a[NMAX][NMAX], x[NMAX], y[NMAX];
/* initialize matrix and vector */
/* initialize matrix and vector */
m = NMAX;
m = NMAX;
n = NMAX;
n = NMAX;
k = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
for (i=0;i<n;i++) {
for (j=0;j<n;j++)
for (j=0;j<n;j++)
a[i][j] = 1.0/(j+1)
a[i][j] = 1.0/(j+1)
x[i] = i+1
x[i] = i+1
}
}
/* perform matrix vector multiply */
/* perform matrix vector multiply */
ierr = c_dmav((double*)a, k, m, n, x, y, \&icon);
ierr = c_dmav((double*)a, k, m, n, x, y, \&icon);
if (icon != 0) {
if (icon != 0) {
printf("ERROR: c_dmav failed with icon = %d\n", icon);
printf("ERROR: c_dmav failed with icon = %d\n", icon);
exit(1);
exit(1);
}
}
/* check vector */
/* check vector */
eps = 1e-6;
eps = 1e-6;
for (i=0;i<n;i++)
for (i=0;i<n;i++)
if (fabs((y[i]-n)/n) > eps) {
if (fabs((y[i]-n)/n) > eps) {
printf("WARNING: result inaccurate\n")
printf("WARNING: result inaccurate\n")
exit(1);
exit(1);
}
}
printf("Result OK\n");
printf("Result OK\n");
return(0);
return(0);
}

```
}
```


5. Method
 Discussions are minimal, with references to relevant Fortran routines and research papers

```
The standard matrix-vector product algorithm is used. For further information consult the entry for MAV in the Fortran SSL II User's Guide.
```


Selection of Routines

The following sections are intended to enable the user to select the most suitable C-SSL II routine for his/her calculation. They are organised according to the major sections outlined in the Introduction chapter.

Each section in this chapter is designed to be independant of all the other sections, so that the user only needs to read the section directly relevant to operation they wish to perform.

Linear algebra

1. Outline

In Table 1 the Linear algebra operations available in the C-SSL II are classified depending on the structure of the coefficient matrix and the related problems.

Table 1 Classification of operations for linear equations

Structures	Problem	Section
Dense matrix	Conversion of array storage formats	2
	Matrix manipulation	3
	Systems of linear equations; Matrix inversion	4
	Least squares solution	7
Band matrix	Conversion of array storage formats	2
	Matrix manipulation	3
	Systems of linear equations	4
Tridiagonal matrix	Systems of linear equations	5
	Matrix manipulation	3
	Iterative solution of systems of linear equations	6

The time and memory required to solve a system of linear equations can be reduced significantly if it is possible to use a method that has been optimized for a particular matrix structure.

2. Matrix storage format conversion

The C-SSL II provides conversion routines for the following transformations:

Figure 12 Supported conversion operations

The names of the associated routines are given in Table 2. The storage format of an array depends on the structure and form of the underlying matrix. For example, when storing the elements of a real symmetric matrix, only elements on the diagonal and upper triangle portion are stored. See the Array storage formats section in the Introduction for details.

Table 2 Array storage format conversion routines

	After conversion		
Before conversion	Standard	Symmetric	Symmetric band
Standard		c_dcgsm	c_dgsbm
Symmetric	c_dcsgm		C_dcssbm
Symmetric band	c_dcsbgm	c_dcsbsm	

3. Matrix manipulation

The following basic matrix manipulations are supported:

- Addition/Subtraction of two matrices $\mathbf{A} \pm \mathbf{B}$.
- Multiplication of a matrix by a vector $\mathbf{A x}$.
- Multiplication of two matrices AB.

C-SSL II provides the routines listed in Table 3 for matrix manipulation. There are two different routines for sparse matrices, depending on whether the diagonal storage format or ELLPACK storage format is used.

Table 3 Matrix manipulation routines

A		B or \mathbf{x}		
General real		General real	Symmetric	Vector
General complex	Addition	c_daggm		
	Subtraction	C_dsggm		
	Multiplication	C_dvmggm	c_dmgsm	c_dmav
	Addition			c_dmcv
	Subtraction		c_dassm	
	Multiplication	c_dmsgm	c_dmssm	c_dmsv
Band	Multiplication			c_dvmbv
Symmetric band	Multiplication			c_dmsbv
Sparse - diagonal	Multiplication			c_dvmvsd
Sparse - ELLPACK	Multiplication			c_dvmvse

Comments on use

The non-sparse matrix vector multiplication routines also support the operation $\mathbf{r}=\mathbf{r}-\mathbf{A x}$, which can be used to compute the residual vector in the approximate solution of systems of linear equations.

4. Linear equations and matrix inversion (direct methods)

This section describes the routines that are used to solve the following problems.

- Solve systems of linear equations $\mathbf{A x}=\mathbf{b}$, where \mathbf{A} is an $n \times n$ matrix, \mathbf{x} and \mathbf{b} are vectors of size n.
- Obtain the inverse of a matrix \mathbf{A}.
- Obtain the determinant of a matrix \mathbf{A}.

Users are recommended to solve such problems using the linear equation 'driver' routines that are provided in the C-SSL II. These driver routines call a sequence of component routines, where the actual computation takes place. Alternatively, a C interface exists to most of the componant routines and therefore, the computation may be performed by making a sequence of calls to component routines.

Depending on the matrix classification, there are component routines to perform the following operations.

- Numeric decomposition of a coefficient matrix
- Solving based on the decomposed coefficient matrix
- Matrix inversion based on the decomposed matrix

Combinations of these routines ensure that systems of linear equations, inverse matrices, and the determinants can be solved.

Linear equations

The solution of the equations can be obtained by calling the component routines consecutively as follows:

```
;*'Decomposition routine */
ierr = c_dvalu((double *)a,k,n,epsz,ip,&is,vw,&icon)
/* Solve routine given a decomposition */
ierr = c_dlux(b,(double *)a,k,n,isw,ip,&icon)
```


Matrix inversion

The inverse can be obtained by calling the above components routines serially as follows:

```
/* Decomposition routine */
ierr = c_dvalu((double *)a,k,n,epsz,ip,&is,vw,&icon);
/* Compute matrix inverse given a decomposition */
ierr = c_dvluiv((double *)a,k,n,ip,(double *)ai,&icon);
```

The inverses of band matrices are generally dense matrices so that it is not efficient to compute these matrices directly. Therefore, no such component routines are provided.

Determinants

There are no component routines that return the value of a matrix determinant. However, the value can be computed from the elements of a decomposition component routine.

Routines available

Table 4 lists the driver routines and component routines available for the direct solution of systems of linear equations.
Driver routines for tridiagonal and sparse matrices are discussed separately.
Table 4 Driver and component routines for direct methods

Matrix type	Driver routines	Decomposition	Solve	Inverse
General	c_dvlax	c_dvalu	c_dlux	c_dvluiv
Complex	c_dlcx	c_dclu	c_dclux	c_dcluiv
Symmetric	c_dlsix	c_dsmdm	c_dmdmx	

Matrix type	Driver routines	Decomposition	Solve	Inverse
Symmetric positive definite (Modified Cholesky method)	c_dvlsx	c_dvsldl	c_dvldlx	c_dvldiv
Symmetric positive definite (Cholesky method)	c_dvlspx	c_dvspll	c_dvsplx	
General band	c_dvlbx	c_dvblu	c_dvblux	
Symmetric band	c_dlsbix	c_dsbmdm	c_dbmdmx	
Symmetric positive definite band	c_dvlsbx	c_dvbldl	c_dvbldx	

Comments on use

Matrix inversion

Usually, it is not advisable to invert a matrix when solving a system of linear equations.

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
$$

That is, in solving equation (1), the solution should not be obtained by calculating the inverse \mathbf{A}^{-1} and then multiplying \mathbf{b} by \mathbf{A}^{-1} from the left side as shown in (2).

$$
\begin{equation*}
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b} \tag{2}
\end{equation*}
$$

Instead, it is advisable to compute the LU-decomposition of \mathbf{A} and then perform the operations (forward and backward substitutions) shown in (3).

$$
\begin{align*}
& \mathbf{L y}=\mathbf{b} \\
& \mathbf{U x}=\mathbf{y} \tag{3}
\end{align*}
$$

Higher operating speed and accuracy can be attained by using method (3). The approximate number of multiplications involved in the two methods (2) and (3) are $n^{3}+n^{2}$ and $n^{3} / 3$ respectively. Therefore, matrix inversion should only be performed when absolutely necessary.

Equations with identical coefficient matrices

When solving a number of systems of linear equations as in (4) where the coefficient matrices are the identical and the constant vectors are the different,

$$
\left.\begin{array}{c}
\mathbf{A} \mathbf{x}_{1}=\mathbf{b}_{1} \\
\mathbf{A} \mathbf{x}_{2}=\mathbf{b}_{2} \\
\vdots \tag{4}\\
\mathbf{A} \mathbf{x}_{m}=\mathbf{b}_{m}
\end{array}\right\}
$$

it is not necessary to decompose the matrix \mathbf{A} for each equation. After decomposing \mathbf{A} when solving the first equation, only the forward and backward substitution shown in (3) need be performed for solving the other equations. In driver routines, the user can control whether or not processing begins with the decomposition of \mathbf{A} via the isw argument in the routine call.

Notes and internal processing

When using any of the routines, the following should be noted for convenience of internal processing.

Blocking LU decomposition, Crout's method, Gaussian elimination

In the C-SSL II, a blocking LU decomposition is used to decompose a matrix in standard form. This is a variant of Gaussian elimination that has been designed to produce good performance on modern computer architectures. Crout's method is also a variant of Gaussian elimination and is employed for complex matrices. Both produce a decomposition for general matrices of the form:

$$
\begin{equation*}
\mathbf{A}=\mathbf{L} \mathbf{U} \tag{5}
\end{equation*}
$$

where \mathbf{L} is a lower triangular matrix and \mathbf{U} is an upper triangular matrix.

Cholesky method and modified Cholesky method

The blocked Cholesky decomposition method and the modified Cholesky method is used for positive-definite symmetric matrices, that is, the decomposition shown in (6) is done.

$$
\begin{gather*}
\mathbf{A}=\mathbf{L L}^{\mathrm{T}}, \tag{6}\\
\mathbf{A}=\mathbf{L} \mathbf{D L}^{\mathrm{T}}
\end{gather*}
$$

where \mathbf{L} is a lower triangular matrix and \mathbf{D} is a diagonal matrix. Special variants of the Cholesky method are used for symmetric indefinite matrices and for symmetric positive definite band matrices.

Matrix decompositions are summarized in Table 5.
Table 5 Matrix decompositions

Matrix type	Contents of decomposed matrices
General matrices	$\mathbf{P A}=\mathbf{L} \mathbf{U}$
	\mathbf{L} : Lower triangular matrix
	\mathbf{U} : Unit upper triangular matrix
	\mathbf{P} is a permutation matrix.

Pivoting and scaling

Consider decomposing the real general matrix (7) into the form shown in (5).

$$
\mathbf{A}=\left[\begin{array}{ll}
0.0 & 1.0 \tag{7}\\
2.0 & 0.0
\end{array}\right]
$$

In this state, LU decomposition is impossible. And also in the case of (8)

$$
\mathbf{A}=\left[\begin{array}{ll}
0.0001 & 1.0 \tag{8}\\
1.0 & 1.0
\end{array}\right]
$$

Decomposing by floating point arithmetic with the precision of three digits will cause unstable solutions. These unfavourable conditions can frequently occur when the rows of a matrix are not properly ordered. This can be avoided by pivoting, which selects the element with the maximum absolute value for the pivot. Problems can be avoided in (8) by exchanging each element in the first row and the second row.

In order to perform pivoting, the method used to select the maximum absolute value must be unique. By multiplying all of the elements of a row by a large enough constant, any absolute value of a non-zero element in the row can be made larger than the corresponding element in the other rows. Therefore, it is just as important to equilibrate the rows and columns as it is to determine a pivot element of the maximum size in pivoting. C-SSL II uses partial pivoting with row equilibration. The row equilibration is performed by scaling so that the maximum absolute value of each row of the matrix to be decomposed is 1 . Actually the values of the elements are not changed in scaling; the scaling factor is only used when selecting a pivot.

Transposition vectors

Since row exchanges are performed in pivoting, the historical data is stored as the transposition vector. The matrix decomposition which accompanies this partial pivoting can be expressed as;

$$
\begin{equation*}
\mathbf{P A}=\mathbf{L} \mathbf{U} \tag{9}
\end{equation*}
$$

Where \mathbf{P} is the permutation matrix which performs row exchanges required by partial pivoting. This permutation matrix \mathbf{P} is not stored directly, but is handled as a transposition vector. In other words, in the j th, stage $(j=1, . ., n)$ of decomposition, if the i th row $(i \geq j)$ is selected as the j th pivotal row, the i th row and the j th row of the matrix in the decomposition process are exchanged and the j th row element of the transposition vector \mathbf{P} is set to i.

Testing for a zero or relatively zero pivot

In the decomposition process, if a zero or relative-zero pivot is detected, the matrix can be considered to be singular. In such a case, the pivot may have few correct significant digits and continuing the calculation might fail to obtain an accurate result. The argument epsz is used to determine whether to continue or discontinue processing. In other words, when epsz is set to 10^{-s}, if a loss of over s significant digits occurs when computing the pivot, the pivot is considered to be relatively zero and processing is discontinued.

5. Linear equations (tridiagonal systems)

The routines that solve tridiagonal systems of linear equations are listed in Table 6. Different array storage formats are employed in the different routines. In addition, each requires differing amounts of work area. If a vector processor is being employed, but the matrix has no other special properties apart from being non-singular, tridiagonal, then the routine c_dvltqr is recommended. If the matrix is diagonally dominant, so that no pivoting is required, then $c _d v l t x$ is the fastest routine for this class of problem when the matrix size is large and a vector processor is being employed. A slight disadvantage of both of these routines is that they require more storage than either c_dltx or c_dlstx. These two routines are only suggested for small problems or where a scalar processor is being employed.

The routines c_dvltx1, c_dvltx2 and c_dvltx3 are specialized versions of c_dvltx that are designed for the solution of special tridiagonal systems where the diagonal elements all have the same value and the off-diagonal elements all have the same value except at one or two specific locations. Matrices with these properties arise in the numerical approximation of partial differential equations (PDEs) via finite differences. Different boundary conditions (Dirichlet,

Neumann or periodic) in the underlying PDE produce slightly different matrices, which is reflected in the three routines provided. These routines are memory efficient as well as being designed to perform well on a vector processor.

Table 6 Routines for tridiagonal systems

Matrix type	Routine
General real tridiagonal	c_dvltqr
General real tridiagonal	c_dltx
General real diagonally dominant tridiagonal	c_dvltx
Symmetric positive definite tridiagonal	c_dlstx
Real constant tridiagonal (Dirichlet type)	c_dvltx1
Real constant tridiagonal (Neumann type)	c_dvltx2
Real constant almost tridiagonal (periodic type)	c_dvltx3

6. Iterative Linear equation Solvers and Convergence

Routines for the iterative solution of sparse systems of linear equations are given in Table 7. The choice of storage format for the sparse matrix depends on the extent to which non-zero matrix elements are concentrated along matrix diagonals.

Table 7 Routines for the iterative solution of sparse systems of linear equations

Matrix type	Method	Diagonal storage format	ELLPACK storage format
Symmetric positive definite	Preconditioned conjugate gradients	c_dvcgd	c_dvcge
Nonsymmetric or indefinite	Transpose-free quasi- minimal residual	c_dvtfqd	c_dvtfqe
	Quasi-minimal residual	c_dvqmrd	C_dvqmre
	Modified generalized conjugate residual	c_dvcrd	c_dvcre
	Bi-Conjugate gradient stabilized (l)	c_dvbcsd	c_dvbcse

6.1 Scaling

It is strictly recommended to scale the equation in order to balance the matrix entries for the efficient usage of iterative linear equation solver. This normalisation of the matrix strongly improves the numerical stability and the convergence rate of the iterative solver. The normalised coefficient matrix $\hat{\mathbf{A}}$ should have non--negative entries in the main diagonal and, for instance, the sum of absolute values in each row should be approximately equal to one.

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{10}
\end{equation*}
$$

A normalised form of the linear system (10) can be constructed by multiplying the coefficient matrix \mathbf{A} by a diagonal matrix \mathbf{L} from the left and with a diagonal matrix \mathbf{R} from the right. By introducing a new variable $\hat{\mathbf{x}}=\mathbf{R}^{-1} \mathbf{x}$ the linear system(10) is written as

$$
\mathbf{L A R} \hat{\mathbf{x}}=\mathbf{L b} \quad \Leftrightarrow \hat{\mathbf{A}} \hat{\mathbf{x}}=\hat{\mathbf{b}}
$$

where, $\hat{\mathbf{A}}=\mathbf{L A R}, \hat{\mathbf{b}}=\mathbf{L b}$.

Instead of \mathbf{A} the normalised matrix $\hat{\mathbf{A}}$ is used in the iterative solver. Keep in mind that the right hand side \mathbf{b} has to be transformed by multiplication with \mathbf{L} before the solver is called and the returned solution approximation has to be transformed by multiplication with \mathbf{R}.

If for all $i=1, \ldots, n$ the $s_{i}=\sum_{j=1}^{n}\left|a_{i j}\right|$ value is the absolute sum of entries in the i-th row one can set

$$
\begin{align*}
& L_{i j}=\left\{\begin{array}{ccc}
\frac{\operatorname{sgn}\left(a_{i i}\right)}{\sqrt{s_{i}}} & i=j \\
0 & \text { if } & i \neq j
\end{array}\right. \tag{11}\\
& R_{i j}=\left\{\begin{array}{cc}
\frac{1}{\sqrt{s_{i}}} & i=j \\
& \text { if } \\
0 & \\
i \neq j
\end{array}\right. \tag{12}
\end{align*}
$$

for all $i, j=1, \ldots, n$. It is emphasized that there are other possible ways of introducing a normalisation with rather different effects on the convergence rate of the iterative solvers, see [116] for an overview.

Notice , that with selection (11) and (12) the normalised matrix $\hat{\mathbf{A}}$ is symmetric and positive definite if and only if the original matrix is symmetric and positive definite.

6.2 Symmetry of Matrix and Iterative solvers

a) Symmetric Matrix

If the matrix \mathbf{A} is symmetric, ie. $a_{i j}=a_{j i}$ for all $i, j=1, \ldots, n$, and positive definite the classical conjugate gradient method(see [53]) can be used to solve the linear system.

If the matrix is not positive definite a break down will occurred.
b) Non-symmetrical or Indefinite Matrix

In case of a non-symmetrical or indefinite coefficient matrix a set of solvers are available. The optimal solver for the given linear system depends on the properties of the coefficient matrix \mathbf{A} (or if the normalised system $\hat{\mathbf{A}}$ is considered). For the different classes of matrices the following solvers are available:

6.3 Eigenvalues Distribution of Matrix and Convergence

a) MGCR method

If the eigenvalues of the coefficient matrix are close to the positive real axis (see Figure 13) can be used with a small number of search directions (eg. 5-10). If the imaginary part of any eigenvalue is large more search directions must be
considered in order to get good convergence. This increases the storage requirements as well as the amount of computation per iteration step which makes MGCR (see [66]) less efficient.

For a small number of search directions MGCR is a very fast but not very robust method.

b) TFQMR method

If the eigenvalues are in the positive half plane but there are eigenvalues with large imaginary part (see Figure 14) TFQMR(see [36]) is the recommended method. Also the solvers converge best if the minimal real part of any eigenvalue is as large as possible. So, for example, the convergence will be poor if there is an eigenvalue which has a very small nonzero real part. The convergence rate of TFQMR can be worse than the convergence rate of MGCR with a large number of search directions. However, every iteration step of TFQMR is much cheaper than MGCR with a large number of search directions so that a solution is calculated within less CPU time. So TFQMR is more robust but slower than MGCR with a small number of search directions.

c) BICGSTAB (l) method

Similarly to TFQMR BICGSTAB(l (see [102]) is suitable for matrices with eigenvalues that are in the positive half plane. Also the solvers converge best if the minimal real part of any eigenvalue is as large as possible. So, for example, the convergence will be poor if there is an eigenvalue which has a very small nonzero real part. In some applications where the eigenvalues of the coefficient matrix are close to the positive real axis $\operatorname{BICGSTAB}(l)$ has an even faster convergence rate than MGCR with a small number of search directions. However, every iteration step of $\operatorname{BICGSTAB}(l)$ is very expensive as it requires two matrix vector multiplications. Therefore in some cases MGCR or TFQMR are faster than $\operatorname{BICGSTAB}(l)$ but $\operatorname{BICGSTAB}(l)$ is more robust.

If no information about the eigenvalues of the (normalised) coefficient matrix is available it is suggested to try the methods MGCR, TFQMR and BICGSTAB (l) one after the other. MGCR should be used with 5 and 10 search directions. The order in which the methods are tested is important. So the fast but less robust methods should be tested before more robust methods are used. A suitable criterion for the quality is the CPU time the solver needs to reach the accuracy 0.1 .

Figure 13 Eigenvalues distribution for convergent MGCR

Figure 14 Eigenvalues distribution for convergent TFQMR and BICGSTAB (l)

7. Least squares solution

The types of linear least squares problems handled by the C-SSL II with the associated routine names are given in Table 8.
Table 8 Routines for $m \times n$ matrices

Problem type	Routine
Least squares solution	c_dlaxl
Least squares minimal norm solution	c_dlaxlm
Generalized inverse	c_dginv
Singular value decomposition	c_dasvd1

Least squares solution

The least squares solution is the vector $\tilde{\mathbf{x}}$ which minimizes $\|\mathbf{A x}-\mathbf{b}\|_{2}$, where \mathbf{A} is an $m \times n$ matrix $(m \geq n, \operatorname{rank}(\mathbf{A})=n)$, \mathbf{x} is a vector of size n and \mathbf{b} is a vector of size m.

Least squares minimal norm solution (underdetermined systems)

The least squares minimal norm solution is the vector \mathbf{x}^{+}which has the minimum $\|\mathbf{x}\|_{2}$ over all \mathbf{x} for which $\|\mathbf{A x}-\mathbf{b}\|_{2}$ is minimized. \mathbf{A} is an $m \times n$ matrix, \mathbf{x} is a vector of size n and \mathbf{b} is a vector of size m.

Generalized inverse

An $n \times m$ matrix \mathbf{X} that satisfies the equations in (13) for an $m \times n$ matrix \mathbf{A} is called a Moore-Penrose generalized inverse of a matrix \mathbf{A} and is denoted by \mathbf{A}^{+}. The generalized inverse is unique. The C-SSL II supports this operation for any $m \times n$ matrix, independent of the relative sizes of m and n.

$$
\begin{align*}
\mathbf{A X A} & =\mathbf{A} \\
\mathbf{X A X} & =\mathbf{X} \\
(\mathbf{A X})^{\mathbf{T}} & =\mathbf{A X} \tag{13}\\
(\mathbf{X A})^{\mathbf{T}} & =\mathbf{X A}
\end{align*}
$$

Singular value decomposition

Singular value decomposition is obtained by decomposing a real $m \times n$ matrix \mathbf{A} as shown in (14).

$$
\begin{equation*}
\mathbf{A}=\mathbf{U}_{0} \Sigma_{0} \mathbf{V}^{\mathrm{T}} \tag{14}
\end{equation*}
$$

Here \mathbf{U}_{0} and \mathbf{V} are $m \times m$ and $n \times n$ orthogonal matrices respectively, $\boldsymbol{\Sigma}_{0}$ is an $m \times n$ diagonal matrix where $\boldsymbol{\Sigma}_{0}=\operatorname{diag}\left(\sigma_{i}\right)$ and $\sigma_{i} \geq 0$. The σ_{i} are called the singular values of \mathbf{A}. Suppose \mathbf{A} is an $m \times n$ matrix with $m \geq n$. Since $\boldsymbol{\Sigma}_{0}$ is an $m \times n$ diagonal matrix, the first n columns of \mathbf{U}_{0} are used for $\mathbf{U}_{0} \Sigma_{\mathrm{n}} \mathbf{V}^{\mathrm{T}}$ in (14). That is, \mathbf{U}_{0} may be considered as an $m \times n$ matrix. Let \mathbf{U} be this matrix, and let $\boldsymbol{\Sigma}$ be an $n \times n$ matrix consisting of matrix Σ_{0} without the zero ($m-n$) $\times n$ sub-matrix of Σ_{0}. When using matrices \mathbf{U} and Σ, if m is far larger than n, the storage space can be reduced. So matrices \mathbf{U} and Σ are more convenient than \mathbf{U}_{0} and $\boldsymbol{\Sigma}_{0}$ in practice. This is also true when m is smaller than $n(m<n)$, in which case only the first m rows of \mathbf{V}^{T} are used and \mathbf{V}^{T} can be considered as an $m \times n$ matrix.

Assume that:

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\mathbf{T}} \tag{15}
\end{equation*}
$$

where: $l=\min (m, n)$ is assumed and \mathbf{U} is an $m \times l$ matrix, Σ is an $l \times l$ diagonal matrix where $\Sigma=\operatorname{diag}\left(\sigma_{i}\right)$, and $\sigma_{i} \geq 0$, and \mathbf{V} is an $n \times l$ matrix.

When $l=n(m \geq n)$,

$$
\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{V} \mathbf{V}^{\mathrm{T}}=\mathbf{I}_{n}
$$

when $l=m(n \geq m)$,

$$
\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{U U}^{\mathrm{T}}=\mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{I}_{m}
$$

The next section describes some of the properties of the matrices \mathbf{U}, \mathbf{V} and Σ that are obtained when computing the singular values of matrix A. For further details, refer to reference [41] and to the Method section for the routine LAXLM in the Fortran SSL II User's Guide.

Properties of matrices arising in a singular value decomposition

Singular values $\sigma_{i}, i=1,2, \ldots, l$ are the positive square roots of the first to l-th eigenvalues of matrices $\mathbf{A}^{\mathrm{T}} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{\mathrm{T}}$ ranked from largest to smallest. The i-th column of matrix \mathbf{U} is an eigenvector of matrix $\mathbf{A A}^{\mathrm{T}}$ corresponding to the eigenvalue σ_{i}^{2}. The i-th column of matrix \mathbf{V} is an eigenvector of matrix $\mathbf{A}^{\mathbf{T}} \mathbf{A}$, corresponding to eigenvalue $\sigma_{i}{ }^{2}$. This can be seen by multiplying $\mathbf{A}^{\mathrm{T}}=\mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\mathrm{T}}$ from the right and left sides of (15) and applying $\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{I}_{l}$ as follows:

$$
\begin{align*}
& \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{V}=\mathbf{V} \boldsymbol{\Sigma}^{2} \tag{16}\\
& \mathbf{\mathbf { A A } ^ { \mathrm { T } } \mathbf { U } = \mathbf { U } \boldsymbol { \Sigma } ^ { 2 }} \tag{17}
\end{align*}
$$

Condition number of matrix A

If $\sigma_{i}>0, i=1,2, \ldots, l$, the condition number of matrix \mathbf{A} is given by :

$$
\begin{equation*}
\operatorname{cond}(\mathbf{A})=\sigma_{1} / \sigma_{l} \tag{18}
\end{equation*}
$$

Rank of matrix A

If $\sigma_{r}>0$, and $\sigma_{r+1}=\cdots=\sigma_{l}=0$, the rank of \mathbf{A} is r and is given by:

$$
\begin{equation*}
\operatorname{rank}(\mathbf{A})=r \tag{19}
\end{equation*}
$$

Basic solution of homogeneous linear equations $A x=0$ and $A^{T} y=0$
The non-trivial linearly independent solutions of $\mathbf{A x}=\mathbf{0}$ and $\mathbf{A}^{\mathrm{T}} \mathbf{y}=\mathbf{0}$ consist of the columns of \mathbf{V} and \mathbf{U} which correspond to the singular values $\sigma_{i}=0$. These can be easily obtained from equations $\mathbf{A} \mathbf{V}^{\mathrm{T}}=\mathbf{U} \boldsymbol{\Sigma}$ and $\mathbf{A}^{\mathrm{T}} \mathbf{U}=\mathbf{V} \boldsymbol{\Sigma}$.

Least squares minimal norm solution of $A x=b$

The solution \mathbf{x} is represented by using the singular value decomposition of \mathbf{A} as follows:

$$
\begin{equation*}
\mathbf{x}=\mathbf{V} \boldsymbol{\Sigma}^{+} \mathbf{U}^{\mathbf{T}} \mathbf{b} \tag{20}
\end{equation*}
$$

where the diagonal matrix Σ^{+}is defined as:

$$
\begin{gather*}
\Sigma^{+}=\operatorname{diag}\left(\sigma_{1}^{+}, \sigma_{2}^{+}, \cdots, \sigma_{l}^{+}\right) \tag{21}\\
\sigma_{i}^{+}=\left\{\begin{array}{cc}
1 / \sigma_{i}, & \sigma_{i}>0 \\
0, & \sigma_{i}=0
\end{array}\right. \tag{22}
\end{gather*}
$$

Generalized inverse of a matrix

The generalized inverse \mathbf{A}^{+}of \mathbf{A} can be expressed by:

$$
\begin{equation*}
\mathbf{A}^{+}=\mathbf{V} \boldsymbol{\Sigma}^{+} \mathbf{U}^{\mathbf{T}} \tag{23}
\end{equation*}
$$

Comments on use

Systems of linear equations and the rank of coefficient matrices

A least squares minimal norm solution to the system of linear equations ($\mathbf{A x}=\mathbf{b}$) with an $m \times n$ coefficient matrix can be obtained regardless of the number of columns or rows, or ranks of the coefficient matrix \mathbf{A}. That is, the least squares minimal norm solution can be applied to any type of equations. However, obtaining this solution requires a great amount of calculation. If the coefficient matrix is rectangular, $m>n$ and the rank is full (i.e. rank $(\mathbf{A})=n$), the routine for least squares solution should be used instead because it requires less calculation.

Least squares minimal norm solution and generalized inverse

The solution of linear equations $\mathbf{A x}=\mathbf{b}$ with $m \times n$ matrix \mathbf{A} ($m \geq n$ or $m<n, \operatorname{rank}(\mathbf{A}) \neq 0$) is not unique. However, the least squares minimal norm solution always exists uniquely. This solution can be calculated by $\mathbf{x}=\mathbf{A}^{+} \mathbf{b}$ after the generalized inverse \mathbf{A}^{+}of the coefficient matrix \mathbf{A} is obtained. This requires a great amount of calculation. It is advisable to use the routine for the least squares minimal norm solution, for the sake of high speed processing. This routine provides the argument isw by which the user can solve efficiently multiple equations with the same coefficient matrix (see below).

Equations with the identical coefficient matrix

Both the least squares solution and least squares minimal norm solution of a system of linear equations consist of two stages: the decomposition of the coefficient matrices and then obtaining the solution.

When obtaining the least squares solution or least squares minimal norm solution of a number of systems with the identical coefficient matrices, it is not necessary to repeat the decomposition.

$$
\begin{gathered}
\mathbf{A x _ { 1 }}=\mathbf{b}_{1} \\
\mathbf{A x _ { 2 }}=\mathbf{b}_{2} \\
\vdots \\
\mathbf{A x} x_{m}=\mathbf{x}_{m}
\end{gathered}
$$

In this case, a user should decompose the matrix to solve only the first of these systems as this reduces the of number of calculations. C-SSL II provides the argument isw, which can control whether matrix \mathbf{A} is decomposed or not.

Obtaining singular values

The singular values are obtained by singular value decomposition as shown in (24):

$$
\begin{equation*}
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\mathbf{T}} \tag{24}
\end{equation*}
$$

This decomposition requires a great amount of calculation. Some savings can be made since the routine does not need to calculate the matrices \mathbf{U} and \mathbf{V} if they are not required by the user. C-SSL II provides parameter isw to control whether matrices \mathbf{U} or \mathbf{V} should be computed. C-SSL II can handle any type of $m \times n$ matrices ($m>n, m=n, m<n$).

Eigenvalues and eigenvectors

1. Outline

Eigenvalue problems can be organized as show in Table 9 according to the type of problem $(\mathbf{A x}=\lambda \mathbf{x}, \mathbf{A x}=\lambda \mathbf{B x})$ and the shape (dense, band, sparse), type (real, complex), and form (symmetric, nonsymmetric) of the matrices. The reader should refer to the appropriate section specified in the table.

Table 9 Organization of eigenvalue problems

Shape of matrix	Type of problem	Matrix type and form	Driver routines	Explanation section
Dense matrix	$\mathbf{A x}=\lambda \mathbf{x}$	Real matrix	c_deig1	2
		Complex matrix	c_dceig2	3
		Real symmetric matrix	c_dseig1 c_dvseg2 c_dvsevp	4
		Hermitian matrix	c_dheig2 c_dvhevp	5
	$\mathbf{A x}=\lambda \mathbf{B x}$	Real symmetric matrix	c_dvgsg2	9
Band matrix	$\mathbf{A x}=\lambda \mathbf{x}$	Real symmetric band matrix	c_dbseg c_dbsegj	6
	$\mathbf{A x}=\lambda \mathbf{B x}$	Real symmetric band matrix	c_dgbseg	10
Sparse matrix	$\mathbf{A x}=\lambda \mathbf{x}$	Real symmetric matrix	c_dvland	7
Tridiagonal matrix	$\mathbf{A x}=\lambda \mathbf{x}$	Real matrix	c_dvtdev	8
		Real symmetric matrix	c_dteig1 c_dteig2	

The emphasis in this section is on the driver routines that provide all (or a selected subset) of the eigenvalues of a matrix along with the corresponding eigenvectors. For the driver routines that are not based on extended capability routines, there are also associated component routines. The C-interfaces to these component routines often involve matrix transpositions, so that a sequence of calls to component routines is always slower than a single call to the corresponding driver routine.

2. Eigenvalues and eigenvectors of a real matrix

C-SSL II provides the following:

- A driver routine by which all the eigenvalues and eigenvectors of real matrices may be obtained.
- Component routines decomposed by function.

User problems can be classified as follows:

- Obtaining all eigenvalues,
- Obtaining all eigenvalues and eigenvectors,
- Obtaining all eigenvalues and selected eigenvectors.

The use of component routines and driver routines to obtain all eigenvalues and eigenvectors is illustrated by code fragments. The routines required to obtain selected eigenvectors are mentioned.

The user is recommended to use the driver routine when obtaining all the eigenvalues and eigenvectors of a real matrix. This is a robust routine and normally only fails if the matrix is very badly conditioned.

Obtaining just the eigenvalues or obtaining the eigenvectors corresponding to specified eigenvalues can only be done by calling a series of component routines.

Obtaining all eigenvalues

In the following program segment, all eigenvalues of the real matrix \mathbf{A} (stored in array a) are obtained through the use of the component routines shown in steps 1,2 and 3 .

```
ierrr = c_dblnc((double *)a, k, n, dv, &icon); /* step 1 */
ierr = c_dhes1((double *)a, k, n, pv, &icon); /* step 2 */
ierr = c_dhsqr((double *)a, k, n, er, ei, &m, &icon); /* step 3 */
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

1. A is balanced, if balancing is not necessary, this step can be omitted.
2. A is reduced to a Hessenberg matrix using the Householder method.
3. The eigenvalues of \mathbf{A} are obtained by calculating the eigenvalues of the Hessenberg matrix using the double QR method.

Obtaining all eigenvalues and eigenvectors

All eigenvalues and corresponding eigenvectors of real matrix A can be obtained by calling the driver routines as shown below.

```
ierr = c_deig1((double *)a, k, n, mode, er, ei, (double *)ev, vw, &icon);
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

In the driver routine, the eigenvectors are obtained simultaneously by multiplying all the transformation matrices obtained successively. If eigenvalues are tightly clustered or are multiple roots, the eigenvectors can be determined more accurately using this method than by using the inverse iteration method. Inverse iteration is employed in the component routine c_dhvec to obtain the eigenvectors of a Hessenberg matrix, given the Hessenberg matrix and its eigenvalues. This routine can also be used to obtain the eigenvectors of selected eigenvalues of a Hessenberg matrix. These can then be transformed back to the corresponding eigenvectors of the original matrix \mathbf{A} by calling the routine c_dhbk1. For further details and a sample calling program, consult the documentation for C _dhbk1.

Balancing of matrices

Errors in calculating eigenvalues and eigenvectors can be reduced by reducing the norm of real matrix \mathbf{A}. One way to achieve such a reduction is to balance the matrix, whereby the absolute sum of row i and that of column i in \mathbf{A} are made equal by a diagonal similarity transformation. Symmetric matrices and Hermitian matrices are already balanced. The user can control whether the driver routine c_deig1 performs balancing through the mode argument. The component routine c_dblnc may also be used for this purpose.

Since this method is especially effective when magnitudes of elements in A differ greatly, balancing should normally be performed. Except in certain cases (i.e. when the order of \mathbf{A} is small), balancing should not take more than 10% of the total processing time.

3. Eigenvalues and eigenvectors of a complex matrix

C-SSL II provides the following:

- A driver routine by which all eigenvalues and eigenvectors of a complex matrix can be obtained.
- Component routines decomposed by function.

User problems are classified as follows:

- Obtaining all eigenvalues
- Obtaining all eigenvalues and eigenvectors
- Obtaining all eigenvalues and selected eigenvectors

The use of driver routines to obtain all eigenvalues and eigenvectors is illustrated by code fragments. The routines required to obtain selected eigenvectors are mentioned.

The user is recommended to use the driver routine when obtaining all the eigenvalues and eigenvectors of a complex matrix. This is a robust routine and normally only fails if the matrix is very badly conditioned.

Obtaining just the eigenvalues or obtaining the eigenvectors corresponding to specified eigenvalues can only be done by calling a sequence of component routines.

Obtaining all eigenvalues

In the following program segment, all eigenvalues of the complex matrix \mathbf{A} (stored in array $\mathbf{z a}$) are obtained through the use of the component routines shown in steps 1,2 and 3.

```
ierr = c_dcblnc((dcomplex *)za, k, n, dv, &icon); /* step 1 */
ierr = c_dches2((dcomplex *)za, k, n, pv, &icon); /* step 2 */
ierr = c_dchsqr((dcomplex *)za, k, n, ze, &m, &icon); /* step 3 */
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

1. A is balanced, if balancing is not necessary, this step can be omitted.
2. A is reduced to a Hessenberg matrix using the Householder method.
3. The eigenvalues of \mathbf{A} are obtained by calculating the eigenvalues of the complex Hessenberg matrix using the complex QR method.

Obtaining all eigenvalues and eigenvectors

All eigenvalues and corresponding eigenvectors of complex matrix A can be obtained by calling the driver routines as shown below.

```
ierr = c_dceig2((dcomplex *)za, k, n, mode, ze, (dcomplex *)zev, vw, ivw, &icon);
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

In the driver routine, the eigenvectors are obtained simultaneously by multiplying all the transformation matrices obtained successively. If eigenvalues are close roots or multiple roots, the eigenvectors can be determined more accurately using this method than by using the inverse iteration method. Inverse iteration is employed in the component routine c_dchvec to obtain the eigenvectors of a Hessenberg matrix, given the Hessenberg matrix and its eigenvalues. This routine can also be used to obtain the eigenvectors of selected eigenvalues of a Hessenberg matrix. These can then be transformed back to the corresponding eigenvectors of the original matrix \mathbf{A} by calling the routine c_dchbk2. For further details and a sample calling program, consult the documentation for c_dchbk2.

4. Eigenvalues and eigenvectors of a symmetric matrix

C-SSL II provides the followings:

- Driver routines by which all or selected eigenvalues and corresponding eigenvectors of a symmetric matrix may be obtained.
- Component routines decomposed by function.

User problems can be classified as follows:

- Obtaining all eigenvalues,
- Obtaining selected eigenvalues,
- Obtaining all eigenvalues and eigenvectors,
- Obtaining selected eigenvalues and corresponding eigenvectors.

The use of component routines and driver routines to obtain all eigenvalues and eigenvectors is illustrated by code fragments.

The user is recommended to use the driver routines when obtaining all or selected eigenvalues and corresponding eigenvectors of a symmetric matrix. Component routines must be used if only eigenvalues are required.

C-SSL II uses the compressed symmetric matrix storage format to store the associated matrix. (For details, refer to the Array storage formats section of the Introduction).

Obtaining all eigenvalues

All eigenvalues of a symmetric matrix \mathbf{A} can be obtained as shown below in steps 1 and 2 .

```
ierr = c_dtrid1(a, n, d, sd, &icon); /* step 1 */
ierr = c_dtrql(d, sd, n, e, &m, &icon); /* step 2 */
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

1. A is reduced to a tridiagonal matrix using the Householder method. Omit this step if \mathbf{A} is already a tridiagonal matrix.
2. The eigenvalues of \mathbf{A} are obtained by calculating all the eigenvalues of the tridiagonal matrix.

Obtaining selected eigenvalues

The largest (or smallest) m eigenvalues of a symmetric matrix A can be obtained as shown:

```
ierr = c_dtrid1(a, n, d, sd, &icon); /* step 1 */
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); /* step 2 */
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

1. Same as step 1 in the previous "Obtaining all eigenvalues".
2. The largest (or smallest) m (absolute value of argument m) eigenvalues of tridiagonal matrix are obtained using the bisection method. The sign of m controls whether the routine starts from the largest or smallest eigenvalue. If $n / 4$ or more eigenvalues are to be determined, it is faster to use routine c_dtrql to obtain all the eigenvalues.

Obtaining all eigenvalues and eigenvectors

All eigenvalues and eigenvectors of a symmetric matrix \mathbf{A} can be obtained by calling the driver routine as shown below.

```
ierr = c_dseig1(a, n, e, (double *)ev, k, m, vw, &icon);
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

All eigenvalues of the symmetric matrix are computed by transforming the matrix to tridiagonal form and then applying the QL method. The eigenvectors are obtained simultaneously by multiplying each of the transformation matrices obtained by the QL method. Each eigenvector is normalized such that its Euclidean norm is 1.

Obtaining selected eigenvalues and corresponding eigenvectors

Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix A can be obtained by calling the driver routine as shown below.

```
ierr = c_dvseg2(a, n, m, epst, e, (double *)ev, k, vw, ivw, &icon);
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

Selected eigenvalues and corresponding eigenvectors of a tridiagonal matrix are determined using the parallel bisection method and inverse iteration. The obtained eigenvectors are normalized such that each Euclidean norm is 1 .

QL method

The QL method, mentioned above, is basically the same as the QR method. However, the QR method determines eigenvalues from the lower right corner of matrices, while the QL method determines eigenvalues from the upper left. The choice of these methods is based on how the data in the matrix is organized. The QR method is ideal when the magnitude of matrix elements decreases with element index order (from the upper left to lower right). If the magnitude of the matrix elements increases with index order, the QL method is better. Normally, the tridiagonal matrix output by c_dtrid1 has elements that increase with index order and so the QL method is used. This component routine is also called by the two driver routines.

Direct sum of submatrices

When a matrix is a direct sum of submatrices, the processing speed and precision in determining eigenvalues and eigenvectors increases if eigenvalues and eigenvectors are obtained from each of the submatrices. Because of this, a tridiagonal matrix is split into submatrices according to (1), and then the eigenvalues and eigenvectors are determined.

$$
\begin{equation*}
\left|c_{i}\right| \leq \mu\left(\left|b_{i-1}\right|+\left|b_{i}\right|\right) \quad, \quad i=2,3, \ldots, n \tag{1}
\end{equation*}
$$

μ is the unit round off, c_{i}, b_{i} are as shown in Figure 15.

Figure 15 Example in which a tridiagonal matrix is the direct sum of two submatrices

5. Eigenvalues and eigenvectors of a Hermitian matrix

C-SSL II provides the following:

- A driver routine by which all or selected eigenvalues and corresponding eigenvectors of Hermitian matrices may be obtained.
- Component routines decomposed by function.

User problems can be classified as follows:

- Obtaining all eigenvalues.
- Obtaining selected eigenvalues.
- Obtaining all or selected eigenvalues and corresponding eigenvectors.

The use of component routines and driver routines to obtain all eigenvalues and eigenvectors is illustrated by code fragments.

The user is recommended to use the driver routine when obtaining eigenvectors along with all or selected eigenvectors of a Hermitian matrix. This is a robust routine and normally only fails if the matrix is very badly conditioned.

Obtaining just the eigenvalues can only be done by calling a sequence of component routines.

C-SSL II uses a special Hermitian matrix storage format. (For details, refer to the Array storage formats section of the Introduction.)

Obtaining all eigenvalues

All eigenvalues of a Hermitian matrix A can be obtained in steps 1 and 2 below.

```
ierr = c_dtridh((double *)a, k, n, d, sd, v, &icon); /* step 1 */
ierr = c_dtrql(d, sd, n, e, m, &icon);
/* step 2 */
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

1. A Hermitian matrix \mathbf{A} is reduced to a symmetric tridiagonal matrix using the Householder method.
2. All eigenvalues of the symmetric tridiagonal matrix are obtained using the QL method.

Obtaining selected eigenvalues

The largest (or smallest) m eigenvalues of a Hermitian matrix A can be obtained as shown.

```
ierr = c_dtridh((double *)a, k, n, d, sd, v,&icon); /* step 1 */
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); /* step 2 */
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
...
```

1. A Hermitian matrix \mathbf{A} is reduced to a symmetric tridiagonal matrix by the Householder method.
2. The largest (or smallest) m eigenvalues of the symmetric tridiagonal matrix are obtained using the bisection method. If $n / 4$ or more eigenvalues are to be determined, it is faster to use routine $\mathrm{c}_{\mathrm{C}} \mathrm{dtrql}$ to obtain all the eigenvalues.

Obtaining all or selected eigenvalues and corresponding eigenvectors

All or selected eigenvalues and corresponding eigenvectors can be obtained by calling the driver routine as shown below.

```
ierr = c_dheig2((double *)a, k, n, m, e, (double *)evr, (double *)evi, vw, &icon);
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

A Hermitian matrix \mathbf{A} is reduced to a symmetric tridiagonal matrix. Eigenvalues of the symmetric tridiagonal matrix (i.e., eigenvalues of \mathbf{A}) and corresponding eigenvectors are obtained using the QL method. The eigenvectors of the tridiagonal matrix are transformed to the eigenvectors of \mathbf{A}. The fourth argument m indicates that the largest m eigenvalues are to be computed.

6. Eigenvalues and eigenvectors of a symmetric band matrix

Routines c_dbseg, c_dbsegj and c_dbtrid are provided for obtaining eigenvalues and eigenvectors of a real symmetric band matrix.

These routines are suitable for large matrices, for example, matrices of the order $n>100$ and $h / n<1 / 6$, where h is the band-width. Routine c_dbsegj, which uses the Jennings method, is effective for obtaining fewer than $n / 10$ eigenvalues. Obtaining all eigenvalues and eigenvectors of a real symmetric band matrix is not required in most cases and therefore driver routines are provided only to obtain some eigenvalues and corresponding eigenvectors.

Example code fragments that illustrate the use of these routines are given below. C-SSL II handles the symmetric band matrix in a compressed storage format. (for details, refer to the Array storage formats section of the Introduction.)

Obtaining selected eigenvalues

The largest (or smallest) m eigenvalues of a real symmetric band matrix \mathbf{A} of order n and bandwidth h are obtained as shown below.

```
ierr = c_dbseg(a, n, nh, m, 0, epst, e, (double *)ev, k, vw, &icon);
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

The zero value for the fifth argument indicates that no eigenvectors are required.

Obtaining all eigenvalues

All the eigenvalues can be obtained by specifying n as the fourth argument in the example of c _dbseg used to obtain some eigenvalues. However, the following component routines are recommended instead.

```
ierr =c_dbtrid(a, n, nh, d, sd, &icon); /* step 1 */
ierr = c_dtrql(d, sd, n, e, &m, &icon); /* step 2 */
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

1. Real symmetric band matrix \mathbf{A} of order n and bandwidth h is reduced to the real symmetric tridiagonal matrix \mathbf{T} by using the Rutishauser-Schwarz method.
2. All eigenvalues of \mathbf{T} are obtained by using the QL method.

Obtaining selected eigenvalues and corresponding eigenvectors

The two driver routines could be used as shown below.

c_dbseg

```
ierr = c_dbseg(a, n, nh, m, nv, epst, e, (double *)ev, k, vw, &icon);
if (icon >= 20000)'{
    /* output a message, maybe terminate processing */
}
```

The routine c_dbseg obtains the largest (or smallest) eigenvalues by using the Rutishauser-Schwarz method, the bisection method and the inverse iteration method consecutively. In the above example, the number of eigenvalues, m, and the number of eigenvectors, n_{v}, of a real symmetric band matrix \mathbf{A} of order n and bandwidth h are obtained.

c_dbsegj

```
ierr = c_dbsegj(a, n, nh, m, epst, lm, e, (double *)ev, k, &it, vw, &icon);
if (icon >= 20000) {'
    /* output a message, maybe terminate processing */
}
```

The routine c_dbsegj obtains the largest (or smallest) absolute value of eigenvalues and also the eigenvectors by using the Jennings method based on a simultaneous iteration. This routine is only recommended where a relatively small number of eigenvalues and eigenvectors (no more than $n / 10$, where n is the matrix order) are to be obtained. In the example above eigenvectors of \mathbf{A}, are obtained based on the m initial eigenvectors given. At the same time, the corresponding eigenvalues can be also obtained. Care needs to be taken when giving initial eigenvectors in ev and the upper limit for the number of iterations in lm.

Obtaining all eigenvalues and eigenvectors

By specifying n as the fourth and fifth arguments of the routine c _dbseg described above, all eigenvalues and eigenvectors can be obtained.

7. Selected eigenvalues and eigenvectors of a sparse symmetric matrix

The routine c_dvland can be used to obtain the first few largest and/or smallest eigenvalues and corresponding eigenvectors of a sparse symmetric matrix. The matrix must be stored using the diagonal storage format. This routine uses the Lanczos method to obtain the eigenvalues and eigenvectors. This is not a deterministic method and is not as robust as an approach based on tridiagonalization via the Householder method.

The argument list for c_dvland is reasonably complicated and the user is advised to study the corresponding routine documentation carefully. In addition, before using c_dvland, the user should be convinced that more robust alternative routines, such as c_dbseg or c_dbsegj are not appropriate for the matrix in question.

8. Selected eigenvalues and eigenvectors of a tridiagonal matrix

The routine c_dvtdev can be used to obtain selected eigenvalues and corresponding eigenvectors of a nonsymmetric tridiagonal matrix. A Sturm count-based algorithm (see [96] for further details) is used to obtain eigenvalues. Eigenvectors are obtained using inverse iteration. Careful attention is paid to the problem of clustered eigenvalues and obtaining eigenvectors for such clusters.

This is a sophisticated routine and the user is advised to study the corresponding routine documentation carefully. Selected eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix can be obtained by calling c_dteig2.

9. Eigenvalues and eigenvectors of a symmetric generalized eigenproblem

When obtaining eigenvalues and eigenvectors of $\mathbf{A x}=\lambda \mathbf{B x}(\mathbf{A}-$ a symmetric matrix, and $\mathbf{B}-$ a positive definite symmetric matrix), how each C-SSL II subroutine is used is illustrated by code fragments.

The sequence to obtain eigenvalues and eigenvectors of a generalized eigenproblem consists of the following six steps:

1. Reduction of the generalized eigenvalue problem $(\mathbf{A x}=\lambda \mathbf{B x})$ to the standard eigenvalue problem of a real symmetric matrix ($\mathbf{S y}=\lambda \mathbf{y}$)
2. Reduction of the real symmetric matrix \mathbf{S} to a real symmetric tridiagonal matrix $\mathbf{T}\left(\mathbf{S y}=\lambda \mathbf{y} \rightarrow \mathbf{T} \mathbf{y}^{\prime}=\lambda \mathbf{y}^{\prime}\right)$.
3. Obtaining eigenvalue λ of the real symmetric tridiagonal matrix \mathbf{T}.
4. Obtaining eigenvector \mathbf{y}^{\prime} of the real symmetric tridiagonal matrix \mathbf{T}.
5. Back transformation of eigenvector \mathbf{y}^{\prime} of the real symmetric tridiagonal matrix \mathbf{T} to eigenvector \mathbf{y} of the real symmetric matrix \mathbf{S}.
6. Back transformation of eigenvector \mathbf{y} of the real symmetric matrix \mathbf{S} to eigenvector \mathbf{x} of the generalized eigenproblem.

C-SSL II provides component routines corresponding to these steps and a driver routine that performs all the steps in one call.

User generalized eigenproblems can be classified as follows:

- Obtaining all eigenvalues.
- Obtaining selected eigenvalues.
- Obtaining all eigenvalues and eigenvectors.
- Obtaining selected eigenvalues and corresponding eigenvectors.

In the following descriptions, the use of component routines and the driver routine is illustrated by code fragments.
The user is recommended to use the driver routine when obtaining eigenvectors along with all or selected eigenvalues in a generalized eigenproblem.

C-SSL II handles both matrices in a compressed storage format (For details, refer to the Array storage formats section of the Introduction).

Obtaining all eigenvalues

All the eigenvalues can be obtained from the steps 1, 2 and 3 below.

```
ierr = c_dgschl(a, b, n, epsz, &icon); /* step 1*/
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
ierr = c_dtrid1(a, n, d, sd, &icon); /* step 2*/
ierr = c_dtrql(d, sd, n, e, m, &icon); /* step 3*/
```

1. The generalized eigenproblem $(\mathbf{A x}=\lambda \mathbf{B} \mathbf{x})$ is reduced to the standard eigenproblem $(\mathbf{S y}=\lambda \mathbf{y})$
2. The real symmetric matrix \mathbf{S} is reduced to a real symmetric tridiagonal matrix using the Householder method.
3. All the eigenvalues of the real symmetric tridiagonal matrix are obtained using the QL method.

Obtaining selected eigenvalues

From the following steps 1,2 and 3 , the largest (or smallest) m number of eigenvalues can be obtained.

```
ierr= c_dgschl(a, b, n, epsz, &icon); /* step 1*/
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
ierr = c_dtrid1(a, n, d, sd, &icon); /* step 2*/
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, &icon); /* step 3*/
```

1. Same as step 1 in Obtaining all eigenvalues.
2. Same as step 2 in Obtaining all eigenvalues.
3. The largest (or smallest) m eigenvalues of the real symmetric tridiagonal matrix are obtained using the bisection method.

When obtaining more than $n / 4$ eigenvalues of an order n matrix \mathbf{A}, it is generally faster to use the example shown in Obtaining all eigenvalues.

Obtaining all eigenvalues and eigenvectors

All of the eigenvalues and eigenvectors of a generalized eigenproblem can be obtained using the driver routine as shown below:

```
ierrr = c_dvgsg2(a, b, n, n, epsz, epst, e, (double *)ev, k, vw, &icon);
if (icon >= 20000) {'
```

```
    /* output a message, maybe terminate processing */
}
```

The driver routine \mathbf{c} _dvgsg2 performs all the necessary steps through a single call. In this case, the fourth argument n of c_dvgsg2 indicates that all n eigenvalues are to be obtained.

Obtaining selected eigenvalues and corresponding eigenvectors

The simplest way in which to obtain selected eigenvalues and corresponding eigenvectors is to use the driver routine as shown below.

```
ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, (double *)ev, k, vw, &icon);
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

The argument m specifies that the m largest (or smallest) eigenvalues are to be computed.

10. Eigenvalues and eigenvectors of a symmetric band generalized eigenproblem

C-SSL II provides the driver routine $\mathbf{C} _$dgbseg to obtain eigenvalues and eigenvectors of $\mathbf{A x}=\lambda \mathbf{B x}(\mathbf{A}-$ a symmetric band matrix and \mathbf{B} - a positive definite symmetric band matrix). This is used for large matrices of order n with $h / n<1 / 6$, where h is the bandwidth. This routine uses the Jennings method so it is most appropriate when obtaining fewer than $n / 10$ eigenvalues and eigenvectors. Since this routine uses simultaneous iteration to obtain the specified m eigenvalues and eigenvectors, if it terminates abnormally, no eigenvalues or eigenvectors will be returned.

An illustration of the use of this routine is shown below.

C-SSL II handles the real symmetric band matrix in a compressed storage format, (for details, refer to the Array storage formats section of the Introduction).

Obtaining selected eigenvalues and eigenvectors

```
ierr = c_dgbseg(a, b, n, nh, m, epsz, epst, lm, e, (double *)ev, k, &it, vw, &icon);
if (icon >= 20000) {
    /* output a message, maybe terminate processing */
}
```

The eigenvalues and eigenvectors are obtained by using the Jennings simultaneous iteration method. Argument m is used to specify that the largest (or smallest) m number of eigenvalues and eigenvectors are to be obtained.

Nonlinear equations

1. Outline

This section is concerned with finding roots of polynomial equations, transcendental equations and systems of nonlinear equations (simultaneous nonlinear equations).

2. Polynomial equations

The routines shown in Table 10 are used for these types of problems.
When solving real polynomial equations of fifth degree or lower, c_dlowp can be used. When solving only quadratic equations, c_drqdr should be used.

General conventions and comments concerning polynomial equations

The general form for a polynomial equation is

$$
\begin{equation*}
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0, \quad\left|a_{0}\right| \neq 0 \tag{1}
\end{equation*}
$$

where $a_{i}(i=0,1 \ldots n)$ is real or complex.

If a_{i} is real, (1) is called a real polynomial equation. If a_{i} is complex, (1) is called a complex polynomial equation, and z is used in place of x.

Unless specified otherwise, routines which solve polynomial equations try to obtain all of the roots. Methods and their use are covered in this section.

Algebraic and iterative methods are available for solving polynomial equations. Algebraic methods use the formulas to obtain the roots of equations whose degree is four or less. Iterative methods may be used for equations of any degree. In iterative methods, an approximate solution has been obtained. For most iterative methods, roots are determined one at a time; after a particular root has been obtained, it is eliminated from the equation to create a lower degree equation, and the next root is determined.

Neither algebraic methods nor iterative methods are "better" since each has merits and drawbacks.

Demerits of algebraic methods

Underflow or overflow situations can develop during the calculations process when there are extremely large variations in size among the coefficients of (1).

Demerits of iterative methods

Choosing an appropriate initial approximation presents problems. If initial values are incorrectly chosen, convergence may not occur no matter how many iterations are done, so if there is no convergence, it is assumed that the wrong initial value was chosen. It is possible that some roots can be determined while others cannot. Convergence must be checked for at each iteration, which increases the computation required.

Table 10 Polynomial equation routines

Objective	Routine name	Method	Notes
Real quadratic equations	c_drqdr	Root formula	
Complex quadratic equations	c_dcqdr	Root formula	
Real low degree equations	c_dlowp	Algebraic method and iterative method are used together.	Fifth degree or lower
Real high degree polynomial equations	c_drjetr	Jenkins-Traub method	
Complex high degree polynomial equations	c_dcjart	Jaratt method	

In order to avoid the demerits of algebraic methods, C-SSL II uses iterative methods except when solving quadratic equations. The convergence criterion method in C-SSL II is described in this section.

When iteratively solving a polynomial equation:

$$
f(x) \equiv \sum_{k=0}^{n} a_{k} x^{n-k}=0
$$

if the calculated value of $f(x)$ is within the range of calculation error, it is meaningless to make the value any smaller. Let the upper limit for calculation errors when evaluating $f(x)$ be $\varepsilon(x)$, then

$$
\begin{equation*}
|\varepsilon(x)|=\mu \sum_{k=0}^{n}\left|a_{k} x^{n-k}\right| \tag{2}
\end{equation*}
$$

where μ is the round-off unit.

Thus, when x satisfies

$$
\begin{equation*}
|f(x)| \leq|\varepsilon(x)| \tag{3}
\end{equation*}
$$

there is no way to determine if x is the actual root.

Therefore, when

$$
\begin{equation*}
\left|\sum_{k=0}^{n} a_{k} x^{n-k}\right| \leq \mu \sum_{k=0}^{n}\left|a_{k} x^{n-k}\right| \tag{4}
\end{equation*}
$$

is satisfied, convergence is judged to have occurred, and the solution is used as one of the roots.

With both algebraic and iterative methods, when calculating with a fixed number of digits, it is possible for certain roots to be determined to a higher accuracy than others.

Generally, multiple roots and neighboring roots tend to be less accurate than the other roots. If neighbouring roots are among the solutions of an algebraic equation, the user can assume that those roots are not as precise as the rest.

3. Transcendental equations

A transcendental equation can be represented as

$$
\begin{equation*}
f(\mathrm{x})=0 \tag{5}
\end{equation*}
$$

If $f(x)$ is a real function, the equation is called a real transcendental equation. If $f(x)$ is a complex function, the equation is called a complex transcendental equation, and z is used in place of x.

The objective of routines which solve transcendental equations is to obtain only one root of $f(x)$ within a specified range or near a specified point.

Table 11 lists routines used for transcendental equations.

Iterative methods are used to solve transcendental equations. The speed of convergence in these methods depends mainly on how narrow the specified range is or how close a root is to the specified point. Since the method used for determining convergence differs among the various routines, the descriptions of each should be studied.

Table 11 Transcendental equation routines

Objective	Routine name	Method	Notes
Real transcendental equation	c_dtsd1	Bisection method, linear interpolation method and inverse second order interpolation method are all used.	Derivatives are not needed.
	c_dtsdm	Muller's method	No derivatives needed. Initial values specified.
Zeros of a complex function	c_dctsdm	Muller's method	No derivatives needed. Initial values specified.

4. Nonlinear simultaneous equations

Nonlinear simultaneous equations are given as:

$$
\begin{equation*}
\mathbf{f}(\mathbf{x})=\mathbf{0} \tag{6}
\end{equation*}
$$

where $\mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{\mathrm{n}}(\mathbf{x})\right)^{\mathrm{T}}$ and $\mathbf{0}$ is an n-dimensional zero vector. Nonlinear simultaneous equations are solved by iterative methods in which the user must gives an initial vector \mathbf{x}_{0} and it is improved repeatedly until the final solution for (6) is obtained within a required accuracy.

Table 12 Nonlinear simultaneous equation routine

Objective	Routine name	Method	Notes
Non-linear simultaneous equations	C_dnolbr	Brent's method	Derivatives are not needed.

Table 12 lists the routine used for nonlinear simultaneous equations. The best known method among iterative methods is Newton method, expressed as:

$$
\begin{equation*}
\mathbf{x}_{i+1}=\mathbf{x}_{i}-\mathbf{J}_{i}^{-1} \mathbf{f}\left(\mathbf{x}_{i}\right), i=0,1, . . \tag{7}
\end{equation*}
$$

where \mathbf{J}_{i} is the Jacobian matrix of $\mathbf{f}(\mathbf{x})$ for $\mathbf{x}=\mathbf{x}_{i}$, which means:

$$
\mathbf{J}_{\boldsymbol{i}}=\left[\begin{array}{llll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \tag{8}\\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]_{\mathbf{x}=\mathbf{x}_{\boldsymbol{i}}}
$$

The Newton method is theoretically ideal - its order of convergence is quadratic and calculations are simple. However, this method develops several calculation problems when it manipulates complex (or larger) systems of nonlinear equations. The major reasons are:

- It is often difficult to obtain the coefficients $\partial f_{i} / \partial x_{i}$ in (8), (i.e., partial derivatives cannot be calculated because of the complexity of the equations).
- The number of calculations for all elements in (8) is too large.
- Since a system of linear equations with coefficient matrix \mathbf{J}_{i} must be solved on each iteration, calculation time is long.

If the above problems are solved and the order of convergence is kept quadratic, this method provides short processing time as well as ease of handling.

The following are examples of the above problems and their solutions. To address the first problem, $\partial f_{i} l \partial x_{i}$ can be approximated by differences, i.e. by selecting an appropriate value for h, we can obtain:

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial x_{j}} \approx \frac{f_{i}\left(x_{1}, \cdots, x_{j}+h, \cdots, x_{n}\right)-f_{i}\left(x_{1}, \cdots, x_{n}\right)}{h} \tag{9}
\end{equation*}
$$

For the second and third problems, instead of directly calculating the Jacobian matrix, a pseudo Jacobian matrix (which need not calculate all the elements) is used to solve the simultaneous equations. All of the above means are adopted in SSL II. Several notes on the use of the C-SSL II routine for nonlinear simultaneous equations follows.

The user must provide the routine to evaluate $\mathbf{f}(\mathbf{x})$ for an arbitrary \mathbf{x}. The following points should be taken into consideration in order to use the routines effectively and to obtain an accurate solution.

- Loss of accuracy should be avoided in calculating functions. This is especially important because functions values are used to approximate derivatives.
- The magnitude of elements such as those of variable vector \mathbf{x} or of function vector $\mathbf{f}(\mathbf{x})$ should be balanced. If unbalanced, the larger elements often mask the smaller elements during calculations. The C-SSL II routine checks the variance in the largest element to detect convergence. In addition, the accuracy of a solution vector depends upon the tolerance given by the user. Generally, the smaller the tolerance for convergence, the higher the accuracy for the solution vector. However, because of the round-off errors, there is a limit to the accuracy improvement.
- The next problem is how to select the initial value \mathbf{x}_{0}. It should be selected by the user depending upon the characteristics of the problem to be solved with the equations. If such information is not available, the user may use a method of 'trial and error' by arbitrarily selecting the initial value and repeating calculations until a final solution is obtained.

Extrema

1. Outline

The following problems are considered in this section:

- Unconstrained minimization of a single variable function,
- Unconstrained minimization of a multivariable function,
- Unconstrained nonlinear least squares,
- Linear programming,
- Nonlinear programming (Constrained minimization of multivariable function).

2. Minimization of a single variable function

Given a single variable function $f(x)$, the local minimum point x^{*} and the function value $f\left(x^{*}\right)$ are obtained in interval $[a, b]$.

Routines

Table 13 gives the applicable routines, depending on whether the user can define a derivative $g(x)$ analytically in addition to the function $f(x)$.

Table 13 Routines for unconstrained minimization of a single variable function

Analytical definition	Routine name	Notes
$f(x)$	c_dlminf	Quadratic interpolation
$f(x), g(x)$	c_dlming	Cubic interpolation

Comments on the interval $[a, b]$

In the C-SSL II, only one minimum point of $f(x)$ is obtained within the error tolerance. It is assumed that $f(x)$ is unimodal over the interval $[a, b]$. If there are several minimum points in interval $[a, b]$, the minimum point to which the resultant value converges is not guaranteed to be the global minimum over $[a, b]$.

This means that it is desirable to specify values for the end points a and b of an interval that are near to and bracket x^{*}.

3. Unconstrained minimization of multivariable function

Given a real function $f(\mathbf{x})$ of n variables and an initial vector \mathbf{x}_{0}, the vector (local minimum) \mathbf{x}^{*} which minimizes the function $f(\mathbf{x})$ is obtained together with its function value $f\left(\mathbf{x}^{*}\right)$, where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}\right)^{\mathrm{T}}$.

Starting from \mathbf{x}_{0}, a sequence of iteration vectors, \mathbf{x}_{k}, is defined such that $f\left(\mathbf{x}_{k+1}\right)<f\left(\mathbf{x}_{k}\right), k=0,1, \ldots$. Iteration continues until $\left\|\mathbf{x}_{\boldsymbol{k}+\boldsymbol{1}}-\mathbf{x}_{\boldsymbol{k}}\right\|_{\infty}$ falls below a threshold value or no further minimization is possible.

Normally, the iteration vector is modified based on the direction in which the function $f(\mathbf{x})$ decreases in the region of \mathbf{x}_{k} by using not only the value of $f(\mathbf{x})$ but also the gradient vector \mathbf{g} and the Hessian matrix \mathbf{B} as defined in (1).

$$
\begin{align*}
& \mathbf{g}=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right)^{\mathrm{T}} \tag{1}\\
& \mathbf{B}=\left(b_{i j}\right), b_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}
\end{align*}
$$

Formula based on Newton method

If the function $f(\mathbf{x})$ is quadratic and is concave, the global minimum point \mathbf{x}^{*} can be obtained theoretically within at most n iterations by using the Newton iterative formula.

A function can be expressed approximately as a quadratic in the region of the local minimum point \mathbf{x}^{*} as shown in (2).

$$
\begin{equation*}
f(x) \approx f\left(x^{*}\right)+\frac{1}{2}\left(x-x^{*}\right)^{\mathrm{T}} \mathbf{B}\left(x-x^{*}\right) \tag{2}
\end{equation*}
$$

Therefore, if the Hessian matrix \mathbf{B} is positive definite, an iterative formula based on Newton's method applied to the quadratic function shown in (2) will be a good iterative formula for any function in general. Now let \mathbf{g}_{k} be a gradient vector at an arbitrary point \mathbf{x}_{k} in the region of the local minimum point \mathbf{x}^{*}, then the basic iterative formula of Newton's method is obtained from (2) as shown in (3).

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\mathbf{B}^{-1} \mathbf{g}_{k} \tag{3}
\end{equation*}
$$

The C-SSL II includes routines that implement two types of iterative formulae based on (3).

Revised quasi-Newton method

The underlying iterative formula is given in (4).

$$
\begin{align*}
& \mathbf{B}_{k} \mathbf{p}_{k}=-\mathbf{g}_{k} \\
& \mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \tag{4}\\
& \mathbf{B}_{k+1}=\mathbf{B}_{k}+\mathbf{E}_{k}
\end{align*}
$$

Where \mathbf{B}_{k} is an approximate matrix to the Hessian matrix and is improved by the rank two matrix \mathbf{E}_{k} during the iteration process, \mathbf{p}_{k} is a search vector that defines the direction in which the function value decreases locally and α_{k} is a constant by which $f\left(\mathbf{x}_{k+1}\right)$ is locally minimized (linear search).

The formula in (4) can be used when the Hessian matrix cannot be defined analytically.

Quasi-Newton method

The underlying iterative formula is given in (5).

$$
\begin{align*}
& \mathbf{p}_{k}=-\mathbf{H}_{k} \mathbf{g}_{k} \\
& \mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \tag{5}\\
& \mathbf{H}_{k+1}=\mathbf{H}_{k}+\mathbf{F}_{k}
\end{align*}
$$

Where \mathbf{H}_{k} is an approximation to the inverse matrix of the Hessian matrix \mathbf{B}^{-1} and is improved by the rank 2 matrix \mathbf{F}_{k} during the iterative process, \mathbf{p}_{k} is a search vector that defines the direction in which the function value decreases locally and α_{k} is a constant by which $f\left(\mathbf{x}_{k+1}\right)$ is locally minimized (linear search).

Routines

The relevant C-SSL II routines are shown in Table 14. The routines differ by whether or not the user must analytically define a gradient vector \mathbf{g} in addition to the function $f(\mathbf{x})$.

Table 14 Routines for unconstrained minimization of a function with several variables

Analytical definition	Routine name	Notes
$f(\mathbf{x})$	C_dminf1	Revised quasi- Newton method
$f(\mathbf{x}), g(\mathbf{x})$	C_dming1	Quasi-Newton method

Comments on use

Giving an initial vector $\mathrm{x}_{\mathbf{0}}$

Choose the initial vector \mathbf{x}_{0} as close to the expected local minimum \mathbf{x}^{*} as possible. When the function $f(\mathbf{x})$ has more than one local minimum point, if the initial vector is not given appropriately, the method used may not converge to the expected minimum point \mathbf{x}^{*}.

User defined functions calculation

Efficient coding of the user defined functions to calculate the function $f(\mathbf{x})$ and the gradient vector $\mathbf{g}(\mathbf{x})$ is important. The number of evaluations for each function made by the C-SSL II routine depends on the method used and its initial vector. In C_dminf1, the gradient vector \mathbf{g} is usually approximated by differences. Therefore the effect of round-off errors should also be considered. Consistent with the assumption that $f(\mathbf{x})$ can be locally approximated by a quadratic function, as shown in (6), it is assumed that if \mathbf{x} is changed by ε, then the function $f(\mathbf{x})$ changes by ε^{2}. If possible, the function should be scaled consistent with this assumption.

$$
\begin{equation*}
f\left(\mathbf{x}^{*}+\delta \mathbf{x}\right) \approx f\left(\mathbf{x}^{*}\right)+\frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} \boldsymbol{B} \delta \mathbf{x} \tag{6}
\end{equation*}
$$

Convergence criterion and accuracy of minimum value $f\left(\mathbf{x}^{*}\right)$

In an algorithm for minimization, the gradient vector $\mathbf{g}\left(\mathbf{x}^{*}\right)$ of the function $f(\mathbf{x})$ at the local minimum point \mathbf{x}^{*} is assumed to satisfy $\mathbf{g}\left(\mathbf{x}^{*}\right)=\mathbf{0}$, that is, the iterative formula approximates the function $f(\mathbf{x})$ as a quadratic function in the region of the local minimum point \mathbf{x}^{*}. In the C-SSL II, given a convergence criterion ε, if

$$
\begin{equation*}
\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|_{\infty} \leq \max \left(1.0,\left\|\mathbf{x}_{k}\right\|_{\infty}\right) \cdot \varepsilon \tag{7}
\end{equation*}
$$

is satisfied for the iteration vector $\mathbf{x}_{\mathbf{k}}$, then $\mathbf{x}_{\mathbf{k}+\mathbf{1}}$ is taken as the local minimum point \mathbf{x}^{*}. Therefore, if the minimum value $f\left(\mathbf{x}^{*}\right)$ is to be obtained as accurately as the rounding error, an appropriate convergence criterion ε is $\varepsilon=\mu^{1 / 2}$ where μ is the unit round off. The C-SSL II uses $2 \mu^{1 / 2}$ as a default convergence criterion.

4. Unconstrained nonlinear least squares

Given m real functions $\mathrm{f}_{1}(\mathbf{x}), \mathrm{f}_{2}(\mathbf{x}), \ldots, \mathrm{f}_{\mathrm{m}}(\mathbf{x})$ of n variables and an initial vector \mathbf{x}_{0}, the vector (local minimum) \mathbf{x}^{*} which minimizes

$$
F(\boldsymbol{x})=\sum_{i=1}^{m}\left\{f_{i}(\boldsymbol{x})\right\}^{2}
$$

is obtained together with its function value $F\left(\mathbf{x}^{*}\right)$, where, $\mathbf{x}=\left(x_{1}, x_{2}, \ldots x_{n}\right)^{\mathrm{T}}$ and $m \geq n$.
If all the functions $f_{i}(\mathbf{x})$ are linear, it is a linear least squares solution problem. For detailed information on its solution, refer to the Linear Algebra section, or routine documentation, for example routine c_dlaxl. If all the functions $f_{i}(\mathbf{x})$ are nonlinear, the routines explained in this section may be used. When the approximate vector $\mathbf{x}_{\mathbf{k}}$ of \mathbf{x}^{*} is varied by $\Delta \mathbf{x}, F\left(\mathbf{x}_{\mathbf{k}}\right.$ $+\Delta \mathbf{x}$) is approximated as shown in (8).

$$
\begin{align*}
& F\left(\mathbf{x}_{k}+\Delta \mathbf{x}_{k}\right)=\mathbf{f}^{\mathrm{T}}\left(\mathbf{x}_{k}+\Delta \mathbf{x}_{k}\right) \mathbf{f}\left(\mathbf{x}_{k}+\Delta \mathbf{x}_{k}\right) \\
& \approx \mathbf{f}^{\mathrm{T}}\left(\mathbf{x}_{k}\right) \mathbf{f}\left(\mathbf{x}_{k}\right)+2 \mathbf{f}^{\mathrm{T}}\left(\mathbf{x}_{k}\right) \mathbf{J}_{k} \Delta \mathbf{x}_{k} \tag{8}\\
& +\Delta \mathbf{x}_{k}^{\mathrm{T}} \mathbf{J}_{k}{ }^{\mathrm{T}} \mathbf{J}_{k} \Delta \mathbf{x}_{k}
\end{align*}
$$

Where $\left|F\left(\mathbf{x}_{k}\right)\right|$ is assumed to be sufficiently small, $\mathbf{f}(\mathbf{x})=\left(f_{l}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)^{\mathrm{T}}$ and \mathbf{J}_{k} is a Jacobian matrix of $\mathbf{f}(\mathbf{x})$ at vector \mathbf{x}_{k}.
$\Delta \mathbf{x}_{\mathbf{k}}$ which minimize this $\mathbf{F}\left(\mathbf{x}_{\mathbf{k}}+\Delta \mathbf{x}_{\mathbf{k}}\right)$ can be obtained as the solution of the system of linear equations (9) derived by differentiating the right side of (8).

$$
\begin{equation*}
\mathbf{J}_{k}{ }^{\boldsymbol{T}} \mathbf{J}_{k} \Delta \mathbf{x}_{k}=-\mathbf{J}_{k}^{\mathrm{T}} \mathbf{f}\left(\mathbf{x}_{k}\right) \tag{9}
\end{equation*}
$$

The equations shown in (9) are called the normal equations. The iterative method based on the $\Delta \mathbf{x}_{k}$ is called the NewtonGauss method. In the Newton-Gauss method function value $F(\mathbf{x})$ decrease along direction $\Delta \mathbf{x}_{k}$, however, $\Delta \mathbf{x}_{k}$ itself may diverge.

The gradient vector $\nabla F\left(\mathbf{x}_{k}\right)$ at \mathbf{x}_{k} of $F(\mathbf{x})$ is given by

$$
\begin{equation*}
\nabla F\left(\mathbf{x}_{k}\right)=2 \mathbf{J}_{k}^{\mathrm{T}} \mathbf{f}\left(\mathbf{x}_{k}\right) \tag{10}
\end{equation*}
$$

$-\nabla F\left(x_{k}\right)$ is the steepest descent direction of $F(\mathbf{x})$ at \mathbf{x}_{k}.

The following is the method of steepest descent.

$$
\begin{equation*}
\Delta \mathbf{x}_{k}=-\nabla F\left(\mathbf{x}_{k}\right) \tag{11}
\end{equation*}
$$

$\Delta \mathbf{x}_{k}$ guarantees the reduction of $F(\mathbf{x})$. However the iteration proceeds in a zigzag fashion to the minimum value.

Formula based on the Levenberg-Marquardt method

Levenberg, Marquardt, and Morrison proposed to determine $\Delta \mathbf{x}_{k}$ by combining the ideas of the methods of Newton-Gauss and steepest descent as shown in (12).

$$
\begin{equation*}
\left\{\mathbf{J}_{k}^{\mathrm{T}} \mathbf{J}_{k}+v_{k}^{2} \mathbf{I}\right\} \Delta \mathbf{x}_{k}=-\mathbf{J}_{k}^{\mathrm{T}} \mathbf{f}\left(\mathbf{x}_{k}\right) \tag{12}
\end{equation*}
$$

where v_{k} is a positive integer (called Marquardt number).
$\Delta \mathbf{x}_{k}$ obtained in (12) depends on the value of v_{k} that is, the direction of $\Delta \mathbf{x}_{k}$ is that of the Newton-gauss method if $v_{k} \rightarrow 0$; if $v_{k} \rightarrow \infty$ it is that of steepest descent.

C-SSL II uses an iterative formula based on (12). It does not directly solve the equation in (12) but it obtains the solution of the following equation, which is equivalent to (12), by the least squares method (Householder method) to maintain numerical stability.

$$
\left[\begin{array}{c}
\mathbf{J}_{k} \tag{13}\\
\cdots \\
v_{k} \mathbf{I}
\end{array}\right] \Delta \mathbf{x}_{k}=-\left[\begin{array}{c}
\mathbf{f}\left(\mathbf{x}_{k}\right) \\
\cdots \\
\mathbf{0}
\end{array}\right]
$$

The value v_{k} is determined adaptively during iteration.

Routines

The routines provided are shown in Table 15. They differ depending on whether or not the user can analytically define a Jacobian matrix \mathbf{J} in addition to the functions $f_{l}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})$.

Table 15 Routines for unconstrained nonlinear least squares

Analytical definition	Routine name	Notes
$f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})$	c_dnolf1	Revised Marquardt Method
$f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x}), \mathbf{J}$	c_dnolg1	Revised Marquardt Method

Comments on use

Giving an initial vector $\mathbf{x}_{\mathbf{0}}$

Choose the initial vector $\mathbf{x}_{\mathbf{0}}$ as close to the expected local minimum point \mathbf{x}^{*} as possible. When the function $F(\mathbf{x})$ has more than one local minimum point, if the initial vector is not given appropriately, the method used may not converge to the expected minimum point \mathbf{x}^{*}.

Function calculation program

Efficient coding of the function programs to calculate the function $\left\{f_{i}(\mathbf{x})\right\}$ value of Jacobian matrix \mathbf{J} is important. The number of evaluations for each function made by the C-SSL II routine depends on the method used or its initial vector. In general, the evaluation of user functions takes the majority of the total processing and has an effect on the efficiency.

In C_dnolf1, the Jacobian matrix, \mathbf{J}, is approximated by using differences. Therefore, an efficient coding to reduce the effect of round-off errors should also be considered.

Convergence criterion and accuracy of minimum value $\boldsymbol{F}\left(\mathrm{x}^{*}\right)$

In an algorithm for minimization, $\boldsymbol{F}(\mathbf{x})$ at the local minimum point \mathbf{x}^{*} is assumed to satisfy

$$
\begin{equation*}
\nabla F\left(\mathbf{x}^{*}\right)=2 \mathbf{J}^{\mathrm{T}} \mathbf{f}\left(\mathbf{x}^{*}\right)=0 \tag{14}
\end{equation*}
$$

that is, the iterative formula approximates the function $\boldsymbol{F}(\mathbf{x})$ as a quadratic function in the region of the local minimum point \mathbf{x}^{*} as follows:

$$
\begin{equation*}
F\left(\mathbf{x}^{*}+\delta \mathbf{x}\right) \approx F\left(\mathbf{x}^{*}\right)+\delta \mathbf{x}^{\mathrm{T}} \mathbf{J}^{\mathrm{T}} \mathbf{J} \delta \mathbf{x} \tag{15}
\end{equation*}
$$

Equation (15) indicates that when $\boldsymbol{F}(\mathbf{x})$ is scaled appropriately, if \mathbf{x} is changed by ε, function $\boldsymbol{F}(\mathbf{x})$ changes by ε^{2}.

In C-SSL II, if

$$
\begin{align*}
& F\left(\mathbf{x}_{k+1}\right)<F\left(\mathbf{x}_{k}\right) \\
& \left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|_{2} \leq \max \left(1.0,\left\|\mathbf{x}_{k}\right\|_{2}\right) \cdot \varepsilon \tag{16}
\end{align*}
$$

is satisfied for the iteration vector \mathbf{x}_{k}, then \mathbf{x}_{k+l} is taken as the local minimum point \mathbf{x}^{*}, where ε is a convergence criterion. If the minimum value $F(\mathbf{x})$ is to be obtained as accurately as the rounding-error, the convergence criterion should be given as $\varepsilon \approx \mu^{1 / 2}$ where, μ is the unit round-off.

The C-SSL II uses $2 \cdot \mu^{1 / 2}$ as a default convergence criterion.

5. Linear programming

Linear programming is used to obtain:

- The value of a variable to minimize (or maximize) a linear function
- The minimum (or maximum) value of a linear function under the constrained conditions represented by the combination of several related linear inequalities and equalities.

The following is a standard linear programming problem:

Minimize the linear objective function:

$$
z=\mathbf{c}^{\mathrm{T}} \mathbf{x}+c_{0}
$$

subject to

$$
\begin{gather*}
\mathbf{A x}=\mathbf{d} \tag{17}\\
\mathbf{x} \geq \mathbf{0} \tag{18}
\end{gather*}
$$

where, \mathbf{A} is an $m \times n$ coefficient matrix with $\operatorname{rank}(\mathbf{A})=m \leq n$ and
where, $\quad \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ is a variable vector,
$\mathbf{d}=\left(d_{l}, d_{2}, \ldots, d_{m}\right)^{\mathrm{T}}$ is a constant vector,
$\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{\mathrm{T}}$ is a coefficient vector and
c_{0} is a constant term.

Let \mathbf{a}_{j} be the j-th column of \mathbf{A}. If m columns of $\mathbf{A}, \mathbf{a}_{k_{1}}, \mathbf{a}_{k_{2}}, \ldots, \mathbf{a}_{k_{m}}$, are linearly independent, a group of the corresponding variables $\left(x_{k_{1}}, x_{k_{2}}, \ldots, x_{k_{m}}\right)$ are called bases. $x_{k_{i}}(i$-th corresponding variable) is called a basic variable. A basic solution in (17) is obtained by setting all the values of non-basic variables to zeros. A basic solution that additionally satisfies (18) is termed a basic feasible solution. Furthermore, the optimal solution that satisfies the constraints and minimizes the value of the objective function can be found over the basic feasible solutions (fundamental theorem of linear programming).

Simplex method

Given a basic feasible solution, the simplex method provides a means of changing basic variables one by one, always maintaining a basic feasible solution, to obtain the optimal solution value (if one exists).

Revised simplex method

Using the iterative calculation of the simplex method, coefficients and constant terms required for determining the basic variables to be changed are calculated using the matrix inversion of the basic matrix, $\mathbf{B}=\left[\mathbf{a}_{k_{l}}, \mathbf{a}_{k_{2}}, \ldots, \mathbf{a}_{k_{m}}\right]$, the original coefficient \mathbf{A}, \mathbf{c}, and constant term \mathbf{d}.

The C-SSL II routine c_dlprs1 uses this revised simplex method. If the constrained condition contains inequalities, the routine defines additional variables to change these into equalities.

For example,

$$
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq d_{1}
$$

is changed into

$$
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}+x_{n+1}=d_{1} \text { where } x_{n+1} \geq 0
$$

and

$$
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \geq d_{2}
$$

is changed into

$$
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}-x_{n+2}=d_{2}, x_{n+2} \geq 0
$$

- Non-negative variables such as x_{n+1} or x_{n+2} that are added to change an inequality into an equality constraint are called slack variables.
- Maximization can be performed by multiplying the objective function by -1 and minimizing instead.

If the user is not able to provide a basic feasible solution, the linear programming can be performed in two stages:

- At the first stage, obtain the basic feasible solution
- At the second stage, obtain the optimal solution

An example is shown below. At the first stage the optimal solution is obtained.

Minimize $z_{1}=\sum_{i=1}^{m} x_{i}^{(a)}$
subject to:

$$
\begin{gathered}
\mathbf{A x}+\mathbf{A}^{(a)} \mathbf{x}^{(a)}=\mathbf{d}, \\
\mathbf{x} \geq \mathbf{0}, \mathbf{x}^{(a)} \geq \mathbf{0}
\end{gathered}
$$

where $\quad \mathbf{x}^{(a)}=\left(x_{1}{ }^{(a)}, x_{2}{ }^{(a)}, \ldots, x_{m}{ }^{(a)}\right)^{\mathrm{T}}, \mathbf{A}^{(a)}$ is an m-order diagonal matrix of $\mathbf{A}^{(a)}=\left(a_{i i}^{(a)}\right)$ where $a_{i i}^{(a)}=1$ when $d_{i} \geq 0$ and $a_{i i}^{(a)}$ $=-1$ when $d_{i}<0$
$x_{i}^{(2)}$ is called an artificial variable. When the optimal solution is obtained, if z_{1} is larger than zero $\left(z_{1}>0\right)$, no \mathbf{x} will satisfy the conditions in (17) and (18).

If z_{1} is zero then $\mathbf{x}^{(a)}=\mathbf{0}$ so that a basic feasible solution of the original problem has been obtained. The second stage can be proceeded to. But if $\operatorname{rank}(\mathbf{A})<m$ and there is an \mathbf{x} which satisfies the equation in (17), ($m-r$) of the conditional equations are useless. (If $r=\operatorname{rank}(\mathbf{A})$ of the conditional equations are satisfied, the others equations will necessarily hold).

The optimal solution obtained at the first stage results in a basic feasible solution for a rank-reduced problem. The routine will return and processing will be stopped. The user can examine which indices were used in this reduced problem and possibly redefine the original problem and call c_dlprs1 with a suitably redefined set of input arguments (a smaller value of m, a smaller matrix \mathbf{A}, the indices of a basic feasible solution etc.)

6. Nonlinear programming (constrained minimization of multivariable function)

Given an n-variable real function $f(\mathbf{x})$ and the initial vector \mathbf{x}_{0}, the local minimum point and the function value $f\left(\mathbf{x}^{*}\right)$ are obtained subject to the constraints:

$$
\begin{gather*}
c_{i}(\mathbf{x})=0, i=1,2, \ldots ., m_{1} \tag{19}\\
c_{i}(\mathbf{x}) \geq 0, i=m_{1}+1, \ldots ., m_{1}+m_{2} \tag{20}
\end{gather*}
$$

Where \mathbf{x} is vector as $\left(x_{1}, x_{2}, \ldots ., x_{n}\right)^{\mathrm{T}}$ and m_{1} and m_{2} are the numbers of equality and inequality constraints respectively.

The algorithm for this problem is derived from that for unconstrained minimization explained in Section 3 by adding certain procedures for constraints of (19), (20). That is, the algorithm minimizes $f(\mathbf{x})$ by using the quadratic approximation for $f(\mathbf{x})$ at an approximate point $\mathbf{x}_{\mathbf{k}}$:

$$
\begin{equation*}
f(\mathbf{x}) \approx f\left(\mathbf{x}_{k}\right)+\mathbf{y}^{\mathrm{T}} \mathbf{g}_{k}+\frac{1}{2} \mathbf{y}^{\mathrm{T}} \mathbf{B} \mathbf{y} \tag{21}
\end{equation*}
$$

where $\mathbf{y}=\mathbf{x}-\mathbf{x}_{\mathbf{k}}$ and \mathbf{B} is a Hessian matrix, on the basis of a linear approximation to the constraints (19), (20) at \mathbf{x}_{k} as follows:

$$
\begin{gather*}
c_{i}\left(\mathbf{x}_{k}\right)+\mathbf{y}^{\mathrm{T}} \nabla c_{i}\left(\mathbf{x}_{k}\right)=0, \quad i=1,2, \cdots, m_{1} \tag{22}\\
c_{i}\left(\mathbf{x}_{k}\right)+\mathbf{y}^{\mathrm{T}} \nabla c_{i}\left(\mathbf{x}_{k}\right) \geq 0, \tag{23}\\
i=m_{1}+1, \cdots, m_{1}+m_{2}
\end{gather*}
$$

Where ∇c_{i} is a gradient vector of c_{i}

This defines a quadratic programming with respect to \mathbf{y}.

C-SSL II supplies the routine C_{2} dnlpg1 that determines a local minimum point by solving a quadratic programming at each iteration.

Interpolation and approximation

1. Outline

This section is concerned with the following types of problems.

Interpolation

Given discrete points $x_{1}<x_{2}<\ldots<x_{n}$ and their corresponding function values $y_{i}=f\left(x_{i}\right), i=1, \ldots ., n$ (in some cases $y_{i}^{\prime}=f^{\prime}\left(x_{i}\right)$ are also given), an approximation to $f(x)$ (hereafter called the interpolating function) is determined such that it passes through the given points; or, that the interpolating function is used to determine an approximate value (hereafter called interpolated value) to $f(x)$ at a point $x=v$ other than x_{i}.

Least-squares approximation

Given discrete points $x_{1}<x_{2}<\ldots<x_{n}$ and their corresponding observed values $y_{i}, i=1, \ldots, n$ the approximation $\bar{y}_{\mathrm{m}}(x)$ that minimizes

$$
\sum_{i=1}^{n} w\left(x_{i}\right)\left\{y_{i}-\bar{y}_{m}\left(x_{i}\right)\right\}^{2}, \quad w\left(x_{i}\right) \geq 0
$$

is determined; $w(x)$ is a weight function, and $\bar{y}_{m}(x)$ is a polynomial of degree m. In this type of problem y_{i} is observed data. This method is used when the observation error varies among the data.

Smoothing

Given discrete points $x_{1}, x_{2}, \ldots, x_{n}$ and their corresponding observed values $y_{i}, i=1,2, \ldots n$ a new series of points $\left\{\widetilde{y}_{i}\right\}$ which approximates the real function is obtained by smoothing out the observation errors contained in the observed value $\left\{y_{i}\right\}$. Hereafter, this processing is referred to as smoothing. \tilde{y}_{i} (or $\left\{\tilde{y}_{i}\right\}$) is called the smoothed value for y_{i} (or $\left\{y_{i}\right\}$), $\left|y_{i}-\tilde{y}_{i}\right|$ shows the extent of smoothing, and the polynomial used for smoothing is called the smoothing polynomial.

Series

When a smooth function $f(x)$ defined on a finite interval is expensive to evaluate, or its derivatives or integrals can not be obtained analytically, it is suggested that $f(x)$ be expanded as a Chebyshev series.

The features of Chebyshev series expansion are:

- Good convergence
- Easy to differentiate and integrate term by term
- Effective evaluation owing to the fast Fourier transformation, leading to numerical stability.

Determine the item number n and the coefficient number in the Chebyshev expansion depending upon the required precision. Then obtain the derivative and indefinite integral of $f(x)$ by differentiating and integrating each item of the obtained series in forms of series. The derivative value, differential coefficient and definite integral can be obtained by summing these series. If the function $f(x)$ is a smooth periodic function, it can be expanded to trigonometric series. Here the even function is expanded to the cosine series and the odd function to a sine series depending upon the required precision.

In the field of interpolation or smoothing in this library, and also in that of numerical differentiation or quadrature of a tabulated function, spline functions are used extensively. The definition and the representations of these functions are described below.

2. Spline function

Definition

Suppose that discrete points x_{0}, \ldots, x_{n} divide the range $[a, b]$ into intervals such that

$$
\begin{equation*}
a=x_{0}<x_{1}<\ldots<x_{n}=b \tag{1}
\end{equation*}
$$

Then, a function $S(x)$ which satisfies the following conditions:

$$
\begin{align*}
& \text { a. } \mathrm{D}^{k} S(x)=0 \text { for each interval }\left(x_{i}, x_{i+1}\right) \\
& \text { b. } S(x) \in C^{k-2}[a, b] \tag{2}
\end{align*}
$$

where $\mathrm{D} \equiv d / d x$ is defined as the spline function of degree $(k-1)$ and the discrete points are called knots.

As shown in (2), $S(x)$ is a polynomial of degree ($k-1$) which is separately defined for each interval $\left(x_{i}, x_{i+1}\right)$ and whose derivatives of up to degree $(k-2)$ are continuous over the range $[a, b]$.

Representation-1 of spline functions

Let $a_{j}, j=0,1, \ldots ., k-1$ and $b_{i}, i=1,2, \ldots, n-1$ be arbitrary constants, then a spline function is expressed as

$$
\left\{\begin{array}{l}
S(x)=p(x)+\sum_{i=1}^{n-1} b_{i}\left(x-x_{i}\right)_{+}^{k-1} \tag{3}\\
\text { where, } \\
p(x)=\sum_{j=0}^{k-1} a_{j}\left(x-x_{0}\right)^{j}
\end{array}\right.
$$

The function $\left(x-x_{i}\right)_{+}^{k-1}$ is defined as

$$
\left(x-x_{i}\right)_{+}^{k-1}=\left\{\begin{array}{l}
\left(x-x_{i}\right)^{k-1}, \quad x \geq x_{i} \tag{4}\\
0, \quad x<x_{i}
\end{array}\right.
$$

The following illustration proves that (3) satisfies (2). Suppose that x is moved from x_{0} to the right in (3).

For $x_{0} \leq x<x_{1}, S(x)=p(x)$, so $S(x)$ is a polynomial of degree $(k-1)$.
For $x_{1} \leq x<x_{2}, S(x)=p(x)+b_{1}\left(x-x_{1}\right)^{k-1}$, so $S(x)$ is a polynomial of degree $(k-1)$.

In general, for $x_{i} \leq x<x_{i+1}$

$$
S(x)=p(x)+\sum_{r=1}^{i} b_{r}\left(x-x_{r}\right)^{k-1}
$$

So, it is found that $S(x)$ is a polynomial of degree $(k-1)$ which is separately defined for each interval.
From equation (3) we obtain

$$
\begin{aligned}
& \frac{d^{l}}{d x^{l}} S(x)=S^{(l)}(x) \\
& =\sum_{j=1}^{k-1} j(j-1) \cdots(j-l+1) a_{j}\left(x-x_{0}\right)^{j-l} \\
& +\sum_{i=1}^{n-1}(k-1)(k-2) \cdots(k-l) b_{i}\left(x-x_{i}\right)_{+}^{k-1-l}
\end{aligned}
$$

The l-th derivatives from the left and the right of $S(x)$ at x_{i}, are

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} S^{(l)}\left(x_{i}-\varepsilon\right)=\sum_{j=1}^{k-1} j(j-1) \cdots(j-l+1) a_{j}\left(x_{i}-x_{0}\right)^{j-l} \\
& +\sum_{r=1}^{i-1}(k-1)(k-2) \cdots(k-l) b_{r}\left(x_{i}-x_{r}\right)^{k-1-l} \\
& \lim _{\varepsilon \rightarrow 0} S^{(l)}\left(x_{i}+\varepsilon\right)=\sum_{j=1}^{k-1} j(j-1) \cdots(j-l+1) a_{j}\left(x_{i}-x_{0}\right)^{j-l} \\
& +\sum_{r=1}^{i-1}(k-1)(k-2) \cdots(k-l) b_{r}\left(x_{i}-x_{r}\right)^{k-1-l} \\
& +\lim _{\varepsilon \rightarrow 0}(k-1)(k-2) \cdots(k-l) b_{i}\left(x_{i}+\varepsilon-x_{i}\right)^{k-1-l}
\end{aligned}
$$

Thus,

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} S^{(l)}\left(x_{i}+\varepsilon\right)-\lim _{\varepsilon \rightarrow 0} S^{(l)}\left(x_{i}-\varepsilon\right) \tag{5}\\
& \quad=\lim _{\varepsilon \rightarrow 0}(k-1)(k-2) \cdots(k-l) b_{i} \varepsilon^{k-1-l}
\end{align*}
$$

For $l=0,1, \ldots, k-2$, the right hand side is zero, so that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} S^{(l)}\left(x_{i}+\varepsilon\right)=\lim _{\varepsilon \rightarrow 0} S^{(l)}\left(x_{i}-\varepsilon\right) \tag{6}
\end{equation*}
$$

Equation (5) shows the $S^{(t)}(x)$ is continuous at $x=x_{i}$
When $l=k-1$ the right hand side becomes $(k-1)(k-2) \ldots 1 \cdot b_{i}$

Since generally $b_{i} \neq 0$

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} S^{(k-1)}\left(x_{i}+\varepsilon\right) \neq \lim _{\varepsilon \rightarrow 0} S^{(k-1)}\left(x_{i}-\varepsilon\right) \tag{7}
\end{equation*}
$$

Equation (7) shows that the ($k-1$)th derivative of $S(x)$ becomes discontinuous at $x=x_{i}$. Even in this case, if $b_{i}, i=1,2, \ldots, n$ -1 are all zero, the ($k-1$)th derivative of $S(x)$ becomes continuous. Then, from (3), it can be found that $S(x)=p(x)$ over the range $[a, b]$. This means that $S(x)$ is virtually equal to the power series expanded at $x=x_{0}$. Therefore, it can be said that an arbitrary polynomial of degree ($k-1$) defined on $[a, b]$ is a special form of the spline function. Equation (3) is referred to as the expression of spline function by the truncated power function, it is in general numerically unstable because $\left(x-x_{i}\right)^{k-1}$ tends to assume a large absolute value.

Representation-2 of spline functions (introduction of B-splines)

In contrast with the representation (3), the representation by B-splines, which are defined below, can avoid numerical difficulties.

Let a series of points $\left\{t_{r}\right\}$ be defined by

$$
\begin{align*}
& t_{-k+1} \leq t_{-k+2} \leq \cdots \leq t_{-1} \leq t_{0}=x_{0}<t_{1}=x_{1}<\cdots \tag{8}\\
& <t_{n}=x_{n} \leq t_{n+1} \leq t_{n+2} \leq \cdots \leq t_{n+k-1}
\end{align*}
$$

This series is shown in Figure 16.

Figure 16 A series of points

Define $g_{k}(t ; x)$ as a function of t with parameter x.

$$
g_{k}(t ; x)=(t-x)_{+}^{k-1}=\left\{\begin{array}{l}
(t-x)^{k-1}, \quad t \geq x \tag{9}\\
0, \quad t<x
\end{array}\right.
$$

See Figure 17.

Figure $17 g_{k}(t ; x)$
Then, the k th order divided difference of $g_{k}(t ; x)$ with respect to $t=t_{j}, t_{j+1}, \ldots, t_{j+k}$, multiplied by a constant:

$$
\begin{equation*}
N_{j, k}(x)=\left(t_{j+k}-t_{j}\right) g_{k}\left[t_{j}, t_{j+1}, \cdots, t_{j+k} ; x\right] \tag{10}
\end{equation*}
$$

is called the normalized B-spline (or simply B-spline) of degree $(k-1)$.

The characteristics of B-spline $N_{j, k}(x)$ are as follows. Now, suppose that the position of x is moved with $t_{j}, t_{j+1}, \ldots, t_{j+k}$ fixed. When $x \leq t_{j}$ since $N_{j, k}(x)$ includes the k th order divided difference of a polynomial of degree ($k-1$) with respect to t, it becomes zero. When $t_{j+k} \leq x, N_{j k}(x)$ is zero because it includes the k th order divided difference of a function which is identically zero. When $t_{j}<x<t_{j+k}, N_{j, k}(x) \neq 0$. In short,

$$
N_{j, k}(x) \begin{cases}\neq 0, & t_{j}<x<t_{j+k} \tag{11}\\ =0, & x \leq t_{j} \text { or } t_{j+k} \leq x\end{cases}
$$

(indeed, when $t_{j}<x<t_{j+k}, 0<N_{j, k}(x) \leq 1$)

Next, suppose that j is moved with x fixed. Here, let $t_{i}=x_{i}<x<x_{i+1}=t_{i+1}$.

Then, in the same way as above, we can obtain

$$
N_{j, k}(x) \begin{cases}\neq 0, & i-k+1 \leq j \leq i \tag{12}\\ =0, & j \leq i-k \text { or } i+1 \leq j\end{cases}
$$

The characteristics (11) and (12) are referred to as the locality of B-spline functions.

From (10), B-spline $N_{j, k}(x)$ can be written as

$$
\begin{equation*}
N_{j, k}(x)=\left(t_{j+k}-t_{j}\right) \sum_{r=j}^{j+k} \frac{\left(t_{r}-x\right)_{+}^{k-1}}{\left(t_{r}-t_{j}\right) \cdots\left(t_{r}-t_{r-1}\right)\left(t_{r}-t_{r+1}\right) \cdots\left(t_{r}-t_{j+k}\right)} \tag{13}
\end{equation*}
$$

Therefore, $N_{j, k}(x)$ is a polynomial of degree $(k-1)$ defined separately for each interval $\left(x_{i}, x_{i+1}\right)$ and its derivatives of up to degree $k-2$ are continuous. Based on this characteristic of $N_{j, k}(x)$, it is proved that an arbitrary spline function $S(x)$ satisfying equation (2) can be represented as

$$
\begin{equation*}
S(x)=\sum_{j=-k+1}^{n-1} c_{j} N_{j, k}(x) \tag{14}
\end{equation*}
$$

where $c_{j}, j=-k+1,-k+2, \ldots ., n-1$ are constants

Calculating spline functions

Given a $(k-1)$-th degree spline function,

$$
\begin{equation*}
S(x)=\sum_{j=-k+1}^{n-1} c_{j} N_{j, k}(x) \tag{15}
\end{equation*}
$$

the method of calculating its function value, derivatives and integral

$$
\int_{x_{0}}^{x} S(y) d y
$$

at the point $x \in\left[x_{i}, x_{i+1}\right)$ is described hereafter.

Calculating the function value

The value of $\mathrm{S}(x)$ at $x \in\left[x_{i}, x_{i+1}\right]$ can be obtained by calculating $N_{j, k}(x)$. In fact, because of locality (12) of $N_{j, k}(x)$, only nonzero elements have to be calculated.
$N_{j, k}(x)$ is calculated based on the following recurrence equation

$$
\begin{equation*}
N_{r, s}(x)=\frac{x-t_{r}}{t_{r+s-1}-t_{r}} N_{r, s-1}(x)+\frac{t_{r+s}-x}{t_{r+s}-t_{r+1}} N_{r+1, s-1}(x) \tag{16}
\end{equation*}
$$

where,

$$
\begin{align*}
N_{r, 1}(x) & =\left(t_{r+1}-t_{r}\right) g_{1}\left[t_{r}, t_{r+1} ; x\right] \\
& =\left(t_{r+1}-t_{r}\right) \frac{g_{1}\left(t_{r+1} ; x\right)-g_{1}\left(t_{r} ; x\right)}{t_{r+1}-t_{r}} \\
& =\left(t_{r+1}-x\right)_{+}^{0}-\left(t_{r}-x\right)_{+}^{0} \tag{17}\\
& =\left\{\begin{array}{cc}
1, & r=i \\
0, & r \neq i
\end{array}\right.
\end{align*}
$$

By applying $s=2,3, \ldots . ., k, r=i-s+1, i-s+2, \ldots, i$ to Eqs. (16) and (17), all of the $N_{r s}(x)$ given in Figure 18 can be calculated, and the values in the rightmost column are used for calculating the $S(x)$.

Figure 18 Calculating $N_{r . s}(x)$ at $x \in\left[x_{i}, x_{i+1}\right)$

Calculating derivatives and integral

From

$$
\begin{equation*}
\frac{d^{l}}{d x^{l}} S(x)=S^{(l)}(x)=\sum_{j=-k+1}^{n-1} c_{j} N_{j, k}^{(l)}(x) \tag{18}
\end{equation*}
$$

$S^{(I)}(x)$ can be obtained by calculating $N_{j, k}{ }^{(I)}(x)$.

From

$$
\begin{equation*}
\frac{\partial^{l}}{\partial x^{l}} g_{k}(t ; x)=\frac{(-1)^{l}(k-1)!}{(k-1-l)!}(t-x)_{+}^{k-1-l} \tag{19}
\end{equation*}
$$

so $N_{j, k}{ }^{(t)}(x)$ is the divided difference of order k at $t=t_{j}, t_{j+1}, \ldots, t_{j+k}$ of (19).

Now let

$$
d_{k}(t ; x)=(t-x)_{+}^{k-1-l}=\left\{\begin{array}{cl}
(t-x)^{k-1-l}, & t \geq x \\
0, & t<x
\end{array}\right.
$$

and let $D_{j, k}(x)$ be the divided difference of order k at $t=t_{j}, t_{j+1}, \cdots, t_{j+k}$, i.e.,

$$
\begin{equation*}
D_{j, k}(x)=d_{k}\left[t_{j}, t_{j+1}, \cdots, t_{j+k} ; x\right] \tag{20}
\end{equation*}
$$

This $D_{j, k}(x)$ can be calculated by the following recurrence equations. For $x \in\left[x_{i}, x_{i+1}\right)$,

$$
\begin{align*}
& D_{r, 1}(x)=\left\{\begin{array}{cc}
1 /\left(x_{i+1}-x_{i}\right), & r=i \\
0, & r \neq i
\end{array}\right. \\
& D_{r, s}(x)=\frac{D_{r+1, s-1}(x)-D_{r, s-1}(x)}{t_{r+s}-t_{s}}, 2 \leq s \leq l+1 \tag{21}\\
& D_{r, s}(x)=\frac{\left(x-t_{r}\right) D_{r, s-1}(x)+\left(t_{r+s}-x\right) D_{r+1, s-1}(x)}{t_{r+s}-t_{r}} \\
&, l+2 \leq s \leq k
\end{align*}
$$

and if $s=2,3, \ldots, k$, and $r=i-s+1, i-s+2, \ldots, i$ are applied, $D_{j, k}$ for $i-k+1 \leq j \leq i$, can be obtained. Then $N_{j, k}{ }^{(t)}(x)$ can be obtained as follows:

$$
N_{j, k}^{(t)}(x)=\left(t_{j+k}-t_{j}\right) \frac{(-1)^{l}(k-1)!}{(k-1-l)!} D_{j, k}(x)
$$

and $S^{(t)}(x)$ can then be obtained by using this equation. Next, the integral is expressed as

$$
\begin{equation*}
I=\int_{x_{0}}^{x} S(y) d y=\sum_{j=-k+1}^{n-1} c_{j} \int_{x_{0}}^{x} N_{j, k}(y) d y \tag{22}
\end{equation*}
$$

so it can be obtained by calculating $\int_{x_{0}}^{x} N_{j, k}(y) d y$
Integration of $N_{j, k}(x)$ can be carried out by exchanging the sequence of the integration calculation with the calculation of divided difference included in $N_{j, k}(x)$.

First, from (9), the indefinite integral of $g_{k}(t ; x)$ can be expressed by

$$
\int g_{k}(t ; x) d x=-\frac{1}{k}(t-x)_{+}^{k}
$$

where an integration constant is omitted. Letting $e_{k}(t ; x)=(t-x)^{k}+$ and its divided difference of order k represented by

$$
\begin{equation*}
I_{j, k}(x)=e_{k}\left[t_{j}, t_{j+1}, \ldots, t_{j+k} ; x\right] \tag{23}
\end{equation*}
$$

then $I_{j, k}(x)$ satisfies the following recurrence equation.

$$
\begin{align*}
& I_{r, 1}(x)=\left\{\begin{array}{cc}
0, & r \leq i-1 \\
\left(x_{i+1}-x\right) /\left(x_{i+1}-x_{i}\right), & r=i \\
1, & r \geq i+1
\end{array}\right. \tag{24}\\
& I_{r, s}(x)=\frac{\left(x-t_{r}\right) I_{r, s-1}(x)+\left(t_{r+s}-x\right) I_{r+1, s-1}(x)}{t_{r+s}-t_{r}}
\end{align*}
$$

where $x \in\left[x_{i}, x_{i+1}\right)$.
If (24) is applied for $s=2,3, \ldots, k$ and $r=i-s+1, i-s+2, \ldots, i$ then a series of $I_{j, k}(x)$ are obtained as shown in the rightmost column in Figure 19.

Figure 19 Calculation $I_{r, s}(x)$ at $x \in\left[x_{i}, x_{i+1}\right)$

The integration of $N_{j, k}(y)$ is represented by

$$
\begin{aligned}
\int_{x_{0}}^{x} N_{j, k}(y) d y & =-\frac{\left(t_{i+k}-t_{j}\right)}{k}\left[I_{j, k}(x)-I_{j, k}\left(x_{0}\right)\right] \\
& =\frac{\left(t_{j+k}-t_{j}\right)}{k}\left[I_{j, k}\left(x_{0}\right)-I_{j, k}(x)\right]
\end{aligned}
$$

Therefore from (22),

$$
\begin{align*}
I= & \int_{x_{0}}^{x} S(y) d y=\frac{1}{k} \sum_{j=-k+1}^{n-1} c_{j}\left(t_{j+k}-t_{j}\right)\left[I_{j, k}\left(x_{0}\right)-I_{j, k}(x)\right] \\
= & \frac{1}{k}\left\{\sum_{j=-k+1}^{0} c_{j}\left(t_{j+k}-t_{j}\right) I_{j, k}\left(x_{0}\right)-\sum_{j=i-k+1}^{i} c_{j}\left(t_{j+k}-t_{j}\right) I_{j, k}(x)\right. \tag{25}\\
& \left.\quad+\sum_{j=1}^{i} c_{j}\left(t_{j+k}-t_{j}\right)\right\}
\end{align*}
$$

It has so far been assumed that the coefficients c_{j} in equation (15) are known in the calculation procedures for function values, derivatives, and integral values of the spline function $S(x)$. The c_{j} can be determined from the interpolation condition if $S(x)$ is an interpolation function, or from least squares approximation if $S(x)$ is a smoothing function. In the case of interpolation, for example, since $n+k-1$ coefficients $c_{j}(-k+1 \leq j \leq n-1)$ are involved in (15), c_{j} will be determined by assigning $n+k-1$ interpolation conditions to (15). If function values are given at $n+1$ points ($x=x_{0}$, $\left.x_{1}, \ldots, x_{n}\right)$ in Figure 16, function values must be assigned at additional $(n+k-1)-(n+1)=k-2$ points or $k-2$ other conditions (such as those on the derivatives) of $S(x)$ must be provided in order to determine $n+k-1$ coefficients c_{j}. Further information is available in Section 3.

The C-SSL II applies the spline function of (15) to smoothing, interpolation, numerical differentiation, quadrature, and least squares approximation.

Definition, representation and calculation method of bivariate spline function

The bivariate spline function can be defined as an extension of the single variable spline functions described earlier.

Consider a closed region $R=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$ on the $x-y$ plane and points $\left(x_{i}, y_{j}\right)$, where $0 \leq i \leq m$ and $0 \leq j \leq$ n according to the division given in (26)

$$
\begin{align*}
& a=x_{0}<x_{1}<\cdots<x_{m}=b \\
& c=y_{0}<y_{1}<\cdots<y_{n}=d \tag{26}
\end{align*}
$$

Denoting $D_{x}=\partial / \partial x$ and $D_{y}=\partial / \partial y$, the function $S(x, y)$ which satisfies

$$
D_{x}{ }^{k} S(x, y)=D_{y}{ }^{k} S(x, y)=0
$$

for each of the open regions (27) and satisfies (28)

$$
\begin{gather*}
R_{i, j}=\left\{(x, y) \mid x_{i}<x<x_{i+1}, y_{j}<y<y_{j+1}\right\} \tag{27}\\
S(x, y) \in C^{k-2, k-2}[R] \tag{28}
\end{gather*}
$$

is called a bivariate spline function of full degree $k-1$. Equation (27) and (28) shows that $S(x, y)$ is a polynomial in x and y on each of $R_{i j}$ and is at most degree $(k-1)$ with respect to either x or y. Further, (27) shows that on the entire R

$$
\frac{\partial^{\lambda+\mu}}{\partial x^{\lambda} \partial y^{\mu}} S(x, y)
$$

exists and is continuous when $\lambda=0,1, \ldots, k-2$ and $\mu=0,1, \ldots, k-2$.

If a series of points are taken as :

$$
\begin{gathered}
s_{-k+1} \leq s_{-k+2} \leq \cdots \leq s_{-1} \leq s_{0}=x_{0}<s_{1}=x_{1}<\cdots< \\
<s_{m}=x_{m} \leq s_{m+1} \leq \cdots \leq s_{m+k-1} \\
t_{-k+1} \leq t_{-k+2} \leq \cdots \leq t_{-1} \leq t_{0}=y_{0}<t_{1}=y_{1}<\cdots< \\
<t_{n}=y_{n} \leq t_{n+1} \leq \cdots \leq t_{n+k-1}
\end{gathered}
$$

the B-splines in either the x or y directions are defined in the same way as the B-spline with a single variable.

$$
\begin{aligned}
& N_{\alpha, k}(x)=\left(s_{\alpha+k}-s_{\alpha}\right) g_{k}\left[s_{\alpha}, s_{\alpha+1}, \cdots \cdots, s_{\alpha+k} ; x\right] \\
& N_{\beta, k}(y)=\left(t_{\beta+k}-t_{\beta}\right) g_{k}\left[t_{\beta}, t_{\beta+1}, \cdots \cdots, t_{\beta+k} ; y\right]
\end{aligned}
$$

Then the bivariate spline function of dual degree $k-1$ defined above can be represented in the form

$$
\begin{equation*}
S(x, y)=\sum_{\beta=-k+1}^{n-1} \sum_{\alpha=-k+1}^{m-1} c_{\alpha, \beta} N_{\alpha, k}(x) N_{\beta, k}(y) \tag{29}
\end{equation*}
$$

where, $c_{\alpha, \beta}$ are arbitrary constants.
The calculation of function values, partial derivatives and indefinite integral of $S(x, y)$ can be done by applying the calculation for a single variable, if using the expression (29). First of all, for $\lambda \geq 0$ and $\mu \geq 0$,

$$
\begin{align*}
& S^{(\lambda, \mu)}(x, y)=\frac{\partial^{\lambda+\mu}}{\partial x^{\lambda} \partial y^{\mu}} S(x, y) \\
& =\sum_{\beta=-k+1}^{n-1} \sum_{\alpha=-k+1}^{m-1} c_{\alpha, \beta} N_{\alpha, k}^{(\lambda)}(x) N_{\beta, k}^{(\mu)}(y) \tag{30}
\end{align*}
$$

Therefore, the calculation of the function values and partial derivatives are accomplished by separately calculating $N_{\alpha, k}^{(\lambda)}(x)$, and $N_{\beta, k}^{(\mu)}(y)$ which can be done by applying the previously described method for a single variable.

Next, consider the value which is obtained by differentiating $S(x, y) \mu$ times with respect to y and then by integrating with respect to x, namely

$$
\begin{equation*}
S^{(-1, \mu)}(x, y)=\int_{x_{0}}^{x} \frac{\partial^{\mu} S(x, y)}{\partial y^{\mu}} d x \tag{31}
\end{equation*}
$$

This value is unchanged even when the order of differentiation and integration is reversed. Rewriting the right-hand side of (31) by using (29), we obtain

$$
\begin{align*}
& \sum_{\alpha=-k+1}^{m-1}\left\{\sum_{\beta=-k+1}^{n-1} c_{\alpha, \beta} N_{\beta, k}^{(\mu)}(y)\right\} \cdot \int_{x_{0}}^{x} N_{\alpha, k}(x) d x \tag{32}\\
= & \sum_{\alpha=-k+1}^{m-1} c_{\alpha} \int_{x_{0}}^{x} N_{\alpha, k}(x) d x
\end{align*}
$$

where

$$
c_{\alpha}=\sum_{\beta=-k+1}^{n-1} c_{\alpha, \beta} N_{\beta, k}^{(\mu)}(y)
$$

This is similar to (23) given previously. Therefore, calculation of (32) is performed first by calculating c_{α} and then by calculating the integral by using the method for a single variable.

In addition $S^{(-1, \mu)}(x, y)$,

$$
\begin{aligned}
S^{(\lambda,-1)}(x, y) & =\int_{y_{0}}^{y} \frac{\partial^{\lambda} S(x, y)}{\partial x^{\lambda}} d y \\
S^{(-1,-1)}(x, y) & =\int_{y_{0}}^{y} d y \int_{x_{0}}^{x} S(x, y) d x
\end{aligned}
$$

can be calculated by applying the method for calculating derivatives and integrals for a single variable each for x and y separately.

3. Interpolation

The general procedure of interpolation is to first obtain an approximate function; e.g. polynomial, piecewise polynomial, which fits given sample points $\left(x_{i}, y_{i}\right)$, then to evaluate that function.

When polynomials are used for approximation, they are called Lagrange interpolating polynomials or Hermite interpolating polynomials (using derivatives as well as function values). The Aitken-Lagrange interpolation and AitkenHermite interpolation methods used in C-SSL II belong to this. As a characteristic, they find the most suitable interpolated values by increasing the degree of interpolating polynomials iteratively.

Piecewise polynomials are used for the interpolation function when a single polynomial is difficult to apply. C-SSL II provides quasi-Hermite interpolation and spline interpolation methods.

Interpolating splines are defined as functions which satisfy the interpolating condition; i.e fits the given points. Interpolating splines are not uniquely determined: they can vary with some additional conditions. In C-SSL II, four types of spline interpolation are available. The B-spline representation is used because of its numerical stability.

Interpolation by B-spline

Routines using B-spline are divided into two types according to their objectives.

- Routines by which interpolated values (or derivatives, integrals) are obtained
- Routines by which interpolating splines are obtained.

Since the routines which obtain interpolated values use interpolating splines, these splines must be obtained first.

C-SSL II provides various interpolating B-splines. Let discrete points be $x_{i}, i=1,2, \ldots, n$, then four types of B-spline interpolating function of degree $m(=2 l-1, l \geq 2)$ are available depending on the presence/absence or the contents of boundary conditions.

- Type I $\quad S^{(j)}\left(x_{1}\right), S^{(j)}\left(x_{n}\right), j=1,2, \ldots, l-1$ are specified by the user.
- Type II $\quad S^{(j)}\left(x_{1}\right), S^{(j)}\left(x_{n}\right), j=l, l+1, \cdots, 2 l-2$ are specified by the user.
- Type III No boundary conditions.
- Type IV $S^{(j)}\left(x_{1}\right)=S^{(j)}\left(x_{n}\right), j=0,1, \cdots, 2 l-2$ are satisfied. This type is suitable to interpolate periodic functions.

Selection of the above four types depends upon the quantity of information on the original function available to the user. Typically, routines of type III (No boundary conditions) can be used.

The bivariate spline function $\mathrm{S}(x, y)$ shown in (29) is used as an interpolation function for a two-dimensional interpolation. The C-SSL II provides interpolation using only type I or III in both x and y directions.

The degree of spline must be selected by the user. Usually m is selected as 3 or 5 , if the original function does not change abruptly, m may take a higher value. However, m should not exceed 15 because it may cause another problem.

Table 16 lists interpolation routines.
Table 16 Interpolation routines

Objective	Routine name	Method	Notes
Interpolated value	c_daklag	Aitken-Lagrange interpolation	Derivatives not needed.
	c_dakher	Aitken-Hermite interpolation	Derivatives needed
	c_dbif1	B-spline interpolation (I)	Type I
	c_dbif2	B-spline interpolation (II)	Type II
	c_dbif3	B-spline interpolation (III)	Type III
	c_dbif4	B-spline interpolation (IV)	Type IV
	c_dbifd1	B-spline two-dimensional interpolation(I-I)	Type I-I
	c_dbifd3	B-spline two-dimensional interpolation (III-III)	Type III-III
	c_dakmid	Two-dimensional quasiHermite interpolation	
Interpolating function	c_dakmin	Quasi-Hermite interpolation	
	c_dbic1	B-spline interpolation (I)	Type I
	c_dbic2	B-spline interpolation (II)	Type II
	c_dbic3	B-spline interpolation (III)	Type III
	c_dbic4	B-spline interpolation (IV)	Type IV
	c_dbicd1	B-spline two-dimensional interpolation (I-I)	Type I-I
	c_dbicd3	B-spline two-dimensional interpolation (III-III)	Type III-III

Quasi-Hermite interpolation

This is an interpolation by using piecewise polynomials similar to spline interpolation. The only difference between the two is that quasi-Hermite interpolation does not require so strict a condition on the continuity of higher degree derivatives as the spline interpolation does.

A characteristic of quasi-Hermite interpolation is that no "wiggle" appears between discrete points. Therefore it is suitable for curve fitting or surface fitting to the accuracy of a hand-drawn curve by a trained draftsman.

However, if very accurate interpolated values, derivatives or integrals are to be obtained, the B-spline interpolation should be used.

4. Approximation

This includes least-squares approximation polynomials as listed in Table 17. The least squares approximation using Bsplines is treated in Section 5.

Table 17 Approximation routine

Objective	Routine name	Method	Notes
Least squares approximation polynomials	c_dlesq1	Discrete point polynomial	The degree of the polynomial is determined within the routine.

5. Smoothing

Table 18 lists routines used for smoothing.
Table 18 Smoothing routines

Objective	Routine name	Method	Notes
Smoothed value	c_dsmle1	Local least-squares approximation polynomials	Equally spaced discrete points
	c_dsmle2	Local least-squares approximation polynomials	Unequally spaced discrete points
	c_dbsf1	B-spline smoothing	Unequally spaced discrete points
	c_dbsfd1	B-spline two-dimensional smoothing	Unequally spaced lattice points
Smoothing function	c_dbsc1	B-spline smoothing (fixed nodes)	Unequally spaced discrete points
	c_dbsc2	B-spline smoothing (added nodes)	
	c_dbscd2	B-spline two-dimensional smoothing (added nodes)	Unequally spaced lattice points

Routines c_dsmle1 and c_dsmle2 apply local least-squares approximation for each discrete point instead of applying the identical least-squares approximation over the observed values. However, it is advisable for the user to use B-spline routines. In B-spline smoothing, spline functions shown in (14) and (29) are used for the one-dimensional smoothing and two-dimensional smoothing respectively. Coefficients c_{j} or $c_{\alpha, \beta}$ are determined by the linear least squares. The smoothed value is obtained by evaluating the obtained smoothing function. C-SSL II provides routines for evaluating the smoothing functions.

There are two types of routines to obtain B-spline smoothing functions depending upon how to determine knots. They are:

- The user specifies knots (fixed knots)
- Routines determine knots adaptively (variable knots)

The former requires experience on how to specify knots. Usually the latter routines are recommended.

6. Series

C-SSL II provides routines shown in Table 19 for Chebyshev series expansion, series evaluation, derivatives and indefinite integral.

Table 19 Chebyshev series routines

Objective	Routine name	Method	Notes
Series expansion	c_dfcheb	Fast cosine transformation	Number of terms is (Power of 2) +1.
Evaluation of series	c_decheb	Backward recurrence equation	
Derivatives of series	c_dgcheb	Differention formula for Chebyshev polynomials	
Indefinite integral of series	c_dicheb	Integral formula for Chebyshev polynomials	

Table 20 lists routines used for cosine series expansion, sine series expansion and their evaluation, which are for periodic functions.

Table 20 Cosine or sine series routines

Objective	Routine name	Method	Notes
cosine series expansion	c_dfcosf	Fast cosine transformation	Even functions
cosine series evaluation	c_decosp	Backward recurrence equation	Even functions
Sine series expansion	c_dfsinf	Fast sine transformation	Odd functions
Sine series evaluation	c_desinp	Backward recurrence equation	Odd functions

Transforms

1. Outline

This section explains discrete Fourier transforms and Laplace transforms.

Characteristics

For a discrete Fourier transform, routines are provided for each of the characteristics of transformed data. The data characteristics are classified as

- Real or complex data, and
- For real data, even or odd function

2. Discrete real Fourier transforms

When handling real data, routines are provided to perform the transform (1) and the inverse transform (2)

$$
\begin{align*}
a_{k}= & \frac{2}{n} \sum_{j=0}^{n-1} x_{j} \cos \frac{2 \pi k j}{n}, k=0,1, \cdots, \frac{n}{2} \\
b_{k}= & \frac{2}{n} \sum_{j=0}^{n-1} x_{j} \sin \frac{2 \pi k j}{n}, k=1,2, \cdots, \frac{n}{2}-1 \tag{1}\\
x_{j}= & \frac{1}{2} a_{0}+\sum_{k=1}^{n / 2-1}\left(a_{k} \cos \frac{2 \pi k j}{n}+b_{k} \sin \frac{2 \pi k j}{n}\right) \tag{2}\\
& +\frac{1}{2} a_{n / 2} \cos \pi j, \quad j=0,1, \cdots, n-1
\end{align*}
$$

where a_{k} and b_{k} are called discrete Fourier coefficients. These correspond to the integrals

$$
\left.\begin{array}{l}
\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \cos k t d t \tag{3}\\
\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \sin k t d t
\end{array}\right\}
$$

which define Fourier coefficients of a real valued function $x(t)$ with period 2π. The transforms (1) can be derived by representing the function $x(t)$ by n points

$$
x_{j}=x\left(\frac{2 \pi}{n} j\right), j=0,1, \ldots, n-1,
$$

in the closed interval $[0,2 \pi]$ and by applying the trapezoidal rule. Particularly, if $x(t)$ is the $(n / 2-1)$ th order trigonometric polynomial, the transforms (1) are the exact numerical integral formula of the integrals (3). In other words, the discrete Fourier coefficients are identical to the analytical Fourier coefficients.

Either the discrete cosine or sine transforms can be used, depending on whether the function $x(t)$ is even or odd.

3. Discrete cosine transforms

Routines are provided to perform two variants of the cosine transform for even functions. One of the transforms includes the end points of the closed interval $[0, \pi]$, and the other transform does not include the end points.

Discrete cosine transform (Trapezoidal rule)

This variant of the cosine transform is defined by representing an even function $x(t)$ by

$$
x_{j}=x\left(\frac{\pi}{n} j\right), j=0,1, \ldots, n
$$

in the closed interval $[0, \pi]$ and by applying the trapezoidal rule to

$$
\begin{equation*}
\frac{2}{\pi} \int_{0}^{\pi} x(t) \cos k t d t \tag{4}
\end{equation*}
$$

which defines the Fourier coefficients of $x(t)$. The transform and inverse transform are:

$$
\begin{align*}
a_{k} & =\frac{2}{n} \sum_{k=0}^{n}{ }^{\prime} x_{j} \cos \frac{\pi}{n} k j, k=0,1, \cdots, n \tag{5}\\
x_{j} & =\sum_{k=0}^{n-1}{ }^{\prime \prime} a_{k} \cos \frac{\pi}{n} k j, j=0,1, \cdots, n \tag{6}
\end{align*}
$$

where $\Sigma^{\prime \prime}$ denotes that both the first and the last terms of the sum are multiplied by $1 / 2$.

Discrete cosine transform (midpoint rule)

This variant of the cosine transform is defined by representing an even function $x(t)$ by

$$
x_{j+1 / 2}=x\left(\frac{\pi}{n}\left(j+\frac{1}{2}\right)\right), \quad j=0,1, \cdots, n-1
$$

in the open interval $(0, \pi)$. The transform (7) can be derived by applying a midpoint rule with n terms to the integral (4). The transform and inverse transform are:

$$
\begin{gather*}
a_{k}=\frac{2}{n} \sum_{j=0}^{n-1} x_{j+\frac{1}{2}} \cos \frac{\pi}{n} k\left(j+\frac{1}{2}\right), \quad k=0,1, \cdots, n-1 \tag{7}\\
x_{j+\frac{1}{2}}=\sum_{k=0}^{n-1} a_{k} \cos \frac{\pi}{n} k\left(j+\frac{1}{2}\right), \quad j=0,1, \cdots, n-1 \tag{8}
\end{gather*}
$$

where Σ^{\prime} denotes that the first term of the sum is multiplied by $1 / 2$.

4. Discrete sine transforms

Routines are provided to perform two variants of the sine transform for odd functions. One of the transforms includes the end points of the closed interval $[0, \pi]$, and the other transform does not include the end points.

Discrete sine transform (Trapezoidal rule)

This variant of the sine transform is defined by representing an odd function $x(t)$ by

$$
x_{j}=x\left(\frac{\pi}{n} j\right), j=1, \ldots, n-1
$$

in the closed interval $[0, \pi]$ and by applying the trapezoidal rule to the integral:

$$
\begin{equation*}
\frac{2}{\pi} \int_{0}^{\pi} x(t) \sin k t d t \tag{9}
\end{equation*}
$$

which defines the Fourier coefficients of $x(t)$. The transform and inverse transform are:

$$
\begin{align*}
& b_{k}=\frac{2}{n} \sum_{j=1}^{n-1} x_{j} \sin \frac{\pi}{n} k j, \quad k=1,2, \cdots, n-1 \tag{10}\\
& x_{j}=\sum_{k=1}^{n-1} b_{k} \sin \frac{\pi}{n} k j, \quad j=1,2, \cdots, n-1 \tag{11}
\end{align*}
$$

Discrete sine transform (midpoint rule)

This variant of the sine transform is defined by representing an odd function $x(t)$ by

$$
x_{j+1 / 2}=x\left(\frac{\pi}{n}\left(j+\frac{1}{2}\right)\right), j=0,1, \ldots, n-1
$$

in the open interval $(0, \pi)$. The transform (12) can be derived by applying the midpoint rule with n terms to the integral (9). The transform and inverse transform are:

$$
\begin{gather*}
b_{k}=\frac{2}{n} \sum_{j=0}^{n-1} x_{j+\frac{1}{2}} \sin \frac{\pi}{n} k\left(j+\frac{1}{2}\right), \quad k=1,2, \cdots, n \tag{12}\\
x_{j+\frac{1}{2}}=\sum_{k=1}^{n-1} b_{k} \sin \frac{\pi}{n} k\left(j+\frac{1}{2}\right)+\frac{1}{2} b_{n} \sin \pi\left(j+\frac{1}{2}\right) \quad j=0,1, \cdots, n-1 \tag{13}
\end{gather*}
$$

5. Discrete complex Fourier transforms

For complex data, routines are provided to perform the transforms corresponding to the transform (14) and the inverse transform (15)

$$
\begin{gather*}
\alpha_{k}=\frac{1}{n} \sum_{j=0}^{n-1} x_{j} \exp \left(-2 \pi i \frac{j k}{n}\right) \quad k=0,1, \cdots, n-1 \tag{14}\\
x_{j}=\sum_{j=0}^{n-1} \alpha_{k} \exp \left(2 \pi i \frac{j k}{n}\right) \quad j=0,1, \cdots, n-1 \tag{15}
\end{gather*}
$$

Transform (14) can be derived by representing the complex valued function $x(t)$ with period 2π by

$$
x_{j}=x\left(\frac{2 \pi}{n} j\right), j=0,1, \ldots, n,
$$

in the closed interval $[0,2 \pi]$ and by applying the trapezoidal rule to the integral

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) \exp (-i k t) d t \tag{16}
\end{equation*}
$$

which defines the Fourier coefficients of $x(t)$.

The discrete type Fourier transforms described above are all performed by using the Fast Fourier Transform (FFT).
The fastest implementations of the FFT require the number of data items n to be a power of two. One of the complex FFT routines allows the number of data items to be arbitrary, but in general performance will be better if one of the following apply:

- The number of data items is a power of 2 (radix 2)
- The number of data items can be expressed as a multiple of 2, 3 and 5 only (radix 2, 3 and 5)
- The number of data items can be expressed as a product of mutually prime factors selected from $\{2,3,4,5,7,8,9,16\}$ (mixed radix).

In addition, selected routines can perform combinations of:

- Multiple transforms
- Multidimensional transforms (where normally the number of dimensions is 1,2 or 3)
- Multivariate transforms.

Table 21 lists the routines for each data characteristic.

Comments on use

Sample point number (dimension)

The number of data points, n, of transformed data is defined differently depending on the properties of the function $x(t)$.
That is, n corresponds to:

- the number of sample points taken in the half period interval, $(0, \pi)$, or $[0, \pi]$, for the cosine and sine transforms or
- the number of sample points taken in the full period interval, $[0,2 \pi]$, for the real and complex transforms.

Real transform versus cosine and sine transforms

If it is known in advance that the $x(t)$ is either an even or odd function, the routine for cosine and sine transforms should be used. (The processing speed is about twice as fast as for a real transform.)

Fourier coefficients in real and complex transforms

The following relationships exist between the Fourier coefficients $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ used in a real transform (including cosine and sine transforms) and the Fourier coefficient $\left\{\alpha_{k}\right\}$ used in a complex transform.

$$
\left.\begin{array}{ll}
a_{0}=2 \alpha_{0} & , \quad a_{n / 2}=2 \alpha_{n / 2} \tag{17}\\
a_{k}=\left(\alpha_{k}+\alpha_{n-k}\right) & , \quad k=1,2, \cdots, n / 2-1 \\
b_{k}=i\left(\alpha_{k}-\alpha_{n-k}\right), & k=1,2, \cdots n / 2-1
\end{array}\right\}
$$

where n denotes equally spaced points in a period $[0,2 \pi]$. Based on the above relationships, users can use both routines for real and complex transforms as appropriate. However, attention must be paid to scaling and data ordering.

Trigonometric functions

For cosine and sine transforms, the necessary trigonometric function table for transforms is provided in the routine for better processing efficiency. The function table is output to the argument tab, which can be used again for successive transforms.

For each transform, two routines are provided based on the trapezoidal rule and the midpoint rule. The size of the trigonometric function table is smaller and therefore more efficient in the former.

Scaling

Scaling of the resultant values is left to the user.
Table 21 Routines for discrete Fourier transform

Type of transform	Radix	Routine	Features	
		2	C_dvcos1	
	Midpoint rule		c_dfcosm	
	Sine	Trapezoidal rule	2	C_dvmcst

6. Laplace transform

The Laplace transform of $f(t)$ and its inverse are defined respectively as:

$$
\begin{gather*}
F(s)=\int_{0}^{\infty} f(t) \mathrm{e}^{-s t} d t \tag{18}\\
f(t)=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} F(s) \mathrm{e}^{s t} d s \tag{19}
\end{gather*}
$$

where $\gamma>\gamma_{0}, \gamma_{0}$ (abscissa of convergence).
In these transforms, $f(t)$ is called the original function and $F(s)$ the image function. Assume the following about $F(s)$.

$$
\left.\begin{array}{l}
\text { 1) } F(s) \text { is nonsingular for } \operatorname{Re}(s)>\gamma_{0} \tag{20}\\
\text { 2) } \lim _{|s| \rightarrow \infty} F(s)=0 \text { for } \operatorname{Re}(s)>\gamma_{0} \\
\text { 3) } F^{*}(s)=F\left(s^{*}\right) \text { for } \operatorname{Re}(s)>\gamma_{0}
\end{array}\right\}
$$

where $F^{*}(s)$ is the conjugate of $F(s)$. Condition 1$)$ is always satisfied, condition 2$)$ is satisfied unless $f(t)$ is a distribution and condition 3) is satisfied when $f(t)$ is a real function. The C-SSL II routines perform the numerical transformation of expression (19). The outline of the method is described below.

Formula for numerical transformation

Assume $\gamma_{0} \leq 0$ for simplicity, that is $F(s)$ is regular in the domain of $\operatorname{Re}(s)>0$, and the integral (19) exists for an arbitrary real value γ greater than 0 . Since

$$
e^{s}=\lim _{\sigma_{0} \rightarrow \infty} e^{\sigma_{0}} /\left[2 \cosh \left(\sigma_{0}-s\right)\right]
$$

$e^{s t}$ in (19) is approximated as follows using an appropriate value for σ_{0} :

$$
E_{e c}\left(s t, \sigma_{0}\right) \equiv e^{\sigma_{0}} /\left[2 \cosh \left(\sigma_{0}-s t\right)\right]
$$

Function $E_{e c}\left(s t, \sigma_{0}\right)$ is characterized as follows:
There are an infinite number of poles on the line expressed by $\operatorname{Re}(s)=\sigma_{0} / t$. Figure 20 shows locations of the poles. This can be explicitly represented as:

$$
E_{e c}\left(s t, \sigma_{0}\right)=\frac{e^{\sigma_{0}}}{2 t} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n} i}{s-\left[\sigma_{0}+i(n-0.5) \pi\right] / t}
$$

Then, $f\left(t, \sigma_{0}\right)$ which denotes an approximation of the original function $f(t)$ is:

$$
\begin{equation*}
f\left(t, \sigma_{0}\right) \equiv \frac{1}{2 \pi i} \int_{r-i \infty}^{r+i \infty} F(s) E_{e c}\left(s t, \sigma_{0}\right) d s \tag{21}
\end{equation*}
$$

where $\gamma_{0}<\gamma<\sigma_{0} / t$ is assumed.
It follows that the integral of the right-hand side can be expanded in terms of integrals around the poles of $E_{e c}\left(s t, \sigma_{0}\right)$.

Figure 20 Poles of $E_{e c}\left(s t, \sigma_{0}\right)$

Since $F(s)$ is regular in the domain of $\operatorname{Re}(s)>0$, the following is obtained according to Cauchy's integral formula:

$$
\begin{align*}
f\left(t, \sigma_{0}\right) & =\frac{e^{\sigma_{0}}}{2 t} \sum_{n=-\infty}^{n}(-1)^{n+1} i F\left(\frac{\sigma_{0}+i(n-0.5) \pi}{t}\right) \\
& =\frac{e^{\sigma_{0}}}{t} \sum_{n=1}^{\infty}(-1)^{n} \operatorname{Im}\left[F\left(\frac{\sigma_{0}+i(n-0.5) \pi}{t}\right)\right] \tag{22}
\end{align*}
$$

If $\gamma_{0}>0$ the condition $\gamma_{0}<\gamma<\sigma_{0} / t$ cannot be satisfied for a certain value of $t(0<t<\infty)$. This means $\gamma_{0} \leq 0$ is necessary for (22) to be used for $0<t<\infty$.

Function $f\left(t, \sigma_{0}\right)$ gives an approximation to function $f(t)$ and is expressed as follows:

$$
\begin{equation*}
f\left(t, \sigma_{0}\right)=f(t)-e^{-2 \sigma_{0}} \cdot f(3 t)+e^{-4 \sigma_{0}} \cdot f(5 t)-\cdots \cdots \tag{23}
\end{equation*}
$$

This means that function $f\left(t, \sigma_{0}\right)$ gives a good approximation to $f(t)$ when $\sigma_{0} \gg 1$. Moreover, (23) can be used for estimating the approximation error.

For numerical calculation, the approximation can be obtained principally by truncating (22) up to an appropriate term; however, the direct summation is often not practical. The Euler transformation that can be generally applied in this case is incorporated in the routines. Define function F_{n} as follows:

$$
\begin{equation*}
F_{n} \equiv(-1)^{n} \operatorname{Im}\left[F\left(\frac{\sigma_{0}+i(n-0.5) \pi}{t}\right)\right] \tag{24}
\end{equation*}
$$

Then, the Euler transformation is applicable when the following conditions are satisfied (See reference [14] for details.):

1) For an integer $k \geq 1$, the sign of F_{n} alternates when $n \geq k$
2) $1 / 2 \leq\left|F_{n+1} / F_{n}\right|<1$ when $n \geq k$

When F_{n} satisfies these conditions, the series represented by (22) can be transformed as:

$$
\begin{equation*}
\sum_{n=1}^{\infty} F_{n}=\sum_{n=1}^{k-1} F_{n}+\sum_{q=0}^{p} \frac{1}{2^{q+1}} D^{q} F_{k}+R_{p+1}(k) \tag{26}
\end{equation*}
$$

where $R_{p}(k)$ is defined as:

$$
R_{p}(k) \approx 2^{-p}\left(D^{p} F_{k}+D^{p} F_{k+1}+D^{p} F_{k+2}+\ldots\right)
$$

$D^{p} F_{k}$ is the p th difference defined as

$$
\begin{equation*}
D^{0} F_{k}=F_{k}, D^{p+1} F_{k}=D^{p} F_{k}+D^{p} F_{k+1} \tag{27}
\end{equation*}
$$

In the routines, the following expression is employed:

$$
\begin{equation*}
f_{N}\left(t, \sigma_{0}\right)=\frac{e^{\sigma_{0}}}{t} \sum_{n=1}^{N} F_{n}=\frac{e^{\sigma_{0}}}{t}\left\{\sum_{n=1}^{k-1} F_{n}+\sum_{q=0}^{p} \frac{D^{q} F_{k}}{2^{q+1}}\right\} \tag{28}
\end{equation*}
$$

where $N=k+p$,

$$
\left.\begin{array}{l}
\sum_{q=0}^{p} \frac{D^{q} F_{k}}{2^{q+1}}=\frac{1}{2^{p+1}} \sum_{r=0}^{p} A_{p, r} F_{k+r} \tag{29}\\
A_{p, p}=1, A_{p, r-1}=A_{p, r}+\binom{p+1}{r}
\end{array}\right\}
$$

The determination of the values for σ_{0}, k, and p is explained in each routine description.
The following has been proved for the truncation error of $f_{N}\left(t, \sigma_{0}\right)$. Suppose $\phi(n) \equiv F_{n}$. If the p th derivative of $\phi(x), \phi^{(p)}(x)$, is of constant sign for positive x and monotonously decreases with increase of x (for example, if $F(s)$ is a rational function), the following will be satisfied:

$$
\begin{align*}
& \left|f\left(t, \sigma_{0}\right)-f_{N}\left(t, \sigma_{0}\right)\right|=\frac{e^{\sigma_{0}}}{t}\left|R_{p+1}(k)\right| \\
& \leq\left|f_{N+1}\left(t, \sigma_{0}\right)-f_{N}\left(t, \sigma_{0}\right)\right|=\frac{e^{\sigma_{0}}}{t}\left|\frac{1}{2^{p+1}} D^{p+1} F_{k}\right| \tag{30}
\end{align*}
$$

where $f_{N+1}\left(t, \sigma_{0}\right)$ stands for (28) with $k+1$ instead of k. To calculate $D^{p+1} F_{k}$ in the above formula, F_{k+p+1} is required, in addition to the set $\left\{F_{n} ; n=k, k+1, \ldots ., k+p\right\}$ to be used for calculation of $f_{N}\left(t, \sigma_{0}\right)$; hence, one more evaluation of the function is needed. To avoid that, the following expression is substituted for the truncation error of $f_{M}\left(t, \sigma_{0}\right)$ in the routines;

$$
\left|f_{N}\left(t, \sigma_{0}\right)-f_{N-1}\left(t, \sigma_{0}\right)\right|=\frac{e^{\sigma_{0}}}{t}\left|\frac{1}{2^{p+1}} D^{p+1} F_{k-1}\right|
$$

In the routines, the truncation error is output in the form of the following relative error:

$$
\left|\frac{f_{N}\left(t, \sigma_{0}\right)-f_{N-1}\left(t, \sigma_{0}\right)}{f_{N}\left(t, \sigma_{0}\right)}\right|=\left|\frac{\frac{1}{2^{p+1}} D^{p+1} F_{k-1}}{\left\lvert\, \sum_{n=1}^{k-1} F_{n}+\frac{1}{2^{p+1}} \sum_{r=0}^{p} A_{p, r} F_{k+r}\right.}\right|
$$

$D^{p+1} F_{k-1}$ is a linear combination of $F_{k-1}, F_{k}, \ldots, F_{k+p}$. The coefficients $A_{p, r}$ can be calculated as a cumulative sum, as shown in (29). Thus, these coefficients can easily be calculated by using Pascal's triangle. Figure 21 shows this calculation techniques (for $p=4$)

Figure 21 Pascal's triangle (for $p=4$)

When $\gamma_{0}>0$, since $F(s)$ is not regular in the domain of $\operatorname{Re}(s)>0$; the above technique cannot be directly applied. Note, however, that the integral in (19) can be expressed as:

$$
\begin{align*}
& \qquad \begin{array}{l}
f(t)=\frac{1}{2 \pi i} \int_{r-i \infty}^{r+i \infty} F\left(s+\gamma_{0}\right) e^{\left(s+\gamma_{0}\right) t} d s \\
=\frac{e^{r_{0} t}}{2 \pi i} \int_{r-i \infty}^{r+i \infty} G(s) e^{s t} d s \\
=e^{r_{0} t} g(t)
\end{array} \\
& \text { where } r>0, G(s)=F(s+r o) \tag{31}\\
& g(t)=\frac{1}{2 \pi i} \int_{r-i \infty}^{r+i \infty} G(s) e^{s t} d s
\end{align*}
$$

Since $G(s)$ is regular in the domain of $\operatorname{Re}(s)>0, g(t)$ can be calculated as explained above; then $f(t)$ is obtained by multiplying $g(t)$ by $\mathrm{e}^{\gamma_{0} t}$

Transformation of rational functions

A rational function $F(s)$ can be expressed as follows using polynomials $Q(s)$ and $P(s)$ each having real coefficients:

$$
\begin{equation*}
F(s)=Q(s) / P(s) \tag{32}
\end{equation*}
$$

To determine whether $\gamma_{0} \leq 0$ or $\gamma_{0}>0$, it is only necessary to check whether $P(s)$ is a Hurwitz polynomial (that is, all zeros are on the left-half plane $\{s \mid \operatorname{Re}(s)<0\}$. The procedure used for the check is described below (reference [56]):

A polynomial $P(s)$ of degree n with real coefficients is expressed as follows:

$$
\begin{aligned}
P(s) & =a_{1} s^{n}+a_{2} s^{n-1}+\cdots+a_{n} s+a_{n+1} \\
& =m(s)+n(s) \\
\text { where } m(s) & =a_{1} s^{n}+a_{3} s^{n-2}+\cdots, \quad a_{1} \neq 0 \\
n(s) & =a_{2} s^{n-1}+a_{4} s^{n-3}+\cdots
\end{aligned}
$$

The ratio of $n(s)$ to $m(s)$ is defined as:

$$
W(s) \equiv m(s) / n(s)
$$

Then, $W(s)$ is expanded into continued fraction as:

$$
W(s)=h_{1} s+\frac{1}{\sqrt{h_{2} s}}+\frac{1}{h_{3} s}+\frac{1}{\sqrt{h_{4} s}}+\cdots
$$

If all of h_{1}, h_{2}, are positive, $P(s)$ is a Hurwitz polynomial. If $F(s)$ has singularities in the domain of $\operatorname{Re}(s)>0$, the above procedure can be repeated by increasing $\alpha(>0)$ so that $G(s)=F(s+\alpha)$ is regular in the domain of $\operatorname{Re}(s)>0$. The value of $f_{N}\left(t, \sigma_{0}\right)$ is calculated by multiplying $\mathrm{e}^{\alpha t}$ by $g_{M}\left(t, \sigma_{0}\right)$, the inverse of $G(s)$.

When $F(s)$ is an irrational function or a distribution, there is no practical method that tests if $F(s)$ is regular in the domain of $\operatorname{Re}(s)>0$, therefore, the abscissa of convergence of a general function $F(s)$ must be specified by the user.

Choice of routines

Table 22 shows routines for the inversion of Laplace transforms. c_dlaps1 and c_dlaps2 are used for rational functions with c_dlaps1 for $\gamma_{0} \leq 0$ and c_dlaps2 otherwise. c_dhrwiz judges the condition $P(s)$, that is, examines if $\gamma_{0}>0$ in (32) is a Hurwitz polynomial; and if $\gamma_{0}>0$ is detected, the approximated value of γ_{0} is calculated. The condition $\gamma_{0}>0$ means that the original function $f(t)$ increases exponentially as $t \rightarrow \infty$. c_dhrwiz can be used for examining this behaviour. Figure 22 shows a flowchart for choosing routines.

Table 22 Laplace transform routines

Function type	Routine name	Remarks
Rational functions	C_dlaps1	Rational functions regular in the right-half plane.
	C_dlaps2	General rational functions.
	C_dhrwiz	Judgment on Hurwitz polynomials.
General functions	C_dlaps3	Convergence coordinate γ_{0} must be input.

Figure 22 Flowchart for choosing Laplace transform routines.

Numerical differentiation and quadrature

1. Outline

This section describes the following types of problems.

Numerical differentiation:

Given function values $y_{i}=f\left(x_{i}\right), i=1, \ldots n$ at discrete points $x_{1}<x_{2}<\ldots<x_{n}$, the l - th order derivative $f^{(l)}(v)$, at $x=v$ in the interval $\left[x_{1}, x_{n}\right]$ is determined, where $l \geq 1$.

Two-dimensional differentiation is also included. Given the function $f(x)$, the derivative $f^{(l)}(x)=d^{l} f(x) / d x^{l}, \quad l \geq 1$ is approximated by a Chebyshev series expansion.

Numerical quadrature:

Given function values $y_{i}=f\left(x_{i}\right), i=1, \ldots, n$ at discrete points $x_{1}, x_{2}, \ldots, x_{n}$, the integral of $f(x)$ over the interval $\left[x_{1}, x_{\mathrm{n}}\right]$ is determined. Also, given the function $f(x)$, the integral

$$
S=\int_{a}^{b} f(x) d x
$$

is determined within a required accuracy. Multi-dimensional integrals are also supported.

2. Numerical differentiation

When performing numerical differentiation, C-SSL II divides problems into the following two types:

Discrete point input

In numerical differentiation, an appropriate B-spline interpolation function is first obtained to fit the given sample points $\left(x_{i} y_{i}\right)$ where $i=1,2, \ldots, n$, then it is differentiated.

See the Interpolation and approximation section in this chapter for a description of spline functions and the B-spline representation.

Function input

Given the function $f(x)$ and domain $[a, b], f(x)$ is expanded in Chebyshev series within a required accuracy. That is, it is approximated by the following functions:

$$
f(x) \approx \sum_{k=0}^{n-1} c_{k} T_{k}\left(\frac{2 x-(b+a)}{b-a}\right)
$$

Then by differentiating term by term.

$$
f^{(l)}(x) \approx \sum_{k=0}^{n-l-1} c_{k}^{l} T_{k}\left(\frac{2 x-(b+a)}{b-a}\right)
$$

the derivatives are expanded in Chebyshev series. The derivative values are obtained by summing the appropriate Chebyshev series at the point $x=v$ in the interval $[a, b]$.

Table 23 lists routines used for numerical differentiation.
Table 23 Routines used for numerical differentiation

Objective	Routine name	Method	Remarks
Derivative value	c_dbif1	B-spline interpolation (I)	Discrete point input
	c_dbif2	B-spline interpolation (II)	
	c_dbif3	B-spline interpolation (III)	
	c_dbif4	B-spline interpolation (IV)	
	c_dbsf1	B-spline smoothing	
	c_dbifd1	B-spline 2-dimensional interpolation (I-I)	Discrete point input 2dimensional
	c_dbifd3	B-spline 2-dimensional interpolation (III-III)	
	c_dbsfd1	B-spline two-dimensional smoothing	
Derivative function and derivative value	c_dfcheb	Fast cosine transformation	Function input, Chebyshev series expansion
	c_dgcheb	Backward recurrence equation	Chebyshev series derivative
	c_decheb	Backward recurrence equation	Summing Chebyshev series

3. Numerical quadrature

Numerical quadrature is divided into the following two types.

Integration of a tabulated function

Given function values $y_{i}=f\left(x_{i}\right), i=1, \ldots, n$ at discrete points $x_{1}<x_{2}<\ldots .<x_{n}$, the definite integral:

$$
S=\int_{x_{1}}^{x_{n}} f(x) d x
$$

is approximated using only the given function values y_{i}. The bounds of error of the approximated value cannot be calculated. Different routines are used depending on whether or not the discrete points are equally spaced.

Integration of a function

Given a function $f(x)$ and the interval of integration $[a, b]$, the definite integral:

$$
S=\int_{a}^{b} f(x) d x
$$

is calculated within a required accuracy. Different routines are used according to the form, characteristics, and the interval of integration of $f(x)$.

The following types of integrals are also supported.

$$
\begin{gathered}
\int_{0}^{\infty} f(x) d x \\
\int_{-\infty}^{\infty} f(x) d x \\
\int_{a}^{b} d x \int_{c}^{d} f(x, y) d y
\end{gathered}
$$

Routines used for numerical quadrature are shown in Table 24.
Table 24 Numerical quadrature routines

Objective	Routine name	Method	Remarks
1-dimensional finite interval (equally spaced)	c_dsimp1	Simpson's rule	Discrete point input
1-dimensional finite interval (unequally spaced)	c_dtrap	Trapezoidal rule	
	c_dbif1	B-spline interpolation (I)	
	c_dbif2	B-spline interpolation (II)	
	c_dbif3	B-spline interpolation (III)	
	c_dbif4	B-spline interpolation (IV)	
2-dimensional finite interval	c_dbsf1	B-spline smoothing	
	c_dbifd3	B-spline 2-dimensional interpolation (I-I)	B-spline 2-dimensional interpolation (III-III)

General conventions and comments on numerical quadrature

The routines used for numerical quadrature are classified primarily by the following characteristics.

- Dimensions of the variable of integration: 1,2 or 3 dimensions
- Interval of integration: dimensions finite interval, infinite interval, or semi-infinite interval.

Numerical integration methods differ depending on whether a tabulated function or a continuous function is given. For a tabulated function, since integration is performed using just the function values $y_{i}=f\left(x_{i}\right), i=1, \ldots n$ it is difficult to obtain an approximation with high accuracy. On the other hand, if a function is given, function values in general can be calculated anywhere (except for singular cases), thus the integral can be obtained to a desired precision by calculating a sufficient number of function values. Also, the bounds of error can be estimated.

Integrals of one-dimensional functions over a finite interval

Automatic quadrature routines

Four quadrature routines, c_dsimp2, c_daqn9, c_daqc8, and c_daqe are provided for the integration of

$$
\int_{a}^{b} f(x) d x,
$$

as shown in Table 24. All these routines are automatic quadrature routines, that is they calculate the integral to satisfy the desired accuracy when integrand $f(x)$, integration interval $[a, b]$, and a desired accuracy for the integral are given.

Generally in automatic quadrature routines, an integral calculation starts with only several abscissas (where the integrand is evaluated), and improves the integral by increasing the number of abscissas gradually until the desired accuracy is satisfied. Then the calculation stops and the integral value is returned.

In recent years, many automatic quadrature routines have been developed all over the world. These routines have been tested and compared with each other many times for reliability (i.e. ability to satisfy the desired accuracy) and economy (i.e. less calculation) by many persons. These efforts are reflected in the C-SSL II routines.

Adaptive method

This is the most commonly used type of automatic integration method. This is not a specific integration formula (for example, Simpson's rule, Newton-Cotes 9 point rule, or Gauss's rule, etc.), but a method which controls the number of abscissas and their positions automatically in response to the behavior of the integrand. That is, it locates abscissas densely where the integrand changes rapidly, or sparsely where it changes gradually. Routines c_dsimp2 and c_daqn9 use this method.

Routine selection

As a preliminary for routine selection, Table 25 shows several types of integrands from the viewpoint of actual use.

It is necessary in routine selection to know which routine is suitable for the integrand. The types of routines and functions are described below in conjunction with Table 25.

Table 25 Integrand type

Code	Meaning	Example
Smooth	Function with rapidly convergent power series.	$\int_{0}^{1} \mathrm{e}^{-x} d x$
Peak	Function with some high peaks and wiggles in the integration interval.	$\int_{-1}^{1} \frac{d x}{\left(x^{2}+10^{-6}\right)}$
Oscillatory	Function with severe, short length wave oscillations.	$\int_{0}^{1} \sin 100 \pi x d x$

Code	Meaning	Example
Singular	Function with algebraic singularity $\left(x^{\alpha},-1<\alpha\right)$ or $\operatorname{logarithmic~singularity~}(\log x)$.	$\int_{0}^{1} d x / \sqrt{x}$
Discontinuous	Function with discontinuities in the function value or its derivatives	$\int_{0}^{\pi} \cos x d x$

c_daqn9 Adaptive method based on Newton-Cotes' 9-point rule. This is the recommended adaptive method in because of its superior reliability or economy. Since this routine is good at detecting local actions of integrand, it can be used for functions which have singular points such as a algebraic singularity, logarithmic singularity, or discontinuities in the integration interval, and in addition, peaks.
c_daqc8 Since this routine is based on the Chebyshev series expansion of a function, the more effectively the function can be approximated, the better the convergence property of the integrand. For example, it can be used for smooth functions and oscillatory functions but is not suitable for singular functions and peak type functions.
c_daqe This method extends the integration interval $[a, b]$ to $(-\infty, \infty)$ by variable transformation and uses the trapezoidal rule. In this processing, the transformation is selected so that the integrand after conversion will decay in a manner of a double exponential function $(\exp (-a \cdot \exp |x|)$, where $a>0)$ when $x \rightarrow \infty$. Due to this operation, the processing is still effective even if the function changes rapidly near the end points of the original interval $[a, b]$. This routine is well suited for functions which have an algebraic singularity or logarithmic singularity only at the end points; processing is more successful than any other routine, but is not as successful on functions with interior singularities.

Table 26 summarizes these descriptions. The routine marked by ' OK ' is the most suitable for the corresponding type of function, and routines marked by ' X ' should not be used for the type. A blank indicates that the routine is not always suitable but can be used. All these routines can satisfy the desired accuracy for the integral of smooth type. However, c_daqc8 is best in the sense of economy, that is, the amount of calculation is the least among the three.

Table 26 Routine selection

	Function type						
Routine	Smooth	Peak	Oscillatory	End point singularity	Interior singularit y	Discontinuous	Unknown*
C_daqn9		OK			OK	OK	OK
C_daqc8	OK	X	OK	X	X	X	
C_daqe				OK	X	X	

* Functions with unknown characteristics

C-SSL II provides routines c_daqmc8 and c_daqme for integration in up to 3 dimensions. They are automatic quadrature routines as described below.

[^0]
Differential equations

1. Outline

This section describes the solution of initial value problems of ordinary differential equations.

Initial value problems of systems of first order ordinary differential equations are solved directly.

$$
\begin{array}{cc}
y_{1}^{\prime}=f_{1}\left(x, y_{1}, \cdots, y_{n}\right), & y_{10}=y_{1}\left(x_{0}\right) \\
y_{2}^{\prime}=f_{2}\left(x, y_{1}, \cdots, y_{n}\right), & y_{20}=y_{2}\left(x_{0}\right) \tag{1}\\
\vdots & \vdots \\
y_{n}^{\prime}=f_{n}\left(x, y_{1}, \cdots, y_{n}\right), & y_{n 0}=y_{n}\left(x_{0}\right)
\end{array}
$$

Initial value problems of high order ordinary differential equations can be reduced to the form shown in (1). Namely, when a high order equation:

$$
\begin{gathered}
y^{(k)}=f\left(x, y, y^{\prime}, y^{\prime \prime}, \cdots, y^{(k-1)}\right) \\
y_{10}=y\left(x_{0}\right), y_{20}=y^{\prime}\left(x_{0}\right), \cdots, y_{k 0}=y^{(k-1)}\left(x_{0}\right)
\end{gathered}
$$

is handled, we can let:

$$
y_{1}=y(x), y_{2}=y^{\prime}(x), \cdots, y_{k}=y^{(k-1)}(x)
$$

Then, the high order equations can be reduced to and expressed as:

$$
\begin{array}{cc}
y_{1}^{\prime}=y_{2}, & y_{10}=y_{1}\left(x_{0}\right) \\
y_{2}^{\prime}=y_{3}, & y_{20}=y_{2}\left(x_{0}\right) \\
\vdots & \vdots \tag{2}\\
y_{k}^{\prime}=f\left(x, y_{1}, \cdots, y_{k}\right), & y_{k 0}=y_{k}\left(x_{0}\right)
\end{array}
$$

2. Ordinary differential equations

To solve the initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$ on the interval $\left[x_{0}, x_{e}\right]$ means to obtain approximate solutions at discrete points $x_{0}<x_{1}<x_{2}<\ldots<x_{\mathrm{e}}$ step by step as shown in Figure 23.

Figure 23 Approximate solutions of $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}$

Solution output

In Figure 23, solution output points $x_{1}, x_{2}, x_{3}, \ldots$ are either specified by the user or selected as a result of step-size control by the routine. The purpose of solving the differential equations is to obtain:

- the solution $y\left(x_{e}\right)$ only at x_{e},
- the solutions at the points selected as a result of step-size control by the routine. In this case, the purpose is to know the behavior of solutions, and no restriction is necessary to the solution output points because the behaviour of the solutions is all that is needed,
- the solution at user-specified points $\left\{\xi_{j}\right\}$ or at equally spaced points.

The C-SSL II ordinary differential equation routines provide two return mechanisms to the user program from the routine corresponding to the purposes described above.

- Final value output - when the solution $y\left(x_{e}\right)$ is obtained, return to the user program. To obtain output at specified points, set xe to ξ_{i} sequentially, where $i=1,2, \ldots$, and call the routine repeatedly.
- Step output - under step-size control, return to the user program after one step integration. The user program can call this routine repeatedly to obtain output at final output points.

C-SSL II provides routines c_dodrk1, c_dodam and c_dodge which incorporate final value output and step output. The user can select the manner of output by specifying an argument.

Stiff differential equations

This section describes stiff differential equations, which appear in many applications, and presents definitions and examples.

The equations shown in (1) can be expressed in vector notation as shown in (3).

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{y} & =\left(y_{1}, y_{2}, \cdots, y_{n}\right)^{\mathrm{T}}, \\
\mathbf{f}(x, \mathbf{y}) & =\left(f_{1}(x, \mathbf{y}), f_{2}(x, \mathbf{y}), \cdots, f_{n}(x, \mathbf{y})\right)^{\mathrm{T}}, \\
f_{i}(x, \mathbf{y}) & =f_{i}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)
\end{aligned}
$$

Suppose $\mathbf{f}(x, \mathbf{y})$ is linear, that is

$$
\begin{equation*}
\mathbf{f}(x, \mathbf{y})=\mathbf{A y}+\boldsymbol{\Phi}(x) \tag{4}
\end{equation*}
$$

where, \mathbf{A} is a constant coefficient matrix and $\Phi(x)$ is an appropriate function vector. Then, the solution for (3) can be expressed by using eigenvalues of \mathbf{A} and the corresponding eigenvectors as follows:

$$
\begin{gather*}
\mathbf{y}(x)=\sum_{i=1}^{n} k_{i} e^{\lambda_{i} x} \mathbf{u}_{i}+\boldsymbol{\Psi}(x) \tag{5}\\
k_{i}: \text { constant }
\end{gather*}
$$

Let us assume the following conditions for λ_{i} and $\Psi(x)$ in (5):

- $\quad \operatorname{Re}\left(\lambda_{\mathrm{i}}\right)<0$, for $i=1,2, \ldots, n$
- $\Psi(x)$ is smoother than any $e^{\lambda i x}$ (that is, it has rapidly convergent power expansion).

Under these conditions, as x tends to infinity,

$$
\sum_{i=1}^{n} k_{i} e^{\lambda_{i} x} \mathbf{u}_{i} \rightarrow 0
$$

Therefore, the solution $\mathbf{y}(x)$ tends to $\Psi(x)$. After $\Psi(x)$ has become dominant, the solution can be obtained by the approximate solution for $\Psi(x)$. Relatively large step-sizes can be used.

However, attempts to use methods such as Euler and classical Runge-Kutta encounter a phenomenon that errors introduced at a certain step increase from step to step. Therefore, when using these methods, the step sizes are substantially restricted. The larger the value of $\max \left(\left|\operatorname{Re}\left(\lambda_{i}\right)\right|\right)$, the smaller the step size must be

Although solution $\mathbf{y}(x)$ can be approximated numerically by the smooth function $\Psi(x)$, the step sizes must be small for integration. This causes an imbalance between two step sizes, one that is small enough to approximate the solution numerically, and the other that is required for error protection.

If $\Phi(x)=0$, that is, $\Psi(x)=0$ in (3), solution $\mathbf{y}(x)$ becomes smaller. Therefore, it is actually approximated by the term $k_{i} e^{\lambda i x}$ \mathbf{u}_{i} corresponding to the smallest $\left|\operatorname{Re}\left(\lambda_{i}\right)\right|$. In this case, if $\max \left|\operatorname{Re}\left(\lambda_{i}\right)\right|$ is large, the above mentioned difficulty occurs.

A stiff differential equation is defined as follows:

Definition 1

When the linear differential equation

$$
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{A} \mathbf{y}+\boldsymbol{\Phi}(x) \tag{6}
\end{equation*}
$$

satisfies the (7) and (8),

$$
\begin{gather*}
\operatorname{Re}\left(\lambda_{i}\right)<0, i=1,2, \cdots, n \tag{7}\\
\frac{\max \left(\mid \operatorname{Re}\left(\lambda_{i}\right)\right) \mid}{\min \left(\left|\operatorname{Re}\left(\lambda_{i}\right)\right|\right)} \gg 1 \tag{8}
\end{gather*}
$$

they are called stiff differential equations. The left side of the equation in (8) is called stiffness ratio. If this value is large, it is strongly stiff: otherwise, it is mildly stiff. Strong stiffness with a stiffness ratio of magnitude 10^{6} is quite common.

An example of stiff linear differential equations is shown in (9). Its solution is shown in (10) (See Figure 24).

$$
\begin{gather*}
\mathbf{y}^{\prime}=\left(\begin{array}{cc}
998 & 1998 \\
-999 & -1999
\end{array}\right) \mathbf{y} \quad, \quad \mathbf{y}(0)=\binom{1}{0} \tag{9}\\
\mathbf{y}=e^{-x}\binom{2}{-1}+e^{-1000 x}\binom{-1}{1} \tag{10}
\end{gather*}
$$

Obviously, the following holds as $x \rightarrow \infty, y_{1} \rightarrow 2 e^{-x}, y_{2} \rightarrow-e^{-x}$

Figure 24 Approximate graph for the solution in (10)

Suppose $\mathbf{f}(x, y)$ is nonlinear. The eigenvalues of the Jacobian matrix

$$
\mathbf{J}=\frac{\partial \mathbf{f}(x, \mathbf{y})}{\partial \mathbf{y}}
$$

determines stiffness, where the eigenvalues vary with x. Then, Definition 1 is extended for nonlinear equations as follows.

Definition 2

When the nonlinear differential equation $\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y})$ satisfies the following conditions in a certain interval, I , it is said to be stiff in that interval.

$$
\begin{gathered}
\operatorname{Re}\left(\lambda_{i}(x)\right)<0, \quad i=1,2, \cdots, n \quad x \in \mathrm{I} \\
\frac{\max \left(\left|\operatorname{Re}\left(\lambda_{i}\right)\right|\right)}{\min \left(\left|\operatorname{Re}\left(\lambda_{i}\right)\right|\right)} \gg 1, x \in \mathrm{I}
\end{gathered}
$$

where $\lambda_{i}(x)$ are the eigenvalues of \mathbf{J}.

Whether the given equation is stiff or not can be checked to some extent as follows:

- When the equation is linear as shown in (6), the stiffness can be checked directly by calculating the eigenvalues of \mathbf{A}.
- When the equation is nonlinear, routine c_dodam can be used to check stiffness. c_dodam uses the Adams method by which non-stiff equations can be solved. c_dodam notifies of stiffness via the icon argument if the equation is stiff.

Routine c_dodge can be used to solve stiff equations.

Routine selection

Table 27 lists routines used for differential equations.

- C_dodge for stiff equations.
- c_dodrk1 or c_dodam for non-stiff equations.
- c_dodrk1 is effective when the following conditions are satisfied:
- The accuracy required for solution is not high.
- When requesting output of the solution at specific points of independent variable x, the interval between points is wide enough.
- The user should use c_dodam when any of these conditions is not satisfied.
- Use c dodam at first if the equation is not known to be stiff or non-stiff.
- c_dodam can be changed to C_dodge if stiffness is detected.

Table 27 Ordinary differential equation routines

Objective	Routine name	Method	Comments
Initial value problem	c_dodrk1	Rung-Kutta-Verner method	Variable step size
	c_dodam	Adams method	Variable step size, Variable order
	c_dodge	Gear's method	Variable step size, Variable order (Stiff equations)

Special functions

1. Outline

The special functions of C-SSL II are functions not available as Fortran basic functions. This includes some special functions where the variables and functions are complex.

The following properties are common in special function routines.

Accuracy

The balance between accuracy and speed is important and therefore taken into account when selecting calculation formulas. In C-SSL II, calculation formulas have been selected such that the theoretical accuracies (accuracies in approximation) are guaranteed to be within about 16 digits. However, since the accuracy of function values depends on the number of working digits available for calculation in the computer, the theoretical accuracy cannot always be assured. The accuracy of the double precision routines has been checked by comparing their results with those of extended precision ("long double") routines that have much higher precision than double precision routines.

Speed

Special functions are designed with an emphasis on accuracy first and speed second. Though real type functions may be calculated with complex type function routines, separate routines are available with greater speed for real type calculations. For frequently used functions, both general and limited purpose routines are available.

There are some important aspects of the C-SSL II routines for special functions that must be taken into account:

Calling method

Since various difficulties may occur in calculating special functions, routines for these functions have the icon argument to indicate how computations have finished. Accordingly, the C-SSL II routines return the result of the special function as one of the argument values.

icon

Special functions use Fortran basic functions, such as exponential functions and trigonometric functions. If errors occur in these basic functions, such as overflow or underflow, detection of the real cause of problems will be delayed. Therefore, to identify such troubles as early as possible, checks are made before using basic functions in special function routines, and if problems are detected, information about them is returned in the argument icon.

2. Elliptic integrals

Elliptic integrals are shown in Table 28.

A second order iteration method can be used to calculate complete elliptic integrals, however, it has the disadvantage that the speed depends upon the magnitude of the argument. In C-SSL II routines, an approximation formula is used so that a constant speed is maintained.

Table 28 Routines for elliptic integrals

Item	Mathematical symbol	Routine name
Complete elliptic integral of the first kind	$K(x)$	c_dceli1
Complete elliptic integral of the second kind	$E(x)$	c_dceli2

3. Exponential integral

The exponential integral routine is shown in Table 29.

Table 29 Routine for exponential integral

Item	Mathematical symbol	Routine name
Exponential integral	$E_{i}(-x), x>0$	C_dexp1
	$\bar{E}_{i}(x), x>0$	

Since the exponential integral is rather difficult to compute, various formulas are used for various ranges of the variable.

4. Sine and cosine integrals

Sine and cosine integrals are shown in Table 30.

Table 30 Routines for sine and cosine integrals

Item	Mathematical symbol	Routine name
Sine integral	$S_{i}(x)$	c_dsini
Cosine integral	$C_{i}(x)$	c_dcosi

5. Fresnel integrals

Fresnel integrals are shown in Table 31.
Table 31 Routines for Fresnel integrals

Item	Mathematical symbol	Routine name
Sine Fresnel integral	$S(x)$	c_dsfri
Cosine Fresnel integral	$C(x)$	c_dcfri

6. Gamma functions

Gamma functions are shown in Table 32.
Table 32 Routines for gamma functions

Item	Mathematical symbol	Routine name
Incomplete gamma function of first kind	$\gamma(v, x)$	c_digam1
Incomplete gamma function of second kind	$\Gamma(v, x)$	C_digam2

Between the complete Gamma function $\Gamma(v)$ and the first and the second kind incomplete Gamma functions the following relationship holds:

$$
\Gamma(v)=\gamma(v, x)+\Gamma(v, x)
$$

The corresponding C basic external function should be used for $\Gamma(v)$.

7. Error functions

Error functions are shown in Table 33.
Table 33 Routines for error functions

Item	Mathematical symbol	Routine name
Inverse error function	$\operatorname{erf}^{1}(x)$	c_dierf
Inverse complementary error function	$\operatorname{erfc}^{-1}(x)$	c_dierfc

The relationship

$$
\operatorname{erf}^{1}(x)=\operatorname{erfc}^{-1}(1-x)
$$

holds between the inverse error function and inverse complementary error function. Each is evaluated by using the function that is appropriate for that range of x .

The corresponding C basic functions must be used for $\operatorname{erf}(x)$ and $\operatorname{erfc}(x)$.

8. Bessel functions

Bessel functions are classified into various types as shown in Table 34 and Table 35. Since zero-order and first-order Bessel functions are used quite often, limited purpose routines, which are quite fast, are provided.

Table 34 Routines for Bessel functions with a real argument

Item		Mathematical symbol	Routine name
First kind	Zero-order Bessel function	$J_{0}(x)$	c_dbj0
	First-order Bessel function	$J_{1}(x)$	c_dbj1
	Integer order Bessel function	$J_{\mathrm{n}}(x)$	c_dbjn
	Real-order Bessel function	$\begin{aligned} & J_{\mathrm{v}}(x) \\ & (v \geq 0.0) \end{aligned}$	c_dbjr
	Zero order modified Bessel function	$I_{0}(x)$	c_dbi0
	First order modified Bessel function	$I_{1}(x)$	c_dbi1
	Integer order modified Bessel function	$I_{n}(x)$	c_dbin
	Real order modified Bessel function	$\begin{aligned} & I_{\mathrm{v}}(x) \\ & (v \geq 0.0) \end{aligned}$	c_dbir
Second kind	Zero-order Bessel function	$Y_{0}(x)$	c_dby0
	First-order Bessel function	$Y_{1}(x)$	c_dby1
	Integer order Bessel function	$Y_{n}(x)$	c_dbyn
	Real-order Bessel function	$\begin{aligned} & Y_{v}(x) \\ & (v \geq 0.0) \end{aligned}$	c_dbyr
	Zero order modified Bessel function	$K_{0}(x)$	c_dbk0
	First order modified Bessel function	$K_{1}(x)$	c_dbk1
	Integer order modified Bessel function	$K_{n}(x)$	c_dbkn
	Real order modified Bessel function	$K_{v}(x)$	c_dbkr

Table 35 Bessel function routines with a complex argument

Item		Mathematical symbol	Routine name
First kind	Integer order Bessel function	$J_{n}(z)$	C_dcbjn
	Real order Bessel function	$J_{v}(z)$ $(v \geq 0.0)$	c_dcbjr
	Integer order modified Bessel function	$I_{n}(z)$	C_dcbin
	Integer order Bessel function	$Y_{n}(z)$	c_dcbyn
	Integer order modified Bessel function	$K_{n}(z)$	c_dcbkn

9. Normal distribution functions

Normal distribution functions are shown in Table 36.

Table 36 Normal distribution function routines

Item	Mathematical symbol	Routine name
Normal distribution function	$\phi(x)$	c_dndf
Complementary normal distribution function	$\psi(x)$	c_dndfc
Inverse normal distribution function	$\phi^{-1}(x)$	c_dindf
Inverse complementary normal distribution	$\psi^{-1}(x)$	c_dindfc

Pseudo-random numbers

1. Outline

This section deals with the generation of pseudo-random (real or integer) numbers with various probability distribution functions.

2. Pseudo-random number generation

Random numbers with any given probability distribution can be obtained by transformation of the uniform pseudorandom numbers. Let $g(x)$ be the probability density function of the desired distribution. Then, the required pseudorandom numbers y are obtained by the inverse function $y=F^{-1}(u)$ of

$$
F(y)=\int_{0}^{y} g(x) d x
$$

where $F(y)$ is the cumulative distribution function of $g(x)$ and u is a uniform pseudo-random number.

Pseudo-random numbers with discrete distribution are complicated slightly by intermediate calculations. For example the routine c_dranp2 first generates a table of cumulative Poisson distribution and a reference table which refers efficiently to a generated uniform number and then produces Poisson pseudo-random integers.

Table 37 shows a list of routines provided in the C-SSL II. These routines provide an argument to be used as a starting value to control random number generation. Usually, only one setting of the argument will suffice to yield a sequence of random numbers. Notice that some of these routines do NOT return a double argument value.

Table 37 List of routines for pseudo random number generation

Type	Routine name
Fast uniform [0,1) pseudo-random numbers	c_dvrau4
Exponential pseudo-random numbers	c_rane2
Fast normal pseudo-random numbers	c_dvran3 c_dvran4
Poisson pseudo-random integers	c_ranp2
Binomial pseudo-random numbers	c_ranb2

Description of the C-SSL II Routines

c_daggm

$$
\begin{array}{|l}
\hline \text { Addition of two matrices (real + real). } \\
\hline \text { ierr }=c _\operatorname{daggm}(\mathrm{a}, \mathrm{ka}, \mathrm{~b}, \mathrm{~kb}, \mathrm{c}, \mathrm{kc}, \mathrm{~m}, \mathrm{n}, \\
\text { \&icon); }
\end{array}
$$

1. Function

This function performs addition of two $m \times n$ general real matrices, \mathbf{A} and \mathbf{B}.

$$
\begin{equation*}
\mathbf{C}=\mathbf{A}+\mathbf{B} \tag{1}
\end{equation*}
$$

In (1), the resultant \mathbf{C} is also an $m \times n$ matrix $(m, n \geq 1)$.

2. Arguments

The routine is called as follows:
ierr = c_daggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, \&icon); where:

a	double a [m][ka]	Input	Matrix A.
ka	int	Input	C fixed dimension of array a $(\geq \mathrm{n})$.
b	double b[m][kb]	Input	Matrix B.
kb	int	Input	C fixed dimension of array $\mathrm{b}(\geq \mathrm{n})$.
c	$\begin{aligned} & \text { double } \\ & c[\mathrm{~m}][\mathrm{kc}] \end{aligned}$	Output	Matrix C. See Comments on use.
kc	int	Input	C fixed dimension of array $\mathrm{C}(\geq \mathrm{n})$.
m	int	Input	The number of rows m for matrices \mathbf{A}, \mathbf{B} and \mathbf{C}.
n	int	Input	The number of columns n for matrices \mathbf{A}, \mathbf{B} and \mathbf{C}.
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	$\bullet \quad \mathrm{m}<1$	
	$\bullet \mathrm{n}<1$	
	$\bullet \quad \mathrm{ka}<\mathrm{n}$	
	$\bullet \quad \mathrm{kb}<\mathrm{n}$	
	$\bullet \quad \mathrm{kc}<\mathrm{n}$	

3. Comments on use

Efficient use of memory

Storing the solution matrix \mathbf{C} in the same memory area for matrix $\mathbf{A}($ or $\mathbf{B})$ is permitted if array contents (matrix \mathbf{A}) can be discarded after computation. To take advantage of this efficient reuse of memory, the array and dimensioning associated for matrix \mathbf{A} need to appear in the locations reserved for \mathbf{C} on the function argument list, as indicated below.

For A:

$$
\text { ierr }=\text { c_daggm(a, ka, b, kb, a, ka, m, n, \&icon); }
$$

And for B:
ierr = c_daggm(a, ka, b, kb, b, kb, m, n, \&icon);

Note, if both matrices \mathbf{A} and \mathbf{B} are required after the solution then a separate array must be supplied for storing matrix \mathbf{C}.

4. Example program

This example program performs a matrix addition and checks the results. Each matrix is 100 by 100 elements.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX 100
MAIN__()
{
    int ierr, icon;
    int n, m, ka, kb, kc, i, j;
    double eps, err;
    double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX];
    /* initialize matrices*/
    m = NMAX;
    n = NMAX;
    ka = NMAX
    kb = NMAX;
    kc = NMAX
    for (i=0;i<n;i++)
        for (j=0;j<n;j++) {
            a[i][j] = n-i-j;
            b[i][j] = i+j;
        ** }
    /* add matrices */
    ierr = c_daggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, &icon);
    if (icon != 0) {
        printf("ERROR: c_daggm failed with icon = %d\n", icon);
        exit(1);
    }*
    /* check matrix */
    eps = 1e-6;
    for (i=0;i<n;i++)
        for (j=0;j<n;j++) {
            err = fabs((c[i][j]-n)/n);
            if (err > eps) {
                    printf("WARNING: result inaccurate\n");
                    exit(1);
                }
        }
    printf("Result OK\n");
    return(0);
}
```


c_dakher

```
Aitken-Hermite interpolation.
ierr = c_dakher(x, y, dy, n, v, \&m, \&eps, \&f,
vw, \&icon);
```


1. Function

Given discrete points $x_{1}<x_{2}<\ldots<x_{n}$, with their corresponding function values $y_{i}=f\left(x_{i}\right)$, and derivative values $y_{i}^{\prime}=f^{\prime}\left(x_{i}\right), i=1,2, \ldots, n$, this routine interpolates for a given point $x=v$ using Aitken-Hermite interpolation.

2. Arguments

The routine is called as follows:
ierr = c_dakher(x, y, dy, n, v, \&m, \&eps, \&f, vw, \&icon);
where:

x	double $\mathrm{x}[\mathrm{n}]$	Input	Discrete points x_{i}.
y	double $\mathrm{y}[\mathrm{n}]$	Input	Function values y_{i}.
dy	double $\mathrm{dy}[\mathrm{n}]$	Input	Derivative values y_{i}^{\prime}.
n	int	Input	Number of discrete points n.
v	double	Input	Interpolation point v.
m	int	Input	Number of discrete points to be used in the interpolation $(\leq n)$.
		Ouput	Number of discrete points actually used. See Comments on use.
eps	double	Input	Threshold value.
		Output	Estimate of the absolute error of the interpolated value.
f	double	Output	Interpolated value.
vw	double vw[5n]	Work	
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
10000	The interpolation point v matched a discrete point x [i] for some i.	f is set to y [i].
30000	One of the following has occurred: - $n<1$ - $m=0$ - $x[i-1] \geq x[i]$ for some i	f is set to zero.

3. Comments on use

m
To specify m :

1. When it is known that in a neighbourhood of $x=v$ the original function can be approximated well by polynomials of degree $2 k-1$ or less, it is natural to use a polynomial of degree $2 k-1$ or less. In this case, argument m should be specified equal to k.
2. When the condition in 1 is unknown, m should be specified equal to n.

In the above two cases, the routine will determine the actual degree of polynomial to be used by applying a stopping criterion given below, and the actual number of discrete points to be used in the interpolation will be output in m .
3. When the user wants an interpolated value that is obtained using exactly m points, without applying the stopping criterion, m must be specifed equal to $-m$ (for example, $\mathrm{m}=-k$ or $\mathrm{m}=-n$).

Stopping criterion and eps

Consider the effect of the degree of interpolation on numerical behaviour. Let Z_{j} denote the interpolated value obtained using j discrete points near $x=v$ (discrete points selected such that the points closest to $x=v$ are selected first), and let D_{j} denote the difference defined as $D_{j} \equiv Z_{j}-Z_{j-1}$ with $j=2, \ldots, m$, and m the maximum number of discrete points to be used. In general, as the degree of interpolation polynomial increases, the curve $\left|D_{j}\right|$ behaves similar to that shown in Figure 25

Figure 25 The curve of $\left|D_{j}\right|$ as degree of polynomial increases

In Figure 25, at l the truncation error and the calculation error of the interpolation polynomial are both at the same level, and Z_{l} is usually considered the numerical optimum interpolated value. However, $\left|D_{j}\right|$ can exhibit various types of behaviour, depending on the tabulated function, for example, oscillation can occur as in Figure 26.

Figure 26 Possible behaviour of $\left|D_{j}\right|$

In the case of Figure 26, Z_{l}, and not Z_{s}, should be used for the interpolated value. Therefore the interpolated value to be output is determined as shown below:

When calculating $D_{2}, D_{3}, \ldots, D_{m}$,

- if $\left|D_{j}\right|>|\mathrm{eps}|, j=2,3 \ldots, m$ then l is determined such that $\left|D_{l}\right|=\min _{j}\left(\left|D_{j}\right|\right)$
- if $\left|D_{j}\right| \leq|\mathrm{eps}|$, for a certain j, then from j on, l is determined such that $\left|D_{l}\right| \leq\left|D_{l+1}\right|$, or if this does not occur then l is set to m.
In all cases, the arguments f, m, and eps are set to the values of Z_{l}, l, and $\left|D_{l}\right|$.
The user can specify eps $=0$ when Z_{j} corresponding to the minimum $\left|D_{j}\right|$ is to be output as the interpolated value.

4. Example program

This program interpolates the function $f(x)=\sin x$ at 10 equally spaced points in the interval $[0, \pi]$. It then computes approximations to the function value associated with a particular point and checks the result.

```
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
#define NMAX 10
MAIN__()
{
    int ierr, icon;
    int i, n, m;
    double x[NMAX], y[NMAX], dy[NMAX], vw[5*NMAX];
    double p, h, v, f, eps, exact, pi;
    /* initialize data */
    n = NMAX;
    m = n;
    p = 0;
    pi = 2*asin(1);
    h = pi/(n-1);
    /* set function and derivative values */
    for (i=0;i<n;i++) {
        x[i] = p+i*h;
        y[i] = sin(x[i]);
        dy[i] = cos(x[i]);
    }
    eps = 1e-6;
    v = pi/2;
    exact = sin(v);
    /* interpolate */
    ierr = c_dakher(x, y, dy, n, v, &m, &eps, &f, vw, &icon);
    printf("icon = %i f = %12.6e m = %i eps = %12.6e\n", icon, f, m, eps);
```

```
eps = 1e-6;
/* check result */
if (fabs((f-exact)/exact) > eps)
    printf("Inaccurate result\n");
else
        printf("Result OK\n");
    return(0);
}
```


5. Method

The method used is the Aitken-Hermite interpolation method. For further information consult the entry for AKHER in the Fortran SSL II User's Guide and [40].

c_daklag

```
Aitken-Lagrange interpolation.
ierr = c_daklag(x, y, n, v, &m, &eps, &f, vw,
    &icon);
```


1. Function

Given discrete points $x_{1}<x_{2}<\ldots<x_{n}$ and their corresponding function values $y_{i}=f\left(x_{i}\right)$ for $i=1, \ldots, n$, this function interpolates for a given point $x=v$ using the Aitken-Lagrange interpolation.

2. Arguments

The routine is called as follows:
ierr = c_daklag(x, y, n, v, \&m, \&eps, \&f, vw, \&icon);
where:

x	double $x[n]$	Input	Discrete points x_{i}.
y	double y[n]	Input	Function values y_{i}.
n	int	Input	Number of discrete points n.
V	double	Input	Interpolation point v.
m	int	Input	Number of discrete points to be used in the interpolation ($\leq n$)
		Output	Number of discrete points actually used. See Comments on use.
eps	double	Input	Threshold value.
		Output	Absolute error of the interpolated value. See Comments on use.
f	double	Output	Interpolated value.
vw	double	Work	
	vw[4*n]		
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
10000	The interpolation point v matched a discrete point x_{i}.	f is set to y_{i}.
30000	One of the following has occurred: - $\mathrm{n}<1$ - $m=0$ - $x_{i} \geq x_{i+1}$	f is set to zero.

3. Comments on use

m

1. When it is known that in the neighbourhood of $x=v$, the original function can be well approximated by polynomials of degree k or less, it is natural to use interpolating polynomials of degree k or less. In this case, argument m should be specified equal to $k+1$.
2. When the condition in 1 is unknown, m should be the same as argument n.
3. It is possible that the user wants an interpolated value that is obtained by using exactly m points without applying the stopping criterion. In this case, the user can specify m equal to $-m$.

Stopping criterion

First, lets consider the effect of the degree of interpolation on numerical behaviour. If we let Z_{j} to denote the interpolated value obtained by using j discrete points near $x=v$ (discrete points are selected such that the points closest to $x=v$ are selected first). The difference D_{j} is defined as:

$$
D_{j} \equiv Z_{j}-Z_{j-1}
$$

with $j=2, \ldots, m$, and m is the maximum number of discrete points. In general, as the degree of interpolation polynomial increases, the curve for $\left|D_{j}\right|$ would behave similar to what is in Figure 27.

Figure 27 The curve of $\left|D_{j}\right|$ as degree of polynimial increases

In Figure1, l indicates that the truncation error and the calculation error of the approximation polynomial are both at the same level. Where Z_{l} is usually considered as the numerical optimum interpolated value.

eps

The following conditions are considered. Convergence is tested, as described above, but D_{j} can exhibits various types of behaviour depending on the tabulated function, as shown in Figure 28, vacillation can occur in some cases.

Figure 28 Behaviour of $\left|D_{j}\right|$

In this case, Z_{l} instead of Z_{s} should be used for the interpolated value. Based on this, the interpolated value to be output is determined as below.

When calculating $D_{2,} D_{3}, \ldots, D_{m}$:

- If $\left|D_{j}\right|>|\mathrm{eps}|$ with $j=2,3, \ldots, m$ then l is determined such that

$$
\begin{equation*}
\left|D_{l}\right|=\min \left|D_{j}\right| \tag{1}
\end{equation*}
$$

- If $\left|D_{j}\right| \leq|\mathrm{eps}|$ occurs for a certain j then from then on l is determined such that

$$
\begin{equation*}
\left|D_{l}\right| \leq\left|D_{l+1}\right| \tag{2}
\end{equation*}
$$

and Z_{l}, l, and D_{j} are output. If (2) does not occur then l is set to m and the output are Z_{m}, m and $\left|D_{j}\right|$.
If the user specifies eps as zero then Z_{j} corresponding to the minimum $\left|D_{j}\right|$ is output as the interpolated value.

4. Example program

This program evaluates the function $f(x)=\sin (x) \sqrt{x}$ at 10 equally spaced points in the interval $[0,1]$ and then uses the interpolation routine to estimate the function value at a certain point, then checks the result.

```
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
#define NMAX 10
MAIN__()
{
    int ierr, icon;
    int i, n, m;
    double x[NMAX], y[NMAX], v, f, eps, vw[4*NMAX], h, p, exact;
    /* initialize data */
    n = NMAX;
    p = 0;
    h = 1.0/n;
    for (i=0;i<n;i++) {
        x[i] = p;
        y[i] = sin(p)*sqrt(p);
        p = p + h;
    }
    m = n;
    v = x[n/2] + (x[n/2+1]-x[n/2])/2;
    eps = 1e-6;
    exact = sin(v)*sqrt(v);
    /* interpolate */
    ierr = c_daklag(x, y, n, v, &m, &eps, &f, vw, &icon);
    printf("icon = %i f = %12.6e m = %i eps = %12.6e\n", icon, f, m, eps);
    eps = 1e-6;
    /* check result */
    if (fabs((f-exact)/exact) > eps)
        printf("Inaccurate result\n");
    else
        printf("Result OK\n");
    return(0);
}
```


5. Method

The method used is the Aitken-Lagrange interpolation method. For further information consult the entry for AKLAG in the Fortran SSL II User's Guide and [89].

c_dakmid

$$
\begin{array}{|l}
\hline \text { Two-dimensional quasi-Hermite interpolation. } \\
\hline \text { ierr = c_dakmid(x, nx, y, ny, fxy, k, \&isw, } \\
\text { vx, \&ix, vy, \&iy, \&f, vw, \&icon); }
\end{array}
$$

1. Function

Given function values $f_{i j}=f\left(x_{i}, y_{j}\right)$ at points $\left(x_{i}, y_{j}\right)$ where $x_{1}<x_{2}<\ldots<x_{n_{x}}$ for $i=1, \ldots, n_{x}$ and $y_{1}<y_{2}<\ldots<y_{n_{y}}$ for $j=1, \ldots, n_{y}$, an interpolated value at the point $P\left(v_{x}, v_{y}\right)$ is obtained by using the piecewise two-dimensional quasi-Hermite interpolating function of dually degree 3 , where $x_{1} \leq v_{x} \leq x_{n_{x}}$ and $y_{1} \leq v_{y} \leq y_{n_{y}}$. Note that n_{x} and n_{y} must be greater than or equal to 3 .

2. Arguments

The routine is called as follows:

X	double \times [nx]	Input	Discrete points in the x-direction x_{i}.
nx	int	Input	Number of discrete points in x-direction n_{x}.
y	double y[ny]	Input	Discrete points in the y-direction y_{i}.
ny	int	Input	Number of discrete points in y-direction n_{y}.
fxy	double $f x y[n x][k]$	Input	Function values $f_{i j}$.
k	int	Input	C fixed dimension of array $f x y$ (\geq ny).
isw	int	Input	isw $=0$ on first call. Repeated calls leave isw unchanged, as when a series of interpolated values are needed with the same data set.
		Output	Information on (i, j) that satisfies $x_{i} \leq v_{x}<x_{i+1}$ and $x_{j} \leq v_{y}<x_{j+1}$ for repeated calls. Set isw $=0$ when starting with new data set.
vx	double	Input	The x-coordinate of point $P\left(v_{x}, v_{y}\right)$.
ix	int	Input	The i-th element that satisfies $x_{i} \leq v_{x}<x_{i+1}$. Note that due to the C indexing, $\mathrm{ix}=i-1$. When $v_{x}=x_{n_{x}}$ then $\mathrm{ix}=n_{x}-2$.
		Output	The i-th element that satisfies $x_{i} \leq v_{x}<x_{i+1}$. See Comments on use.
vy	double	Input	The y-coordinate of point $P\left(v_{x}, v_{y}\right)$.
iy	int	Input	The j-th element that satisfies $y_{j} \leq v_{y}<y_{j+1}$. Note that due to the C indexing, iy $=j-1$. When $v_{y}=y_{n_{y}}$ then iy $=n_{y}-2$.
		Output	The j-th element that satisfies $y_{i} \leq v_{v}<y_{i+1}$. See Comments on use.
f	double	Output	Interpolated value.
Vw	double vw[50]	Work	Do not alter contents when repeating calls.
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
10000	Either $x[i x] \leq v x<x[i x+1]$ or $y[i y] \leq v y<y[i y+1]$ is not satisfied.	ix or iy satisfying the relationship on the left is searched for in the function and the processing is continued.
29000	Memory allocation error.	Bypassed.
30000	One of the following has occurred: - $\quad \mathrm{vx}<\mathrm{x}[0]$ or $\mathrm{vx}>\mathrm{x}[\mathrm{nx}-1]$ - $\quad v y<y[0]$ or $v y>y[n y-1]$ - isw has an invalid value also when isw $=0$, one of the following my have occurred: - $\quad \mathrm{x}[\mathrm{i}] \geq \mathrm{x}[\mathrm{i}+1]$ exists - $y[j] \geq y[j+1]$ exists - $\mathrm{nx}<3$ or $\mathrm{ny}<3$ - $k<n y$	Bypassed.

3. Comments on use

General

The interpolating function used in the function and its first order derivative are continuous in the area for (x, y) bounded by $x_{1} \leq x \leq x_{n_{x}}$ and $y_{1} \leq y \leq y_{n_{y}}$, but its second and higher order derivatives may not be. However, this interpolating function has a characteristic which irregular points or planes do not appear.

To obtain an interpolated value, derivative and integral value for a bivariate function with accuracy, function c_bifd3 that uses an interpolation method by the spline function should be used.

When obtaining more than one interpolated value with the same input data ($x_{i}, y_{j}, f_{i j}$), the function is more effective if it is called with its input points continuous in the same grid area (See Example). In this case, argument values of isw and VW must not be altered.

ix and iy

The arguments $i x$ and iy should satisfy $x[i x] \leq v x<x[i x+1]$ and $y[i y] \leq v y<y[i y+1]$, respectively. If not, $i x$ or iy satisfying the relationship is searched for to continue the processing.

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by one, i.e. C starts from 0 and the mathematics starts from 1.

4. Example program

This program evaluates the function $f(x, y)=\sin (x y) \sqrt{x y}$ at 100 points in the region $[0,1] \times[0,1]$ and then uses the interpolation routine to estimate the function value at a point and then checks the result.

```
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
#define NMAX 10
MAIN__()
```

```
{
    int ierr, icon;
    int i, j, nx, ny, k, ix, iy, isw;
    double x[NMAX], y[NMAX], fxy[NMAX][NMAX], eps, vw[50], exact;
    double hx, hy, px, py, vx, vy, f;
    /* initialize data */
    nx = NMAX;
    ny = NMAX;
    k = NMAX;
    isw = 0;
    hx = 1.0/(nx-1);
    hy = 1.0/(ny-1);
    px = 0;
    for (i=0;i<nx;i++) {
        x[i] = px;
        px = px + hx;
    }
    py = 0;
    for (j=0;j<ny;j++) {
        y[j] = py;
        py = py + hy;
    }
    for (i=0;i<nx;i++)
        for (j=0;j<ny;j++) {
            px = x[i];
            py = y[j];
            fxy[i][j] = sin(px*py)*sqrt(px*py);
        }
    ix = nx/2
    vx = x[ix] + (x[ix+1]-x[ix])/2;
    iy = ny/2;
    vy = y[iy] + (y[iy+1]-y[iy])/2;
    exact = sin(vx*vy)*sqrt(vx*vy);
    /* interpolate */
    ierr = c_dakmid(x, nx, y, ny, (double*)fxy, k, &isw,
        vx, &ix, vy, &iy, &f, vw, &icon);
    printf("icon = %i f = %12.6e\n", icon, f);
    eps = 1e-4;
    /* check result */
    if (fabs((f - exact)/exact) > eps)
        printf("Inaccurate result\n");
    else
        printf("Result OK\n");
        return(0);
}
```


5. Method

For further information consult the entry for AKMID in the Fortran SSL II User's Guide and [3].

c_dakmin

Quasi-Hermite interpolation coefficient calculation.
ierr $=c _$dakmin $(x, y, n, c, d, e$, \&icon $) ;$

1. Function

Given discrete points $x_{1}<x_{2}<\ldots<x_{n}$ and their corresponding function values $y_{i}=f\left(x_{i}\right)$ for $i=1, \ldots, n$, this function obtains the quasi-Hermite interpolating polynomial of degree 3 , equation (1).

$$
\begin{equation*}
S(x)=y_{i}+c_{i}\left(x-x_{i}\right)+d_{i}\left(x-x_{i}\right)^{2}+e_{i}\left(x-x_{i}\right)^{3} \tag{1}
\end{equation*}
$$

In (1), $x_{i} \leq x \leq x_{i+1}$ for $i=1,2, \ldots, n-1$ with $n \geq 3$.

2. Arguments

The routine is called as follows:
ierr = c_dakmin(x, y, n, c, d, e, \&icon);
where:

x	double $\mathrm{x}[\mathrm{n}]$	Input	Discrete points x_{i}.
y	double $\mathrm{y}[\mathrm{n}]$	Input	Function values y_{i}.
n	int	Input	Number of discrete points n.
c	double $\mathrm{c}[\mathrm{n}-1]$	Output	Coefficients of c_{i}.
d	double $\mathrm{d}[\mathrm{n}-1]$	Output	Coefficients of d_{i}.
e	double e[n-1]	Output	Coefficients of e_{i}.
icon	int	Output	Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:	Bypassed.
	$\bullet \quad \times[i] \geq \times[i+1]$ exists	
	$\bullet \quad \mathrm{n}<3$	

3. Comments on use

The interpolating function obtained by this function is characterized by the absence of unnatural deviation, and thus produces curves close to those manually drawn. However, the derivatives of this function in interval $\left[x_{1}, x_{n}\right]$ are continuous up to the first degree, but discontinuous above the second and higher degrees.

If $f(x)$ is a quadratic polynomial and x_{i}, for $i=1, \ldots, n$, are given at equal intervals, then the resultant interpolating function represents $f(x)$ itself, provided there is no calculation errors.

If interpolation should be required outside the interval ($x<x_{1}$ or $x>x_{n}$), the polynomials corresponding to $i=1$ or $i=n-1$ in (1) may be employed but they do not yield good accuracy.

4. Example program

This program interpolates the function $f(x)=\sin (x) \sqrt{x}$ at 10 equally spaced points in the interval [0,1]. The library routine is used to produce the interpolation coefficients and then the piecewise cubic function is evaluated at a point and this value compared with the true function value.

```
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
#define NMAX 10
MAIN__()
{
    int ierr, icon;
    int i, n, k;
    double x[NMAX], y[NMAX], c[NMAX-1], d[NMAX-1], e[NMAX-1];
    double f, eps, h, p, v, exact;
    /* initialize data */
    n = NMAX;
    p = 0;
    h = 1.0/n
    for (i=0;i<n;i++) {
        x[i] = p;
        x[i]=p;
        p = p + h;
    }
    /* calculate interpolation coefficients */
    ierr = c_dakmin(x, y, n, c, d, e, &icon);
    k = n/2;
    v = x[k] + (x[k+1]-x[k])/2;
    exact = sin(v)*sqrt(v);
    /* calculate function value using coefficients */
    h = v-x[k];
    f = y[k] + (c[k]+(d[k]+e[k]*h)*h)*h;
    printf("calculated = %12.6e exact = %12.6e\n", f, exact);
    eps = 1e-4;
    /* check result */
    if (fabs((f-exact)/exact) > eps)
        printf("Inaccurate result\n");
    else
        printf("Result OK\n");
    return(0);
}
```


5. Method

For further information consult the entry for AKMIN in the Fortran SSL II User's Guide and [2].

c_daqc8

$$
\begin{array}{|c}
\hline \text { Integration of a function by a modified Clenshaw-Curtis rule. } \\
\hline \text { ierr }=\text { c_daqc8(a, b, fun, epsa, epsr, nmin, } \\
\text { nmax, \&s, \&err, \&n, \&icon }) ; \\
\hline
\end{array}
$$

1. Function

Given a function $f(x)$ and constants a, b, ε_{a}, and ε_{r}, this routine obtains an approximation S which satisfies

$$
\begin{equation*}
\left|S-\int_{a}^{b} f(x) d x\right| \leq \max \left(\varepsilon_{a}, \varepsilon_{r} \cdot\left|\int_{a}^{b} f(x) d x\right|\right) \tag{1}
\end{equation*}
$$

using a modified Clenshaw-Curtis. Here, $\varepsilon_{a}, \varepsilon_{r} \geq 0$.

2. Arguments

The routine is called as follows:
ierr = c_daqc8(a, b, fun, epsa, epsr, nmin, nmax, \&s, \&err, \&n, \&icon); where:

a	double	Input	Lower limit a of the interval.
b	double	Input	Upper limit b of the interval.
fun	function	Input	User defined function to evaluate $f(x)$. Its prototype is: double fun (double x); x double Input Independent variable x.
epsa	double	Input	Absolute error tolerance $\varepsilon_{a}(\geq 0)$. See Comments on use.
epsr	double	Input	Relative error tolerance $\varepsilon_{r}(\geq 0)$. See Comments on use.
nmin	int	Input	Lower limit on the number of function evaluations (≥ 0). An appropriate value is 15 . See Comments on use.
nmax	int	Input	Upper limit on the number of function evaluations ($n \max \geq \mathrm{nmin}$). An appropriate value is 511 . Values greater than 511 are interpreted as 511 . See Comments on use.
s	double	Output	Approximation S to the integral. See Comments on use.
err	double	Output	Estimate of the absolute error in the approximation. See Comments on use.
n	int	Output	Number of function evaluations actually performed.
icon	int	Output	Condition Code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
10000	The desired accuracy cannot be obtained due to round-off errors.	Stopped. s is the approximation obtained so far. The accuracy is the maximum attainable.
20000	The desired accuracy has not been obtained, even though the number of function evaluations has	Stopped. s is the approximation obtained so far, but is not accurate.

Code	Meaning	Processing
	reached nmax.	
30000	One of the following has occurred:	Bypassed.
	\bullet epsa <0	
	\bullet epsr <0	
	$\bullet \quad \mathrm{nmin}<0$	
	\bullet nmax $<$ nmin	

3. Comments on use

General comments

When this routine is called many times a table of constants (weights and abscissae for the integration formula) is calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.

The routine works most successfully when the integrand function $f(x)$ is an oscillatory function. For a smooth function, this routine requires less function evaluations than routines c_daqn9 and c_daqe. For functions which contain singularity points, routine C_daqe is suitable if the singularity points are only on the end points of the integration interval, and routine c_daqn9 is suitable if the singularity points are between end points, or for a peak type function.

nmin and nmax

The number of evaluations of $f(x)$ actually performed is strictly controlled by the arguments nmin and nmax, regardless of the convergence of the integration. Therefore,

$$
\mathrm{nmin} \leq \mathrm{n} \leq \operatorname{nmax} .
$$

If the solution is not reached after nmax evauations of $f(x)$, the routine stops with icon $=20000$. If the value of nmax is less than 15 , a default of 15 is used.

s, epsa and epsr

Given the two error tolerances ε_{a} and ε_{r}, in arguments epra and epsr, this routine determines an approximation satisfying (1). When $\varepsilon_{r}=0$, the absolute error criterion is used, and when $\varepsilon_{a}=0$ the relative error criterion is used. When ε_{a} and ε_{r} are too small in comparison with the arithmetic precision of $f(x)$, the effect of round-off error may become dominant before the maximum number of function evaluations nmax has been reached. In such a case, the routine stops with icon $=10000$. At this time the accuracy of s has reached the attainable limit for the computer used.

Sometimes the approximation does not converge within the maximum number of function evaluations nmax. For example, due to unexpected characteristics of the function $f(x)$. In such cases, the routine stops with icon $=20000$, and S is the approximation obtained so far and is not accurate.

err

This routine always outputs an estimate of the absolute error, in argument err, together with the integral approximation in argument s.

4. Example program

As p is increased from 0.1 to 0.9 , the integral of $f(x)=\cos (p x)$ is calculated.

```
#include <stdio.h>
```

```
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
double fun(double x); /* user function prototype */
double p;
MAIN__()
{
    int ierr, icon;
    int i, n, nmin, nmax;
    double a, b, epsa, epsr, err, s;
    /* initialize data */
    a = -1;
    b = 1;
    epsa = 1e-5;
    epsr = 1e-5;
    nmin = 15;
    nmax = 511;
    printf(" icon p s err n\n");
    for (i=1;i<10;i++) {
        p = (double)i/10;
        /* calculate integral */
        ierr = c_daqc8(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);
        printf("%6i %6.2f %12.4e %12.4e %4i\n", icon, p, s, err, n);
    }
    return(0);
}
/* user function */
double fun(double x)
{
    return cos(p*x);
}
```


5. Method

Consult the entry for AQC8 in the Fortran SSL II User's Guide and [21].

c_daqe

$$
\begin{array}{|c}
\hline \text { Integration of a function (double exponential formula). } \\
\hline \text { ierr }=c _ \text {daqe }(a, b, \text { fun, epsa, epsr, nmin, } \\
\text { nmax, \&s, \&err, \&n, \&icon); } \\
\hline
\end{array}
$$

1. Function

Given a function $f(x)$ and the constants a, b, ε_{a} and ε_{r}, this library function obtains an approximation S which satisfies:

$$
\begin{equation*}
\left|S-\int_{a}^{b} f(x) d x\right| \leq \max \left(\varepsilon_{a}, \varepsilon_{r} \cdot\left|\int_{a}^{b} f(x) d x\right|\right) \tag{1}
\end{equation*}
$$

by Takahashi-Mori's double exponential formula.

2. Arguments

The routine is called as follows:
ierr = c_daqe(a, b, fun, epsa, epsr, nmin, nmax, \&s, \&err, \&n, \&icon); where:

epsa	double	Input	Absolute error tolerance ε_{a}.
epsr	double	Input	Relative error tolerance ε_{r}.
nmin	int	Input	Lower limit on the number of evaluations of $f(x)$. A suitable value is 20.
nmax	int	Input	Upper limit on the number of evaluations of $f(x)$. A suitable value is 641. Values greater than 641 are interpreted as 641.
s	double	Output	An approximation to the integral. See Comments on use.
err	double	Output	An estimate of the absolute error in the approximation of the integral.
n	int	Output	Number of evaluations of $f(x)$ actually performed.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
10000	The desired accuracy cannot be obtained due to	Processing stopped. The approximation so far is

Code	Meaning	Processing
	rounding errors.	given in S . The accuracy has reached the attainable limit.
11000	The function value increases rapidly near the upper limit of the integration interval.	Processing stopped. Can be continued with relaxed error tolerances.
12000	The function value increases rapidly near the lower limit of the integration interval.	
13000	The function value increases rapidly near both limits of the integration interval.	
20000	The desired accuracy has not been reached, even though the number of function evaluations has reached nmax.	Processing stopped. S is the approximation so far but is not accurate.
21000 to 23000	The same as icon $=11000$ to 13000 , but the maximum number of function evaluations (nmax) has also been reached.	
25000	The abscissa table has been exhausted.	Processing stopped. s is an approximation using the smallest step size allowed in this library function.
30000	One of the following has occurred: - epsa<0 - $e p s r<0$ - nmin <0 - $n m a x<n m i n$	Bypassed.

3. Comments on use

General comments

When this routine is called many times, a table of constants (weights and abscissas for the integration formula) are calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.

This library function works most successfully when the integrand function $f(x)$ changes rapidly near the endpoints of the integration interval. Therefore, if $f(x)$ has algebraic or logarithmic singularities at the endpoints of the integration (only), this routine is highly useful.

If the integrand contains singularities within the integration interval, the user can either split up the interval at the singularity points and call this library function once for each section, or use the c_daqn9 function over the whole interval.

This library function does not evaluate the integrand at either endpoint. Therefore $f(x) \rightarrow \pm \infty$ is permitted at the endpoints, but not between them.

nmin and nmax

The number of evaluations of $f(x)$ actually performed is strictly controlled by the arguments nmin and nmax, regardless of the convergence of the integration. Therefore:

$$
\operatorname{nmin} \leq \mathrm{n} \leq \operatorname{nmax}
$$

If the solution is not reached after nmax evaluations of $f(x)$, the routine aborts with icon $=20000$ to 23000 .

epsa and epsr

This library function approximates S (see equation (1)), given the two error tolerances ε_{a} and ε_{r} (in the arguments epsa and epsr respectively). When $\varepsilon_{a}=0$, the relative error is used to test for convergence, and when $\varepsilon_{r}=0$, the absolute error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example, when ε_{a} and ε_{r} are very small in comparison with the arithmetic precision in the integrand function evaluations, the effect of rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has not been reached.

err

err provides an estimate of the accuracy of the approximation s. Both of these arguments are set on output from the function, even if the computation has not converged. The user is referred to the table of condition codes for a detailed explanation of the different errors that may occur.

fun

The independent variable x is passed from the library routine to this user defined function as the first element of a 2element vector rather than a scalar. The second element enables the user to calculate $f(x)$ in the user defined function in an alternate way to avoid numerical cancellation, as shown below. However it is expected that the second element in the vector will be ignored in most cases, and x (the independent variable) can therefore be treated in the user defined function as a pointer to a double scalar.

Avoiding numerical cancellation

Consider the following integral, in which the integrand has singularities at points $x=1$ and $x=3$:

$$
I=\int_{1}^{3} \frac{d x}{x(3-x)^{1 / 4}(x-1)^{3 / 4}}
$$

Near the end points, the function takes extremely large values, which dominate the integral, and so these values need to be accurately calculated. Unfortunately, the function cannot be calculated accurately at these points due to cancellation when calculating (3-x) and ($x-1$).

However, this library function allows the user to avoid this by describing the integrand in another form using variable transformation. The user defined function fun may be used as follows:
double fun(double x[]);
where:
x double $x[2]$ Input $x[0]$ is the integration variable and
x [1] is defined according to the integration variable as follows:
Let $A A=\min (a, b)$ and $B B=\max (a, b)$ then,
$\mathrm{x}[1]= \begin{cases}A A-x, & A A \leq x<(A A+B B) / 2 \\ B B-x, & (A A+B B) / 2 \leq x \leq B B\end{cases}$
Therefore $\mathrm{x}[1]$ is the distance from the nearest endpoint, and $f(x)$ can be written as:

$$
f(x)= \begin{cases}f(A A-\mathrm{x}[1], & \mathrm{x}[1]<0 \\ f(B B-\mathrm{x}[1], & \mathrm{x}[1] \geq 0\end{cases}
$$

The user can then elect to use either $\mathrm{X}[0]$ or $\mathrm{X}[1]$ to evaluate $f(x)$.

4. Example program

This program computes an approximation to $\int_{-1}^{1} \frac{1}{\sqrt{(1-x)(1+x)}} d x$.

```
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
double fun(double x[]); /* user function prototype */
double p;
MAIN__()
{
    int ierr, icon;
    int n, nmin, nmax;
    double a, b, epsa, epsr, err, s;
    /* initialize data */
    a = -1;
    b = 1;
    epsa = 1e-5;
    epsr = 0;
    nmin = 20;
    nmax = 641;
    /* calculate integral */
    ierr = c_daqe(a, b, fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);
    printf(" icon s err n\n");
    printf("%6i %12.4e %12.4e %4i\n", icon, s, err, n);
    return(0);
}
/* user function */
double fun(double x[])
{
    double p, res;
    p = (1+x[0])*(1-x[0]);
    res = 0;
    if (p > 0)
        res = 1.0/sqrt(p);
    return(res);
}
```


5. Method

For further information on Takahashi-Mori's method, and the computational techniques used in this function, consult the entry for AQE in the Fortran SSL II User's Guide and also [109].

c_daqeh

> Integration of a function over a semi-infinite interval (double exponential formula).

```
ierr = c_daqeh(fun, epsa, epsr, nmin, nmax,
    &s, &err, &n, &icon);
```


1. Function

Given a function $f(x)$ and the error tolerances ε_{a} and ε_{r}, this library function obtains an approximation S which satisfies:

$$
\begin{equation*}
\left|S-\int_{0}^{\infty} f(x) d x\right| \leq \max \left(\varepsilon_{a}, \varepsilon_{r} \cdot\left|\int_{0}^{\infty} f(x) d x\right|\right) \tag{1}
\end{equation*}
$$

by Takahashi-Mori's double exponential formula.

2. Arguments

The routine is called as follows:
ierr = c_daqeh(fun, epsa, epsr, nmin, nmax, \&s, \&err, \&n, \&icon);
where:

fun	function	Input	Name of the user defined function to evaluate $f(x)$. Its prototype is: double fun(double x); where: x double Input Independent variable.
epsa	double	Input	Absolute error tolerance ε_{a}.
epsr	double	Input	Relative error tolerance ε_{r}.
nmin	int	Input	Lower limit on the number of evaluations of $f(x)$. A suitable value is 20.
$n m a x$	int	Input	Upper limit on the number of evaluations of $f(x)$. A suitable value is 689. Values greater than 689 are interpreted as 689.
S	double	Output	An approximation to the integral. See Comments on use.
err	double	Output	An estimate of the absolute error in the approximation of the integral.
n	int	Output	Number of evaluations of $f(x)$ actually performed.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
10000	The desired accuracy cannot be obtained due to rounding errors.	Processing stopped. The approximation so far is outputted in s. The accuracy has reached the attainable limit.
11000	The function value increases rapidly as $x \rightarrow 0$.	Processing stopped. Can be continued with relaxed error tolerances.

Code	Meaning	Processing
12000	The function value does not tend to 0 quickly enough as $x \rightarrow \infty$.	Processing stopped. Can be continued with relaxed error tolerances.
13000	As 11000 and 12000 , but together.	
20000	The desired accuracy has not been reached, even though the number of function evaluations has reached nmax.	Processing stopped. s is the approximation so far but is not accurate.
21000 to 23000	The same as icon $=11000$ to 13000, but the maximum number of function evaluations (nmax) has also been reached.	The abscissa table has been exhausted.
25000	One of the following has occurred: \bullet epsa <0 epsr <0 - nmin <0 - nmax $<$ nmin	function.
30000	Bypassed.	

3. Comments on use

General comments

When this routine is called many times, a table of constants (weights and abscissas for the integration formula) is calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.

This library function works most successfully when the integrand function $f(x)$ converges slowly to zero as $x \rightarrow \infty$, or when Gauss-Laguerre's rule cannot be applied to the integrand. If the integrand severely oscillates an accurate integral value may not be obtained.

This library function does not evaluate the integrand $x=0$. Therefore $f(x) \rightarrow \pm \infty$ is permitted as $x \rightarrow 0$. If this occurs however, values of $f(x)$ will be required for small values of x (i.e. close to zero), and so fun must be able to deal with overflows if a high degree of accuracy is required.

nmin and nmax

The number of evaluations of $f(x)$ actually performed is strictly controlled by the arguments nmin and nmax, regardless of the convergence of the integration. Therefore:

$$
\mathrm{nmin} \leq \mathrm{n} \leq \mathrm{nmax}
$$

If the solution is not reached after nmax evaluations of $f(x)$, the routine aborts with icon $=20000$ to 23000 .

epsa and epsr

This library function approximates S (see equation (1)), given the two error tolerances ε_{a} and ε_{r} (in the arguments epsa and epsr respectively). When $\varepsilon_{a}=0$, the relative error is used to test for convergence, and when $\varepsilon_{r}=0$, the absolute error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example, when ε_{a} and ε_{r} are very small in comparison with the arithmetic precision in the integrand function evaluations, the effect of rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has not been reached.

err

err provides an estimate of the accuracy of the approximation s . Both of these arguments are set on output from the function, even if the computation has not converged. The user is referred to the table of condition codes for a detailed explanation of the different errors that may occur.

4. Example program

This program computes an approximation to $\int_{0}^{\infty} e^{-x} \sin (x) d x$.

```
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
double fun(double x); /* user function prototype */
MAIN__()
{
    int ierr, icon;
    int n, nmin, nmax;
    double epsa, epsr, err, s;
    /* initialize data */
    epsa = 1e-5;
    epsr = 0;
    nmin = 20;
    nmax = 689;
    /* calculate integral */
    ierr = c_daqeh(fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);
    printf(" icon s err n\n");
    printf("%6i %12.4e %12.4e %4i\n", icon, s, err, n);
    return(0);
}
/* user function */
double fun(double x)
{
    double res;
    if (x > 176)
        res = 0;
    else
        res = exp(-x)*sin(x);
    return(res);
}
```


5. Method

This function, when compared to c_daqe uses a transformation on the integration variable as follows:

$$
x=\phi(t)=\exp \left(\frac{3}{2} \sinh (t)\right)
$$

and to the weight function $\phi(t)$:

$$
\phi^{\prime}(t)=\frac{3}{2} \cosh (t) \cdot \exp \left(\frac{3}{2} \sinh (t)\right)
$$

For further information on Takahashi-Mori's method, and the computational techniques used, consult the entry for AQE in the Fortran SSL II User 's Guide.

c_daqei

$$
\begin{aligned}
& \text { Integration of a function over an infinite interval (double exponential } \\
& \text { formula). } \\
& \hline \text { ierr = c_daqei(fun, epsa, epsr, nmin, nmax, } \\
& \text { \&s, \&err, \&n, \&icon); }
\end{aligned}
$$

1. Function

Given a function $f(x)$ and the error tolerances ε_{a} and ε_{r}, this library function obtains an approximation S which satisfies:

$$
\begin{equation*}
\left|S-\int_{-\infty}^{\infty} f(x) d x\right| \leq \max \left(\varepsilon_{a}, \varepsilon_{r} \cdot\left|\int_{-\infty}^{\infty} f(x) d x\right|\right) \tag{1}
\end{equation*}
$$

by Takahashi-Mori's double exponential formula.

2. Arguments

The routine is called as follows:
ierr = c_daqei(fun, epsa, epsr, nmin, nmax, \&s, \&err, \&n, \&icon);
where:

fun	function	Input	Name of the user defined function to evaluate $f(x)$. Its prototype is: double fun(double x); where: x double Input Independent variable.
epsa	double	Input	Absolute error tolerance ε_{a}.
epsr	double	Input	Relative error tolerance ε_{r}.
nmin	int	Input	Lower limit on the number of evaluations of $f(x)$. A suitable value is 20.
nmax	int	Input	Upper limit on the number of evaluations of $f(x)$. A suitable value is 645. Values greater than 645 are interpreted as 645 .
s	double	Output	An approximation to the integral. See Comments on use.
err	double	Output	An estimate of the absolute error in the approximation of the integral.
n	int	Output	Number of evaluation of $f(x)$ actually performed.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
10000	The desired accuracy cannot be obtained due to rounding errors.	Processing stopped. The approximation so far is given in s. The accuracy has reached the attainable limit.
11000	The function value does not tend to 0 quickly enough as $x \rightarrow-\infty$.	Processing stopped. Can be continued with relaxed error tolerances.

Code	Meaning	Processing
12000	The function value does not tend to 0 quickly enough as $x \rightarrow \infty$.	
13000	The function value does not tend to 0 quickly enough as $x \rightarrow \pm \infty$.	
20000	The desired accuracy has not been reached, even though the number of function evaluations has reached nmax.	Processing stopped. s is the approximation so far but is not accurate.
21000 to 23000	The same as icon $=11000$ to 13000, but the maximum number of function evaluations (nmax) has also been reached.	The abscissa table has been exhausted.
25000	Processing stopped. s is an approximation using the smallest step size allowed in this library function.	
30000	One of the following has occurred: \bullet epsa <0 epsr <0 \bullet - nmin <0 nmax $<$ nmin	Bypassed.

3. Comments on use

General comments

When this routine is called many times, a table of constants (weights and abscissas for the integration formula) is calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.

This library function works successfully even when the integrand function $f(x)$ converges slowly to zero as $x \rightarrow \pm \infty$, and when Gauss-Hermite's rule cannot be applied to the integrand. If $|f(x)|$ has a high peak around $x=0$ or is oscillatory, then the integral value obtained may be inaccurate.

As the library function requires values of $f(x)$ at large values of x, fun must be able to deal with overflows and underflows if a high degree of accuracy is required.

nmin and nmax

The number of evaluations of $f(x)$ actually performed is strictly controlled by the arguments nmin and nmax, regardless of the convergence of the integration. Therefore:

$$
\operatorname{nmin} \leq \mathrm{n} \leq \operatorname{nmax}
$$

If the solution is not reached after nmax evaluations of $f(x)$, the routine aborts with icon $=20000$ to 23000 .

If nmax is specified to be too small, the library function increases it to a suitable value, determined by the behaviour of $f(x)$.

epsa and epsr

This library function approximates S (see equation (1)), given the two error tolerances ε_{a} and ε_{r} (in the arguments epsa and epsr respectively). When $\varepsilon_{a}=0$, the relative error is used to test for convergence, and when $\varepsilon_{r}=0$, the absolute error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example, when
ε_{a} and ε_{r} are very small in comparison with the arithmetic precision in the integrand function evaluations, the effect of rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has not been reached.

err

err provides an estimate of the accuracy of the approximation s. Both of these arguments are set on output from the function, even if the computation has not converged. The user is referred to the table of condition codes for a detailed explanation of the different errors that may occur.

4. Example program

This program computes an approximation to $\int_{-\infty}^{\infty} \frac{1}{10^{-2}+x^{2}} d x$.

```
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
double fun(double x); /* user function prototype */
MAIN__()
{
    int ierr, icon;
    int n, nmin, nmax;
    double epsa, epsr, err, s;
    /* initialize data */
    epsa = 1e-3;
    epsr = 0;
    nmin = 20;
    nmax = 645;
    /* calculate integral */
    ierr = c_daqei(fun, epsa, epsr, nmin, nmax, &s, &err, &n, &icon);
    printf("- icon s err n\n");
    printf("%6i %12.4e %12.4e %4i\n", icon, s, err, n);
    return(0);
}
/* user function */
double fun(double x)
{
    double res
    if (fabs(x) > 1e35)
        res = 0;
    else if (fabs(x) < 1e-35)
        res = 100;
    else
        res = 1/(1e-2+x*x);
    return(res);
}
```


5. Method

This function, when compared to c _daqe uses a transformation on the integration variable as follows:

$$
x=\phi(t)=\sinh \left(\frac{3}{2} \sinh (t)\right)
$$

and to the weight function $\phi(t)$:

$$
\phi^{\prime}(t)=\frac{3}{2} \cosh (t) \cdot \cosh \left(\frac{3}{2} \sinh (t)\right)
$$

For further information on Takahashi-Mori's method, and the computational techniques used, consult the entry for AQE in the Fortran SSL II User's Guide.

c_daqme8

```
Multiple integration of a function (modified Clenshaw-Curtis integration
rule).
ierr = c_daqmc8(m, lsub, fun, epsa, epsr,
nmin, nmax, \&s, \&err, \&n, \&icon);
```


1. Function

A multiple integration of dimension m where $1 \leq m \leq 3$ is defined here by:

$$
\begin{equation*}
I=\int_{\varphi_{1}}^{\phi_{1}} d x_{1} \int_{\varphi_{2}}^{\phi_{2}} d x_{2} \ldots \int_{\varphi_{m}}^{\phi_{m}} d x_{m} f\left(x_{1}, x_{2}, \ldots, x_{m}\right) \tag{1}
\end{equation*}
$$

where the limits of integration are given by:

$$
\begin{align*}
\varphi_{1}=a(\text { constant }) & \phi_{1}=b(\text { constant }) \\
\varphi_{2}=\varphi_{2}\left(x_{1}\right) & \phi_{2}=\phi_{2}\left(x_{1}\right) \tag{2}\\
\quad \vdots & \vdots \\
\varphi_{\mathrm{m}}=\varphi_{\mathrm{m}}\left(x_{1}, x_{2}, \ldots, x_{m-1}\right) & \phi_{\mathrm{m}}=\phi_{\mathrm{m}}\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)
\end{align*}
$$

This library function obtains an approximation S such that:

$$
\begin{equation*}
|S-I| \leq \max \left(\varepsilon_{a}, \varepsilon_{r}|I|\right) \tag{3}
\end{equation*}
$$

for the error tolerances ε_{a} (absolute) and ε_{r} (relative) using a modified Clenshaw-Curtis rule applied to each dimension.

2. Arguments

The routine is called as follows:
ierr = c_daqmc8(m, lsub, fun, epsa, epsr, nmin, nmax, \&s, \&err, \&n, \&icon); where:

m	int	Input	Dimension m of the integral, where $1 \leq m \leq 3$.
lsub	function	Input	The user defined function which calculates the limits of the integration

```
void lsub(int k, double x[], double *a, double
``` *b);
where:
\(k\) int Input Dimension of the integration variable. \(1 \leq \mathrm{k} \leq \mathrm{m}\)
\(x\) double Input Integration variables \(x_{1}, x_{2}, \ldots, x_{m-1}\) which are stored in \(\times[0]\) to \(\times[m-2]\).
a
double Output The value of the lower limit. See equations (1) and (2).

\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed \\
\hline \[
\begin{aligned}
& 100,1000, \\
& 1100,10000 \\
& 10100,11000 \\
& 11100
\end{aligned}
\] & When integrating in the direction of a certain coordinate axis, the required accuracy could not be obtained due to round off errors. A ' 1 ' in the 'tenthousands' digit indicates that the problem occurred when integrating along the \(x_{1}\) axis, a ' 1 ' in the 'thousands' digit indicates the \(x_{2}\) axis, and a ' 1 ' in the 'hundreds' digit indicates the \(x_{3}\) axis. & When icon \(=100,1000\) or 1100 , the accuracy of the solution has either reached the limit of the arithmetic precision, or has satisfied the required accuracy (check err). When icon \(=10000\) to 11100 , the accuracy of the solution has reached the limit of the arithmetic precision. \\
\hline \[
\begin{aligned}
& 200,2000 \\
& 2200,20000 \\
& 20200,22000 \\
& 22200
\end{aligned}
\] & When integrating in a certain direction, the number of evaluations of the integrand reached nmax, and the requested accuracy in this direction could not be obtained. Again the positions of the ' 2 's in the icon value indicate the different directions, with 'ten-thousands', 'thousands' and 'hundreds' representing directions \(x_{1}, x_{2}\) and \(x_{3}\) respectively. & When icon \(=200,2000\) or 2200 , the accuracy of the approximation may or may not have achieved the required accuracy (check err). When icon \(=20000\) to 22200 , the approximation is inaccurate. \\
\hline 300 to 23300 & Both problems discussed above (i.e. icon \(=100\) to 11100 , and icon \(=200\) to 22200) occur concurrently. As above, the different digits indicate the different directions of integration. & The approximation may or may not have achieved the required accuracy (check err). See Comments on use. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- epsa<0 \\
- epsr<0 \\
- nmin \(<0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet \quad \mathrm{nmax}<\mathrm{nmin}\) & \\
& \(\bullet \quad \mathrm{m} \leq 0\) or \(\mathrm{m} \geq 4\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General comments}

When c_daqmc8 is called many times, a table of constants (weights and abscissas for the integration formula) is calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time. c_daqme8 is useful for both smooth and oscillatory integrand functions.

\section*{nmin and nmax}

The number of evaluations of the integrand function actually performed is controlled by the arguments nmin and nmax. Therefore, for each dimension of the integration \(i=1,2, \ldots, \mathrm{~m}\) :
\[
\operatorname{nmin} \leq \mathrm{n}_{i} \leq \mathrm{nmax}
\]

If the solution is not reached after nmax evaluations, the library function aborts with icon \(=200\) to 22200 , with the position of the ' 2 ' indicating the direction of integration which caused the error, i.e. the \(x_{1}, x_{2}\) and \(x_{3}\) directions being represented by the 10000,1000 and 100 positions respectively.

When nmax is specified as less than 7 , it is taken to be 7 .

\section*{epsa and epsr}

This library function approximates S (see equation (3)), given the two error tolerances \(\varepsilon_{a}\) and \(\varepsilon_{r}\) (in the arguments epsa and epsr respectively). When \(\varepsilon_{a}=0\) the relative error is used to test for convergence, and when \(\varepsilon_{r}=0\), the absolute error is used. This however can be disrupted by unexpected characteristics of the integrand function. For example, when \(\varepsilon_{a}\) and \(\varepsilon_{r}\) are very small in comparison with the arithmetic precision in the integrand function evaluations, the effect of rounding errors becomes greater. It then becomes pointless to continue the computation, even though nmax has not been reached. If this occurs, the library function aborts with icon \(=100\) to 11100 , with the position of the ' 1 ' indicating the direction of integration which caused the error, i.e. the \(x_{1}, x_{2}\) and \(x_{3}\) directions being represented by the 10000,1000 and 100 positions respectively.

In general, when icon returns a value of 100,1000 , or 1100 , the overall accuracy of the approximation S may still satisfy the required accuracy. The value of err should therefore be checked.

\section*{err}
err provides an estimate of the accuracy of the approximation S . Both of these arguments are set on output from the function, even if the computation has not converged (unless illegal arguments were passed to the library function).

\section*{icon}

When integrating in the directions of the \(x_{2}\) and \(x_{3}\), if both rounding errors occur and nmax is reached, the library function returns icon \(=300,3000\) or 3300 as specified in the table of condition codes. However, when integrating in the direction of \(x_{1}\), c_daqmc8 behaves differently, terminating processing after the first of the 2 errors occur. This means that condition codes with a ' 3 ' in the 'ten-thousands' digit, due to these 2 errors occurring together are impossible.

\section*{4. Example program}

This program computes an approximation to:
\[
\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} \frac{1}{\cos (p x) \cos (p y) \cos (p z)} d z d y d x
\]
with \(p\) varying from 1 to 3 in increments of 1 .
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
/* function prototypes */
void lsub(int k, double x[], double *a, double *b);
double fun(double x[]);
double p;
MAIN__()
{
int ierr, icon;
int i, m, n, nmin, nmax;
double epsa, epsr, err, s;
/* initialize data */
epsa = 1e-5;
epsr = 1e-5;
nmin = 7;
nmax = 511;
m = 3;
printf("p icon s err n\n");
for (i=1;i<4;i++) {
p = (double)i;
/* calculate integral */
ierr = c_daqmc8(m, lsub, fun, epsa, epsr,
nmin, nmax, \&s, \&err, \&n, \&icon);
printf("%3.0f %6i %12.4e %12.4e %4i\n", p, icon, s, err, n);
}
return(0);
}
/* limits function */
void lsub(int k, double x[], double *a, double *b)
{
switch (k) {
case(1):
*a = -1;
*b = 1;
break;
case(2):
*a = -2;
*b = 2;
break;
case(3):
*a = -3;
*b = 3;
break;
}
}
/* user function */
double fun(double x[])
{
double res;
res = 1/(cos(p*x[0])* cos(p*x[1])* cos(p*x[2])+2);
return(res);
}

```

\section*{5. Method}

For further information on the Clenshaw-Curtis rule, and the computational techniques used in this library function, consult the entries for AQMC8 and AQC8 in the Fortran SSL II User's Guide.

\section*{c_daqme}
\[
\begin{gathered}
\text { Multiple integration of a function by double exponential formula. } \\
\hline \text { ierr = c_daqme(m, intv, lsub, fun, epsa, epsr, } \\
\text { nmin, nmax, \&s, \&err, \&n, \&isf, } \\
\text { \&icon); }
\end{gathered}
\]

\section*{1. Function}

This routine obtains an approximation \(S\) to a multiple integral of dimension \(m(1 \leq m \leq 3)\) defined by
\[
I=\int_{\phi_{1}}^{\psi_{1}} \int_{\phi_{2}}^{\psi_{2}} \ldots \int_{\phi_{m}}^{\psi_{m}} f\left(x_{1}, x_{2}, \ldots, x_{m}\right) d x_{m} d x_{m-1} \ldots d x_{1} .
\]

Generally the lower and upper limits of integration are as follows:
\[
\begin{array}{ll}
\phi_{1}=a & \psi_{1}=b \\
\phi_{2}=\phi_{2}\left(x_{1}\right) & \psi_{2}=\psi_{2}\left(x_{1}\right) \\
\ldots & \ldots \\
\phi_{m}=\phi_{m}\left(x_{1}, x_{2}, \ldots, x_{m-1}\right) & \psi_{m}=\psi_{m}\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)
\end{array}
\]
where \(a\) and \(b\) are constants. The region of integration \(\left[\phi_{k}, \psi_{k}\right]\) for \(x_{k}\), may be finite, semi infinite \([0, \infty)\) or infinite \((-\infty, \infty)\).

The approximation \(S\) is calculated using the Takahashi-Mori double exponential formula repeatedly and satisfies
\[
\begin{equation*}
|S-I| \leq \max \left(\varepsilon_{a}, \varepsilon_{r}|I|\right) \tag{1}
\end{equation*}
\]
for given \(\varepsilon_{a}(\geq 0)\) and \(\varepsilon_{r}(\geq 0)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_daqme(m, intv, lsub, fun, epsa, epsr, nmin, nmax, \&s, \&err, \&n, \&isf, \&icon);
where:

\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10001 to 10077 & \begin{tabular}{l}
When integrating in the direction of axis \(x_{3}\) and \(x_{2}\), the required accuracy has not been obtained in the direction of the axis, as indicated by the lower two digits of the code. The last of these two digits indicates the direction of axis \(x_{3}\), and the other digit indicates the direction of axis \(x_{2}\). Each digit assumes a value from 0 to 7 (there is no case when both are zero.). The digits have the following meanings: \\
1 - the required accuracy in the direction of the axis cannot be obtained due to the round-off error. 2 - the required accuracy in the direction of the axis cannot be obtained even if the number of integrand evaluations in the direction of the axis reaches the upper limit nmax. \\
3 - the events indicated in 1 and 2 above occur concurrently. \\
4 - the required accuracy in the direction of the axis cannot be obtained even if integrating by the minimum step-size defined in the routine. \\
5 - the events indicated in 1 and 4 above occur concurrently. \\
6 - the events indicated in 2 and 4 above occur concurrently. \\
7 - the events indicated in 1, 2 and 4 above occur concurrently. \\
0 - none of the events indicated above occur.
\end{tabular} & \(s\) is the approximation obtained and err is an estimate of the absolute error in s . The required accuracy may be satisfied. \\
\hline 10100 to 10177 & When integrating in the direction of axis \(x_{1}\), the required accuracy cannot be obtained due to the round-off error. The lower two digits indicate the same as those in codes 10001 to 10077. & s is the approximation obtained and err is an estimate of the absolute error in \(S\). The accuracy is the maximum attainable. \\
\hline 20200 to 20277 & When integrating in the direction of axis \(x_{1}\), the required accuracy cannot be obtained even though the number of integrand evaluations in the direction of the axis has reached the upper limit nmax. The lower two digits indicate the same as those in codes 10001 to 10077. & S is the approximation obtained and err is an estimate of the absolute error in s . The required accuracy may not have been reached. If nmax is increased (up to nmax \(=750\)), the accuracy may be improved. \\
\hline 20400 to 20477 & When integrating in the direction of axis \(x_{1}\), the required accuracy was not obtained even using the minimum step size defined in the routine. The lower two digits indicate the same as those in codes 10001 to 10077. & s is the approximation obtained and err is an estimate of the absolute error in \(S\). \\
\hline 25000 to 25477 & When integrating in the direction of one of the axes, the value of the function rapidly increases & Continued after relaxing the required accuracy. The obtained approximation is output in S , and \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline & near the lower limit or upper limit of the integration interval, or when the integration interval is semi-finite or infinite, the integrand function slowly converges to zero as the integration variable tends to infinity. With the middle digit of the code indicating the direction of axis \(x_{1}\), the lower three digits mean the same as in codes 10001 to 10077 . & err is an estimate of the absolute error in S . Even when the integral does not exist theoretically, this range of code may be returned. Refer to argument isf for information on the behaviour of the integrand. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- epsa<0 \\
- epsr<0 \\
- nmin \(<0\) \\
- \(n m a x<n m i n\) \\
- \(m \leq 0\) or \(m \geq 4\) \\
- Some value other than 1,2 , or 3 is input for an element of intv.
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General comments}

When this routine is called many times a table of constants (weights and abscissae for the integration formula) is calculated only on the first call. This information is reused on subsequent calls, thus shortening the computation time.

This routine usually works successfully even when the integrand function changes rapidly in the neighbourhood of the boundary of the integration region. The routine is recommended when algebraic or logorithmic singularities are located on the boundary. If the integrand is smooth or oscillatory and the region of integration is finite, routine c_daqme8 should be used.

This routine usually works successfully when the integrand function converges to zero rather slowly as \(x \rightarrow \pm \infty\). However, if the function is extremely oscillatory in the region, high accuracy may not be attained.

The routine does not evaluate the integrand function on the boundary, therefore it is possible for the function to be infinite on the boundaries. However, singularities must not be contained within the region.

\section*{fun}

When the integration interval in the direction of an axis (say the \(i\)-th axis) is infinite, function values for large \(\left|x_{i}\right|\) are required, therefore if the desired accuracy is high, the function fun needs to avoid overflows or underflows.

\section*{nmin and nmax}

This routine limits the number of evaluations \(n_{i}\), of the integrand function in the direction of each coordinate axis \(x_{i}\), such that
\[
\operatorname{nmin} \leq n_{i} \leq \operatorname{nmax}
\]

This means that the integrand function is evaluated at least nmin times in the direction of each axis, but no more than nmax times in each direction, regardless of the result of the convergence test. When the approximation does not converge
within nmax evaluations, this information is output to the last, second last, or third last digit of the argument icon, corresponding to the axis \(x_{3}, x_{2}, x_{1}\) respectively.

When an extremely small value of \(n m a x\) is given, for example \(n m a x=2, n m a x\) is increased automatically to a value which is determined by the behaviour of the integrand function.

\section*{s, epsa and epsr}

Given the two error tolerances \(\varepsilon_{a}\) and \(\varepsilon_{r}\), in arguments epra and epsr respectively, this routine determines an approximation satisfying (1). When \(\varepsilon_{r}=0\), the absolute error criterion is used, and when \(\varepsilon_{a}=0\) the relative error criterion is used. When \(\varepsilon_{a}\) and \(\varepsilon_{r}\) are too small in comparison with the arithmetic precision of the function evaluation, the effect of round-off error may become dominant before the maximum number of function evaluations nmax has been reached. Depending upon the axis, this information is output to the last, second last, or third last digits of argument icon.

Generally speaking, even when the effect of round-off error on the integration is large in the direction of \(x_{2}\) or \(x_{3}\), the required accuracy may still be obtained, and the error estimate err should be checked.

As mentioned in the comments on nmin and nmax, sometimes the approximation does not converge within nmax evaluations, and this information is output to icon. If this occurs in the direction of axis \(x_{2}\) or \(x_{3}\), the obtained integral approximation may still satisfy the required accuracy, and the error estimate err should be checked.

In addition, the approximation may not converge even though the smallest step-size defined in the routine is used. Although this information is output to icon, if this event occurs when integrating in the direction of \(x_{2}\) or \(x_{3}\), the required accuracy may still be obtained, and the error estimate err should be checked.

\section*{err}

This routine always outputs an estimate of the absolute error, in argument err, together with the integral approximation in argument S .

\section*{4. Example program}

The integral \(I\) is calculated in the following program. \(I\) is given by:
\[
\begin{equation*}
I=\int_{0}^{\infty} d x_{1} \int_{0}^{x_{1}} d x_{2} \int_{0}^{1-x_{2}} \frac{e^{-x_{1}}}{x_{1} \sqrt{x_{2}+x_{3}}} d x_{3} \tag{2}
\end{equation*}
\]
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
/* function prototypes */
void lsub(int k, double x[], double *a, double *b);
double fun(double x[]);
MAIN__()
{
int ierr, icon;
int m, n, nmin, nmax, intv[3], isf;
double epsa, epsr, err, s;
/* initialize data */
epsa = 1e-3;
epsr = 1e-3;
nmin = 20;
nmax = 705
m = 3;
intv[0] = 2;
intv[1] = 1;

```
```

    intv[2] = 1;
    /* calculate integral */
    ierr = c_daqme(m, intv, lsub, fun, epsa, epsr,
                nmin, nmax, &s, &err, &n, &isf, &icon)
    printf("icon = %i s = %12.4e err = %12.4e isf = %i n = %i\n"
        icon, s, err, isf, n);
    return(0);
    }
/* limits function */
void lsub(int k, double x[], double *a, double *b)
{
*a = 0;
switch (k) {
case(1):
break;
case(2):
*b = x[0];
break;
case(3):
*b = 1-x[1];
break;
}
}
/* user function */
double fun(double x[])
{
double y;
y = x[1]+x[2];
if (y < 1e-70) return 0;
if (x[0] > 174) return 0;
y = x[0]*sqrt(y);
if (y < 1e-70) return 0;
return exp(-x[0])/y;
}

```

\section*{5. Method}

Consult the entry for AQME in the Fortran SSL II User's Guide.

\section*{c_daqn9}
\[
\begin{array}{|c|}
\hline \text { Integration of a function (adaptive Newton-Cotes } 9 \text { point rule). } \\
\hline \text { ier }=\text { c_daqn9 (a, b, fun, epsa, epsr, nmin, } \\
\text { nmax, \&s, \&err, \&n, \&icon }) ; \\
\hline
\end{array}
\]

\section*{1. Function}

Given a function \(f(x)\) and the constants \(a, b, \varepsilon_{a}\) and \(\varepsilon_{r}\) this subroutine obtains an approximation \(S\) that satisfies the following:
\[
\begin{equation*}
\left|S-\int_{a}^{b} f(x) d x\right| \leq \max \left(\varepsilon_{a}, \varepsilon_{r} \cdot\left|\int_{a}^{b} f(x) d x\right|\right) \tag{1}
\end{equation*}
\]
by the adaptive Newton-Cotes 9 point rule.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_daqn9(a, b, fun, epsa, epsr, nmin, nmax, \&s, \&err, \&n, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline a & double & Input & Lower limit \(a\) of the integral. \\
\hline b & double & Input & Upper limit \(b\) of the integral. \\
\hline \multirow[t]{2}{*}{fun} & \multirow[t]{2}{*}{function} & \multirow[t]{2}{*}{Input} & User defined function that evaluates \(f(x)\). Its prototype is: double fun(double x); where: \\
\hline & & & \(x\) double Input Independent variable. \\
\hline epsa & double & Input & The absolute error tolerance \(\varepsilon_{a}\). \\
\hline epsr & double & Input & The relative error tolerance \(\varepsilon_{r}\) \\
\hline nmin & int & Input & Lower limit on the number of function evaluations, where \\
\hline & & & \(0 \leq \mathrm{nmin}<150\). A suitable value is 21. \\
\hline nmax & int & Input & Upper limit on the number of function evaluations. A suitable value is 2000. nmax \(>\) nmin +8 . \\
\hline s & double & Output & Approximation to the integral. \\
\hline err & double & Output & An estimate of the absolute error in the approximation. \\
\hline n & int & Output & Number of function evaluations actually performed. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 to 13111 & \begin{tabular}{l}
Irregular points such as singular points are found. \\
The last 4 digits have the following meanings: \\
The 'thousands' digit can contain a '1', '2', or '3' \\
which signify:
\end{tabular} & \begin{tabular}{l}
Processing completed. For logarithmic and \\
discontinuity points only, \(s\) will probably satisfy \\
the desired accuracy.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \begin{tabular}{l}
'l' Algebraic singularities have been found. \\
'2' Cauchy's singularities have been found. \\
'3' Both algebraic and Cauchy's singularities \\
found. \\
A '1' in the 'hundreds' digit signifies that \\
logarithmic singularities have been found. \\
A '1' in the 'tens' digit signifies that discontinuity \\
points are present. \\
A '1' in the 'units' digit signifies that other \\
irregular points were found.
\end{tabular} & \\
\hline 20000 to 23111 & \begin{tabular}{l}
The desired accuracy has not been attained \\
although the upper limit on the number of \\
integrand evaluations nmax has been reached. \\
The last 4 digits have the same meanings as \\
above.
\end{tabular} & \begin{tabular}{l}
Processing stops. 5 is the approximation attained \\
so far, but is not accurate.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- epsa<0. \\
- epsr \(<0\). \\
- \\
- nmin \(<0\). \\
- nmin \(\geq 150\). \\
- nmax \(\leq\) nmin +8.
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General Comments}

This routine may be used for a broad class of functions, and can successfully handle integrands that have peaks or irregular points (such as algebraic singularities, logarithmic singularities, or discontinuities), which can be accessed in the manner of bisection (such as the end points, midpoint and quartered points). Consequently, this routine should be tried first on integrands of this type, and also for integrands whose properties are not well known. To improve the accuracy of the solution, the limits of integration should be changed so that any irregular points only occur at the endpoints of the integration.

It should be noted that c_daqme8 is better suited (and more efficient) than c_daqn9 to oscillatory and smooth functions, and c_daqe is better suited to functions which only have singularities at the endpoints of the integration.

If the value of \(f(x) \rightarrow \pm \infty\) at a certain point within the integration interval, then the value of \(f(x)\) at that point should be replaced by a finite value, e.g. 0 .

\section*{nmin and nmax}

The number of evaluations of the integrand function actually performed is strictly controlled by the arguments nmin and nmax, regardless of the convergance of the integral.
\[
\mathrm{nmin} \leq \mathrm{n} \leq \mathrm{nmax}
\]

If an accurate solution is not reached after nmax evaluations, the library function aborts with icon \(=20000\) to 21111 . See the table of condition codes for details.

When the value of nmax is less than 21 the default value of 21 is used.

\section*{Accuracy and err}

This routine approximates \(S\) (see equation (1)), given the two error tolerances \(\varepsilon_{a}\) and \(\varepsilon_{r}\) (in the arguments epsa and epsr respectively). When \(\varepsilon_{a}=0\) the relative error is used to test for convergence, and when \(\varepsilon_{r}=0\) the absolute error is used. Decreasing the size of these arguments means that this routine needs to perform a larger number of evaluations of \(f(x)\) to attain the required accuracy, which may then possibly exceed nmax, causing an error with a condition code between 20000 and 23111. The argument err gives an estimate of the absolute error in the solution s .

\section*{4. Example program}

This program computes an approximation to \(\int_{0}^{1}\left(x^{-p}+\sin (p x)\right) d x\) with \(p\) varying from 0.1 to 0.9 in increments of 0.1 .
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
double fun(double x); /* user function prototype */
double p;
MAIN__()
{
int ierr, icon;
int i, n, nmin, nmax;
double a, b, epsa, epsr, err, s;
/* initialize data */
a = 0;
b = 1;
epsa = 1e-4;
epsr = 1e-4;
nmin = 21;
nmax = 2000;
printf("p icon s err n\n");
for (i=1;i<10;i++) {
p = (double)i/10;
/* calculate integral */
ierr = c_daqn9(a, b, fun, epsa, epsr, nmin, nmax, \&s, \&err, \&n, \&icon);
printf("%3.1f %6i %12.4e %12.4e %4i\n", p, icon, s, err, n);
}
return(0)
}
/* user function */
double fun(double x)
{
double res;
res = 0;
if (x > 0)
res = pow(x,-p) + sin(p*x);
return(res);
}

```

\section*{5. Method}

For further information on adaptive integration using the Newton-Cotes 9 point rule consult the entry for AQN9 in the Fortran SSL II User's Guide and also [76].

\section*{c_dassm}
\begin{tabular}{|l|}
\hline Addition of two matrices (symmetric + symmetric). \\
\hline ierr = c_dassm(\(a, ~ b, ~ c, ~ n, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine performs addition of two \(n \times n\) symmetric matrices, \(\mathbf{A}\) and \(\mathbf{B}\).
\[
\begin{equation*}
\mathbf{C}=\mathbf{A}+\mathbf{B} \tag{1}
\end{equation*}
\]

In (1), the resultant matrix \(\mathbf{C}\) is also an \(n \times n\) matrix (\(n \geq 1\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dassm(a, b, c, n, \&icon);
where:
\begin{tabular}{llll}
a & double \(\mathrm{a}[\) Alen \(]\) & Input & \begin{tabular}{l}
Matrix A. Stored in symmetric storage format. See Array storage \\
formats in the Introduction section for details. Alen \(=n(n+1) / 2\).
\end{tabular} \\
b & double \(\mathrm{b}[\) Blen \(]\) & Input & \begin{tabular}{l}
Matrix \(\mathbf{B}\). Stored in symmetric storage format. See Array storage formats \\
in the Introduction section for details. Blen \(=n(n+1) / 2\).
\end{tabular} \\
c & double \(\mathrm{c}[\) Clen \(]\) & Input & \begin{tabular}{l}
Matrix \(\mathbf{C}\). Stored in symmetric storage format. See Array storage \\
formats in the Introduction section for details. Clen \(=n(n+1) / 2\). See \\
Comments on use.
\end{tabular} \\
n & int & Input & \begin{tabular}{l}
The order \(n\) of matrices A, B and C.
\end{tabular} \\
icon & int & Output & \begin{tabular}{l}
Condition code. See below.
\end{tabular}
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{n}<1\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Efficient use of memory}

Storing the solution matrix \(\mathbf{C}\) in the same memory area as matrix \(\mathbf{A}(\mathrm{or} \mathbf{B})\) is permitted if the array contents of matrix \(\mathbf{A}\) (or B) can be discarded after computation. To take advantage of this efficient reuse of memory, the array arguments associated with matrix \(\mathbf{A}\) (or \(\mathbf{B})\) need to appear in the locations reserved for matrix \(\mathbf{C}\) in the function argument list, as indicated below.

For A:
```

ierr = c_dassm(a, b, a, n, \&icon);

```

For \(\mathbf{B}\) :
```

ierr = c_dassm(a, b, b, n, \&icon);

```

Note, if both matrices \(\mathbf{A}\) and \(\mathbf{B}\) are required after the solution then a separate array must be supplied for storing \(\mathbf{C}\).

\section*{4. Example program}

This program adds two symmetric matrices together and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, ij;
double eps, err;
double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], c[NMAX*(NMAX+1)/2];
/* initialize matrices*/
n = NMAX;
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[ij] = i-j+1;
b[ij++] = n-i+j-1;
**
/* add matrices */
ierr = c_dassm(a, b, c, n, \&icon);
if (icon!= 0) {
printf("ERROR: c_dassm failed with icon = %d\n", icon);
exit(1);
}*
/* check matrix */
eps = 1e-6;
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
err = fabs((c[ijj++]-n)/n);
if (err > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
}
printf("Result OK\n");
return(0);
}

```

\section*{c_dasvd1}
\[
\begin{aligned}
& \text { Singular value decomposition of a real matrix (Householder and QR } \\
& \text { methods). } \\
& \text { ierr = c_dasvd1(a, ka, m, } n, ~ i s w, ~ s i g, ~ u, ~ k u, ~ \\
& v, ~ k v, ~ v w, ~ \& i c o n) ; ~
\end{aligned}
\]

\section*{1. Function}

This function performs singular value decomposition of an \(m \times n\) real matrix \(\mathbf{A}\) using the Householder and QR methods.
\[
\begin{equation*}
\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{U}\) and \(\mathbf{V}\) are matrices of \(m \times l\) and \(n \times l\) respectively, \(l=\min (m, n)\).
When \(l=n(m \geq n)\),
\[
\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{V} \mathbf{V}^{\mathrm{T}}=\mathbf{I}_{n}
\]
else \(l=m(m<n)\),
\[
\mathbf{U}^{\mathrm{T}} \mathbf{U}=\mathbf{U U}^{\mathrm{T}}=\mathbf{V}^{\mathrm{T}} \mathbf{V}=\mathbf{I}_{m}
\]

The variable \(\Sigma\) is an \(l \times l\) diagonal matrix expressed by \(\Sigma=\operatorname{diag}\left(\sigma_{i}\right), \sigma_{i} \geq 0\) and \(\sigma_{i}\) is a singular value of \(\mathbf{A}\). Singular values \(\sigma_{i}\) are the positive square root of the eigenvalues of matrix \(\mathbf{A}^{\mathrm{T}} \mathbf{A}\) and the \(i\)-th row of V is the eigenvector corresponding to the eigenvalue \(\sigma_{i}(m \geq 1, n \geq 1)\).

For dimensions of matrices \(\mathbf{A}, \mathbf{U}, \Sigma, \mathbf{V}\), see Figure 29

Figure 29 Relationship of matrix dimensions

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dasvd1((double*)a, ka, m, n, isw, sig, (double*)u, ku, (double*)v, kv, \(v w, ~ \& i c o n) ;\)
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[m][ka]
\end{tabular} & Input & Matrix A. See Comments on use. \\
\hline ka & int & Input & C fixed dimension of array a (\(\geq \mathrm{n}\)). \\
\hline m & int & Input & The number of rows \(m\) in matrix \(\mathbf{A}\). \\
\hline n & int & Input & The number of columns \(n\) in matrix \(\mathbf{A}\). \\
\hline iSW & int & Input & \begin{tabular}{l}
Control information. \\
isw \(=10 d_{1}+d_{0}\) with \(d_{0}\) and \(d_{1}\) are either 0 or 1 , specified as follows: \\
\(d_{1} 0\) not to obtain matrix \(\mathbf{U}\). \\
1 to obtain matrix \(\mathbf{U}\). \\
\(d_{0} 0\) not to obtain matrix \(\mathbf{V}\). \\
1 to obtain matrix \(\mathbf{V}\).
\end{tabular} \\
\hline sig & double sig[Slen] & Output & Singular values of matrix A with Slen \(=l+1\). See Comments on use. \\
\hline u & \begin{tabular}{l}
double \\
\(u[m][k u]\)
\end{tabular} & Output & Matrix U. See Comments on use. \\
\hline ku & int & Input & \(C\) fixed dimension of array \(u(\geq n)\). \\
\hline v & \begin{tabular}{l}
double \\
v [n\(][\mathrm{kv}\)]
\end{tabular} & Output & Matrix V. See Comments on use. \\
\hline kv & int & Input & \(C\) fixed dimension of array \(\mathrm{v}(\geq \min (\mathrm{m}+1, \mathrm{n})\)). \\
\hline vw & \begin{tabular}{l}
double \\
\(\mathrm{Vw}[\mathrm{n}+1]\)
\end{tabular} & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 15000 & Some singular values cannot be obtained. & Stopped. \\
\hline 29000 & Memory allocation error. & Bypassed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(m<1\) \\
- \(\mathrm{n}<1\) \\
- \(k a<n\) \\
- \(k u<n\) \\
- \(\quad \mathrm{kv}<\min (\mathrm{m}+1, \mathrm{n})\) \\
- isw \(\neq 0,1,10\) or 11
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Matrix inverse or least squares}

If users use the decomposition factors, \(\mathbf{U}, \boldsymbol{\Sigma}\) and \(\mathbf{V}\), from singular value decomposition, for obtaining generalized matrix inverse or least squares minimal norm solution of linear equations. They can do so but overall computation will not be as efficient compares to using function c_dginv and c_dlaxlm, respectively.

\section*{Matrices \(\mathbf{U}\) and \(\mathbf{V}-\mathbf{u}, \mathbf{v} \&\) isw}

Although the singular value decomposition can be widely utilized, it requires a great amount of computation. Therefore, \(\mathbf{U}\) and \(\mathbf{V}\) are only computed when required. The argument isw control such requests.

The function allows rewriting of either \(\mathbf{U}\) or \(\mathbf{V}\) on array a to reduce storage space. Only when \(\mathbf{A}\) does not have to be saved else separate arrays are needed.

\section*{sig}

All singular values are non-negative and stored in descending order. When icon=15000, the unobtainable singular values are set to -1 and the values are not arranged in any order.

\section*{Matrix A-a}

In this function, there are no constraints on the number of columns \(m\) or rows \(n\) for matrix \(\mathbf{A}\), i.e. this function can perform singular value decomposition when \(m\) is less than, equal to, or greater than \(n\).

\section*{4. Example program}

This program defines a matrix \(\mathbf{A}\), performs a single value decomposition, and displays the singular values and eigenvectors.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define MMAX 7
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int m, n, i, j, ka, ku, kv, isw;
double a[MMAX][NMAX],'sig[NMAX], u[MMAX][NMAX], v[NMAX][NMAX], vw[NMAX];
/* initialize system */
m = MMAX;
n = NMAX;
for (i=0;i<n;i++)
for (j=i;j<n;j++) {
a[i][j] = n-j;
a[j][i] = n-j;
}
for (i=n;i<m;i++)
for (j=0;j<n;j++) {
a[i][j] = 0;
if (i%n == j) a[i][j] = 1;
}
ka = NMAX
ku = NMAX
kv = NMAX;
isw = 11
/* singular value decomposition */
ierr = c_dasvd1((double*)a, ka, m, n, isw, sig,
f (icon (double*)u, ku, (double*)v, kv, vw, \&icon);
if (icon !=0) {
printf("ERROR: c_dasvd1 failed with icon = %d\n", icon);
exit(1);
}
/* print singular values and eigenvectors */
for (i=0;i<n;i++) {
printf("singular value: %10.4f\n", sig[i]);
printf("e-vector:");
for (j=0;j<n;j++)
printf("%7.4f ",v[i][j]);
printf("\n");
}
return(0)
}

```

\section*{5. Method}

The Householder and QR methods are used for the singular value decomposition. For further information consult the entry for ASVD1 in the Fortran SSL II User's Guide and [41].

\section*{c_dbi0}
\begin{tabular}{|l|}
\hline Modified zero-order Bessel function of the first kind \(I_{0}(x)\). \\
\hline ierr \(=\) c_dbi0 \((\mathrm{x}, \quad \& \mathrm{bi}, \quad \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the modified zero-order Bessel function of the first kind
\[
I_{0}(x)=\sum_{k=0}^{\infty} \frac{(x / 2)^{2 k}}{(k!)^{2}}
\]
by polynomial approximations and the asymptotic expansion.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dbi0(x, \&bi, \&icon);

```
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
bi & double & Output & Function value \(I_{0}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(|x|>\log \left(f l_{\max }\right)\) & bi is set to \(f l_{\max }\). \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The range of values of x is limited to avoid numerical overflow of \(e^{x}\) in the computations. The table of condition codes shows these limits. For details on the constant, \(f l_{\text {max }}\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 0 to 100 in increments of 1 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, bi;
int i;
for (i=0;i<=100;i++) {
x = (double)i;
/* calculate Bessel function */
ierr = c_dbi0(x, \&bi, \&icon);

```
```

        if (icon == 0)
        printf("x = %4.2f bi = %e\n", x, bi);
        else
        printf("ERROR: x = %4.2f bi = %e icon = %i\n", x, bi, icon);
    }
    return(0);
    }

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the modified zero-order Bessel function of the first kind, \(I_{0}(x)\), is:
- Power series expansion using polynomial approximations when \(0 \leq x<8\).
- Asymptotic expansion when \(8 \leq x \leq \log \left(f l_{\max }\right)\).

For further information consult the entry for BI0 in the Fortran SSL II User's Guide.

\section*{c_dbi1}

> \begin{tabular}{|l|} \hline Modified first-order Bessel function of the first kind \(I_{1}(x)\). \\ \hline ierr = c_dbi1 (x, \&bi, \&icon \()\); \\ \hline \end{tabular}

\section*{1. Function}

This function computes the modified first-order Bessel function of the first kind
\[
I_{1}(x)=\sum_{k=0}^{\infty} \frac{(x / 2)^{2 k+1}}{k!(k+1)!}
\]
by polynomial approximations and the asymptotic expansion.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dbi1(x, \&bi, \&icon);

```
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
bi & double & Output & Function value \(I_{1}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(\mathrm{x}>\log \left(f l_{\max }\right)\) or \(\mathrm{x}<-\log \left(f l_{\max }\right)\). & bi is set to \(f l_{\max }\) or \(-f l_{\max }\) respectively.. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The range of values of x is limited to avoid numerical overflow of \(e^{x}\) in the computations. The table of condition codes shows these limits. For details on the constant, \(f l_{\text {max }}\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 0 to 100 in increments of 1 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, bi;
int i;
for (i=0;i<=100;i++) {
x = (double)i;
/* calculate Bessel function */
ierr = c_dbi1(x, \&bi, \&icon);

```
```

        if (icon == 0)
        printf("x = %4.2f bi = %e\n", x, bi);
        else
        printf("ERROR: x = %4.2f bi = %e icon = %i\n", x, bi, icon);
    }
    return(0);
    }

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the modified zero-order Bessel function of the first kind, \(I_{1}(x)\), is:
- Power series expansion using polynomial approximations when \(0 \leq x<8\).
- Asymptotic expansion when \(8 \leq x \leq \log \left(f l_{\max }\right)\).

For further information consult the entry for BI1 in the Fortran SSL II User's Guide.

\section*{c_dbic1}
\begin{tabular}{|l|}
\hline B-spline interpolation coefficient calculation (I). \\
\hline ierr \(=c _d b i c 1(x, y, d y, n, m, c, ~ v w, ~ \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

Given function values \(y_{i}=f\left(x_{i}\right)\) for \(i=1, \ldots, n\) at discrete points \(x_{1}<x_{2}<\ldots<x_{n}\) and derivative values \(y_{1}{ }^{(\lambda)}=f^{(\lambda)}\left(x_{1}\right)\) and \(y_{n}{ }^{(\lambda)}=f^{(\lambda)}\left(x_{n}\right)\) for \(\lambda=1, \ldots,(m-1) / 2\), this routine obtains the interpolation coefficients \(c_{j}\), \(j=1-m, 2-m, \ldots, n-1\), of the interpolating spline \(S(x)\) of degree \(m\) represented as a linear combination of B-splines (1).
\[
\begin{equation*}
S(x)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}(x) \tag{1}
\end{equation*}
\]

The interpolating spline \(S(x)\) in (1) satisfies
\[
\left\{\begin{array}{l}
S^{(\lambda)}\left(x_{1}\right)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}^{(\lambda)}\left(x_{1}\right)=y_{1}^{(\lambda)}, \lambda=0,1, \ldots,(m-1) / 2 \\
S\left(x_{i}\right)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}\left(x_{i}\right)=y_{i}, i=2,3, \ldots, n-1 \\
S^{(\lambda)}\left(x_{n}\right)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}^{(\lambda)}\left(x_{n}\right)=y_{n}^{(\lambda)}, \lambda=(m-1) / 2,(m-1) / 2-1, \ldots, 0
\end{array}\right.
\]

Here \(m\) is an odd integer and is the degree of the B-spline \(N_{j, m+1}(x)\), with \(m \geq 3\) and \(n \geq 2\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dbic1(x, y, (double*)dy, n, m, c, vw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline X & double \(\mathrm{x}[\mathrm{n}]\) & Input & Discrete points \(x_{i}\). \\
\hline y & double y[n] & Input & Function values \(y_{i}\). \\
\hline dy & double
\[
\operatorname{dy}[(m-1) / 2][2]
\] & Input & Derivative values at end points \(x_{1}\) and \(x_{n}\).
\[
\operatorname{dy}[\lambda-1][0]=y_{1}^{(\lambda)}, \operatorname{dy}[\lambda-1][1]=y_{n}^{(\lambda)}, \quad \lambda=1,2, \ldots,(m-1) / 2 .
\] \\
\hline n & int & Input & Number of discrete points \(n\). \\
\hline m & int & Input & Degree \(m\) of the B-spline. See Comments on use. \\
\hline c & double
\[
c[n+m-1]
\] & Output & Interpolating coefficients \(c_{j}\). \\
\hline VW & \begin{tabular}{l}
double \\
vw [Vwlen]
\end{tabular} & Work & Vwlen \(=(n-2) m+(m+1)^{2} / 2+(m+1)\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{m}\) is not an odd integer & \\
& \(\bullet \quad \mathrm{x}[\mathrm{i}] \geq x[\mathrm{i}+1]\) for some i & \\
& \(\bullet m<3\) \\
& \(\bullet \mathrm{n}<2\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbif1}

The interpolated value, derivative value, or integral value based on the interpolating B-spline (1) may be determined by the \(C _d b i f 1\) routine. In which case, the values of arguments \(x, n, m\), and \(c\) are input to the \(c _d b i f 1\) routine.
m
The preferred degree \(m\) is 3 or 5 . However, if the original function is smooth and the \(y_{i}\) 's are given with high accuracy, the degree may be increased above 3 or 5 but not beyond 15 .

\section*{4. Example program}

This program interpolates the function \(f(x)=x^{3}\) at 10 equally spaced points in the interval \([0,1]\) with a B-spline. It then computes approximations to the function value as well as an integral and several derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, n, m, isw;
double x[N], y[N], c[N+M-1], dy[1][2], vw[36];
double p, h, v, f;
/* initialize data */
n = N;
m = M;
p = 0;
h = 1.0/(n-1);
/* set function values */
for (i=0;i<n;i++) {
x[i] = p+i*h;
y[i] = x[i]*x[i]*x[i];
}
/* set derivative values at end-points */
dy[0][0] = 3*x[0]*x[0];
dy[0][1] = 3*x[n-1]*x[n-1];
/* calculate B-spline interpolation coefficients */
ierr = c_dbic1(x, y, (double*)dy, n, m, c, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dbic1 failed with icon = %d\n", icon);
exit(1);
}
i = 4;

```
```

    v = 0.5;
    for (isw=-1;isw<=m;isw++) {
        /* calculate value at point */
        ierr = c_dbif1(x, n, m, c, isw, v, &i, &f, vw, &icon);
        if (icon >= 20000) {
            printf("ERROR: c_dbif1 failed with icon = %d\n", icon);
            exit(1);
        }
        if (isw == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (isw == 0)
        printf("icon = %i value = %12.6e\n", icon, f);
        else
        printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
    }
    return(0);
    }

```

\section*{5. Method}

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using an LU decomposition method the coefficients are obtained. For further information consult the entry for BIC1 in the Fortran SSL II User's Guide.

\section*{c_dbic2}
\begin{tabular}{|l|}
\hline B-spline interpolation coefficient calculation (II). \\
\hline ierr \(=c _d b i c 2(x, y, d y, n, m, c, v w, ~ \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

Given function values \(y_{i}=f\left(x_{i}\right)\) for \(i=1, \ldots, n\) at discrete points \(x_{1}<x_{2}<\ldots<x_{n}\) and derivative values \(y_{1}{ }^{(\lambda)}=f^{(\lambda)}\left(x_{1}\right)\) and \(y_{n}{ }^{(\lambda)}=f^{(\lambda)}\left(x_{n}\right)\) for \(\lambda=(m+1) / 2,(m+1) / 2+1, \ldots, m-1\), this routine obtains the interpolation coefficients \(c_{j}, j=1-m, 2-m, \ldots, n-1\), of the interpolating spline \(S(x)\) of degree \(m\) represented as a linear combination of B-splines (1).
\[
\begin{equation*}
S(x)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}(x) \tag{1}
\end{equation*}
\]

The interpolating spline \(S(x)\) in (1) satisfies
\[
\left\{\begin{array}{l}
S^{(\lambda)}\left(x_{1}\right)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}^{(\lambda)}\left(x_{1}\right)=y_{1}^{(\lambda)}, \lambda=(m+1) / 2,(m+1) / 2+1, \ldots, m-1 \\
S\left(x_{i}\right)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}\left(x_{i}\right)=y_{i}, i=1,2, \ldots, n \\
S^{(\lambda)}\left(x_{n}\right)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}^{(\lambda)}\left(x_{n}\right)=y_{n}^{(\lambda)}, \lambda=m-1, m-2, \ldots,(m+1) / 2
\end{array} .\right.
\]

Here \(m\) is an odd integer and is the degree of the B-spline \(N_{j, m+1}(x)\), with \(m \geq 3\) and \(n \geq(m+1) / 2\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dbic2 (x, y, (double*)dy, n, m, c, vw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline X & double \(x[n]\) & Input & Discrete points \(x_{i}\). \\
\hline y & double y[n] & Input & Function values \(y_{i}\). \\
\hline dy & double
\[
d y[(m-1) / 2][2]
\] & Input & Derivative values at end points \(x_{1}\) and \(x_{n}\).
\[
\begin{aligned}
& \operatorname{dy}[\lambda-(m+1) / 2][0]=y_{1}^{(\lambda)}, \operatorname{dy}[\lambda-(m+1) / 2][1]=y_{n}^{(\lambda)}, \\
& \lambda=(m+1) / 2,(m+1) / 2+1, \ldots, m-1 .
\end{aligned}
\] \\
\hline n & int & Input & Number of discrete points \(n\). \\
\hline m & int & Input & Degree \(m\) of the B-spline. See Comments on use. \\
\hline C & double
\[
c[n+m-1]
\] & Output & Interpolating coefficients \(c_{j}\). \\
\hline Vw & double & Work & \(V\) len \(=m(n+m-3)+2(m+1)\). \\
\hline & vw[Vwlen] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad m\) is not an odd integer & \\
& \(\bullet \quad x[i] \geq x[i+1]\) for some i & \\
& \(\bullet m<3\) \\
& \(\bullet \mathrm{n}<(\mathrm{m}+1) / 2\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbif2}

The interpolated value, derivative value, or integral value based on the interpolating B-spline (1) may be determined by the \(c _d b i f 2\) routine. In which case, the values of arguments \(x, n, m\), and \(c\) are input to the \(c _d b i f 2\) routine.

\section*{m}

The preferred degree \(m\) is 3 or 5 . However, if the original function is smooth and the \(y_{i}\) 's are given with high accuracy, the degree may be increased above 3 or 5 but not beyond 15 .

\section*{4. Example program}

This program interpolates the function \(f(x)=x^{3}\) at 10 equally spaced points in the interval \([0,1]\) with a B-spline. It then computes approximations to the function value as well as an integral and several derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, n, m, isw;
double x[N], y[N], c[N+M-1], dy[1][2], vw[38];
double p, h, v, f;
/* initialize data */
n = N;
m = M;
p = 0;
h = 1.0/(n-1);
/* set function values */
for (i=0;i<n;i++) {
x[i] = p+i*h;
y[i] = x[i]*x[i]*x[i];
}
/* set derivative values at end-points */
dy[0][0] = 3*x[0]*x[0];
dy[0][1] = 3*x[n-1]*x[n-1];
/* calculate B-spline interpolation coefficients */
ierr = c_dbic2(x, y, (double*)dy, n, m, c, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dbic2 failed with icon = %d\n", icon);
exit(1);
}
i = 4;
v = 0.5;
for (isw=-1;isw<=m;isw++) {
/* calculate value at point */
ierr = c_dbif2(x, n, m, c, isw, v, \&i, \&f, vw, \&icon);

```
```

        if (icon >= 20000) {
        printf("ERROR: c_dbif2 failed with icon = %d\n", icon);
        exit(1);
        }
        if (isw == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (isw == 0)
        printf("icon = %i value = %12.6e\n", icon, f);
        else
        printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
    }
    return(0);
    }

```

\section*{5. Method}

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using an LU decomposition method the coefficients are obtained. For further information consult the entry for BIC2 in the Fortran SSL II User's Guide.

\section*{c_dbic3}
\begin{tabular}{|l|}
\hline B-spline interpolation coefficient calculation (III). \\
\hline ierr \(=c_{-} \operatorname{dbic} 3(x, y, n, m, c, x t, v w, ~ \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

Given discrete points \(x_{1}<x_{2}<\ldots<x_{n}\) and their corresponding function values \(y_{i}=f\left(x_{i}\right)\) for \(i=1, \ldots, n\), this function obtains the interpolating spline \(S(x)\) of degree \(m\) represented as a linear combination of B-splines (1).
\[
\begin{equation*}
S(x)=\sum_{j=1-m}^{n-m} c_{j} N_{j, m+1}(x) \tag{1}
\end{equation*}
\]

The knots of the spline are taken as:
\[
\begin{aligned}
& \xi_{1}=x_{1} \\
& \xi_{i}=x_{i+(m-1) / 2} \quad \text { for } i=2,3, \ldots, n-m \\
& \xi_{n-m+1}=x_{n}
\end{aligned}
\]

Here, \(m\) is an odd integer greater than 2 and \(n \geq m+2\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dbic3(x, y, n, m, c, xt, vw, \&icon);

```
where:
\begin{tabular}{llll}
x & double \(\mathrm{x}[\mathrm{n}]\) & Input & Discrete points \(x_{i}\). \\
y & double \(\mathrm{y}[\mathrm{n}]\) & Input & Function values \(y_{i}\). \\
n & int & Input & Number of discrete points \(n\). \\
m & int & Input & Degree \(m\) of the B-spline. See Comments on use. \\
c & double \(\mathrm{c}[\mathrm{n}]\) & Output & Interpolating coefficients \(c_{i}\). \\
xt & double & Output & The knots \(\xi_{i}\). \\
& \(\mathrm{xt}[\mathrm{n}-\mathrm{m}+1]\) & & \\
Vw & double & Work & \\
icon & vw[m*n+2] & & \\
int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad m\) is not an odd number & \\
& \(\bullet \quad \mathrm{n}<\mathrm{m}+2\) \\
& \(\bullet \quad \times[\mathrm{i}] \geq \times[\mathrm{i}+1]\) exists & \\
& \(\bullet \quad m<3\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbif3}

The interpolated values or derivative or integrals based on the interpolating spline (1) may be determined by calling the function \(c _d b i f 3\) after this function. In that case, the values of arguments \(x, n, m, c\) and \(x t\) are input to the \(c _d b i f 3\) function.

\section*{m}

The preferred degree \(m\) is 3 or 5 . However, if the original function is smooth and \(y_{i}\) 's are given with high accuracy, the degree may be increased above 3 or 5 but not beyond 15 .

\section*{4. Example program}

This program interpolates the function \(f(x)=\sin (x) \sqrt{x}\) at 10 equally spaced points in the interval [0,1] with a cubic Bspline. It then computes approximations to the function value as well as an integral and several derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, n, m, isw;
double x[N], y[N], c[N], xt[N-M+1], vw[M*N+2];
double p, h, v, f;
/* initialize data */
n = N;
m = M;
isw = 0;
p = 0;
h = 1.0/n;
for (i=0;i<n;i++) {
x[i] = p;
y[i] = sin(p)*sqrt(p);
p = p + h;
}/*
* calculate B-spline interpolation coefficients */
ierr = c_dbic3(x, y, n, m, c, xt, vw, \&icon);
i = n/2;
v = x[i] + (x[i+1]-x[i])/2;
for (isw=-1;isW<=m;isw++) {
/* calculate value at point */
ierr = c_dbif3(x, n, m, c, xt, isw, v, \&i, \&f, vw, \&icon);
if (isw == -1)
printf("icon = %i integral = %12.6e\n", icon, f);
else if (isw == 0)
printf("icon = %i value = %12.6e\n", icon, f);
else
printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
}
return(0)
}

```

\section*{5. Method}

The interpolating condition for the B-spline derives a system of equations for its coefficients, by solving this system using a LU decomposition method the coefficients are obtained. For further information consult the entry for BIC3 in the Fortran SSL II User's Guide.

\section*{c_dbic4}
\begin{tabular}{|l|}
\hline B-spline interpolation coefficient calculation (IV). \\
\hline ierr \(=c _d b i c 4(x, y, n, m, c, ~ v w, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

Given periodic function values \(y_{i}=f\left(x_{i}\right)\) for \(i=1, \ldots, n\), with \(y_{1}=y_{n}\), and period \(\left(x_{n}-x_{1}\right)\), at discrete points \(x_{1}<x_{2}<\ldots<x_{n}\), this routine obtains the interpolation coefficients \(c_{j}, j=1-m, 2-m, \ldots, n-1\), of the interpolating spline \(S(x)\) of degree \(m\) represented as a linear combination of B-splines (1).
\[
\begin{equation*}
S(x)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}(x) \tag{1}
\end{equation*}
\]

The interpolating spline \(S(x)\) in (1) is a periodic function, with period \(\left(x_{n}-x_{1}\right)\), satisfying the boundary conditions \(S^{(\lambda)}\left(x_{1}\right)=S^{(\lambda)}\left(x_{n}\right), \lambda=0,1, \ldots, m-1\).

Here \(m\) is an odd integer and is the degree of the B-spline \(N_{j, m+1}(x)\), with \(m \geq 3\) and \(n \geq m+2\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbic4 (x, y, n, m, c, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline x & double \(\times[\mathrm{n}]\) & Input & Discrete points \(x_{i}\). \\
\hline y & double \(\mathrm{y}[\mathrm{n}]\) & Input & Function values \(y_{i}\), with \(y_{1}=y_{n}\). If \(y_{1} \neq y_{n}\), then \(y_{1}\) is set to \(y_{n}\). \\
\hline n & int & Input & Number of discrete points \(n\). \\
\hline m & int & Input & Degree \(m\) of the B-spline. See Comments on use. \\
\hline c & double
\[
c[n+m-1]
\] & Output & Interpolating coefficients \(c_{j}\). \\
\hline VW & \begin{tabular}{l}
double \\
vw[Vwlen]
\end{tabular} & Work & Vwlen \(=(n-1)(2 m-1)+m+1\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad m\) is not an odd integer & \\
& \(\bullet \quad x[i] \geq x[i+1]\) for some \(i\) & \\
& \(\bullet m<3\) \\
& \(\bullet n<m+2\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbif4}

The interpolated value, derivative value, or integral value based on the interpolating B-spline (1) may be determined by the \(C _d b i f 4\) routine. In which case, the values of arguments \(x, n, m\), and \(c\) are input to the \(c _d b i f 4\) routine.

\section*{m}

The preferred degree \(m\) is 3 or 5 . However, if the original function is smooth and the \(y_{i}\) 's are given with high accuracy, the degree may be increased above 3 or 5 but not beyond 15 .

\section*{4. Example program}

This program interpolates the function \(f(x)=\sin x\) at 10 equally spaced points in the interval \([0,2 \pi]\) with a B-spline. It then computes approximations to the function value as well as an integral and several derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, n, m, isw;
double x[N], y[N], c[N+M-1], vw[49];
double p, h, v, f, pi;
/* initialize data */
n = N;
m = M;
p = 0;
pi = 2*asin(1);
h = 2*pi/(n-1);
/* set function values */
for (i=0;i<n;i++) {
x[i] = p+i*h;
y[i] = sin(x[i]);
}*
/* calculate B-spline interpolation coefficients */
ierr = c_dbic4(x, y, n, m, c, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dbic4 failed with icon = %d\n", icon);
exit(1);
}
i = 4;
v = pi;
for (isw=-1;isw<=m;isw++) {
/* calculate value at point */
ierr = c_dbif4(x, n, m, c, isw, v, \&i, \&f, vw, \&icon);
if (icon >= 20000) {
printf("ERROR: c_dbif4 failed with icon = %d\n", icon);
exit(1);
}
if (isw == -1)
printf("icon = %i integral = %12.6e\n", icon, f);
else if (isw == 0)
printf("icon = %i value = %12.6e\n", icon, f);
else
printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
}
return(0)
}

```

\section*{5. Method}

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using an LU decomposition method the coefficients are obtained. For further information consult the entry for BIC4 in the Fortran SSL II User's Guide.

\section*{c_dbicd1}
\[
\begin{gathered}
\text { Two-dimensional B-spline interpolation coefficient calculation (I-I). } \\
\hline \text { ierr }=\mathrm{c} \text { _dbicd1 (} \mathrm{x}, \mathrm{nx}, \mathrm{y}, \mathrm{ny}, \mathrm{fxy}, \mathrm{k}, \mathrm{~m}, \mathrm{c}, \\
\mathrm{vw,} \mathrm{\& icon)} ;
\end{gathered}
\]

\section*{1. Function}

Given function values \(f_{i j}=f\left(x_{i}, y_{j}\right)\) at points \(\left(x_{i}, y_{j}\right)\) for \(i=1, \ldots, n_{x}\) and \(j=1, \ldots, n_{y}\), where \(x_{1}<x_{2}<\ldots<x_{n_{x}}\) and \(y_{1}<y_{2}<\ldots<y_{n_{y}}\) on the \(x y\)-plane, and partial derivatives \(f_{i, j}^{(\lambda, \mu)}, i=1, n_{x}, j=1, n_{y}, \lambda=1,2, \ldots,(m-1) / 2\), \(\mu=1,2, \ldots,(m-1) / 2\) at the boundary points, this routine obtains the coefficients \(c_{\alpha, \beta}\) of the \(m\)-th degree twodimensional B-spline interpolation function (1).
\[
\begin{equation*}
S(x, y)=\sum_{\beta=1-m}^{n_{y}-1} \sum_{\alpha=1-m}^{n_{x}-1} c_{\alpha, \beta} N_{\alpha, m+1}(x) N_{\beta, m+1}(y) \tag{1}
\end{equation*}
\]

Here, \(m\) is an odd integer with \(m \geq 3, n_{x} \geq 2\), and \(n_{y} \geq 2\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbicd1(x, nx, y, ny, (double*)fxy, k, m, (double*)c, vw, \&icon)
where:
\begin{tabular}{|c|c|c|c|}
\hline x & double \(x[n \times]\) & Input & Discrete points in the \(x\)-direction \(x_{i}\). \\
\hline nx & int & Input & Number of discrete points in \(x\)-direction \(n_{x}\). \\
\hline y & double y[ny] & Input & Discrete points in the \(y\)-direction \(y_{i}\). \\
\hline ny & int & Input & Number of discrete points in \(y\)-direction \(n_{y}\). \\
\hline fxy & \begin{tabular}{l}
double \\
fxy[Fxylen][k]
\end{tabular} & Input & Function values and partial derivatives \(\hat{f}_{i, j}\). Fxylen \(=n_{x}+m-1\). See Comments on use. \\
\hline k & int & Input & C fixed dimension of arrays fxy and \(\mathrm{c}(\geq \mathrm{ny}+\mathrm{m}-1)\). \\
\hline m & int & Input & Degree \(m\) of B-spline. See Comments on use. \\
\hline C & \begin{tabular}{l}
double \\
c [Clen] [k]
\end{tabular} & Output & Interpolating coefficients \(c_{\alpha, \beta}\). Clen \(=n_{x}+m-1\). \\
\hline VW & double Vw[Vwlen] & Work & Vwlen \(=\left(\max \left(n_{x}, n_{y}\right)+1\right)(m+2)-3+(m+1)^{2} / 2\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad m\) is not an odd integer & \\
& \(\bullet \quad x[i] \geq x[i+1]\) exists & \\
& \(\bullet y[i] \geq y[i+1]\) exists & \\
& \(\bullet m<3\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet \mathrm{nx}<2\) or \(\mathrm{ny}<2\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{fxy}

Array fxy contains function values and partial derivatives, \(\hat{f}_{i, j}\), as shown below with \(\ell=(m-1) / 2\),
\[
\begin{array}{ll}
\hat{f}_{i, j}=f_{1,1}^{(\ell+1-i, \ell+1-j)} & i=1,2, \ldots, \ell+1 ; j=1,2, \ldots, \ell+1 ; \\
\hat{f}_{i, j}=f_{i-\ell, 1}^{(0, \ell+1-j)} & i=\ell+2, \ell+3, \ldots, \ell+n_{x}-1 ; j=1,2, \ldots, \ell+1 ; \\
\hat{f}_{i, j}=f_{n_{x}, 1}^{\left(i-\ell-n_{x}, \ell+1-j\right)} & i=\ell+n_{x}, \ell+n_{x}+1, \ldots, 2 \ell+n_{x} ; j=1,2, \ldots, \ell+1 ; \\
\hat{f}_{i, j}=f_{1, j-\ell}^{(\ell+1-i, 0)} & i=1,2, \ldots, \ell+1 ; j=\ell+2, \ell+3, \ldots, \ell+n_{y}-1 ; \\
\hat{f}_{i, j}=f_{i-\ell, j-\ell} & i=\ell+2, \ell+3, \ldots, \ell+n_{x}-1 ; j=\ell+2, \ell+3, \ldots, \ell+n_{y}-1 ; \\
\hat{f}_{i, j}=f_{n_{x}, j-\ell}^{\left(i-\ell-n_{x}, 0\right)} & i=\ell+n_{x}, \ell+n_{x}+1, \ldots, 2 \ell+n_{x} ; j=\ell+2, \ell+3, \ldots, \ell+n_{y}-1 ; \\
\hat{f}_{i, j}=f_{1, n_{y}}^{\left(\ell+1-i, j-\ell-n_{y}\right)} & i=1,2, \ldots, \ell+1 ; j=\ell+n_{y}, \ell+n_{y}+1, \ldots, 2 \ell+n_{y} ; \\
\hat{f}_{i, j}=f_{i-\ell, n_{y}}^{\left(0,---n_{y}\right)} & i=\ell+2, \ell+3, \ldots, \ell+n_{x}-1 ; j=\ell+n_{y}, \ell+n_{y}+1, \ldots, 2 \ell+n_{y} ; \\
\hat{f}_{i, j}=f_{n_{x}, n_{y}}^{\left(i \ell-n_{x}, j-\ell-n_{y}\right)} & i=\ell+n_{x}, \ell+n_{x}+1, \ldots, 2 \ell+n_{x} ; j=\ell+n_{y}, \ell+n_{y}+1, \ldots, 2 \ell+n_{y} .
\end{array}
\]

The matrix with \(\hat{f}_{i, j}\) as elements has the following form:

\section*{Relationship with c_dbifd1}

By calling the routine c_dbifd1 after this routine, the interpolated values based on the B-spline interpolating function (1), as well as derivatives and/or integrals, can be obtained. The values of the arguments \(x, n x, y, n y, k, m\) and \(c\) are input to c_dbifd1.

\section*{m}

The preferred degree \(m\) is 3 or 5 . However, if the original function is smooth and the \(f_{i, j}^{(\lambda, \mu)}\) are given with high accuracy, the degree may be increased above 3 or 5 but not beyond 15 .

\section*{4. Example program}

This program interpolates the function \(f(x, y)=x^{3} y^{3}\) at 100 points in the region \([0,1] \times[0,1]\) with a spline. It then computes approximations to the function value as well as an integral and several partial derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
/* function prototype for initializer */
void gen(double x[], double y[], int n, double fxy[][N+M-1]);
MAIN__()
{
int ierr, icon;
int i, j, nx, ny, m, k, ix, iy, iSWX, iswy;
double x[N], y[N], fxy[N+M-1][N+M-1], c[N+M-1][N+M-1];
double vw[60];
double hx, hy, px, py, vx, vy, f;
/* initialize data */
nx = N;
ny = N;
m = M;
k = N+M-1;
hx = 1.0/(nx-1);
hy = 1.0/(ny-1);
px = 0;
for (i=0;i<nx;i++) {
x[i] = px+i*hx;
}
py = 0;
for (j=0;j<ny;j++) {
y[j] = py+j*hy;
}
/* generate function and derivative values in fxy */
gen(x, y, nx, fxy);
/* calculate B-spline interpolation coefficients */
ierr = c_dbicd1(x, nx, y, ny, (double*)fxy, k,
if (icon != 0) m, (double*)c, vw, \&icon);
printf("ERROR: c_dbicd1 failed with icon = %d\n", icon);
exit(1);
}
ix = 4;
vx = 0.5;
iy = 4;
vy = 0.5;
for (iswx=-1;iswx<=m;iswx++) {
iswy = iswx;
/* calculate value at point */
ierr = c_dbifd1(x, nx, y, ny, m, (double*)c, k,
iswx, vx, \&ix, iswy, vy, \&iy, \&f, vw, \&icon);
if (icon >= 20000) {
printf("ERROR: c_dbifd1 failed with icon = %d\n", icon);
exit(1);
}
if (iswx == -1)
printf("icon = %i
else if (iswx == 0)
printf("icon = %i
else
printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
}

```
```

    return(0);
    }
/* generate function and derivative values for f=x^3y^3 */
void gen(double x[], double y[], int n, double fxy[][N+M-1])
{
double y1, yn, x1, xn, fx, fy;
int i, j;
/* corner points; df/dxdy values */
fxy[0][0] = 9*x[0]*x[0]*y[0]*y[0];
fxy[n+1][0] = 9*x[n-1]*x[n-1]*y[0]*y[0];
fxy[0][n+1] = 9*x[0]*x[0]*y[n-1]*y[n-1];
fxy[n+1][n+1] = 9*x[n-1]*x[n-1]*y[n-1]*y[n-1];
/* partial derivatives on edges: df/dx, df/dy */
y1 = y[0]*y[0]*3;
yn = y[n-1]*y[n-1]*3;
x1 = x[0]*x[0]*3;
xn = x[n-1]*x[n-1]*3
/* edges; fx.df/dy or fy.df/dx */
for (i=0;i<n;i++) {
fx = x[i]*x[i]*x[i];
fy = y[i]*y[i]*y[i];
fxy[i+1][0] = y1*fx
fxy[0][i+1] = x1*fy;
fxy[n+1][i+1] = xn*fy;
fxy[i+1][n+1] = yn*fx;
}
/* central area; function values */
for (i=0;i<n;i++) {
fx = x[i]*x[i]*x[i]
for (j=0;j<n;j++) {
fxy[i+1][j+1] = fx*y[j]*y[j]*y[j];
}
}
return;
}

```

\section*{5. Method}

The interpolating condition for the B-spline derives a system of equations for its coefficients. By solving this system using an LU decomposition method the coefficients are obtained. For further information consult the entry for BICD1 in the Fortran SSL II User's Guide.

\section*{c_dbicd3}
\[
\begin{gathered}
\text { B-spline two-dimensional interpolation coefficient calculation (III-III). } \\
\hline \text { ier }=\mathrm{c} \text { _dbicd3 }(\mathrm{x}, \mathrm{nx}, \mathrm{y}, \mathrm{ny}, \mathrm{fxy}, \mathrm{k}, \mathrm{~m}, \mathrm{c}, \\
\mathrm{xt}, \mathrm{vw}, \& i c o n) ;
\end{gathered}
\]

\section*{1. Function}

Given function values \(f_{i j}=f\left(x_{i}, y_{j}\right)\) at points \(\left(x_{i}, y_{j}\right)\) where \(x_{1}<x_{2}<\ldots<x_{n_{x}}\) for \(i=1, \ldots, n_{x}\) and \(y_{1}<y_{2}<\ldots<y_{n_{y}}\) for \(j=1, \ldots, n_{y}\), on the \(x y\)-plane, this function obtains the coefficients \(c_{\alpha, \beta}\) of the dual degree \(m \mathrm{~B}\)-spline two-dimensional interpolation function (1).
\[
\begin{equation*}
S(x, y)=\sum_{\beta=1-m}^{n_{y}-m} \sum_{\alpha=1-m}^{n_{x}-m} c_{\alpha, \beta} N_{\alpha, m+1}(x) N_{\beta, m+1}(y) \tag{1}
\end{equation*}
\]

The knots of \(S(x, y)\) are given below, (2) for the x -direction and (3) for the y -direction.
\[
\begin{align*}
& \xi_{i}= \begin{cases}x_{1} & i=1 \\
x_{i+(m-1) / 2} & i=2,3, \ldots, n_{x}-m \\
x_{n_{x}} & i=n_{x}-m+1\end{cases} \tag{2}\\
& \eta_{i}= \begin{cases}y_{1} & j=1 \\
y_{j+(m-1) / 2} & j=2,3, \ldots, n_{y}-m \\
y_{n_{y}} & j=n_{y}-m+1\end{cases} \tag{3}
\end{align*}
\]

Here, \(m\) is an odd integer with \(m \geq 3, n_{x} \geq m+2\) and \(n_{y} \geq m+2\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbicd3(x, nx, y, ny, (double*)fxy, k, m, (double*)c, xt, vw, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline X & double \(\times\) [nx] & Input & Discrete points in the x-direction \(x_{i}\). \\
\hline nx & int & Input & Number of discrete points in x -direction \(n_{x}\). \\
\hline y & double y[ny] & Input & Discrete points in the y-direction \(y_{i}\). \\
\hline ny & int & Input & Number of discrete points in y-direction \(n_{y}\). \\
\hline fxy & \[
\begin{aligned}
& \text { double } \\
& \text { fxy[nx][k] }
\end{aligned}
\] & Input & Function values \(f_{i j}\). \\
\hline k & int & Input & C fixed dimension of array fxy (\(\geq\) ny). \\
\hline m & int & Input & Degree \(m\) of the B-spline. See Comments on use. \\
\hline C & \[
\begin{aligned}
& \text { double } \\
& c[n \times][k]
\end{aligned}
\] & Output & Interpolating coefficients \(c_{\alpha, \beta}\). \\
\hline xt & \begin{tabular}{l}
double \\
xt[Xtlen]
\end{tabular} & Output & The knots \(\xi_{i}\) and \(\eta_{j}\) in x and y directions, respectively. Xtlen \(=(n x-m+1)+(n y-m+1)\). \\
\hline VW & double & Work & Vwlen \(=(\max (\mathrm{nx}, \mathrm{ny})-2)^{*} \mathrm{~m}+2^{*}(\mathrm{~m}+1)+2^{*} \max (\mathrm{nx}, \mathrm{ny})\) \\
\hline
\end{tabular}
\begin{tabular}{lll}
& \(\mathrm{VW}[\) Vwlen \(]\) & \\
icon & int & Output Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 29000 & Memory allocation error. & Bypassed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad m\) is not an odd number & \\
& \(\bullet \quad n x<m+2\) or \(n y<m+2\) & \\
& \(\bullet \quad x[i] \geq x[i+1]\) exists & \\
& \(\bullet \quad y[j] \geq y[j+1]\) exists & \\
& \(\bullet \quad m<3\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbifd3}

By calling the function c _dbifd3 after this function, the interpolated values based on the B -spline interpolating function (1), as well as derivatives and/or integrals can be obtained. The argument values of \(x, n x, y, n y, k, m, c\) and \(x t\) are input to c_dbifd3.

\section*{m}

The preferred degree \(m\) is 3 or 5 . However, if the original function is smooth and \(f_{i j}\) 's are given with high accuracy, the degree may be increased above 3 or 5 but not beyond 15 .

\section*{4. Example program}

This program interpolates the function \(f(x, y)=\sin (x y) \sqrt{x y}\) at 100 points in the region [0,1] \(\times[0,1]\) with a bi-cubic spline. It then computes approximations to the function value as well as an integral and several partial derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, j, nx, ny, m, k, ix, iy, iswx, iswy;
double x[N], y[N], fxy[N][N], c[N][N], xt[2*(N-M+1)];
double vw[(N-2)*M+2*(M+1)+2*N];
double hx, hy, px, py, vx, vy, f;
/* initialize data */
nx = N;
ny = N;
m = M;
hx = 1.0/(nx-1);
hy = 1.0/(ny-1);
px = 0;
for (i=0;i<nx;i++) {
x[i] = px;
px = px + hx;
}
py = 0;

```
```

    for (j=0;j<ny;j++) {
        y[j] = py;
        py = py + hy;
    }
    for (i=0;i<nx;i++)
        for (j=0;j<ny;j++) {
            px = x[i];
            py = y[j];
            fxy[i][j] = sin(px*py)*sqrt(px*py);
    }
    k}=
    /* calculate B-spline interpolation coefficients */
    ierr = c_dbicd3(x, nx, y, ny, (double*)fxy, k,
                m, (double*)c, xt, vw, &icon);
    ix = nx/2;
    vx = x[ix] + (x[ix+1]-x[ix])/2;
    iy = ny/2
    vy = y[iy] + (y[iy+1]-y[iy])/2;
    for (iswx=-1;iswx<m;iswX++) {
        iswy = iswx;
        /* calculate value at point */
        ierr = c_dbifd3(x, nx, y, ny, m, (double*)c, k, xt,
                            iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon);
        if (iswx == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (iswx == 0)
        printf("icon = %i value = %12.6e\n", icon, f);
        else
        printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
    }
    return(0);
    }

```

\section*{5. Method}

The interpolating condition for the B-spline derives a system of equations for its coefficients, by solving this system using a LU decomposition method the coefficients are obtained.

For further information consult the entry for BICD3 in the Fortran SSL II User's Guide.

\section*{c_dbif1}
\[
\begin{array}{|l}
\hline \text { B-spline interpolation, differentiation and integration (I). } \\
\hline \text { ierr }=c _d b i f 1(x, n, m, c, i s w, ~ v, \& i, \& f, ~ v w, \\
\text { \&icon }) ;
\end{array}
\]

\section*{1. Function}

Given function values \(y_{i}=f\left(x_{i}\right)\) for \(i=1, \ldots, n\) at discrete points \(x_{1}<x_{2}<\ldots<x_{n}\) and derivative values \(y_{1}{ }^{(\lambda)}=f^{(\lambda)}\left(x_{1}\right)\) and \(y_{n}{ }^{(\lambda)}=f^{(\lambda)}\left(x_{n}\right)\) for \(\lambda=1, \ldots,(m-1) / 2\), this routine obtains the interpolated value or the derivative value at \(x=v\), or the integral over the interval \(x_{1}\) to \(v\), where \(x_{1} \leq v \leq x_{n}\).

Before using this routine, it is necessary that a sequence of interpolating coefficients \(c_{j}, j=1-m, 2-m, \ldots, n-1\), of the B-spline interpolation (1) be computed by the c_dbic1 routine.
\[
\begin{equation*}
S(x)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}(x) \tag{1}
\end{equation*}
\]
where \(m\) is an odd integer and is the degree of the B-spline \(N_{j, m+1}(x)\), with \(m \geq 3\) and \(n \geq 2\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbif1(x, n, m, c, isw, v, \&i, \&f, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline x & double \(\mathrm{x}[\mathrm{n}]\) & Input & Discrete points \(x_{i}\). \\
\hline n & int & Input & Number of discrete points \(n\). \\
\hline m & int & Input & Degree \(m\) of the B-spline. \\
\hline C & double
\[
c[n+m-1]
\] & Input & Interpolating coefficients \(c_{j}\) (output from C _ dbic 1). \\
\hline isw & int & Input & Type of calculation. \\
\hline & & & \(0 \quad\) Interpolated value, \(F=S(v)\). \\
\hline & & & \(\lambda \quad\) Derivative of order \(\lambda, F=S^{(\lambda)}(v)\), with \(1 \leq \lambda \leq m\). \\
\hline & & & -1 Integral value, \(F=\int_{x_{1}}^{v} S(x) d x\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline V & double & Input & Interpolation point \(v\). \\
\hline i & int & Input & Value of \(i\) such that \(x[i] \leq v<x[i+1]\). \\
\hline & & & If \(v=x_{n}\) then \(\mathrm{i}=n-2\). \\
\hline & & Output & Value of i such that \(\mathrm{x}[\mathrm{i}] \leq \mathrm{v}<\mathrm{x}[\mathrm{i}+1]\). See Comments on use. \\
\hline f & double & Output & Interpolated value, or derivative of order \(\lambda\), or integral value, depending on isw. See isw. \\
\hline VW & double & Work & \\
\hline & Vw [m+1] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{x}[\mathrm{i}] \leq \mathrm{v}<\mathrm{x}[\mathrm{i}+1]\) is not satisfied. & \begin{tabular}{l}
An i satisfying the condition is sought to \\
continue processing.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{v}<\mathrm{x}[0]\) or \(\mathrm{v}>\mathrm{x}[\mathrm{n}-1]\) \\
\(\bullet \quad \mathrm{isw}<-1\) or isw \(>\mathrm{m}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbic1}

This routine obtains the interpolated value, derivative value, or integral value based on B-spline interpolating functions determined by the c _dbic1 routine. Therefore, c _dbic1 must be called to obtain the coefficients of the interpolating function (1) before calling this routine to compute the required value. Arguments \(\mathrm{X}, \mathrm{n}, \mathrm{m}\), and c must be passed directly from C_dbic1.

\section*{i}

Argument \(i\) should satisfy the condition \(x[i] \leq v<x[i+1]\). If not, an \(i\) satisfying this condition is sought by the routine to continue processing.

Note that the indexing of the standard mathematical notation and the corresponding array location in C differs by one, i.e. the mathematics starts from 1 and C starts from 0 .

\section*{4. Example program}

This program interpolates the function \(f(x)=x^{3}\) at 10 equally spaced points in the interval \([0,1]\) with a B-spline. It then computes approximations to the function value as well as an integral and several derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, n, m, isw;
double x[N], y[N], c[N+M-1], dy[1][2], vw[36];
double p, h, v, f;
/* initialize data */
n = N;
m = M;
p = 0;
h = 1.0/(n-1);
/* set function values */
for (i=0;i<n;i++) {
x[i] = p+i*h;
y[i] = x[i]*x[i]*x[i];
}*
set derivative values at end-points */
dy[0][0] = 3*x[0]*x[0];
dy[0][1] = 3*x[n-1]*x[n-1];

```
```

    /* calculate B-spline interpolation coefficients */
    ierr = c_dbic1(x, y, (double*)dy, n, m, c, vw, &icon);
    if (icon!= 0) {
        printf("ERROR: c_dbic1 failed with icon = %d\n", icon);
        exit(1);
    }
    i = 4;
    v = 0.5;
    for (isw=-1;isw<=m;isw++) {
        /* calculate value at point */
        ierr = c_dbif1(x, n, m, c, isw, v, &i, &f, vw, &icon);
        if (icon >= 20000) {
            printf("ERROR: c_dbif1 failed with icon = %d\n", icon);
            exit(1);
        }
        if (isw == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (isw == 0)
        printf("icon = %i value = %12.6e\n", icon, f);
        else
        printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
    }
    return(0)
    }

```

\section*{5. Method}

Consult the entry for BIF1 in the Fortran SSL II User's Guide.

\section*{c_dbif2}
\[
\begin{aligned}
& \text { B-spline interpolation, differentiation and integration (II). } \\
& \hline \text { ier }=\mathrm{c} \text { _dbif2 (x, } \mathrm{n}, \mathrm{~m}, \mathrm{c}, \mathrm{isw}, \mathrm{v}, ~ \& i, ~ \& f, \\
& \mathrm{vw,} \mathrm{\& icon);}
\end{aligned}
\]

\section*{1. Function}

Given function values \(y_{i}=f\left(x_{i}\right)\) for \(i=1, \ldots, n\) at discrete points \(x_{1}<x_{2}<\ldots<x_{n}\) and derivative values \(y_{1}{ }^{(\lambda)}=f^{(\lambda)}\left(x_{1}\right)\) and \(y_{n}{ }^{(\lambda)}=f^{(\lambda)}\left(x_{n}\right)\) for \(\lambda=(m+1) / 2,(m+1) / 2+1, \ldots, m-1\), this routine obtains the interpolated value or the derivative value at \(x=v\), or the integral over the interval \(x_{1}\) to \(v\), where \(x_{1} \leq v \leq x_{n}\).

Before using this routine, it is necessary that a sequence of interpolating coefficients \(c_{j}, j=1-m, 2-m, \ldots, n-1\), of the B-spline interpolation (1) be computed by the c_dbic2 routine.
\[
\begin{equation*}
S(x)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}(x) \tag{1}
\end{equation*}
\]
where \(m\) is an odd integer and is the degree of the B-spline \(N_{j, m+1}(x)\), with \(m \geq 3\), and \(n \geq(m+1) / 2\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dbif2 (x, n, m, c, isw, v, \&i, \&f, vw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline X & double \(\mathrm{x}[\mathrm{n}]\) & Input & Discrete points \(x_{i}\). \\
\hline n & int & Input & Number of discrete points \(n\). \\
\hline m & int & Input & Degree \(m\) of the B-spline. \\
\hline C & double
\[
c[n+m-1]
\] & Input & Interpolating coefficients \(c_{j}\) (output from \(\mathrm{C}_{-} \mathrm{dbic} 2\)). \\
\hline \multirow[t]{4}{*}{isw} & int & Input & Type of calculation. \\
\hline & & & \(0 \quad\) Interpolated value, \(F=S(v)\). \\
\hline & & & \(\lambda \quad\) Derivative of order \(\lambda, F=S^{(\lambda)}(v)\), with \(1 \leq \lambda \leq m\). \\
\hline & & & -1 Integral value, \(F=\int_{x_{1}}^{v} S(x) d x\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline v & double & Input & Interpolation point \(v\). \\
\hline i & int & Input & Value of \(i\) such that \(x[i] \leq v<x[i+1]\). \\
\hline & & & If \(v=x_{n}\) then \(\mathrm{i}=n-2\). \\
\hline & & Output & Value of \(i\) such that x [i] \(\leq \mathrm{v}<\mathrm{x}[\mathrm{i}+1]\). See Comments on use. \\
\hline f & double & Output & Interpolated value, or derivative of order \(\lambda\), or integral value, depending on isw. See isw. \\
\hline VW & double & Work & \\
\hline & \(\mathrm{vw}[\mathrm{m}+1]\) & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{x}[\mathrm{i}] \leq \mathrm{v}<\mathrm{x}[\mathrm{i}+1]\) is not satisfied. & \begin{tabular}{l}
An i satisfying the condition is sought for \\
processing to continue.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{v}<\mathrm{x}[0]\) or \(\mathrm{v}>\mathrm{x}[\mathrm{n}-1]\) \\
\(\bullet \quad \mathrm{isw}<-1\) or isw \(>\mathrm{m}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbic2}

This routine obtains the interpolated value, derivative value, or integral value based on B-spline interpolating functions determined by the c _dbic2 routine. Therefore, c _dbic2 must be called to obtain the coefficients of the interpolating function (1) before calling this routine to compute the required value. Arguments \(\mathrm{X}, \mathrm{n}, \mathrm{m}\), and c must be passed directly from C_dbic2.

\section*{i}

Argument \(i\) should satisfy the condition \(x[i] \leq v<x[i+1]\). If not, an \(i\) satisfying this condition is sought by the routine for processing to continue.

Note that the indexing of the standard mathematical notation and the corresponding array location in C differs by one, i.e. the mathematics starts from 1 and C starts from 0 .

\section*{4. Example program}

This program interpolates the function \(f(x)=x^{3}\) at 10 equally spaced points in the interval \([0,1]\) with a B-spline. It then computes approximations to the function value as well as an integral and several derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, n, m, isw;
double x[N], y[N], c[N+M-1], dy[1][2], vw[38];
double p, h, v, f;
/* initialize data */
n = N;
m = M;
p = 0;
h = 1.0/(n-1);
/* set function values */
for (i=0;i<n;i++) {
x[i] = p+i*h;
y[i] = x[i]*'x[i]*x[i];
}
set derivative values at end-points */
dy[0][0] = 3*x[0]*x[0];
dy[0][1] = 3*x[n-1]*x[n-1];
/* calculate B-spline interpolation coefficients */

```
```

    ierr = c_dbic2(x, y, (double*)dy, n, m, c, vw, &icon);
    if (icon != 0) {
        printf("ERROR: c_dbic2 failed with icon = %d\n", icon);
        exit(1);
    }
    i = 4;
    v = 0.5;
    for (isw=-1;isw<=m;isw++) {
        /* calculate value at point */
        ierr = c_dbif2(x, n, m, c, isw, v, &i, &f, vw, &icon);
        if (icon >= 20000) {
            printf("ERROR: c_dbif2 failed with icon = %d\n", icon);
            exit(1);
        }
        if (isw == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (isw == 0)
        printf("icon = %i value = %12.6e\n", icon, f);
        else
        printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for BIF2 in the Fortran SSL II User's Guide.

\section*{c_dbif3}
```

B-spline interpolation. (III)
ierr = c_dbif3(x, $n, m, c, x t, i s w, v, \& i, \& f$,
vw, \&icon);

```

\section*{1. Function}

Given function values \(y_{i}=f\left(x_{i}\right)\) for \(i=1, \ldots, n\) at discrete points \(x_{1}<x_{2}<\ldots<x_{n}\), this function obtains the interpolated value, derivative at \(x=v\) or integral over the interval \(x_{1}\) to \(v\).

Before using this function, it is necessary that a sequence of knots \(\xi_{i}, i=1,2, \ldots, n-m+1\), and interpolating coefficients \(c_{j}, j=1-m, 2-m, \ldots, n-m\), of the B-spline interpolation (1) be computed by the \(\mathrm{c}_{-} \mathrm{dbic} 3\) function.
\[
\begin{equation*}
S(x)=\sum_{j=1-m}^{n-m} c_{j} N_{j, m+1}(x) \tag{1}
\end{equation*}
\]

Here, \(m\) is an odd number that denotes the degree of B-spline \(N_{j, m+1}(x)\), with \(m \geq 3, x_{1} \leq v \leq x_{n}\) and \(n \geq m+2\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbif3(x, n, m, c, xt, isw, v, \&i, \&f, vw, \&icon);
where:
\begin{tabular}{llll}
x & double \(\mathrm{x}[\mathrm{n}]\) & Input & Discrete points \(x_{i}\). \\
n & int & Input & \begin{tabular}{l}
Number of discrete points \(n\). \\
m
\end{tabular} \\
c & int & Input & Degree \(m\) of the B-spline. \\
xt & \begin{tabular}{l}
double \(\mathrm{c}[\mathrm{n}]\) \\
double \\
\(\mathrm{xt}[\mathrm{n}-\mathrm{m}+1]\)
\end{tabular} & Input & Input
\end{tabular} \begin{tabular}{l}
Interpolating coefficients \(c_{i}\) (output from c_dbic3). \\
The knots \(\xi_{i}\) (output from c_dbic3). \\
isw \\
int
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline v & \multirow[t]{4}{*}{double int} & Input & Interpolation point \(v\). \\
\hline \multirow[t]{3}{*}{i} & & Input & The i-th element that satisfies \(\mathrm{x}[\mathrm{i}] \leq \mathrm{V}<\mathrm{x}[\mathrm{i}+1]\). \\
\hline & & & When \(v=x_{n}\) then \(\mathbf{i}=n-2\). \\
\hline & & Output & The i-th element that satisfies \(\mathrm{x}[\mathrm{i}] \leq \mathrm{V}<\mathrm{x}[\mathrm{i}+1]\). See Comments on use. \\
\hline \(f\) & double & Output & Interpolated value or derivative of order \(l\) or integral value, depending on isw. See isw. \\
\hline VW & double & Work & \\
\hline & [2*m+2] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{x}[\mathrm{i}] \leq \mathrm{v}<\mathrm{x}[\mathrm{i}+1]\) is not satisfied. & \begin{tabular}{l}
An i satisfying the condition is searched for in \\
the function to continue the processing.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{v}<\mathrm{x}[0]\) or \(\mathrm{v}>\mathrm{x}[\mathrm{n}-1]\) \\
- \(\quad \mathrm{isw}<-1\) or \(\mathrm{isw}>\mathrm{m}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbic3}

This function obtains interpolated value, derivative or integral based on B-spline interpolating functions determined by the c_dbic3 function. Therefore, c_dbic3 must be called to obtain the interpolating function (1) before calling this function to compute the required value. Arguments \(\mathrm{X}, \mathrm{n}, \mathrm{m}, \mathrm{C}\) and xt must be passed directly from c_dbic3.

\section*{i}

Argument \(i\) should satisfy the condition \(x[i] \leq v<x[i+1]\). If not, an \(i\) satisfying the condition is searched for to continue the processing.

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by one, i.e. C starts from 0 and the mathematics starts from 1.

\section*{4. Example program}

This program interpolates the function \(f(x)=\sin (x) \sqrt{x}\) at 10 equally spaced points in the interval [0,1] with a cubic Bspline. It then computes approximations to the function value as well as an integral and several derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, n, m, isw;
double x[N], y[N], c[N], xt[N-M+1], vw[M*N+2];
double p, h, v, f;
/* initialize data */
n = N;
m = M;
isw = 0;
p = 0;
h = 1.0/n
for (i=0;i<n;i++) {
x[i] = p;
y[i] = sin(p)*sqrt(p);
p = p + h;
}*
/* calculate B-spline interpolation coefficients */
ierr = c_dbic3(x, y, n, m, c, xt, vw, \&icon);
i = n/2;
v = x[i] + (x[i+1]-x[i])/2;

```
```

    for (isw=-1;isw<=m;isw++) {
        /* calculate value at point */
        ierr = c_dbif3(x, n, m, c, xt, isw, v, &i, &f, vw, &icon);
        if (isw == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (isw == 0)
        printf("icon = %i value = %12.6e\n", icon, f);
        else
        printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
    }
    return(0);
    }

```

\section*{5. Method}

For further information consult the entry for BIF3 in the Fortran SSL II User's Guide.

\section*{c_dbif4}
```

B-spline interpolation, differentiation and integration (IV).
ierr = c_dbif4(x, n, m, c, isw, v, \&i, \&f, vw,
\&icon);

```

\section*{1. Function}

Given periodic function values \(y_{i}=f\left(x_{i}\right)\) for \(i=1, \ldots, n\) with \(y_{1}=y_{n}\), and period (\(x_{n}-x_{1}\)), at discrete points \(x_{1}<x_{2}<\ldots<x_{n}\), this routine obtains the interpolated value or the derivative value at \(x=v\), or the integral over the interval \(x_{1}\) to \(v\), where \(x_{1} \leq v \leq x_{n}\).

Before using this routine, it is necessary that a sequence of interpolating coefficients \(c_{j}, j=1-m, 2-m, \ldots, n-1\), of the B-spline interpolation (1) that satisfies the periodic condition, be computed by the c_dbic4 routine.
\[
\begin{equation*}
S(x)=\sum_{j=1-m}^{n-1} c_{j} N_{j, m+1}(x) \tag{1}
\end{equation*}
\]
where \(m\) is an odd integer and is the degree of the B-spline \(N_{j, m+1}(x)\), with \(m \geq 3\) and \(n \geq m+2\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbif4 (x, n, m, c, isw, v, \&i, \&f, vw, \&icon);
where:
\begin{tabular}{llll}
x & double \(\mathrm{x}[\mathrm{n}]\) & Input & Discrete points \(x_{i}\). \\
n & int & Input & Number of discrete points \(n\). \\
m & int & Input & \begin{tabular}{l}
Degree \(m\) of the B-spline. \\
c
\end{tabular} \\
& double & Input & Interpolating coefficients \(c_{j}\) (output from c_dbic4). \\
isw & \(\mathrm{c}[\mathrm{n}+\mathrm{m}-1]\) & & \\
& int & Input & \begin{tabular}{l}
Type of calculation. \\
\end{tabular} \\
& & 0 & Interpolated value, \(F=S(v)\). \\
& & \(\lambda\) & Derivative of order \(\lambda, F=S^{(\lambda)}(v)\), with \(1 \leq \lambda \leq m\). \\
& & -1 & Integral value, \(F=\int_{x_{1}}^{v} S(x) d x\).
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline v & double & Input & Interpolation point \(v\). \\
\hline \multirow[t]{3}{*}{i} & \multirow[t]{3}{*}{int} & Input & Value of \(i\) such that \(\mathrm{x}[\mathrm{i}] \leq \mathrm{v}<\mathrm{x}[\mathrm{i}+1]\). \\
\hline & & & If \(v=x_{n}\) then \(\mathrm{i}=n-2\). \\
\hline & & Output & Value of \(i\) such that \(\mathrm{x}[\mathrm{i}] \leq \mathrm{v}<\mathrm{x}[\mathrm{i}+1]\). See Comments on use. \\
\hline f & double & Output & Interpolated value, or derivative of order \(\lambda\), or integral value, depending on isw. See isw. \\
\hline VW & double & Work & \\
\hline & vw [m+1] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{x}[\mathrm{i}] \leq \mathrm{v}<\mathrm{x}[\mathrm{i}+1]\) is not satisfied. & \begin{tabular}{l}
An i satisfying the condition is sought to \\
continue processing.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{v}<\mathrm{x}[0]\) or \(\mathrm{v}>\mathrm{x}[\mathrm{n}-1]\) \\
\(\bullet \quad \mathrm{isw}<-1\) or isw \(>\mathrm{m}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbic4}

This routine obtains the interpolated value, derivative value, or integral value based on B-spline interpolating functions determined by the c_dbic4 routine. Therefore, c _dbic4 must be called to obtain the coefficients of the interpolating function (1) before calling this routine to compute the required value. Arguments \(\mathrm{X}, \mathrm{n}, \mathrm{m}\), and c must be passed directly from C_dbic4.

\section*{i}

Argument \(i\) should satisfy the condition \(x[i] \leq v<x[i+1]\). If not, an \(i\) satisfying this condition is sought by the routine to continue processing.

Note that the indexing of the standard mathematical notation and the corresponding array location in C differs by one, i.e. the mathematics starts from 1 and C starts from 0 .

\section*{4. Example program}

This program interpolates the function \(f(x)=\sin x\) at 10 equally spaced points in the interval \([0,2 \pi]\) with a B-spline. It then computes approximations to the function value as well as an integral and several derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, n, m, isw;
double x[N], y[N], c[N+M-1], vw[49];
double p, h, v, f, pi;
/* initialize data */
n = N;
m = M;
p = 0;
pi = 2*asin(1);
h = 2*pi/(n-1);
/* set function values */
for (i=0;i<n;i++) {
x[i] = p+i*h;
y[i] = sin(x[i]);
}
/* calculate B-spline interpolation coefficients */
ierr = c_dbic4(x, y, n, m, c, vw, \&icon);
if (icon != 0) {

```
```

        printf("ERROR: c_dbic4 failed with icon = %d\n", icon);
        exit(1);
    }
    i = 4;
    v = pi;
    for (isw=-1;isw<=m;isw++) {
        /* calculate value at point */
        ierr = c_dbif4(x, n, m, c, isw, v, &i, &f, vw, &icon);
        if (icon >= 20000) {
            printf("ERROR: c_dbif4 failed with icon = %d\n", icon);
            exit(1);
        }
        if (isw == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (isw == 0)
        printf("icon = %i value = %12.6e\n", icon, f);
    else
        printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for BIF4 in the Fortran SSL II User's Guide.

\section*{c_dbifd1}
\[
\begin{aligned}
& \text { Two-dimensional B-spline interpolation, differentiation and integration } \\
& \text { (I-I). } \\
& \hline \text { ierr }=c _d b i f d 1(x, n x, y, n y, m, c, k, \text { iswx, } \\
& \text { vx, \&ix, iswy, vy, \&iy, \&f, vw, } \\
& \text { \&icon); }
\end{aligned}
\]

\section*{1. Function}

Given function values \(f_{i j}=f\left(x_{i}, y_{j}\right)\) at points \(\left(x_{i}, y_{j}\right)\) for \(i=1, \ldots, n_{x}\) and \(j=1, \ldots, n_{y}\), where \(x_{1}<x_{2}<\ldots<x_{n_{x}}\) and \(y_{1}<y_{2}<\ldots y_{n_{y}}\), on the \(x y\)-plane, and the following partial derivatives at the boundary points
\[
\begin{array}{ll}
f_{1, j}^{(\lambda, 0)}=f^{(\lambda, 0)}\left(x_{1}, y_{j}\right), & f_{n_{x}, j}^{(\lambda, 0)}=f^{(\lambda, 0)}\left(x_{n_{x}}, y_{j}\right) \\
f_{i, 1}^{(0, \mu)}=f^{(0, \mu)}\left(x_{i}, y_{1}\right), & f_{i, n_{y}}^{(0, \mu)}=f^{(0, \mu)}\left(x_{i}, y_{n_{y}}\right) \\
f_{1,1}^{(\lambda, \mu)}=f^{(\lambda, \mu)}\left(x_{1}, y_{1}\right), & \cdots . \\
f_{n_{x}, 1}^{(\lambda, \mu)}=f^{(\lambda, \mu)}\left(x_{n_{x}}, y_{1}\right) \\
f_{1, n_{y}}^{(\lambda, \mu)}=f^{(\lambda, \mu)}\left(x_{1}, y_{n_{y}}\right), & f_{n_{x}, n_{y}}^{(\lambda, \mu)}=f^{(\lambda, \mu)}\left(x_{n_{x}}, y_{n_{y}}\right)
\end{array}
\]
\(i=1,2, \ldots, n_{x}, \quad j=1,2, \ldots, n_{y}, \quad \lambda=1,2, \ldots,(m-1) / 2, \quad \mu=1,2, \ldots,(m-1) / 2\), this routine obtains an interpolated value or a partial derivative at the point \(P\left(v_{x}, v_{y}\right)\), or a double integral over the area [\(x_{1} \leq x \leq v_{x}, y_{1} \leq y \leq v_{y}\)], where \(x_{1} \leq v_{x} \leq x_{n_{x}}\) and \(y_{1} \leq v_{y} \leq y_{n_{y}}\). Note that \(m\) is an odd integer and \(m \geq 3, n_{x} \geq 2, n_{y} \geq 2\).

Before using this routine, the interpolating coefficients \(c_{\alpha, \beta}\) in the two-dimensional B -spline interpolating function (1) must be computed by the c_dbicd1 routine.
\[
\begin{equation*}
S(x, y)=\sum_{\beta=1-m}^{n_{y}-1} \sum_{\alpha=1-m}^{n_{x}-1} c_{\alpha, \beta} N_{\alpha, m+1}(x) N_{\beta, m+1}(y) \tag{1}
\end{equation*}
\]

Here, \(m\) is the degree of B-spline \(N_{\alpha, m+1}(x)\) and \(N_{\beta, m+1}(y)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbifd1(x, nx, y, ny, m, (double*)c, k, iswx, vx, \&ix, iswy, vy, \&iy, \&f, \(v w, ~ \& i c o n) ;\)
where:
\begin{tabular}{llll}
x & double \(\mathrm{x}[\mathrm{nx}]\) & Input & Discrete points in the x -direction \(x_{i}\) \\
nx & int & Input & Number of discrete points in the x -direction \(n_{x}\). \\
y & double \(\mathrm{y}[\mathrm{ny}]\) & Input & Discrete points in the y-direction \(y_{i}\). \\
ny & int & Input & Number of discrete points in the y-direction \(n_{y}\). \\
m & int & Input & Degree \(m\) of the B-spline. \\
c & double & Input & Interpolating coefficients \(c_{\alpha, \beta}\) (output from c_dbicd1). \\
& \(\mathrm{c}[\) Clen \(][\mathrm{k}]\) & & Clen \(=n_{x}+m-1\) \\
k & int & Input & C fixed dimension of array \(\mathrm{c}(\geq \mathrm{ny}+\mathrm{m}-1)\). \\
iswx & int & Input & Type of calculation associated with \(x\)-direction.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & \(-1 \leq i s w x \leq m\), see argument \(f\). \\
\hline vx & double & Input & The \(x\)-coordinate of point \(P\left(v_{x}, v_{y}\right)\). \\
\hline ix & int & Input & Integer such that \(\mathrm{X}[\mathrm{ix}] \leq \mathrm{vx}<\mathrm{x}[\mathrm{ix}+1]\). When \(v_{x}=x_{n_{x}}\) then \(\mathrm{ix}=n_{x}-2\). \\
\hline iswy & int & \begin{tabular}{l}
Output \\
Input
\end{tabular} & Integer such that \(\mathrm{x}[\mathrm{ix}] \leq \mathrm{vx}<\mathrm{x}[\mathrm{ix}+1]\). See Comments on use. Type of calculation associated with \(y\)-direction. \\
\hline & & & \(-1 \leq\) iswy \(\leq m\), see argument f . \\
\hline vy & double & Input & The \(y\)-coordinate of point \(P\left(v_{x}, v_{y}\right)\). \\
\hline iy & int & Input & Integer such that \(\mathrm{y}[\mathrm{iy}] \leq \mathrm{vy}<\mathrm{y}[i y+1]\). When \(v_{y}=y_{n_{y}}\) then \(\mathrm{i} y=n_{y}-2\). \\
\hline & & Output & Integer such that \(\mathrm{y}[\mathrm{iy}] \leq \mathrm{vy}<\mathrm{y}[\mathrm{iy}+1]\). See Comments on use. \\
\hline f & double & Output & \begin{tabular}{l}
Interpolated value, or partial derivative, or integral value. \\
By setting iswx \(=\lambda\) and \(i s w y=\mu\), one of the following is returned depending on the combination of \(\lambda\) and \(\mu\) : \\
- when \(\lambda, \mu \geq 0\)
\[
\mathrm{f}=\frac{\partial^{\lambda+\mu}}{\partial x^{\lambda} \partial y^{\mu}} S\left(v_{x}, v_{y}\right)
\]
\end{tabular} \\
\hline & & & \begin{tabular}{l}
The interpolated value can be obtained by setting \(\lambda=\mu=0\). \\
- when \(\lambda=-1, \mu \geq 0\)
\[
\mathrm{f}=\int_{x_{1}}^{v_{x}} \frac{\partial^{\mu}}{\partial y^{\mu}} S\left(x, v_{y}\right) d x
\]
\end{tabular} \\
\hline & & & \[
\begin{aligned}
& \text { - } \quad \text { when } \lambda \geq 0, \mu=-1 \\
& \mathrm{f}=\int_{y_{1}}^{v_{y}} \frac{\partial^{\lambda}}{\partial x^{\lambda}} S\left(v_{x}, y\right) d y
\end{aligned}
\] \\
\hline & & & - when \(\lambda=\mu=-1\) \\
\hline & & & \[
\mathrm{f}=\int_{y_{1}}^{v_{y}} \int_{x_{1}}^{v_{x}} S(x, y) d x d y
\] \\
\hline VW & \begin{tabular}{l}
double \\
vw [Vwlen]
\end{tabular} & Work & Vwlen \(=4(m+1)+\max \left(n_{x}, n_{y}\right)+m-1\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Either \(x[i x] \leq v x<x[i x+1]\) or \(y[i y] \leq v y<y[i y+1]\) is not satisfied. & Either an ix or an iy satisfying the relationship is sought to continue processing. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(v x<x[0]\) or \(v x>x[n x-1]\) \\
- \(v y<y[0]\) or \(v y>y[n y-1]\) \\
- iswx \(<-1\) or iswx \(>m\) \\
- iswy<-1 or iswy \(>m\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbicd1}

This routine obtains an interpolated value, or a partial derivative, or a double integral based on the two-dimensional Bspline interpolating function determined by the c_dbicd1 routine. Therefore, c_dbicd1 must be called to obtain the interpolating function (1) before calling this routine to compute the required value. Also, arguments \(x, n x, y, n y, k, m\), and c must be passed directly from c_dbicd1.

\section*{ix and iy}

Arguments ix and iy should satisfy the relationships \(x[i x] \leq v x<x[i x+1]\) and \(y[i y] \leq v y<y[i y+1]\). If not, ix and iy satisfying the relationships are sought by the routine to continue the processing.

Note that the indexing between standard mathematical notation and the corresponding array location in C differs by one, i.e. the mathematics starts from 1 and C starts from 0 .

\section*{4. Example program}

This program interpolates the function \(f(x, y)=x^{3} y^{3}\) at 100 points in the region \([0,1] \times[0,1]\) with a spline. It then computes approximations to the function value as well as an integral and several partial derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
/* function prototype for initializer */
void gen(double x[], double y[], int n, double fxy[][N+M-1]);
MAIN__( )
{
int ierr, icon;
int i, j, nx, ny, m, k, ix, iy, iswx, iswy;
double x[N], y[N], fxy[N+M-1][N+M-1], c[N+M-1][N+M-1];
double vw[60];
double hx, hy, px, py, vx, vy, f;
/* initialize data */
nx = N;
ny = N;
m = M;
k = N+M-1;
hx = 1.0/(nx-1);
hy = 1.0/(ny-1);
px = 0;
for (i=0;i<nx;i++) {
x[i] = px+i*hx;
}
py = 0;
for (j=0;j<ny;j++) {
y[j] = py+j*hy;
}
/* generate function and derivative values in fxy */
gen(x, y, nx, fxy);
/* calculate B-spline interpolation coefficients */
ierr = c_dbicd1(x, nx, y, ny, (double*)fxy, k,
if (icon l= 0) m, (double*)c, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dbicd1 failed with icon = %d\n", icon);
exit(1);
}
ix = 4;

```
```

    vx = 0.5;
    iy = 4;
    vy = 0.5;
    for (iswx=-1;iswx<=m;iswx++) {
        iswy = iswx;
        /* calculate value at point */
        ierr = c_dbifd1(x, nx, y, ny, m, (double*)c, k,
                                    iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon);
        if (icon >= 20000) {
            printf("ERROR: c_dbifd1 failed with icon = %d\n", icon);
            exit(1);
        }
        if (iswx == -1)
            printf("icon = %i integral = %12.6e\n", icon, f);
        else if (iswx == 0)
            printf("icon = %i value = %12.6e\n", icon, f);
        else
        printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
    }
    return(0)
    }
/* generate function and derivative values for f=x^3y^3 */
void gen(double x[], double y[], int n, double fxy[][N+M-1])
{
double y1, yn, x1, xn, fx, fy;
int i, j;
/* corner points; df/dxdy values */
fxy[0][0] = 9*x[0]*x[0]*y[0]*y[0];
fxy[n+1][0] = 9** x[n-1]*x[n-1]*y[0]*y[0];
fxy[0][n+1] = 9*x[0]*x[0]*y[n-1]*y[n-1];
fxy[n+1][n+1] = 9*x[n-1]*x[n-1]*y[n-1]*y[n-1];
/* partial derivatives on edges: df/dx, df/dy */
y1 = y[0]*y[0]*3;
yn = y[n-1]*y[n-1]*3;
x1 = x[0]*x[0]*3;
xn = x[n-1]*x[n-1]*3
/* edges; fx.df/dy or fy.df/dx */
for (i=0;i<n;i++) {
fx = x[i]*x[i]*x[i];
fy = y[i]*y[i]*y[i]
fxy[i+1][0] = y1*fx
fxy[0][i+1] = x1*fy;
fxy[n+1][i+1] = xn*fy;
fxy[i+1][n+1] = yn*fx;
}
/* central area; function values */
for (i=0;i<n;i++) {
fx = x[i]*x[i]*x[i];
for (j=0;j<n;j++) {
fxy[i+1][j+1] = fx*y[j]*y[j]*y[j];
}
}
return;
}

```

\section*{5. Method}

Consult the entry BIFD1 for in the Fortran SSL II User's Guide.

\section*{c_dbifd3}
\[
\begin{array}{|l}
\hline \text { B-spline two-dimensional interpolation (III-III). } \\
\hline \text { ierr = c_dbifd3(x, nx, y, ny, m, c, k, xt, } \\
\text { iswx, vx, \&ix, iswy, vy, \&iy, \&f, } \\
\text { vw, \&icon); } \\
\hline
\end{array}
\]

\section*{1. Function}

Given function values \(f_{i j}=f\left(x_{i}, y_{j}\right)\) at points \(\left(x_{i}, y_{j}\right)\) where \(x_{1}<x_{2}<\ldots<x_{n_{x}}\) for \(i=1, \ldots, n_{x}\) and \(y_{1}<y_{2}<\ldots<y_{n_{y}}\) for \(j=1, \ldots, n_{y}\), on the \(x y\)-plane, this function obtains an interpolated value or a partial derivative at the point \(P\left(v_{x}, v_{y}\right)\) and/or a double integral over the area [\(x_{1} \leq x \leq v_{x}, y_{1} \leq y \leq v_{y}\)], where \(x_{1} \leq v_{x} \leq x_{n_{x}}\) and \(y_{1} \leq v_{y} \leq y_{n_{y}}\). Note that \(n_{x} \geq m+2\) and \(n_{y} \geq m+2\), where \(m \geq 3\).

Before using this function, the knots \(\xi_{i}\) and \(\eta_{j}\) in both the respective x and y directions, and the interpolating coefficients \(c_{\alpha, \beta}\) in the B -spline two-dimensional interpolating function (1) must be computed by the \(\mathrm{c} _\mathrm{dbicd} 3\) function.
\[
\begin{equation*}
S(x, y)=\sum_{\beta=1-m}^{n_{y}-m} \sum_{\alpha=1-m}^{n_{x}-m} c_{\alpha, \beta} N_{\alpha, m+1}(x) N_{\beta, m+1}(y) \tag{1}
\end{equation*}
\]

Here, \(m\) is an odd number that denotes the degree of B-spline \(N_{\alpha, m+1}(x)\) and \(N_{\beta, m+1}(y)\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dbifd3(x, nx, y, ny, m, (double*)c, k, xt, iswx, vx, \&ix, iswy, vy,
\&iy, \&f, vw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline x & double \(\times\) [nx] & Input & Discrete points in the x-direction \(x_{i}\). \\
\hline nx & int & Input & Number of discrete points in x -direction \(n_{x}\). \\
\hline y & double y[ny] & Input & Discrete points in the y-direction \(y_{i}\). \\
\hline ny & int & Input & Number of discrete points in y-direction \(n_{v}\). \\
\hline m & int & Input & Degree \(m\) of the B-spline. \\
\hline C & double
\[
\mathrm{c}[\mathrm{nx}][\mathrm{k}]
\] & Input & Interpolating coefficients \(c_{\alpha, \beta}\) (output from \(\mathrm{C}_{-} \mathrm{dbicd} 3\)). \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{c}(\geq \mathrm{ny})\). \\
\hline xt & \begin{tabular}{l}
double \\
xt[Xtlen]
\end{tabular} & Input & The knots \(\xi_{i}\) and \(\eta_{j}\) in x and y directions, respectively (output from c_dbicd3). \\
\hline & & & Xtlen \(=(\mathrm{nx}-\mathrm{m}+1)+(\mathrm{ny}-\mathrm{m}+1)\). \\
\hline iswx & int & Input & Type of calculation associated with \(x\)-direction. \(-1 \leq\) iswX \(\leq m\), see argument f . \\
\hline vx & double & Input & The x-coordinate of point \(P\left(v_{x}, v_{y}\right)\). \\
\hline ix & int & Input & The \(i\)-th element that satisfies \(x_{i} \leq v_{x}<x_{i+1}\). Not that due to C indexing \(\mathrm{ix}=i-1\). When \(v_{x}=x_{n_{x}}\) then \(\mathrm{ix}=n_{x}-2\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{iswy} & \multirow[t]{2}{*}{int} & \begin{tabular}{l}
Output \\
Input
\end{tabular} & The \(i\)-th element that satisfies \(x_{i} \leq v_{x}<x_{i+1}\). See Comments on use. Type of calculation associated with y-direction. \\
\hline & & & \(-1 \leq\) iswy \(\leq m\), see argument f . \\
\hline vy & double & Input & The y-coordinate of point \(P\left(v_{x}, v_{y}\right)\). \\
\hline iy & int & Input & The \(j\)-th element that satisfies \(y_{j} \leq v_{y}<y_{j+1}\). Note that due to C indexing iy \(=j-1\). When \(v_{y}=y_{n_{y}}\) then iy \(=n_{y}-2\). \\
\hline f & double & Output Output & The \(j\)-th element that satisfies \(y_{j} \leq v_{y}<y_{i+1}\). See Comments on use. Interpolated value, partial derivative or integral value. \\
\hline & & & \begin{tabular}{l}
With setting iswx \(=\lambda\) and \(i s w y=\mu\), one of the following is returned depending on combination of \(\lambda\) and \(\mu\) : \\
- when \(0 \leq \lambda, \mu\)
\[
F=\frac{\partial^{\lambda+\mu}}{\partial x^{\lambda} \partial y^{\mu}} S\left(v_{x}, v_{y}\right)
\]
\end{tabular} \\
\hline
\end{tabular}

The interpolated value can be obtained by setting \(\lambda=\mu=0\).
- when \(\lambda=-1,0 \leq \mu\)
\(F=\int_{x_{1}}^{v_{x}} \frac{\partial^{\mu}}{\partial y^{\mu}} S\left(x, v_{y}\right) d x\)
- when \(\lambda \geq 0, \mu=-1\)
\(F=\int_{y_{1}}^{v_{y}} \frac{\partial^{\lambda}}{\partial x^{\lambda}} S\left(v_{x}, y\right) d y\)
- when \(\lambda=\mu=-1\)
\(F=\int_{y_{1}}^{v_{y}} d y \int_{x_{1}}^{v_{x}} S(x, y) d x\)
\begin{tabular}{llll}
Vw & double & Work & Vwlen \(=4 \cdot(\mathrm{~m}+1)+\max (\mathrm{nx}, \mathrm{ny})\) \\
& \(\mathrm{Vw}[\) Vwlen \(]\) & & \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Either \(\mathrm{x}[\mathrm{ix}] \leq \mathrm{vx}<\mathrm{x}[\mathrm{ix}+1]\) or \(y[i y] \leq v y<y[i y+1]\) is not satisfied. & An ix or iy satisfying the relationship is searched for in the function to continue the processing. \\
\hline 29000 & Memory allocation error. & Bypassed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad v x<x[0]\) or \(v x>x[n x-1]\) \\
- \(\quad v y<y[0]\) or \(v y>y[n y-1]\) \\
- iswx \(<-1\) or iswx \(>m\) \\
- iswy \(<-1\) or iswy \(>m\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbicd3}

This function obtains interpolated value or partial derivative or double integral based on B -spline two-dimensional interpolating functions determined by the c_dbicd3 function. Therefore, c_dbicd3 must be called to obtain the interpolating function (1) before calling this function to compute the required value. Also arguments \(x, n x, y, n y, k, m, c\) and \(x t\) must be passed directly from c_dbicd3.

\section*{ix and iy}

Arguments ix and iy should satisfy the condition \(x[i x] \leq v x<x[i x+1]\) and \(y[i y] \leq v y<y[i y+1]\). If not, ix or iy satisfying the condition is searched for to continue the processing.

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by one, i.e. C starts from 0 and the mathematics starts from 1 .

\section*{4. Example program}

This program interpolates the function \(f(x, y)=\sin (x y) \sqrt{x y}\) at 100 points in the region \([0,1] \times[0,1]\) with a bi-cubic spline. It then computes approximations to the function value as well as an integral and several partial derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, j, nx, ny, m, k, ix, iy, iswx, iswy;
double x[N], y[N], fxy[N][N], c[N][N], xt[2*(N-M+1)];
double vw[(N-2)*M+2*(M+1)+2*N];
double hx, hy, px, py, vx, vy, f;
/* initialize data */
nx = N;
ny = N;
m = M;
hx = 1.0/(nx-1);
hy = 1.0/(ny-1);
px = 0;
for (i=0;i<nx;i++) {
x[i] = px;
px = px + hx;
}
py = 0;
for (j=0;j<ny;j++) {
y[j] = py;
py = py + hy;
}
for (i=0;i<nx;i++)
for (j=0;j<ny;j++) {
px = x[i];
py = y[j];
fxy[i][j] = sin(px*py)*sqrt(px*py);
}
k = N;
/* calculate B-spline interpolation coefficients */
ierr = c_dbicd3(x, nx, y, ny, (double*)fxy, k,
m, (double*)c, xt, vw, \&icon);
ix = nx/2;
vx = x[ix] + (x[ix+1]-x[ix])/2;
iy = ny/2;
vy = y[iy] + (y[iy+1]-y[iy])/2;

```
```

    for (iswX=-1;iswX<m;isWX++) {
        iswy = iswx;
        /* calculate value at point */
        ierr = c_dbifd3(x, nx, y, ny, m, (double*)c, k, xt,
            iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon);
        if (iswx == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (iswx == 0)
        printf("icon = %i value = %12.6e\n", icon, f);
    else
        printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
    }
    return(0)
    }

```

\section*{5. Method}

For further information consult the entry for BIFD3 in the Fortran SSL II User's Guide.

\section*{c_dbin}

> \begin{tabular}{|l|} \hline Modified \(n\) th-order Bessel function of the first kind \(I_{n}(x)\). \\ \hline ierr \(=\) c_dbin \((x, \mathrm{n}, \quad \& \mathrm{bi}, \quad \& i c o n) ;\) \\ \hline \end{tabular}

\section*{1. Function}

This function computes the modified \(n\) th-order Bessel function of the first kind
\[
I_{n}(x)=\sum_{k=0}^{\infty} \frac{(x / 2)^{2 k+n}}{k!(n+k)!}
\]
by Taylor expansion and recurrence formula.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbin(x, n, \&bi, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
n & int & Input & Order \(n\) of \(I_{n}(x)\). \\
bi & double & Output & Function value \(I_{n}(x)\). \\
icon & int & Output & Condition code. See below. \\
& & & When \(\mathrm{n}=0\) or 1, the icon values are same as in function c_dbi0 and \\
& & c_dbi1 respectively.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & One of the following has occurred: & bi is set to zero. \\
& \(\bullet \quad|x|>100\) & \\
& \(\bullet \quad 1 / 8 \leq|x|<1\) and \(|n| \geq 19|x|+29\) & \\
& \(\bullet 1 \leq|x|<10\) and \(|n| \geq 4.7|x|+43\) & \\
& \(\bullet 10 \leq|x| \leq 100\) and \(|n| \geq 1.83|x|+71\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The range of values of \(x\) and \(n\) is limited to avoid numerical overflow and underflow in the computations. The table of condition codes shows these limits.

\section*{Zero- and first-order Bessel function}

When computing either \(I_{0}(x)\) or \(I_{1}(x)\), use the functions c_dbi0 or C_dbi1 respectively, as they are more efficient.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 0 to 10 in increments of 1 and \(n\) equal to 20 and 30 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, bi;
int i, n;
for (n=20;n<=30;n=n+10)
for (i=0;i<=10;i++) {
x = (double)i;
* calculate Bessel function */
ierr = c_dbin(x, n, \&bi, \&icon);
if (icon == 0)
printf("x = %4.2f n = %i bi = %e\n", x, n, bi);
else
printf("ERROR: x = %4.2f n = %i bi = %e icon = %i\n",
x, n, bi, icon);
}
return(0)
}

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the modified \(n\) th-order Bessel function of the first kind, \(I_{n}(x)\), is:
- Taylor expansion when \(0 \leq x<1 / 8\).
- Recurrence formula when \(1 / 8 \leq x \leq 100\).

For further information consult the entry for BIN in the Fortran SSL II User's Guide.

\section*{c_dbir}
```

Modified real-order Bessel function of the first kind $I_{v}(x)$.
ierr = c_dbir(x, v, \&bi, \&icon);

```

\section*{1. Function}

This function computes the modified real-order Bessel function of the first kind (1) by power series expansion and recurrence formula.
\[
\begin{equation*}
I_{v}(x)=\left(\frac{x}{2}\right)^{v} \sum_{k=0}^{\infty} \frac{\left(x^{2} / 4\right)^{k}}{k!\Gamma(v+k+1)} \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbir(x, v, \&bi, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
v & double & Input & Order \(v\) of \(I_{v}(x)\). \\
bi & double & Output & Function value \(I_{v}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(\mathrm{x}>\log \left(f l_{\max }\right)\) & bi is set to zero. \\
\hline 30000 & \(\mathrm{x}<0\) or \(\mathrm{V}<0\) & bi is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The values of \(x\) and \(v\) are limited to avoid numerical overflow and underflow in the computations. The limits are shown in the table of condition codes. For details on the constant, \(f l_{\max }\), see the Machine constants section of the Introduction.

\section*{Zero- and first-order Bessel function}

When computing either \(I_{0}(x)\) or \(I_{1}(x)\), use the function c_dbi0 or C_dbi1 respectively, as they are more efficient.

\section*{Evaluation sequence}

When all the values of \(I_{v}(x), I_{v+1}(x), I_{v+2}(x), \ldots, I_{v+M}(x)\) are required at the same time, it is more efficient to compute them in the following way. First, compute the value of \(I_{v+M}(x)\) and \(I_{v+M-1}(x)\) with this function, then the others in the order of \(I_{v+M-2}(x), I_{v+M-3}(x), \ldots, I_{v}(x)\) by repeating the recurrence formula (see Method). Conversely, computing values in the reverse order, i.e. \(I_{v+2}(x), I_{v+3}(x), \ldots, I_{v+M}(x)\) by recurrence formula after \(I_{v}(x)\) and \(I_{v+1}(x)\), should be avoided because of instability.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 0 to 10 in increments of 1 and \(v\) equal to 0.4 and 0.6 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double v, x, bi;
int nv, i;
for (i=0;i<=10;i++) {
x = (double)i;
for (nv=40;nv<=60;nv=nv+20) {
v = (double)nv/100;
/* calculate Bessel function */
ierr = c_dbir(v, x, \&bi, \&icon);
if (icon == 0)
printf("x = %5.2f v = %5.2f bi = %e\n", x, v, bi);
else
printf("ERROR: x = %5.2f v = %5.2f bi = %e icon = %i\n",
}
}
return(0)
}

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the modified real-order Bessel function of the first kind, \(I_{v}(x)\), is:
- Power series expansion, equation (1), when \(0 \leq x \leq 1\).
- Recurrence formula when \(1<x \leq \log \left(f l_{\max }\right)\).

Suppose \(m\) is an appropriately large integer (depends upon the required precision of \(x\) and \(v\)) and \(\delta\) an appropriately small constant (smallest positive number allowed for the computer), and moreover that \(n\) and \(\alpha\) are determined by
\[
v=n+\alpha
\]
where, \(n\) is an integer and \(0 \leq \alpha<1\). With the initial values,
\[
G_{\alpha+m+1}(x)=0, \quad G_{\alpha+m}(x)=\delta
\]
and repeating the recurrence equation,
\[
G_{\alpha+k-1}(x)=\frac{2(\alpha+k)}{x} G_{\alpha+k}(x)+G_{\alpha+k+1}(x)
\]
for \(k=m, m-1, \ldots, 1\). Then the value of \(I_{v}(x)\) is obtained from
\[
I_{v}(x) \approx \frac{\frac{1}{2}\left(\frac{x}{2}\right)^{\alpha} \frac{\Gamma(2 \alpha+1)}{\Gamma(\alpha+1)} e^{x} G_{\alpha+n}(x)}{\sum_{k=0}^{m} \frac{(\alpha+k) \Gamma(2 \alpha+k)}{k!} G_{\alpha+k}(x)}
\]

For further information consult the entry for BIR in the Fortran SSL II User's Guide.

\section*{c_dbj0}
\begin{tabular}{|l|}
\hline Zero-order Bessel function of the first kind \(J_{0}(x)\). \\
\hline ierr \(=\) c_dbj0 \((x, \quad \& b j, \quad \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the zero-order Bessel function of the first kind
\[
J_{0}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(x / 2)^{2 k}}{(k!)^{2}}
\]
by rational approximations and asymptotic expansion.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dbj0(x, \&bj, \&icon);

```
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
bj & double & Output & Function value \(J_{0}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(|\mathrm{x}| \geq t_{\max }\) & bj is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{x}

The values of X is limited to avoid loss of accuracy in the calculation of \(\sin \left(x-\frac{\pi}{4}\right)\) and \(\cos \left(x-\frac{\pi}{4}\right)\) which occurs when x becomes too large. The limits are shown in the table of condition codes. For details on the constant, \(t_{\max }\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 0 to 100 in increments of 1 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, bj;
int i;
for (i=0;i<=100;i++) {
x = (double)i;
/* calculate Bessel function */

```
```

        ierr = c_dbj0(x, &bj, &icon);
        if (icon== 0)
        printf("x = %4.2f bj = %f\n", x, bj);
        else
        printf("ERROR: x = %4.2f bj = %f icon = %i\n", x, bj, icon);
    }
    return(0)
    }

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the zero-order Bessel function of the first kind, \(J_{0}(x)\), is:
- Power series expansion when \(0 \leq x \leq 8\).
- Asymptotic expansion when \(x>8\).

For further information consult the entry for BJ0 in the Fortran SSL II User's Guide and [48].

\section*{c_dbj1}
\[
\begin{array}{|l|}
\hline \text { First-order Bessel function of the first kind } J_{1}(x) . \\
\hline \text { ier }=\mathrm{c} _ \text {dbj1 }(x, \quad \text { \&bj, \&icon }) ; \\
\hline
\end{array}
\]

\section*{1. Function}

This function computes the first-order Bessel function of the first kind
\[
J_{1}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(x / 2)^{2 k+1}}{k!(k+1)!}
\]
by rational approximations and asymptotic expansion.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dbj1(x, \&bj, \&icon);

```
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
bj & double & Output & Function value \(J_{1}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(|x| \geq t_{\max }\) & bj is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The range of X is limited as both \(\sin \left(x-\frac{3 \pi}{4}\right)\) and \(\cos \left(x-\frac{3 \pi}{4}\right)\) lose accuracy when \(x\) becomes too large. The limits are shown in the table of condition codes. For details on the constant, \(t_{\text {max }}\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 0 to 100 in increments of 1 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, bj;
int i;
for (i=0;i<=100;i++) {
x = (double)i;
/* calculate Bessel function */

```
```

        ierr = c_dbj1(x, &bj, &icon);
        if (icon== 0)
        printf("x = %4.2f bj = %f\n", x, bj);
        else
        printf("ERROR: x = %4.2f bj = %f icon = %i\n", x, bj, icon);
    }
    return(0)
    }

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the first-order Bessel function of the first kind, \(J_{1}(x)\), is:
- Power series expansion using rational approximations when \(0 \leq x \leq 8\).
- Asymptotic expansion when \(x>8\).

For further information consult the entry for BJ1 in the Fortran SSL II User's Guide and [48].

\section*{c_dbjn}
\[
\begin{array}{|l|}
\hline n \text { th-order Bessel function of the first kind } J_{n}(x) . \\
\hline \text { ierr }=\mathrm{c} _ \text {dbjn }(\mathrm{x}, \mathrm{n}, \& \mathrm{bj}, \& i c o n) \text {; } \\
\hline
\end{array}
\]

\section*{1. Function}

This function computes the \(n\) th-order Bessel function of the first kind
\[
J_{n}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}(x / 2)^{2 k+n}}{k!(n+k)!}
\]
by Taylor expansion and recurrence formula.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbjn(x, n, \&bj, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
n & int & Input & Order \(n\) of \(J_{n}(x)\). \\
bj & double & Output & Function value \(J_{n}(x)\). \\
icon & int & Output & \begin{tabular}{l}
Condition code. See below. \\
\end{tabular} \\
& & \begin{tabular}{l}
When \(\mathrm{n}=0\) or 1 , see icon of function C_dbj0 and c_dbj1 \\
\end{tabular} & respectively.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & One of the following has occurred: & bj is set to zero. \\
& \(\bullet \quad|x|>100\) & \\
& \(\bullet \quad 1 / 8 \leq|x|<1\) and \(|n| \geq 19|x|+29\) & \\
& \(\bullet 1 \leq|x|<10\) and \(|n| \geq 4.7|x|+43\) & \\
& \(\bullet 10 \leq|x| \leq 100\) and \(|n| \geq 1.83|x|+71\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The ranges of x and n are limited to avoid numerical overflow and underflow in the computations. The limits are shown in the table of condition codes.

\section*{Zero- and first-order Bessel function}

When computing either \(J_{0}(x)\) or \(J_{1}(x)\), use the function c_dbj0 or C_dbj1 respectively, as they are more efficient.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 0 to 10 in increments of 1 and \(n\) equal to 20 and 30 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, bj;
int i, n;
for (n=20;n<=30;n=n+10)
for (i=0;i<=10;i++) {
x = (double)i;
* calculate Bessel function */
ierr = c_dbjn(x, n, \&bj, \&icon);
if (icon == 0)
printf("x = %4.2f n = %i bj = %e\n", x, n, bj);
else
printf("ERROR: x = %4.2f n = %i bj = %e icon = %i\n",
x, n, bj, icon);
}
return(0)
}

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the \(n\) th-order Bessel function of the first kind, \(J_{n}(x)\), is:
- Taylor expansion when \(0 \leq x<1 / 8\).
- Recurrence formula when \(1 / 8 \leq x \leq 100\).

For further information consult the entry for BJN in the Fortran SSL II User's Guide.

\section*{c_dbjr}
\begin{tabular}{|l}
\hline Real-order Bessel function of the first kind \(J_{v}(x)\). \\
\hline ier \(r=c _d b j r(x, v, \& b j, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the real-order Bessel function of the first kind (1) by power series expansion, recurrence formula and asymptotic expansion \((x \geq 0, v \geq 0)\).
\[
\begin{equation*}
J_{v}(x)=\left(\frac{x}{2}\right)^{v} \sum_{k=0}^{\infty} \frac{\left(-x^{2} / 4\right)^{k}}{k!\Gamma(v+k+1)} \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbjr(x, v, \&bj, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
v & double & Input & Order \(v\) of \(J_{v}(x)\). \\
bj & double & Output & Function value \(J_{v}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{x}>100\) and \(\mathrm{v}>15\) \\
\(\bullet \quad \mathrm{x} \geq t_{\max }\)
\end{tabular} & bj is set to zero. \\
\hline 30000 & \(\mathrm{x}<0\) or \(\mathrm{V}<0\) & bj is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{\(x\) and \(v\)}

Both \(x\) and \(v\) must be greater than or equal to zero. If \(v \leq 15\), then \(x<t_{\max }\), but if \(v>15\), then \(x \leq 100\), otherwise cosine and sine terms in the asymptotic expansion method of the Bessel function will not be calculated accurately. See Method.

\section*{Zero- and first-order Bessel function}

When computing either \(J_{0}(x)\) or \(J_{1}(x)\), use the function c_dbj0 or c_dbj1 respectively, as they are more efficient.

\section*{Evaluation sequence}

When all the values of \(J_{v}(x), J_{v+1}(x), J_{v+2}(x), \ldots, J_{v+M}(x)\) are required at the same time, it is more efficient to compute them in the following way. First, compute the value of \(J_{v+M}(x)\) and \(J_{v+M-1}(x)\) with this function, then the others in the order of \(J_{v+M-2}(x), J_{v+M-3}(x), \ldots, J_{v}(x)\) by repeating the recurrence formula (see Method). Conversely,
computing values in the reverse order, i.e. \(J_{v+2}(x), J_{v+3}(x), \ldots, J_{v+M}(x)\) by recurrence formula after \(J_{v}(x)\) and \(J_{v+1}(x)\), should be avoided because of instability.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 0 to 10 in increments of 1 and \(v\) equal to 0.4 and 0.6 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double v, x, bj;
int nv, i;
for (i=0;i<=10;i++) {
x = (double)i;
for (nv=40;nv<=60;nv=nv+20) {
v = (double)nv/100;
/* calculate Bessel function */
ierr = c_dbjr(v, x, \&bj, \&icon);
if (icon == 0)
printf("x = %5.2f v = %5.2f bj = %e\n", x, v, bj);
else
printf("ERROR: x = %5.2f v = %5.2f bj = %e icon = %i\n",
}
}
return(0)
}

```

\section*{5. Method}

Depending on the values of \(x\) and \(v\), the method used to compute the real-order Bessel function of the first kind, \(J_{v}(x)\), is:
- Power series expansion, equation (1), when \(0 \leq x<1\).
- Recurrence formula when \(1 \leq x<30\), or \(30 \leq x \leq 100\) and \(v>0.115 x+4\).

Suppose \(m\) is an appropriately large integer (depends upon the required precision of \(x\) and \(v\)) and \(\delta\) an appropriately small constant (smallest positive number allowed for the computer), and moreover that \(n\) and \(\alpha\) are determined by
\[
v=n+\alpha
\]
where, \(n\) is an integer and \(0 \leq \alpha<1\). With the initial values,
\[
F_{\alpha+m+1}(x)=0, \quad F_{\alpha+m}(x)=\delta
\]
and repeating the recurrence equation,
\[
F_{\alpha+k-1}(x)=\frac{2(\alpha+k)}{x} F_{\alpha+k}(x)-F_{\alpha+k+1}(x)
\]
for \(k=m, m-1, \ldots, 1\). Then the value of \(J_{v}(x)\) is obtained from
\[
J_{v}(x) \approx \frac{\left(\frac{x}{2}\right)^{\alpha} F_{\alpha+n}(x)}{\sum_{k=0}^{m / 2} \frac{(\alpha+2 k) \Gamma(\alpha+k)}{k!} F_{\alpha+2 k}(x)}
\]
- Asymptotic expansion when \(100<x<t_{\max }\) and \(v \leq 15\), or \(30 \leq x \leq 100\) and \(v \leq 0.115 x+4\).

For further information consult the entry for BJR in the Fortran SSL II User's Guide.

\section*{c_dbk0}
```

Modified zero-order Bessel function of the second kind $K_{0}(x)$.
ierr = c_dbk0(x, \&bk, \&icon);

```

\section*{1. Function}

This function computes the modified zero-order Bessel function of the second kind (1) by polynomial approximations and asymptotic expansion.
\[
\begin{equation*}
K_{0}(x)=\sum_{k=1}^{\infty} \frac{(x / 2)^{2 k}}{(k!)^{2}}\left(\sum_{m=1}^{k} \frac{1}{m}\right)-I_{0}(x)[\gamma+\log (x / 2)] \tag{1}
\end{equation*}
\]

In (1), \(I_{0}(x)\) is the modified zero-order Bessel function of the first kind, \(\gamma\) is Euler's constant and \(x>0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbk0(x, \&bk, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
bk & double & Output & Function value \(K_{0}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(x>\log \left(f l_{\max }\right)\) & bk is set to zero. \\
\hline 30000 & \(\mathrm{x} \leq 0\) & bk is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The range of values of \(x\) is limited to avoid numerical underflow of \(e^{-x}\) in the computations. The range of values is shown in the table of condition codes. For details on the constant, \(f l_{\max }\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 1 to 100 in increments of 1 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, bk;
int i;

```
```

    for (i=1;i<=100;i++) {
        x = (double)i;
        /* calculate Bessel function */
        ierr = c_dbk0(x, &bk, &icon);
        if (icon== 0)
        printf("x = %4.2f bk = %e\n", x, bk);
        else
        printf("ERROR: x = %4.2f bk = %e icon = %i\n", x, bk, icon);
    }
    return(0)
    }

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the modified zero-order Bessel function of the second kind, \(K_{0}(x)\), is:
- Power series expansion using polynomial approximations when \(0<x<2\).
- Asymptotic expansion when \(2 \leq x \leq \log \left(f l_{\max }\right)\).

For further information consult the entry for BK0 in the Fortran SSL II User's Guide.

\section*{c_dbk1}
```

Modified first-order Bessel function of the second kind $K_{1}(x)$.
ierr = c_dbk1(x, \&bk, \&icon);

```

\section*{1. Function}

This function computes the modified first-order Bessel function of the second kind (1) by polynomial approximations and asymptotic expansion.
\[
\begin{equation*}
K_{1}(x)=I_{1}(x)[\gamma+\log (x / 2)]+\frac{1}{x}-\frac{1}{2} \sum_{k=0}^{\infty} \frac{(x / 2)^{2 k+1}}{k!(k+1)!}\left(\sum_{m=1}^{k} \frac{1}{m}+\sum_{m=1}^{k+1} \frac{1}{m}\right) \tag{1}
\end{equation*}
\]

In (1), \(I_{1}(x)\) is the modified first-order Bessel function of the first kind, \(\gamma\) is Euler's constant and \(x>0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbk1(x, \&bk, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
bk & double & Output & Function value \(K_{1}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(x>\log \left(f l_{\max }\right)\) & bk is set to zero. \\
\hline 30000 & \(x \leq 0\) & bk is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The range of values of x is limited to avoid numerical underflow of \(e^{-x}\) in the computations. The limits are shown in the table of condition codes. For details on the constant, \(f l_{\max }\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 1 to 100 in increments of 1 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, bk;
int i;
for (i=1;i<=100;i++) {

```
```

        x = (double)i;
        /* calculate Bessel function */
        ierr = c_dbk1(x, &bk, &icon);
        if (icon == 0)
        printf("x = %4.2f bk = %e\n", x, bk);
        else
        printf("ERROR: x = %4.2f bk = %e icon = %i\n", x, bk, icon);
    }
    return(0)
    }

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the modified first-order Bessel function of the second kind, \(K_{1}(x)\), is:
- Power series expansion using polynomial approximations when \(0<x<2\).
- Asymptotic expansion when \(2 \leq x \leq \log \left(f l_{\max }\right)\).

For further information consult the entry for BK1 in the Fortran SSL II User's Guide.

\section*{c_dbkn}
```

Modified $n$ th-order Bessel function of the second kind $K_{n}(x)$.

```
ierr = c_dbkn(x, n, \&bk, \&icon);

\section*{1. Function}

This function computes the modified \(n\) th-order Bessel function of the second kind (1) by recurrence formula for \(x>0\).
\[
\begin{align*}
K_{n}(x) & =(-1)^{n+1} I_{n}(x)[\gamma+\log (x / 2)]+\frac{1}{2} \sum_{k=0}^{n-1} \frac{(-1)^{k}(n-k-1)!}{k!}(x / 2)^{2 k-n} \tag{1}\\
& +\frac{(-1)^{n}}{2} \sum_{k=0}^{\infty} \frac{(x / 2)^{n+2 k}}{k!(n+k)!}\left(\phi_{k}+\phi_{k+n}\right)
\end{align*}
\]

In (1), \(I_{n}(x)\) is the \(n\) th-order Bessel function of the first kind, \(\gamma\) is Euler's constant and \(\phi\) is given as:
\[
\begin{aligned}
& \phi_{0}=0 \\
& \phi_{L}=\sum_{m=1}^{L} \frac{1}{m} \quad(L \geq 1)
\end{aligned}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbkn(x, n, \&bk, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
n & int & Input & Order \(n\) of \(K_{n}(x)\). \\
by & double & Output & Function value \(K_{n}(x)\). \\
icon & int & Output & Condition code. See below. \\
& & & When \(\mathrm{n}=0\) or 1, the icon values are same as in function C_dbk0 and \\
& & c_dbk1 respectively.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(x>\log \left(f l_{\max }\right)\) & bk is set to zero. \\
\hline 30000 & \(x \leq 0\) & bk is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The range of values of x is limited to avoid numerical underflow of \(e^{-x}\) in the computations. The limits are shown in the table of condition codes. For details on the constant, \(f l_{\max }\), see the Machine constants section of the Introduction.

\section*{Zero- and first-order Bessel function}

When computing either \(K_{0}(x)\) or \(K_{1}(x)\), use the function c_dbk0 or c_dbk1 respectively, as they are more efficient.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 1 to 10 in increments of 1 and \(n\) equal to 20 and 30 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, bk;
int i, n;
for (n=20;n<=30;n=n+10)
for (i=1;i<=10;i++) {
x = (double)i;
/* calculate Bessel function */
ierr = c_dbkn(x, n, \&bk, \&icon);
if (icon == 0)
printf("x = %4.2f n = %i bk = %e\n", x, n, bk);
else
printf("ERROR: x = %4.2f n = %i bk = %e icon = %i\n",
x, n, bk, icon);
}
return(0);
}

```

\section*{5. Method}

The recurrence formula is used to calculate the Bessel function \(K_{n}(x)\) of order \(n\). For orders of 0 and 1 , the Fortran routines DBK0 and DBK1 are used to compute \(K_{0}(x)\) and \(K_{1}(x)\). For further information consult the entry for BKN in the Fortran SSL II User's Guide.

\section*{c_dbkr}
```

Modified real-order Bessel function of the second kind $K_{v}(x)$.

```
ierr = c_dbkr(x, v, \&bk, \&icon);

\section*{1. Function}

This function computes the modified real-order Bessel function of the second kind (1) by Yoshida and Ninomiya's method.
\[
\begin{equation*}
K_{v}(x)=\frac{\pi\left[I_{-v}(x)-I_{v}(x)\right]}{2 \sin (v \pi)} \tag{1}
\end{equation*}
\]

In (1), \(I_{v}(x)\) is the modified real-order Bessel function of the first kind and \(x>0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbkr(x, v, \&bk, \&icon);
where:
\begin{tabular}{llll}
X & double & Input & Independent variable \(x\). \\
v & double & Input & Order \(v\) of \(K_{v}(x)\). \\
bk & double & Output & Function value \(K_{v}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(\mathrm{x}=0\) or bk was large enough to overflow. & \begin{tabular}{l}
bk is returned with the maximum floating point \\
value.
\end{tabular} \\
\hline 30000 & \(\mathrm{x}<0\) & bk is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Zero- and first-order Bessel function}

When computing either \(K_{0}(x)\) or \(K_{1}(x)\), use the function c_dbk0 or c_dbk1 respectively, as they are more efficient.

\section*{Evaluation sequence}

When all the values of \(K_{v}(x), K_{v+1}(x), K_{v+2}(x), \ldots, K_{v+M}(x)\) are required at the same time, it is more efficient to compute them in the following way. First, compute the value of \(K_{v}(x)\) and \(K_{v+1}(x)\) with this function, then the others in the order of \(K_{v+2}(x), K_{v+3}(x), \ldots, K_{v+M}(x)\).

When the function is called repeatedly with the same value of \(v\) but with various, large value of \(x\) in magnitude, the function computes \(K_{v}(x)\) more efficiently by bypassing a common part of the computation.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 0 to 10 in increments of 1 and \(v\) equal to 0.4 and 0.6 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double v, x, bk;
int nv, i;
for (i=1;i<=10;i++) {
x = (double)i;
for (nv=40;nv<=60;nv=nv+20) {
v = (double)nv/100;
/* calculate Bessel function */
ierr = c_dbkr(v, x, \&bk, \&icon);
if (icon == 0)
printf("x = %5.2f v = %5.2f bk = %e\n", x, v, bk);
else
printf("ERROR: x = %5.2f v = %5.2f bk = %e icon = %i\n",
}
}
return(0)
}

```

\section*{5. Method}

The method by Yoshida and Ninomiya is used to compute the modified real-order Bessel function of the second kind, \(K_{v}(x)\). For further information consult the entry for BKR in the Fortran SSL II User's Guide.

\section*{c_dblnc}
\begin{tabular}{|l|}
\hline Balancing of a real matrix. \\
\hline ierr \(=\) c_dblnc \((a, k, n, d v\), \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine applies the diagonal similarity transformation shown in (1) to an \(n \times n\) matrix \(\mathbf{A}\),
\[
\begin{equation*}
\widetilde{\mathbf{A}}=\mathbf{D}^{-1} \mathbf{A} \mathbf{D} \tag{1}
\end{equation*}
\]
where \(\mathbf{D}\) is a diagonal matrix. By this transformation, the sum of the norm of the elements in the \(i\)-th row and that of the \(i\)-th column \((i=1,2, \ldots, n)\) are almost equalized for the transformed real matrix \(\widetilde{\mathbf{A}}\). Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dblnc((double *) a, k, n, dv, \&icon);
where:
\begin{tabular}{llll}
a & double & Input & Matrix A. \\
& \(\mathrm{a}[\mathrm{n}][\mathrm{k}]\) & Output & Balanced matrix \(\widetilde{\mathbf{A}}\). \\
k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
n & int & Input & Order \(n\) of matrices \(\mathbf{A}\) and \(\widetilde{\mathbf{A}}\). \\
dv & double dv[n] & Output & Scaling factors (diagonal elements of \(\mathbf{D})\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & Balancing was not performed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

If there are large differences in magnitude of the elements of a matrix, the precision of computed eigenvalues and eigenvectors of that matrix can be adversely affected. This routine can be used before computing the eigenvalues and eigenvectors to avoid loss of precision.

If each element of a matrix is nearly the same in magnitude, this routine performs no balancing and should not be used.
If all elements except the diagonal element of a row (or column) are zero, balancing of the row (or column) and the corresponding column (or row) is bypassed.

In order to obtain the eigenvectors \(\boldsymbol{x}\) of a matrix \(\mathbf{A}\) which has been balanced by this routine, back transformation (2) must be applied to the eigenvectors \(\widetilde{\mathbf{x}}\) of \(\widetilde{\mathbf{A}}\).
\[
\begin{equation*}
\mathbf{x}=\mathbf{D} \widetilde{\mathbf{x}} \tag{2}
\end{equation*}
\]

The back transformation (2) can be performed using routine c_dhbk1.

\section*{4. Example program}

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then performs a back transformation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, m, mk, ind[NMAX];
double a[NMAX][NMAX], pv[NMAX], aw[NMAX+4][NMAX];
double er[NMAX], ei[NMAX], ev[NMAX][NMAX];
double dv[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
mk = NMAX;
for (i=0;i<n;i++) {
a[i][i] = n-i;
for (j=0;j<i;j++) {
a[i][j] = n-i;
a[j][i] = n-i;
}
}*
/* balance matrix A */
ierr = c_dblnc((double*)a, k, n, dv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dblnc failed with icon = %i\n", icon);
exit (1);
}
/* reduce matrix to Hessenberg form */
ierr = c_dhes1((double*)a, k, n, pv, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dhes1 failed with icon = %i\n", icon);
exit (1);
}
for (i=0;i<n;i++)
for (j=0;j<n;j++)
aw[i][j] = a[i][j];
/* find eigenvalues */
ierr = c_dhsqr((double*)aw, k, n, er, ei, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dhsqr failed with icon = %i\n", icon);
exit (1);
}
for (i=0;i<m;i++) ind[i] = 1;
/* find eigenvectors for given eigenvalues */
ierr = c_dhvec((double*)a, k, n, er, ei,
ind, m, (double*)ev, mk, (double*)aw, \&icon);
if (icon >= 20000') {
printf("ERROR: c_dhvec failed with icon = %i\n", icon);
exit (1);
}
/* back transformation to find e-vectors of A */
ierr = c_dhbk1((double*)ev, k, n, ind, m, (double*)a, pv, dv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dhbk1 failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
i = 0;
k = 0;
while (i<m) {
if (ind[i] == 0) i++;

```
```

    else if (ei[i] == 0) {
            /* real eigenvector */
            printf("eigenvalue: %12.4f\n", er[i]);
            printf("eigenvector:");
            for (j=0;j<n;j++)
                printf("%7.4f ", ev[k][j]);
            printf("\n");
            i++;
            k++;
        }
        else {
            /* complex eigenvector pair */
            printf("eigenvalue: %7.4f+i*%7.4f\n", er[i], ei[i]);
            printf("eigenvector: ");
            for (j=0;j<n;j++)
            printf("%7.4f+i*%7.4f ", ev[k][j], ev[k+1][j]);
            printf("\n");
            printf("eigenvalue: %7.4f+i*%7.4f\n", er[i+1], ei[i+1]);
            printf("eigenvector: ");
            for (j=0;j<n;j++)
            printf("%7.4f+i*%7.4f ", ev[k][j], -ev[k+1][j]);
            printf("\n");
            i = i+2;
            k = k+2;
        }
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for BLNC in the Fortran SSL II User's Guide and reference [119].

\section*{c_dbmdmx}

Solution of a system of linear equations with an indefinite symmetric band matrix in MDM \({ }^{\mathrm{T}}\) - decomposed form.
```

ierr = c_dbmdmx(b, fa, n, nh, mh, ip, ivw,

``` \&icon);

\section*{1. Function}

This routine solves a linear system of equations with an \(\mathrm{MDM}^{\mathrm{T}}\) - decomposed \(n \times n\) indefinite symmetric band matrix
\[
\begin{equation*}
\mathbf{P}^{-1} \mathbf{M D M}^{\mathrm{T}} \mathbf{P}^{-\mathrm{T}} \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{P}\) is a permutation matrix (which performs row exchanges of the coefficient matrix based on the pivoting during the \(\operatorname{MDM}^{\mathrm{T}}\) - decomposition), \(\mathbf{M}=\left(m_{i j}\right)\) is a unit lower band matrix with bandwidth \(\tilde{h}(n>\tilde{h} \geq 0)\), and \(\mathbf{D}=\left(d_{i j}\right)\) is a symmetric block diagonal matrix with blocks of order at most \(2 . \mathbf{b}\) is a constant vector, and \(\mathbf{x}\) is the solution vector. Both vectors are of size \(n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbmdmx(b, fa, n, nh, mh, ip, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline fa & \begin{tabular}{l}
double \\
fa[Falen]
\end{tabular} & Input & Matrix \(\mathbf{D}+(\mathbf{M}-\mathbf{I})\). Stored in symmetric band storage format. See Array storage formats in the Introduction section for details. The matrix must be stored as if it had bandwidth \(h_{m}\). See Comments on use.
\[
\text { Falen }=n\left(h_{m}+1\right)-h_{m}\left(h_{m}+1\right) / 2
\] \\
\hline n & int & Input & Order \(n\) of matrices \(\mathbf{M}\) and \(\mathbf{D}\). \\
\hline nh & int & Input & Bandwidth \(\tilde{h}\) of matrix M. See Comments on use. \\
\hline mh & int & Input & Maximum bandwidth \(h_{m}(\mathrm{n}>\mathrm{mh} \geq \mathrm{nh})\) of matrix \(\mathbf{M}\). See Comments on use. \\
\hline ip & int ip[n] & Input & Transposition vector that provides the row exchanges that occurred during pivoting. See Comments on use. \\
\hline ivw & int ivw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Coefficient matrix was singular. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
• \(\mathrm{nh}<0\) \\
• \(\mathrm{mh}<\mathrm{nh}\) \\
\(\bullet \quad \mathrm{mh} \geq \mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet\) error found in ip. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{fa, nh, ip, mh and MDM \({ }^{\text {T }}\) - decomposition}

A system of linear equations with an indefinite symmetric band coefficient matrix can be solved by calling the routine c_dsbmdm to MDM \({ }^{\mathrm{T}}\) - decompose the coefficient matrix prior to calling this routine. The input arguments fa, nh, ip and mh of this routine are the same as the output arguments a, nh, ip and input argument mh of routine c _dsbmdm. Alternatively, the system of linear equations can be solved by calling the single routine c_dlsbix.

\section*{Calculation of determinant}

The determinant of matrix \(\mathbf{A}\) is the same as the determinant of matrix \(\mathbf{D}\), that is the product of the determinants of the \(1 \times 1\) and \(2 \times 2\) blocks of \(\mathbf{D}\). See the example program with c_dsbmdm.

\section*{Eigenvalues}

The number of positive and negative eigenvalues of matrix A can be obtained. See the example program with c_dsbmdm.

\section*{4. Example program}

This program decomposes and solves a system of linear equations using MDM \({ }^{\mathrm{T}}\) decomposition and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define NMAX 100
\#define NHMAX 50
MAIN__( )
{
int ierr, icon;
int n, nh, mh, i, j, ij, jmin;
double epsz, eps;
double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], b[NMAX], x[NMAX];
int ivw[NMAX], ip[NMAX];
/* initialize matrix */
n = NMAX;
nh = 2;
mh = NHMAX;
ij = 0;
for (i=0;i<n;i++) {
jmin = max(i-mh, 0);
for (j=jmin;j<=i;j++)
if (i-j == 0)
a[ij++] = 10;
else if (i-j == 1)
a[ij++] = -3;
else if (i-j == 2)
a[ij++] = -6;
else
a[ij++] = 0;
}
epsz = 1e-6;
/* initialize RHS vector */
for (i=0;i<n;i++)
x[i] = i+1;
/* initialize constant vector b = a*x */
ierr = c_dmsbv(a, n, mh, x, b, \&icon);
/* MDM decomposition of system */

```
```

    ierr = c_dsbmdm(a, n, &nh, mh, epsz, ip, ivw, &icon);
    if (icon != 0) {
        printf("ERROR: c_dsbmdm failed with icon = %d\n", icon);
        exit(1);
    }
    /* solve decomposed system of equations */
    ierr = c_dbmdmx(b, a, n, nh, mh, ip, ivw, \&icon);
if (icon != 0) {
printf("ERROR: c_dbmdmx failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for BMDMX in the Fortran SSL II User's Guide.

\section*{c_dbsc 1}

B-spline smoothing coefficient calculation.
\[
\text { ierr }=c _d b s c 1(x, y, w, n, m, x t, n t, c, r,
\]
\&rnor, vw, ivw, \&icon);

\section*{1. Function}

Given observed values \(y_{1}, y_{2}, \ldots, y_{n}\) at points \(x_{1}, x_{2}, \ldots, x_{n}\) with weighted function values \(w_{i}=w\left(x_{i}\right)\) for \(i=1,2, \ldots, n\) and the knots of the spline function \(\xi_{1}, \xi_{2}, \ldots, \xi_{n_{t}}\) for the degree \(m\) B-spline smoothing function (1), this function obtains the smoothing coefficients \(c_{j}\) that minimise the square sum of weighted residual (2).
\[
\begin{align*}
& \bar{S}(x)=\sum_{k=1-m}^{n_{t}-1} c_{j} N_{j, m+1}(x) \tag{1}\\
& \delta_{m}^{2}=\sum_{i=1}^{n} w_{i}\left[y_{i}-\bar{S}\left(x_{i}\right)\right]^{2} \tag{2}
\end{align*}
\]

The interval \(I_{\xi}=\left[\min \left(\xi_{j}\right), \max \left(\xi_{j}\right)\right]\) spanned by the knots \(\xi_{j}\) does not always have to contain all of the \(n\) discrete points. For example, as shown in Figure 30, the \(I_{\xi}\) can be specified as a part of the interval \(I_{x}=\left[\min \left(x_{i}\right), \max \left(x_{i}\right)\right]\) that is spanned by all of the discrete points. In such cases, the discrete points for \(\bar{S}(x)\), equation (1), contained in the interval (whose number we say is \(n_{e}\)), then when taking the summation in (2) only the discrete points contained in the interval \(I_{\xi}\) have to be taken into consideration.

Here, \(w_{i} \geq 0, m \geq 1, n_{t} \geq 3, \xi_{j} \neq \xi_{k}(j \neq k)\) and \(n_{e} \geq n_{t}+m-1\).

Figure 30 Section \(I_{\xi}\) for smoothing function

\section*{2. Arguments}

The routine is called as follows:
ierr \(=c _d b s c 1(x, y, w, n, m, x t, n t, c, r, \& r n o r, ~ v w, ~ i v w, ~ \& i c o n) ;\) where:
\begin{tabular}{|c|c|c|c|}
\hline X & double \(\mathrm{x}[\mathrm{n}]\) & Input & Discrete points \(x_{i}\). \\
\hline y & double \(\mathrm{y}[\mathrm{n}]\) & Input & Observed data \(y_{i}\). \\
\hline w & double w[n] & Input & Weighted function values. \\
\hline n & int & Input & Number of discrete points \(n\). \\
\hline m & int & Input & Degree \(m\) of the B-spline. See Comments on use. \\
\hline xt & double xt[nt] & Input Output & \begin{tabular}{l}
The knots \(\xi_{i}\). See Comments on use. \\
If on input \(x t[0]<x t[1]<\ldots<x t[n t-1]\) is not satisfied then on output they will be realigned to the condition.
\end{tabular} \\
\hline nt & int & Input & Number of knots \(n_{t}\). \\
\hline C & \begin{tabular}{l}
double \\
c[nt+m-1]
\end{tabular} & Output & Smoothing coefficients \(c_{j}\). \\
\hline \(r\) & double \(\mathrm{r}[\mathrm{n}]\) & Output & Residuals \(y_{i}-\bar{S}\left(x_{i}\right)\). \\
\hline rnor & double & Output & Square sum of weighted residual \(\delta_{m}^{2}\). \\
\hline VW & double & Work & Vwlen \(=(\mathrm{nt}+\mathrm{m})^{*}(\mathrm{~m}+1)\). \\
\hline & vw [Vwlen] & & \\
\hline ivw & int ivw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad\) At least one negative weight in w & \\
& \(\bullet \quad \mathrm{m}<1\) \\
& \(\bullet \quad \mathrm{xt}[\mathrm{i}]=\mathrm{xt}[\mathrm{j}]\) where \(\mathrm{i} \neq \mathrm{j}\) & \\
& \(\bullet \quad \mathrm{nt}<3\) & \\
& \(\bullet \quad n_{e}<\mathrm{nt}+\mathrm{m}-1\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Calling function c_dbsf1}

By calling the function c_dbsf1 after this one, the interpolated values as well as derivatives or integrals can be obtained based on B-spline smoothing function (1). The argument values of \(m, x t\), nt and \(c\) are input to \(c _d b s f 1\).
m
The degree \(m\) is preferably 3 but no greater than 5 , because of the normal equation used when obtaining the smoothing coefficients become ill-conditioned as \(m\) becomes large.

\section*{xt}

It is important for the knots \(\xi_{j}\) to be located according to the behaviour of observed values. In general, a knot should be assigned to the point at which the observed values have a peak or change rapidly. Knots should not be assigned to intervals where the observed values change slowly. See Figure 31.

Figure 31 Knots \(\xi_{j}\)

\section*{4. Example program}

This program evaluates the function \(f(x)=x^{3}\) at 10 equally spaced points in the interval \([0,1]\). Using the cubic B -spline function obtained by a least squares fit it then computes approximations to the function value as well as an integral and several partial derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
\#define NT 5
MAIN__()
{
int ierr, icon;
int i, n, m, nt, isw, ivw[N];
double x[N], y[N], w[N], c[NT+M-1], xt[NT], r[N], vw[(NT+M)*(M+1)];
double p, h, v, f, rnor;
/* initialize data */
n = N;
m = M;
nt = NT;
isw = 0;
p = 0;
h = 1.0/n;
for (i=0;i<n;i++) {
w[i] = 10;
x[i] = p;
y[i] = pow(p,3);
p = p + h;
}
p = 0;
h = 1.0/nt;
for (i=0;i<nt;i++) {
xt[i] = p;
p = p + h;
}*
/* calculate B-spline smoothing coefficients */
ierr = c_dbsc1(x, y, w, n, m, xt, nt, c, r, \&rnor, vw, ivw, \&icon);
i = nt/2;
v = xt[i] + (xt[i+1]-xt[i])/2;
for (isw=-1;isw<=m;isw++) {
/* calculate value at point */
ierr = c_dbsf1(m, xt, nt, c, isw, v, \&i, \&f, vw, \&icon);
if (isw == -1)
printf("icon = %i integral = %12.6e\n", icon, f);
else if (isw == 0)
printf("icon = %i value = %12.6e\n", icon, f);
else
printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
}
return(0)

```

\section*{\}}

\section*{5. Method}

A system of linear equations is derived for the smoothing coefficients. Solving this system by a \(\mathrm{L}^{\mathrm{T}} \mathrm{L}\) decomposition method, the coefficients are obtained.

For further information consult the entry for BSC1 in the Fortran SSL II User's Guide.

\section*{c_dbsc2}
\[
\begin{array}{|r}
\hline \text { B-spline smoothing coefficient calculation (variable knots). } \\
\hline \text { ierr }=\mathrm{c} \text { _dbsc } 2(\mathrm{x}, \mathrm{y}, \mathrm{~s}, \mathrm{n}, \mathrm{~m}, \mathrm{xt,} \mathrm{\& nt,} \mathrm{nl,} \\
\text { rnot, } \mathrm{c}, \mathrm{rnor}, \mathrm{vw}, \mathrm{ivw,} \mathrm{\& icon);} \\
\hline
\end{array}
\]

\section*{1. Function}

Given observed values \(y_{1}, y_{2}, \ldots, y_{n}\) at discrete points \(x_{1}, x_{2}, \ldots, x_{n}\), observation errors \(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\), a tolerance \(\delta_{t}^{2}\) for the sum of squares of residuals, and initial knots \(\xi_{1}, \xi_{2}, \ldots, \xi_{n_{s}}\), this routine obtains the smoothing coefficients for a degree \(m\) B-spline smoothing function to the data, with knots being added so that the sum of squares of residuals becomes within the tolerance.

Letting \(n_{t}\) denote the number of knots finally used, and \(\delta_{n_{t}}^{2}\) the corresponding sum of squares of residuals, the routine obtains the coefficients \(c_{j}\) in the B -spline smoothing function (1), subject to (2).
\[
\begin{gather*}
\bar{S}(x)=\sum_{j=1-m}^{n_{t}-1} c_{j} N_{j, m+1}(x) \tag{1}\\
\delta_{n_{t}}^{2}=\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}\left\{y_{i}-\bar{S}\left(x_{i}\right)\right\}^{2} \leq \delta_{t}^{2} . \tag{2}
\end{gather*}
\]

This routine outputs final knots \(\xi_{1}, \xi_{2}, \ldots, \xi_{n_{t}}\), the sum of squares of residuals at each step in which knots are added (3),
\[
\begin{equation*}
\delta_{n_{r}}^{2}=\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}\left\{y_{i}-\bar{S}\left(x_{i}\right)\right\}^{2}, \tag{3}
\end{equation*}
\]
(in which \(\bar{S}(x)\) is a degree \(m\) B-spline smoothing function in which \(\xi_{1}, \xi_{2}, \ldots, \xi_{n_{r}}\) are knots), and statistics (4) and (5),
\[
\begin{gather*}
\bar{\sigma}_{n_{r}}^{2}=\delta_{n_{r}}^{2} /\left\{n-\left(n_{r}+m-1\right)\right\}, \tag{4}\\
A I C r=n \log \delta_{n_{r}}^{2}+2\left(n_{r}+m-1\right) \tag{5}
\end{gather*}
\]

Here \(n_{r}=n_{s}, n_{s}+1, \ldots, n_{t}, \sigma_{i} \geq 0, m \geq 1, n_{s} \geq 2\) and the initial knots \(\xi_{i}\) must satisfy \(\min _{j}\left(\xi_{j}\right) \leq \min _{i}\left(x_{i}\right)\) and \(\max _{j}\left(\xi_{j}\right) \geq \max _{i}\left(x_{i}\right)\).

\section*{2. Arguments}

The routine is called as follows:
ierr \(=c _d b s c 2(x, y, s, n, m, x t, \& n t, n l, r n o t, ~ c, ~(d o u b l e *) r n o r, ~ v w, ~ i v w, ~\) \&icon);
where:
\begin{tabular}{llll}
x & double \(\mathrm{x}[\mathrm{n}]\) & Input & Discrete points \(x_{i}\). \\
y & double \(\mathrm{y}[\mathrm{n}]\) & Input & Observed values \(y_{i}\). \\
s & double \(\mathrm{s}[\mathrm{n}]\) & Input & Observation errors \(\sigma_{i}\). See Comments on use. \\
n & int & Input & Number \(n\) of discrete points.
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline m & int & Input & Degree \(m\) of B-spline. See Comments on use. \\
\hline \multirow[t]{2}{*}{xt} & \multirow[t]{2}{*}{double xt[nl]} & Input & Initial knots \(\xi_{i}, i=1,2, \ldots, n_{s}\). See Comments on use. \\
\hline & & Output & Final knots \(\xi_{i}, i=1,2, \ldots, n_{t}\), in order \(\xi_{1}<\xi_{2}<\ldots<\xi_{n_{t}}\). \\
\hline \multirow[t]{2}{*}{nt} & \multirow[t]{2}{*}{int} & Input & Number \(n_{s}\) of initial knots. \\
\hline & & Output & Number \(n_{t}\) of final knots. \\
\hline nl & int & Input & Upper limit (\(\geq n_{s}\)) on number of knots. See Comments on use. \\
\hline rnot & double & Input & Tolerance \(\delta_{t}^{2}\) for the sum of squares of residuals. An appropriate value is \(\delta_{t}^{2}=n\). \\
\hline C & double
\[
\mathrm{c}[\mathrm{nl}+\mathrm{m}-1]
\] & Output & Smoothing coefficients \(c_{j}, j=1-m, 2-m, \ldots, n_{t}-1\). Note that \(c_{j}\) is stored in \(\mathrm{C}[\mathrm{j}+\mathrm{m}-1]\). \\
\hline \multirow[t]{5}{*}{rnor} & \multirow[t]{5}{*}{\begin{tabular}{l}
double \\
rnor[Rlen][3]
\end{tabular}} & \multirow[t]{5}{*}{Output} & Values of \(\delta_{n_{r}}^{2}, \bar{\sigma}_{n_{r}}^{2}, A I C r\), for \(n_{r}=n_{s}, n_{s}+1, \ldots, n_{t}\) \\
\hline & & & \(\delta_{n_{r}}^{2}\) is stored in rnor \(\left[n_{r}-n_{s}\right][0]\) \\
\hline & & & \(\bar{\sigma}_{n_{r}}^{2}\) is stored in rnor [\(\left.n_{r}-n_{s}\right][1]\) \\
\hline & & & AICr is stored in rnor [\(n_{r}-n_{s}\)] [2] \\
\hline & & & Rlen \(=\mathrm{nl}-n_{s}+1\). See Comments on use. \\
\hline \multirow[t]{2}{*}{Vw} & double & \multirow[t]{2}{*}{Work} & V wlen \(=(m+1)+(m+2)(\mathrm{nl}+m)\). \\
\hline & vw[Vwlen] & & \\
\hline ivw & int ivw[Ivwlen] & Work & Ivwlen \(=n+\mathrm{nl}+m\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline The co & e list of condition cod & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Number of knots reached the upper limit, but the convergence criterion (2) was not satisfied. & Outputs the coefficients for the most recently obtained smoothing function. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad \sigma_{i} \leq 0\) for some \(i\) \\
- \(m<1\) \\
- \(\quad x t[i]=x t[j]\) for some \(i \neq j\) \\
- \(n_{s}<2\) \\
- \(\mathrm{nl}<n_{s}\) \\
- \(\min _{j}\left(\xi_{j}\right)>\min _{i}\left(x_{i}\right)\) or \(\max _{j}\left(\xi_{j}\right)<\max _{i}\left(x_{i}\right)\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Calling routine \(\mathbf{c}\) _dbsf1}

By calling routine \(c _d b s f 1\) after this routine, an interpolated value, or derivative value, or integral can be obtained based on the B-spline smoothing function (1). The argument values of \(m, x t, n t\), and \(c\) are input to \(c _d b s f 1\).

S
The observation error \(\sigma_{i}\) is an estimate for the error contained in the observed values \(y_{i}\). For example, if \(y_{i}\) has \(d_{i}\) significant decimal digits, the value \(10^{-d_{i}}\left|y_{i}\right|\) can be used as \(\sigma_{i}\). The observation error \(\sigma_{i}\) is used to indicate how closely \(\bar{S}(x)\) should be fit to \(y_{i}\). The larger \(\sigma_{i}\) is, the less closely \(\bar{S}(x)\) is fit to \(y_{i}\).

\section*{m}

An appropriate value for \(m\) is 3 , but the value should not exceed 5 because the normal equations used when obtaining the smoothing coefficients become ill-conditioned as \(m\) increases.

\section*{xt}

Generally, initial knots \(\xi_{j}, j=1,2, \ldots, n_{s}\) can be given by \(n_{s}=2, \xi_{1}=\min _{i}\left(x_{i}\right), \xi_{n_{s}}=\max _{i}\left(x_{i}\right)\).

\section*{nl}

The upper limit nl on the number of knots should be given a value near \(n / 2\) (as the number of knots increases, the normal equations become ill-conditioned). The routine terminates with icon \(=10000\) when the number of knots reaches the upper limit even if the convergence criterion (2) has not been met.

\section*{rnor}

The information output in rnor is the history of various statistics obtained in the process of adding knots at each step. The history can be used for assessing the smoothing function.

\section*{4. Example program}

This program evaluates the function \(f(x)=x^{3}\) at 10 equally spaced points in the interval \([0,1]\). Using the cubic B -spline function it then computes approximations to the function value as well as an integral and several derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
\#define NTMAX 5
\#define NT 3
MAIN__()
{
int ierr, icon;
int i, n, m, nt, nl, isw, ivw[N+NTMAX+M];
double x[N], y[N], s[N], rnor[NTMAX-NT+1][3];
double c[NTMAX+M-1], xt[NTMAX], vw[(M+1)+(M+2)*(NTMAX+M)];
double p, h, v, f, rnot;
/* initialize data */
n = N;
m = M;
nt = NT;
nl = NTMAX;
rnot = n;
p = 0.1;
h = 0.8/(n-1);
for (i=0;i<n;i++) {
x[i] = p+i*h;
y[i] = pow(x[i],3);
s[i] = 1e-6*fabs(y[i]); /* make up some error values */
}
p = 0;
h = 1.0/(nt-1);
for (i=0;i<nt;i++) {
xt[i] = p+i*h;

```
```

    }*
    /* calculate B-spline smoothing coefficients */
    ierr = c_dbsc2(x, y, s, n, m, xt, &nt, nl, rnot,
                c, (double*)rnor, vw, ivw, &icon);
    if (icon >= 20000) {
        printf("ERROR: c_dbsc2 failed with icon = %d\n", icon);
        exit(1);
    }
    i = 1;
    v = 0.5;
    for (isw=-1;isw<=m;isw++) {
        /* calculate value at point */
        ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, vw, &icon);
        if (icon >= 20000) {
        printf("ERROR: c_dbsf1 failed with icon = %d\n", icon);
        exit(1);
        }
        if (isw == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (isw == 0)
        printf("icon = %i value = %12.6e\n", icon, f);
        else
        printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for BSC2 in the Fortran SSL II User's Guide.

\section*{c_dbscd2}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
B-spline two-dimensional smoothing coefficient calculation (variable \\
knots)
\end{tabular} \\
\hline ierr = c_dbscd2(x, nx, y, ny, fxy, kf, sx, sy, \\
\(\quad\)\begin{tabular}{c}
m, xt, \&nxt, yt, \&nyt, nxl, nyl, \\
rnot, \(c, ~ k c, ~ r n o r, ~ v w, ~ i v w, ~\)
\end{tabular} \\
\&icon);
\end{tabular}

\section*{1. Function}

Given observed values \(f_{i j}=f\left(x_{i}, y_{j}\right)\), observation errors \(\sigma_{i j}=\sigma_{x_{i}} \cdot \sigma_{y_{j}}\), at the points \(\left(x_{i}, y_{j}\right), i=1,2, \ldots, n_{x}\), \(j=1,2, \ldots, n_{y}\), a tolerance for the sum of squares of residual \(\delta_{t}^{2}\), and initial sequences of knots \(\xi_{1}, \xi_{2}, \ldots, \xi_{n_{s}}\), \(\eta_{1}, \eta_{2}, \ldots, \eta_{\ell_{s}}\), in the \(x\) - and \(y\)-directions respectively, this routine obtains a bivariate \(m\)-th degree B -spline smoothing function to the data, in which the sum of the squares of residuals is within the tolerance, by adding knots appropriately in the \(x\) - and \(y\)-directions.

Letting the number of knots in the x - and y - directions be \(n_{t}\) and \(\ell_{t}\), the routine obtains the coefficients \(c_{\alpha, \beta}\) of the Bspline smoothing function (1) subject to (2).
\[
\begin{gather*}
\bar{S}(x, y)=\sum_{\beta=1-m}^{\ell_{t}-1} \sum_{\alpha=1-m}^{n_{t}-1} c_{\alpha, \beta} N_{\alpha, m+1}(x) N_{\beta, m+1}(y), \tag{1}\\
\delta_{n_{t}+\ell_{t}}^{2}=\sum_{j=1}^{n_{y}} \sum_{i=1}^{n_{x}} \frac{1}{\left(\sigma_{x_{i}} \cdot \sigma_{y_{j}}\right)^{2}}\left\{f_{i j}-\bar{S}\left(x_{i}, y_{j}\right)\right\}^{2} \leq \delta_{t}^{2} \tag{2}
\end{gather*}
\]

This routine outputs final knots \(\xi_{1}, \xi_{2}, \ldots, \xi_{n_{t}}\) in the x-direction, and \(\eta_{1}, \eta_{2}, \ldots, \eta_{\ell_{t}}\), in the \(y\)-direction, the sum of squares of residuals (3) at each step of adding knots, and statistics (4) and (5), along with coefficients \(c_{\alpha, \beta}\).
\[
\begin{equation*}
\delta_{n_{r}+\ell_{r}}^{2}=\sum_{j=1}^{n_{y}} \sum_{i=1}^{n_{x}} \frac{1}{\left(\sigma_{x_{i}} \cdot \sigma_{y_{j}}\right)^{2}}\left\{f_{i j}-\bar{S}\left(x_{i}, y_{j}\right)\right\}^{2} \tag{3}
\end{equation*}
\]
(where \(\bar{S}(x, y)\) denotes the \(m\)-th degree B-spline smoothing function with knots \(\xi_{1}, \xi_{2}, \ldots, \xi_{n_{r}}\) and \(\eta_{1}, \eta_{2}, \ldots, \eta_{\ell_{r}}\)),
\[
\begin{align*}
& \bar{\sigma}_{n_{r}+\ell_{r}}^{2}=\delta_{n_{r}+\ell_{r}}^{2} /\left\{n_{x} \cdot n_{y}-\left(n_{r}+m-1\right)\left(\ell_{r}+m-1\right)\right\} \tag{4}\\
& A I C_{r}=n_{x} \cdot n_{y} \log \delta_{n_{r}+\ell_{r}}^{2}+2\left(n_{r}+m-1\right)\left(\ell_{r}+m-1\right) \tag{5}
\end{align*}
\]

Here, \(n_{r}+\ell_{r}=n_{s}+\ell_{s}, n_{s}+\ell_{s}+1, \ldots, n_{t}+\ell_{t}, \sigma_{x_{i}}>0, \sigma_{y_{j}}>0, m \geq 1, n_{s} \geq 2, \ell_{s} \geq 2\), and the initial knots \(\xi_{1}, \xi_{2}, \ldots, \xi_{n_{s}}\) in the \(x\)-direction must satisfy \(\min _{j}\left(\xi_{j}\right) \leq \min _{i}\left(x_{i}\right)\) and \(\max _{j}\left(\xi_{j}\right) \geq \max _{i}\left(x_{i}\right)\), while the initial knots \(\eta_{1}, \eta_{2}, \ldots, \eta_{\ell_{s}}\) in the \(y\)-direction must satisfy \(\min _{j}\left(\eta_{j}\right) \leq \min _{i}\left(y_{i}\right)\) and \(\max _{j}\left(\eta_{j}\right) \geq \max _{i}\left(y_{i}\right)\).

\section*{2. Arguments}

The routine is called as follows:

\[
\text { Rlen }=\left(\mathrm{nxl}-n_{s}\right)+\left(\mathrm{nyl}-\ell_{s}\right)+1 .
\]
\begin{tabular}{ll}
VW & double \\
& \(\mathrm{vw}[\) Vwlen \(]\)
\end{tabular}

Work
Vwlen \(=\max \left(s_{1}, s_{2}\right)\) where
\(s_{1}=\left(n_{x}+n_{y}+2 m\right)(m+1)\)
\(+\max \left\{\max \left(n_{x}+m, n_{y}+m\right), 2+\min \left(n_{x}+m, n_{y}+m\right)(m+1)\right\}\),
\(s_{2}=\left\{\min \left(n_{x}, n_{y}\right)+3\right\}(m+1)+n_{x}+n_{y}+\mathrm{nxl}+\mathrm{nyl}+2\).
ivw int ivw[Ivwlen] Work Ivwlen \(=n_{x}+n_{v}+\max (\mathrm{nxl}, \mathrm{nyl}) \cdot m\).
icon int Output Condition code. See below.
The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & The number of knots in the \(x\)-direction reached the upper limit, but the convergence criterion was not satisfied. & Outputs the coefficients for the most recently obtained smoothing function. \\
\hline 11000 & The number of knots in the \(y\)-direction reached the upper limit, but the convergence criterion was not satisfied. & Outputs the coefficients for the most recently obtained smoothing function. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\sigma_{x_{i}} \leq 0\) \\
- \(\sigma_{y_{j}} \leq 0\) \\
- \(m<1\) \\
- \(x t[i]=x t[j]\) or \(y t[i]=y t[j]\) \\
when \(\mathrm{i} \neq \mathrm{j}\) \\
- \(n_{s}<2\) or \(\ell_{s}<2\) \\
- \(\mathrm{nxl}<n_{s}\) or \(\mathrm{nyl}<\ell_{s}\) \\
- \(\min _{i}\left(\xi_{i}\right)>\min _{i}\left(x_{i}\right)\) or \\
\(\max _{i}\left(\xi_{i}\right)<\max _{i}\left(x_{i}\right)\) \\
- \(\min _{j}\left(\eta_{j}\right)>\min _{j}\left(y_{j}\right)\) or \\
\(\max _{j}\left(\eta_{j}\right)<\max _{j}\left(y_{j}\right)\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbsfd1}

By calling routine c _dbsfd1 after this routine, an interpolated value, or partial derivative, or double integral can be obtained based on the two-dimensional B-spline smoothing function (1). The argument values of \(m, x t, n x t, y t, n y t\) and c are input to c _dbsfd1.
m
An appropriate value for degree \(m\) (either odd or even) is 3 , but the value should not exceed 5 because the normal equations used when obtaining the smoothing coefficients become ill-conditioned as \(m\) increases.

\section*{\(x t\) and \(y t\)}

Generally, initial knots \(\xi_{i}, \eta_{j}, i=1,2, \ldots, n_{s}, j=1,2, \ldots, \ell_{s}\) can be given by \(n_{s}=\ell_{s}=2, \xi_{1}=\min _{i}\left(x_{i}\right)\),
\[
\xi_{n_{s}}=\max _{i}\left(x_{i}\right), \eta_{1}=\min _{j}\left(y_{j}\right), \eta_{l_{s}}=\max _{j}\left(y_{j}\right) .
\]

\section*{nxl and nyl}

The upper limits nxl and nyl on the number of knots in the x - and y - directions should be given values near \(n_{x} / 2\) and \(n_{y} / 2\) respectively (as the number of knots increases, the normal equations become more ill-conditioned). The routine terminates, with icon \(=10000\) (for the \(x\)-direction) and icon \(=11000\) (for the \(y\)-direction), when the number of knots reaches either of the upper limits, and the convergence criterion has not been met.

\section*{rnor}

The information output in rnor is the history of various statistics obtained in the process of adding knots at each step. The history can be used to assess the smoothing function. Generally, the statistics converge with the addition of knots. In particular, when \(\sigma_{n_{r}+\ell_{r}}^{2}\) and \(A I C_{r}\) change slowly with the addition of knots, the smoothing function is usually good.

\section*{4. Example program}

This program interpolates the function \(f(x, y)=x^{3} y^{3}\) at 100 points in the region [0.1,0.9] \(\times[0.1,0.9]\) with a spline. It then computes approximations to the function value as well as an integral and several partial derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
\#define NTMAX 5
\#define NT 3
MAIN__()
{
int ierr, icon;
int i, j, kf, kc, nx, ny, m, nxt, nyt, nxl, nyl, ivw[2*N+NTMAX*M];
int iswx, iswy, ix, iy;
double x[N], y[N], fxy[N][N], sx[N], sy[N], rnor[2*(NTMAX-NT)+1][3];
double c[NTMAX+M-1][NTMAX+M-1], xt[NTMAX], yt[NTMAX];
double vw[158];
double p, h, vx, vy, f, fx, rnot;
/* initialize data */
nx = N;
ny = N;
m = M;
nxt = NT;
nyt = NT;
nxl = NTMAX;
nyl = NTMAX;
rnot = nx*ny;
kf = N;
kc = NTMAX+M-1;
p = 0.1;
h = 0.8/(nx-1);
for (i=0;i<nx;i+++) {
x[i] = p+i*h;
y[i] = x[i];
sx[i] = 1e-6; /* make up some error values */
sy[i] = sx[i];
}
for (i=0;i<nx;i++) {
fx = x[i]*x[i]*x[i];
for (j=0;j<ny;j++) {
fxy[i][j] = fx*y[j]*y[j]*y[j];

```
```

        }
    }
    p = 0;
    h = 1.0/(nxt-1);
    for (i=0;i<nxt;i++) {
        xt[i] = p+i*h;
        yt[i] = xt[i];
    }*
    /* calculate B-spline smoothing coefficients */
    ierr = c_dbscd2(x, nx, y, ny, (double*)fxy, kf, sx, sy, m,
                xt, &nxt, yt, &nyt, nxl, nyl, rnot,
                (double*)c, kc, (double*)rnor, vw, ivw, &icon);
    if (icon >= 20000) {
        printf("ERROR: c_dbscd2 failed with icon = %d\n", icon);
        exit(1);
    }
    ix = 1;
    iy = ix;
    vx = 0.5;
    vy = vx;
    for (iswx=-1;iswx<=m;iswx++) {
        iswy = iswX;
        /* calculate value at point */
        ierr = c_dbsfd1(m, xt, nxt, yt, nyt, (double*)c, kc,
                                    iswx, vx, &ix, iswy, vy, &iy, &f, vw, &icon);
        if (icon >= 20000)
        printf("ERROR: c_dbsfd1 failed with icon = %d\n", icon);
        exit(1);
    }
    if (iswx == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (iswx == 0)
        printf("icon = %i
    else
        printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
    }
    return(0);
    }

```

\section*{5. Method}

For further information consult the entry for BSCD2 in the Fortran SSL II User's Guide.

\section*{c_dbsct1}
\[
\begin{aligned}
& \text { Selected eigenvalues of a symmetric tridiagonal matrix (bisection } \\
& \text { method). } \\
& \hline \text { ierr }=c _d b s c t 1(d, s d, n, m, \text { epst, } e, ~ v w, \\
& \text { \&icon }) ;
\end{aligned}
\]

\section*{1. Function}

This routine obtains the \(m\) largest or \(m\) smallest eigenvalues of an \(n \times n\) symmetric tridiagonal matrix \(\mathbf{T}\) using the bisection method. Here \(1 \leq m \leq n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbsct1 (d, sd, n, m, epst, e, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline d & double d[n] & Input & Diagonal elements of matrix \(\mathbf{T}\). \\
\hline sd & double sd[n] & Input & Subdiagonal elements of matrix \(\mathbf{T}\), stored in \(\operatorname{sd}[i-1], i=2, \ldots, n\), with sd[0] set to 0 . \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{T}\). \\
\hline m & int & Input & \begin{tabular}{l}
Number of eigenvalues required \((\mathrm{m} \neq 0)\). \\
\(\mathrm{m}=m\), when the \(m\) largest eigenvalues required; \\
\(\mathrm{m}=-m\), when the \(m\) smallest eigenvalues are required.
\end{tabular} \\
\hline epst & double & Input & Absolute error tolerance used to determine the accuracy of the eigenvalues. When epst \(<0\) a standard value is used. See Comments on use. \\
\hline e & double e[m] & Output & The \(m\) eigenvalues of matrix \(\mathbf{T}\). In descending order when \(\mathrm{m}>0\) and ascending order when \(\mathrm{m}<0\). \\
\hline VW & double & Work & \\
\hline & vw [\(\mathrm{n}+2 \mathrm{~m}\)] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \(\mathrm{e}[0]=\mathrm{d}[0]\). \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<|\mathrm{m}|\) \\
\(\bullet \quad \mathrm{m}=0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General comments}

When approximately \(n / 4\) or more eigenvalues are required, it is generally faster to use routine c_dtrql.

When the eigenvectors of matrix \(\mathbf{T}\) are also required, routine c_dteig2 should be used.

When eigenvalues of a symmetric matrix are required the matrix can be reduced to a tridiagonal matrix using the routine c_dtrid1, before calling this routine or c_dtrql.

\section*{epst}

If it is possible one of the eigenvalues is zero, the argument epst should be set accordingly. See the Method section for BSCT1 in the Fortran SSL II User's Guide.

\section*{4. Example program}

This program reduces the matrix to tridiagonal form, and calculates the eigenvalues using two different methods.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 15
\#define NHMAX 2
MAIN__()
{
int ierr, icon;
int n, nh, m, i, k, ij;
double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX];
double sd[NMAX], d[NMAX], vw[NMAX+2*NMAX], epst;
/* initialize matrix */
n = NMAX;
k = NMAX;
nh = NHMAX;
a[0] = 10;
a[1] = -3;
a[2] = 10;
ij = (nh+1)*nh/2;
for (i=0;i<n-nh;i++) {
a[ij] = -6;
a[ij+1] = -3;
a[ij+2] = 10;
ij = ij+nh+1;
}
/* reduce to tridiagonal form */
ierr = c_dbtrid(a, n, nh, d, sd, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dbtrid failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvalues using c_dbsct1 */
m = n;
epst = 1e-6;
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dbsct1 failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
printf("eigenvalues:\n");
for (i=0;i<m;i++) {
printf("%7.4f ", e[i]);
}
printf("\n");
/* find eigenvalues using c_dtrql */
ierr = c_dtrql(d, sd, n, e, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dbtrql failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
printf("eigenvalues:\n");

```
```

    for (i=0;i<m;i++) {
    printf("%7.4f ", e[i]);
    }
    printf("\n");
    return(0);
    }

```

\section*{5. Method}

Consult the entry for BSCT1 in the Fortran SSL II User's Guide and references [80], [118] and [119].

\section*{c_dbseg}

Eigenvalues and corresponding eigenvectors of a real symmetric band matrix (Rutishauser-Schwarz, bisection and inverse iteration methods).
```

ierr = c_dbseg(a, n, nh, m, nv, epst, e, ev,
k, vW, \&icon);

```

\section*{1. Function}

The \(m\) largest or smallest eigenvalues of an \(n\) order real symmetric band matrix \(\mathbf{A}\) (bandwidth \(h\), where \(0 \leq h \ll n\)) are determined using the Rutishauser-Schwarz method and the bisection method, where \(1 \leq m \leq n\). The corresponding \(n_{v}\) eigenvectors are then obtained using the inverse iteration method, where \(0 \leq n_{v} \leq m\). The eigenvectors are then normalised such that \(\|x\|_{2}=1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbseg(a, n, nh, m, nv, epst, e, (double *)ev, k, vw, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input & Matrix A. Stored in the original symmetric band storage format. See Array storage formats in the Introduction section for details.
\[
\text { Alen }=n(h+1)-h(h+1) / 2 .
\] \\
\hline & & Output & When \(n_{v} \neq 0\) the contents of \(\mathbf{A}\) are not altered on output, but if \(n_{v}=0\) the contents are altered. \\
\hline n & int & Input & The order \(n\) of matrix \(\mathbf{A}\). \\
\hline nh & int & Input & Bandwidth \(h\). \\
\hline m & int & Input & The number of eigenvalues to be calculated. If \(m\) is positive, the \(m\) largest eigenvalues are calculated. If \(m\) is negative, the \(m\) smallest eigenvalues are calculated. \\
\hline nv & int & Input & The number of eigenvectors to be calculated. If \(n v\) is negative, its absolute value is taken. If \(n v=0\), no eigenvectors are generated. \\
\hline epst & double & Input & Absolute error tolerance on the eigenvalues, used in the convergence criterion. If epst \(<0\), a standard value is set. \\
\hline e & double e[m] & Output & Eigenvalues. \\
\hline ev & double ev[nv][k] & Output & Eigenvectors. Stored by rows. \\
\hline k & int & Input & C fixed dimension of ev. When \(n_{v}=0, \mathrm{k}\) is an arbitrary number. \\
\hline VW & \begin{tabular}{l}
double \\
vw[Vwlen]
\end{tabular} & Work & Vwlen \(=\max (3 n+2 m, 2 n(h+1))\). If \(n_{v}=0\), then Vwlen \(=3 n+2 m\). \\
\hline icon & int & Output & Condition codes. See below. \\
\hline The co & list of condition coder & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{nh}=0\) & Completed normally. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 15000 & After calculation of the eigenvalues, some of the eigenvectors could not be determined. & The eigenvectors that were not obtained are set to 0. \\
\hline 20000 & None of the eigenvectors could be determined. & All the eigenvectors are set to 0 . \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{nh}<0\) \\
- \(n h \geq n\) \\
- \(k<n\) \\
- \(\quad m=0\) \\
- \(\quad|m|<|n v|\) \\
- \(|m|>n\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General Comments}

This routine is suitable for obtaining the largest or smallest eigenvalues from a symmetric band matrix, provided that the ratio of the bandwidth to the order of the matrix (i.e. \(h / n\)) is less than \(1 / 6\).

\section*{Eigenvectors}

Although the eigenvectors corresponding to the obtained eigenvalues can be obtained at the same time, since the inverse iteration method is applied to directly processing the input band matrix, rather than a symmetric tridiagonal matrix, this method is relatively ineffective. Unnecessary eigenvectors should not be calculated. Therefore this method should only be used when a small number of eigenvalues need to be calculated from the largest or smallest eigenvalues in a large order symmetric band matrix.

\section*{4. Example program}

This program uses the library routine to calculate all the eigenvalues and eigenvectors for a 5 by 5 symmetric band matrix (in original symmetric band storage format).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 15
\#define HMAX 2
MAIN__()
{
int ierr, icon;
int n, nh, m, nv, i, j, k, ij ;
double a[NMAX*(HMAX+1)-HMAX*(HMAX+1)/2], e[NMAX], ev[NMAX][NMAX];
double vw[2*NMAX*(HMAX+1)], epst;
/* initialize matrix */
n = NMAX;
k = NMAX;
nh = HMAX;
a[0] = 10;
a[1] = -3;
a[2] = 10;
ij = (nh+1)*nh/2;
for (i=0;i<n-nh;i++) {
a[ij] = -6;
a[ij+1] = -3
a[ij+2] = 10;
ij = ij+nh+1;
}
m = 1;
nv = m;

```
```

    epst = -1;
    /* find eigenvalues and eigenvectors */
    ierr = c_dbseg(a, n, nh, m, nv, epst, e, (double*)ev, k, vw, &icon);
    printf("icon = %i\n", icon);
    /* print eigenvalues and eigenvectors */
    for (i=0;i<m;i++) {
    printf("eigenvalue: %7.4f\n", e[i]);
    printf("eigenvector: ");
    for (j=0;j<n;j++)
        printf("%7.4f ", ev[i][j]);
    printf("\n");
    }
    return(0);
    }

```

\section*{5. Method}

For further information consult the entry for BSEG in the Fortran SSL II User's Guide and also [118] and [119].

\section*{c_dbsegj}
\[
\begin{aligned}
& \text { Eigenvalues and corresponding eigenvectors of a symmetric band matrix } \\
& \text { (Jennings' method). } \\
& \hline \text { ierr = c_dbsegj (a, n, nh, m, epst, lm, e, ev, } \\
& \text { k, \&it, vw, \&icon); }
\end{aligned}
\]

\section*{1. Function}

This routine obtains \(m\) eigenvalues of an \(n \times n\) symmetric band matrix A with bandwidth \(h\), starting with the eigenvalue of the largest (or smallest) absolute value. When starting with the smallest absolute eigenvalue, matrix \(\mathbf{A}\) must be positive definite. Given \(m\) initial vectors, \(m\) eigenvectors corresponding to the eigenvalues are obtained. The routine uses the Jennings' simultaneous iteration method with Jennings' acceleration. The eigenvectors are normalized such that \(\|\mathbf{x}\|_{2}=1\). Here, \(1 \leq m \ll n\) and \(0 \leq h \ll n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbsegj(a, n, nh, m, epst, lm, e, (double *)ev, k, \&it, vw, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input & Matrix A. Stored in symmetric band storage format. See Array storage formats in the Introduction section for details.
\[
\text { Alen }=n(h+1)-h(h+1) / 2 .
\] \\
\hline & & Output & When obtaining the eigenvalues of smallest absolute value first, the contents of a are changed on output. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nh & int & Input & Bandwidth \(h\) of matrix \(\mathbf{A}\). \\
\hline m & int & Input & \begin{tabular}{l}
Number of eigenvalues \(m\) to be obtained. \\
\(\mathrm{m}>0\) if the \(m\) eigenvalues of largest absolute value are to be obtained. \\
\(\mathrm{m}<0\) if the \(m\) eigenvalues of smallest absolute value are obtained. See \\
Comments on use.
\end{tabular} \\
\hline epst & double & Input & Absolute error tolerance \(\varepsilon\) for convergence criterion for the eigenvectors. If \(\varepsilon \leq 0\), a standard value is assumed. See Comments on use. \\
\hline 1 m & int & Input & Upper limit for the number of iterations. If the number of iterations exceeds lm, processing is stopped. See Comments on use. \\
\hline e & double e[m] & Output & The \(m\) eigenvalues of matrix \(\mathbf{A}\), stored in the sequence specified by argument m . \\
\hline ev & double & Input & The \(m\) initial vectors, stored by rows. See Comments on use. \\
\hline & ev[m+2][k] & Output & The \(m\) eigenvectors of matrix \(\mathbf{A}\), stored by rows. \\
\hline k & int & Input & C fixed dimension of array ev (\(\geq \mathrm{n}\)). \\
\hline it & int & Output & Number of iterations performed to obtain the eigenvalues and eigenvectors. \\
\hline VW & \begin{tabular}{l}
double \\
vw[Vwlen]
\end{tabular} & Work & \(V\) wlen \(=\max (n, 2 m)+m(3 m+1) / 2\). \\
\hline
\end{tabular}
icon int Output Condition code. See below.
The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
The number of iterations exceeded the upper limit \\
lm.
\end{tabular} & \begin{tabular}{l}
Stopped. e and ev contain the approximations of \\
the eigenvalues and eigenvectors obtained so far.
\end{tabular} \\
\hline 28000 & \begin{tabular}{l}
Orthogonalization of the eigenvectors at each \\
iteration cannot be attained.
\end{tabular} & Discontinued. \\
\hline 29000 & \begin{tabular}{l}
Matrix \(\mathbf{A}\) is not positive definite (when the \\
smallest eigenvalues are required) or A may be \\
singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{nh}<0\) or \(\mathrm{nh} \geq \mathrm{n}\)
\end{tabular} & Bypassed. \\
\begin{tabular}{l}
- \(\mathrm{k}<\mathrm{n}\) \\
\(\bullet \quad \mathrm{m}=0\) or \(|\mathrm{m}|>\mathrm{n}\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{m}

The number of eigenvalues and eigenvectors \(m\), should be smaller than \(n\) such that \(m / n<1 / 10\). The numbering of eigenvalues is from the largest (or smallest) absolute value of eigenvalue, \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\). If possible, \(m\) should be chosen such that \(\left|\lambda_{m+1} / \lambda_{m}\right| \ll 1\) (or \(\left.\left|\lambda_{m+1} / \lambda_{m}\right| \gg 1\right)\).

\section*{epst}

When an eigenvector (normalized so that \(\|\mathbf{x}\|_{2}=1\)) converges for the convergence criterion constant \(\varepsilon\), the corresponding eigenvalue converges at least with accuracy \(\|\mathbf{A}\|_{2} \varepsilon\), and in most cases with greater accuracy. The standard convergence criterion constant is \(\varepsilon=16 \mu\), where \(\mu\) is the unit round-off. However, when the eigenvalues are close together convergence may not be attained with this convergence criterion constant, and a more appropriate value would be \(\varepsilon \geq 100 \mu\).

\section*{lm}

The upper limit \(1 m\) for the number of iterations is used to stop the processing when convergence is not attained. The value of 1 m should be chosen taking into account the required accuracy and how close together the eigenvalues are to each other. With the standard convergence criterion constant and well-separated eigenvalues a value for 1 m between 500 and 1000 should be appropriate.

\section*{Initial eigenvectors}

It is desirable for the initial vectors to be good approximations to the eigenvectors. However, if approximate eigenvectors are not available as initial vectors, the standard way to choose intial vectors is to use the first \(m\) column vectors of the identity matrix \(\mathbf{I}\).

\section*{c_dbseg and c_dbsegj}
c_dbseg determines the eigenvalues and eigenvectors of a real symmetric band matrix using a direct method. In general, c_dbseg will be faster than this routine, but C_dbseg needs more storage space than this routine.

\section*{4. Example program}

This program finds the eigenvalues and corresponding eigenvectors of a symmetric band matrix and prints the results.
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 15
\#define NHMAX 2
MAIN__()
{
int ierr, icon;
int n, nh, m, i, j, k, ij, it, lm;
double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX], ev[NMAX+2][NMAX];
double vw[2*NMAX+NMAX*(3*NMAX+1)/2], epst;
/* initialize matrix */
n = NMAX;
k = NMAX;
nh = NHMAX;
a[0] = 10;
a[1] = -3;
a[2] = 10;
ij = (nh+1)*nh/2;
for (i=0;i<n-nh;i++) {
a[ij] = -6;
a[ij+1] = -3;
a[ij+2] = 10;
ij = ij+nh+1;
}
m = 1;
/* initialize m eigenvectors */
for (i=0;i<m;i++)
for (j=0;j<n;j++)
if (i == j) ev[i][j] = 1;
else ev[i][j] = 0
lm = 1000;
epst = 1e-6;
/* find eigenvalues and eigenvectors */
ierr = c_dbsegj(a, n, nh, m, epst, lm, e, (double*)ev, k, \&it, vw, \&icon);
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
printf("eigenvalue: %7.4f\n", e[i]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f ", ev[i][j]);
printf("\n");
}
return(0)
}

```

\section*{5. Method}

Consult the entry for BSEGJ in the Fortran SSL II User's Guide and [61].

\section*{c_dbsf1}
```

B-spline smoothing.
ierr = c_dbsf1(m, xt, nt, c, isw, v, \&i, \&f,
vW, \&icon);

```

\section*{1. Function}

Given observed values \(y_{1}, y_{2}, \ldots, y_{n}\) at points \(x_{1}, x_{2}, \ldots, x_{n}\) with weighted function values \(w_{i}=w\left(x_{i}\right)\) for \(i=1,2, \ldots, n\) and the knots of the spline function \(\xi_{1}, \xi_{2}, \ldots, \xi_{n_{t}}\left(\xi_{1}<\xi_{2}<\ldots<\xi_{n_{t}}\right)\), this function obtains a smoothed value or derivative at \(x=v \in\left[\xi_{1}, \xi_{n_{t}}\right]\) or integral from \(\xi_{1}\) to \(v\) based on the degree B -spline smoothing function (1).
\[
\begin{equation*}
\bar{S}(x)=\sum_{j=1-m}^{n_{t}-1} c_{j} N_{j, m+1}(x) \tag{1}
\end{equation*}
\]

One condition is that the smoothing coefficients \(c_{j}\) for \(j=1-m, 2-m, \ldots, n_{t}-1\) in (1) must be computed by the c_dbsc1 function before using this function.

Here \(m\) is the degree of the B-spline \(N_{j, m+1}(x), m \geq 1, n_{t} \geq 3\) and \(\xi_{1} \leq v \leq \xi_{n_{t}}\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dbsf1(m, xt, nt, c, isw, v, \&i, \&f, vw, \&icon);

```
where:
\begin{tabular}{llll}
m & int & Input & Degree \(m\) of the B-spline. \\
xt & double xt[nt] & Input & The knots \(\xi_{i}\). \\
nt & int & Input & Number of knots \(n_{t}\). \\
c & double & Input & Smoothing coefficients \(c_{j}\) (output from c_dbsc1). \\
& \(\mathrm{c}[\mathrm{nt}+\mathrm{m}-1]\) & & \\
isw & int & Input & Type of calculation.
\end{tabular}
\(0 \quad\) Smoothed value, \(F=\bar{S}(v)\).
\(l \quad\) The derivative of order \(l, F=\bar{S}^{(l)}(v)\), with \(1 \leq l \leq m\).
-1 Integral value, \(F=\int_{\xi_{1}}^{v} \bar{S}(x) d x\).
\begin{tabular}{|c|c|c|c|}
\hline v & \multirow[t]{3}{*}{\begin{tabular}{l}
double \\
int
\end{tabular}} & Input & Point \(v\) at which the smoothing value etc are obtained. \\
\hline \multirow[t]{2}{*}{i} & & Input & The i-th element that satisfies \(x t[i] \leq v<x t[i+1]\). When \(v=\xi_{n_{t}}\) then \(\mathrm{i}=n_{t}-2\). \\
\hline & & Output & The i-th element that satisfies \(x t[i] \leq v<x t[i+1]\). See Comments on use. \\
\hline \(f\) & double & Output & Smoothed value or derivative of order \(l\) or integral value, depending on isw. See isw. \\
\hline VW & double & Work & \\
\hline & \(\mathrm{vw}[\mathrm{m}+1]\) & & \\
\hline
\end{tabular}
icon int Output Condition code. See below.

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{xt}[\mathrm{i}] \leq \mathrm{v}<\mathrm{xt}[\mathrm{i}+1]\) is not satisfied. & \begin{tabular}{l}
An i satisfying the relationship is searched for in \\
the function to continue the processing.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{v}<\mathrm{xt}[0]\) or \(\mathrm{v}>\mathrm{xt}[\mathrm{nt}-1]\) \\
\(\bullet \quad\) isw \(<-1\) or \(\mathrm{isw}>\mathrm{m}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbsc1}

This function computes a smoothed value or derivative or integral value based on the B-spline smoothing function determined by the \(\mathrm{c}_{-} \mathrm{dbsc} 1\) function. Therefore, c _dbsc1 must be called to obtain the smoothing function (1) before calling this function to compute the required data. Plus arguments \(m, x t\), \(n t\) and \(c\) must be passed directly from c_dbsc1.

\section*{i}

Argument \(i\) should satisfy the condition \(x t[i] \leq v<x t[i+1]\). If not, an \(i\) satisfying the condition is searched for to continue the processing.

Note that the indexing between the standard mathematical notation and the corresponding array location in C differs by one, i.e. C starts from 0 and the mathematics starts from 1.

\section*{4. Example program}

This program evaluates the function \(f(x)=x^{3}\) at 10 equally spaced points in the interval \([0,1]\). Then with a cubic Bspline function obtained by a least squares fit, it then computes approximations to the function value as well as an integral and several partial derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
\#define NT 5
MAIN__()
{
int ierr, icon;
int i, n, m, nt, isw, ivw[N];
double x[N], y[N], w[N], c[NT+M-1], xt[NT], r[N], vw[(NT+M)*(M+1)];
double p, h, v, f, rnor;
/* initialize data */
n = N;
m = M;
nt = NT;
isw = 0;
p = 0;
h = 1.0/n
for (i=0;i<n;i++) {
w[i] = 10;
x[i] = p;
y[i] = pow(p,3);

```
```

        p = p + h;
    }
    p = 0;
    h = 1.0/nt;
    for (i=0;i<nt;i++) {
        xt[i] = p;
        p = p + h;
    }
    /* calculate B-spline smoothing coefficients */
    ierr = c_dbsc1(x, y, w, n, m, xt, nt, c, r, &rnor, vw, ivw, &icon);
    i = nt/2;
    v = xt[i] + (xt[i+1]-xt[i])/2;
    for (isw=-1;isw<=m;isw++) {
        /* calculate value at point */
        ierr = c_dbsf1(m, xt, nt, c, isw, v, &i, &f, vw, &icon);
        if (isw == -1)
            printf("icon = %i integral = %12.6e\n", icon, f);
        else if (isw == 0)
        printf("icon = %i value = %12.6e\n", icon, f);
        else
        printf("icon = %i derivative %i = %12.6e\n", icon, isw, f);
    }
    return(0);
    }

```

\section*{5. Method}

For further information consult the entry for BSF1 in the Fortran SSL II User's Guide

\section*{c_dbsfd1}
\[
\begin{array}{|l}
\hline \text { B-spline two-dimensional smoothing. } \\
\hline \text { ierr = c_dbsfd1(m, xt, nxt, yt, nyt, c, kc, } \\
\text { iswx, vx, \&ix, iswy, vy, \&iy, \&f, } \\
\text { vw, \&icon); } \\
\hline
\end{array}
\]

\section*{1. Function}

Given observed values \(f_{i j}=f\left(x_{i}, y_{j}\right)\), observation errors \(\sigma_{i j}=\sigma_{x_{i}} \cdot \sigma_{y_{j}}\) at the points \(\left(x_{i}, y_{j}\right), i=1,2, \ldots, n_{x}\), \(j=1,2, \ldots, n_{y}\), this routine obtains a smoothed value or a partial derivative at the point \(P\left(v_{x}, v_{y}\right)\), or a double integral over the range \(\left[\xi_{1} \leq x \leq v_{x}, \eta_{1} \leq y \leq v_{y}\right.\)], based on the bivariate \(m\)-th degree B-spline smoothing function, (1), with knots \(\xi_{1}, \xi_{2}, \ldots, \xi_{n_{t}}\) in the \(x\)-direction and knots \(\eta_{1}, \eta_{2}, \ldots, \eta_{\ell_{t}}\) in the \(y\)-direction, and \(\xi_{1} \leq v_{x} \leq \xi_{n_{t}}\), \(\eta_{1} \leq v_{y} \leq \eta_{\ell_{t}}\).
\[
\begin{equation*}
\bar{S}(x, y)=\sum_{\beta=1-m}^{\ell_{r}-1} \sum_{\alpha=1-m}^{n_{t}-1} c_{\alpha, \beta} N_{\alpha, m+1}(x) N_{\beta, m+1}(y) . \tag{1}
\end{equation*}
\]

Before using this routine, the routine c_dbscd2 must be called to determine the knots \(\xi_{i}\) and \(\eta_{j}\), and the smoothing coefficients \(c_{\alpha, \beta}\). Here, \(m \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbsfd1(m, xt, nxt, yt, nyt, (double*)c, kc, iswx, vx, \&ix, iswy, vy, \&iy, \&f, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline m & int & Input & Degree \(m\) of the B-spline. \\
\hline xt & double xt[nxt] & Input & Knots \(\xi_{i}\) in the \(x\)-direction. \\
\hline \(n \times t\) & int & Input & Number \(n_{t}\) of knots in the \(x\)-direction. \\
\hline yt & double yt[nyt] & Input & Knots \(\eta_{i}\) in the \(y\)-direction. \\
\hline nyt & int & Input & Number \(\ell_{t}\) of knots in the \(y\)-direction. \\
\hline C & \[
\begin{aligned}
& \text { double } \\
& c[n x t+m-1][k c]
\end{aligned}
\] & Input & Smoothing coefficients \(c_{\alpha, \beta}\). \\
\hline kc & int & Input & C fixed dimension of array \(\mathrm{C}(\geq \mathrm{nyt}+\mathrm{m}-1)\). \\
\hline iswx & int & Input & Type of calculation associated with \(x\)-direction, \(-1 \leq\) iswx \(\leq \mathrm{m}\). See argument \(f\). \\
\hline vx & double & Input & x-coordinate \(v_{x}\), of point \(P\left(v_{x}, v_{y}\right)\). \\
\hline ix & int & Input & Integer such that \(\mathrm{xt}[\mathrm{ix}] \leq \mathrm{vx}<\mathrm{xt}[\mathrm{ix}+1]\). If \(v_{x}=\xi_{n_{t}}\) then \(\mathrm{ix}=\) \(n_{t}-2\). \\
\hline & & Output & Integer \(i x\) such that \(\mathrm{xt}[\mathrm{ix}] \leq \mathrm{vx}<\mathrm{xt}[i x+1]\). See Comments on use. \\
\hline iswy & int & Input & Type of calculation associated with \(y\)-direction, \(-1 \leq\) iswy \(\leq \mathrm{m}\). See argument \(f\). \\
\hline vy & double & Input & \(y\)-coordinate \(v_{y}\), of point \(P\left(v_{x}, v_{y}\right)\). \\
\hline
\end{tabular}
iy int
f double

Input Integer is such that \(\mathrm{yt}[\mathrm{iy}] \leq \mathrm{vy}<\mathrm{yt}[\mathrm{iy}+1]\). If \(v_{y}=\eta_{\ell_{t}}\) then iy \(=\ell_{t}-2\).
Output Integer iy such that \(\mathrm{yt}[\mathrm{iy}] \leq \mathrm{vy}<\mathrm{yt}[\mathrm{iy}+1]\). See Comments on use.
Output Smoothed value, partial derivative, or double integral value. By setting iswx \(=\lambda\) and iswy \(=\mu\), one of the following is returned depending on the combination of \(\lambda\) and \(\mu\) :
- when \(\lambda, \mu \geq 0\)
\(\mathrm{f}=\frac{\partial^{\lambda+\mu}}{\partial x^{\lambda} \partial y^{\mu}} \bar{S}\left(v_{x}, v_{y}\right)\)
A smoothed value can be obtained by setting \(\lambda=\mu=0\).
- when \(\lambda=-1, \mu \geq 0\)
\(\mathrm{f}=\int_{\xi_{1}}^{v_{x}} \frac{\partial^{\mu}}{\partial y^{\mu}} \bar{S}\left(x, v_{y}\right) d x\)
- when \(\lambda \geq 0, \mu=-1\)
\(\mathrm{f}=\int_{\eta_{1}}^{v_{y}} \frac{\partial^{\lambda}}{\partial x^{\lambda}} \bar{S}\left(v_{x}, y\right) d y\)
- when \(\lambda=\mu=-1\)
\(\mathrm{f}=\int_{\eta_{1}}^{v_{y}} \int_{\xi_{1}}^{v_{x}} \bar{S}(x, y) d x d y\)
\begin{tabular}{llll}
Vw & double \(\mathrm{Vw}[\) Vwlen \(]\) & Work & Vwlen \(=5(m+1)+\max \left(n_{t}, \ell_{t}\right)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
\(x t[i x] \leq v x<x t[i x+1]\) or \\
\(y t[i y] \leq v y<y t[i y+1]\) is not satisfied.
\end{tabular} & The ix or iy satisfying the relationship is sought by the routine to continue the processing. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(v x<x t[0]\) or \(v x>x t[n x t-1]\) \\
- \(v y<y t[0]\) or \(v y>y t[n y t-1]\) \\
- iswx \(<-1\) or iswx \(>m\) \\
- iswy \(<-1\) or iswy \(>m\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Relationship with c_dbscd2}

This routine obtains the smoothed value, partial derivative, or double integral based upon the two-dimensional B-spline smoothing function determined by the c _dbscd 2 routine. Therefore, c _dbscd 2 must be called to obtain the smoothing function (1) before calling this routine to compute the required value. Also, the arguments \(m, x t, n x t, y t, n y t, c\), and kc must be passed directly from c_dbscd2.

\section*{ix and iy}

Arguments ix and iy should satisfy the relationships \(x t[i x] \leq v x<x t[i x+1]\) and \(y t[i y] \leq v y<y t[i y+1]\). If not, ix and iy satisfying the relationships are sought by the routine to continue the processing.

\section*{4. Example program}

This program interpolates the function \(f(x, y)=x^{3} y^{3}\) at 100 points in the region [0.1,0.9] \(\times[0.1,0.9]\) with a spline. It then computes approximations to the function value as well as an integral and several partial derivatives associated with a particular point.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
\#define NTMAX 5
\#define NT 3
MAIN__()
{
int ierr, icon;
int i, j, kf, kc, nx, ny, m, nxt, nyt, nxl, nyl, ivw[2*N+NTMAX*M];
int iswx, iswy, ix, iy;
double x[N], y[N], fxy[N][N], sx[N], sy[N], rnor[2*(NTMAX-NT)+1][3];
double c[NTMAX+M-1][NTMAX+M-1], xt[NTMAX], yt[NTMAX];
double vw[158];
double p, h, vx, vy, f, fx, rnot;
/* initialize data */
nx = N;
ny = N;
m = M;
nxt = NT;
nyt = NT;
nxl = NTMAX;
nyl = NTMAX;
rnot = nx*ny;
kf = N;
kc = NTMAX+M-1;
p = 0.1;
h = 0.8/(nx-1);
for (i=0;i<nx;i++) {
x[i] = p+i*h;
y[i] = x[i];
sx[i] = 1e-6; /* make up some error values */
sy[i] = sx[i];
}
for (i=0;i<nx;i++) {
fx = x[i]*x[i]*x[i];
for ( j=0;j<ny;j++) {
fxy[i][j] = fx*y[j]*y[j]*y[j];
}
}
p = 0;
h = 1.0/(nxt-1);
for (i=0;i<nxt;i++) {
xt[i] = p+i*h;
yt[i] = xt[i];
}
/* calculate B-spline smoothing coefficients */
ierr = c_dbscd2(x, nx, y, ny, (double*)fxy, kf, sx, sy, m,
xt, \&nxt, yt, \&nyt, nxl, nyl, rnot,
(double*)c, kc, (double*)rnor, vw, ivw, \&icon);
if (icon >= 20000) {
printf("ERROR: c_dbscd2 failed with icon = %d\n", icon);
exit(1);
}
ix = 1;
iy = ix;
vx = 0.5;
vy = vx;
for (iswx=-1;iswx<=m;iswx++) {
iswy = iswx;
/* calculate value at point */
ierr = c_dbsfd1(m, xt, nxt, yt, nyt, (double*)c, kc,
iswx, vx, \&ix, iswy, vy, \&iy, \&f, vw, \&icon);
if (icon >= 20000) {
printf("ERROR: c_dbsfd1 failed with icon = %d\n", icon);
exit(1);

```
```

        } if (iswx == -1)
        printf("icon = %i integral = %12.6e\n", icon, f);
        else if (iswx == 0) 
        else
        printf("icon = %i derivative %i = %12.6e\n", icon, iswx, f);
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for BSFD1 in the Fortran SSL II User's Guide.

\section*{c_dbsvec}
\[
\begin{array}{|c}
\hline \text { Eigenvectors of a symmetric band matrix (inverse iteration method). } \\
\hline \text { ierr }=\mathrm{c} _\mathrm{dbsvec}(\mathrm{a}, \mathrm{n}, \mathrm{nh}, \mathrm{nv}, \mathrm{e}, \mathrm{ev}, \mathrm{k}, \mathrm{vw}, \\
\text { \&icon); }
\end{array}
\]

\section*{1. Function}

This routine obtains the eigenvectors corresponding to \(n_{v}\) given eigenvalues \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n_{v}}\) of an \(n \times n\) symmetric band matrix \(\mathbf{A}\) with bandwidth \(h\), using the inverse iteration method.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbsvec(a, n, nh, nv, e, (double *) ev, k, vw, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input & Matrix A. Stored in symmetric band storage format. See Array storage formats in the Introduction section for details.
\[
\text { Alen }=n(h+1)-h(h+1) / 2 .
\] \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nh & int & Input & Bandwidth \(h\) of matrix \(\mathbf{A}\). \\
\hline nv & int & Input & Number of eigenvectors \(n_{v}(\neq 0)\) to be obtained. If \(\mathrm{nv}<0\), then \(|\mathrm{nv}|\) is used. \\
\hline e & double e[|nv|] & Input & Eigenvalues, with ev[i-1] \(=\lambda_{i}, i=1, \ldots, n_{v}\). \\
\hline ev & \begin{tabular}{l}
double \\
ev[|nv|][k]
\end{tabular} & Output & Eigenvectors, stored by rows. \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{ev}(\geq \mathrm{n})\). \\
\hline Vw & double & Work & \\
\hline & \(\mathrm{vw}[2 \mathrm{n}(\mathrm{h}+1)]\) & & \\
\hline icon & int & Input & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{nh}=0\) & Completed. \\
\hline 15000 & \begin{tabular}{l}
An eigenvector corresponding to a specified \\
eigenvalue could not be obtained.
\end{tabular} & The eigenvector is set to the zero vector. \\
\hline 20000 & None of the eigenvectors could be obtained. & All of the eigenvectors are set to the zero vector. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occured: \\
- \(\quad \mathrm{nh}<0\) or \(\mathrm{nh} \geq \mathrm{n}\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
\(\bullet \quad \mathrm{nv}=0\) or \(|\mathrm{nv}|>\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

If the eigenvalues are close to each other in a small range, the inverse iteration method used to obtain the corresponding eigenvectors may not converge. If this happens icon is set to 15000 or 20000 and unobtained eigenvectors are set to the zero vector.

This routine is for a real symmetric band matrix. To determine the eigenvalues and eigenvectors of a real symmetric matrix, use routines c_dseig1 or c_dvseg2. For a real symmetric tridiagonal matrix use routines c_dteig1 or c_dteig2.

\section*{4. Example program}

This program finds the eigenvalues and eigenvectors of a symmetric band matrix and prints the results.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 15
\#define NHMAX 2
MAIN__()
{
int ierr, icon;
int n, nh, m, nv, i, j, k, ij;
double e[NMAX], ev[NMAX][NMAX];
double a[NMAX* (NHMAX+1)-NHMAX* (NHMAX+1)/2];
double b[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2]
double Vw[2*NMAX*(NHMAX+1)], epst;
/* initialize matrix */
n = NMAX;
k = NMAX;
nh = NHMAX
a[0] = 10;
a[1] = -3;
a[2] = 10;
ij = (nh+1)*nh/2;
for (i=0;i<n-nh;i++) {
a[ij] = -6;
a[ij+1] = -3;
a[ij+2] = 10;
ij = ij+nh+1;
}
/* save copy of a */
for (i=0;i<n*(nh+1)-nh*(nh+1)/2;i++) b[i] = a[i];
/* find eigenvalues and eigenvectors */
m = n;
nv = 0;
epst = -1;
ierr = c_dbseg(b, n, nh, m, nv, epst, e, (double*)ev, k, vw, \&icon);
if (icon > 20000 ) {
printf("ERROR: c_dbseg failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvectors using dbsvec */
nv = m;
ierr = c_dbsvec(a, n, nh, nv, e, (double*)ev, k, vw, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dbsvec failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
printf("eigenvalue: %7.4f\n", e[i]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f ", ev[i][j]);
printf("\n");

```
```

    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for BSVEC in the Fortran SSL II User's Guide.

\section*{c_dbtrid}

Reduction of a symmetric band matrix to a symmetric tridiagonal matrix (Rutishauser-Schwarz method).
ierr = c_dbtrid(a, n, nh, d, sd, \&icon);

\section*{1. Function}

This routine reduces an \(n \times n\) symmetric band matrix \(\mathbf{A}\) with bandwidth \(h\), to a symmetric tridiagonal matrix \(\mathbf{T}\) using the Rutishauser-Schwarz orthogonal similarity transformation,
\[
\mathbf{T}=\mathbf{Q}_{\mathbf{s}}{ }^{\mathrm{T}} \mathbf{A} \mathbf{Q}_{\mathbf{s}},
\]
where \(\mathbf{Q}_{\mathbf{s}}\) is an orthogonal matrix. Here \(0 \leq h \ll n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbtrid(a, n, nh, d, sd, \&icon);
where:

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{nh}=0\) or \(\mathrm{nh}=1\) & Reduction is not performed. \\
\hline 30000 & \(\mathrm{nh}<0\) or \(\mathrm{nh} \geq \mathrm{n}\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

Compared with the Householder method which reduces a matrix to a symmetric tridiagonal matrix, the RutishauserSchwarz method used in this routine is better both in terms of the amount of storage and the amount of computation, when the ratio of the bandwidth to the order, \(r=h / n\), is small. If the ratio exceeds \(1 / 6\), the Householder method is better.

\section*{4. Example program}

This program reduces the matrix to tridiagonal form, and calculates the eigenvalues using two different methods.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 15
\#define NHMAX 2
MAIN__()
{
int ierr, icon;
int n, nh, m, i, k, ij;
double a [NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX];
double sd[NMAX], d[NMAX], vW[NMAX+2*NMAX], epst;
/* initialize matrix */
n = NMAX;
k = NMAX;
nh = NHMAX;
a[0] = 10;
a[1] = -3;
a[2] = 10;
ij = (nh+1)*nh/2;
for (i=0;i<n-nh;i++) {
a[ij] = -6;
a[ij+1] = -3;
a[ij+2] = 10;
ij = ij+nh+1;
}
/* reduce to tridiagonal form */
ierr = c_dbtrid(a, n, nh, d, sd, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dbtrid failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvalues using c_dbsct1 */
m = n;
epst = 1e-6;
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dbsct1 failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
printf("eigenvalues:\n");
for (i=0;i<m;i++) {
printf("%7.4f ", e[i]);
}
printf("\n");
/* find eigenvalues using c_dtrql */
ierr = c_dtrql(d, sd, n, e, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dbtrql failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
printf("eigenvalues:\n");
for (i=0;i<m;i++) {
printf("%7.4f ", e[i]);
}
printf("\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for BTRID in the Fortran SSL II User's Guide.

\section*{c_dby0}
\[
\begin{aligned}
& \text { Zero-order Bessel function of the second kind } Y_{0}(x) \text {. } \\
& \text { ierr }=\mathrm{c} _ \text {dby0 }(\mathrm{x}, \text { \&by, \&icon }) \text {; } \\
& \hline
\end{aligned}
\]

\section*{1. Function}

This function computes the zero-order Bessel function of the second kind (1) by rational approximations and asymptotic expansion.
\[
\begin{equation*}
Y_{0}(x)=\frac{2}{\pi}\left[J_{0}(x)\{\log (x / 2)+\gamma\}-\sum_{k=1}^{\infty} \frac{(-1)^{k}(x / 2)^{2 k}}{(k!)^{2}} \cdot \sum_{m=1}^{k} \frac{1}{m}\right] \tag{1}
\end{equation*}
\]

In (1), \(J_{0}(x)\) is the zero-order Bessel function of the first kind, \(\gamma\) is Euler's constant and \(x>0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dby0(x, \&by, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
by & double & Output & Function value \(Y_{0}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(\mathrm{x} \geq t_{\max }\) & by is set to zero. \\
\hline 30000 & \(\mathrm{x} \leq 0\) & by is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The range of values of x is limited because both \(\sin \left(x-\frac{\pi}{4}\right)\) and \(\cos \left(x-\frac{\pi}{4}\right)\) lose accuracy when \(x\) becomes too large. The limits are shown in the table of condition codes. For details on the constant, \(t_{\max }\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 1 to 100 in increments of 1 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, by;
int i;

```
```

    for (i=1;i<=100;i++) {
        x = (double)i;
        /* calculate Bessel function */
        ierr = c_dby0(x, &by, &icon);
        if (icon== 0)
        printf("x = %4.2f by = %f\n", x, by);
        else
        printf("ERROR: x = %4.2f by = %f icon = %i\n", x, by, icon);
    }
    return(0)
    }

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the zero-order Bessel function of the second kind, \(Y_{0}(x)\), is:
- Power series expansion using rational approximations when \(0<x \leq 8\).
- Asymptotic expansion when \(x>8\).

For further information consult the entry for BY0 in the Fortran SSL II User's Guide and [48].

\section*{c_dby1}
```

First-order Bessel function of the second kind $Y_{1}(x)$
ierr = c_dby1(x, \&by, \&icon);

```

\section*{1. Function}

This function computes the first-order Bessel function of the second kind (1) by rational approximations and asymptotic expansion.
\[
\begin{equation*}
Y_{1}(x)=\frac{2}{\pi}\left[J_{1}(x)\{\log (x / 2)+\gamma\}-\frac{1}{x}\right]-\frac{1}{\pi}\left[\sum_{k=1}^{\infty} \frac{(-1)^{k}(x / 2)^{2 k+1}}{k!(k+1)!}\left(\sum_{m=1}^{k} \frac{1}{m}+\sum_{m=1}^{k+1} \frac{1}{m}\right)\right] \tag{1}
\end{equation*}
\]

In (1), \(J_{1}(x)\) is the first-order Bessel function of the first kind, \(\gamma\) is Euler's constant and \(x>0\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dby1(x, \&by, \&icon);

```
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
by & double & Output & Function value \(Y_{1}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(\mathrm{x} \geq t_{\max }\) & by is set to zero. \\
\hline 30000 & \(\mathrm{x} \leq 0\) & by is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{x}

The range of values of x is limited here because both \(\sin \left(x-\frac{3 \pi}{4}\right)\) and \(\cos \left(x-\frac{3 \pi}{4}\right)\) lose accuracy when \(x\) becomes too large. The limits are shown in the table of condition codes. For details on the constant, \(t_{\max }\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 1 to 100 in increments of 1 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, by;
int i;

```
```

    for (i=1;i<=100;i++) {
        x = (double)i;
        /* calculate Bessel function */
        ierr = c_dby1(x, &by, &icon);
        if (icon== 0)
        printf("x = %4.2f by = %f\n", x, by);
        else
        printf("ERROR: x = %4.2f by = %f icon = %i\n", x, by, icon);
    }
    return(0);
    }

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the first-order Bessel function of the second kind, \(Y_{1}(x)\), is:
- Power series expansion using rational approximations when \(0<x \leq 8\).
- Asymptotic expansion when \(x>8\).

For further information consult the entry for BY1 in the Fortran SSL II User's Guide and [48].

\section*{c_dbyn}
\begin{tabular}{|l|}
\hline\(n\) th-order Bessel function of the second kind \(Y_{n}(x)\). \\
\hline ierr \(=\) c_dbyn \((x, \mathrm{n}, \quad \& \mathrm{by}, \quad\) \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the \(n\) th-order Bessel function of the second kind (1) by recurrence formula for \(x>0\).
\[
\begin{align*}
Y_{n}(x) & =\frac{2}{\pi}\left[J_{n}(x)\{\log (x / 2)+\gamma\}\right]-\frac{1}{\pi} \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!}(x / 2)^{2 k-n} \tag{1}\\
& -\frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(n+k)!} \cdot\left\{(x / 2)^{2 k+n}\left(\phi_{k}+\phi_{k+n}\right)\right\}
\end{align*}
\]

In (1), \(J_{n}(x)\) is the \(n\) th-order Bessel function of the first kind, \(\gamma\) is Euler's constant and \(\phi\) is given as:
\[
\begin{aligned}
& \phi_{0}=0 \\
& \phi_{L}=\sum_{m=1}^{L} \frac{1}{m} \quad(L \geq 1)
\end{aligned}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbyn(x, n, \&by, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
n & int & Input & Order \(n\) of \(Y_{n}(x)\). \\
by & double & Output & Function value \(Y_{n}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(\mathrm{x} \geq t_{\max }\) & by is set to zero. \\
\hline 30000 & \(\mathrm{x} \leq 0\) & by is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The range of values of X is limited because both \(\sin \left(x-\frac{\pi}{4}\right)\) and \(\cos \left(x-\frac{\pi}{4}\right)\) lose accuracy when \(x\) becomes too large. The limits are shown in the table of condition codes. For details on the constant, \(t_{\max }\), see the Machine constants section of the Introduction.

\section*{Zero- and first-order Bessel function}

When computing either \(Y_{0}(x)\) or \(Y_{1}(x)\), use the function \(\mathrm{C}_{-}\)dby0 or \(\mathrm{C} _\)dby1 respectively, as they are more efficient.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 1 to 10 in increments of 1 and \(n\) equal to 20 and 30 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, by;
int i, n;
for (n=20;n<=30;n=n+10)
for (i=1;i<=10;i++) {
x = (double)i;
/* calculate Bessel function */
ierr = c_dbyn(x, n, \&by, \&icon);
if (icon == 0)
printf("x = %4.2f n = %i by = %e\n", x, n, by);
else
printf("ERROR: x = %4.2f n = %i by = %e icon = %i\n",
x, n, by, icon);
}
return(0);
}

```

\section*{5. Method}

The recurrence formula is used to calculate the Bessel function \(Y_{n}(x)\) of order \(n\). For orders of 0 and 1 , the Fortran routines DBY0 and DBY1 are used to compute \(Y_{0}(x)\) and \(Y_{1}(x)\). For further information consult the entry for BYN in the Fortran SSL II User's Guide.

\section*{c_dbyr}
```

Real-order Bessel function of the second kind Yv (x).
ierr = c_dbyr(x, v, \&by, \&icon);

```

\section*{1. Function}

This function computes the real-order Bessel function of the second kind (1) by a modified series expansion and the \(\tau\) method.
\[
\begin{equation*}
Y_{v}(x)=\frac{J_{v}(x) \cos (v \pi)-J_{-v}(x)}{\sin (v \pi)} \tag{1}
\end{equation*}
\]

In (1), \(J_{v}(x)\) is the real-order Bessel function of the first kind, \(x>0\) and \(v \geq 0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dbyr(x, v, \&by, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
v & double & Input & Order \(v\) of \(Y_{v}(x)\). \\
by & double & Output & Function value \(Y_{v}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad \mathrm{x}=0\) or by was large enough to overflow. \\
- \(\mathrm{x} \geq t_{\text {max }}\)
\end{tabular} & \begin{tabular}{l}
- by is returned with the negative infinite floating point value. \\
- by is set to zero.
\end{tabular} \\
\hline 30000 & \(\mathrm{x}<0\) or \(\mathrm{v}<0\) & by is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Zero- and first-order Bessel function}

When calculating either \(Y_{0}(x)\) or \(Y_{1}(x)\), use the function c_dby0 or c_dby1 respectively, as they are more efficient.

\section*{Evaluation sequence}

When all the values of \(Y_{v}(x), Y_{v+1}(x), Y_{v+2}(x), \ldots, Y_{v+M}(x)\) are required at the same time, it is more efficient to compute them in the following way. First, compute the value of \(Y_{v}(x)\) and \(Y_{v+1}(x)\) with this function, then the others in the order of \(Y_{v+2}(x), Y_{v+3}(x), \ldots, Y_{v+M}(x)\) by the recurrence formula (see Method).

When the function is called repeatedly with the same value of \(v\) for large values of \(x\), the common procedure is bypassed to calculate the value of \(Y_{v}(x)\) effectively.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 1 to 10 in increments of 1 and \(v\) equal to 0.5 and 0.8 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double v, x, by;
int nv, i;
for (i=1;i<=10;i++) {
x = (double)i;
for (nv=50;nv<=80;nv=nv+30) {
v = (double)nv/100;
/* calculate Bessel function */
ierr = c_dbyr(v, x, \&by, \&icon);
if (icon == 0)
printf("x = %5.2f v = %5.2f by = %e\n", x, v, by);
else
printf("ERROR: x = %5.2f v = %5.2f by = %e icon = %i\n",
}
}
return(0)
}

```

\section*{5. Method}

A modified series expansion and the \(\tau\)-method are used to compute the real-order Bessel function of the second kind, \(Y_{v}(x)\).

When \(v>2.5\), the recurrence formula used for the computation is
\[
Y_{v+1}(x)=\frac{2 v}{x} Y_{v}(x)-Y_{v-1}(x)
\]

For further information consult the entry for BYR in the Fortran SSL II User's Guide.

\section*{c_dcbin}
\begin{tabular}{|l|}
\hline Modified \(n\) th-order Bessel function of the first kind with complex \\
variable \(I_{n}(z)\). \\
\hline ierr \(=\) c_dcbin(z, n, \&zbi, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the modified \(n\) th-order Bessel function of the first kind with complex variable (1) by power series expansion and recurrence formula.
\[
\begin{equation*}
I_{n}(z)=\left(\frac{z}{2}\right)^{n} \sum_{k=0}^{\infty} \frac{\left(z^{2} / 4\right)^{k}}{k!(n+k)!} \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dcbin(z, n, \&zbi, \&icon);

```
where:
\begin{tabular}{llll}
z & dcomplex & Input & Independent variable \(z\). \\
n & int & Input & Order \(n\) of \(I_{n}(z)\). \\
zbi & dcomplex & Output & Function value \(I_{n}(z)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(|\operatorname{Re}(\mathrm{z})|>\log \left(f l_{\max }\right)\) or \(|\operatorname{Im}(\mathrm{z})|>\log \left(f l_{\max }\right)\) & zbi is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Z}

The range of values of \(z\) is limited to avoid numerical underflow in the computations. The limits are shown in the table of condition codes. For details on the constant, \(f l_{\max }\), see the Machine constants section of the Introduction.

\section*{Evaluation sequence}

When all the values of \(I_{n}(z), I_{n+1}(z), I_{n+2}(z), \ldots, I_{n+M}(z)\) are required at the same time, it is more efficient to compute them in the following way. First, compute the value of \(I_{n+M}(z)\) and \(I_{n+M-1}(z)\) with this function, then the others in the order \(I_{n+M-2}(z), I_{n+M-3}(z), \ldots, I_{n}(z)\) by repeating the recurrence formula (see Method). Conversely, computing these values in reverse order, i.e. \(I_{n+2}(z), I_{n+3}(z), \ldots, I_{n+M}(z)\) by recurrence formula after \(I_{n}(z)\) and \(I_{n+1}(z)\), should be avoided because of instability.

\section*{4. Example program}

This program evaluates the function for \(n=1\) and 2 and \(z=10+5 i\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
dcomplex z, zbi;
int n;
z.re = 10;
z.im = 5;
for ( }n=1;n<=2;n++)
/* calculate Bessel function */
ierr = c_dcbin(z, n, \&zbi, \&icon);
if (icon == 0)
printf("z = {%4.2f, %4.2f} n = %i zbi = {%4.2f, %4.2f}\n",
else
printf("ERROR: z = {%4.2f, %4.2f} n = %i"
"zbi = {%4.2f, %4.2f} icon = %i\n",
z, n, zbi, icon);
}
return(0);
}

```

\section*{5. Method}

Depending on the values of \(z\), the method used to compute the modified \(n\) th-order Bessel function of the first kind with complex variable, \(I_{n}(z)\), is:
- Power series expansion, equation (1), when \(|\operatorname{Re}(z)|+|\operatorname{Im}(z)| \leq 1\).
- \(\quad\) Recurrence formula when \(|\operatorname{Re}(z)|+|\operatorname{Im}(z)|>1\).

Suppose \(m\) is an appropriately large integer (depends upon the required precision of \(z\) and \(n\)) and \(\delta\) an appropriately small constant \(\left(10^{-38}\right)\). With the initial values,
\[
G_{m+1}(z)=0, \quad G_{m}(z)=\delta
\]
and repeating the recurrence equation,
\[
G_{k-1}(z)=\frac{2 k}{z} G_{k}(z)+G_{k+1}(z)
\]
for \(k=m, m-1, \ldots, 1\). Then the value of \(I_{n}(z)\) is obtained from
\[
I_{n}(z) \approx \frac{e^{z} G_{n}(z)}{\sum_{k=0}^{m} \varepsilon_{k} G_{k}(z)} \quad \text { where, } \varepsilon_{k}= \begin{cases}1 & (k=0) \\ 2 & (k \geq 1)\end{cases}
\]

For further information consult the entry for CBIN in the Fortran SSL II User's Guide.

\section*{c_dcbjn}
\begin{tabular}{|l|}
\hline\(n\) th-order Bessel function of the first kind with complex variable \(J_{n}(z)\). \\
\hline ierr \(=\) c_dcbjn \((z, n, \& z b j, ~ \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the \(n\) th-order Bessel function of the first kind with complex variable (1) by power series expansion and recurrence formula.
\[
\begin{equation*}
J_{n}(z)=\left(\frac{z}{2}\right)^{n} \sum_{k=0}^{\infty} \frac{\left(-z^{2} / 4\right)^{k}}{k!(n+k)!} \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcbjn(z, n, \&zbj, \&icon);
where:
\begin{tabular}{llll}
z & dcomplex & Input & Independent variable \(z\). \\
n & int & Input & Order \(n\) of \(J_{n}(z)\). \\
zbj & dcomplex & Output & Function value \(J_{n}(z)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(|\operatorname{Re}(z)|>\log \left(f l_{\max }\right)\) or \(|\operatorname{Im}(z)|>\log \left(f l_{\max }\right)\) & zbj is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Z}

The range of values of \(z\) is limited to avoid numerical underflow in the computations. The limits are shown in the table of condition codes. For details on the constant, \(f l_{\text {max }}\), see the Machine constants section of the Introduction.

\section*{Evaluation sequence}

When all the values of \(J_{n}(z), J_{n+1}(z), J_{n+2}(z), \ldots, J_{n+M}(z)\) are required at the same time, it is more efficient to compute them in the following way. First, compute the value of \(J_{n+M}(z)\) and \(J_{n+M-1}(z)\) with this function, then the others in the order \(J_{n+M-2}(z), J_{n+M-3}(z), \ldots, J_{n}(z)\) by repeating the recurrence formula (see Method). Conversely, computing these values in the reverse order, i.e. \(J_{n+2}(z), J_{n+3}(z), \ldots, J_{n+M}(z)\) by recurrence formula after \(J_{n}(z)\) and \(J_{n+1}(z)\), should be avoided because of instability.

\section*{4. Example program}

This program evaluates the function for \(n=1\) and 2 and \(z=10+5 i\).
```

\#include <stdio.h>

```
```

\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
dcomplex z, zbj;
int n;
z.re = 10;
z.im = 5;
for (n=1;n<=2;n++) {
/* calculate Bessel function */
ierr = c_dcbjn(z, n, \&zbj, \&icon);
if (icon == 0)
printf("z = {%4.2f, %4.2f} n = %i zbj = {%4.2f, %4.2f}\n",
else
printf("ERROR: z = {%4.2f, %4.2f} n = %i"
"zbj = {%4.2f, %4.2f} icon = %i\n",
z, n, zbj, icon);
}
return(0);
}

```

\section*{5. Method}

Depending on the values of \(z\), the method used to compute the \(n\) th-order Bessel function of the first kind with complex variable, \(J_{n}(z)\), is:
- Power series expansion, equation (1), when \(|\operatorname{Re}(z)|+|\operatorname{Im}(z)| \leq 1\).
- Recurrence formula when \(|\operatorname{Re}(z)|+|\operatorname{Im}(z)|>1\).

Suppose \(m\) is an appropriately large integer (depends upon the required precision of \(z\) and \(n\)) and \(\delta\) an appropriately small constant (here \(10^{-38}\)). With the initial values,
\[
F_{m+1}(z)=0, \quad F_{m}(z)=\delta
\]
and repeating the recurrence equation,
\[
F_{k-1}(z)=\frac{2 k}{z} F_{k}(z)-F_{k+1}(z)
\]
for \(k=m, m-1, \ldots, 1\). Then the value of \(J_{n}(z)\) is obtained from
\[
J_{n}(z) \approx \frac{e^{-i z} F_{n}(z)}{\sum_{k=0}^{m} \varepsilon_{k} i^{k} F_{k}(z)} \quad \text { where, } \varepsilon_{k}= \begin{cases}1 & (k=0) \\ 2 & (k \geq 1)\end{cases}
\]

For further information consult the entry for CBJN in the Fortran SSL II User's Guide.

\section*{c_dcbjr}
\begin{tabular}{|l|}
\hline Real-order Bessel function of the first kind with complex variable \\
\(J_{v}(z)\). \\
\hline ierr \(=\) c_dcbjr \((z, v, \& z b j, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the real-order Bessel function of the first kind with complex variable (1) using power series expansion and recurrence formula.
\[
\begin{equation*}
J_{v}(z)=\left(\frac{z}{2}\right)^{v} \sum_{k=0}^{\infty} \frac{\left(-z^{2} / 4\right)^{k}}{k!\Gamma(v+k+1)} \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dcbjr(z, v, \&zbj, \&icon);

```
where:
\begin{tabular}{llll}
z & dcomplex & Input & Independent variable \(z\). \\
v & double & Input & Order \(v\) of \(J_{v}(z)\). \\
zbj & dcomplex & Output & Function value \(J_{v}(z)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(|\operatorname{Re}(\mathrm{z})|>\log \left(f l_{\max }\right)\) or \(|\operatorname{Im}(\mathrm{z})|>\log \left(f l_{\max }\right)\) & zbj is set to zero. \\
\hline 30000 & \(\mathrm{~V}<0\) & zbj is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Z}

The range of values of \(z\) and \(v\) are limited to avoid numerical underflow in the computations. The limits are shown in the table of condition codes. For details on the constant, \(f l_{\text {max }}\), see the Machine constants section of the Introduction.

\section*{Evaluation sequence}

When all the values of \(J_{v}(z), J_{v+1}(z), J_{v+2}(z), \ldots, J_{v+M}(z)\) are required at the same time, it is more efficient to compute them in the following way. First, compute the value of \(J_{v+M}(z)\) and \(J_{v+M-1}(z)\) with this function, then the others in the order \(J_{v+M-2}(z), J_{v+M-3}(z), \ldots, J_{v}(z)\) by repeating the recurrence formula (see Method). Conversely, computing these values in the reverse order, i.e. \(J_{v+2}(z), J_{v+3}(z), \ldots, J_{v+M}(z)\) by recurrence formula after \(J_{v}(z)\) and \(J_{v+1}(z)\), should be avoided because of instability.

\section*{4. Example program}

This program evaluates the function at \(z=10+5 i\) with \(v\) from 0.1 to 10 in increments of 0.1.
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
dcomplex z, zbj;
int n;
double v;
z.re = 10;
z.im = 5;
for (n=1;n<=100;n++) {
v = (double)n/10;
/* calculate Bessel function */
ierr = c_dcbjr(z, v, \&zbj, \&icon);
if (icon== 0)
printf("z = {%4.2f, %4.2f} v = %5.2f zbj = {%4.2f, %4.2f}\n",
else
printf("ERROR: z = {%4.2f, %4.2f} v = %5.2f"
"zbj = {%4.2f, %4.2f} icon = %i\n",
z, v, zbj, icon);
}
return(0);
}

```

\section*{5. Method}

Depending on the values of \(z\), the method used to compute the real-order Bessel function of the first kind with complex variable, \(J_{v}(z)\), is:
- Power series expansion, equation (1), when \(|\operatorname{Re}(z)|+|\operatorname{Im}(z)| \leq 1\).
- \(\quad\) Recurrence formula when \(|\operatorname{Re}(z)|+|\operatorname{Im}(z)|>1\).

Suppose \(m\) is an appropriately large integer (depends upon the required precision of \(z\) and \(v\)) and \(\delta\) an appropriately small constant \(\left(10^{-38}\right)\), and moreover that \(n\) and \(\alpha\) are determined by
\[
v=n+\alpha
\]
where, \(n\) is an integer and \(0 \leq \alpha<1\). With the initial values,
\[
F_{\alpha+m+1}(z)=0, \quad F_{\alpha+m}(z)=\delta
\]
and repeating the recurrence equation,
\[
F_{\alpha+k-1}(z)=\frac{2(\alpha+k)}{z} F_{\alpha+k}(z)-F_{\alpha+k+1}(z)
\]
for \(k=m, m-1, \ldots, 1\). Then the value of \(J_{v}(z)\) is obtained from
\[
J_{v}(z) \approx \frac{\frac{1}{2}\left(\frac{z}{2}\right)^{\alpha} \frac{\Gamma(2 \alpha+1)}{\Gamma(\alpha+1)} e^{-i z} F_{\alpha+n}(z)}{\sum_{k=0}^{m} \frac{(\alpha+k) \Gamma(2 \alpha+k) i^{k}}{k!} F_{\alpha+k}(z)} .
\]

For further information consult the entry for CBJR in the Fortran SSL II User's Guide.

\section*{c_dcbkn}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Modified \(n\) th-order Bessel function of the second kind with complex \\
variable \(K_{n}(z)\).
\end{tabular} \\
\hline ierr \(=c_{-} d c b k n(z, n, \& z b k, ~ \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the modified \(n\) th-order Bessel function of the second kind with complex variable (1) by recurrence formula and \(\tau\)-method.
\[
\begin{align*}
K_{n}(z) & =K_{-n}(z) \\
& =(-1)^{n-1}\{\gamma+\log (z / 2)\} I_{n}(z)+\frac{(-1)^{n}}{2}\left(\frac{z}{2}\right)^{n} \sum_{k=0}^{\infty} \frac{\left(z^{2} / 4\right)^{k}}{k!(n+k)!}\left(\phi_{k}+\phi_{k+n}\right) \tag{1}\\
& +\frac{1}{2}\left(\frac{z}{2}\right)^{-n} \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!}\left(-\frac{z^{2}}{4}\right)^{k}
\end{align*}
\]

In (1), \(I_{n}(z)\) is the modified \(n\) th-order Bessel function of the first kind, \(\gamma\) is Euler's constant, the last term is zero when \(n=0\) and \(\phi\) is:
\[
\begin{aligned}
& \phi_{0}=0 \\
& \phi_{L}=\sum_{m=1}^{L} \frac{1}{m} \quad(L \geq 1)
\end{aligned}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcbkn(z, n, \&zbk, \&icon);
where:
\begin{tabular}{llll}
z & dcomplex & Input & Independent variable \(z\). \\
n & int & Input & Order \(n\) of \(K_{n}(z)\). \\
zbk & dcomplex & Output & Function value \(K_{n}(z)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
One of the following has occurred: \\
• \(|\operatorname{Re}(z)|>\log \left(f l_{\max }\right)\) \\
\\
\(\bullet \quad \operatorname{Re}(z)<0\) and \(|\operatorname{Im}(z)|>\log \left(f l_{\max }\right)\) \\
- \(\operatorname{Re}(z) \geq 0\) and \(|\operatorname{Im}(z)| \geq t_{\max }\)
\end{tabular} & zbk is set to zero. \\
\hline 30000 & \(|z|=0\) & zbk is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Z}

The range of values of \(z\) are limited to avoid numerical overflow and underflow in the computations. The limits are shown in the table of condition codes.

\section*{Evaluation sequence}

When \(\operatorname{Re}(z) \geq 0\) and all the values of \(K_{n}(z), K_{n+1}(z), K_{n+2}(z), \ldots, K_{n+M}(z)\) are required at the same time, first compute the value of \(K_{n}(z)\) and \(K_{n+1}(z)\) with this function, then the others in the order \(K_{n+2}(z), K_{n+3}(z), \ldots, K_{n+M}(z)\) by repeating the recurrence formula (see Method). When \(\operatorname{Re}(z)<0\), since this is unstable, this function must be called for each required order.

\section*{4. Example program}

This program evaluates the function for \(n=1\) and 2 , and \(z=1+2 i\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
dcomplex z, zbk;
int n;
z.re = 1;
z.im = 2;
for ( }n=1;n<=2;n++)
/* calculate Bessel function */
ierr = c_dcbkn(z, n, \&zbk, \&icon);
if (icon == 0)
printf("z = {%4.2f, %4.2f} n = %i zbk = {%4.2f, %4.2f}\n",
z, n, zbk);
else
printf("ERROR: z = {%4.2f, %4.2f} n = %i"
"zbk = {%4.2f, %4.2f} icon = %i\n",
z, n, zbk, icon);
}
return(0);
}

```

\section*{5. Method}

The methods used to compute the modified \(n\) th-order Bessel function of the second kind with complex variable, \(K_{n}(z)\), vary depending on the values of \(z\).

When \(\operatorname{Re}(z) \geq 0, K_{n}(z)\) is computed by the recurrence formula,
\[
K_{k+1}(z)=\frac{2 k}{z} K_{k}(z)+K_{k-1}(z)
\]
for \(k=1,2, \ldots, n-1\) with starting value of \(K_{0}(z)\) and \(K_{1}(z)\) computed depending on the value of \(|\operatorname{Im}(z)|\).
For details of the other methods used, and further information consult the entry for CBKN in the Fortran SSL II User's Guide.

\section*{c_dcblnc}
\begin{tabular}{|l|}
\hline Balancing of a complex matrix. \\
\hline ierr \(=\mathrm{c}\) _dcblnc \((z a, ~ k, ~ n, ~ d v, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine applies the diagonal similarity transformation shown in (1) to an \(n \times n\) complex matrix \(\mathbf{A}\),
\[
\begin{equation*}
\widetilde{\mathbf{A}}=\mathbf{D}^{-1} \mathbf{A D}, \tag{1}
\end{equation*}
\]
where \(\mathbf{D}\) is a real diagonal matrix. By this transformation, the sum of the norm of the elements in the \(i\)-th row and that of the \(i\)-th column \((i=1,2, \ldots, n)\) are almost equalized for the transformed complex matrix \(\widetilde{\mathbf{A}}\). The norm of an element is \(\|z\|_{1}=|x|+|y|\) for the complex number \(z=x+i y\). Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcblnc((dcomplex *) za, k, n, dv, \&icon);
where:
\begin{tabular}{llll}
za & dcomplex & Input & Complex matrix A. \\
& za[n][k] & Output & Balanced complex matrix \(\widetilde{\mathbf{A}}\). \\
k & int & Input & C fixed dimension of array za \((\geq \mathrm{n})\). \\
n & int & Input & Order \(n\) of matrices A and \(\widetilde{\mathbf{A}}\). \\
dv & double dv[n] & Output & Scaling factors (diagonal elements of \(\mathbf{D})\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & Balancing was not performed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

If there are large differences in magnitude of the elements of a matrix, the precision of computed eigenvalues and eigenvectors of that matrix can be adversely affected. This routine can be used before computing the eigenvalues and eigenvectors to avoid loss of precision.

If each element of a matrix is nearly the same in magnitude, this routine performs no balancing and should not be used.

If all elements except the diagonal element of a row (or column) are zero, balancing of the row (or column) and corresponding column (or row) is bypassed.

In order to obtain the eigenvectors \(\boldsymbol{x}\) of a complex matrix \(\mathbf{A}\) which has been balanced by this routine, back transformation (2) must be applied to the eigenvectors \(\widetilde{\mathbf{x}}\) of \(\widetilde{\mathbf{A}}\),
\[
\begin{equation*}
\mathbf{x}=\mathbf{D} \widetilde{\mathbf{x}} \tag{2}
\end{equation*}
\]

The back transformation (2) can be performed using routine c_dchbk2.

\section*{4. Example program}

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then performs a back transformation and a normalisation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, m, mode, ip[NMAX], ind[NMAX];
dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX], zaw[NMAX+1][NMAX];
double dv[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
za[i][i].re = n-i;
za[i][i].im = 0;
for ( j=0;j<i;j++) {
za[i][j].re = n-i;
za[j][i].re = n-i;
za[i][j].im = 0;
za[j][i].im = 0;
}
}
/* balance matrix A */
ierr = c_dcblnc((dcomplex*)za, k, n, dv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dcblnc failed with icon = %i\n", icon);
exit (1);
}
/* reduce matrix to Hessenberg form */
ierr = c_dches2((dcomplex*)za, k, n, ip, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dches2 failed with icon = %i\n", icon);
exit (1);
}
for (i=0;i<n;i++)
for (j=0;j<n;j++) {
zaw[i][j].re = za[i][j].re;
zaw[i][j].im = za[i][j].im;
}
/* find eigenvalues */
ierr = c_dchsqr((dcomplex*)zaw, k, n, ze, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dchsqr failed with icon = %i\n", icon);
exit (1);
}
for (i=0;i<m;i++) ind[i] = 1;
/* find eigenvectors for given eigenvalues */
ierr = c_dchvec((dcomplex*)za, k, n, ze,
ind, m, (dcomplex*)zev, (dcomplex*)zaw, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dchvec failed with icon = %i\n", icon);
exit (1);
}
/* back transformation to find e-vectors of A */
ierr = c_dchbk2((dcomplex*)zev, k, n, ind, m,
(dcomplex*)za, ip, dv, \&icon);
if (icon > 10000 ) {

```
```

        printf("ERROR: c_dchbk2 failed with icon = %i\n", icon);
        exit (1);
    }
    /* normalize e-vectors */
    mode = 2;
    ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, &icon);
    if (icon > 10000 ) {
        printf("ERROR: c_dcnrml failed with icon = %i\n", icon);
        exit (1);
    }
    printf("icon = %i\n", icon);
    /* print eigenvalues and eigenvectors */
    for (i=0;i<m;i++) {
        if (ind[i] != 0) {
            printf("eigenvalue: %7.4f+i*%7.4f\n", ze[i].re, ze[i].im);
            printf("eigenvector: ");
            for (j=0;j<n;j++)
                printf("%7.4f+i*%7.4f ", zev[i][j].re, zev[i][j].im);
            printf("\n");
        }
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for CBLNC in the Fortran SSL II User's Guide and reference [119].

\section*{c_dcbyn}
\begin{tabular}{|l|}
\hline\(n\) th-order Bessel function of the second kind with complex variable \\
\(Y_{n}(z)\). \\
\hline ierr \(=\) c_dcbyn \((\mathrm{z}, \mathrm{n}, \quad \& \mathrm{zby}, \quad \& i c o n)\); \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the \(n\) th-order Bessel function of the second kind with complex variable (1) by recurrence formula and \(\tau\)-method.
\[
\begin{align*}
Y_{n}(z) & =(-1)^{n} Y_{-n}(z) \\
& =\frac{2}{\pi}\left\{\gamma+\log \left(\frac{z}{2}\right)\right\} J_{n}(z)-\frac{1}{\pi}\left(\frac{z}{2}\right)^{n} \sum_{k=0}^{\infty} \frac{\left(-z^{2} / 4\right)^{k}}{k!(n+k)!}\left(\phi_{k}+\phi_{k+n}\right) \tag{1}\\
& -\frac{1}{\pi}\left(\frac{z}{2}\right)^{-n} \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!}\left(\frac{z^{2}}{4}\right)^{k}
\end{align*}
\]

In (1), \(J_{n}(z)\) is the \(n\) th-order Bessel function of the second kind, \(\gamma\) is Euler's constant, the last term is zero when \(n=0\) and \(\phi\) is:
\[
\begin{aligned}
& \phi_{0}=0 \\
& \phi_{L}=\sum_{m=1}^{L} \frac{1}{m} \quad(L \geq 1)
\end{aligned}
\]

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dcbyn(z, n, \&zby, \&icon);

```
where:
\begin{tabular}{llll}
z & dcomplex & Input & Independent variable \(z\). \\
n & int & Input & Order \(n\) of \(Y_{n}(z)\). \\
zby & dcomplex & Output & Function value \(Y_{n}(z)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(|\operatorname{Re}(\mathrm{z})|>\log \left(f l_{\max }\right)\) or \(|\operatorname{Im}(\mathrm{z})|>\log \left(f l_{\max }\right)\) & zby is set to zero. \\
\hline 30000 & \(|z|=0\) & zby is set to zero. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Z}

The range of values of \(z\) are limited to avoid numerical underflow in the computations. The limits are shown in the table of condition codes. For details on the constant, \(f l_{\max }\), see the Machine constants section of the Introduction.

\section*{Evaluation sequence}

When all the values of \(Y_{n}(z), Y_{n+1}(z), Y_{n+2}(z), \ldots, Y_{n+M}(z)\) are required at the same time, the procedure provided in the Method section is recommended.

\section*{4. Example program}

This program evaluates the function for \(n=1\) and 2 and \(z=1+2 i\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
dcomplex z, zby;
int n;
z.re = 1;
z.im = 2;
for (n=1;n<=2;n++) {
/* calculate Bessel function */
ierr = c_dcbyn(z, n, \&zby, \&icon);
if (icon == 0)
printf("z = {%4.2f, %4.2f} n = %i zby = {%4.2f, %4.2f}\n",
z, n, zby);
else
printf("ERROR: z = {%4.2f, %4.2f} n = %i"
"zby = {%4.2f, %4.2f} icon = %i\n",
z, n, zby, icon);
}
return(0);
}

```

\section*{5. Method}

The \(n\) th-order Bessel function of the second kind with complex variable, \(Y_{n}(z)\), is computed using equation (2).
\[
\begin{equation*}
Y_{n}(z)=i^{n+1} I_{n}(-i z)-\frac{2}{\pi} i^{n}(-1)^{n} K_{n}(-i z) \tag{2}
\end{equation*}
\]

In (2), the value of \(I_{n}(-i z)\) is computed by the Fortran SSL II routine DCBIN (c_dcbin) using the recurrence formula, and similarly, \(K_{n}(-i z)\) is computed by DCBKN (c_dcbkn) using the recurrence formula and \(\tau\)-method.

When all the values of \(Y_{n}(z), Y_{n+1}(z), Y_{n+2}(z), \ldots, Y_{n+M}(z)\) are required at the same time, it is efficient to compute them in the following way. First, compute the value of \(I_{n+M}(-i z)\) and \(I_{n+M-1}(-i z)\) using function C_dcbin, then the others \(I_{n+M-2}(-i z), I_{n+M-3}(-i z), \ldots, I_{n}(-i z)\) by repeating the recurrence formula, in the order listed. Similarly, \(K_{n}(-i z)\) and \(K_{n+1}(-i z)\) are first computed using the function c_dcbkn and then \(K_{n+2}(-i z), K_{n+3}(-i z), \ldots, K_{n+M}(-i z)\) by recurrence formula. And with equation (2), \(Y_{n}(z)\) is computed.

For further information consult the entry for CBYN in the Fortran SSL II User's Guide.

\section*{c_dceig2}

Eigenvalues and corresponding eigenvectors of a complex matrix (QR method).
```

ierr = c_dceig2(za, k, n, mode, ze, zev, vw,
ivw, \&icon);

```

\section*{1. Function}

All eigenvalues and corresponding eigenvectors for an order \(n\) complex matrix \(\mathbf{A}\) are determined \((n \geq 1)\). The eigenvalues are normalised such that \(\|x\|_{2}=1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dceig2((dcomplex *)za, k, n, mode, ze, (dcomplex *)zev, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline za & dcomplex & Input & Matrix A. \\
\hline & za[n][k] & Output & The contents are altered on output. \\
\hline k & int & Input & C fixed dimension of matrix \(\mathbf{A}(\mathrm{k} \geq \mathrm{n})\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline mode & int & Input & mode \(=1\) specifies no balancing. mode \(\neq 1\) specifies that balancing is included. See Comments on use. \\
\hline ze & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { ze[n] }
\end{aligned}
\] & Output & The eigenvalues of \(\mathbf{A}\). \\
\hline zev & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zev[n][k] }
\end{aligned}
\] & Output & Eigenvectors. They are stored in the rows of zev which correspond to their eigenvalues. \\
\hline VW & double vw[n] & Work & \\
\hline ivw & int ivw[n] & Work & \\
\hline icon & int & Output & Condition codes. See below. \\
\hline
\end{tabular}

The complete list of condition codes is.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \begin{tabular}{l}
ze[0] = za[0][0] \\
zev[0][0].re \(=1\) \\
zev[0][0].im \(=0\)
\end{tabular} \\
\hline 20000 & \begin{tabular}{l}
Eigenvalues and eigenvectors could not be \\
calculated, as the matrix A could not be reduced \\
to a triangular form.
\end{tabular} & \begin{tabular}{l}
Discontinued
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Balancing and mode}

If the elements of matrix \(\mathbf{A}\) vary greatly in magnitude, a solution of greater precision can be obtained using balancing, i.e. setting mode \(\neq 1\). If the magnitudes of the elements are similar, the balancing has little or no effect and should be skipped using mode \(=1\).

\section*{4. Example program}

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 complex matrix.
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, mode, ivw[NMAX];
dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX];
double vw[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
za[i][j].re = n-i;
za[j][i].re = n-i;
za[i][j].im = 0;
za[j][i].im = 0;
}
mode = 0;
/* find eigenvalues and eigenvectors */
ierr = c_dceig2((dcomplex*)za, k, n, mode,
ze, (dcomplex*)zev, vw, ivw, \&icon);
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<n;i++) {
printf("eigenvalue: {%7.4f, %7.4f}\n", ze[i].re, ze[i].im);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("{%7.4f, %7.4f} ", zev[i][j].re, zev[i][j].im);
printf("\n");
}
return(0)
}

```

\section*{5. Method}

For further information consult the entry for CEIG2 in the Fortran SSL II User's Guide, and also [118] and [119].

\section*{c_dceli1}
\begin{tabular}{|l|}
\hline Complete elliptic integral of the first kind \(K(x)\) \\
\hline ierr \(=\) c_dceli1 \((x, \& c e l i, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the complete elliptic integral of the first kind
\[
K(x)=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-x \sin ^{2} \theta}}
\]
using an approximation formula for \(0 \leq x<1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dceli1(x, \&celi, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
celi & double & Output & Function value \(K(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{ll}
One of the following has occurred: \\
& \(\bullet \quad x<0\) \\
\(\bullet \quad x \geq 1\)
\end{tabular} & celi is set to zero. \\
\hline
\end{tabular}

\section*{3. Example program}

This program evaluates a table of function values for \(x\) from 0.00 to 0.99 in increments of 0.01 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, celi;
int i;
for (i=0;i<100;i++) {
x = (double)i/100;
/* calculate complete elliptic integral */
ierr = c_dceli1(x, \&celi, \&icon);
if (icon == 0)
printf("x = %4.2f celi = %f\n", x, celi);
else
printf("ERROR: x = %4.2f celi = %f icon = %i\n", x, celi, icon);
}
return(0)
}

```

\section*{4. Method}

For further information consult the entry for CELI1 in the Fortran SSL II User's Guide and [48].

\section*{c_dceli2}

> \begin{tabular}{|l|} \hline Complete elliptic integral of the second kind \(E(x)\). \\ \hline ierr = c_dceli2(x, \&celi, \&icon); \\ \hline \end{tabular}

\section*{1. Function}

This function computes the complete elliptic integral of the second kind
\[
E(x)=\int_{0}^{\pi / 2} \sqrt{1-x \sin ^{2} \theta} d \theta
\]
using an approximation formula for \(0 \leq x \leq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dceli2(x, \&celi, \&icon);

```
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
celi & double & Output & Function value \(E(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\\
\(\bullet\) \\
\\
\(\bullet \quad \mathrm{x}<0\)
\end{tabular} & celi is set to zero. \\
\hline
\end{tabular}

\section*{3. Example program}

This program evaluates a table of function values for \(x\) from 0.00 to 0.99 in increments of 0.01 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, celi;
int i;
for (i=0;i<100;i++) {
x = (double)i/100;
/* calculate complete elliptic integral */
ierr = c_dceli2(x, \&celi, \&icon);
if (icon == 0)
printf("x = %4.2f celi = %f\n", x, celi);
else
printf("ERROR: x = %4.2f celi = %f icon = %i\n", x, celi, icon);
}
return(0);
}

```

\section*{4. Method}

For further information consult the entry for CELI2 in the Fortran SSL II User's Guide and [48].

\section*{c_dcfri}
\begin{tabular}{|l|}
\hline Cosine Fresnel integral \(C(x)\). \\
\hline ierr \(=\) c_dcfri(x, \&cf, \&icon);
\end{tabular}

\section*{1. Function}

This routine computes the Cosine Fresnel integral
\[
C(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \frac{\cos (t)}{\sqrt{t}} d t=\int_{0}^{\sqrt{\frac{2}{\pi} x}} \cos \left(\frac{\pi}{2} t^{2}\right) d t
\]
where \(x \geq 0\), by series and asymptotic expansions.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcfri(x, \&cf, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable x. See Comments on use for range of x. \\
cf & double & Output & Cosine Fresnel integral \(C(x)\). \\
icon & int & Output & Condition code. See below. \\
\multicolumn{2}{l}{ The complete list of condition codes is: }
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(\mathrm{x} \geq t_{\max }\) & cf is set to 0.5. \\
\hline 30000 & \(\mathrm{x}<0\) & cf is set to 0. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Range of \(x\)}

The valid range of argument x is \(0 \leq \mathrm{x}<t_{\max }\). This is because accuracy is lost if x is outside this range. For details on \(t_{\text {max }}\) see the Machine constants section of the Introduction.

\section*{4. Example program}

This program generates a range of function values for 101 points in the the interval \([0,100]\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, cf;
int i;
for (i=0;i<=100;i++) {
x = i;

```
```

        /* calculate Cosine Fresnel integral */
        ierr = c_dcfri(x, &cf, &icon);
        if (icon == 0)
        printf("x = %5.2f cf = %f\n", x, cf);
            else
        printf("ERROR: x = %5.2f cf = %f icon = %i\n", x, cf, icon);
    }
    return(0)
    }

```

\section*{5. Method}

Consult the entry for CFRI in the Fortran SSL II User's Guide.

\section*{c_dcgsbm}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Storage format conversion of matrices (standard format to symmetric \\
band format).
\end{tabular} \\
\hline ierr \(=c _d c g s b m(a g, ~ k, ~ n, ~ a s b, ~ n h, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine converts an \(n \times n\) symmetric band matrix with bandwidth \(h\) from standard 2-D array format to symmetric band format (\(n>h \geq 0\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcgsbm((double*)ag, k, n, asb, nh, \&icon); where:
\begin{tabular}{llll}
ag & \begin{tabular}{l}
double \\
ag \([\mathrm{n}][\mathrm{k}]\)
\end{tabular} & Input & Symmetric band matrix \(\mathbf{A}\) stored in the standard storage format. \\
k & int & Input & C fixed dimension of array \(\operatorname{ag}(\geq \mathrm{n})\). \\
n & int & Input & The order \(n\) of matrix \(\mathbf{A}\).
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{nh}<0\) \\
& \(\bullet \mathrm{n} \leq \mathrm{nh}\) \\
& \(\bullet \mathrm{k}<\mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{The symmetric band matrix in the standard format}

Only the elements of the diagonal and upper band portion need be assigned to array ag. The routine copies the upper band portion to the lower band portion.

\section*{Saving on storage space}

If there is no need to keep the contents of array ag, then saving on storage space is possible by specifying the same array for argument asb. WARNING - make sure the array size is consistent with both arguments otherwise unpredictable results can occur.

\section*{4. Example program}

This program converts a matrix from standard to symmetric band format and prints the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define NMAX 5
\#define NHMAX 2
/* print symmetric band matrix */
void prtsymbandmat(double a[], int n, int nh)
{
int ij, i, j, jmin;
printf("symmetric band matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
jmin = max(i-nh, 0);
for (j=jmin;j<=i;j++)
printf("%7.2f ",a[ij++]);
printf("\n");
}
}
/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
int i, j;
printf("general matrix format\n");
for (i=0;i<n;i++) {
for (j=0;j<m;j++)
printf("%7.2f ",a[i*k+j]);
printf("\n");
}
}
MAIN__()
{
int ierr, icon;
int n, nh, i, j, k, jmax;
double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], ag[NMAX][NMAX];
/* zero matrix */
n = NMAX;
for (i=0;i<n;i++)
for ( j=0;j<n;j++)
ag[i][j] = 0;
/* initialize symmetric band matrix
in upper half of general matrix storage format */
nh = NHMAX;
for (i=0;i<n;i++) {
jmax = min(i+nh, n-1);
for (j=i;j<=jmax;j++)
ag[i][j] = j-i+1;
}
k = NMAX;
/* convert to symmetric band matrix storage format */
ierr = c_dcgsbm((double*)ag, k, n, asb, nh, \&icon);
if (icon != 0) {
printf("ERROR: c_dcgsbm failed with icon = %d\n", icon);
exit(1);
}
/* print matrices */
printf("ag: \n");
prtgenmat((double*)ag, k, n, n);
printf("asb: \n");
prtsymbandmat(asb, n, nh);
return(0);
}

```

\section*{5. Method}

Consult the entry for CGSBM in Fortran SSL II User's Guide.

\section*{c_dcgsm}
\begin{tabular}{l}
Storage format conversion of matrices (real standard format to \\
symmetric format). \\
\hline ierr \(=c _d c g s m(a g, k, n, a s, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function converts an \(n \times n\) real symmetric matrix from standard 2-D array format to the original symmetric storage format (\(n \geq 1\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcgsm((double*)ag, k, n, as, \&icon);
where:
\begin{tabular}{llll}
ag & \begin{tabular}{l}
double \\
ag \([\mathrm{n}][\mathrm{k}]\)
\end{tabular} & Input & Symmetric matrix A stored in the standard format. \\
k & int & Input & C fixed dimension of array ag \((\geq \mathrm{n})\). \\
n & int & Input & Order \(n\) of matrix A. \\
as & double & Output & \begin{tabular}{l}
Symmetric matrix A stored in the symmetric format. Aslen \(=\mathrm{n}(\mathrm{n}+1) / 2\). \\
as \([\) Aslen \(]\) \\
icon
\end{tabular} \\
int & & See the Array storage formats section in the Introduction.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{The symmetric matrix in the standard format}

Only the elements of the diagonal and upper triangular portions need be assigned to array ag. The function copies the upper triangular portion to the lower one.

\section*{Saving on storage space}

If there is no need to keep the contents of array ag, then saving on storage space is possible by specifying the same array for both arguments. WARNING - make sure the array size is compliant for both arguments otherwise unpredictable results can occur.

\section*{4. Example program}

This example program converts a matrix from real standard format to symmetric format, and prints out both matrices.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 5
/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
int ij, i, j;
printf("symmetric matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
for (j=0;j<=i;j++)
printf'("%7.2f ",a[ij++]);
printf("\n");
}
}
/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
int i, j;
printf("general matrix format\n");
for (i=0;i<n;i++) {
for (j=0;j<m;j++)
printf("%7.2f ",a[i*k+j]);
printf("\n");
}
}
MAIN__()
{
int ierr, icon;
int n, i, j, ij, k;
double as[NMAX*(NMAX+1)/2], ag[NMAX][NMAX];
/* initialize general matrix storage format */
n = NMAX;
for (i=0;i<n;i++)
for (j=i;j<n;j++) {
ag[i][j] = n-i;
}
k = NMAX;
/* convert to symmetric matrix storage format */
ierr = c_dcgsm((double*)ag, k, n, as, \&icon);
if (icon != 0) {
printf("ERROR: c_dcgsm failed with icon = %d\n", icon);
exit(1);
}
/* print matrices */
printf("ag: \n");
prtgenmat((double*)ag, k, n, n);
printf("as: \n");
prtsymmat(as, n);
return(0):
}

```

\section*{5. Method}

The conversion process from standard format to symmetric format consists of two stages:
- With the diagonal as the axis of symmetry, the elements of the upper triangular portion are copied to the lower triangular part, such that \(\operatorname{ag}[\mathrm{i}][\mathrm{j}]=\mathrm{ag}[\mathrm{j}][\mathrm{i}]\). Here, \(\mathrm{i}<\mathrm{j}\).
- The diagonal and lower triangular elements ag[i-1][j-1] are transferred to the \(i^{*}(i-1) / 2+j-1\) position in array as. Here, \(\mathrm{i} \geq \mathrm{j}\). Transfer begins with the first column of ag and continues column-by-column. The correspondence between location is shown below, where \(\mathrm{NT}=n(n+1) / 2\).
\begin{tabular}{|cl|ll|l|}
\hline \begin{tabular}{c}
Elements in \\
standard format
\end{tabular} & \begin{tabular}{c}
Elements of \\
matrix
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c}
Elements in \\
symmetric format
\end{tabular}} \\
\hline \(\mathrm{ag}[0][0]\) & \(\rightarrow\) & \(a_{11}\) & \(\rightarrow\) & as[0] \\
\(\mathrm{ag}[0][1]\) & \(\rightarrow\) & \(a_{21}\) & \(\rightarrow\) & as[1] \\
\(\mathrm{ag}[1][1]\) & \(\rightarrow\) & \(a_{22}\) & \(\rightarrow\) & \(\mathrm{as}[2]\) \\
\(:\) & & \(:\) & & \(:\) \\
\(\mathrm{ag}[\mathrm{i}-1][\mathrm{j}-1]\) & \(\rightarrow\) & \(a_{\mathrm{ji}}\) & \(\rightarrow\) & as[i*(i-1)/2+j-1] \\
\(:\) & & \(:\) & & \(:\) \\
\(\mathrm{ag}[\mathrm{n}-2][\mathrm{n}-1]\) & \(\rightarrow\) & \(a_{\mathrm{nn}-1}\) & \(\rightarrow\) & as[NT-2] \\
\(\mathrm{ag}[\mathrm{n}-1][\mathrm{n}-1]\) & \(\rightarrow\) & \(a_{\mathrm{nn}}\) & \(\rightarrow\) & as[NT-1] \\
\hline
\end{tabular}

For further information consult the entry for CGSM in the Fortran SSL II User's Guide.

\section*{c_dchbk2}
\[
\begin{aligned}
& \begin{array}{l}
\text { Back transformation of the eigenvectors of a complex Hessenberg matrix } \\
\text { to the eigenvectors of a complex matrix. } \\
\hline \text { ier } r=c _d c h b k 2(z e v, k, n, \text { ind, } m, z p, i p, d v, \\
\text { \&icon }) ;
\end{array} \\
& \hline
\end{aligned}
\]

\section*{1. Function}

This routine performs back transformation on \(m\) eigenvectors of an \(n \times n\) complex Hessenberg matrix \(\mathbf{H}\) to obtain the eigenvectors of a complex matrix \(\mathbf{A} . \mathbf{H}\) is assumed to be obtained from \(\mathbf{A}\) using the stabilized elementary similarity transformation method. No eigenvectors of the complex matrix \(\mathbf{A}\) are normalized. Here \(1 \leq m \leq n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dchbk2((dcomplex *) zev, k, n, ind, m, (dcomplex *) zp, ip, dv, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline zev & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zev[m][k] }
\end{aligned}
\] & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \begin{tabular}{l}
The \(m\) eigenvectors of the Hessenberg matrix \(\mathbf{H}\). \\
The \(m_{l}\) eigenvectors of complex matrix \(\mathbf{A}\), where \(m_{l}\) indicates the number of elements of ind whose value is 1 .
\end{tabular} \\
\hline k & int & Input & C fixed dimension of array zev and \(z p(\geq n)\). \\
\hline n & int & Input & Order \(n\) of matrices \(\mathbf{A}\) and \(\mathbf{H}\). \\
\hline ind & int ind[m] & Input & \begin{tabular}{l}
Indicates which eigenvectors are to be back transformed: \\
ind \([j-1]=0\) if the eigenvector corresponding to the \(j\)-th eigenvalue is not to be back transformed. \\
ind \([j-1]=1\) if the eigenvector corrsponding to the \(j\)-th eigenvalue is to be back transformed.
\end{tabular} \\
\hline m & int & Input & Number \(m\) of eigenvectors of the complex matrix \(\mathbf{A}\). \\
\hline zp & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zp[n][k] }
\end{aligned}
\] & Input & Transformation matrix from the reduction of complex matrix \(\mathbf{A}\) to complex Hessenberg matrix H. See Comments on use. \\
\hline ip & int ip[n] & Input & Transformation information from the reduction of complex matrix \(\mathbf{A}\) to complex Hessenberg matrix H. See Comments on use. \\
\hline dv & double dv[n] & Input & Scaling factors used for balancing the matrix \(\mathbf{A}\). If matrix \(\mathbf{A}\) was not balanced, set \(\mathrm{dv}[0]=0\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & zev[0][0]=(1,0). \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{m}<1\) or \(\mathrm{m}>\mathrm{n}\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{zev, ind and \(m\)}

The routine c_dchvec can be used to obtain the eigenvectors of a complex Hessenberg matrix. Input argument \(m\) and output arguments zev and ind of c_dchvec are the same as input arguments zev, ind, and \(m\) for this routine.

\section*{zp and ip}

The routine c_dches2 can be used to reduce a complex matrix to a complex Hessenberg matrix. Output arguments za and ip of c_dches2 are the same as input arguments zp and ip of this routine.

\section*{dv}

The output argument \(d v\) of \(c _d c b l n c\) contains the scaling factors used for balancing the matrix \(\mathbf{A}\), and is the input argument \(d v\) of this routine.

\section*{4. Example program}

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then performs a back transformation and a normalisation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, m, mode, ip[NMAX], ind[NMAX];
dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX], zaw[NMAX+1][NMAX];
double dv[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
za[i][i].re = n-i;
za[i][i].im = 0;
for (j=0;j<i;j++) {
za[i][j].re = n-i;
za[j][i].re = n-i;
za[i][j].im = 0;
za[j][i].im = 0;
}
}
/* balance matrix A */
ierr = c_dcblnc((dcomplex*)za, k, n, dv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dcblnc failed with icon = %i\n", icon);
exit (1);
}
/* reduce matrix to Hessenberg form */
ierr = c_dches2((dcomplex*)za, k, n, ip, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dches2 failed with icon = %i\n", icon);
exit (1);
}
for (i=0;i<n;i++)
for (j=0;j<n;j++) {
zaw[i][j].re = za[i][j].re;
zaw[i][j].im = za[i][j].im;
}
/* find eigenvalues */
ierr = c_dchsqr((dcomplex*)zaw, k, n, ze, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dchsqr failed with icon = %i\n", icon);
exit (1);

```
```

    }
    for (i=0;i<m;i++) ind[i] = 1;
    /* find eigenvectors for given eigenvalues */
    ierr = c_dchvec((dcomplex*)za, k, n, ze,
            ind, m, (dcomplex*)zev, (dcomplex*)zaw, &icon);
    if (icon >= 20000 ) {'
        printf("ERROR: c_dchvec failed with icon = %i\n", icon);
        exit (1);
    }
    /* back transformation to find e-vectors of A */
    ierr = c_dchbk2((dcomplex*)zev, k, n, ind, m,
        (dcomplex*)za, ip, dv, &icon);
    if (icon > 10000 ) {
        printf("ERROR: c_dchbk2 failed with icon = %i\n", icon);
        exit (1);
    }
    /* normalize e-vectors */
mode = 2;
ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dcnrml failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
if (ind[i] != 0) {
printf("eigenvalue: %7.4f+i*%7.4f\n", ze[i].re, ze[i].im);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f+i*%7.4f ", zev[i][j].re, zev[i][j].im);
printf("\n");
}
}
return(0);
}

```

\section*{5. Method}

Consult the entry for CHBK2 in the Fortran SSL II User's Guide and reference [119].

\section*{c_dches2}

Reduction of a complex matrix to a complex Hessenberg matrix (stabilized elementary similarity transformation).
```

ierr = c_dches2(za, k, n, ip, \&icon);

```

\section*{1. Function}

This routine reduces an \(n \times n\) complex matrix \(\mathbf{A}\) to a complex Hessenberg matrix \(\mathbf{H}\) using the stabilized elementary similarity transformation method (Gaussian elimination method with partial pivoting)
\[
\mathbf{H}=\mathbf{S}^{-1} \mathbf{A S}
\]
where \(\mathbf{S}\) is a transformation matrix. Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dches2((dcomplex *) za, k, n, ip, \&icon);
where:

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) or \(\mathrm{n}=2\) & Reduction is not performed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

To determine eigenvalues of matrix H (and hence matrix \(\mathbf{A}\)), output argument za of this routine is used as input argument za of c_dchsqr.

To determine eigenvectors of matrix \(\mathbf{H}\), output argument za of this routine is used as input argument za of c_dchvec.
To back transform and normalize the eigenvectors of matrix \(\mathbf{H}\) (obtained from c_dchvec) to obtain the eigenvectors of matrix \(\mathbf{A}\), output arguments za and ip of this routine are used as input arguments zp and ip of c_dchbk2.

The precision of computed eigenvalues of a complex matrix \(\mathbf{A}\) is determined in the Hessenberg matrix reduction process. Therefore, this routine has been implimented so that the Hessenberg matrix is determined with as high a precision as possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process.

\section*{4. Example program}

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, m, i, j, k, ip[NMAX];
dcomplex za[NMAX][NMAX], ze[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
za[i][i].re = n-i;
za[i][i].im = 0;
for (j=0;j<i;j++) {
za[i][j].re = n-i;
za[j][i].re = n-i;
za[i][j].im = 0;
za[j][i].im = 0;
}
}
/* reduce matrix to Hessenberg form */
ierr = c_dches2((dcomplex*)za, k, n, ip, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dches2 failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvalues */
ierr = c_dchsqr((dcomplex*)za, k, n, ze, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dchsqr failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
printf("eigenvalues:\n");
for (i=0;i<m;i++) {
printf'("%7.4f+i*%7.4f ", ze[i].re, ze[i].im);
}
printf("\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for CHES2 in the Fortran SSL II User's Guide and reference [119].

\section*{c_dchsqr}
\begin{tabular}{|l|}
\hline Eigenvalues of a complex Hessenberg matrix (QR method). \\
\hline ierr \(=\) c_dchsqr (za, k, n, ze, \&m, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This routine obtains the eigenvalues of an \(n \times n\) complex Hessenberg matrix \(\mathbf{A}\) using the QR method. Here, \(\mathrm{n} \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dchsqr((dcomplex *) za, k, n, ze, \&m, \&icon);
where:
\begin{tabular}{llll}
za & dcomplex & Input & Matrix A. \\
za[n][k] & Output & The contents of za are changed on output. \\
k & int & Input & C fixed dimension of array za \((\geq \mathrm{n})\). \\
n & int & Input & Order \(n\) of matrix A. \\
ze & dcomplex & Output & Eigenvalues of matrix A. \\
& ze[n] & & \\
m & int & Output & The number of eigenvalues obtained. \\
icon & int & Output & Condition code. \\
\multicolumn{2}{l}{ The complete list of condition codes is: } &
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & ze[0] =za[0][0]. \\
\hline 15000 & Some of the eigenvalues could not be obtained. & \begin{tabular}{l}
Discontinued. m is set to the number of \\
eigenvalues obtained, \(1 \leq \mathrm{m}<\mathrm{n}\).
\end{tabular} \\
\hline 20000 & No eigenvalues could be obtained. & Discontinued. m is set to 0. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

A complex matrix A can be reduced to a complex Hessenberg matrix using routine c_dches2, before calling this routine to obtain the eigenvalues. The output argument za from c_dhes 2 is the input argument \(z a\) of this routine.

The contents of array za are changed on output by this routine. Therefore, if eigenvectors are also required, a copy of array za should be made before calling this routine, so that the copy can be used later as input argument za of c_dchvec.

\section*{4. Example program}

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, m, i, j, k, ip[NMAX];
dcomplex za[NMAX][NMAX], ze[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
za[i][i].re = n-i;
za[i][i].im = 0;
for (j=0;j<i;j++) {
za[i][j].re = n-i;
za[j][i].re = n-i;
za[i][j].im = 0;
za[j][i].im = 0;
}
}
/* reduce matrix to Hessenberg form */
ierr = c_dches2((dcomplex*)za, k, n, ip, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dches2 failed with icon = %i\n", icon);
exit (1);
}*
/* find eigenvalues */
ierr = c_dchsqr((dcomplex*)za, k, n, ze, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dchsqr failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
printf("eigenvalues:\n");
for (i=0;i<m;i++) {
printf("%7.4f+i*%7.4f ", ze[i].re, ze[i].im);
}
printf("\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for CHSQR in the Fortran SSL II User's Guide and references [118] and [119].

\section*{c_dchvec}
```

Eigenvectors of a complex Hessenberg matrix (inverse iteration method).
ierr = c_dchvec(za, k, n, ze, ind, m, zev,
zaw, \&icon);

```

\section*{1. Function}

This routine obtains eigenvectors \(\mathbf{x}_{j}\) corresponding to selected eigenvalues \(\lambda_{j}\) of an \(n \times n\) complex Hessenberg matrix \(\mathbf{A}\), using the inverse iteration method. The eigenvectors are not normalized. Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dchvec((dcomplex *) za, k, n, ze, ind, m, (dcomplex *) zev, (dcomplex *)zaw, \&icon);
where:

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & zev \([0][0]=(1,0)\). \\
\hline 15000 & \begin{tabular}{l}
An eigenvector corresponding to a specified \\
eigenvalue cannot be determined.
\end{tabular} & \begin{tabular}{l}
The elements of ind corresponding to the \\
eigenvectors that could not be obtained are set to \\
0.
\end{tabular} \\
\hline 20000 & No eigenvectors could be obtained. & All elements of ind are set to 0. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\\
\\
\\
\(\bullet \quad \mathrm{m}<1\) or \(\mathrm{m}>\mathrm{n}\) \\
\(\mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ind and \(m k\)}

The number of elements of ind whose value is 1 is the number of eigenvectors to be determined, \(m k\).
If the j -th eigenvector cannot be determined, ind \([\mathrm{j}-1]\) is set to 0 and \(\mathrm{icon}=15000\).

\section*{General comments}

The eigenvalues used by this routine can be determined by routine c_dchsqr. The output arguments ze and \(m\) of c_dchsqr are the same as the input arguments ze and \(m\) of this routine. The input argument za of c_dchsqr (not the output argument za of c_dchsqr) is the same as the input argument za of this routine.

When selected eigenvectors of a complex matrix are to be determined:
- the complex matrix is first reduced to a complex Hessenberg matrix using c_dches2,
- eigenvalues of the Hessenberg matrix are determined using routine c_dchsqr,
- selected eigenvectors of the Hessenberg matrix are determined using this routine,
- back transformation is applied to the above eigenvectors using routine c_dchbk2 to obtain the eigenvectors of the complex matrix.

Note that C_dceig2 can be used to obtain all the eigenvectors of a complex matrix.
The resulting eigenvectors of this routine have not been normalized. If necessary, routine \(\mathrm{c}_{\mathrm{C}}\) dcnrml can be used to normalize complex eigenvectors.

Output arguments ind, \(m\) and zev of this routine are the same as the input arguments ind, \(m\) and zev of routines c_dchbk2 and c_dcnrml.

\section*{4. Example program}

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then performs a back transformation and a normalisation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, m, mode, ip[NMAX], ind[NMAX];
dcomplex za[NMAX][NMAX], ze[NMAX], zev[NMAX][NMAX], zaw[NMAX+1][NMAX];
double dv[NMAX];

```
```

/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
za[i][i].re = n-i;
za[i][i].im = 0;
for (j=0;j<i;j++) {
za[i][j].re = n-i;
za[j][i].re = n-i;
za[i][j].im = 0;
za[j][i].im = 0;
}
}*
/* balance matrix A */
ierr = c_dcblnc((dcomplex*)za, k, n, dv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dcblnc failed with icon = %i\n", icon);
exit (1);
}
/* reduce matrix to Hessenberg form */
ierr = c_dches2((dcomplex*)za, k, n, ip, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dches2 failed with icon = %i\n", icon);
exit (1);
}
for (i=0;i<n;i++)
for (j=0;j<n;j++) {
zaw[i][j].re = za[i][j].re;
zaw[i][j].im = za[i][j].im;
**
* find eigenvalues */
ierr = c_dchsqr((dcomplex*)zaw, k, n, ze, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dchsqr failed with icon = %i\n", icon);
exit (1);
}
for (i=0;i<m;i++) ind[i] = 1;
/* find eigenvectors for given eigenvalues */
ierr = c_dchvec((dcomplex*)za, k, n, ze,
ind, m, (dcomplex*)zev, (dcomplex*)zaw, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dchvec failed with icon = %i\n", icon);
exit (1);
}*
/* back transformation to find e-vectors of A */
ierr = c_dchbk2((dcomplex*)zev, k, n, ind, m,
(dcomplex*)za, ip, dv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dchbk2 failed with icon = %i\n", icon);
exit (1);
}
/* normalize e-vectors */
mode = 2;
ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dcnrml failed with icon = %i\n", icon)
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
if (ind[i] != 0) {
printf("eigenvalue: %7.4f+i*%7.4f\n", ze[i].re, ze[i].im);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f+i*%7.4f ", zev[i][j].re, zev[i][j].im);
printf("\n")
}
}
return(0)
}

```

\section*{5. Method}

Consult the entry for CHVEC in the Fortran SSL II User's Guide and reference [119].

\section*{c_dcjart}
\begin{tabular}{|l|}
\hline Roots of a polynomial with complex coefficients (Jarratt method). \\
\hline ierr = c_dcjart(za, \&n, z, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This function finds the roots of a polynomial equation (1) with complex coefficients by the Jarratt method.
\[
\begin{equation*}
a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n}=0 \tag{1}
\end{equation*}
\]

In (1), \(a_{i}\) are the complex coefficients, \(\left|a_{0}\right| \neq 0\) and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcjart(za, \&n, z, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{za} & dcomplex & Input & Coefficients of the polynomial equation, where za[i]=ai. \\
\hline & za[\(\mathrm{n}+1\)] & Output & The contents of the array are altered on output. \\
\hline \multirow[t]{2}{*}{n} & int & Input & Order \(n\) of the equation. \\
\hline & & Output & Number of roots found. See Comments on use. \\
\hline Z & dcomplex z[n] & Output & The n roots, returned in \(\mathrm{z}[0]\) to \(\mathrm{z}[\mathrm{n}-1]\) and in the order they were found. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Not all the n roots could be found. & \begin{tabular}{l}
The number of roots found is returned by the \\
argument n and the roots themselves are returned \\
in array z.
\end{tabular} \\
\hline 30000 & \(\left.\)\begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet\) \\
\(\bullet\)
\end{tabular}\(a_{0} \right\rvert\,=0\)
\end{tabular}\(\quad\) Bypassed. \(\quad\).

\section*{3. Comments on use}

When the order of the equation, \(n\), is 1 or 2 , the root formula is used instead of the Jaratt method.
An \(n\)th degree polynomial equation has \(n\) roots. However, it is possible, though rare, that not all the roots can be found. Therefore, it is good practice to check the arguments icon and n , to see whether or not all the roots have been found.

\section*{4. Example program}

This example program computes the roots of the polynomial \(z^{3}-6 z^{2}+11 z-6=0\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 3
MAIN__()
{
int ierr, icon;
dcomplex z[N];
dcomplex za[] = {{1, 0},
{-6, 0},
{-6, 0}};
int n, i;
/* initialize data */
n=N;
/* find roots of polynomial */
ierr = c_dcjart(za, \&n, z, \&icon);
printf("icon = %i n = %i\n", icon, n);
for (i=0;i<n;i++)
printf("z[%i] = {%12.4e, %12.4e}\n", i, z[i].re, z[i].im);
printf("exact roots are: {1, 0}, {2, 0} and {3, 0}\n");
return(0);
}

```

\section*{5. Method}

This function uses a slightly modified version of the Garside-Jarratt-Mack method to obtain the roots. For further information consult the entry for CJART in the Fortran SSL II User's Guide and [38].

\section*{c_dclu}
```

LU-decomposition of a complex matrix (Crout's method).
ierr = c_dclu(za, k, n, epsz, ip, \&is, zvw,
\&icon);

```

\section*{1. Function}

This function LU-decomposes an \(n \times n\) general complex matrix \(\mathbf{A}\) using Crout's method:
\[
\begin{equation*}
\mathbf{P A}=\mathbf{L U} \tag{1}
\end{equation*}
\]

Where \(\mathbf{P}\) is the permutation matrix that performs the row exchanges required in partial pivoting, \(\mathbf{L}\) is a lower triangular matrix and \(\mathbf{U}\) is a unit upper triangular matrix (\(n \geq 1\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dclu((dcomplex*)za, k, n, epsz, ip, \&is, zvw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline za & dcomplex & Input & Matrix A. \\
\hline & za[n][k] & Output & Matrices \(\mathbf{L}\) and \(\mathbf{U}\) (suitable for input to the complex matrix inverse function, c_dcluiv). See Comments on use. \\
\hline k & int & Input & C fixed dimension of array za \((\geq n)\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline epsn & double & Input & Tolerance for relative zero test of pivots during the decomposition of \(\mathbf{A}\) (\(\geq 0\)). When epsz is zero, a standard value is used. See Comments on use. \\
\hline ip & int ip[n] & Output & Transposition vector that provides the row exchanges which occurred during partial pivoting (suitable for input to the complex matrix inverse function, c_dcluiv). See Comments on use. \\
\hline is & int & Output & Information for obtaining the determinant of matrix \(\mathbf{A}\). When the n elements of the calculated diagonal of array za are multiplied together, and the result is then multiplied by is, the determinant is obtained. \\
\hline zVw & dcomplex & Work & \\
\hline & zvw[n] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Either all of the elements of some row were zero \\
or the pivot became relatively zero. It is highly \\
probable that the coefficient matrix is singular.
\end{tabular} & Discontinued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{k}<\mathrm{n}\) & \\
& \(\bullet \mathrm{n}<1\) \\
& \(\bullet\) epsz \(<0\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If both the real and imaginary parts of the pivot value lose more than \(s\) significant digits during LU-decomposition by Crout's method, the pivot value is assumed to be zero and computation is discontinued with icon=20000.

The standard value of epsz is normally \(16 \mu\), where \(\mu\) is the unit round off. If processing is to proceed at a low pivot value, epsz will be given the minimum value but the result is not always guaranteed.

\section*{ip}

The transposition vector corresponds to the permutation matrix \(\mathbf{P}\) of LU-decomposition with partial pivoting. In this function, the elements of the array za are actually exchanged in partial pivoting. In the \(J\)-th stage \((J=1, \ldots, n)\) of decomposition, if the \(I\)-th row has been selected as the pivotal row the elements of the \(I\)-th row and the elements of the \(J\) th row are exchanged. Then, in order to record the history of this exchange, \(I\) is stored in ip [j-1].

\section*{Matrix inverse}

This function is the first stage in a two-stage process to compute the inverse of an \(n \times n\) complex general matrix. After calling this function, calling C_dcluiv, will complete the task of matrix inversion.

\section*{4. Example program}

This example program initialises \(\mathbf{A}\) and \(\mathbf{x}(\) from \(\mathbf{A x}=\mathbf{b})\), and then calculates \(\mathbf{b}\) by multiplication. Matrix \(\mathbf{A}\) is then decomposed into LU factors using the library routine. \(\mathbf{A}^{-1}\) is then calculated and used to calculate \(\mathbf{x}\) in the equation \(\mathbf{A}^{-1} \mathbf{b}=\mathbf{x}\) and this resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, k, is;
double epsz, eps;
dcomplex za[NMAX][NMAX];
dcomplex zb[NMAX], zx[NMAX], zy[NMAX], zvw[NMAX];
int ip[NMAX];
/* initialize matrix and vector */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
for (j=i;j<n;j++) {
za[i][j].re = n-j;
za[i][j].im = n-j;
za[j][i].re = n-j;
za[j][i].im = n-j;

```
```

        }
        zx[i].re = i+1
        zx[i].im = i+1;
    }
    /* initialize constant vector zb = za*zx */
    ierr = c_dmcv((dcomplex*)za, k, n, n, zx, zb, &icon);
    epsz = 1e-6;
    /* perform LU decomposition */
    ierr = c_dclu((dcomplex*)za, k, n, epsz, ip, &is, zvw, &icon);
    if (icon != 0) {
        printf("ERROR: c_dvclu failed with icon = %d\n", icon);
        exit(1);
    }
    /* find matrix inverse from LU factors */
    ierr = c_dcluiv((dcomplex*)za, k, n, ip, &icon);
    if (icon != 0) {
        printf("ERROR: c_dcluiv failed with icon = %d\n", icon);
        exit(1);
    }
    /* calculate zy = za*zb */
    ierr = c_dmcv((dcomplex*)za, k, n, n, zb, zy, &icon);
    /* compare zx and zy */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((zy[i].re-zx[i].re)/zx[i].re) > eps ||
            fabs((zy[i].im-zx[i].im)/zx[i].im) > eps) {
            printf("WARNING: result inaccurate\n");
            exit(1);
        }
    printf("Result OK\n")
    return(0);
    }

```

\section*{5. Method}

Crout's method with partial pivoting is used. For further information consult the entry for CLU in the Fortran SSL II User's Guide and [7], [34] and [83].

\section*{c_dcluiv}
\begin{tabular}{|l|}
\hline The inverse of a complex matrix decomposed into \(L\) and \(U\) factors. \\
\hline ierr \(=\) c_dcluiv \((z f a, k, n\), ip, \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the inverse \(\mathbf{A}^{-1}\) of an \(n \times n\) complex general matrix \(\mathbf{A}\) given in decomposed form \(\mathbf{P A}=\mathbf{L} \mathbf{U}\).
\[
\begin{equation*}
\mathbf{A}^{-1}=\mathbf{U}^{-1} \mathbf{L}^{-1} \mathbf{P} \tag{1}
\end{equation*}
\]

Where \(\mathbf{L}\) and \(\mathbf{U}\) are the respective \(n \times n\) lower and unit upper triangular matrices, \(\mathbf{P}\) is the permutation matrix that performs the row exchanges in partial pivoting for LU-decomposition \((n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcluiv((dcomplex*)zfa, k, n, ip, \&icon);
where:
\begin{tabular}{llll}
zfa & \begin{tabular}{l}
dcomplex \\
zfa[n][k]
\end{tabular} & Input & \begin{tabular}{l}
Matrices \(\mathbf{L}\) and \(\mathbf{U}\) (obtained from function c_dclu). See Comments on \\
use.
\end{tabular} \\
k & int & Output & \begin{tabular}{l}
Inverse \(\mathbf{A}^{-1}\).
\end{tabular} \\
n & int & Input & \begin{tabular}{l}
C fixed dimension of array \(\mathrm{zfa}(\geq \mathrm{n})\). \\
ip
\end{tabular} \\
int ip[n] & Input & \begin{tabular}{l}
Order \(n\) of matrices \(\mathbf{L}\) and \(\mathbf{U}\).
\end{tabular} \\
icon & int & Output & \begin{tabular}{l}
Transposition vector that provides the row exchanges which occurred \\
during partial pivoting, obtained from function c_dclu. See Comments \\
on \(u s e\). \\
Condition code. See below.
\end{tabular}
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Singular matrix. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad\) an error in array ip.
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General comments}

Prior to calling this function, the LU-decomposed matrix and transposition vector must be obtained by the function, c_dclu, and passed into here via zfa and ip, to obtain the inverse. For solving linear equations use the c_dlcx function. This is far more efficient than the inverse matrix route. Users should only use this function when calculating the inverse matrix is unavoidable.

The transposition vector corresponds to the permutation matrix \(\mathbf{P}\), equation (1), for LU-decomposition with partial pivoting, Please see the notes for the c_dclu function.

\section*{4. Example program}

This example program initialises \(\mathbf{A}\) and \(\mathbf{x}\) (from \(\mathbf{A x}=\mathbf{b}\)), and then calculates \(\mathbf{b}\) by multiplication. Matrix \(\mathbf{A}\) is then decomposed into LU factors. The library routine is then called to calculate \(\mathbf{A}^{-1}\) which is then used in the equation \(\mathbf{A}^{-1} \mathbf{b}=\mathbf{x}\) to calculate \(\mathbf{x}\), and this resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, k, is;
double epsz, eps;
dcomplex za[NMAX][NMAX];
dcomplex zb[NMAX], zx[NMAX], zy[NMAX], zvw[NMAX];
int ip[NMAX];
/* initialize matrix and vector */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
for (j=i;j<n;j++) {
za[i][j].re = n-j;
za[i][j].im = n-j;
za[j][i].re = n-j;
za[j][i].im = n-j
}
zx[i].re = i+1;
zx[i].im = i+1;
}
/* initialize constant vector zb = za*zx */
ierr = c_dmcv((dcomplex*)za, k, n, n, zx, zb, \&icon);
epsz = 1e-6;
/* perform LU decomposition */
ierr = c_dclu((dcomplex*)za, k, n, epsz, ip, \&is, zvw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvclu failed with icon = %d\n", icon);
exit(1);
}
/* find matrix inverse from LU factors */
ierr = c_dcluiv((dcomplex*)za, k, n, ip, \&icon);
if (icon != 0) {
printf("ERROR: c_dcluiv failed with icon = %d\n", icon);
exit(1);
}
/* calculate zy = za*zb */
ierr = c_dmcv((dcomplex*)za, k, n, n, zb, zy, \&icon);
/* compare zx and zy */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((zy[i].re-zx[i].re)/zx[i].re) > eps ||
fabs((zy[i].im-zx[i].im)/zx[i].im) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
príntf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Given LU-decomposed matrices \(\mathbf{L}, \mathbf{U}\) and permutation matrix \(\mathbf{P}\) that indicates row exchanges during partial pivoting then the inverse of \(\mathbf{A}\) is computed by calculating \(\mathbf{L}^{-1}\) and \(\mathbf{U}^{-1}\). For further information consult the entry for CLUIV in the Fortran SSL II User's Guide and [34].

\section*{c_dclux}

Solution of a system of linear equations with a complex matrix in LUdecomposed form.
ierr = c_dclux(zb, zfa, k, n, isw, ip, \&icon);

\section*{1. Function}

This routine solves a system of linear equations with an \(n \times n \mathrm{LU}\) - decomposed complex matrix
\[
\begin{equation*}
\mathbf{L} \mathbf{U x}=\mathbf{P b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{P}\) is a permutation matrix that performs row exchange required in partial pivoting for the LU - decomposition, \(\mathbf{L}\) is a lower triangular matrix, \(\mathbf{U}\) is a unit upper triangular matrix, \(\mathbf{b}\) is a complex constant vector, and \(\mathbf{x}\) is the solution vector. Both vectors are of size \(n(n \geq 1)\).

One of the following equations can be solved instead of (1)
\[
\begin{gather*}
\mathbf{L y}=\mathbf{P b} \tag{2}\\
\mathbf{U z}=\mathbf{b} \tag{3}
\end{gather*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dclux(zb, (dcomplex*)zfa, k, n, isw, ip, \&icon);
where:

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Coefficient matrix was singular. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following occurred: \\
\(\bullet \quad \mathrm{n}<1\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet \mathrm{k}<\mathrm{n}\) & \\
& \(\bullet\) isw \(\neq 1,2\), or 3 & \\
& \(\bullet\) error found in ip & \\
\hline
\end{tabular}

\section*{3. Comments on use}

A system of linear equations with complex coefficient matrix can be solved by calling the routine c_dclu to LU decompose the coefficient matrix prior to calling this routine. The input arguments zfa and ip of this routine are the same as the output arguments za and ip of routine c_dclu. Alternatively, the system of linear equations can be solved by calling the single routine c_dlcx

\section*{4. Example program}

This program solves a system of linear equations using LU decomposition and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, k, is, isw;
double epsz, eps;
dcomplex zfa[NMAX][NMAX];
dcomplex zb[NMAX], zx[NMAX], zvw[NMAX];
int ip[NMAX];
/* initialize matrix and vector */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
for (j=i;j<n;j++) {
zfa[i][j].re = n-j;
zfa[i][j].im = n-j;
zfa[j][i].re = n-j;
zfa[j][i].im = n-j;
}
zx[i].re = i+1;
zx[i].im = i+1;
}*
/* initialize constant vector zb = za*zx */
ierr = c_dmcv((dcomplex*)zfa, k, n, n, zx, zb, \&icon);
epsz = 1e-6;
/* perform LU decomposition */
ierr = c_dclu((dcomplex*)zfa, k, n, epsz, ip, \&is, zvw, \&icon);
if (icon != 0) {
printf("ERROR: c_dclu failed with icon = %d\n", icon);
exit(1);
}
isw = 1;
/* solve system of equations using LU factors */
ierr = c_dclux(zb, (dcomplex*)zfa, k, n, isw, ip, \&icon);
if (icon != 0) {
printf("ERROR: c_dclux failed with icon = %d\n", icon);
exit(1)
}
/* check result */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((zb[i].re-zx[i].re)/zx[i].re) > eps ||
fabs((zb[i].im-zx[i].im)/zx[i].im) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}

```
```

    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

Consult the entry for CLUX in the Fortran SSL II User's Guide and [7], [34], and [83].

\section*{c_denrml}

Normalization of the eigenvectors of a complex matrix.
ierr = c_dcnrml(zev, k, n, ind, m, mode, \&icon);

\section*{1. Function}

This routine obtains eigenvectors \(\mathbf{y}_{j}\) by normalizing \(m\) eigenvectors \(\mathbf{x}_{j}, j=1,2, \ldots, m\) of an \(n \times n\) complex matrix. Either (1) or (2) is used in the normalization process,
\[
\begin{align*}
& \mathbf{y}_{j}=\mathbf{x}_{j} /\left\|\mathbf{x}_{j}\right\|_{\infty} \tag{1}\\
& \mathbf{y}_{j}=\mathbf{x}_{j} /\left\|\mathbf{x}_{j}\right\|_{2} \tag{2}
\end{align*}
\]

Here \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcnrml((dcomplex *) zev, k, n, ind, m, mode, \&icon);

> where:
zev dcomplex Input The \(m\) eigenvectors \(\mathbf{x}_{j}, j=1, \ldots, m\), stored by row. See Comments on use.
\begin{tabular}{ll}
& zev[m][k] \\
k & int \\
n & int \\
ind & int ind[m]
\end{tabular}
\(\begin{array}{ll}\text { Output } & \text { The } m \text { normalized eigenvectors } \mathbf{y}_{i}, j=1, \ldots, m . \\ \text { Input } & \mathrm{C} \text { fixed dimension of array } \mathrm{zev}(\geq \mathrm{n}) . \\ \text { Input } & \text { Order } n \text { of the complex matrix. } \\ \text { Input } & \text { Indicates which eigenvectors are to be normalized. }\end{array}\)
ind \([j-1]=0\) if the eigenvector corresponding to the \(j\)-th eigenvalue is not to be normalized.
ind \([j-1]=1\) if the eigenvector corresponding to the \(j\)-th eigenvalue is to be normalized.
See Comments on use.
\begin{tabular}{llll}
\(m\) & int & Input & Input
\end{tabular} \begin{tabular}{l}
Number \(m\) of eigenvectors. See Comments on use. \\
mode \\
ind
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & zev[0][0] = 1,0\().\) \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{m}<1\) or \(\mathrm{m}>\mathrm{n}\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet\) mode \(\neq 1\) or 2 & \\
& \(\bullet\) error found in ind & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{\(z e v\), ind and \(m\)}

If routine \(c _d c h v e c\) is called before this routine, input arguments \(z e v\), ind and \(m\) of this routine are the same as output arguments \(z e v\) and ind and input argument \(m\) of \(c _d c h v e c\).

If routine c_dchbk2 is called before this routine, input arguments zev, ind and \(m\) of this routine are the same as output argument zev and input arguments ind and \(m\) of \(c _d c h b k 2\).

\section*{4. Example program}

This program finds the eigenvectors of a complex matrix, and then normalizes them such that \(\|x\|_{\infty}=1\).
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, mode, m, ind[NMAX], ivw[NMAX];
dcomplex za[NMAX][NMAX], ze[NMAX],' zev[NMAX][NMAX];
double vw[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
za[i][i].re = n-i;
za[i][i].im = 0;
for (j=0;j<i;j++) {
za[i][j].re = n-i;
za[j][i].re = n-i
za[i][j].im = 0;
za[j][i].im = 0;
}
}
mode = 2;
/* find eigenvalues and eigenvectors */
ierr = c_dceig2((dcomplex*)za, k, n, mode,
ze, (dcomplex*)zev, vw, ivw, \&icon);
/* initialize ind array */
m = n;
for (i=0;i<m;i++) ind[i] = 1;
mode = 1;
/* normalize eigenvectors */
ierr = c_dcnrml((dcomplex*)zev, k, n, ind, m, mode, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dcnrml failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<n;i++) {
printf("eigenvalue: %7.4f+i*%7.4f\n", ze[i].re, ze[i].im);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f+i*%7.4f ", zev[i][j].re, zev[i][j].im);
printf("\n");
}
return(0);
}

```

\section*{5. Method}

Consult the entry for CNRML in the Fortran SSL II User's Guide.

\section*{c_dcosi}
\begin{tabular}{|l|}
\hline Cosine integral \(C_{i}(x)\). \\
\hline ierr \(=\) c_dcosi(x, \&ci, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This routine computes the cosine integral
\[
C_{i}(x)=-\int_{x}^{\infty} \frac{\cos (t)}{t} d t
\]
where \(x \neq 0\), by series and asymptotic expansions. If \(x<0\), the cosine integral \(C_{i}(x)\) is assumed to take a principal value.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcosi(x, \&ci, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable x . See Comments on use fro range of x . \\
ci & double & Output & Cosine integral \(C_{i}(x)\). \\
icon & int & Output & Condition code. See below. \\
\multicolumn{2}{r}{ The complete list of condition codes is: }
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(|\mathrm{x}| \geq t_{\max }\) & ci is set to 0. \\
\hline 30000 & \(\mathrm{x}=0\) & ci is set to 0. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Range of \(x\)}

The valid range of argument X is \(|\mathrm{X}|<t_{\text {max }}\). This is because accuracy is lost if \(|\mathrm{X}|\) exceeds this limit. For details on \(t_{\text {max }}\) see the Machine constants section of the Introduction.

\section*{4. Example program}

This program generates a range of function values for 100 points in the the interval [0.1,10.0].
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, ci;
int i;
for (i=1;i<=100;i++) {

```
```

        x = (double)i/10;
        /* calculate integral */
        ierr = c_dcosi(x, &ci, &icon);
        if (icon == 0)
        printf("x = %5.2f ci = %f\n", x, ci);
        else
        printf("ERROR: x = %5.2f ci = %f icon = %i\n", x, ci, icon);
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for COSI in the Fortran SSL II User's Guide.

\section*{c_deqdr}
\begin{tabular}{|l|}
\hline Roots of a quadratic with complex coefficients. \\
\hline ierr = c_dcqdr \((z 0, z 1, z 2, z\), \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function finds the roots of a quadratic equation with complex coefficients.
\[
\begin{equation*}
a_{0} z^{2}+a_{1} z+a_{2}=0 \tag{1}
\end{equation*}
\]
where \(\left|a_{0}\right| \neq 0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcqdr(z0, z1, z2, z, \&icon);
where:
\begin{tabular}{llll}
z0 & dcomplex & Input & The zeroth coefficient \(a_{0}\) of quadratic equation. \\
z1 & dcomplex & Input & The first coefficient \(a_{1}\) of quadratic equation. \\
z2 & dcomplex & Input & The second coefficient \(a_{2}\) of quadratic equation. \\
z & dcomplex z[2] & Output & Roots of quadratic equation. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\left|a_{0}\right|=0\) & \(-a_{2} / a_{1}\) is stored in \(\mathrm{z}[0] . \mathrm{z}[1]\) is undefined. \\
\hline 30000 & \(\left|a_{0}\right|=0\) and \(\left|a_{1}\right|=0\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Example program}

This example program computes the roots of the quadratic \(z^{2}-5 z+6=0\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
dcomplex z[2];
dcomplex z0 = {1, 0};
dcomplex z1 = {-5, 0};
dcomplex z2 = {6, 0};
/* find roots of quadratic */
ierr = c_dcqdr(z0, z1, z2, z, \&icon);
printf("icon = %i z z[0] = {%12.4e, %12.4e} z[1] = {%12.4e, %12.4e}\n",
icon, z[0].re, z[0].im, z[1].re, z[1].im);
printf("exact roots are: {3, 0} and {2, 0}\n");
return(0);
}

```

\section*{4. Method}

For further information consult the entry for CQDR in the Fortran SSL II User's Guide.

\section*{c_dcsbgm}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Storage format conversion of matrices (symmetric band format to \\
standard format).
\end{tabular} \\
\hline ierr = c_dcsbgm (asb, n, nh, ag, k, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This routine converts an \(n \times n\) symmetric band matrix with bandwidth \(h\) from symmetric band format to standard 2-D array format. (\(n>h \geq 0\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcsbgm(asb, n, nh, (double*)ag, k, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline asb & double asb[Asblen] & Input & Symmetric band matrix A stored in symmetric band storage format. See Array storage formats in the Introduction section for details.
\[
\text { Asblen }=n(h+1)-h(h+1) / 2 .
\] \\
\hline n & int & Input & The order \(n\) of matrix \(\mathbf{A}\). \\
\hline nh & int & Input & The bandwidth \(h\) of matrix \(\mathbf{A}\). \\
\hline ag & double ag[n][k] & Output & Symmetric band matrix \(\mathbf{A}\) stored in the standard storage format. \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{ag}(\geq \mathrm{n})\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{nh}<0\) \\
& \(\bullet \mathrm{n} \leq \mathrm{nh}\) \\
& \(\bullet \mathrm{k}<\mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{The symmetric band matrix in the standard format}

The symmetric band matrix in the standard form produced by this routine contains not only the upper band and diagonal portions but also the lower band portion and the zero elements.

\section*{Saving on storage space}

If there is no need to keep the contents of array asb, then saving on storage space is possible by specifying the same array for argument ag. WARNING - make sure the array size is consistent with both arguments otherwise unpredictable results can occur.

\section*{4. Example program}

This program converts a matrix from symmetric band format to standard format and prints the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define NMAX 5
\#define NHMAX 2
/* print symmetric band matrix */
void prtsymbandmat(double a[], int n, int nh)
{
int ij, i, j, jmin;
printf("symmetric band matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
jmin = max(i-nh, 0);
for (j=jmin;j<=i;j++)
printf("%7.2f ",a[ij++]);
printf("\n");
}
}
/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
int i, j;
printf("general matrix format\n");
for (i=0;i<n;i++) {
for ( j=0;j<m;j++)
printf("%7.2f ",a[i*k+j]);
printf("\n");
}
}
MAIN__()
{
int ierr, icon;
int n, nh, i, j, ij, k, jmin;
double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], ag[NMAX][NMAX];
n = NMAX;
/* initialize symmetric band matrix */
nh = NHMAX;
ij = 0;
for (i=0;i<n;i++) {
jmin = max(i-nh, 0);
for (j=jmin;j<=i;j++)
asb[ij++] = i-j+1;
}
k = NMAX;
/* convert to general matrix storage format */
ierr = c_dcsbgm(asb, n, nh, (double*)ag, k, \&icon);
if (icon != 0) {
printf("ERROR: c_dcsbgm failed with icon = %d\n", icon);
exit(1);
}*
/* print matrices */
printf("asb: \n");
prtsymbandmat(asb, n, nh);
printf("ag: \n");
prtgenmat((double*)ag, k, n, n);
return(0);
}

```

\section*{5. Method}

Consult the entry for CSBGM in Fortran SSL II User's Guide.

\section*{c_dcsbsm}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Storage format conversion of matrices (symmetric band format to \\
symmetric format).
\end{tabular} \\
\hline ierr \(=\) c_dcsbsm(asb, \(n, ~ n h, ~ a s, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine converts an \(n \times n\) symmetric band matrix with bandwidth \(h\) from symmetric band format to symmetric format (\(n>h \geq 0\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcsbsm(asb, n, nh, as, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline asb & \begin{tabular}{l}
double \\
asb[Asblen]
\end{tabular} & Input & Symmetric band matrix A stored in symmetric band storage format. See Array storage formats in the Introduction section for details.
\[
\text { Asblen }=n(h+1)-h(h+1) / 2 .
\] \\
\hline n & int & Input & The order \(n\) of matrix \(\mathbf{A}\). \\
\hline nh & int & Input & The bandwidth \(h\) of matrix A. \\
\hline as & \begin{tabular}{l}
double \\
as [Aslen]
\end{tabular} & Output & Symmetric band matrix A stored in symmetric storage format. See Array storage formats in the Introduction section for details.
\[
\text { Aslen }=n(n+1) / 2
\] \\
\hline icon & int & Output & Condition code. See below. \\
\hline The co & list of conditio & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{nh}<0\) \\
\(\bullet \quad \mathrm{n} \leq \mathrm{nh}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Saving on storage space}

If there is no need to keep the contents of array asb, then saving on storage space is possible by specifying the same array for argument as. WARNING - make sure the array size is consistent with both arguments otherwise unpredictable results can occur.

\section*{4. Example program}

This program converts a matrix from symmetric band format to symmetric format and prints the results.
```

\#include <stdlib.h>
\#include <stdio.h>

```
```

\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define NMAX 5
\#define NHMAX 2
/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
int ij, i, j;
printf("symmetric matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
for (j=0;j<=i;j++)
printf("\n");
}
}
/* print symmetric band matrix */
void prtsymbandmat(double a[], int n, int nh)
{
int ij, i, j, jmin;
printf("symmetric band matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
jmin = max(i-nh, 0);
for (j=jmin;j<=i;j++)
printf("%7.2f ",a[ij++]);
printf("\n");
}
}
MAIN__()
{
int ierr, icon;
int n, nh, i, j, ij, k, jmin;
double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], as[NMAX*(NMAX+1)/2];
n = NMAX;
/* initialize symmetric band matrix */
nh = NHMAX;
ij = 0;
for (i=0;i<n;i++) {
jmin = max(i-nh, 0);
for ( }j=jmin;j<=i;j++
asb[ij++] = i-j+1;
}
k = NMAX;
/* convert to symmetric matrix storage format */
ierr = c_dcsbsm(asb, n, nh, as, \&icon);
if (icon != 0) {
printf("ERROR: c_dcsbsm failed with icon = %d\n", icon);
exit(1);
}
/* print matrices */
printf("asb: \n");
prtsymbandmat(asb, n, nh);
printf("as: \n");
prtsymmat(as, n);
return(0);
}

```

\section*{5. Method}

Consult the entry for CSBSM in Fortran SSL II User's Guide.

\section*{c_dcsgm}
\[
\begin{aligned}
& \text { Storage format conversion of matrices (real symmetric format to } \\
& \text { standard format). } \\
& \hline \text { ierr }=c _\operatorname{dcsgm}(a s, n, a g, k, \text { \&icon); } \\
& \hline
\end{aligned}
\]

\section*{1. Function}

This function converts an \(n \times n\) real symmetric matrix from the symmetric format to the standard 2-D array format \((n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcsgm(as, n, (double*)ag, k, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline as & double as[Aslen] & Input & Symmetric matrix A stored in the symmetric format. Aslen \(=\mathrm{n}(\mathrm{n}+1) / 2\). See the Array storage formats section of the Introduction. \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline ag & double \(a g[n][k]\) & Output & Symmetric matrix A stored in standard format. \\
\hline k & int & Input & C fixed dimension of array ag (\(\geq \mathrm{n}\)). \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is given below.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\\
\\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{The symmetric matrix in the standard format}

The symmetric matrix in the standard format produced by the function contains not only the upper triangular and diagonal portions but also the lower triangular portion.

\section*{Saving on storage space}

If there is no need to keep the contents of array, as, then saving on storage space is possible by specifying the same array for argument ag. WARNING - make sure the array size is compliant for both arguments otherwise unpredictable results can occur.

\section*{4. Example program}

This example program converts a matrix from symmetric format to real standard format, and prints out both matrices.
```

\#include <stdlib.h>

```
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 5
/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
int ij, i, j;
printf("symmetric matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
for (j=0;j<=i;j++)
printf("%7.2f ",a[ij++]);
printf("\n");
}
}
/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
int i, j;
printf("general matrix format\n");
for (i=0;i<n;i++) {
for (j=0;j<m;j++)
printf("%7.2f ",a[i*k+j]);
printf("\n");
}
}
MAIN__()
{
int ierr, icon;
int n, i, j, ij, k;
double as[NMAX**(NMAX+1)/2], ag[NMAX][NMAX];
/* initialize symmetric matrix storage format */
n = NMAX;
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
as[ij++] = n-i;
}
k = NMAX;
/* convert to general matrix storage format */
ierr = c_dcsgm(as, n, (double*)ag, k, \&icon);
if (icon != 0) {
printf("ERROR: c_dcsgm failed with icon = %d\n", icon);
exit(1);
}
/* print matrices */
printf("as: \n");
prtsymmat(as, n);
printf("ag: \n");
prtgenmat((double*)ag, k, n, n);
return(0);
}

```

\section*{5. Method}

The conversion process from the symmetic format to standard format consists of two stages:
- The elements stored in array as are transferred to the diagonal and lower triangular portions sequentially from the highest address, i.e. the \(n\)-th column. The correspondence between locations is shown below, where \(\mathrm{NT}=n(n+1) / 2\).
\begin{tabular}{|cl|ll|c|}
\hline \begin{tabular}{c}
Elements in \\
symmetric format
\end{tabular} & & \begin{tabular}{c}
Elements of \\
matrix
\end{tabular} & \begin{tabular}{c}
Elements in \\
standard format
\end{tabular} \\
\hline as[NT-1] & \(\rightarrow\) & \(a_{\mathrm{nn}}\) & \(\rightarrow\) & \(\mathrm{ag}[\mathrm{n}-1][\mathrm{n}-1]\) \\
as[NT-2] & \(\rightarrow\) & \(a_{\mathrm{nn}-1}\) & \(\rightarrow\) & \(\mathrm{ag}[\mathrm{n}-2][\mathrm{n}-1]\) \\
\(:\) & & \(:\) & & \(:\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline as[i*(i-1)/2+j-1] & \(\rightarrow\) & \(a_{\mathrm{ij}}\)
\(:\) & \(\rightarrow\) & \(\operatorname{ag}[\mathrm{j}-1][\mathrm{i}-1]\)
\(:\) \\
\hline as[1] & \(\rightarrow\) & \(a_{21}\) & \(\rightarrow\) & ag[0][1] \\
\hline as [0] & \(\rightarrow\) & \(a_{11}\) & \(\rightarrow\) & ag[0][0] \\
\hline
\end{tabular}
- With the diagonal as the axis of symmetry, the elements of the lower triangular portion are copied to the upper triangular part, such that \(a g[i][j]=a g[j][i]\). Here, \(j>i\).

For further information consult the entry for CSGM in the Fortran SSL II User's Guide.

\section*{c_dcssbm}

> Storage format conversion of matrices (symmetric format to symmetric band format).
ierr = c_dcssbm(as, n, asb, nh, \&icon);

\section*{1. Function}

This routine converts an \(n \times n\) symmetric band matrix with bandwidth \(h\) from symmetric format to symmetric band format (\(n>h \geq 0\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcssbm(as, n, asb, nh, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline as & \begin{tabular}{l}
double \\
as [Aslen]
\end{tabular} & Input & Symmetric band matrix \(\mathbf{A}\) stored in symmetric stroage format. See Array storage formats in the Introduction section for details.
\[
\text { Aslen }=n(n+1) / 2
\] \\
\hline n & int & Input & The order \(n\) of matrix \(\mathbf{A}\). \\
\hline asb & \begin{tabular}{l}
double \\
asb[Asblen]
\end{tabular} & Output & Symmetric band matrix A stored in symmetric band storage format. See Array storage formats in the Introduction section for details.
\[
\text { Asblen }=n(h+1)-h(h+1) / 2 .
\] \\
\hline nh & int & Input & The bandwidth \(h\) of matrix A. \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\\
\(\bullet \quad \mathrm{nh}<0\) \\
\(\bullet \quad \mathrm{n} \leq \mathrm{nh}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Saving on storage space}

If there is no need to keep the contents of array as, then saving on storage space is possible by specifying the same array for argument asb. WARNING - make sure the array size is consistent with both arguments otherwise unpredictable results can occur.

\section*{4. Example program}

This program converts a matrix from symmetric to symmetric band format and prints the results.
```

\#include <stdlib.h>
\#include <stdio.h>

```
```

\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define NMAX 5
\#define NHMAX 2
/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
int ij, i, j;
printf("symmetric matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
for (j=0;j<i; ji++)
printf("\n");
}
}
/* print symmetric band matrix */
void prtsymbandmat(double a[], int n, int nh)
{
int ij, i, j, jmin;
printf("symmetric band matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
jmin}=max(i-nh, 0)
for (j=jmin;j<=i;j++)
printf("%7.2f ",a[ij++]);
printf("\n");
}
}
MAIN__()
{
int ierr, icon;
int n, nh, i, j, ij, k;
double asb[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], as[NMAX*(NMAX+1)/2];
/* initialize band symmetric matrix in symmetric matrix storage format */
n = NMAX;
nh = NHMAX;
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
if (abs(i-j) <= nh)
as[ij++] = i-j+1;
else
as[ij++] = 0;
}
k = NMAX;
/* convert to symmetric band matrix storage format */
ierr = c_dcssbm(as, n, asb, nh, \&icon);
if (icon!= 0) {
printf("ERROR: c_dcssbm failed with icon = %d\n", icon);
exit(1);
}
/* print matrices */
printf("as: \n");
prtsymmat(as, n);
printf("asb: \n");
prtsymbandmat(asb, n, nh);
return(0);
}

```

\section*{5. Method}

Consult the entry for CSSBM in the Fortran SSL II User's Guide.

\section*{c_detsdm}
```

Root of a complex function (Muller's method).
ierr = c_dctsdm(\&z, zfun, isw, eps, eta, \&m,
\&icon);

```

\section*{1. Function}

This function finds a root of a complex function (1) by Muller's method.
\[
\begin{equation*}
f(z)=0 \tag{1}
\end{equation*}
\]

An initial approximation to the root must be given.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dctsdm(\&z, zfun, isw, eps, eta, \&m, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline z & dcomplex & Input & Initial value of the root to be obtained. \\
\hline & & Output & Approximate root. \\
\hline zfun & function & Input & Name of the user defined function to evaluate \(f(z)\). Its prototype is: dcomplex zfun(dcomplex z); where: \\
\hline & & & z dcomplex Input Independent variable. \\
\hline isw & int & Input & Control information. \\
\hline & & & Specify the convergence criterion for finding the root; isw must be one of the following: \\
\hline
\end{tabular}

1 Criterion I: when the condition \(\left|f\left(z_{i}\right)\right| \leq \mathrm{eps}\) is satisfied, \(z_{i}\) becomes the root.
2 Criterion II: when the condition \(\left|z_{i}-z_{i-1}\right| \leq\) eta \(\cdot\left|z_{i}\right|\) is satisfied, \(z_{i}\) becomes the root.
3 When either criterion I or II is satisfied, \(z_{i}\) becomes the root. See Comments on use.
\begin{tabular}{llll}
eps & double & Input & The tolerance value \((\geq 0)\) for Criterion I. (See argument isw.) \\
eta & double & Input & The tolerance value \((\geq 0)\) for Criterion II. (See argument isw.) \\
\(m\) & int & Input & Upper limit of iterations. See Comments on use. \\
& & Output & Total number of iterations performed. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 1 & \begin{tabular}{l}
The result satisfied convergence Criterion I. (See \\
the argument isw.)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 2 & \begin{tabular}{l}
The result satisfied convergence Criterion II. (See \\
the argument isw.)
\end{tabular} & \multirow{2}{*}{} \\
\hline 10 & Completed the \(\mathrm{m}(\mathrm{m}=-m)\) iterations. & \\
\hline 11 & \begin{tabular}{l}
The condition \(\left|f\left(z_{i}\right)\right|=0\) was satisfied before \\
finishing all the iterations \((\mathrm{m}=-m)\), therefore the \\
iteration process was stopped and \(z_{i}\) returned as \\
the root.
\end{tabular} \\
\hline 12 & \begin{tabular}{l}
The condition \(\left|z_{i}-z_{i-1}\right| \leq \mu \cdot\left|z_{i}\right|\) was satisfied \\
before finishing all the iterations \((\mathrm{m}=-m)\), \\
therefore the iteration process was stopped and \(z_{i}\) \\
returned as the root.
\end{tabular} & \\
\hline 10000 & \begin{tabular}{l}
The specified convergence criterion was not \\
achieved after completing the given number of \\
iterations.
\end{tabular} & Return the last iteration value of \(z_{i}\) in argument \\
\hline 20000 & \begin{tabular}{l}
The case \(f\left(z_{i-2}\right)=f\left(z_{i-1}\right)=f\left(z_{i}\right)\) has \\
occurred and perturbation of \(z_{i-2}, z_{i-1}\), and \(z_{i}\) \\
was tried to overcome the problem. This proved \\
unsuccessful even when perturbation continued \\
more than five times.
\end{tabular} & Processing stopped. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
when \(\mathrm{m}>0:\) \\
isw \(=1\) and eps \(<0\) \\
isw \(=2\) and eta \(<0\) \\
isw \(=3\), eps \(<0\) or eta \(<0\) \\
otherwise: \\
\(\mathrm{m}=0\) \\
isw \(\neq 1,2\) or 3
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{isw}

This function will stop the iteration with icon=2 whenever \(\left|z_{i}-z_{i-1}\right| \leq \mu \cdot\left|z_{i}\right|\) is satisfied (where \(\mu\) is the unit round off) even when isw=1 is given. Similarly with isw=2, it will stop the iteration with icon=1 whenever \(\left|f\left(z_{i}\right)\right|=0\) is satisfied.

Note, when the root is a multiple root or very close to another root, eta must be set sufficiently large. If \(0<\) eta \(<\mu\), the function resets eta \(=\mu\).
m
Iterations are repeated \(m\) times when m is set as \(\mathrm{m}=-m(m>0)\). However, when either \(\left|f\left(z_{i}\right)\right|=0\) or \(\left|z_{i}-z_{i-1}\right| \leq \mu \cdot\left|z_{i}\right|\) is satisfied before finishing \(m\) iterations, the iteration process is stopped and the result is output with icon=11 or 12 .

\section*{4. Example program}

This example program computes a root of the function \(f(z)=e^{z}-i\) with a initial approximation of \(z_{0}=0+i 0\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
dcomplex zfun(dcomplex z); /* user function prototype */
MAIN__()
{
int ierr, icon;
dcomplex z;
double eps, eta;
int isw, m;
z.re = 0;
z.im = 0;
isw = 3;
eps = 0;
eta = 1.0e-6;
m = 100;
/* find zero of complex function */
ierr = c_dctsdm(\&z, zfun, isw, eps, eta, \&m, \&icon);
printf("icon = %i m = %i z = {%12.4e, %12.4e}\n", icon, m, z.re, z.im);
return(0);
}
/* complex user function: zfun(z) = z*z - zm */
dcomplex zfun(dcomplex z)
{
const dcomplex zm = {0, 1};
dcomplex zres;
zres.re = z.re*z.re - z.im*z.im - zm.re;
zres.im = 2*z.re*z.im - zm.im;
return(zres);
}

```

\section*{5. Method}

This function uses Muller's method for finding a root of a complex function. For further information consult the entry for CTSDM in the Fortran SSL II User's Guide and [111].

\section*{c_decheb}
\begin{tabular}{|l|}
\hline Evaluation of a Chebyshev series. \\
\hline ierr \(=c _\operatorname{decheb}(a, b, c, n, v, \& f, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

Given a truncated Chebyshev series (1) with \(n\)-terms, defined on the interval \([a, b]\)
\[
\begin{equation*}
f(x)=\sum_{k=0}^{n-1}{ }^{\prime} c_{k} T_{k}\left(\frac{2 x-(b+a)}{b-a}\right) \tag{1}
\end{equation*}
\]
this routine obtains the value \(f(v)\) at an arbitrary value \(v \in[a, b] . \sum^{\prime}\) denotes the sum in which the initial term is multiplied by a factor \(1 / 2\). Here, \(n \geq 1\) and \(a \neq b\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_decheb(a, b, c, n, v, \&f, \&icon);
where:
\begin{tabular}{llll}
a & double & Input & Lower limit \(a\) of the interval for the Chebyshev series. \\
b & double & Input & Upper limit \(b\) of the interval for the Chebyshev series. \\
c & double \(\mathrm{c}[\mathrm{n}]\) & Input & Coefficients \(c_{k}\) of the Chebyshev series, with \(\mathrm{c}[\mathrm{k}]=c_{k}\). \\
n & int & Input & Number of terms \(n\) of the Chebyshev series. \\
v & double & Input & Point \(v\) in the interval \([a, b]\). \\
f & double & Output & Value \(f(v)\) of the Chebyshev series. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{n}<1\) \\
& \(\bullet \mathrm{a}=\mathrm{b}\) \\
& \(\bullet \mathrm{V} \notin[a, b]\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

This routine obtains the value \(f(v)\) of a Chebyshev series. The routine c_dfcheb can be called before this routine to obtain the Chebyshev series expansion of an arbitrary smooth function \(f(x)\).

\section*{4. Example program}

This program evaluates \(f(x)=\sin x\) using Chebyshev series.
```

\#include <stdio.h>

```
```

\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 257 /* default value */
double fun(double x); /* function prototype */
MAIN__()
{
int ierr, icon;
int i, n, nmin, nmax;
double epsa, epsr, err, a, b, pi, v, f, h;
double c[NMAX], tab[NMAX-2];
/* initialize data */
epsa = 5e-5;
epsr = 0;
nmin = 9; /* default value */
nmax = NMAX;
pi = 2*asin(1);
a = 0;
b = pi;
/* expand function as Chebyshev series */
ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, \&n, \&err, tab, \&icon);
if (icon >= 20000) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
/* now evaluate Chebyshev series at 32 points */
h = pi/(2*32);
printf(" v f error \n");
for (i=0;i<32;i++) {
v = b*pow(cos(i*h),2);
ierr = c_decheb(a, b, c, n, v, \&f, \&icon);
if (icon!= 0) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
err = fun(v) - f;
printf("%6.3f %12.5e %12.5e\n", v, f, err);
}
return(0);
}
/* function to expand */
double fun(double x)
{
double sum, xn, xp, p, term, eps;
int n;
eps = 1e-7; /* approx. amach */
sum = x;
p = x*x;
xp = x*p;
xn = -6;
n = 3;
while (1) {
term = xp/xn;
sum = sum+term
if (fabs(term) <= eps) break;
n = n+2;
xp = xp*p;
xn = -xn*n*(n-1);
}
return (sum);
}

```

\section*{5. Method}

Consult the entry for ECHEB in the Fortran SSL II User's Guide.

\section*{c_decosp}
\begin{tabular}{|l|}
\hline Evaluation of a cosine series. \\
\hline ierr \(=c _\operatorname{decosp}(t h, a, n, v, \& f, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

Given a truncated cosine series (1) with \(n\) terms and period \(2 T\),
\[
\begin{equation*}
f(t)=\frac{1}{2} a_{0}+\sum_{k=1}^{n-1} a_{k} \cos \frac{\pi}{T} k t \tag{1}
\end{equation*}
\]
this routine obtains the value \(f(v)\), for an arbitrary point \(v\). Here \(T>0\), and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_decosp(th, \(a, n, v, \& f, \& i c o n)\);
where:
\begin{tabular}{llll}
th & double & Input & Half period \(T\) for the cosine series. \\
a & double \(\mathrm{a}[\mathrm{n}]\) & Input & Coefficients \(a_{k}\) of the cosine series, with \(\mathrm{a}[\mathrm{k}]=a_{k}\). \\
n & int & Input & Number of terms \(n\) of the cosine series. \\
v & double & Input & Point \(v\). \\
f & double & Output & Value \(f(v)\) of the cosine series. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{th} \leq 0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

This routine evaluates the value \(f(v)\) of the cosine series. The routine c_dfcosf that determines the Fourier cosine series expansion of a smooth even function \(f(t)\) with period \(2 T\) can be called before this one to determine the coefficients \(a_{k}\) of the cosine series.

\section*{4. Example program}

This program integrates the function:
\[
\begin{equation*}
F(x)=\int_{0}^{x} \frac{\sin \omega t}{\sqrt{1+\sin ^{2} \omega t}} d t \tag{2}
\end{equation*}
\]
where \(\omega=\pi / 4\), using series expansion.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 257 /* default value */
double truefun(double t); /* prototytpe for check function */
double fun(double t); /* integral function prototype */
double w; /* auxiliary variable for function fun */
MAIN__()
{
int ierr, icon;
int i, n, nmin, nmax;
double epsa, epsr, err, th, pi, v, f, q, h;
double a[NMAX], tab[(NMAX-3)/2];
/* initialize data */
epsa = 0.5e-4;
epsr = epsa;
nmin = 0; /* default value */
nmax = NMAX;
pi = 2*asin(1);
w = pi/4;
th = pi/w;
/* expand integral function as sine series */
ierr = c_dfsinf(th, fun, epsa, epsr, nmin, nmax, a, \&n, \&err, tab, \&icon);
if (icon >= 20000) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
/* integrate termwise */
for (i=1;i<n;i++)
a[i] = -a[i]/(i*w);
/* evaluate cosine series at v=0 to find a0 value */
v = 0;
ierr = c_decosp(th, a, n, v, \&f, \&icon);
if (icon != 0) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
a[0] = -f*2; /* notice factor of 2 */
/* now evaluate cosine series to give integral */
h = th/10;
printf(" v f exact \n");
for (i=1;i<=10;i++) {
v = i*h;
ierr = c_decosp(th, a, n, v, \&f, \&icon);
if (icon != 0) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
q = truefun(v); /* exact integral */
printf("%4.2f %12.6e %12.6e\n", v, f, q);
}
return(0);
}
/* function to integrate */
double fun(double t)
{
double p;
p = sin(w*t);
return p/sqrt(1+p*p);
}
/* exact integral function */
double truefun(double t)
{
double pi;
pi = 2*asin(1);
return (pi/4-asin(cos(w*t)*sqrt(0.5)))/w;

```

\section*{\}}

\section*{5. Method}

Consult the entry for ECOSP in the Fortran SSL II User's Guide.

\section*{c_deig1}

Eigenvalues and corresponding eigenvectors for a real matrix (double QR method).
```

ierr = c_deig1(a, k, n, mode, er, ei, ev, vw,
\&icon);

```

\section*{1. Function}

All eigenvalues and corresponding eigenvectors for an \(n\) order real matrix \(\mathbf{A}\) are determined \((n \geq 1)\). The eigenvalues are normalised such that \(\|x\|_{2}=1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_deig1((double *)a, k, n, mode, er, ei, (double *)ev, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double & Input & Matrix A. \\
\hline & a [n][k] & Output & The contents are altered on output. \\
\hline k & int & Input & C fixed dimension of matrix \(\mathbf{A}(\mathrm{k} \geq \mathrm{n})\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline mode & int & Input & mode \(=1\) specifies no balancing. mode \(\neq 1\) specifies that balancing is included. See Comments on use. \\
\hline er & double er[n] & Output & The real parts of the eigenvalues. \\
\hline ei & double ei[n] & Output & The imaginary parts of the eigenvalues. If the \(j\) th eigenvalue is complex, then its complex conjugate is stored in the \((j+1)\) th eigenvalue. \\
\hline ev & \begin{tabular}{l}
double \\
\(\mathrm{ev}[\mathrm{n}][\mathrm{k}]\)
\end{tabular} & Output & Eigenvectors. They are stored in the rows of ev which correspond to their eigenvalues. When the \(j\) th eigenvalue is complex, its eigenvector is also complex, with the real part being stored in the \(j\) th row, and its imaginary part stored in the \((j+1)\) th row. See Comments on use. \\
\hline VW & double \(\mathrm{vw}[\mathrm{n}]\) & Work & Used during balancing and when reducing \(\mathbf{A}\) to a real Hessenberg matrix. \\
\hline icon & int & Output & Condition codes. See below. \\
\hline The co & e list of condition cod & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \begin{tabular}{l}
\(\operatorname{er}[0]=\mathrm{a}[0][0]\) \\
\(\mathrm{ev}[0][0]=1\)
\end{tabular} \\
\hline 20000 & \begin{tabular}{l}
Eigenvalues and eigenvectors could not be \\
calculated, as the matrix A could not be reduced \\
to a triangular form.
\end{tabular} & \begin{tabular}{l}
Discontinued \\
\hline 30000
\end{tabular} \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Complex eigenvalues and corresponding eigenvectors}

In general, real matrices can have real and/or complex eigenvalues, with the latter occurring in complex conjugate pairs. In this routine, if the \(j\) th eigenvalue \(\left(\lambda_{j}\right)\) is complex, then \(\lambda_{j}\) and \(\lambda_{j}^{*}\) are stored as follows:
\[
\begin{aligned}
\lambda_{j} & =\operatorname{er}[j-1]+i \cdot \operatorname{ei}[j-1] \\
\lambda_{j}^{*} & =\operatorname{er}[j]+i \cdot \operatorname{ei}[j] \\
& =\operatorname{er}[j-1]-i \cdot \operatorname{ei}[j-1]
\end{aligned}
\]

If the eigenvalue \(\lambda_{j}\) is complex, its corresponding eigenvector \(\mathbf{x}_{j}\) is also complex, and is stored in two parts which are defined by:
\[
\mathbf{x}_{j}=\mathbf{u}_{j}+i \cdot \mathbf{v}_{j}
\]
where:
\[
\begin{aligned}
& \mathbf{u}_{j}=\operatorname{ev}[\mathrm{j}-1][m] \\
& \mathbf{v}_{j}=\operatorname{ev}[\mathrm{j}][m]
\end{aligned}
\]
where \(m=0,1,2, \ldots, \mathrm{n}-1\). The eigenvector corresponding to the complex conjugate eigenvalue \(\lambda_{j}^{*}\) (or \(\lambda_{j+1}\)) can be obtained simply using:
\[
\mathbf{x}_{j+1}=\mathbf{u}_{j}-i \cdot \mathbf{v}_{j}
\]

\section*{Balancing and mode}

If the elements of matrix \(\mathbf{A}\) vary greatly in magnitude, a solution of greater precision can be obtained using balancing, i.e. setting mode \(\neq 1\). If the magnitudes of the elements are similar, the balancing has little or no effect and should be skipped using mode \(=1\).

\section*{4. Example program}

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 matrix.
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, mode;
double a[NMAX][NMAX], er[NMAX], ei[NMAX], ev[NMAX][NMAX], vw[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[i][j] = i-n;
a[j][i] = n-i;
}
mode = 0;
/* find eigenvalues and eigenvectors */
ierr = c_deig1((double*)a, k, n, mode, er, ei, (double*)ev, vw, \&icon);
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
i = 0;

```
```

    while (i<n) {
        if (ei[i] == 0) {
            /* real eigenvector */
            printf("eigenvalue: %12.4f\n", er[i]);
            printf("eigenvector:");
            for (j=0;j<n;j++)
                printf("%7.4f ", ev[i][j]);
            printf("\n");
            i++;
        }
        else {
            /* complex eigenvector pair */
            printf("eigenvalue: {%7.4f, %7.4f}\n", er[i], ei[i]);
            printf("eigenvector: ");
            for (j=0;j<n;j++)
            printf("{%7.4f, %7.4f} ", ev[i][j], ev[i+1][j]);
            printf("\n");
            printf("eigenvalue: {%7.4f, %7.4f}\n", er[i+1], ei[i+1]);
            printf("eigenvector: ");
            for (j=0;j<n;j++)
            printf("{%7.4f, %7.4f} ", ev[i][j], -ev[i+1][j]);
        printf("\n");
            i = i+2;
        }
    }
    return(0);
    }

```

\section*{5. Method}

For further information consult the entry for EIG1 in the Fortran SSL II User's Guide, and also [118] and [119].

\section*{c_desinp}
\begin{tabular}{|l|}
\hline Evaluation of a sine series. \\
\hline ierr \(=\) c_desinp(\(\mathrm{th}, \mathrm{b}, \mathrm{n}, \mathrm{v}, \& \mathrm{f}, \quad\) \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

Given a truncated sine series (1) with \(n\) terms and period \(2 T\),
\[
\begin{equation*}
f(t)=\sum_{k=0}^{n-1} b_{k} \sin \frac{\pi}{T} k t \tag{1}
\end{equation*}
\]
with \(b_{0}=0\), this routine obtains the value \(f(v)\), for an arbitrary point \(v\). Here \(T>0\), and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_desinp(th, b, n, v, \&f, \&icon);
where:
\begin{tabular}{lll}
th & double \\
b & double \(\mathrm{b}[\mathrm{n}]\) & \begin{tabular}{l}
Input \\
Input
\end{tabular}
\end{tabular} \begin{tabular}{l}
Half period \(T\) for the sine series. \\
Coefficients \(b_{k}\) of the sine series, with \\
\end{tabular}
\begin{tabular}{llll}
n & int & Input & Number of terms \(n\) of the sine series. \\
v & double & Input & Point \(v\). \\
f & double & Output & Value \(f(v)\) of the sine series. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{ll}
One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{n}<1\) \\
& th \(\leq 0\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

This routine evaluates the value \(f(v)\) of the sine series. The routine c_dfsinf that determines the Fourier sine series expansion of a smooth odd function \(f(t)\) of period \(2 T\) can be called before this one to determine the coefficients \(b_{k}\) of the sine series.

\section*{4. Example program}

This program integrates the function:
\[
\begin{equation*}
F(x)=\int_{0}^{x} \frac{\cos \omega t}{\sqrt{1+\cos ^{2} \omega t}} d t \tag{2}
\end{equation*}
\]
where \(\omega=\pi / 4\), using series expansion.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 257 /* default value */
double truefun(double t); /* prototytpe for check function */
double fun(double t); /* integral function prototype */
double w; /* auxiliary variable for function fun */
MAIN__()
{
int ierr, icon;
int i, n, nmin, nmax;
double epsa, epsr, err, th, pi, v, f, q, h;
double b[NMAX], tab[(NMAX-3)/2];
/* initialize data */
epsa = 0.5e-4;
epsr = epsa;
nmin = 0; /* default value */
nmax = NMAX;
pi = 2*asin(1);
w = pi/4;
th = pi/w;
/* expand integral function as cosine series */
ierr = c_dfcosf(th, fun, epsa, epsr, nmin, nmax, b, \&n, \&err, tab, \&icon);
if (icon >= 20000) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
/* integrate termwise */
for (i=1;i<n;i++)
b[i] = b[i]/(i*w);
/* now evaluate cosine series to give integral */
h = th/10;
printf(" v f exact \n");
for (i=1;i<=10;i++) {
v = i*h;
ierr = c_desinp(th, b, n, v, \&f, \&icon);
if (icon != 0) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
q = truefun(v); /* exact integral */
printf("%4.2f %12.6e %12.6e\n", v, f, q);
}
return(0);
}
/* function to integrate */
double fun(double t)
{
double p;
p = cos(w*t);
return p/sqrt(1+p*p);
}
/* exact integral function */
double truefun(double t)
{
return asin(sin(w*t)*sqrt(0.5))/w;
}

```

\section*{5. Method}

Consult the entry for ESINP in the Fortran SSL II User's Guide.

\section*{c_dexpi}
\[
\begin{array}{|l|}
\hline \text { Exponential integrals } E_{i}(x) \text { and } \bar{E}_{i}(x) . \\
\hline \text { ierr }=\text { c_dexpi }(x, \text { \&ei, \&icon }) ; \\
\hline
\end{array}
\]

\section*{1. Function}

This routine computes the exponential integrals \(E_{i}(x)\) and \(\bar{E}_{i}(x)\) for \(x \neq 0\) defined as follows using an approximation formula.

For \(\mathrm{x}<0\) :
\[
E_{i}(x)=-\int_{-x}^{\infty} \frac{e^{-t}}{t} d t=\int_{-\infty}^{x} \frac{e^{t}}{t} d t
\]

For \(\mathrm{x}>0\) :
\[
\bar{E}_{i}(x)=- \text { P.V. } \int_{-x}^{\infty} \frac{e^{-t}}{t} d t=\text { P.V. } \int_{-\infty}^{x} \frac{e^{t}}{t} d t
\]

Here, P.V. means the principal value is taken at \(t=0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dexpi(x, \&ei, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). See Comments on use for range of x. \\
ei & double & Output & Function value \(E_{i}(x)\) or \(\bar{E}_{i}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(\mathrm{x}>\log \left(f l_{\max }\right)\) or \(\mathrm{x}<-\log \left(f l_{\max }\right)\) & ei is set to \(f l_{\max }\) or ei is set to 0. \\
\hline 30000 & \(\mathrm{x}=0\) & ei is set to 0. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Range of \(x\)}
- \(\quad \mathrm{X} \neq 0\) as \(E_{i}(x)\) and \(\bar{E}_{i}(x)\) are undefined for \(\mathrm{X}=0\).
- \(\quad|\mathrm{X}| \leq \log \left(f l_{\max }\right)\) since if \(|\mathrm{x}|\) exceeds this limit, \(E_{i}(x)\) and \(\bar{E}_{i}(x)\) would cause underflow and overflow respectively in the calculation of \(e^{x}\). For details on the constant \(f l_{\text {max }}\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program generates a range of function values for 100 points in the interval \([0.01,1.0]\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, ei;
int i;
for (i=1;i<=100;i++) {
x = (double)i/100;
/* calculate integral */
ierr = c_dexpi(x, \&ei, \&icon);
if (icon-== 0)
printf("x = %5.2f ei = %f\n", x, ei);
else
printf("ERROR: x = %5.2f ei = %f icon = %i\n", x, ei, icon);
}
return(0);
}

```

\section*{5. Method}

Consult the entry for EXPI in the Fortran SSL II User's Guide and [22] and [23].

\section*{c_dfcheb}
\[
\begin{array}{|c}
\hline \text { Chebyshev series expansion of a function (fast cosine transform). } \\
\hline \text { ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, } \\
\text { nmax, c, \&n, \&err, tab, \&icon); } \\
\hline
\end{array}
\]

\section*{1. Function}

This routine performs the Chebyshev series expansion of a smooth function \(f(x)\) on the interval \([a, b]\). It determines \(n\) coefficients \(c_{0}, c_{1,}, \ldots, c_{n-1}\) which satisfy (1)
\[
\begin{equation*}
\left|f(x)-\sum_{k=0}^{n-1} c_{k} T_{k}\left(\frac{2 x-(b+a)}{b-a}\right)\right| \leq \max \left\{\varepsilon_{a}, \varepsilon_{r}\|f\|\right\} \tag{1}
\end{equation*}
\]
where \(\varepsilon_{a}(\geq 0)\) is an absolute error tolerance, \(\varepsilon_{r}(\geq 0)\) is a relative error tolerance, and \(\sum^{\prime}\) denotes the sum in which the initial term is multiplied by a factor \(1 / 2\). The norm \(\|f\|\) of \(f(x)\) is defined by
\[
\|f\|=\max _{0 \leq j \leq n-1}\left|f\left(x_{j}\right)\right|,
\]
using function values taken at sample points \(x_{j}\) in the interval \([a, b]\) and given by
\[
x_{j}=\frac{a+b}{2}+\frac{b-a}{2} \cos \left(\frac{\pi}{n-1} j\right), \quad j=0,1, \ldots, n-1
\]

Here \(a \neq b\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, \&n, \&err, tab, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline a & double & Input & Lower limit \(a\) of the interval. \\
\hline b & double & Input & Upper limit \(b\) of the interval. \\
\hline \multirow[t]{5}{*}{fun} & \multirow[t]{5}{*}{function} & Input & User defined function to evaluate \(f(x)\) on the interval \([a, b]\). \\
\hline & & & Its prototype is: \\
\hline & & & double fun(double \(x\)); \\
\hline & & & where \\
\hline & & & \(x\) double Input Independent variable \\
\hline epsa & double & Input & Absolute error tolerance \(\varepsilon_{a}\). See Comments on use. \\
\hline epsr & double & Input & Relative error tolerance \(\varepsilon_{r}\). See Comments on use. \\
\hline nmin & int & Input & Lower limit (\(\geq 0\)) on the number of terms of the Chebyshev series. \(\mathrm{nmin}=2^{k}+1\) for some integer \(k \geq 0\). The default value is 9 . See Comments on use. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \(n m a x\) & int & Input & Upper limit (\(\geq\) nmin) on the number of terms of the Chebyshev series. \(\operatorname{nmax}=2^{k}+1\) for some integer \(k \geq 0\). The default value is 257 . See Comments on use. \\
\hline C & \begin{tabular}{l}
double \\
c [nmax]
\end{tabular} & Output & Coefficients \(c_{k}\) of the Chebyshev series, with \(\mathrm{c}[\mathrm{k}]=c_{k}, k=0,1, \ldots, n-1\). \\
\hline n & int & Output & Number of terms \(n(\geq 5)\) of the Chebyshev series. \(\mathrm{n}=2^{k}+1\) for some integer \(k \geq 2\). \\
\hline err & double & Output & Estimate of the absolute error of the series. See Comments on use. \\
\hline tab & \begin{tabular}{l}
double \\
tab[Tablen]
\end{tabular} & Output & A trigonometric function table used for the series expansion.
\[
\begin{aligned}
& a \neq 0, \text { Tablen }=\max \{3,(\mathrm{nmax}-3) / 2\}, \\
& a=0, \text { Tablen }=\max \{3, \operatorname{nmax}-2\} . \text { See Comments on use. }
\end{aligned}
\] \\
\hline icon & int & Output & Condition code. See below. \\
\hline The co & list of conditio & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & The required accuracy is too high and cannot be satisfied due to round-off error. & C contains the resultant coefficients. The accuracy of the series is the maximum attainable. \\
\hline 20000 & The maximum number of terms was reached and the required accuracy was not satisfied. & Stopped. C contains the resultant coefficients and err contains an estimate of the absolute error. \\
\hline 30000 & \begin{tabular}{l}
One of the following occurred: \\
- \(\quad a=b\) \\
- epsa<0 \\
- epsr<0 \\
- nmin \(<0\) \\
- nmax < nmin
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{\([a, b]\) and \(t a b\)}

This routine normally changes the interval from \([a, b]\) to \([-1,1]\), and then expands the function \(f(x)\) using the Chebyshev polynomials. When the end point a of the interval is zero, the routine expands the function using shifted Chebyshev polynomials to avoid loss of significant digits while making the change of variable. The coefficients \(\left\{c_{k}\right\}\) using shifted Chebyshev polynomials are the same as those using the Chebyshev polynomials. However, the size of tab, the array for the trigonometric function table, must be nmax - 2 when using the shifted Chebyshev polynomials, and (nmax -3)/2 when using the Chebyshev polynomials.

When the routine is called repeatedly, the trigonometic function table is produced only once. A new trigonometric function table entry is made on an as-required basis. Therefore tab must remain unchanged whenever a repeat call of the routine is made.

\section*{Accuracy}

The accuracy of the expansion as the number of terms \(n\) increases, depends on the smoothness of \(f(x)\) and the width of the interval \([a, b]\). If \(f(x)\) is an analytic function, the error decreases according to an exponential function \(\mathrm{O}\left(r^{n}\right), 0<r<1\), as \(n\) increases. If \(f(x)\) has up to \(k\) continuous derivatives, the error decreases
according to a rational function \(\mathrm{O}\left(\left|\frac{a-b}{n}\right|^{k}\right)\), as \(n\) increases. When \(k=0\) or \(k=1\), an estimate of the absolute error is not usually accurate because the number of terms increases considerably, and so the routine should only be used with a function \(f(x)\) that has at least continous second derivatives.

\section*{epsa and epsr}

Given the two error tolerances \(\varepsilon_{a}\) and \(\varepsilon_{r}\), in arguments epsa and epsr, this routine determines a Chebyshev series satisfying (1). When \(\varepsilon_{r}=0\), the absolute error criterion is used, and when \(\varepsilon_{a}=0\) the relative error criterion is used. In all cases, care must be taken not to choose \(\varepsilon_{a}\) and \(\varepsilon_{r}\) too small in comparison with the arithmetic precision of \(f(x)\), as the effect of round-off error may become dominant before the maximum number of terms nmax in the expansion has been reached. In such a case, the routine terminates with icon \(=10000\). At this time the accuracy of the Chebyshev series has reached the attainable limit for the computer used.

If the maximum number of terms nmax, is reached before the error criterion has been satisfied, due to the characteristics of the function \(f(x)\), the routine terminates with icon \(=20000\), and the coefficents obtained so far are not accurate.

To determine the accuracy of the Chebyshev series, this routine outputs an estimate of the absolute error in err.

\section*{nmin and nmax}

If the value of nmin or nmax is not of the form \(2^{k}+1\) for some integer \(k \geq 0\), this routine assumes the maximum number of the form \(2^{k}+1\) that does not exceed the given value. Also, if \(\mathrm{nmax}<5\), then the routine assumes \(\mathrm{nmax}=5\).

\section*{4. Example program}

This program evaluates \(f(x)=\sin x\) using Chebyshev series.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 257 /* default value */
double fun(double x); /* function prototype */
MAIN__()
{
int ierr, icon;
int i, n, nmin, nmax;
double epsa, epsr, err, a, b, pi, v, f, h;
double c[NMAX], tab[NMAX-2];
/* initialize data */
epsa = 5e-5;
epsr = 0;
nmin = 9; /* default value */
nmax = NMAX;
pi = 2*asin(1);
a = 0;
b = pi;
/* expand function as Chebyshev series */
ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, \&n, \&err, tab, \&icon);
if (icon >= 20000) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
/* now evaluate Chebyshev series at 32 points */
h = pi/(2*32);
printf(" v), f error \n");
for (i=0;i<32;i++) {
v = b* pow(cos(i*h),2);
ierr = c_decheb(a, b, c, n, v, \&f, \&icon);
if (icon != 0) {

```
```

            printf("ERROR: icon = %4i\n", icon);
            exit(1);
        }
        err = fun(v) - f;
        printf("%6.3f %12.5e %12.5e\n", v, f, err);
    }
    return(0);
    }
/* function to expand */
double fun(double x)
{
double sum, xn, xp, p, term, eps;
int n;
eps = 1e-7; /* approx. amach */
sum = x;
p = x*x;
xp = x*p;
xn = -6;
n = 3;
while (1) {
term = xp/xn;
sum = sum+term;
if (fabs(term) <= eps) break;
n = n+2;
xp = xp*p;
xn = -xn*n*(n-1);
}
return (sum);
}

```

\section*{5. Method}

Consult the entry for FCHEB in the Fortran SSL II User's Guide.

\section*{c_dfcosf}
\[
\begin{array}{r}
\text { Cosine series expansion of an even function (fast cosine transform). } \\
\hline \text { ierr }=\text { c_dfcosf(th, fun, epsa, epsr, nmin, } \\
\text { nmax, a, \&n, \&err, tab, \&icon); }
\end{array}
\]

\section*{1. Function}

This routine performs the cosine series expansion of a smooth even function \(f(t)\) with period \(2 T\). It determines \(n\) coefficients \(a_{0}, a_{1}, \ldots, a_{n-1}\) which satisfy (1)
\[
\begin{equation*}
\left|f(t)-\sum_{k=0}^{n-1}{ }^{\prime} a_{k} \cos \frac{\pi}{T} k t\right| \leq \max \left\{\varepsilon_{a}, \varepsilon_{r}\|f\|\right\} \tag{1}
\end{equation*}
\]
where \(\varepsilon_{a}(\geq 0)\) is an absolute error tolerance, \(\varepsilon_{r}(\geq 0)\) is a relative error tolerance, and \(\sum^{\prime}\) denotes the sum in which the initial term is multiplied by a factor \(1 / 2\). The norm \(\|f\|\) of \(f(t)\) is defined by
\[
\|f\|=\max _{0 \leq j \leq n-1}\left|f\left(t_{j}\right)\right|
\]
using function values taken at sample points within the half period \([0, T]\) and given by
\[
t_{j}=\frac{T}{n-1} j, \quad j=0,1, \ldots, n-1
\]

Here \(T>0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dfcosf(th, fun, epsa, epsr, nmin, nmax, a, \&n, \&err, tab, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline th & double & Input & Half period \(T\) of the function \(f(t)\). \\
\hline \multirow[t]{3}{*}{fun} & \multirow[t]{3}{*}{function} & Input & User defined function to evaluate \(f(t)\) over the interval \([0, T]\). \\
\hline & & & Its prototype is: double fun(double t); where \\
\hline & & & \(t\) double Input Independent variable \\
\hline epsa & double & Input & Absolute error tolerance \(\varepsilon_{a}\). See Comments on use. \\
\hline epsr & double & Input & Relative error tolerance \(\varepsilon_{r}\). See Comments on use. \\
\hline nmin & int & Input & Lower limit (\(\geq 0\)) on the number of terms of the cosine series. \(\mathrm{nmin}=2^{k}+1\) for some integer \(k \geq 0\). The default value is 9 . See \\
\hline & & & Comments on use. \\
\hline \(n m a x\) & int & Input & Upper limit (\(\geq \mathrm{nmin}\)) on the number of terms of the cosine series. \(\operatorname{nmax}=2^{k}+1\) for some integer \(k \geq 0\). The default value is 257 . See Comments on use. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[nmax]
\end{tabular} & Output & Coefficients \(a_{k}\) of the cosine series, with \(\mathrm{a}[\mathrm{k}]=a_{k}, k=0,1, \ldots, n-1\). \\
\hline n & int & Output & Number of terms \(n(\geq 5)\) of the cosine series. \(\mathrm{n}=2^{k}+1\) for some integer \(k \geq 2\). \\
\hline err & double & Output & Estimate of the absolute error of the series. See Comments on use. \\
\hline tab & \begin{tabular}{l}
double \\
tab[Tablen]
\end{tabular} & Output & A trigonometric function table used for the series expansion. Tablen \(=\max \{3,(\operatorname{nmax}-3) / 2\}\). See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
The required accuracy is too high and cannot be \\
satisfied due to round-off error.
\end{tabular} & \begin{tabular}{l}
a contains the resultant coefficients. The accuracy \\
of the series is the maximum attainable.
\end{tabular} \\
\hline 20000 & \begin{tabular}{l}
The maximum number of terms was reached and \\
the required accuracy was not satisfied.
\end{tabular} & \begin{tabular}{l}
Stopped. a contains the resultant coefficients and \\
err contains an estimate of the absolute error.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following occurred: \\
- th \(\leq 0\) \\
-
\end{tabular} & epsa \(<0\) \\
\(\bullet\) & epsr \(<0\) \\
\(\bullet\) & nmin \(<0\) \\
\(\bullet\) & nmax \(<\) nmin
\end{tabular}\(\quad\)\begin{tabular}{l}
Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Accuracy}

The accuracy of the expansion as the number of terms \(n\) increases, depends on the smoothness of \(f(t)\) over \((-\infty, \infty)\). If \(f(t)\) is an analytic periodic function, the error decreases according to an exponential function \(\mathrm{O}\left(r^{n}\right), 0<r<1\), as \(n\) increases. If \(f(t)\) has up to \(k\) continuous derivatives, the error decreases according to a rational function \(\mathrm{O}\left(n^{-k}\right)\), as \(n\) increases. When \(k=0\) or \(k=1\), an estimate of the absolute error is not usually accurate because the number of terms increases considerably, and so the routine should only be used with a function \(f(t)\) that has at least continous second derivatives.

\section*{epsa and epsr}

Given the two error tolerances \(\varepsilon_{a}\) and \(\varepsilon_{r}\), in arguments epsa and epsr, this routine determines a cosine series satisfying (1). When \(\varepsilon_{r}=0\), the absolute error criterion is used, and when \(\varepsilon_{a}=0\) the relative error criterion is used. In all cases, care must be taken not to choose \(\varepsilon_{a}\) and \(\varepsilon_{r}\) too small in comparison with the arithmetic precision of \(f(t)\), as the effect of round-off error may become dominant before the maximum number of terms nmax in the expansion has been reached. In such a case, the routine terminates with icon \(=10000\). At this time the accuracy of the cosine series has reached the attainable limit for the computer used.

If the maximum number of terms nmax, is reached before the error criterion has been satisfied, due to the characteristics of the function \(f(t)\), the routine terminates with icon \(=20000\), and the coefficents obtained so far are not accurate.

To determine the accuracy of the cosine series, this routine outputs an estimate of the absolute error in err.

\section*{nmin and nmax}

If the value of nmin or nmax is not of the form \(2^{k}+1\) for some integer \(k \geq 0\), this routine assumes the maximum number of the form \(2^{k}+1\) that does not exceed the given value. Also, if \(\max <5\), then the routine assumes nmax \(=5\).

\section*{tab}

When the routine is called repeatedly, the trigonometic function table is produced only once. A new trigonometric function table entry is made on an as-required basis. Therefore \(t a b\) must remain unchanged whenever a repeat call of the routine is made.

\section*{General comments}

When \(f(t)\) is only periodic and not an even function, this routine can be used to perform cosine series expansion for the even function \((f(t)+f(-t)) / 2\).

When \(f(t)\) has no period and is absolutely integrable, see FCOSF in Fortran SSL II User's Guide.

\section*{4. Example program}

This program integrates the function:
\[
\begin{equation*}
F(x)=\int_{0}^{x} \frac{\cos \omega t}{\sqrt{1+\cos ^{2} \omega t}} d t \tag{2}
\end{equation*}
\]
where \(\omega=\pi / 4\), using series expansion.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 257 /* default value */
double truefun(double t); /* prototytpe for check function */
double fun(double t); /* integral function prototype */
double w; /* auxiliary variable for function fun */
MAIN__()
{
int ierr, icon;
int i, n, nmin, nmax;
double epsa, epsr, err, th, pi, v, f, q, h;
double b[NMAX], tab[(NMAX-3)/2];
/* initialize data */
epsa = 0.5e-4;
epsr = epsa;
nmin = 0; /* default value */
nmax = NMAX;
pi = 2*asin(1);
w = pi/4;
th = pi/w;
/* expand integral function as cosine series */
ierr = c_dfcosf(th, fun, epsa, epsr, nmin, nmax, b, \&n, \&err, tab, \&icon);
if (icon >= 20000) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
/* integrate termwise */
for (i=1;i<n;i++)
b[i] = b[i]/(i*W);
/* now evaluate cosine series to give integral */
h = th/10;
printf(" v f exact \n");
for (i=1;i<=10;i++) {
v = i*h;

```
```

        ierr = c_desinp(th, b, n, v, &f, &icon);
        if (icon != 0) {
        printf("ERROR: icon = %4i\n", icon);
        exit(1);
        }
        q = truefun(v); /* exact integral */
        printf("%4.2f %12.6e %12.6e\n", v, f, q);
    }
    return(0);
    }
/* function to integrate */
double fun(double t)
{
double p;
p = cos( w*t);
return p/sqrt(1+p*p);
}
/* exact integral function */
double truefun(double t)
{
return asin(sin(w*t)*sqrt(0.5))/w;
}

```

\section*{5. Method}

Consult the entry for FCOSF in the Fortran SSL II User's Guide.

\section*{c_dfcosm}
\begin{tabular}{|l|}
\hline Discrete cosine transform (midpoint rule, radix 2 FFT). \\
\hline ierr = c_dfcosm(a, n, isn, tab, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

Given \(n\) data points \(\left\{x_{j+1 / 2}\right\}\), obtained by dividing the first half of a \(2 \pi\) period, even function \(x(t)\) such that
\[
x_{j+1 / 2}=x\left(\frac{\pi}{n}\left(j+\frac{1}{2}\right)\right), j=0,1, \ldots, n-1
\]
a discrete cosine transform or its inverse transform, based on the midpoint rule, is computed by a Fast Fourier Transform (FFT) algorithm. Here, \(n=2^{\ell}\), where \(\ell\) is a non-negative integer.

\section*{Cosine transform}

When \(\left\{x_{j+1 / 2}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{\frac{n}{2} a_{k}\right\}\).
\[
\frac{n}{2} a_{k}=\sum_{j=0}^{n-1} x_{j+1 / 2} \cos \frac{\pi}{n} k\left(j+\frac{1}{2}\right), k=0,1, \ldots, n-1
\]

\section*{Cosine inverse transform}

When \(\left\{a_{k}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{x_{j+1 / 2}\right\}\).
\[
x_{j+1 / 2}=\sum_{k=0}^{n-1}{ }^{\prime} a_{k} \cos \frac{\pi}{n} k\left(j+\frac{1}{2}\right), j=0,1, \ldots, n-1
\]
where \(\sum^{\prime}\) denotes the sum in which the initial term is multiplied by \(1 / 2\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dfcosm(a, n, isn, tab, \&icon);
where:
a
\begin{tabular}{|c|c|c|c|}
\hline a & double a[n] & Input Output & \[
\begin{aligned}
& \left\{x_{j+1 / 2}\right\} \text { or }\left\{a_{k}\right\} . \\
& \left\{\frac{n}{2} a_{k}\right\} \text { or }\left\{x_{j+1 / 2}\right\} .
\end{aligned}
\] \\
\hline n & int & Input & Number \(n\) of data points. \\
\hline isn & int & Input & \begin{tabular}{l}
Control information. \\
isn \(=1\) for transform, \\
isn \(=-1\) for inverse transform.
\end{tabular} \\
\hline tab & \begin{tabular}{l}
double \\
\(\operatorname{tab}[\mathrm{n}-1]\)
\end{tabular} & Output & Trigonometrc function table used in the transform. See Comments on use. \\
\hline icon & int & Output & Condition code. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\\
\(\bullet \quad i s n \neq 1\) or -1 \\
\(\bullet \quad n \neq 2^{\ell}\) with \(\ell\) a non-negative integer.
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General definition of Fourier transform}

The discrete cosine transform and its inverse transform based on the midpoint rule are generally defined by the following:
\[
\begin{aligned}
& a_{k}=\frac{2}{n} \sum_{j=0}^{n-1} x_{j+1 / 2} \cos \frac{\pi}{n} k\left(j+\frac{1}{2}\right), k=0,1, \ldots, n-1, \\
& x_{j+1 / 2}=\sum_{k=0}^{n-1}{ }^{\prime} a_{k} \cos \frac{\pi}{n} k\left(j+\frac{1}{2}\right), j=0,1, \ldots, n-1
\end{aligned}
\]

The routine obtains \(\left\{\frac{n}{2} a_{k}\right\}\) and \(\left\{x_{j+1 / 2}\right\}\) respectively, and if necessary the user must scale the results to obtain \(\left\{a_{k}\right\}\).

\section*{tab}

When the routine is called repeatedly for transforms of a fixed dimension, the trigonometric table is calculated and created only once. Therefore, tab must remain unchanged between calls to the routine. Even when the dimension varies, the trigonometric function table entry can be made on an as-required basis.

\section*{4. Example program}

This program calculates the discrete Fourier coefficients for a set of random data, and checks the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 512
MAIN__()
{
int ierr, icon;
double phai, ran, eps, cn;
double a[NMAX], b[NMAX], tab[NMAX-1];
int i, n, isn;
/* generate initial data */
n = NMAX;
phai = (sqrt(5.0)-1.0)/2;
for (i=0;i<n;i++) {
ran = (i+1)*phai;
a[i] = ran - (int)ran;
}
for (i=0;i<n;i++)
b[i] = a[i];
/* perform normal transform */
isn = 1;
ierr = c_dfcosm(a, n, isn, tab, \&icon);
if (icon != 0) {
printf("ERROR: c_dfcosm failed with icon = %d\n", icon);
exit(1);
}
/* normalize */
cn = 2.0/n;
for (i=0;i<n;i++)
a[i] = cn*a[i];

```
```

    /* perform inverse transform */
    isn = -1;
    ierr = c_dfcosm(a, n, isn, tab, &icon);
    if (icon != 0) 
        printf("ERROR: c_dfcosm failed with icon = %d\n", icon);
        exit(1);
    }*
    * check results */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((a[i] - b[i])/b[i]) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

Consult the entry for FCOSM in the Fortran SSL II User's Guide.

\section*{c_dfsinf}
\[
\begin{array}{|l}
\hline \text { Sine series expansion of an odd function (fast sine transform). } \\
\hline \text { ierr }=\text { c_dfsinf(th, fun, epsa, epsr, nmin, } \\
n m a x, ~ b, ~ \& n, ~ \& e r r, ~ t a b, ~ \& i c o n) ; ~
\end{array}
\]

\section*{1. Function}

This routine performs the sine series expansion of a smooth odd function \(f(t)\) with period \(2 T\). It determines \(n\) coefficients \(b_{0}, b_{1}, \ldots, b_{n-1}\) which satisfy (1)
\[
\begin{equation*}
\left|f(t)-\sum_{k=0}^{n-1} b_{k} \sin \frac{\pi}{T} k t\right| \leq \max \left\{\varepsilon_{a}, \varepsilon_{r}\|f\|\right\} \tag{1}
\end{equation*}
\]
where \(\varepsilon_{a}(\geq 0)\) is an absolute error tolerance and \(\varepsilon_{r}(\geq 0)\) is a relative error tolerance. The norm \(\|f\|\) of \(f(t)\) is defined by
\[
\|f\|=\max _{0 \leq j \leq n-1}\left|f\left(t_{j}\right)\right|
\]
using function values taken at sample points within the half period \([0, T]\) and given by
\[
t_{j}=\frac{T}{n-1} j, \quad j=0,1, \ldots, n-1
\]

Here \(T>0\).

\section*{2. Arguments}

The routine is called as follows:
\begin{tabular}{|c|c|c|c|}
\hline th & double & Input & Half period \(T\) of the function \(f(t)\). \\
\hline \multirow[t]{5}{*}{fun} & \multirow[t]{5}{*}{function} & \multirow[t]{5}{*}{Input} & User defined function to evaluate \(f(t)\) over the interval \([0, T]\). \\
\hline & & & Its prototype is: \\
\hline & & & double fun(double t); \\
\hline & & & where \\
\hline & & & \(t\) double Input Independent variable \\
\hline epsa & double & Input & Absolute error tolerance \(\varepsilon_{a}\). See Comments on use. \\
\hline epsr & double & Input & Relative error tolerance \(\varepsilon_{r}\). See Comments on use. \\
\hline nmin & int & Input & Lower limit (\(\geq 0\)) on the number of terms of the sine series. \(\mathrm{nmin}=2^{k}\) for some integer \(k \geq 0\). The default value is 8 . See \\
\hline & & & Comments on use. \\
\hline nmax & int & Input & Upper limit (\(\geq \mathrm{nmin}\)) on the number of terms of the sine series. \(\operatorname{nmax}=2^{k}\) for some integer \(k \geq 0\). The default value is 256 . See \\
\hline & & & Comments on use. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline b & double b[nmax] & Output & Coefficients \(b_{k}\) of the sine series, with \(\mathrm{b}[\mathrm{k}]=b_{k}, k=0,1, \ldots, n-1\). \\
\hline n & int & Output & Number of terms \(n(\geq 4)\) of the sine series. \(\mathrm{n}=2^{k}\) for some integer \(k \geq 2\). \\
\hline err & double & Output & Estimate of the absolute error of the series. See Comments on use. \\
\hline tab & \begin{tabular}{l}
double \\
tab[Tablen]
\end{tabular} & Output & A trigonometric function table used for the series expansion. Tablen \(=\max \{3, \mathrm{nmax} / 2-1\}\). See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline The co & list of conditio & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
The required accuracy is too high and cannot be \\
satisfied due to round-off error.
\end{tabular} & \begin{tabular}{l}
b contains the resultant coefficients. The accuracy \\
of the series is the maximum attainable.
\end{tabular} \\
\hline 20000 & \begin{tabular}{l}
The maximum number of terms was reached and \\
the required accuracy was not satisfied.
\end{tabular} & \begin{tabular}{l}
Stopped. b contains the resultant coefficients and \\
err contains an estimate of the absolute error.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following occurred: \\
- \\
- th \(\leq 0\) \\
-
\end{tabular} & epsa \(<0\) \\
\(\bullet\) & epsr \(<0\) \\
\(\bullet\) & nmin \(<0\) \\
\(\bullet\) & nmax \(<\) nmin
\end{tabular}\(\quad\)\begin{tabular}{l}
Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Accuracy}

The accuracy of the expansion as the number of terms \(n\) increases, depends on the smoothness of \(f(t)\) over \((-\infty, \infty)\). If \(f(t)\) is an analytic periodic function, the error decreases according to an exponential function \(\mathrm{O}\left(r^{n}\right), 0<r<1\), as \(n\) increases. If \(f(t)\) has up to \(k\) continuous derivatives, the error decreases according to a rational function \(\mathrm{O}\left(n^{-k}\right)\), as \(n\) increases. When \(k=0\) or \(k=1\), an estimate of the absolute error is not usually accurate because the number of terms increases considerably, and so the routine should only be used with a function \(f(t)\) that has at least continous second derivatives.

\section*{epsa and epsr}

Given the two error tolerances \(\varepsilon_{a}\) and \(\varepsilon_{r}\), in arguments epsa and epsr, this routine determines a sine series satisfying (1). When \(\varepsilon_{r}=0\), the absolute error criterion is used, and when \(\varepsilon_{a}=0\) the relative error criterion is used. In all cases, care must be taken not to choose \(\varepsilon_{a}\) and \(\varepsilon_{r}\) too small in comparison with the arithmetic precision of \(f(t)\), as the effect of round-off error may become dominant before the maximum number of terms nmax in the expansion has been reached. In such a case, the routine terminates with icon \(=10000\). At this time the accuracy of the sine series has reached the attainable limit for the computer used.

If the maximum number of terms nmax, is reached before the error criterion has been satisfied, due to the characteristics of the function \(f(t)\), the routine terminates with icon \(=20000\), and the coefficents obtained so far are not accurate.

To determine the accuracy of the sine series, this routine outputs an estimate of the absolute error in err.

\section*{nmin and nmax}

If the value of nmin or nmax is not of the form \(2^{k}\) for some integer \(k \geq 0\), this routine assumes the maximum number of the form \(2^{k}\) that does not exceed the given value. Also, if \(n \max <4\), then the routine assumes \(n \max =4\).

\section*{tab}

When the routine is called repeatedly, the trigonometic function table is produced only once. A new trigonometric function table entry is made on an as-required basis.Therefore tab must remain unchanged whenever a repeat call of the routine is made.

\section*{General comments}

When \(f(t)\) is only periodic and not an odd function, this routine can be used to perform sine series expansion for the odd function \((f(t)-f(-t)) / 2\).

When \(f(t)\) has no period and is absolutely integrable, see FSINF in Fortran SSL II User's Guide.

\section*{4. Example program}

This program integrates the function:
\[
\begin{equation*}
F(x)=\int_{0}^{x} \frac{\sin \omega t}{\sqrt{1+\sin ^{2} \omega t}} d t \tag{2}
\end{equation*}
\]
where \(\omega=\pi / 4\), using series expansion.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 257 /* default value */
double truefun(double t); /* prototytpe for check function */
double fun(double t); /* integral function prototype */
double w; /* auxiliary variable for function fun */
MAIN__()
{
int ierr, icon;
int i, n, nmin, nmax;
double epsa, epsr, err, th, pi, v, f, q, h;
double a[NMAX], tab[(NMAX-3)/2];
/* initialize data */
epsa = 0.5e-4;
epsr = epsa;
nmin = 0; /* default value */
nmax = NMAX;
pi = 2*asin(1);
w = pi/4;
th = pi/w;
/* expand integral function as sine series */
ierr = c_dfsinf(th, fun, epsa, epsr, nmin, nmax, a, \&n, \&err, tab, \&icon);
if (icon >= 20000) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
/* integrate termwise */
for (i=1;i<n;i++)
a[i] = -a[i]/(i*W);
/* evaluate cosine series at v=0 to find a0 value */
v = 0;
ierr = c_decosp(th, a, n, v, \&f, \&icon);
if (icon != 0) {
printf("ERROR: icon = %4i\n", icon);

```
```

        exit(1);
    }
    a[0] = -f*2; /* notice factor of 2 */
    /* now evaluate cosine series to give integral */
    h = th/10;
    printf(",v f exact \n");
    for (i=1;i<=10;i++) {
        v = i*h;
        ierr = c_decosp(th, a, n, v, &f, &icon);
        if (icon != 0) {
            printf("ERROR: icon = %4i\n", icon);
            exit(1);
        }
        q = truefun(v); /* exact integral */
        printf("%4.2f %12.6e %12.6e\n", v, f, q);
    }
    return(0);
    }
/* function to integrate */
double fun(double t)
{
double p;
p = sin( w*t);
return p/sqrt(1+p*p);
}
/* exact integral function */
double truefun(double t)
{
double pi;
pi = 2*asin(1);
return (pi/4-asin(cos(w*t)*sqrt(0.5)))/w;
}

```

\section*{5. Method}

Consult the entry for FSINF in the Fortran SSL II User's Guide.

\section*{c_dfsinm}
\[
\begin{array}{|l}
\hline \text { Discrete sine transform (midpoint rule, radix } 2 \text { FFT). } \\
\hline \text { ierr }=\text { c_dfsinm(a, n, isn, tab, \&icon); } \\
\hline
\end{array}
\]

\section*{1. Function}

Given \(n\) data points \(\left\{x_{j+1 / 2}\right\}\), obtained by dividing the first half of a \(2 \pi\) period, odd function \(x(t)\) such that
\[
x_{j+1 / 2}=x\left(\frac{\pi}{2}\left(j+\frac{1}{2}\right)\right), j=0,1, \ldots, n-1,
\]
a discrete sine transform or its inverse transform, based on the midpoint rule, is computed by a Fast Fourier Transform (FFT) algorithm. Here, \(n=2^{\ell}\), where \(\ell\) is a non-negative integer.

\section*{Sine transform}

When \(\left\{x_{j+1 / 2}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{\frac{n}{2} b_{k}\right\}\).
\[
\frac{n}{2} b_{k}=\sum_{j=0}^{n-1} x_{j+1 / 2} \sin \frac{\pi}{n} k\left(j+\frac{1}{2}\right), k=1,2, \ldots, n
\]

\section*{Sine inverse transform}

When \(\left\{b_{k}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{x_{j+1 / 2}\right\}\).
\[
x_{j+1 / 2}=\sum_{k=1}^{n-1} b_{k} \sin \frac{\pi}{n} k\left(j+\frac{1}{2}\right)+\frac{1}{2} b_{n} \sin \pi\left(j+\frac{1}{2}\right), j=0,1, \ldots, n-1
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dfsinm(a, n, isn, tab, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[n] & Input Output & \[
\begin{aligned}
& \left\{x_{i+1 / 2}\right\} \text { or }\left\{b_{k}\right\} . \\
& \left\{\frac{n}{2} b_{k}\right\} \text { or }\left\{x_{j+1 / 2}\right\} .
\end{aligned}
\] \\
\hline n & int & Input & Number \(n\) of data points. \\
\hline isn & int & Input & \begin{tabular}{l}
Control information. \\
isn \(=1\) for transform, \\
isn \(=-1\) for inverse transform.
\end{tabular} \\
\hline tab & \[
\begin{aligned}
& \text { double } \\
& \text { tab[n-1] }
\end{aligned}
\] & Output & Trigonometrc function table used in the transform. See Comments on use. \\
\hline icon & int & Output & Condition code. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet \quad\) isn \(\neq 1\) or -1 & \\
& \(\bullet \quad \mathrm{n} \neq 2^{\ell}\) with \(\ell\) a non-negative integer. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General definition of Fourier transform}

The discrete sine transform and its inverse transform based on the midpoint rule are generally defined by the following:
\[
\begin{gathered}
b_{k}=\frac{2}{n} \sum_{j=0}^{n-1} x_{j+1 / 2} \sin \frac{\pi}{n} k\left(j+\frac{1}{2}\right), k=1,2, \ldots, n, \\
x_{j+1 / 2}=\sum_{k=1}^{n-1} b_{k} \sin \frac{\pi}{n} k\left(j+\frac{1}{2}\right)+\frac{1}{2} b_{n} \sin \pi\left(j+\frac{1}{2}\right), j=0,1, \ldots, n-1 .
\end{gathered}
\]

The routine obtains \(\left\{\frac{n}{2} b_{k}\right\}\) and \(\left\{x_{j+1 / 2}\right\}\) respectively, and if necessary the user must scale the results to obtain \(\left\{b_{k}\right\}\).

\section*{Calculation of the trigonometric polynomial}

When obtaining the values \(x\left(\frac{\pi}{n}\left(j+\frac{1}{2}\right)\right)\) of the \(n\)-th order polynomial
\[
x(t)=b_{1} \sin t+b_{2} \sin 2 t+\ldots+b_{n} \sin n t
\]
by using the inverse transform, the highest order coefficient \(b_{n}\) must be doubled in advance.

\section*{tab}

When the routine is called repeatedly for transforms of a fixed dimension, the trigonometric table is calculated and created only once. Therefore, tab must remain unchanged between calls to the routine. Even when the dimension varies, the trigonometric function table entry can be made on an as-required basis.

\section*{4. Example program}

This program calculates the discrete Fourier coefficients for a set of random data, and checks the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 512
MAIN__()
{
int ierr, icon;
double phai, ran, eps, cn;
double a[NMAX], b[NMAX], tab[NMAX-1];
int i, n, isn;
/* generate initial data */
n = NMAX;
phai = (sqrt(5.0)-1.0)/2;
for (i=0;i<n;i++) {
ran = (i+1)*phai;
a[i] = ran - (int)ran;
}
for (i=0;i<n;i++)
b[i] = a[i];
/* perform normal transform */
isn = 1;

```
```

    ierr = c_dfsinm(a, n, isn, tab, &icon);
    if (icon != 0) {
        printf("ERROR: c_dfsinm failed with icon = %d\n", icon);
        exit(1);
    }
    /* normalize */
    cn = 2.0/n;
    for (i=0;i<n;i++)
    a[i] = cn*a[i];
    /* perform inverse transform */
    isn = -1;
    ierr = c_dfsinm(a, n, isn, tab, &icon);
    if (icon != 0) {
        printf("ERROR: c_dfsinm failed with icon = %d\n", icon);
        exit(1);
    }
    /* check results */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((a[i] - b[i])/b[i]) > eps) {
            printf("WARNING: result inaccurate\n");
            exit(1);
        }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

Consult the entry for FSINM in the Fortran SSL II User's Guide.

\section*{c_dgbseg}
\[
\begin{aligned}
& \text { Eigenvalues and corresponding eigenvectors of a symmetric band } \\
& \text { generalised eigenproblem (Jennings' method). } \\
& \hline \text { ierr }=c _d g b s e g(a, b, n, n h, m, e p s z, ~ e p s t, \\
& l m, e, e v, k, \& i t, v w, ~ \& i c o n) ;
\end{aligned}
\]

\section*{1. Function}

This routine obtains \(m\) eigenvalues, in descending (or ascending) order of absolute values, for the generalized eigenproblem (1),
\[
\begin{equation*}
\mathbf{A} \mathbf{x}=\lambda \mathbf{B} \mathbf{x} \tag{1}
\end{equation*}
\]
where \(\mathbf{A}\) and \(\mathbf{B}\) are \(n \times n\) symmetric band matrices with \(n \geq 1\) and bandwidth \(h\). When starting with the eigenvalue of smallest (or largest) absolute value, matrix \(\mathbf{A}\) (or \(\mathbf{B}\)) must be positive definite. Given \(m\) initial vectors, this routine also obtains \(m\) eigenvectors corresponding to the eigenvalues, usign Jennings' simultaneous iteration method with Jennings' acceleration. The eigenvectors \(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{m}\). are normalized such that
\[
\mathbf{X}^{\mathrm{T}} \mathbf{B} \mathbf{X}=\mathbf{I}
\]
or
\[
\mathbf{X}^{\mathrm{T}} \mathbf{A X}=\mathbf{I}
\]

Here, \(1 \leq m \ll n\) and \(0 \leq h \ll n\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dgbseg(a, b, n, nh, m, epsz, epst, lm, e, (double *)ev, k, \&it, vw,
\&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input & Matrix A. Stored in symmetric band storage format. See the Array storage formats of the Introduction section for details.
\[
\text { Alen }=n(h+1)-h(h+1) / 2 .
\] \\
\hline b & double \(\mathrm{b}[\) Blen \(]\) & Output
Input & \begin{tabular}{l}
When eigenvalues are obtained in ascending order of absolute value, the contents of a are changed on output. See Comments on use. \\
Matrix B. Stored in symmetric band storage format. See the Array storage formats section of the Introduction section for details.
\[
\text { Blen }=n(h+1)-h(h+1) / 2 .
\]
\end{tabular} \\
\hline n & int & Output Input & The contents of b are changed on output. See Comments on use. Order \(n\) of matrices \(\mathbf{A}\) and \(\mathbf{B}\). \\
\hline nh & int & Input & Bandwidth \(h\) of matrices A and B. See Comments on use. \\
\hline m & int & Input & Number \(m\) of eigenvalues and eigenvectors to be obtained. \(\mathrm{m}>0\) if the \(m\) eigenvalues are obtained in descending order of absolute value. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{epsz} & \multirow{3}{*}{double} & \multirow{3}{*}{Input} & \(\mathrm{m}<0\) if the \(m\) eigenvalues are obtained in ascending order of absolute value. See Comments on use. \\
\hline & & & Tolerance for relative zero test of pivots in decomposition process of matrix \(\mathbf{A}\) or \(\mathbf{B}\). When epsz \(\leq 0\), a standard value is used. See \\
\hline & & & Comments on use. \\
\hline epst & double & Input & Constant \(\varepsilon\) used for convergence criterion of eigenvectors. When epst \(\leq 0\), a standard value is used. See Comments on use. \\
\hline \(1 m\) & int & Input & Upper limit for the number of iterations. If the number of iterations exceeds the limit, processing is stopped. See Comments on use. \\
\hline e & double e[m] & Output & Eigenvalues, stored in descending or ascending order as specified by argument m . \\
\hline \multirow[t]{2}{*}{ev} & \multirow[t]{2}{*}{double
\[
e v[m+2][k]
\]} & Input & Initial vectors, stored by rows. See Comments on use. \\
\hline & & Output & Eigenvectors, stored by rows. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array ev (\(\geq \mathrm{n}\)). \\
\hline it & int & Output & Number of iterations performed to obtain the eigenvalues and eigenvectors. \\
\hline \multirow[t]{2}{*}{VW} & double & Work & \(V\) len \(=2 n+m(3 m+1) / 2\). \\
\hline & vw[Vwlen] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
The number of iterations exceeded the upper limit \\
lm.
\end{tabular} & \begin{tabular}{l}
Stopped. e and ev contain the eigenvalues and \\
eigenvectors obtained so far.
\end{tabular} \\
\hline 25000 & \begin{tabular}{l}
Orthogonalization of eigenvectors at each \\
iteration cannot be attained.
\end{tabular} & Discontinued. \\
\hline 28000 & Matrix \(\mathbf{A}\) or \(\mathbf{B}\) is not positive definite. & Discontinued. \\
\hline 29000 & Matrix \(\mathbf{A}\) or \(\mathbf{B}\) is singular. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{nh}<0\) or \(\mathrm{nh} \geq \mathrm{n}\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
\(\bullet \quad \mathrm{m}=0\) or \(|\mathrm{m}|>\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{\(a\) and \(b\)}

When eigenvalues are obtained in ascending order of absolute value, the contents of \(b\) are saved into array \(a\). When several eigenproblems with the same matrix \(\mathbf{B}\) are to be solved, this routine can utilize the contents of matrix \(\mathbf{B}\) stored in array a.

\section*{nh}

The bandwidth of matrix \(\mathbf{A}\) must be equal to the bandwidth of matrix \(\mathbf{B}\). If the bandwidths are not the same, the greater bandwidth is assumed and zeros are added to the matrix of smaller bandwidth as required.

\section*{m}

The number of eigenvalues and eigenvectors \(m\) should be smaller than \(n\) such that \(m / n<1 / 10\). The numbering of eigenvalues is from the smallest (or largest) absolute value of eigenvalue, \(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\). If possible, \(m\) should be chosen such that \(\left|\lambda_{m+1} / \lambda_{m}\right| \ll 1\) (or \(\left|\lambda_{m+1} / \lambda_{m}\right| \gg 1\)) to achieve faster convergence.

\section*{epsz}

The standard value for epsz is \(16 \mu\), where \(\mu\) is the unit round-off.

If a pivot fails the relative zero test during decomposition of matrix \(\mathbf{A}\) or \(\mathbf{B}\), the matrix is considered to be singular and processing is discontinued with \(\mathrm{icon}=29000\). Processing may proceed with a smaller value for epsz, but the accuracy of the result cannot be guaranteed.

If a pivot is negative during the decomposition of matrix \(\mathbf{A}\) or \(\mathbf{B}\), the matrix is regarded as not positive definite and processing is discontinued with icon \(=28000\).

\section*{epst}

When an eigenvector (normalized so that \(\|\mathbf{x}\|_{2}=1\)) converges for the convergence criterion constant \(\varepsilon\), the corresponding eigenvalue converges at least with accuracy \(\|\mathbf{A}\|_{2} \varepsilon\), and in most cases with greater accuracy. The standard convergence criterion constant is \(\varepsilon=16 \mu\), where \(\mu\) is the unit round-off. However, when the eigenvalues are close together convergence may not be attained with this convergence criterion constant, and a more appropriate value would be \(\varepsilon \geq 100 \mu\).

\section*{lm}

The upper limit \(1 m\) for the number of iterations is used to stop the processing when convergence is not attained. The value of 1 m should be chosen taking into account the required accuracy and how close together the eigenvalues are to each other. With the standard convergence criterion constant and well-separated eigenvalues a value for 1 m between 500 and 1000 should be appropriate.

\section*{Initial eigenvectors}

It is desirable for the initial vectors to be good approximations to the eigenvectors. However, if approximate eigenvectors are not available as initial vectors, the standard way to choose intial vectors is to use the first \(m\) column vectors of the identity matrix I.

\section*{4. Example program}

This program finds the eigenvalues and corresponding eigenvectors of a symmetric band generalised eigenproblem
```

\#include <stdlib.h>
\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define NMAX 5
\#define NHMAX 2
MAIN__()
{
int ierr, icon;
int n, m, nh, i, j, k, ij, lm, it, jmin;
double a[NMAX*(NHMAX+1)-NHMAX* (NHMAX+1)/2];
double b[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2];
double e[NMAX], ev[NMAX+2][NMAX], vw[2*NMAX+NMAX*(3*NMAX+1)/2], epsz, epst;
/* initialize matrix */
n = NMAX;

```
```

    nh = NHMAX;
    ij = 0;
    for (i=0;i<n;i++) {
        jmin = max(i-nh, 0);
        for (j=jmin;j<i;j++) {
        a[ij] = n-i;
        b[ij++] = 0;
        }
        a[ij] = n-i;
        b[ij++] = 1;
    }
k = NMAX;
m = n;
/* initialize m eigenvectors */
for (i=0;i<m;i++)
for ( j=0;j<n;j++)
if (i == j) ev[i][j] = 1;
else ev[i][j] = 0;
lm = 1000;
epsz = 0;
epst = 0;
/* find eigenvalues and eigenvectors */
ierr = c_dgbseg(a, b, n, nh, m, epsz, epst, lm,
e, (double*)ev, k, \&it, vw, \&icon);
if (icon >= 20000) {
printf("ERROR: c_dgbseg failed with icon = %d\n", icon);
exit(1);
}
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
printf("e-value %d: %10.4f\n",i+1,e[i]);
printf("e-vector:");
for (j=0;j<n;j++)
printf("%7.4f ",ev[i][j]);
printf("\n");
}
return(0);
}

```

\section*{5. Method}

Consult the entry for GBSEG in the Fortran SSL II User's Guide and [61].

\section*{c_dgcheb}
\begin{tabular}{|l|}
\hline Differentiation of a Chebyshev series. \\
\hline ierr \(=c _d g c h e b(a, b, ~ c, ~ \& n, ~ \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

Given a truncated Chebyshev series (1) with \(n\)-terms, defined on the interval \([a, b]\)
\[
\begin{equation*}
f(x)=\sum_{k=0}^{n-1} c_{k} T_{k}\left(\frac{2 x-(b+a)}{b-a}\right) \tag{1}
\end{equation*}
\]
this routine obtains its derivative in a Chebyshev series (2)
\[
\begin{equation*}
f^{\prime}(x)=\sum_{k=0}^{n-2}{ }^{\prime} c_{k}^{\prime} T_{k}\left(\frac{2 x-(b+a)}{b-a}\right) \tag{2}
\end{equation*}
\]
where \(c_{k}^{\prime} k=0,1, \ldots, n-2\) are its Chebyshev coefficients. \(\sum^{\prime}\) denotes the sum in which the initial term is multiplied by a factor \(1 / 2\). Here, \(n \geq 1\) and \(a \neq b\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dgcheb(a, b, c, \&n, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \multirow[t]{4}{*}{\begin{tabular}{l}
double \\
double \\
double c[n]
\end{tabular}} & Input & Lower limit \(a\) of the interval for the Chebyshev series. \\
\hline b & & Input & Upper limit \(b\) of the interval for the Chebyshev series. \\
\hline \multirow[t]{2}{*}{c} & & Input & Coefficients \(c_{k}\) of the Chebyshev series, with \(\mathrm{c}[\mathrm{k}]=c_{k}, k=0,1, \ldots, n-1\). \\
\hline & & Output & Coefficients \(c_{k}^{\prime}\) for the derivative, with \(\mathrm{c}[\mathrm{k}]=c_{k}^{\prime}, k=0,1, \ldots, n-2\). \\
\hline n & int & Input & Number of terms \(n\) of the Chebyshev series. \\
\hline & & Output & Number of terms \(n-1\) of the derivative Chebyshev series. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{a}=\mathrm{b}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

When the derivative of an arbitrary function is required, the routine \(c _d f c h e b\) can be called before this one to obtain the Chebyshev series expansion for the function.

The routine c_decheb can be called after this routine to evaluate the derivative Chebyshev series at an arbitrary point \(v \in[a, b]\). See example.

This routine can be called repeatedly to obtain derivatives of higher order.

The error of a derivative can be estimated from the absolute sum of the last two terms of the series. Note that the error of a derivative increases as the order increases.

\section*{4. Example program}

This program evaluates and differentiates the function \(f(x)=e^{x}\) using Chebyshev series.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 257 /* default value */
double fun(double x); /* function prototype */
MAIN__()
{
int ierr, icon;
int i, n, nmin, nmax;
double epsa, epsr, err, a, b, pi, v, f, h;
double c[NMAX], tab[(NMAX-3)/2];
/* initialize data */
epsr = 5e-5;
epsa = 0;
nmin = 9; /* default value */
nmax = NMAX;
pi = 2*asin(1);
a = -2;
b = 2;
/* expand function as Chebyshev series */
ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, \&n, \&err, tab, \&icon);
if (icon >= 20000) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
/* now calculate derivative */
ierr = c_dgcheb(a, b, c, \&n, \&icon);
if (icon != 0) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}*
/* now evaluate Chebyshev series at points */
h = 0.05;
printf(" v differential error \n");
for (i=0;i<=80;i++) {
v = a+i*h;
ierr = c_decheb(a, b, c, n, v, \&f, \&icon);
if (icon != 0) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
err = fun(v) - f;
printf("%5.2f %12.5e %12.5e\n", v, f, err);
}
return(0);
}
/* function to expand */
double fun(double x)
{
double sum, xn, xp, term, eps;
int n;
eps = 1e-7; /* approx. amach */
sum = 1;
xp = x;

```
```

    xn = 1;
    n = 1;
    while'(1) {
        term = xp/xn;
        sum = sum+term;
        if (fabs(term)'<= fabs(sum)*eps) break;
        n = n+1;
        xp = xp*x;
        xn = xn*n;
    }
    return (sum);
    }

```
5. Method

Consult the entry for GCHEB in the Fortran SSL II User's Guide.

\section*{c_dginv}

Generalized inverse of a real matrix (singular value decomposition method).
```

ierr = c_dginv(a, ka, m, n, sig, v, kv, eps,
vw, \&icon);

```

\section*{1. Function}

This function computes the generalized inverse \(\mathbf{A}^{+}\)of an \(m \times n\) real matrix \(\mathbf{A}\) using the singular value decomposition method \((m \geq 1\) and \(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dginv((double*)a, ka, m, n, sig, (double*)v, kv, eps, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double & Input & Matrix A. \\
\hline & a [m][ka] & Output & Transposed matrix \(\mathbf{A}^{+}\). See Comments on use. \\
\hline ka & int & Input & C fixed dimension of array a \((\geq n)\). \\
\hline m & int & Input & The number of rows \(m\) in matrix \(\mathbf{A}\). \\
\hline n & int & Input & The number of columns \(n\) in matrix \(\mathbf{A}\). \\
\hline sig & double sig[n] & Output & Singular values of matrix A. See Comments on use. \\
\hline v & double
\[
\mathrm{v}[\mathrm{n}][\mathrm{kv}]
\] & Output & Orthogonal transformation matrix produced by the singular value decomposition. \\
\hline kv & int & Input & \(C\) fixed dimension of array \(v(\geq \min (\mathrm{m}+1, \mathrm{n})\)). \\
\hline eps & double & Input & Tolerance for relative zero test of the singular value. When eps is zero, a standard value is used \((\geq 0)\). See Comments on use. \\
\hline Vw & double vw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 15000 & Some singular values could not be obtained. & Stopped. \\
\hline 29000 & Memory allocation error. & Bypassed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(k a<n\) \\
- \(m<1\) \\
- \(\mathrm{n}<1\) \\
- \(k v<\min (n, m+1)\) \\
- eps \(<0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a}

Note that the transposed matrix \(\left(\mathbf{A}^{+}\right)^{\mathrm{T}}\) instead of the generalized inverse \(\mathbf{A}^{+}\)is placed in the a array.

\section*{sig}

All singular values are non-negative and stored in descending order. When icon=15000, the unobtainable singular values are set to -1 and the values are not arranged in any order.

\section*{eps}
eps has a direct effect on the determination of the rank of \(\mathbf{A}\) and must be specified carefully.
When a singular value is less than the tolerance, eps, it is assumed to be zero. The standard value of eps is \(16 \mu\), where \(\mu\) is the unit round-off. A value less than zero results in icon=30000.

\section*{Least squares solution}

The least squares minimal norm solution of a system of linear equations, \(\mathbf{A x}=\mathbf{b}\), can be expressed as \(\mathbf{x}=\mathbf{A}^{+} \mathbf{b}\) by using the generalized inverse \(\mathbf{A}^{+}\). However, this function should not be used except when generalized inverse \(\mathbf{A}^{+}\)is required. The function C_dlaxlm, is provided by the C-SSL II library for this purpose.

\section*{4. Example program}

This example program initializes the matrix \(\mathbf{A}\), finds the generalized inverse, and displays the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define MMAX 7
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int m, n, i, j, ka, kv;
double a[MMAX][NMAX], sig[NMAX], v[NMAX][NMAX], vw[NMAX], eps;
/* initialize system */
m = MMAX;
n = NMAX;
for (i=0;i<n;i++)
for (j=i;j<n;j++) {
a[i][j] = n-j;
a[j][i] = n-j;
}
for (i=n;i<m;i++)
for (j=0;j<n;j++) {
a[i][j] = 0;
if (i%n == j) a[i][j] = 1;
}
ka = NMAX;
kv = NMAX;
eps = 0;
/* generalized inverse */
ierr = c_dginv((double*)a, ka, m, n, sig, (double*)v, kv, eps, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dginv failed with icon = %d\n", icon);
exit(1);
}
/* print transposed generalized inverse */
for (i=0;i<m;i++) {
for (j=0;j<n;j++)
printf("%7.4f ",a[i][j]);
printf("\n");

```
```

    }
    return(0);
    }

```

\section*{5. Method}

The singular value decomposition method is used to compute the Moore-Penrose generalized inverse \(\mathbf{A}^{+}\)of a given matrix A. For further information consult the entry for GINV in the Fortran SSL II User's Guide and Reference [41].

\section*{c_dgsbk}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Back transformation of the eigenvectors of the standard form \\
eigenproblem to the eigenvectors of the symmetric generalized \\
eigenproblem.
\end{tabular} \\
\hline ierr \(=c _d g s b k(e v, k, n, m, b\), \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine performs back transformation on \(m\) eigenvectors \(\mathbf{y}_{j}, j=1,2 \ldots, m\) of an \(n \times n\) symmetric matrix \(\mathbf{S}\) to obtain the eigenvectors \(\mathbf{x}_{j}, j=1,2, \ldots, m\) for the generalized eigenproblem
\[
\mathbf{A x}=\lambda \mathbf{B} \mathbf{x}
\]
where S is given by
\[
\mathbf{S}=\mathbf{L}^{-1} \mathbf{A L}^{-\mathrm{T}}
\]
with \(\mathbf{B}=\mathbf{L L}^{\mathrm{T}}\), where L is a lower triangular matrix, and \(\mathrm{n} \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dgsbk((double *)ev, k, n, m, b, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline ev & double ev[|m|][k] & Input Output & \begin{tabular}{l}
The \(m\) eigenvectors \(\mathbf{y}_{i}\) of matrix \(\mathbf{S}\). \\
Eigenvectors \(\mathbf{x}_{j}\) for the generalized eigenproblem \(\mathbf{A x}=\lambda \mathbf{B x}\). See Comments on use.
\end{tabular} \\
\hline k & int & Input & C fixed dimension of array ev (\(\geq \mathrm{n}\)). \\
\hline n & int & Input & Order \(n\) of the matrices. \\
\hline m & int & Input & Number \(m\) of eigenvectors. If \(m<0\), then the absolute value of \(m\) is assumed. \\
\hline b & \[
\begin{aligned}
& \text { double } \\
& b[n(n+1) / 2]
\end{aligned}
\] & Input & Matrix L. Stored in symmetric storage format. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & ev[0][0] \(1 / \mathrm{b}[0]\). \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{m}=0\) or \(|\mathrm{m}|>\mathrm{n}\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

If input eigenvectors \(\mathbf{y}_{j}, j=1,2, \ldots, m\) are normalized such that \(\mathbf{Y}^{\mathrm{T}} \mathbf{Y}=\mathbf{I}\), then output eigenvectors \(\mathbf{x}_{j}, j=1,2, \ldots, m\) are such that \(\mathbf{X}^{\mathrm{T}} \mathbf{B X}=\mathbf{I}\), where \(\mathbf{Y}=\left[\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{m}\right]\) and \(\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right]\).

\section*{b}

Output argument b of routine c_dgschl which reduces the symmetric eigenproblem to standard form, can be used as input argument \(b\) of this routine.

\section*{4. Example program}

This program reduces a matrix to a standard form, finds the eigenvalues and eigenvectors, and then performs a back transformation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, ij, m;
double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], vw[2*NMAX];
double e[NMAX], ev[NMAX][NMAX], epsz;
/* initialize matrix */
n = NMAX;
ij = 0;
for (i=0;i<n;i++) {
for (j=0;j<i;j++) {
a[ij] = n-i;
b[ij++] = 0;
}
a[ij] = n-i;
b[ij++] = 1;
}
/* reduce to standard form */
epsz = 0;
ierr = c_dgschl(a, b, n, epsz, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dgschl failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvalues and eigenvectors */
k = NMAX;
ierr = c_dseig1(a, n, e, (double*)ev, k, \&m, vw, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dseig1 failed with icon = %i\n", icon);
exit (1);
}
/* back transformation */
ierr = c_dgsbk((double*)ev, k, n, m, b, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dgsbk failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
printf("eigenvalue: %7.4f\n", e[i]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f ", ev[i][j]);
printf("\n");
}
return(0)
}

```

\section*{5. Method}

Consult the entry for GSBK in the Fortran SSL II User's Guide and reference [119].

\section*{c_dgschl}
\begin{tabular}{|l|}
\hline Reduction of a symmetric matrix system \(\mathbf{A x}=\lambda \mathbf{B x}\) to a standard form. \\
\hline ierr \(=c _\operatorname{dgschl}(\mathrm{a}, \mathrm{b}, \mathrm{n}, \mathrm{epsz}, \quad\) \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

For an \(n \times n\) symmetric matrix \(\mathbf{A}\) and an \(n \times n\) positive definite symmetric matrix \(\mathbf{B}\), the generalized eigenvalue problem
\[
\mathbf{A} \mathbf{x}=\lambda \mathbf{B} \mathbf{x},
\]
is reduced to the standard form
\[
\mathbf{S y}=\lambda \mathbf{y}
\]
where \(\mathbf{S}\) is a symmetric matrix and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dgschl(a, b, n, epsz, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double
\[
a[n(n+1) / 2]
\] & Input & Matrix A. Stored in symmetric storage format. See Array storage formats in the Introduction section for details. \\
\hline & & Output & Matrix S. Stored in symmetric storage format. See Array storage formats in the Introduction section for details. \\
\hline \multirow[t]{2}{*}{b} & \[
\begin{aligned}
& \text { double } \\
& b[n(n+1) / 2]
\end{aligned}
\] & Input & Matrix B. Stored in symmetric storage format. See Array storage formats in the Introduction section for details. \\
\hline & & Output & Lower triangular matrix \(\mathbf{L}\), such that \(\mathbf{B}=\mathbf{L} \mathbf{L}^{\mathrm{T}}\). Stored in symmetric storage format. See Array storage formats in the Introduction section for details. \\
\hline n & int & Input & Order \(n\) of the matrices. \\
\hline epsz & double & Input & Tolerance (\(\geq 0\)) for relative zero test of pivots in the \(L L^{T}\) decomposition of matrix B. When epsz \(\leq 0\), a standard value is used. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \begin{tabular}{l}
\(\mathrm{a}[0]=\mathrm{a}[0] / \mathrm{b}[0]\), \\
\(\mathrm{b}[0]=\sqrt{\mathrm{b}[0]}\).
\end{tabular} \\
\hline 28000 & \begin{tabular}{l}
A pivot was negative in the \(\mathbf{L L}^{\mathrm{T}}\) decomposition \\
of matrix \(\mathbf{B}\). Input matrix \(\mathbf{B}\) is not positive \\
definite.
\end{tabular} & \begin{tabular}{l}
Discontinued. \\
\hline 29000
\end{tabular} \\
\begin{tabular}{l}
A pivot was relatively zero in the \(\mathbf{L L}^{\mathrm{T}}\) \\
decomposition of matrix \(\mathbf{B}\). Input matrix \(\mathbf{B}\) is
\end{tabular} & Discontinued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & possibly singular. & \\
\hline 30000 & \(\mathrm{n}<1\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off. If, during the \(\mathbf{L L}^{\mathrm{T}}\) decomposition of matrix \(\mathbf{B}\), a pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=29000. Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the required accuracy.

If a pivot becomes negative during the \(\mathbf{L L}^{\mathrm{T}}\) decomposition of matrix \(\mathbf{B}\), matrix \(\mathbf{B}\) is considered not to be positive definite, and processing is discontinued with icon \(=28000\).

\section*{4. Example program}

This program reduces a matrix to a standard form, finds the eigenvalues and eigenvectors, and then performs a back transformation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, ij, m;
double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], vw[2*NMAX];
double e[NMAX], ev[NMAX][NMAX], epsz;
/* initialize matrix */
n = NMAX;
ij = 0;
for (i=0;i<n;i++) {
for (j=0;j<i;j++) {
a[ij] = n-i;
b[ij++] = 0;
}
a[ij] = n-i;
b[ij++] = 1;
}*
/* reduce to standard form */
epsz = 0;
ierr = c_dgschl(a, b, n, epsz, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dgschl failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvalues and eigenvectors */
k = NMAX;
ierr = c_dseig1(a, n, e, (double*)ev, k, \&m, vw, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dseig1 failed with icon = %i\n", icon);
exit (1);
}
/* back transformation */
ierr = c_dgsbk((double*)ev, k, n, m, b, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dgsbk failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */

```
```

    for (i=0;i<m;i++) {
        printf("eigenvalue: %7.4f\n", e[i]);
        printf("eigenvector: ");
        for (j=0;j<n;j++)
        printf("%7.4f ", ev[i][j]);
        printf("\n");
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for GSCHL in the Fortran SSL II User's Guide and reference [119].

\section*{c_dhbk1}
```

Back transformation and normalization of the eigenvectors of a
Hessenberg matrix.
ierr = c_dhbk1(ev, k, n, ind, m, p, pv, dv,
\&icon);

```

\section*{1. Function}

This routine performs back transformation on \(m\) eigenvectors of an \(n \times n\) Hessenberg matrix \(\mathbf{H}\) to obtain the eigenvectors of a real matrix \(\mathbf{A}\). The resulting eigenvectors are then normalized such that \(\|\mathbf{x}\|_{2}=1\). \(\mathbf{H}\) is obtained from A using the Householder method. Here \(1 \leq m \leq n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dhbk1((double *)ev, k, n, ind, m, (double *)p, pv, dv, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline ev & \begin{tabular}{l}
double \\
\(\mathrm{ev}[\mathrm{m}][\mathrm{k}]\)
\end{tabular} & Input & The \(m\) eigenvectors of the Hessenberg matrix \(\mathbf{H}\). \\
\hline & & Output & The \(m\) eigenvectors of matrix A. \\
\hline k & int & Input & \(C\) fixed dimension of array ev and p(\(\geq \mathrm{n})\). \\
\hline n & int & Input & Order \(n\) of matrices \(\mathbf{A}\) and \(\mathbf{H}\). \\
\hline ind & int ind[m] & Input & \begin{tabular}{l}
Indicates the type of each eigenvector: \\
ind \([j-1]=1\) if the \(j-1\)-st row of \(e v\) is a real eigenvector ind \([j-1]=-1\) if the \(j-1\)-st row of \(e v\) is the real part of a complex eigenvector ind \([j-1]=0\) if the \(j-1\)-st row of ev is the imaginary part of a complex eigenvector.
\end{tabular} \\
\hline & & & \(\mathrm{j}=1, \ldots, \mathrm{~m}\). \\
\hline m & int & Input & Number \(m\) of eigenvectors. \\
\hline \(p\) & \[
\begin{aligned}
& \text { double } \\
& \mathrm{p}[\mathrm{n}][\mathrm{k}]
\end{aligned}
\] & Input & Transformation matrix provided by the Householder method. See Comments on use. \\
\hline pv & double pv[n] & Input & Transformation matrix provided by the Householder method. See Comments on use. \\
\hline dv & double dv[n] & Input & Scaling factors used for balancing the matrix \(\mathbf{A}\). If matrix \(\mathbf{A}\) was not balanced, set \(\mathrm{dv}[0]=0\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & ev \([0][0]=1\). \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{m}<1\) or \(\mathrm{m}>\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet \mathrm{k}<\mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{\(e v\), ind and \(m\)}

The eigenvectors are stored in ev such that each real eigenvector occupies one row and each complex eigenvector occupies two rows (one for the real part and one for the imaginary part).

The routine c_dhvec can be used to obtain the eigenvectors of a Hessenberg matrix. Input argument \(m\) and output arguments ev and ind of c _dhvec are the same as input arguments \(\mathrm{m}, \mathrm{ev}\), and ind for this routine.

\section*{\(p\) and \(p v\)}

The routine c_dhes1 can be used to reduce a matrix to a Hessenberg matrix. Output arguments a and pv of c_dhes1 are the same as input arguments \(p\) and \(p v\) of this routine.

\section*{dv}

The output argument \(d v\) of \(c _d b l n c\) contains the scaling factors used for balancing the matrix \(\mathbf{A}\), and is the input argument \(d v\) of this routine.

\section*{4. Example program}

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then performs a back transformation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, m, mk, ind[NMAX];
double a[NMAX][NMAX], pv[NMAX], aw[NMAX+4][NMAX];
double er[NMAX], ei[NMAX], ev[NMAX][NMAX];
double dv[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
mk = NMAX;
for (i=0;i<n;i++) {
a[i][i] = n-i;
for (j=0;j<i;j++) {
a[i][j] = n-i;
a[j][i] = n-i;
}
}
* balance matrix A */
ierr = c_dblnc((double*)a, k, n, dv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dblnc failed with icon = %i\n", icon);
exit (1);
}
/* reduce matrix to Hessenberg form */
ierr = c_dhes1((double*)a, k, n, pv, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dhes1 failed with icon = %i\n", icon);
exit (1);
}
for (i=0;i<n;i++)

```
```

    for (j=0;j<n;j++)
        aw[i][j] = a[i][j];
    /* find eigenvalues */'
    ierr = c_dhsqr((double*)aw, k, n, er, ei, &m, &icon);
    if (icon >= 20000 ) {
        printf("ERROR: c_dhsqr failed with icon = %i\n", icon);
        exit (1);
    }
    for (i=0;i<m;i++) ind[i] = 1;
    /* find eigenvectors for given eigenvalues */
    ierr = c_dhvec((double*)a, k, n, er, ei,
                            ind, m, (double*)ev, mk, (double*)aw, &icon);
    if (icon >= 20000' ) {
        printf("ERROR: c_dhvec failed with icon = %i\n", icon);
        exit (1);
    }
    /* back transformation to find e-vectors of A */
    ierr = c_dhbk1((double*)ev, k, n, ind, m, (double*)a, pv, dv, &icon);
    if (icon > 10000 ) {
        printf("ERROR: c_dhbk1 failed with icon = %i\n", icon);
        exit (1);
    }
    printf("icon = %i\n", icon);
    /* print eigenvalues and eigenvectors */
    i = 0;
    k = 0;
    while (i<m) {
        if (ind[i] == 0) i++;
        else if (ei[i] == 0)'{
            /* real eigenvector */
            printf("eigenvalue: %12.4f\n", er[i]);
            printf("eigenvector:");
            for (j=0;j<n;j++)
                    printf("%7.4f ", ev[k][j]);
            printf("\n");
            i++;
            k++;
        }
        else {
            /* complex eigenvector pair */
            printf("eigenvalue: %7.4f+i*%7.4f\n", er[i], ei[i]);
            printf("eigenvector: ");
            for (j=0;j<n;j++)
            printf("%7.4f+i*%7.4f ", ev[k][j], ev[k+1][j]);
            printf("\n");
            printf("eigenvalue: %7.4f+i*%7.4f\n", er[i+1], ei[i+1]);
            printf("eigenvector: ");
            for (j=0;j<n;j++)
                    printf("%7.4f+i*%7.4f ", ev[k][j], -ev[k+1][j]);
            printf("\n");
            i = i+2;
            k = k+2;
        }
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entries for HES1, BLNC, NRML, and HBK1 in the Fortran SSL II User's Guide and reference [119].

\section*{c_dheig2}

Eigenvalues and corresponding eigenvectors for a Hermitian matrix (Householder, bisection and inverse iteration methods).
```

ierr = c_dheig2(a, k, n, m, e, evr, evi, vw,
\&icon);

```

\section*{1. Function}

The \(m\) largest (or smallest) eigenvalues and corresponding eigenvectors for an \(n\) order Hermitian matrix A are determined using the bisection method where \(1 \leq m \leq n\). The corresponding eigenvectors are then obtained using the inverse iteration method. The eigenvectors are then normalised such that \(\|x\|_{2}=1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dheig2((double *)a, k, n, m, e, (double *)evr, (double *)evi, vw,
\&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double \(a[n][k]\) & Input & Hermitian matrix A, stored in the Hermitian storage format. See Array storage formats in the Introduction section. \\
\hline & & Output & The contents are altered on output. \\
\hline k & int & Input & \(C\) fixed dimension of matrix \(\mathbf{A}(\mathrm{k} \geq \mathrm{n})\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline m & int & Input & If \(m\) is positive, the \(m\) largest eigenvalues are calculated. If \(m\) is negative the \(m\) smallest eigenvalues are calculated. \\
\hline e & double e[|m|] & Output & The eigenvalues. \\
\hline evr & double \(\operatorname{evr}[|m|][k]\) & Output & The real parts of the eigenvectors. They are stored in the rows corresponding to the relevant eigenvalue. \\
\hline evi & double evi[|m|][k] & Output & The imaginary parts of the eigenvectors. They are stored in the rows corresponding to the relevant eigenvalue. \\
\hline VW & double vw[9n] & Work & \\
\hline icon & int & Output & Condition codes. See below. \\
\hline The co & list of condition cod & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \begin{tabular}{l}
\(\mathrm{e}[0]=\mathrm{a}[0][0]\) \\
\(\mathrm{evr}[0][0]=1\) \\
evi [0] [0] \(=0\)
\end{tabular} \\
\hline 15000 & Some of the eigenvectors could not be calculated. & The relevant rows of evr and evi are set to 0. \\
\hline 20000 & None of the eigenvectors could be calculated. & evr and evi are set completely to 0. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<|\mathrm{m}|\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet \quad \mathrm{m}=0\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General Comments}

This routine is provided for Hermitian matrices only, and not for a general complex matrix where c_dceig2 should be used.

\section*{4. Example program}

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 Hermitian matrix.
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, m, i, j, k;
double a[NMAX][NMAX], e[NMAX], evr[NMAX][NMAX], evi[NMAX][NMAX], vw[9*NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[i][j] = n-i;
a[j][i] = n-i;
}
m = n;
/* find eigenvalues and eigenvectors */
ierr = c_dheig2((double*)a, k, n, m, e,
(double*)evr, (double*)evi, vw, \&icon);
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
printf("eigenvalue: %7.4f\n", e[i]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf'("{%7.4f, %7.4f} ", evr[i][j], evi[i][j]);
printf("\n");
}
return(0)
}

```

\section*{5. Method}

For further information consult the entry for HEIG2 in the Fortran SSL II User's Guide, and also [74], [118] and [119].

\section*{c_dhes 1}
\begin{tabular}{|l|}
\hline Reduction of a matrix to a Hessenberg matrix (Householder method). \\
\hline ierr \(=c _d h e s 1(a, k, n, p v, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine reduces an \(n \times n\) matrix \(\mathbf{A}\) to a Hessenberg matrix \(\mathbf{H}\) using the Householder method (orthogonal similarity method)
\[
\mathbf{H}=\mathbf{P}^{\mathbf{T}} \mathbf{A} \mathbf{P}
\]
where \(\mathbf{P}\) is the transformation matrix. Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dhes1((double *) a, k, n, pv, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double & Input & Matrix \(\mathbf{A}\). \\
\hline & a [n][k] & Output & Upper Hessenberg matrix \(\mathbf{H}\). The remaining lower triangular portion contains part of the transformation matrix \(\mathbf{P}\). See Comments on use. \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline pv & double pv[n] & Output & Part of transformation matrix P. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) or \(\mathrm{n}=2\) & Reduction is not performed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

To determine eigenvalues of matrix \(\mathbf{H}\), and hence of matrix \(\mathbf{A}\), output argument a of this routine is used as input argument a of c_dhsqr.

To determine eigenvectors of matrix \(\mathbf{H}\), output argument a of this routine is used as input argument a of \(\mathbf{C}\) _dhvec.
To back transform and normalize the eigenvectors of matrix \(\mathbf{H}\) (obtained from c_dhvec) to obtain the eigenvectors of matrix \(\mathbf{A}\), output arguments \(a\) and \(p v\) of this routine are used as input arguments \(p\) and \(p v\) of \(c_{-} d h b k 1\).

The precision of computed eigenvalues of a real matrix \(\mathbf{A}\) is determined in the Hessenberg matrix reduction process. Therefore, this routine has been implimented so that the Hessenberg matrix is determined with as high a precision as
possible. However, in the case of a matrix \(\mathbf{A}\) with very large or very small eigenvalues, the precision of the smaller eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process.

\section*{4. Example program}

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, m;
double a[NMAX][NMAX], er[NMAX], ei[NMAX], pv[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[i][j] = i-n;
a[j][i] = n-i;
}
/* reduce matrix to Hessenberg form */
ierr = c_dhes1((double*)a, k, n, pv, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dhes1 failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvalues of Hessenberg matrix */
ierr = c_dhsqr((double*)a, k, n, er, ei, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dhsqr failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
for (i=0;i<m;i++) {
printf("%7.4f+i*%7.4f \n", er[i], ei[i]);
}
return(0)
}

```

\section*{5. Method}

Consult the entry for HES1 in the Fortran SSL II User's Guide and reference [119].

\section*{c_dhrwiz}
\[
\begin{array}{|l}
\hline \text { Assessment of Hurwitz polynomials. } \\
\hline \text { ierr }=\text { c_dhrwiz(a, na, isw, \&iflg, \&sa, vw, } \\
\text { \&icon); }
\end{array}
\]

\section*{1. Function}

This routine assesses whether the polynomial in (1) of degree \(n(\geq 1)\) with real coefficients is a Hurwitz polynomial (all zeros lying in the left-half plane \(\operatorname{Re}(s)<0)\).
\[
\begin{equation*}
P(s)=a_{1} s^{n}+a_{2} s^{n-1}+\ldots+a_{n} s+a_{n+1} \tag{1}
\end{equation*}
\]

If \(P(s)\) is not a Hurwitz polynomial, the routine searches for \(\alpha_{0}(\geq 0)\) such that \(P(s+\alpha)\) is a Hurwitz polynomial for \(\alpha>\alpha_{0}\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dhrwiz(a, na, isw, \&iflg, \&sa, vw, \&icon);
where:

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Value \(\alpha_{0}\) has not been found. & Bypassed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad\) na \(<1\) \\
\(\bullet \quad \mathrm{a}[0]=0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

Since the function of this routine relates to obtaining the inverse Laplace transform \(f(t)\) of a rational function \(F(s)=Q(s) / P(s)\), it can also be used to check roughly the characteristics of \(f(t)\). This means that \(F(s)\) has singularities in the domain of \(\operatorname{Re}(s) \geq 0\) if \(P(s)\) is not a Hurwitz polynomial, and the value of the inverse transform function \(f(t)\) increases exponentially as the value of \(t\) approaches infinity.

To obtain the inverse Laplace transform \(f(t)\) of a rational function \(F(s)\) known to be regular in the domain \(\operatorname{Re}(s)>0\), use routine c_dlaps1, and when \(F(s)\) is a general rational function use c_dlaps2.

\section*{4. Example program}

Given the polynomial \(P(s)=s^{4}-12 s^{3}+54 s^{2}-108 s+81\), the following program determines whether or not it is a Hurwitz polynomial.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double sa, a[5], vw[5];
int isw, na, iflg, neps[9];
/* generate initial data */
na = 4;
a[0] = 1;
a[1] = -12
a[2] = 54;
a[3] = -108;
a[4] = 81;
isw = 1;
/* is it a Hurwitz polynomial ? */
ierr = c_dhrwiz(a, na, isw, \&iflg, \&sa, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dhrwiz failed with icon = %d\n", icon);
exit(1);
}
printf("iflg = %i sa = %12.5e\n", iflg, sa);
return(0);
}

```

\section*{5. Method}

Consult the entry for HRWIZ and Chapter 8 in the Fortran SSL II User's Guide.

\section*{c_dhsqr}
\begin{tabular}{|l|}
\hline Eigenvalues of a Hessenberg matrix (double QR method). \\
\hline ierr \(=c _d h s q r(a, k, n, e r, ~ e i, ~ \& m, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine obtains the eigenvalues of an \(n \times n\) Hessenberg matrix A using the double QR method. Here, \(\mathrm{n} \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dhsqr((double *) a, k, n, er, ei, \&m, \&icon);

```

\section*{where:}
\begin{tabular}{llll}
a & double & Input & Matrix A. \\
& \(\mathrm{a}[\mathrm{n}][\mathrm{k}]\) & Output & The contents of a are changed on output. \\
k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
er & double er \([\mathrm{n}]\) & Output & Real part of the eigenvalues of matrix A. \\
ei & double ei \([\mathrm{n}]\) & Output & Imaginary part of the eigenvalues of matrix A. \\
m & int & Output & The number of eigenvalues obtained. \\
icon & int & Output & Condition code. \\
\multicolumn{2}{r|}{ The complete list of condition codes is: } &
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & er \([0]=\mathrm{a}[0][0]\) and ei \([0]=0\). \\
\hline 15000 & Some of the eigenvalues could not be obtained. & \begin{tabular}{l}
Discontinued. m is set to the number of \\
eigenvalues obtained, \(1 \leq \mathrm{m}<\mathrm{n}\).
\end{tabular} \\
\hline 20000 & No eigenvalues could be obtained. & Discontinued. m is set to 0. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

A real matrix \(\mathbf{A}\) can be reduced to a real Hessenberg matrix using routine \(c _d h e s 1\), before calling this routine to obtain the eigenvalues. The output argument a from c_dhes1 is the input argument a of this routine.

The contents of array a are changed on output by this routine. Therefore, if eigenvectors are also required, a copy of array a should be made before calling this routine, so that the copy can be used later as input argument a of c_dhvec.

\section*{4. Example program}

This program reduces the matrix to Hessenberg form, finds the eigenvalues and prints the results.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, m;
double a[NMAX][NMAX], er[NMAX], ei[NMAX], pv[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[i][j] = i-n;
a[j][i] = n-i;
}
/* reduce matrix to Hessenberg form */
ierr = c_dhes1((double*)a, k, n, pv, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dhes1 failed with icon = %i\n", icon);
exit (1);
}
* find eigenvalues of Hessenberg matrix */
ierr = c_dhsqr((double*)a, k, n, er, ei, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dhsqr failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
for (i=0;i<m;i++) {
printf("%7.4f+i*%7.4f \n", er[i], ei[i]);
}
return(0);
}

```

\section*{5. Method}

Consult the entry for HSQR in the Fortran SSL II User's Guide and references [118] and [119].

\section*{c_dhvec}
\[
\begin{gathered}
\hline \text { Eigenvectors of a Hessenberg matrix (inverse iteration method). } \\
\hline \text { ier }=\mathrm{c} _ \text {dhvec }(\mathrm{a}, \mathrm{k}, \mathrm{n}, \mathrm{er}, \mathrm{ei}, \text { ind, m, ev, } \\
\mathrm{mk}, ~ a w, \& i c o n) ;
\end{gathered}
\]

\section*{1. Function}

This routine obtains eigenvectors \(\mathbf{x}_{j}\) corresponding to selected eigenvalues \(\lambda_{j}\) of an \(n \times n\) Hessenberg matrix \(\mathbf{A}\), using the inverse iteration method. The eigenvectors are not normalized. Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dhvec((double *)a, k, n, er, ei, ind, m, (double *)ev, mk, (double

``` *)aw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \[
\begin{aligned}
& \text { double } \\
& \mathrm{a}[\mathrm{n}][\mathrm{k}]
\end{aligned}
\] & Input & Matrix A. \\
\hline k & int & Input & C fixed dimension of arrays \(\mathrm{a}, \mathrm{ev}\) and aw (\(\geq \mathrm{n}\)). \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline er & double er [m] & Input & The real parts of the eigenvalues \(\operatorname{er}[j-1]=\operatorname{Re}\left(\lambda_{j}\right), j=1, \ldots, m\) of matrix A. See Comments on use. \\
\hline ei & double ei[m] & Input & The imaginary parts of the eigenvalues \(\mathrm{ei}[\mathrm{j}-1]=\operatorname{Im}\left(\lambda_{j}\right), j=1, \ldots, m\) of matrix A. See Comments on use. \\
\hline \multirow[t]{3}{*}{ind} & int ind[m] & Input & \begin{tabular}{l}
Indicates which eigenvectors are to be obtained \\
ind \([j-1]=0\) if an eigenvector corresponding to the \(j\)-th eigenvalue \\
\(\lambda_{j}\) is not to be obtained. \\
ind \([j-1]=1\) if an eigenvector corresponding to the \(j\)-th eigenvalue \(\lambda_{j}\) is to be obtained. \\
\(j=1, \ldots, m\). See Comments on use.
\end{tabular} \\
\hline & & Output & \begin{tabular}{l}
Indicates the type of each eigenvector. \\
ind \([\mathrm{j}-1]=1\) if the \(\mathrm{j}-1\)-st row of ev is a real eigenvector ind \([j-1]=-1\) if the \(j-1\)-st row of ev is the real part of a complex eigenvector \\
ind \([j-1]=0\) if the \(j-1\)-st row of \(e v\) is the imaginary part of a complex eigenvector.
\end{tabular} \\
\hline & & & \(\mathrm{j}=1, \ldots, \mathrm{mk}\). \\
\hline m & int & Input & Number of eigenvalues \(m\) of matrix \(\mathbf{A}\) stored in arrays er and ei. \\
\hline ev & \begin{tabular}{l}
double \\
ev[mk][k]
\end{tabular} & Output & Eigenvectors \(\mathbf{x}_{\ell}\) corresponding to eigenvalues \(\lambda_{\ell}\) of matrix \(\mathbf{A}\). Real eigenvectors of real eigenvalues are stored in one row of array ev , complex eigenvectors of complex eigenvalues are split into real and imaginary parts and stored in two consecutive rows. See Comments on use. \\
\hline mk & int & Input & The number of rows of array ev. See Comments on use. \\
\hline
\end{tabular}
\begin{tabular}{llll}
aw & double & Work & \\
& aw[n+4][k] & & \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \(\mathrm{ev}[0][0]=1\). \\
\hline 15000 & \begin{tabular}{l}
An eigenvector corresponding to a specified \\
eigenvalue could not be obtained.
\end{tabular} & \begin{tabular}{l}
The elements of ind corresponding to the \\
eigenvectors that could not be obtained are set to \\
0.
\end{tabular} \\
\hline 16000 & \begin{tabular}{l}
There are not enough rows in array ev to store all \\
the eigenvectors that are requested.
\end{tabular} & \begin{tabular}{l}
Only as many eigenvectors as can be contained in \\
array ev are computed. The elements of ind \\
corresponding to the eigenvectors that could not \\
be computed are set to 0.
\end{tabular} \\
\hline 20000 & No eigenvectors could be obtained. & All elements of ind are set to 0. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{m}<1\) or \(\mathrm{m}>\mathrm{n}\) \\
- \(\mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ind, er, ei, ev and mk}

If the \(j\)-th eigenvalue, \(\lambda_{j}\), is complex, then \(\lambda_{j}\) and \(\lambda_{j+1}\) should be a pair of complex conjugate eigenvalues, stored in er and ei.

The eigenvectors are stored successively in array ev from the first row. For example, if eigenvectors corresponding to the first two eigenvalues are not required, but the one corresponding to the third eigenvalue is, then the real part of that eigenvector is stored in \(\operatorname{ev}\) [0] [i], and the imaginary part (if it exists) is stored in \(\operatorname{ev}\) [1] [\(i\)], \(\mathbf{i}=0, \ldots, n-1\).

Based on the eigenvector storage described above, argument mk should be set to the number of rows required to contain the eigenvectors. If the actual number of rows required for the eigenvectors is larger that the number specified in mk , as many eigenvectors as can be stored in the number of rows specified in mk are computed, the rest are ignored and icon is set to 16000 .

\section*{General comments}

The eigenvalues used by this routine can be determined by routine c_dhsqr. The output arguments er, ei, and \(m\) of c_dhsqr are the same as the input arguments er, ei, and \(m\) of this routine. The input argument a of c_dhsqr (not the output argument a of c_dhsqr) is the same as the input argument a of this routine.

When selected eigenvectors of a real matrix are to be determined:
- the real matrix is first reduced to a real Hessenberg matrix using c_dhes1,
- eigenvalues of the Hessenberg matrix are determined using routine c_dhsqr,
- selected eigenvectors of the Hessenberg matrix are determined using this routine,
- back transformation is applied to the above eigenvectors using routine c_dhbk1 to obtain the eigenvectors of the real matrix.

Note that c_deig1 can be used to obtain all the eigenvectors of a real matrix.
The resulting eigenvectors of this routine have not been normalized. If necessary, routine \(\mathbf{c}\) _dnrml can be used to normalize eigenvectors.

Output arguments ind, \(m\) and \(e v\) of this routine are the same as the input arguments ind, \(m\) and \(e v\) of routines c_dhbk1 and c_dnrml.

\section*{4. Example program}

This program balances the matrix, reduces it to Hessenberg form, finds the eigenvalues and eigenvectors, and then performs a back transformation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, m, mk, ind[NMAX];
double a[NMAX][NMAX], pv[NMAX], aw[NMAX+4][NMAX];
double er[NMAX], ei[NMAX], ev[NMAX][NMAX];
double dv[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
mk = NMAX;
for (i=0;i<n;i++) {
a[i][i] = n-i;
for (j=0;j<i;j++) {
a[i][j] = n-i;
a[j][i] = n-i;
}
}*
/* balance matrix A */
ierr = c_dblnc((double*)a, k, n, dv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dblnc failed with icon = %i\n", icon);
exit (1);
}*
/* reduce matrix to Hessenberg form */
ierr = c_dhes1((double*)a, k, n, pv, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dhes1 failed with icon = %i\n", icon);
exit (1);
}
for (i=0;i<n;i++)
for (j=0;j<n;j++)
aw[i][j] = a[i][j];
/* find eigenvalues */
ierr = c_dhsqr((double*)aw, k, n, er, ei, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dhsqr failed with icon = %i\n", icon);
exit (1);
}
for (i=0;i<m;i++) ind[i] = 1;
/* find eigenvectors for given eigenvalues */
ierr = c_dhvec((double*)a, k, n, er, ei,
ind, m, (double*)ev, mk, (double*)aw, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dhvec failed with icon = %i\n", icon);
exit (1);

```
```

}*
/* back transformation to find e-vectors of A */
ierr = c_dhbk1((double*)ev, k, n, ind, m, (double*)a, pv, dv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dhbk1 failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
i = 0;
k = 0;
while'(i<m) {
if (ind[i] == 0) i++;
else if (ei[i] == 0) {
/* real eigenvector */
printf("eigenvalue: %12.4f\n", er[i]);
printf("eigenvector:");
for (j=0;j<n;j++)
printf("%7.4f ", ev[k][j]);
printf("\n");
i++;
k++;
}
else {
/* complex eigenvector pair */
printf("eigenvalue: %7.4f+i*%7.4f\n", er[i], ei[i]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f+i*%7.4f ", ev[k][j], ev[k+1][j]);
printf("\n");
printf("eigenvalue: %7.4f+i*%7.4f\n", er[i+1], ei[i+1]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f+i*%7.4f ", ev[k][j], -ev[k+1][j]);
printf("\n");
i = i+2;
k = k+2;
}
}
return(0);
}

```

\section*{5. Method}

Consult the entry for HVEC in the Fortran SSL II User's Guide and references [118] and [119].

\section*{c_dicheb}
\begin{tabular}{|l|}
\hline Indefinite integral of a Chebyshev series. \\
\hline ierr \(=c _\)dicheb \((a, b, c, \& n, \quad \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

Given a truncated Chebyshev series (1) with \(n\)-terms, defined on the interval \([a, b]\)
\[
\begin{equation*}
f(x)=\sum_{k=0}^{n-1} c_{k} T_{k}\left(\frac{2 x-(b+a)}{b-a}\right) \tag{1}
\end{equation*}
\]
this routine obtains the indefinite integral in a Chebyshev series (2)
\[
\begin{equation*}
\int f(x) d x=\sum_{k=0}^{n}{ }^{\prime} \bar{c}_{k} T_{k}\left(\frac{2 x-(b+a)}{b-a}\right) \tag{2}
\end{equation*}
\]
where \(\bar{c}_{k} k=0,1, \ldots, n\) are its Chebyshev coefficients with arbitrary constant \(\bar{c}_{0}\) assumed to be zero. \(\sum^{\prime}\) denotes the sum in which the initial term is multiplied by a factor \(1 / 2\). Here, \(n \geq 1\) and \(a \neq b\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dicheb(a, b, c, \&n, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double & Input & Lower limit \(a\) of the interval for the Chebyshev series. \\
\hline b & double & Input & Upper limit \(b\) of the interval for the Chebyshev series. \\
\hline C & double c[n+1] & Input & Coefficients \(c_{k}\) of the Chebyshev series, with \(\mathrm{c}[\mathrm{k}]=c_{k}, k=0,1, \ldots, n-1\). \\
\hline & & Output & Coefficients \(\bar{c}_{k}\) for the indefinite integral, with \(\mathrm{c}[0]=0, \mathrm{c}[\mathrm{k}]=\bar{c}_{k}, k=1,2, \ldots, n\). \\
\hline n & int & Input & Number of terms \(n\) of the Chebyshev series. \\
\hline & & Output & Number of terms \(n+1\) of the indefinite integral Chebyshev series. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{ll}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{a}=\mathrm{b}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

When the indefinite integral of an arbitrary function is required, the routine c_dfcheb can be called before this one to obtain the Chebyshev series for the function.

The routine c_decheb can be called after this routine to evaluate the Chebyshev series of the indefinite integral at an arbitrary point \(v \in[a, b]\). See example.

\section*{Arbitrary constant}

This routine outputs zero as the arbitrary constant \(\bar{c}_{0}\) of the Chebyshev series for the indefinite integral. If the constant is to be defined so that the indefinite integral at a point \(v \in[a, b]\) takes the value \(y_{v}\), then it should be computed as
\[
\mathrm{c}[0]=2\left(y_{v}-\mathrm{y}\right)
\]
where y is the value of the Chebyshev series for the indefinite integral evaluated at the point \(v\) using routine c _decheb.

\section*{Definite integral}

To obtain the definite integral
\[
\int_{a}^{x_{i}} f(t) d t, \quad x_{i} \in[a, b], \quad i=1,2, \ldots, m
\]
the value of the arbitrary constant \(\bar{c}_{0}\) is determined first, such that the value of the indefinite integral at the end point \(a\) is zero. Then the routine c_decheb is called \(m\) times repeatedly. See example.

\section*{Error}

The error of an indefinite integral can be estimated from the absolute sum of the last two terms of the series.

\section*{4. Example program}

This program evaluates the Chebyshev sreies, and its integral, for the function:
\[
\begin{equation*}
f(x)=\frac{1}{4}+\int_{0}^{x} \frac{d t}{1+100 t^{2}}, \quad x \in[0,1] \tag{3}
\end{equation*}
\]
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 257 /* default value */
double fun(double x); /* function prototype */
double truefun(double x);
MAIN__()
{
int ierr, icon;
int i, n, nmin, nmax;
double epsa, epsr, err, a, b, v, f, h;
double c[NMAX], tab[NMAX-2];
/* initialize data */
epsr = 5e-5;
epsa = epsr;
nmin = 9; /* default value */
nmax = NMAX;
a = 0;
b = 1;
/* expand function as Chebyshev series */
ierr = c_dfcheb(a, b, fun, epsa, epsr, nmin, nmax, c, \&n, \&err, tab, \&icon);
if (icon >= 20000) {
printf("ERROR: icon = %4i\n", icon);
exit(1);
}
/* now calculate integral */
ierr = c_dicheb(a, b, c, \&n, \&icon);
if (icon != 0) {

```
```

        printf("ERROR: icon = %4i\n", icon);
        exit(1);
    }
    /* set constant term c0 */
    ierr = c_decheb(a, b, c, n, a, &f, &icon);
    if (icon != 0) {
        printf("ERROR: icon = %4i\n", icon);
        exit(1);
    }
    c[0] = (0.25-f)*2;
    /* now evaluate Chebyshev series at points */
    h = 0.05;
    printf("'v integral error \n");
    for (i=0;i<=20;i++) {
        v = a+i*h;
        ierr = c_decheb(a, b, c, n, v, &f, &icon);
        if (icon != 0)
            printf("ERROR: icon = %4i\n", icon);
            exit(1);
        }
        err = truefun(v) - f;
        printf("%4.2f %12.5e %12.5e\n", v, f, err);
    }
    return(0);
    }
/* function to expand */
double fun(double x)
{
return 1/(1+100*x*x);
}
/* true integral function */
double truefun(double x)
{
return 0.25+atan(10*x)/10;
}

```

\section*{5. Method}

Consult the entry for ICHEB in the Fortran SSL II User's Guide.

\section*{c_dierf}
\begin{tabular}{|l|}
\hline Inverse error function \(\operatorname{erf}^{-1}(x)\). \\
\hline ierr \(=c _d i e r f(x, \& f, \quad\) \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine evaluates the inverse function, \(\operatorname{erf}^{-1}(x)\), of the error function \(\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t\), using the minimax approximation formulas in the form of the polynomial and rational functions. Here \(|x|<1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dierf(x, \&f, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). See Comments on use for range of x. \\
f & double & Output & Function value \(\operatorname{erf}^{-1}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(|x| \geq 1\). & f is set to 0. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Range of \(x\)}

The valid range of argument \(X\) is \(|x|<1\).

\section*{c_dierf and c_dierfc}

Through the relationship
\[
\operatorname{erf}^{-1}(\mathrm{x})=\operatorname{erfc}^{-1}(1-x)
\]
the inverse error function can be evaluated by the routine c_dierfc which caluclates the inverse complimentary error function \(\operatorname{erfc}^{-1}(x)\). However, if values of \(x\) are in the range \(|x| \leq 0.8\), this routine is more accurate and efficient than c_dierfc.

\section*{4. Example program}

This program generates a range of function values for 101 points in the the interval \([0,1]\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;

```
```

    double x, f;
    int i;
    for (i=0;i<100;i++) {
        x = (double)i/100;
        /* calculate inverse error function */
        ierr = c_dierf(x, &f, &icon);
        if (icon == 0)
        printf("x = %5.2f f= %f\n", x, f);
        else
        printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
    }
return(0)
}

```

\section*{5. Method}

Consult the entry for IERF in the Fortran SSL II User's Guide.

\section*{c_dierfc}
\begin{tabular}{|l|}
\hline Inverse complimentary error function \(\operatorname{erfc}^{-1}(x)\). \\
\hline ierr \(=\) c_dierfc \((\mathrm{x}, \quad \& \mathrm{f}, \quad \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine evaluates the inverse function, \(\operatorname{erfc}^{-1}(x)\), of the complimentary error function \(\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t\), using the minimax approximation formulas in the form of the polynomial and rational functions. Here \(0<x<2\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dierfc(x, \&f, \&icon);

```
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). See Comments on use for range of x. \\
f & double & Output & Function value \(\operatorname{erfc}^{-1}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{x} \leq 0\) or \(\mathrm{x} \geq 2\). & f is set to 0. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Range of \(x\)}

The valid range of argument \(x\) is \(0<x<2\).

\section*{c_dierfc and c_dierf}

Through the relationship
\[
\operatorname{erfc}^{-1}(x)=\operatorname{erf}^{-1}(1-x)
\]
the inverse complimentary error function can be evaluated by the routine c_dierf which calculates the inverse error function \(\operatorname{erf}^{-1}(x)\). However, if values of \(x\) are in the range \(0<x<0.2\), this routine is more accurate and efficient than c_dierf.

\section*{4. Example program}

This program generates a range of function values for 101 points in the the interval \([0,1]\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()

```
```

{
int ierr, icon;
double x, f;
int i;
for (i=1;i<=100;i++) {
x = (double)i/100;
/* calculate inverse complementary error function */
ierr = c_dierfc(x, \&f, \&icon);
if (icon == 0)
printf("x = %5.2f f = %f\n", x, f);
else
printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
}
return(0)
}

```

\section*{5. Method}

Consult the entry for IERFC in the Fortran SSL II User's Guide.

\section*{c_digam1}
\begin{tabular}{|l|}
\hline Incomplete Gamma function of the first kind \(\gamma(v, x)\). \\
\hline ierr \(=\) c_digam1 \((\mathrm{v}, \mathrm{x}, \quad \& \mathrm{f}, \quad\) \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the incomplete Gamma function of the first kind
\[
\gamma(v, x)=\int_{0}^{x} e^{-t} t^{\nu-1} d t
\]
by series expansion, asymptotic expansion and numerical integration, where \(v>0\) and \(x \geq 0\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_digam1(v, x, \&f, \&icon);

```
where:
\begin{tabular}{llll}
v & double & Input & Independent variable \(v\). \\
x & double & Input & Independent variable \(x\). \\
f & double & Output & Function value \(\gamma(v, x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & f is set to zero. \\
& \(\bullet \quad \mathrm{v} \leq 0\) \\
& \(\bullet \quad \mathrm{x}<0\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

When \(\mathrm{x} \geq 46.0\), the value of \(\gamma(v, x)\) may be obtained by the complete GAMMA(\(v\)) function, \(\Gamma(v)\), in Fortran's basic functions, because \(\gamma(v, x) \approx \Gamma(v)\) in the above ranges.

\section*{4. Example program}

This program evaluates a table of function values for a range of \(x\) and \(v\) values.
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double v, x, f;
int iv, ix;
for (iv=1;iv<10;iv++) {
v = (iv+7*(iv-1.0)/3)/10;

```
```

        for (ix=1;ix<10;ix++) {
            x = (ix+7*(ix-1.0)/3)/10;
            /* calculate incomplete gamma function */
            ierr = c_digam1(v, x, &f, &icon);
            if (icon == 0)
            printf("v = %5.2f x = %5.2f f = %f\n", v, x, f);
        else
            printf("ERROR: v = %5.2f x = %5.2f f = %f icon = %i\n",
                v, x, f, icon);
        }
    }
    return(0)
    }

```

\section*{5. Method}

Depending on the values for \(x\) and \(v\), the method used to compute the function \(\gamma(v, x)\) with \(x_{1}=5.5\) is:
- Power series expansion when \(x \leq 2(v+1)\) or \(x<x_{1}\).
- The routine c_digam2 (asymptotic expansion and numerical integration) when \(x>2(v+1)\) and \(x \geq x_{1}\).

For further information consult the entry for IGAM1 in the Fortran SSL II User's Guide.

\section*{c_digam2}
\begin{tabular}{|l|}
\hline Incomplete Gamma function of the second kind \(\Gamma(v, x)\). \\
\hline ierr \(=\) c_digam2 \((v, \quad x, \& f, \quad \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the incomplete Gamma function of the second kind
\[
\Gamma(v, x)=\int_{0}^{\infty} e^{-t} t^{v-1} d t=e^{-x} \int_{0}^{\infty} e^{-t}(x+t)^{v-1} d t
\]
by series expansion, asymptotic expansion and numerical integration, where \(v \geq 0\) and \(x \geq 0(x \neq 0\) when \(v=0)\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_digam2(v, x, \&f, \&icon);

```
where:
\begin{tabular}{llll}
V & double & Input & Independent variable \(v\). \\
x & double & Input & Independent variable \(x\). \\
f & double & Output & Function value \(\Gamma(v, x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(\mathrm{x}^{\mathrm{v-1} e^{-\mathrm{x}}>f l_{\max }}\) & f is set to \(f l_{\max }\) \\
\hline 30000 & One of the following has occurred: & f is set to zero. \\
& \(\bullet \quad \mathrm{v}<0\) \\
& \(\bullet \quad \mathrm{x}<0\) \\
& \(\bullet \quad \mathrm{v}=0\) and \(\mathrm{x}=0\) & \\
& & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Numerical overflow/underflow}

For \(\mathrm{x} \geq \log \left(f l_{\max }\right)\), numerical underflow occurs in computing the value of \(\Gamma(v, x)\). Similarly, numerical overflow occurs when \(x^{v-1} e^{-x}>f l_{\max }\) with \(x>1\) and \(v\) very large. For details on the constant \(f l_{\text {max }}\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program evaluates a table of function values for a range of \(x\) and \(v\) values.
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()

```
```

{
int ierr, icon;
double v, x, f;
int iv, ix;
for (iv=1;iv<10;iv++) {
v = (iv+7*(iv-1.0)/3)/10;
for (ix=1;ix<10;ix++) {
x* = (ix+7*(ix-1.0)/3)/10;
/* calculate incomplete gamma function */
ierr = c_digam2(v, x, \&f, \&icon);
if (icon== 0)
printf("v = %5.2f x = %5.2f f = %f\n", v, x, f);
else
printf("ERROR: v = %5.2f x = %5.2f f = %f icon = %i\n",
v, x, f, icon);
}
}
return(0)
}

```

\section*{5. Method}

Depending on the values for \(x\) and \(v\), the method used to compute the function \(\Gamma(v, x)\) is:
- The Fortran routine DEXPI when \(v=0\) and \(x>0\).
- Fortran's basic function GAMMA when \(v>0\) and \(x=0\).
- When \(v>0\) and \(x>0\), the approximation used with \(x_{1}=40.0\) are:
- Asymptotic expansion when \(v=\) integer or \(x>x_{1}\).
- Numerical integration when \(v \neq\) integer and \(x \leq x_{1}\).

For further information consult the entry for IGAM2 in the Fortran SSL II User's Guide.

\section*{c_dindf}
\begin{tabular}{|l|}
\hline Inverse normal distribution function \(\phi^{-1}(x)\). \\
\hline ierr \(=c _\operatorname{dindf}(x, \& f, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine computes the value of the inverse function, \(\phi^{-1}(x)\), of the normal distribution function
\[
\phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{\frac{-t^{2}}{2}} d t
\]
by the relation
\[
\phi^{-1}(x)=\sqrt{2} \operatorname{erf}^{-1}(2 x),
\]
where \(|x|<1 / 2\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dindf(x, \&f, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). See Comments on use for range of x. \\
f & double & Output & Function value \(\phi^{-1}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(|x| \geq 1 / 2\) & f is set to 0. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Range of \(x\)}

The valid range of argument \(X\) is \(|X|<1 / 2\).

\section*{c_dindf and c_dindfc}

Using the relationship between the inverse normal distribution function \(\phi^{-1}(x)\) and the inverse complimentary normal distribution function \(\psi^{-1}(x)\)
\[
\phi^{-1}(x)=\psi^{-1}(1 / 2-x),
\]
the value of \(\phi^{-1}(x)\) can be computed using the routine \(\mathrm{C} _\)dindfc. However, in the range \(|x| \leq 0.4\) this leads to less accuracy and less efficient computation than using this routine.

\section*{4. Example program}

This program generates a range of function values for 50 points in the the interval \([0,0.49]\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, f;
int i;
for (i=0;i<50;i++) {
x = (double)i/100;
/* calculate inverse normal distribution function */
ierr = c_dindf(x, \&f, \&icon);
if (icon== 0)
printf("x = %5.2f f = %f\n", x, f);
else
printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
}
return(0)
}

```

\section*{5. Method}

Consult the entry for INDF in the Fortran SSL II User's Guide.

\section*{c_dindfc}
\begin{tabular}{|l|}
\hline Inverse complimentary normal distribution function \(\psi^{-1}(x)\). \\
\hline ierr \(=\) c_dindfc \((x, \& f, \quad \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine computes the value of the inverse function, \(\psi^{-1}(x)\), of the complimentary normal distribution function
\[
\psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{\frac{-t^{2}}{2}} d t
\]
by the relation
\[
\psi^{-1}(x)=\sqrt{2} e r f c^{-1}(2 x),
\]
where \(0<x<1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dindfc(x, \&f, \&icon);

```
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). See Comments on use for range of x. \\
f & double & Output & Function value \(\psi^{-1}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{x} \leq 0\) or \(\mathrm{x} \geq 1\) & f is set to 0. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Range of \(x\)}

The valid range of argument \(x\) is \(0<x<1\).

\section*{c_dindfc and c_dindf}

Using the relationship between the inverse complimentary normal distribution function \(\psi^{-1}(x)\) and the inverse normal distribution function \(\phi^{-1}(x)\)
\[
\psi^{-1}(x)=\phi^{-1}(1 / 2-x),
\]
the value of \(\psi^{-1}(x)\) can be computed using the routine C_dindf. However, in the range \(0<x<0.1\) this leads to less accuracy and less efficient computation than using this routine.

\section*{4. Example program}

This program generates a range of function values for 50 points in the the interval \([0,0.49]\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, f;
int i;
for (i=1;i<=50;i++) {
x = (double)i/100;
/* calculate inverse complementary normal distribution function */
ierr = c_dindfc(x, \&f, \&icon);
if (icon == 0)
printf("x = %5.2f f = %f\n", x, f);
else
printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
}
return(0)
}

```

\section*{5. Method}

Consult the entry for INDFC in the Fortran SSL II User's Guide.

\section*{c_dlaps1}
\[
\begin{aligned}
& \text { Inversion of Laplace transform of a rational function (regular in the } \\
& \text { right-half plane). } \\
& \hline \text { ierr = c_dlaps1(a, na, b, nb, } t, \text { delt, np, } \\
& \quad \text { epsr, ft, t1, neps, errv, \&icon); }
\end{aligned}
\]

\section*{1. Function}

Given a rational function \(F(s)\) expressed by (1), that is regular in the domain \(\operatorname{Re}(s)>0\), this routine calculates values of the inverse Laplace transform \(f\left(t_{0}\right), f\left(t_{0}+\Delta t\right), \ldots, f\left(t_{0}+(\ell-1) \Delta t\right)\).
\[
\begin{equation*}
F(s)=\frac{Q(s)}{P(s)} \tag{1}
\end{equation*}
\]
where
\[
\begin{aligned}
& Q(s)=b_{1} s^{m}+b_{2} s^{m-1}+\ldots+b_{m} s+b_{m+1}, \\
& P(s)=a_{1} s^{n}+a_{2} s^{n-1}+\ldots+a_{n} s+a_{n+1},
\end{aligned}
\]
with real coefficents \(a_{i}, i=1, \ldots, n+1\) and \(b_{j}, j=1, \ldots, m+1\), and \(n \geq m\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlaps1(a, na, b, nb, t, delt, np, epsr, ft, t1, neps, errv, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[n+1] & Input & Coefficients \(a_{i}\) of \(P(s)\), with a [i-1] \(=a_{i}, i=1, \ldots, n+1\). \\
\hline na & int & Input & Degree \(n\) of \(P(s)\). \\
\hline b & double b[m+1] & Input & Coefficients \(b_{j}\) of \(Q(s)\), with \(\mathrm{b}[\mathrm{j}-1]=b_{i}, j=1, . ., m+1\). \\
\hline nb & int & Input & Degree \(m\) of \(Q(s)\). \\
\hline t & double & Input & Initial value \(t_{0}(\geq 0)\) from which the values of \(f(t)\) are required. \\
\hline delt & double & Input & Increment \(\Delta t(\geq 0)\) of variable \(t\). If delt \(=0\), only \(f\left(t_{0}\right)\) is calculated. \\
\hline np & int & Input & Number of points \(\ell(\geq 1)\) at which values of \(f(t)\) are required. \\
\hline epsr & double & Input & Relative error tolerance \((\geq 0)\) for the values \(f(t)\).Values of epsr between \(10^{-2}\) and \(10^{-7}\) are typical. If epsr \(=0\), the default value of \(10^{-4}\) is used. \\
\hline ft & double ft[np] & Output & Values \(f\left(t_{0}+i \Delta t\right)\), with \(\mathrm{ft}[\mathrm{i}]=f\left(t_{0}+i \Delta t\right)\). \\
\hline t1 & double t1[np] & Output & Values \(t_{0}+i \Delta t\) with t 1 [i] \(=t_{o}+i \Delta t\). \\
\hline neps & int neps[np] & Output & Number of terms in the truncated expansions. The number of terms \(N_{i}\) used to calculate ft [i] is stored in neps [i]. \\
\hline errv & double & Output & Estimates of the relative error. The estimate of the relative error in \\
\hline & errv[np] & & \(f[1]\) is stored in errv[1]. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Some of the results did not meet the required accuracy. & Continued. Values representing accuracy for \(f\left(t_{0}+i \Delta t\right), i=0,1, \ldots, \ell-1\) are output in errv. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{nb}<0\) or \(\mathrm{nb}>\mathrm{na}\) \\
- \(\mathrm{t}<0\) or delt \(<0\) \\
- \(\mathrm{np}<1\) \\
- epsr<0 \\
- \(a[0]=0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

The function \(F(s)\) must be regular in the domain \(\operatorname{Re}(s)>0\). If \(F(s)\) is singular or if its regularity is not known, the routine c_dlaps2 should be used.

\section*{Initial value}

If \(t_{0}=0\), the value of \(f(0)\) is calculated as
\[
f(0)=\left\{\begin{array}{ll}
b_{1} / a_{1} & (n=m+1) \\
0 & (n>m+1)
\end{array} .\right.
\]
\(\boldsymbol{n}=\boldsymbol{m}\)
When \(n=m\), (1) can be written as
\[
F(s)=\frac{Q(s)}{P(s)}=F_{1}(s)+F_{2}(s)
\]
where
\[
\begin{aligned}
& F_{1}(s) \equiv b_{1} / a_{1} \\
& F_{2}(s) \equiv \frac{c_{2} s^{n-1}+c_{3} s^{n-2}+\ldots+c_{n+1}}{a_{1} s^{n}+a_{2} s^{n-1}+\ldots+a_{n+1}} .
\end{aligned}
\]

The inverse transform \(f_{1}(t)\) of \(F_{1}(s)\) is given as
\[
f_{1}(t)=\frac{b_{1}}{a_{1}} \delta(t)
\]
where \(\delta(t)\) is the delta function, and the inverse Laplace transform of \(F_{2}(s)\) for \(t>0\) can be calculated using this routine. When \(t=0\), the maximum value of the floating point numbers \(f l_{\max }\) is returned, see the Machine constants section in the Introduction.

\section*{4. Example program}

For a rational function \(F(s)\) is non-singular for real \(s>0\), the inverse Laplace transform is obtained at certain points by the following program. \(F(s)\) is given by:
\[
\begin{equation*}
F(s)=\frac{s^{2}+4}{s^{4}+12 s^{3}+54 s^{2}+108 s+81} \tag{2}
\end{equation*}
\]
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double t, delt, epsr;
double a[5], b[3], t1[9], ft[9], errv[9];
int i, l, na, nb, neps[9];
/* generate initial data */
nb = 2;
b[0] = 1;
b[1] = 0;
b[2] = 4;
na = 4;
a[0] = 1;
a[1] = 12;
a[2] = 54;
a[3] = 108
a[4] = 81;
t = 0.2;
delt = 0.2;
l = 9;
epsr = 1e-4;
/* calculate inverse Laplace transform */
ierr = c_dlaps1(a, na, b, nb, t, delt, l, epsr, ft, t1, neps, errv, \&icon);
if (icon > 10000) {
printf("ERROR: c_dlaps1 failed with icon = %d\n", icon);
exit(1);
}
printf("icon = %i\n", icon);
printf(" t1 ft errv neps \n");
for (i=0;i<l;i++) {
printf("%4.2f %12.5e %12.5e %4i\n",'
}
return(0);
}

```

\section*{5. Method}

Consult the entry for LAPS1 in the Fortran SSL II User's Guide.

\section*{c_dlaps2}
\[
\begin{array}{|c}
\hline \text { Inversion of Laplace transform of a general rational function. } \\
\hline \text { ierr = c_dlaps2(a, na, b, nb, t, delt, np, } \\
\text { epsr, ft, t1, neps, errv, \&iflg, } \\
\text { vw, \&icon); } \\
\hline
\end{array}
\]

\section*{1. Function}

Given a rational function \(F(s)\) expressed by (1), this routine calculates values of the inverse Laplace transform \(f\left(t_{0}\right), f\left(t_{0}+\Delta t\right), \ldots, f\left(t_{0}+(\ell-1) \Delta t\right)\).
\[
\begin{equation*}
F(s)=\frac{Q(s)}{P(s)} \tag{1}
\end{equation*}
\]
where
\[
\begin{aligned}
& Q(s)=b_{1} s^{m}+b_{2} s^{m-1}+\ldots+b_{m} s+b_{m+1} \\
& P(s)=a_{1} s^{n}+a_{2} s^{n-1}+\ldots+a_{n} s+a_{n+1}
\end{aligned}
\]
with real coefficents \(a_{i}, i=1, \ldots, n+1\) and \(b_{j}, j=1, \ldots, m+1\), and \(n \geq m\). In this case, \(F(s)\) need not be regular in the domain \(\operatorname{Re}(s)>0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlaps2(a, na, b, nb, t, delt, np, epsr, ft, t1, neps, errv, \&iflg, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[n+1] & Input & Coefficients \(a_{i}\) of \(P(s)\), with a[i-1] \(=a_{i}, i=1, \ldots, n+1\). \\
\hline na & int & Input & Degree \(n\) of \(P(s)\). \\
\hline b & double \(\mathrm{b}[\mathrm{m}+1]\) & Input & Coefficients \(b_{j}\) of \(Q(s)\), with \(\mathrm{b}[\mathrm{j}-1]=b_{i}, j=1, \ldots, m+1\). \\
\hline nb & int & Input & Degree \(m\) of \(Q(s)\). \\
\hline t & double & Input & Initial value \(t_{0}(\geq 0)\) from which the values of \(f(t)\) are required. \\
\hline delt & double & Input & Increment \(\Delta t(\geq 0)\) of variable \(t\). If delt \(=0\), only \(f\left(t_{0}\right)\) is calculated. \\
\hline np & int & Input & Number of points \(\ell(\geq 1)\) at which values of \(f(t)\) are required. \\
\hline epsr & double & Input & Relative error tolerance \((\geq 0)\) for the values \(f(t)\).Values of epsr between \(10^{-2}\) and \(10^{-7}\) are typical. If epsr \(=0\), the default value of \(10^{-4}\) is used. \\
\hline ft & double ft[np] & Output & Values \(f\left(t_{0}+i \Delta t\right)\), with \(\mathrm{ft}[\mathrm{i}]=f\left(t_{0}+i \Delta t\right)\). \\
\hline t1 & double t1[np] & Output & Values \(t_{0}+i \Delta t\) with t 1 [i] \(=t_{o}+i \Delta t\). \\
\hline neps & int neps[np] & Output & Number of terms in the truncated expansions. The number of terms \(N_{i}\) used to calculate ft [i] is stored in neps [i]. \\
\hline errv & double errv[np] & Output & Estimates of the relative error.The estimate of the relative error in \(\mathrm{ft}[\mathrm{i}]\) is stored in errv [i]. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline iflg & int & Output & \begin{tabular}{l}
iflg \(=0\) if \(F(s)\) is regular in the domain \(\operatorname{Re}(s)>0\), \\
iflg \(=1\) otherwise. See Comments on use.
\end{tabular} \\
\hline VW & double & Work & \\
\hline & \(\mathrm{vw}[\mathrm{na}+\mathrm{nb}+2\)] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Some of the results did not meet the required accuracy. & Continued. Values representing accuracy for \(f\left(t_{0}+i \Delta t\right), i=0,1, \ldots, \ell-1\) are output in errv. \\
\hline 20000 & The subroutine failed to obtain a real value \(\gamma_{0}>0\) such that \(F(s)\) is regular in the domain \(\operatorname{Re}(s)>\gamma_{0}\). & Bypassed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{nb}<0\) or \(\mathrm{nb}>\mathrm{na}\) \\
- \(\mathrm{t}<0\) or delt \(<0\) \\
- \(\mathrm{np}<1\) \\
- epsr<0 \\
- \(a[0]=0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

The rational function \(F(s)\) need not be regular in the domain \(\operatorname{Re}(s)>0\). However, if it is known that \(F(s)\) is regular routine c_dlaps1 should be used for efficiency.

\section*{Initial value}

If \(t_{0}=0\), the value of \(f(0)\) is calculated as
\[
f(0)=\left\{\begin{array}{ll}
b_{1} / a_{1} & (n=m+1) \\
0 & (n>m+1)
\end{array} .\right.
\]

\section*{iflg}

If iflg= 1 is output, \(F(s)\) is not regular in the domain \(\operatorname{Re}(s)>0\). This means that \(f(t)\) increases exponentially as \(t\) approaches infinity.
\(\boldsymbol{n}=\boldsymbol{m}\)
When \(n=m\), (1) can be written as
\[
F(s)=\frac{Q(s)}{P(s)}=F_{1}(s)+F_{2}(s)
\]
where
\[
\begin{aligned}
& F_{1}(s) \equiv b_{1} / a_{1} \\
& F_{2}(s) \equiv \frac{c_{2} s^{n-1}+c_{3} s^{n-2}+\ldots+c_{n+1}}{a_{1} s^{n}+a_{2} s^{n-1}+\ldots+a_{n+1}} .
\end{aligned}
\]

The inverse transform \(f_{1}(t)\) of \(F_{1}(s)\) is given as
\[
f_{1}(t)=\frac{b_{1}}{a_{1}} \delta(t)
\]
where \(\delta(t)\) is the delta function, and the inverse transform of \(F_{2}(s)\) for \(t>0\) can be calculated by this routine When \(t=0\), the maximum value of the floating point numbers \(f l_{\max }\) is returned, see the Machine constants section in the Introduction.

\section*{4. Example program}

For a rational function \(F(s)\) the inverse Laplace transform is calculated by the following program at certain points. \(F(s)\) is given by:
\[
\begin{equation*}
F(s)=\frac{s^{2}+4}{s^{4}-12 s^{3}+54 s^{2}-108 s+81} \tag{2}
\end{equation*}
\]
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double t, delt, epsr;
double a[5], b[3], t1[9], ft[9], errv[9], vw[8];
int i, l, na, nb, iflg, neps[9];
/* generate initial data */
nb = 2;
b[0] = 1;
b[1] = 0;
b[2] = 4;
na = 4;
a[0] = 1;
a[1] = -12
a[2] = 54;
a[3] = -108;
a[4] = 81;
t = 0.2;
delt = 0.2;
l = 9;
epsr = 1e-4;
/* calculate inverse Laplace transform */
ierr = c_dlaps2(a, na, b, nb, t, delt, l, epsr, ft, t1,
neps, errv, \&iflg, vw, \&icon);
if (icon >= 20000) {
printf("ERROR: c_dlaps2 failed with icon = %d\n", icon);
exit(1);
}
printf("icon = %i iflg = %i\n", icon, iflg);
printf(" t1 ft errv neps \n");
for (i=0;i<l;i++) {
printf'("%4.2f %12.5e %12.5e %4i\n",
t1[i], ft[i], errv[i], neps[i]);
}
return(0);
}

```

\section*{5. Method}

Consult the entry for LAPS2 in the Fortran SSL II User's Guide.

\section*{c_dlaps3}
\[
\begin{aligned}
& \text { Inversion of Laplace transform of a general function. } \\
& \hline \text { ierr = c_dlaps3(fun, t, delt, np, epsr, r0, } \\
& \qquad f t, t 1, \text { neps, errv, \&icon); } \\
& \hline
\end{aligned}
\]

\section*{1. Function}

Given a function \(F(s)\) (including non-rational functions), this routine calculates values of the inverse Laplace transform \(f\left(t_{0}\right), f\left(t_{0}+\Delta t\right), \ldots, f\left(t_{0}+(\ell-1) \Delta t\right)\).In this case, \(F(s)\) must be regular in the domain \(\operatorname{Re}(s)>\gamma_{0}\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlaps3(fun, t, delt, np, epsr, r0, ft, t1, neps, errv, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline fun & function & Input & \begin{tabular}{l}
Name of user defined function which calculates the imaginary part of \(F(s)\) for complex variable \(s\). Its prototype is: \\
double fun(dcomplex s); \\
where \\
s dcomplex Input Complex independent variable \(s\).
\end{tabular} \\
\hline \begin{tabular}{l}
t \\
delt
\end{tabular} & double double & \begin{tabular}{l}
Input \\
Input
\end{tabular} & Initial value \(t_{0}(>0)\) from which the values of \(f(t)\) are required. Increment \(\Delta t(\geq 0)\) of variable \(t\). If delt \(=0\), only \(f\left(t_{0}\right)\) is calculated. \\
\hline np epsr & int double & Input Input & Number of points \(\ell(\geq 1)\) at which values of \(f(t)\) are required. Relative error tolerance (\(\geq 0\)) for the values \(f(t)\).Values of epsr between \(10^{-4}\) and \(10^{-7}\) are typical. If epsr \(=0\) or epsr \(\geq 1\), the default value of \(10^{-4}\) is used. \\
\hline r0 & double & Input & Value of \(\gamma\) which satisfies \(\gamma \geq \gamma_{0}\) when the function \(F(s)\) is regular in a domain \(\operatorname{Re}(s)>\gamma_{0}\). If a negative value is input, \(\mathrm{r} 0=0\) is assumed. \\
\hline ft & double ft[np] & Output & Values \(f\left(t_{0}+i \Delta t\right)\), with \(\mathrm{ft}[\mathrm{i}]=f\left(t_{0}+i \Delta t\right)\). \\
\hline t1 & double t1[np] & Output & Values \(t_{0}+i \Delta t\) with t1[i] \(=t_{o}+i \Delta t\) \\
\hline neps & int neps[np] & Output & Number of terms in the truncated expansions. The number of terms \(N_{i}\) used to calculate ft [i] is stored in neps [i]. \\
\hline errv & double errv[np] & Output & Estimates of the relative error.The estimate of the relative error in \(\mathrm{ft}[\mathrm{i}]\) is stored in errv[i]. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Some of the results did not meet the required & \begin{tabular}{l}
Continued. Values representing accuracy for \\
accuracy.
\end{tabular} \\
\hline 20000 & \begin{tabular}{l}
The value of \\
\(\exp \left(\mathrm{r} 0^{*}+\mathrm{t} 1[\mathrm{np}]+\sigma_{0}\right) / \mathrm{t} 1[\mathrm{np}]\), where \(, i=0,1, \ldots, \ell-1\) are output in errv.
\end{tabular} & Bypassed. The result may not be accurate. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \begin{tabular}{l}
\(\sigma_{0}=\left[-\frac{\log (\text { epsr })}{2}\right]+2\), may overflow for a \\
certain value of np.
\end{tabular} & \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{t} \leq 0\) or delt \(<0\) \\
\(\bullet \quad \mathrm{np}<1\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

When \(F(s)\) is a rational function, routine c_dlaps2 should be used for efficiency.

When \(F(s)\) is regular in the domain \(\operatorname{Re}(\mathrm{s})>\gamma_{0}\), input \(\gamma>\gamma_{0}\) as argument r 0 .

When \(\gamma_{0} \leq 0\) specify \(r 0=0\). If a negative value is input as argument \(r 0, r 0=0\) is assumed in the routine.
If the function \(f(t)\) for \(\mathrm{r} 0=0\) and the function \(f(t)\) for \(\mathrm{r} 0>0\) are significantly different, it is possible, because \(\gamma_{0}>0\), to estimate the value \(\gamma_{0}\) using this routine. Consult the entry for LAPS3 in the Fortran SSL II User's Guide.

\section*{4. Example program}

This finds the inverse Laplace transform for the function \(F(s)=\operatorname{Im}(s)\) (where s is complex) at certain points.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define L 10
double fun(dcomplex s); /* function prototype */
MAIN__()
{
int ierr, icon;
double t', delt, epsr, r0;
double t1[L], ft[L], errv[L];
int i, l, neps[L];
/* generate initial data */
t = 0.2;
delt = 0.2;
l = L;
epsr = 1e-4;
r0 = 0;
/* calculate inverse Laplace transform */
ierr = c_dlaps3(fun, t, delt, l, epsr, r0, ft, t1,
neps, errv, \&icon);
if (icon >= 20000) {
printf("ERROR: c_dlaps3 failed with icon = %d\n", icon);
exit(1);
}
printf("icon = %i\n", icon);
printf("t1 f't errv neps \n");
for (i=0;i<l;i++) {
printf("%4.2f %12.5e %12.5e %4i\n",');
}
return(0);
}
/* user function */
double fun(dcomplex s)
{

```

\section*{return s.im;}
\}

\section*{5. Method}

Consult the entry for LAPS3 in the Fortran SSL II User's Guide.

\section*{c_dlaxl}
\begin{tabular}{|c|}
\hline Least squares solution with a real matrix (Householder transformation). \\
\hline \begin{tabular}{c}
ierr \(=c _d l a x l(a, ~ k, ~ m, ~ n, ~ b, ~ i s w, ~ v w, ~ i v w, ~\) \\
\&icon);
\end{tabular} \\
\hline
\end{tabular}

\section*{1. Function}

This function solves the over determined system of linear equation (1) for the least squares solution \(\widetilde{\mathbf{x}}\) using Householder transformations.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(m \times n\) real matrix of rank \(n\) and \(\mathbf{b}\) is a real constant vector of size \(m\), where \(m\) is not less than \(n\).
\[
\begin{equation*}
\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \tag{2}
\end{equation*}
\]

The function determines the real solution vector \(\mathbf{x}\), such that equation (2) is minimized (\(n \geq 1\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlaxl((double*)a, k, m, n, b, isw, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{a} & double & Input & Matrix A. \\
\hline & a[m] [k] & & The contents of the array are altered on output. \\
\hline k & int & Input & C fixed dimension of array a \((\geq n)\). \\
\hline m & int & Input & The number of rows \(m\) in matrix \(\mathbf{A}\). \\
\hline n & int & Input & The number of columns \(n\) in matrix \(\mathbf{A}\). \\
\hline b & double b[m] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Least squares solution vector \(\widetilde{\mathbf{x}}\). See Comments on use. \\
\hline \multirow[t]{2}{*}{isw} & int & Input & Control information. \\
\hline & & & When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use. \\
\hline VW & double Vw[2n] & Work & \\
\hline ivw & int ivw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is given below.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Rank (A) \(<\mathrm{n}\) & Stopped. \\
\hline 29000 & Memory allocation error. & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
& \(\bullet \mathrm{m}<\mathrm{n}\) \\
& \(\bullet \quad \mathrm{n}<1\) \\
& \(\bullet \quad \mathrm{isw} \neq 1\) or 2 & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Least squares solution - b}

The least squares solution \(\widetilde{\mathbf{x}}\) is stored in the first n elements of array b .

\section*{isw}

When solving several sets of linear equations with same coefficient matrix, specify isw=2 for the second and subsequent sets after successfully completing the first with isw=1. This will bypass the Householder transformation section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\) (from the overdetermined system \(\mathbf{A x}=\mathbf{b}\)), and then calculates \(\mathbf{b}\) by multiplication. A solution \(\mathbf{y}\) is then obtained using the library routine, and this is then checked using the equation \(\mathbf{A y}=\mathbf{b}\).
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define MMAX 110
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int m, n, i, j, k, isw;
double eps;
double a[MMAX][NMAX], aa[MMAX][NMAX], b[MMAX], bb[MMAX];
double x[MMAX], vw[2*NMAX];
int ivw[NMAX];
/* initialize overdetermined system */
m = MMAX;
n = NMAX;
for (i=0;i<n;i++)
for (j=i;j<n;j++) {
a[i][j] = n-j;
a[j][i] = n-j;
}
for (i=n;i<m;i++)
for (j=0;j<n;j++) {
a[i][j] = 0;
if (i%n == j) a[i][j] = 1;
}
for (i=0;i<m;i++)
for (j=0;j<n;j++)
aa[i][j] = a[i][j];
for (i=0;i<n;i++)
x[i] = 1
k = NMAX;
/* initialize constant vector b = a*x */
ierr = c_dmav((double*)a, k, m, n, x, b, \&icon);
for (i=0;i<m;i++)
bb[i] = b[i];
isw = 1;
/* solve overdetermined system of equations */
ierr = c_dlaxl((double*)a, k, m, n, b, isw, vw, ivw, \&icon);

```
```

    if (icon != 0) {
        printf("ERROR: c_dlaxl failed with icon = %d\n", icon);
        exit(1)
    }
    /* check least squares solution */
    ierr = c_dmav((double*)aa, k, m, n, b, x, &icon);
    eps = 1e-6;
    for (i=0;i<m;i++)
        if (fabs((x[i]-bb[i])/bb[i]) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
    printf("Result OK\n")
    return(0);
    }

```

\section*{5. Method}

The Householder transformation method is used. For further information consult the entry for LAXL in the Fortran SSL II User's Guide and [18].

\section*{c_dlaxlm}
```

Least squares minimal norm solution with a real matrix (singular value
decomposition method).
ierr = c_dlaxlm(a, ka, m, n, b, isw, eps, sig,
v, kv, vw, \&icon);

```

\section*{1. Function}

This function finds the least squares minimal norm solution \(\mathbf{x}^{+}\)for a system of linear equations (1).
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(m \times n\) real matrix and \(\mathbf{b}\) is a real constant vector of size \(m\). The \(n\)-order real solution vector \(\mathbf{x}\) is determined by minimizing equations (2) and (3).
\[
\begin{gather*}
\|\mathbf{x}\|_{2} \tag{2}\\
\|\mathbf{b}-\mathbf{A x}\|_{2} \tag{3}
\end{gather*}
\]

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dlaxlm((double*)a, ka, m, n, b, isw, eps, sig, (double*)v, kv, vw,
\&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double & Input & Matrix A. \\
\hline & a[m][ka] & Output & The contents of the array are altered on output. \\
\hline ka & int & Input & C fixed dimension of array a \((\geq n)\). \\
\hline m & int & Input & The number of rows \(m\) in matrix \(\mathbf{A}\). \\
\hline n & int & Input & The number of columns \(n\) in matrix \(\mathbf{A}\). \\
\hline b & double b [Blen] & \begin{tabular}{l}
Input \\
Output
\end{tabular} & Constant vector \(\mathbf{b}\), with Blen \(=\max (\mathrm{m}, \mathrm{n})\). See Comments on use. Least squares minimal norm solution vector \(\mathbf{x}^{+}\). \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. \\
When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument b is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. Otherwise set isw=0 when there is only one system to solve. See See Comments on use.
\end{tabular} \\
\hline eps & double & Input & Tolerance for relative zero test of singular values \((\geq 0)\). When eps is zero, a standard value is used. See Comments on use. \\
\hline sig & double sig[n] & Output & Singular values of matrix A. See Comments on use. \\
\hline v & double
\[
\mathrm{v}[\mathrm{n}][\mathrm{kv}]
\] & Work & Working space for matrices \(\mathbf{U}\) and \(\mathbf{V}\) in the singular value decomposition, \(\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{\mathrm{T}}\). \\
\hline kv & int & Input & \(C\) fixed dimension of array \(\mathrm{v}(\geq \min (\mathrm{m}+1, \mathrm{n})\)). \\
\hline VW & double \(\mathrm{Vw}[\mathrm{n}]\) & Work & \\
\hline
\end{tabular}
icon int Output Condition code. See below.

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 15000 & Some singular values could not be obtained. & Stopped. \\
\hline 29000 & Memory allocation error. & Bypassed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(k a<n\) \\
- \(m<1\) \\
- \(\mathrm{n}<1\) \\
- \(k v<\min (n, m+1)\) \\
- eps \(<0\) \\
- isw \(\neq 0,1\), or 2
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Least squares solution - b}

The least squares minimal norm solution \(\mathbf{x}^{+}\)is stored in the first n elements of array b .

\section*{isw}

When only one least squares minimal norm solution is required, if isw=0 is specified, this function does not compute the transformation by singular value decomposition. Consequently, it is computationally more efficient than otherwise.

When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for the second and subsequent sets after successfully completing the first with \(i s w=1\). This will bypass the singular value decomposition section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise.

\section*{sig}

All singular values are non-negative and stored in descending order. When icon=15000, the unobtainable singular values are set to -1 and the values are not arranged in any order.

\section*{eps}

The argument eps is used for determining the rank of \(\mathbf{A}\). It must be carefully specified.
When a singular value is less than the tolerance, eps, it is assumed to be zero. The standard value of eps is \(16 \mu\), where \(\mu\) is the unit round-off. A value less than zero results in icon=30000.

\section*{When to use the function}

This function should be used when rank deficiency of \(\mathbf{A}\) is or may be found \((\operatorname{rank}(\mathbf{A})\) in \((m, n))\). When \(\operatorname{rank}(\mathbf{A})=\min (m\), \(n\)) then the function C_dlaxl should be used.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\) (from the overdetermined system \(\mathbf{A x}=\mathbf{b}\)), and then calculates \(\mathbf{b}\) by multiplication. A solution \(\mathbf{y}\) is then obtained using the library routine, and this is then checked using the equation \(\mathbf{A y}=\mathbf{b}\).
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define MMAX 110
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int m, n, i, j, ka, kv, isw;
double eps;
double a[MMAX][NMAX], aa[MMAX][NMAX], b[MMAX], bb[MMAX];
double x[MMAX], sig[NMAX], v[NMAX][NMAX], vw[NMAX];
/* initialize overdetermined system */
m = MMAX;
n = NMAX;
for (i=0;i<n;i++)
for (j=i;j<n;j++) {
a[i][j] = n-j;
a[j][i] = n-j;
}
for (i=n;i<m;i++)
for (j=0;j<n;j++) {
a[i][j] = 0;
if (i%n == j) a[i][j] = 1;
}
for (i=0;i<m;i++)
for (j=0;j<n;j++)
aa[i][j] = a[i][j];
for (i=0;i<n;i++)
x[i] = 1;
ka = NMAX;
kv = NMAX
/* initialize constant vector b = a*x */
ierr = c_dmav((double*)a, ka, m, n, x, b, \&icon);
for (i=0;i<m;i++)
bb[i] = b[i];
isw = 0;
eps = 0;
/* solve overdetermined system of equations */
ierr = c_dlaxlm((double*)a, ka, m, n, b, isw,
if (icon != 0) {eps, sig, (double*)v, kv, vw, \&icon);
printf("ERROR: c_dlaxlm failed with icon = %d\n", icon)
exit(1);
}
/* check least squares solution */
ierr = c_dmav((double*)aa, ka, m, n, b, x, \&icon);
eps = 1e-6;
for (i=0;i<m;i++)
if (fabs((x[i]-bb[i])/bb[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

The singular value decomposition method is used. For further information consult the entry for LAXLM in the Fortran SSL II User's Guide and [41].

\section*{c_dlex}

Solution of a system of linear equations with a complex matrix (Crout's method).
```

ierr = c_dlcx(za, k, n, zb, epsz, isw, \&is,
zvw, ip, \&icon);

```

\section*{1. Function}

This function solves a system of linear equations (1) in complex numbers by Crout's method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) non-singular complex matrix, \(\mathbf{b}\) is a complex constant vector and \(\mathbf{x}\) is the complex solution vector. Both the complex vectors are of size \(n(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlcx((dcomplex*)za, k, n, zb, epsz, isw, \&is, zvw, ip, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline za & dcomplex & Input & Matrix A. \\
\hline & za[n][k] & Output & The contents of the array are altered on output. \\
\hline k & int & Input & C fixed dimension of array za (\(\geq \mathrm{n}\)). \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline zb & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zb[n] }
\end{aligned}
\] & Input & Constant vector \(\mathbf{b}\). \\
\hline epsz & double & Output Input & \begin{tabular}{l}
Solution vector \(\mathbf{x}\). \\
Tolerance for relative zero test of pivots in decomposition process of A \((\geq 0)\). When epsz is zero, a standard value is used. See Comments on use.
\end{tabular} \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. \\
When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use.
\end{tabular} \\
\hline is & int & Output & Information for obtaining the determinant of matrix \(\mathbf{A}\). When the n elements of the calculated diagonal of array za are multiplied together, and the result multiplied by is, the determinant is obtained. \\
\hline zVw & dcomplex zvw[n] & Work & \\
\hline ip & int ip[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Either all of the elements of some row are zero or \\
the pivot became relatively zero. It is highly \\
probable that the coefficient matrix is singular.
\end{tabular} & Stopped. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad \mathrm{k}<\mathrm{n}\) \\
- \(\quad \mathrm{n}<1\) \\
- epsz \(<0\) \\
- \\
isw \(\neq 1\) or 2
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If the value \(10^{-s}\) is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If both the real and imaginary parts of the pivot value lose more than \(s\) significant digits during LU-decomposition by Crout's method, the pivot value is assumed to be zero and computation is discontinued with icon=20000.

The standard value of epsz is normally \(16 \mu\), where \(\mu\) is the unit round-off. If processing is to proceed at a low pivot value, epsz will be given the minimum value but the result is not always guaranteed.

\section*{isw}

When solving several sets of linear equations with same coefficient matrix, specify isw=2 for the second and subsequent sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and go directly to solution stage. Consequently, the computation for these subsequent sets is far more efficient then otherwise. The value of is is identical for all sets and any valid isw.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, k, is, isw;
double epsz, eps;
dcomplex za[NMAX][NMAX];
dcomplex zb[NMAX], zx[NMAX], zvw[NMAX];
int ip[NMAX];
/* initialize matrix and vector */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
for (j=i;j<n;j++) {
za[i][j].re = n-j;
za[i][j].im = n-j;
za[j][i].re = n-j;

```
```

        za[j][i].im = n-j;
        }
        zx[i].re = i+1
        zx[i].im = i+1;
    }
    /* initialize constant vector zb = za*zx */
    ierr = c_dmcv((dcomplex*)za, k, n, n, zx, zb, &icon);
    epsz = 1e-6;
    isw = 1;
    /* solve system of equations */
    ierr = c_dlcx((dcomplex*)za, k, n, zb, epsz, isw, &is, zvw, ip, &icon);
    if (icon != 0) {
        printf("ERROR: c_dlcx failed with icon = %d\n", icon);
        exit(1);
    }
    /* check result */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((zb[i].re-zx[i].re)/zx[i].re) > eps ||
            fabs((zb[i].im-zx[i].im)/zx[i].im) > eps) {
            printf("WARNING: result inaccurate\n");
            exit(1);
        }
    printf("Result OK\n")
    return(0);
    }

```

\section*{5. Method}

Crout's method is used for matrix LU-decomposition before solving the system of linear equations by forward and backward substitutions. For further information consult the entry for LCX in the Fortran SSL II User's Guide and see [7], [34] and [83].

\section*{c_dlesq1}
```

Polynomial least squares approximation.
ierr = c_dlesq1(x, y, n, \&m, w, c, vw, \&icon);

```

\section*{1. Function}

Given \(n\) observed data \(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\) and weighted function \(w\left(x_{i}\right)\) for \(i=1,2, \ldots, n\), this function obtains the polynomial least squares approximation of degree \(m\), equation (1), by determining the coefficients \(c_{0}, c_{1}, \ldots, c_{m}\) such that (2) is minimized.
\[
\begin{align*}
& \bar{y}_{m}(x)=c_{0}+c_{1} x+\cdots+c_{m} x^{m} \tag{1}\\
& \delta_{m}^{2}=\sum_{i=1}^{n} w\left(x_{i}\right)\left[y_{i}-\bar{y}_{m}\left(x_{i}\right)\right]^{2} \tag{2}
\end{align*}
\]

The degree \(m\) is selected so as to minimize (3) in the range \(0 \leq m \leq k\). When (3) is minimized, \(m\) is considered the optimum degree for the least squares approximation.
\[
\begin{equation*}
\mathrm{AIC}=n \log \delta_{m}^{2}+2 m \tag{3}
\end{equation*}
\]

Here, \(0 \leq k<n-1\), the weight function must satisfy \(w\left(x_{i}\right) \geq 0\) and \(n \geq 2\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlesq1(x, y, n, \&m, w, c, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline x & double \(x[n]\) & Input & Discrete points \(x_{i}\). \\
\hline y & double y[n] & Input & Observed data \(y_{i}\). \\
\hline n & int & Input & Number of discrete points \(n\). \\
\hline \multirow[t]{2}{*}{m} & int & Input & Upper limit \(k\) of degree of the approximation polynomial to be determined. If \(m=-k(k>0)\) then degree \(k\) is unconditionally obtained. \\
\hline & & Output & Degree \(k\) of the approximation polynomial. When \(m=-k\), the output for \(m\) is \(k\). \\
\hline W & double w[n] & Input & Weighted function values \(w\left(x_{i}\right)\). \\
\hline C & double c[Clen] & Output & Coefficients \(c_{i}\) of approximation polynomial with Clen \(=k+1\). If the output value of \(m\) is \(m\) for \(0 \leq m \leq k\), the coefficients are stored in the following order: \(c_{0}, c_{1}, \ldots, c_{m}\). For \(m<k\), all elements of c from \(m+1\) to \(k\) are set to zero. \\
\hline VW & double & Work & \\
\hline & vw[7*n] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
When \(m=-k,(\mathrm{k}>0)\) the polynomial of order \\
k could not be determined uniquely.
\end{tabular} & \begin{tabular}{l}
A uniquely determined polynomial of order less \\
than k is output.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<2\) \\
- \(\quad \mathrm{k} \geq \mathrm{n}-1\) \\
- At least one negative weight in w
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Specifying weighted function values}

When observed data have nearly the same order, \(w\left(x_{i}\right)=1\) for \(i=1,2, \ldots, n\) may be used. But when they are ordered irregularly, the weights for the function should be specified as \(w\left(x_{i}\right)=1 / y_{i}^{2}\) (specify \(w\left(x_{i}\right)=1\) when \(y_{i}=0\)).

The number of discrete points, \(n\), should be as high as possible compared to the upper limit \(k\). Theoretically, \(n\) is recommended to be equal to or greater than \(10 k\).

\section*{4. Example program}

This program approximates the function \(f(x)=\sin (x) \sqrt{x}\) with a fifth order polynomial obtained by a least squares fit.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 10
\#define MMAX 5
MAIN__()
{
int ierr, icon;
int i, n, m;
double x[NMAX], y[NMAX], w[NMAX], c[MMAX+1], vw[7*NMAX];
double h, p;
/* initialize data */
n = NMAX;
p = 0;
h = 1.0/n;
for (i=0;i<n;i++) {
w[i] = 1;
x[i] = p;
y[i] = sin(p)*sqrt(p);
p = p + h;
}
m = MMAX;
/* calculate polynomial least squares coefficients */
ierr = c_dlesq1(x, y, n, \&m, w, c, vw, \&icon);
printf("icon = %i m = %i\n", icon, m);
for (i=0;i<m;i++)
printf("%12.4e ", c[i]);
printf("\n");
return(0);
}

```

\section*{5. Method}

For further information consult the entry for LESQ1 in the Fortran SSL II User's Guide and see [89].

\section*{c_dlminf}

Minimization of a function with a single variable (quadratic interpolation using function values only).
```

ierr = c_dlminf(\&a, b, fun, epsr, \&max, \&f,
\&icon);

```

\section*{1. Function}

Given a real function \(f(x)\) of a single variable, the point \(x^{*}\) that gives a local minimum of \(f(x)\) and its function value \(f\left(x^{*}\right)\) are obtained in the interval \([a, b]\).

The function \(f(x)\) is assumed to have at least continuous second derivatives.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlminf(\&a, b, fun, epsr, \&max, \&f, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{a} & \multirow[t]{2}{*}{double} & Input & Left hand side of interval in which to find local minimum. \\
\hline & & Output & Point \(x^{*}\). \\
\hline b & double & Input & Right hand side of interval in which to find local minimum. \\
\hline \multirow[t]{2}{*}{fun} & function & Input & User defined function to evaluate \(f(x)\). Its prototype is: double fun(double \(x\)); where: \\
\hline & & & \(x\) double Input Independent variable. \\
\hline epsr & double & Input & Convergence criteria. A default value is used when epsr \(=0\). See Comments on use. \\
\hline \multirow[t]{2}{*}{max} & int & Input & Upper limit on the number of evaluations of fun. max may be negative. See Comments on use. \\
\hline & & Output & Number of times actually evaluated. \\
\hline f & double & Output & Value of \(f\left(x^{*}\right)\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
Convergence condition was not satisfied within \\
the specified number of function evaluations.
\end{tabular} & \begin{tabular}{l}
Stopped. Arguments a and f contain the last \\
value obtained.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad\) epsr \(<0\) \\
\(\bullet \quad \max =0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsr}

The function tests for
\[
\left|x_{1}-x_{2}\right| \leq \max (1,|\widetilde{x}|) \cdot \text { epsr }
\]
for two points \(x_{1}\) and \(x_{2}\) that surround \(x^{*}\). When the condition is satisfied, \(\widetilde{x}\) is assumed to be the minimum point \(x^{*}\) and the iteration is stopped with \(\tilde{x}=x_{1}\) for \(f\left(x_{1}\right) \leq f\left(x_{2}\right)\) and \(\tilde{x}=x_{2}\) otherwise.

This routine assumes that \(f(x)\) is approximately quadratic in the vicinity of \(x^{*}\). To obtain \(f\left(x^{*}\right)\) as accurately as the unit round-off, a value of epsr \(\approx \sqrt{\mu}\) is appropriate. The default value of epsr is \(2 \cdot \sqrt{\mu}\).

\section*{max and recalling c_dlminf when icon=10000}

The number of function evaluations is calculated as the number of calls to the user defined function fun.

The number of function evaluations required depends upon the characteristics of the function as well as the initial interval \([a, b]\) and the convergence criterion. Generally, from a good initial interval and the default convergence criteria, a value of \(\max =400\) is appropriate.

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon \(=10000\), the iteration can be continued by calling c_dlminf again. In this case, max must be given a negative value, where its absolute value indicates the number of additional function evaluations to perform, and the value of the other arguments must remain unaltered.

\section*{\(a\) and \(b\)}

If there is only one minimum point of \(f(x)\) in the interval \([a, b]\), then this function will obtain the value of this point to within the specified error tolerance. If there are several minimum points, it is not certain which point the iteration will converge to. This means that it is desirable to use values of a and b that are as near to \(x^{*}\) as possible.

\section*{4. Example program}

A minimum of the function \(f(x)=x^{4}-4 x^{3}-6 x^{2}-16 x+4\) is found in the interval \([-5,5]\). The computed solution is output together with an accuracy check.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
double fun(double x); /* user function prototype */
MAIN__()
{
int ierr, icon;
double a, b, f, epsr, eps, exact;
int max;
/* initialize data */
a = -5;
b = 5;
epsr = 0;
max = 400;
/* find minimum of function */
ierr = c_dlminf(\&a, b, fun, epsr, \&max, \&f, \&icon);
printf("icon = %i max = %i a = %12.4e fre% f=%12.4e\n", icon, max, a, f);
/* check result */
exact = 4;

```
```

    eps = 1e-6;
    if (fabs((a-exact)/exact) > eps)
        printf("Inaccurate result\n");
    else
        printf("Result OK\n");
    return(0);
    }
/* user function */
double fun(double x)
{
return((((x-4)*x-6)*x-16)*x+4);
}

```

\section*{5. Method}

For further information consult the entry for LMINF in the Fortran SSL II User's Guide.

\section*{c_dlming}

Minimization of a function with a single variable (cubic interpolation using function values and derivatives).
```

ierr = c_dlming(\&a, b, fun, grad, epsr, \&max,

``` \&f, \&icon);

\section*{1. Function}

Given a real function \(f(x)\) of a single variable and its derivative \(g(x)\), the point \(x^{*}\) that gives a local minimum of \(f(x)\) in the interval \([a, b]\), and its function value \(f\left(x^{*}\right)\) are obtained.

The function \(f(x)\) is assumed to have at least continuous third derivatives.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlming(\&a, b, fun, grad, epsr, \&max, \&f, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{a} & \multirow[t]{2}{*}{double} & Input & Left hand side of interval [a,b]. \\
\hline & & Output & Point \(x^{*}\). \\
\hline b & double & Input & Right hand side of interval [\(a, b\)]. \\
\hline fun & function & Input & User defined function to evaluate \(f(x)\). Its protoytpe is: double fun(double x); where: \\
\hline & & & \(x\) double Input Independent variable. \\
\hline \multirow[t]{2}{*}{grad} & function & Input & User defined function to evaluate \(g(x)\). Its prototype is: double grad(double x); where: \\
\hline & & & \(x\) double Input Independent variable. \\
\hline epsr & double & Input & Convergence criterion \((\geq 0)\). A default value is used when epsr \(=0\). See Comments on use. \\
\hline \multirow[t]{2}{*}{max} & int & Input & Upper limit on the number of evaluations of fun and grad. max may be negative. See Comments on use. \\
\hline & & Output & Number of times fun and grad were actually evaluated. \\
\hline f & double & Output & Value of \(f\left(x^{*}\right)\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
Convergence condition was not satisfied within \\
the specified number of function evaluations.
\end{tabular} & \begin{tabular}{l}
Stopped. Arguments a and \(f\) contain the last \\
values obtained.
\end{tabular} \\
\hline 20000 & The value of epsr is too small. & \begin{tabular}{l}
Bypassed. Arguments a and \(f\) contain the last \\
values obtained.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad\) epsr \(<0\) \\
\(\bullet \quad \max =0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsr}

The routine tests for
\[
\left|x_{1}-x_{2}\right| \leq \max (1,|\tilde{x}|) \cdot \mathrm{epsr}
\]
for two points \(x_{1}\) and \(x_{2}\) that surround \(x^{*}\), where \(\tilde{x}=x_{1}\) if \(f\left(x_{1}\right) \leq f\left(x_{2}\right)\) otherwise \(\tilde{x}=x_{2}\). When the condition is satisfied, \(\widetilde{x}\) is assumed to be the minimum point \(x^{*}\) and the iteration is stopped.

This routine assumes that \(f(x)\) is approximately a cubic function in the vicinity of \(x^{*}\). To obtain \(f\left(x^{*}\right)\) as accurately as the unit round-off \(\mu\), a value of epsr \(\approx \mu^{1 / 2}\) is appropriate. The default value of epsr is \(2 \mu^{1 / 2}\).

\section*{max and recalling \(\mathbf{c}\) _dlming when icon=10000}

The number of function evaluations is calculated as the total number of calls to the user defined functions (fun and grad).

The number of function evaluations required depends upon the characteristics of the functions \(f(x)\) and \(g(x)\) as well as the initial interval \([a, b]\) and the convergence criterion. Generally, from a good initial interval and with the default convergence criterion, a value of \(\max =400\) is appropriate.

If the convergence criterion is not satisfied within the specified number of evaluations and the routine returns with icon \(=10000\), the iteration can be continued by calling \(\mathrm{c}_{-}\)dlming again. In this case, max must be given a negative value, where its absolute value indicates the number of additional function evaluations to perform, and the values of the other arguments must remain unaltered.

\section*{\(a\) and \(b\)}

If there is only one minimum point of \(f(x)\) in the interval \([a, b]\), then this routine will obtain the value of this point to within the specified error tolerance. If there are several minimum points, the point to which the iteration will converge is not certain. This means that it is desirable to use values of a and b that are as near to \(x^{*}\) as possible.

\section*{4. Example program}

This program finds the minimum value of the function \(f(x)=x^{4}-4 x^{3}-6 x^{2}-16 x+4\) in the interval \([-5,5]\).
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
double fun(double x); /* user function prototype */
double grad(double x); /* derivative prototype */
MAIN__()
{
int ierr, icon;
double a, b, f, epsr, eps, exact;
int max;
/* initialize data */

```
```

    a = -5
    b = 5;
    epsr = 0;
    max = 400;
    /* find minimum of function */
    ierr = c_dlming(&a, b, fun, grad, epsr, &max, &f, &icon);
    printf("icon = %i max = %i a = %12.4e f = %12.4e\n", icon, max, a, f);
    /* check result */
    exact = 4;
    eps = 1e-6;
    if (fabs((a-exact)/exact) > eps)
        printf("Inaccurate result\n");
    else
        printf("Result OK\n");
    return(0);
    }
/* user function */
double fun(double x)
{
return((((x-4)*x-6)*x-16)*x+4);
}
/* derivative function */
double grad(double x)
{
return ((4*x-12)*x-12)*x-16;
}

```

\section*{5. Method}

Consult the entry for LMING in the Fortran SSL II User's Guide.

\section*{c_dlowp}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Roots of a low degree polynomial with real coefficients (fifth degree or \\
lower).
\end{tabular} \\
\hline ierr \(=\) c_dlowp \((a, n, z, \quad \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function finds the roots of a fifth or lower degree polynomial with real coefficients (1) by the successive substitution method, Newton method, Ferrari method, Bairstow method and the root formula for quadratic equations.
\[
\begin{equation*}
a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0 \tag{1}
\end{equation*}
\]
where \(n \leq 5\) and \(a_{0} \neq 0\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dlowp(a, n, z, \&icon);

```
where:
\begin{tabular}{llll}
a & double \(\mathrm{a}[\mathrm{n}+1]\) & Input & \begin{tabular}{l}
Coefficients of the polynomial equation with \(\mathrm{a}[\mathrm{i}]=a_{i}\), where \\
\(\mathrm{i}=0, \ldots, \mathrm{n}\).
\end{tabular} \\
n & int & Input & \begin{tabular}{l}
Degree \(n\) of polynomial equation. \\
z
\end{tabular} \\
dcomplex \(\mathrm{z}[\mathrm{n}]\) & Output & The n roots of polynomial equation. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
When determining a real root of a fifth degree \\
equation, \(f\left(x_{k}\right) f\left(x_{k+1}\right)<0\) was not satisfied \\
after 50 successive substitutions.
\end{tabular} & \begin{tabular}{l}
Processing continues by using the last \(x_{k+1}\) as \\
the initial value in the Newton method.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet\) \\
\(a_{0}=0\) \\
\(\bullet\) \\
- \(\leq 0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Example program}

This example program computes the roots of the cubic polynomial \(z^{3}-6 z^{2}+11 z-6=0\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
dcomplex z[NMAX];

```
```

    double a[NMAX+1];
    int n, i;
    /* initialize data */
    n = 3;
    a[0] = 1;
    a[1] = -6;
    a[2] = 11
    a[3] = -6;
    /* find roots of polynomial */
    ierr = c_dlowp(a, n, z, &icon);
    printf("icon = %i\n", icon);
    for (i=0;i<n;i++)
        printf("z[%i] = {%12.4e, %12.4e}\n", i, z[i].re, z[i].im);
    printf("exact roots are: {1, 0}, {2, 0} and {3, 0}\n");
    return(0);
    }

```

\section*{4. Method}

Below are the methods used to find the roots for the different degrees \((\leq 5)\) of a polynomial equation with real coefficients.

Degree 1: by directly evaluation.

Degree 2: by root formula for quadratic equation (See function \(C _d r q d r\)).

Degree 3: by Newton method and root formula.

Degree 4: by Ferrari and Bairstow methods.

Degree 5: by Newton and successive substitution methods.

For further information consult the entry for LOWP in the Fortran SSL II User's Guide.

\section*{c_dlprs1}

> Solution of a linear programming problem (revised simplex method).
\[
\begin{gathered}
\text { ierr = c_dlprs1(a, k, m, n, epsz, \&imax, \&isw, } \\
\text { nbv, b, kb, vw, ivw, \&icon); } \\
\hline
\end{gathered}
\]

\section*{1. Function}

This function solves the linear programming problem below by the revised simplex method:

Minimize (or maximize) \(z=\sum_{j=1}^{n} c_{j} x_{j}+c_{0}=\mathbf{c}^{\mathrm{T}} \mathbf{x}+c_{0}\)
Subject to:
\[
\begin{array}{ll}
\sum_{j=1}^{n} a_{i j} x_{j} \leq d_{i} & i=1,2, \cdots, m_{l} \\
\sum_{j=1}^{n} a_{i j} x_{j} \geq d_{i} & i=m_{l}+1, m_{l}+2, \cdots, m_{l}+m_{g} \\
\sum_{j=1}^{n} a_{i j} x_{j}=d_{i} & i=m_{l}+m_{g}+1, m_{l}+m_{g}+2, \cdots, m_{l}+m_{g}+m_{e} \\
& x_{j} \geq 0, \quad j=1,2, \cdots, n
\end{array}
\]

The problem is solved in two phases:
- Phase 1: obtain basic feasible solution,
- Phase 2: obtain the optimal solution.

This function allows the user to provide an initial feasible basis, bypassing Phase 1. There is no sign constraint on \(d_{i}\).

The following are input components:
\(m=m_{l}+m_{g}+m_{e}\)
- \(\quad \mathbf{A}=\left\{a_{i j}\right\}\) is the \(m \times n\) coefficient matrix.
- \(\mathbf{d}=\left(d_{1}, d_{2}, \ldots, d_{m}\right)^{\mathrm{T}}\) is the constant vector.
- \(\quad \mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{\mathrm{T}}\) is the coefficient vector.
- \(\quad c_{0}\) is the constant term.

This input data is passed into the routine via the array a, as shown in Figure 32 in Comments on use.

On successful completion, the relevant components are:
- B, the \({ }^{m \times m}\) sub-matrix of A whose columns form a basis for the solution.
- \(\quad \mathbf{x}_{B}=\mathbf{B}^{-1} \mathbf{d}\), the final m basic variables.
- \(\mathbf{k}=\left\{k_{j} \mid j=1, \cdots, m\right\}\), the indices of the m basic variables, which also correspond to the column indices of A contained in B.
- \(\quad \mathbf{c}_{B}=\left(c_{k_{1}}, \cdots, c_{k_{m}}\right)^{\mathrm{T}}\), the sub-vector of elements of c that corresponds to \(\mathbf{x}_{B}\).
- \(\boldsymbol{\pi}=\mathbf{c}_{B} \mathbf{B}^{-1}\), the simplex multipliers, whose values determine when an optimal solution has been achieved.
- \(q=\mathbf{c}_{B}{ }^{\mathrm{T}} \mathbf{x}_{B}+c_{0}\), the associated objective function value.

In the following descriptions, it is assumed that: \(n \geq 1, m_{l} \geq 0, m_{g} \geq 0, m_{e} \geq 0\) and \(m \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dlprs1((double *)a, k, m, n, epsz, \&imax, \&isw, nbv, (double *)b, kb,
vw, ivw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double
\[
a[m+1][k]
\] & Input & Simplex tableaux containing coefficient matrix \(\mathbf{A}\), constant vector \(\mathbf{d}\), coefficient vector \(\mathbf{c}\) and constant term \(c_{0}\). See Figure 32 in Comments on use. \\
\hline k & int & Input & The C fixed dimension of \(\mathrm{a},(\mathrm{k}>n)\). \\
\hline m & int m[3] & Input & Number of constraints, where \(\mathrm{m}[0], \mathrm{m}[1], \mathrm{m}[2]\) contain \(m_{l}, m_{g}\) and \(m_{e}\) respectively. \\
\hline n & int & Input & Number of variables \(n\). \\
\hline epsz & double & Input & \begin{tabular}{l}
Relative zero criterion for \\
- elements (coefficient and constant term) to be used during iteration, \\
- the pivot to be used when the basic inverse matrix \(\mathbf{B}^{-1}\) is obtained. \\
A default value is used when it equals zero. See Comments on use.
\end{tabular} \\
\hline imax & int & Input & Maximum number of iterations in Phase 2. imax can be negative. See Comments on use. \\
\hline & & Output & Number of iterations performed in Phase 2. \\
\hline isw & int & Input & Controls whether the objective function is to be minimized or maximized and whether an initial basic feasible solution is provided. isw \(=10 d_{1}+d_{0}\), where \(d_{0}\) and \(d_{1}\) are specified as follows: \(d_{0}\) Specifies whether the objective function is to be maximized or minimized. \\
\hline & & & 0 Objective function minimized. \\
\hline & & & 1 Objective function maximized. \\
\hline & & & \begin{tabular}{l}
\(d_{1} \quad\) Specifies whether an initial feasible basis is provided. \\
0 Basis not provided.
\end{tabular} \\
\hline & & & \\
\hline & & Output
Input & When an optimal solution or basic feasible solution is obtained, isw has a value of 10 or 11 (depending on whether \(d_{0}\) was 0 or 1 on input). \\
\hline \(n b v\) & int \(n b v[m]\) & Input & Initial feasible basis (when isw=10 or isw=11). See Comments on use. \\
\hline & & Output & Optimal or feasible basis. This corresponds to \(\mathbf{k}\) defined in Function. \\
\hline b & \[
\begin{aligned}
& \text { double } \\
& \mathrm{b}[\mathrm{~m}+1][\mathrm{kb}]
\end{aligned}
\] & Output & Basic inverse matrix \(\mathbf{B}^{-1}\) for an optimal solution or basic feasible solution, basic variables \(\mathbf{x}_{B}\), simplex multipliers \(\pi\) and objective function value \(q\). See Figure 33 in Comments on use. \\
\hline kb & int & Input & C fixed dimension of \(\mathrm{b},(\mathrm{kb} \geq m+1)\). \\
\hline VW & double & Work & Rlen \(=2 n+m+m_{l}+m_{g}+1\) \\
\hline & vw [Rlen] & & \\
\hline ivw & int ivw[Ilen] & Work & Ilen \(=n+m_{l}+m_{g}\) \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & A basic feasible solution was obtained, but the problem has no optimal solution. & \multirow[t]{2}{*}{Stopped. A basic feasible solution and the corresponding basic inverse matrix, simplex multiplier and objective function value are stored in \(b\). The index set of the basic feasible solution is stored in nbv.} \\
\hline 11000 & The number of iterations required exceeded the maximum specified during Phase 2 . A basic feasible solution was obtained. & \\
\hline 20000 & The problem is infeasible. The value of epsz may not be appropriate. & \multirow[t]{5}{*}{Stopped.} \\
\hline 21000 & isw \(=10\) or isw \(=11\), but the set of variables specifed by nbv is not a basis. & \\
\hline 22000 & isw \(=10\) or isw = 11, but the set of variables specifed by nbv is infeasible. & \\
\hline 23000 & A basic variable could not be interchanged during Phase 1 . The value of epsz may not be appropriate. & \\
\hline 24000 & The number of iterations required exceeded the maximum specified during Phase 1. & \\
\hline 29000 & Memory allocation error. & Bypassed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(m[0], m[1]\) or \(m[2]\) contained a negative value, \\
- \(\mathrm{n}<1\), \\
- \(\quad i m a x=0\), \\
- epsz<0, \\
- \(m[0]+m[1]+m[2]<1\), \\
- \(m[0]+m[1]+m[2] \geq k\), \\
- An element of nbv is smaller than 1 or larger than \(n+m[0]+m[2]\), \\
- Two or more elements of \(n b v\) have the same value. \\
- isw was incorrectly given.
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{nbv}
nbv is only defined on input if \(i s w=10\) or 11 and on output if \(i c o n=0,10000\) or 11000 . Both input and output values are indices relating to the problem matrices and therefore output values need to be reduced by one if the user is accessing elements from the associated arrays.

Exactly \(m\) variables are in the basis at any time. These may include slack variables, which are introduced by the routine to convert the \(m_{l}+m_{g}\) inequality constraints to equality constraints. When isw \(=10\) or 11 , the index of the slack variable that corresponds to the \(i\) th inequality constraint \(\left(i \leq m_{l}+m_{g}\right)\) must be \(n+i\). On output, if the computed \(\mathbf{x}_{B}\) contains the \(i\) th slack variable, then the corresponding index value will be \(n+i\).

On output, when a basic feasible solution has been obtained, but no optimal solution exists (icon \(=10000\)) then \(\mathrm{nbv}[\mathrm{i}\) 1] \(=0\) indicates that a nonsingular \(m \times m\) basis matrix could not be found. The matrix \(\mathbf{B}\) may be singular or too large a value for epsz was specified.

If icon \(=0\) or 11000, and \(\operatorname{nbv}[i-1]=0\) for some value of \(i\), then it suggests that the \(i\) th constraint was redundant. In other words, one of the original constraints was just a linear combination of the other constaints. It might be useful to remove the \(i\) th constraint by altering the input arguments to the function and repeating the library call.

\section*{a}

The required structure for array a on input to the routine is shown in Figure 32. Notice that it is necessary to provide the negative of the vector constraint values.

Figure 32 Layout of input array a

\section*{b}

The arrangement of the output array b is shown in Figure 33.

Figure 33 Layout of output array b

\section*{imax}

In Phase 1 of the computation, the number of iterations required is associated with moving from an artificial basis to a basic feasible solution by solving a special linear programming problem. The number of iterations required has a predetermined upper bound and imax is not used. In Phase 2, the number of iterations required is almost always linear with the number of constraints. However, it is theoretically possible for the simplex method to require far more iterations than this, so imax is useful. A standard value of imax to use is \(i m a x=10 \mathrm{~m}\).

If the optimal solution could not be obtained in imax iterations, and if icon \(=11000\) on return, then the routine can be called again to continue with more iterations. In this case, imax must be reset to the negative of the number of additional iterations to be allowed, while other arguments remain unchanged.

\section*{epsz}
epsz serves two functions within this routine. Firstly, it is used to define a threshold below which values of \(\mathbf{A}\) are assumed to be zero and secondly it is used during the factorization of matrix \(\mathbf{B}\) as the relative zero criterion value.

In the first case, if \(a_{\max }=\max \left(\left|a_{i j}\right|\right), i=1, \cdots, m, j=1, \cdots, n\), then a value smaller than epsr \(\cdot a_{\text {max }}\) would be treated as zero. Scaling of rows or columns may be necessary if \(\mathbf{A}\) contains elements that differ widely in magnitude.

In the second case, a relative error criterion is needed to estimate when a pivot is numerically zero during LUdecomposition, suggesting that the matrix is singular. More detail is provided in the Comments on use section for the function C_dvlax.

The default value for epsz, is \(16 \mu\), where \(\mu\) is the unit round-off.

If the routine terminates with icon \(=20000\) or 23000 , then the value of epsz may not be appropriate, in which case retrying the routine with the default value is recommended.

\section*{Using c_dlprs1 when a variable is negative}

Variables are constrained to be non-negative, however users can still solve their linear programming problem with variables that may be negative by reformulating these variables. Assume that \(x_{j}\) in the user's original problem can be negative, then replace \(x_{j}\) with \(x_{j}{ }^{+}\)and \(x_{j}{ }^{-}\)where \(x_{j}=x_{j}{ }^{+}-x_{j}^{-}\)with the implicit constraints that both \(x_{j}{ }^{+}\)and \(x_{j}{ }^{-}\)are non-negative. The routine can now be used, although some post-processing will be required on the user's part to obtain the values of the original problem variables.

\section*{4. Example program}

A linear programming problem with 3 variables and 5 constraints is solved. The final value of the objective function is output along with an accuracy check.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define ML 2
\#define MG 2
\#define ME 1
\#define M ML+MG+ME
\#define N 3
MAIN__()
{
int ierr, icon;
double a[M+1][N+1] = {{$$
\begin{array}{rrrrrr}{2,}&{3,}&{-3,}&{210},}\\{{\begin{array}{lr}{-1,}&{-3,}\end{array}]}&{1,}&{-40},}\end{array}
$$,

```
```

                    { 2.5, 0, 5, 50},
                    {-1.5,
    { -3, -4, 1, -70}};
    double epsz, b[M+1][M+1], vw[2*N+M+ML+MG+1], eps;
    int k, n, imax, isw, kb,' ivw[N+ML+MG], nbv[M];
    int m[] = {ML, MG, ME};
    const double minval = 222.5;
    /* initialize data */
    n = N;
    k = N+1;
    kb = M+1;
    isw = 1;
    imax = 20;
    epsz = 0;
    /* minimize */
    ierr = c_dlprs1((double*)a, k, m, n, epsz, &imax, &isw,
            nbv, (double*)b, kb, vw, ivw, &icon);
    printf("icon = %i imax = %i isw = %i obj. fun. value = %f\n",
        icon, imax, isw, b[M][M]);
    /* check result */
    eps = 1e-6;
    if (fabs((b[M][M]-minval)/minval) > eps)
        printf("Inaccurate result\n");
    else
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

For further information consult the entry for LPRS1 in the Fortran SSL II User's Guide or [26].

\section*{c dlsbix}

Solution of a system of linear equations with an indefinite symmetric band matrix (block diagonal pivoting method).
```

ierr = c_dlsbix(a, n, nh, mh, b, epsz, isw,
vw, ivw, \&icon);

```

\section*{1. Function}

This routine solves a system of linear equations (1) using the Gaussian-like block diagonal pivoting method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) indefinite symmetric band matrix with bandwidth \(h, \mathbf{b}\) is a constant vector, and \(\mathbf{x}\) is the solution vector. Both the vectors are of size \(n(n>h \geq 0)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlsbix(a, n, nh, mh, b, epsz, isw, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[Alen]
\end{tabular} & Input & Matrix A. Stored in symmetric band storage format. See Array storage formats in the Introduction section for details.
\[
\text { Alen }=n(h+1)-h(h+1) / 2 .
\] \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline nh & int & Input Output & Bandwidth \(h\) of matrix \(\mathbf{A}\). Content altered on completion. \\
\hline mh & int & Input & Maximum tolerable bandwidth \(h_{m}(\mathrm{n}>\mathrm{mh} \geq \mathrm{nh})\). See Comments on use. \\
\hline b & double \(\mathrm{b}[\mathrm{n}]\) & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \begin{tabular}{l}
Constant vector \(\mathbf{b}\). \\
Solution vector \(\mathbf{x}\).
\end{tabular} \\
\hline epsz & double & Input & Tolerance (\(\geq 0\)) for relative zero test of pivots in decomposition process of matrix \(\mathbf{A}\). When epsz is zero a standard value is used. See Comments on use. \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. \\
isw \(=1\), except when solving several sets of equations that have the same coefficient matrix, then isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\), the others are unchanged. See Comments on use.
\end{tabular} \\
\hline VW & \begin{tabular}{l}
double \\
vw[Vwlen]
\end{tabular} & Work & \(V\) wlen \(=n\left(h_{m}+1\right)-h_{m}\left(h_{m}+1\right) / 2\). \\
\hline iVw & int ivw[2n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Either all of the elements of some row are zero or a pivot is relatively zero. It is probable that the coefficient matrix is singular. & Discontinued. \\
\hline 25000 & The maximum bandwidth was exceeded during decomposition. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad \mathrm{nh}<0\) \\
- \(\mathrm{mh}<\mathrm{nh}\) \\
- \(m h \geq n\) \\
- epsz<0 \\
- isw \(\neq 1\) or 2
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{mh}

Generally, the matrix bandwidth increases when rows and columns are exchanged in the pivoting operation of the decomposition. Therefore, it is necessary to specify a maximum bandwidth \(h_{m}\) greater than or equal to the actual bandwidth \(h\) of \(\mathbf{A}\). If the maximum bandwidth is exceeded during decomposition, processing is discontinued with icon=25000.

\section*{epsz}

The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off. If, during the block diagonal pivoting decomposition, a pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000. Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the required accuracy.

\section*{isw}

When solving several sets of equations with the same coefficient matrix \(\mathbf{A}\), solve the first set with isw=1, then specify isw \(=2\) for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution stage, thereby reducing the computation time.

\section*{Saving on storage space}

Saving on storage space is possible by specifying the same array for arguments a and VW. WARNING - make sure the array size is consistent with both arguments otherwise unpredictable results can occur.

\section*{c_dsbmdm and c_dbmdmx}

This routine is an interface to the routines \(c_{_} d s b m d m\), which \(M D M ~^{T}\) - decomposes the matrix \(\mathbf{A}\), and \(c_{-} d b m d m x\), which then solves the equations.

\section*{Calculation of determinant}

To calculate the determinant of matrix \(\mathbf{A}\), see the example program with \(\mathbf{c}\) _dsbmdm.

\section*{Eigenvalues}

The number of positive and negative eigenvalues of matrix A can be obtained. See the example program with c_dsbmdm.

\section*{4. Example program}

This program solves a system of linear equations and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define NMAX 100
\#define NHMAX 50
\#define NRHS 2
MAIN__()
{
int ierr, icon;
int n, nh, mh, i, j, ij, jj, isw, jmin, cnt;
double epsz, eps;
double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], b[NRHS][NMAX], x[NRHS][NMAX];
double vw[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2];
int ivw[2*NMAX];
/* initialize matrix */
n = NMAX;
nh = 2;
mh = NHMAX;
ij = 0;
for (i=0;i<n;i++) {
jmin = max(i-nh, 0);
for (j=jmin;j<=i;j++)
if (i-j == 0)
a[ij++] = 10;
else if (i-j == 1)
a[ij++] = -3;
else
a[ij++] = -6;
}*
* initialize RHS vectors */
for (cnt=0;cnt<NRHS;cnt++) {
for (i=0;i<n;i++)
x[cnt][i] = (cnt+1)*(i+1);
/* initialize constant vector b = a*x */
ierr = c_dmsbv(a, n, nh, \&x[cnt][0], \&b[cnt][0], \&icon);
}
isw = 1;
epsz = 1e-6;
/* solve systems of equations */
for (cnt=0;cnt<NRHS;cnt++) {
ierr = c_dlsbix(a, n, \&nh, mh, \&b[cnt][0], epsz, isw, vw, ivw, \&icon);
if (icon != 0) {
printf("ERROR: c_dlsbix failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[cnt][i]-b[cnt][i])/b[cnt][i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
if (cnt == 0) isw = 2;
}
return(0);
}

```

\section*{5. Method}

The block diagonal pivoting method is used for matrix decomposition before solving the system of linear equations using forward and backward substitutions. For further information consult the entry for LSBIX in the Fortran SSL II User's Guide and references [15].

\section*{c_dlsix}

Solution of a system of linear equations with an indefinite symmetric matrix (block diagonal pivoting method).
```

ierr = c_dlsix(a, n, b, epsz, isw, vw, ip,
ivw, \&icon);

```

\section*{1. Function}

This routine solves a system of linear equations (1) using the Crout-like block diagonal pivoting method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) indefinite symmetric matrix, \(\mathbf{b}\) is a constant vector, and \(\mathbf{x}\) is the solution vector. Both the vectors are of size \(n(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlsix(a, n, b, epsz, isw, vw, ip, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[Alen]
\end{tabular} & Input & Matrix A. Stored in symmetric storage format. See Array storage formats in the Introduction section for details. Alen \(=n(n+1) / 2\) \\
\hline & & Output & The contents of the array are altered on completion. \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline epsz & double & Input & Tolerance \((\geq 0)\) for relative zero test of pivots in decomposition process of matrix \(\mathbf{A}\). When epsz is zero a standard value is used. See Comments on use. \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. \\
isw \(=1\), except when solving several sets of equations that have the same coefficient matrix, then isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument b is assigned a new constant vector \(\mathbf{b}\), the other arguments must not be altered. See Comments on use.
\end{tabular} \\
\hline Vw & double vw[2n] & Work & \\
\hline ip & int ip[n] & Work & \\
\hline ivw & int ivw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Either all of the elements of some row are zero or \\
a pivot is relatively zero. It is probable that the \\
coefficient matrix is singular.
\end{tabular} & Discontinued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{n}<1\) \\
& \(\bullet \quad\) epsz \(<0\) \\
& • isw \(\neq 1\) or 2 & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off. If, during the block diagonal pivoting decomposition, a pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000. Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the required accuracy.

\section*{isw}

When solving several sets of equations with the same coefficient matrix \(\mathbf{A}\), solve the first set with isw=1, then specify isw \(=2\) for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution stage, thereby reducing the computation time.

\section*{c_dsmdm and c_dmdmx}

This routine is an interface to the routines \(\mathrm{c}_{-}\)dsmdm, which \(\mathrm{MDM}^{\mathrm{T}}\) - decomposes the matrix \(\mathbf{A}\), and \(\mathrm{c}_{-} \mathrm{dmdmx}\), which then solves the equations.

\section*{Calculation of determinant}

To calculate the determinant of matrix \(\mathbf{A}\), see the example program with c_dsmdm.

\section*{Eigenvalues}

The number of positive and negative eigenvalues of matrix \(\mathbf{A}\) can be obtained. See the example program with \(\mathrm{c}_{\text {_ }}\) dsmdm.

\section*{4. Example program}

This program solves a system of linear equations and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define NRHS 2
MAIN__()
{
int ierr, icon;
int n, i, j, ij, isw, cnt;
double epsz, eps, pi, an, ar;
double a[NMAX*(NMAX+1)/2], b[NRHS][NMAX], x[NRHS][NMAX], vw[2*NMAX];
int ip[NMAX], ivw[NMAX];
/* initialize matrix */
n = NMAX;
ij = 0;
pi = 2*asin(1);
an = 1.0/(n+1);
ar = pi*an;
an = sqrt(2*an);
for (i=1;i<=n;i++)

```
```

        for (j=1;j<=i;j++) {
        a[ij++]= an*sin(i*j*ar);
        }
    isw = 1;
    epsz = 1e-6;
    /* initialize RHS vectors */
    for (cnt=0;cnt<NRHS;cnt++) {
        for (i=0;i<n;i++)
            x[cnt][i] = (cnt+1)*(i+1);
        /* initialize constant vector b = a*x */
        ierr = c_dmsv(a, n, &x[cnt][0], &b[cnt][0], &icon);
    }
    /* solve systems of equations */
    for (cnt=0;cnt<NRHS;cnt++) {
        ierr = c_dlsix(a, n, &b[cnt][0], epsz, isw, vw, ip, ivw, &icon);
        if (icon != 0) {
            printf("ERROR: c_dlsix failed with icon = %d\n", icon);
            exit(1);
        }
        /* check solution vector */
        eps = 1e-6;
        for (i=0;i<n;i++)
            if (fabs((x[cnt][i]-b[cnt][i])/b[cnt][i]) > eps) {
            printf("WARNING: result inaccurate\n");
            exit(1);
        }
        printf("Result OK\n");
        if (cnt == 0) isw = 2;
    }
    return(0);
    }

```

\section*{5. Method}

The block diagonal pivoting method is used for matrix decomposition before solving the systerm of linear equations using forward and backward substitutions. For further information consult the entry for LSIX in the Fortran SSL II User's Guide and references [15].

\section*{c_dlstx}
\begin{tabular}{l}
Solution of a system of linear equations with a symmetric positive \\
definite tridiagonal matrix (Modified Cholesky's method). \\
\hline ierr = c_dlstx(d, sd, \(n, b, e p s z, i s w, ~ \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function solves a system of linear equations (1) using the modified Cholesky's method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) positive definite symmetric real tridiagonal matrix, \(\mathbf{b}\) is a real constant vector and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlstx(d, sd, n, b, epsz, isw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline d & double d[n] & Input & Diagonal elements of matrix A. \\
\hline & & Output & The contents of the array are altered on output. \\
\hline sd & double & Input & Sub-diagonal elements of matrix \(\mathbf{A}\). \\
\hline & sd[\(n-1]\) & Output & The contents of the array are altered on output. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline epsz & double & Input & Tolerance for relative zero test of pivots (\(\geq 0\)). \\
\hline isw & int & Input & When epsz is zero, a standard value is assigned. See Comments on use. Control information. \\
\hline & & & When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
A negative pivot occurred. \\
The coefficient matrix is not positive definite.
\end{tabular} & Processing continues. \\
\hline 20000 & \begin{tabular}{l}
Either all of the elements of some row are zero or \\
the pivot became relatively zero. It is highly \\
probable that the coefficient matrix is singular.
\end{tabular} & Discontinued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{n}<1\) \\
& \(\bullet \quad\) epsz \(<0\) \\
& \(\bullet \quad\) isw \(\neq 1\) or 2 & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If the value \(10^{-s}\) is given for epsz as the tolerance for the relative zero test then it has the following meaning:
If the pivot value loses more than \(s\) significant digits during \(\mathbf{L D L}^{\mathrm{T}}\) decomposition in the modified Cholesky's method, the value is assumed to be zero and decomposition is discontinued with icon=20000.

The standard value of epsz is normally \(16 \mu\), where \(\mu\) is the unit round-off. If processing is to proceed at a low pivot value, epsz will be given the minimum value but the result is not always guaranteed.

\section*{isw}

When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and subsequent sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise.

\section*{Calculation of determinant}

To calculate the determinant of the coefficient matrix, multiply all the \(n\) diagonal elements of the array d together.

\section*{Negative pivot during the solution}

When a negative pivot occurs in the decomposition, the calculation error may possibly be large since no pivoting is performed in the function. The function takes advantage of the characteristics in a positive definite symmetric tridiagonal matrix when performing the computation. As a result, it is computationally more efficient compared to the standard modified Cholesky's method that performs the same operations.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN___( )
{
int ierr, icon;
int n, i, isw;
double epsz, eps;
double d[NMAX], sd[NMAX-1], b[NMAX], x[NMAX];
/* initialize matrix and vector */
n = NMAX;
for (i=0;i<n-1;i++) {
sd[i] = -1;

```
```

        d[i] = 10;
    }
    d[n-1] = 10;
    for (i=0;i<n;i++)
        x[i] = i+1;
    /* initialize constant vector b */
    b[0] = d[0]*x[0] + sd[0]*x[1];
    for (i=1;i<n-1;i++) {
        b[i] = sd[i-1]*x[i-1] + d[i]*x[i] + sd[i]*x[i+1];
    }
    b[n-1] = sd[n-2]*x[n-2] + d[n-1]*x[n-1];
    epsz = 1e-6;
    isw = 1;
    /* solve system of equations */
    ierr = c_dlstx(d, sd, n, b, epsz, isw, &icon);
    if (icon> 10000) {
        printf("ERROR: c_dlstx failed with icon = %d\n", icon);
        exit(1);
    }
    /* check solution vector */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((x[i]-b[i])/b[i]) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

The modified Cholesky's method is used. For further information consult the entry for LSTX in the Fortran SSL II User's Guide.

\section*{c_dltx}

Solution of a system of linear equations with a tridiagonal matrix (Gaussian elimination method).
\[
\begin{gathered}
\text { ierr = c_dltx(sbd, d, spd, n, b, epsz, isw, } \\
\text { \&is, ip, vw, \&icon); }
\end{gathered}
\]

\section*{1. Function}

This function solves a system of linear equations (1) using the Gaussian elimination method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) real tridiagonal matrix, \(\mathbf{b}\) is a real constant vector and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dltx(sbd, d, spd, n, b, epsz, isw, \&is, ip, vw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{sbd} & double & Input & Lower sub-diagonal elements of matrix \(\mathbf{A}\). \\
\hline & sbd[n-1] & Output & The contents of the array are altered on output. \\
\hline d & double d[n] & Input & Diagonal elements of matrix \(\mathbf{A}\). \\
\hline & & Output & The contents of the array are altered on output. \\
\hline \multirow[t]{2}{*}{spd} & double & Input & Upper sub-diagonal elements of matrix \(\mathbf{A}\). \\
\hline & spd[n-1] & Output & The contents of the array are altered on output. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline \multirow[t]{2}{*}{b} & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline \multirow[t]{2}{*}{epsz} & double & Input & Tolerance for relative zero test of pivots (\(\geq 0\)). \\
\hline & int & Input & When epsz is zero, a standard value is assigned. See Comments on use. Control information. \\
\hline isw & & & When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use. \\
\hline is & int & Output & Information for obtaining the determinant of matrix \(\mathbf{A}\). See Comments on use. \\
\hline ip & int ip[n] & Work & \\
\hline vw & double vw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Either all of the elements of some row are zero or \\
the pivot became relatively zero. It is highly \\
probable that the coefficient matrix is singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet\) \\
- epsz \(<0\) \\
- isw \(\neq 1\) or 2
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If the value \(10^{-s}\) is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the pivot value loses more than \(s\) significant digits during LU-decomposition, the value is assumed to be zero and decomposition is discontinued with icon=20000.

The standard value of epsz is normally \(16 \mu\), where \(\mu\) is the unit round-off. If processing is to proceed at a low pivot value, epsz will be given the minimum value but the result is not always guaranteed.

\section*{isw}

When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for the second and subsequent sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise.

\section*{Calculation of determinant}

To calculate the determinant of the coefficient matrix, multiply all the \(n\) diagonal elements of the array d together, and then multiply by the value of is.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, isW, is;
double epsz, eps;
double sbd[NMAX-1], d[NMAX], spd[NMAX-1], b[NMAX], x[NMAX], vw[NMAX];
int ip[NMAX];
/* initialize matrix and vector */
n = NMAX;
for (i=0;i<n-1;i++) {
sbd[i] = -1;
spd[i] = -1;

```
```

        d[i] = 10;
    }
    d[n-1] = 10;
    for (i=0;i<n;i++)
        x[i] = i+1;
    /* initialize constant vector b */
    b[0] = d[0]*x[0] + spd[0]*x[1];
    for (i=1;i<n-1;i++) {
        b[i] = sbd[i-1]*x[i-1] + d[i]*x[i] + spd[i]*x[i+1];
    }
    b[n-1] = sbd[n-2]*x[n-2] + d[n-1]*x[n-1];
    epsz = 1.0e-6;
    isw = 1;
    /* solve system of equations */
    ierr = c_dltx(sbd, d, spd, n, b, epsz, isw, &is, ip, vw, &icon);
    if (icon != 0) {
        printf("ERROR: c_dltx failed with icon = %d\n", icon);
        exit(1);
    }
    /* check solution vector */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((x[i]-b[i])/b[i]) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

The Gaussian elimination method with partial pivoting is used. For further information consult the entry for LTX in the Fortran SSL II User's Guide.

\section*{c_dlux}

Solution of a system of linear equations with a real matrix in LUdecomposed form.
```

ierr = c_dlux(b, fa, k, n, isw, ip, \&icon);

```

\section*{1. Function}

This routine solves a system of linear equations with an \(n \times n\) LU - decomposed matrix
\[
\begin{equation*}
\mathbf{L} \mathbf{U x}=\mathbf{P b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{P}\) is a permutation matrix that performs the row exchanges required in partial pivoting for the LU - decomposition, \(\mathbf{L}\) is a lower triangular matrix, \(\mathbf{U}\) is a unit upper triangular matrix, \(\mathbf{b}\) is a real constant vector, and \(\mathbf{x}\) is the solution vector. Both vectors are of size \(n(n \geq 1)\).

One of the following equations can be solved instead of (1)
\[
\begin{align*}
\mathbf{L y} & =\mathbf{P b} \tag{2}\\
\mathbf{U z} & =\mathbf{b} \tag{3}
\end{align*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dlux(b, (double*)fa, k, n, isw, ip, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline b & double \(\mathrm{b}[\mathrm{n}]\) & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & One of the solution vectors \(\mathbf{x}, \mathbf{y}\), or \(\mathbf{z}\). \\
\hline fa & \begin{tabular}{l}
double \\
\(\mathrm{fa}[\mathrm{n}][\mathrm{k}]\)
\end{tabular} & Input & Matrix \(\mathbf{L}+(\mathbf{U}-\mathbf{I})\). See Comments on use. \\
\hline k & int & Input & \(C\) fixed dimension of array fa (\(\geq \mathrm{n}\)). \\
\hline n & int & Input & Order of matrices \(\mathbf{L}\) and \(\mathbf{U}\). \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. \\
- \(\quad i s w=1\) when solution \(\mathbf{x}\) in (1)is required \\
- isw \(=2\) when solution \(\mathbf{y}\) in (2) is required \\
- isw \(=3\) when solution \(\mathbf{z}\) in (3) is required
\end{tabular} \\
\hline ip & int ip[n] & Input & Transposition vector that provides the row exchanges that occurred during partial pivoting. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline The co & list of condition & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Coefficient matrix was singular. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following occurred: \\
\(\bullet \quad \mathrm{n}<1\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet \quad \mathrm{k}<\mathrm{n}\) & \\
& \(\bullet\) isw \(\neq 1,2\), or 3 & \\
& \(\bullet\) error found in ip & \\
\hline
\end{tabular}

\section*{3. Comments on use}

A system of linear equations with a real coefficient matrix can be solved by calling the routine c_dvalu to LU decompose the coefficient matrix prior to calling this routine. The input arguments fa and ip of this routine are the same as the output arguments a and ip of routine c_dvalu. Alternatively, the system of linear equations can be solved by calling the single routine c _dvlax

\section*{4. Example program}

This program solves a system of linear equations using LU decomposition and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, k, is, isw;
double epsz, eps;
double fa[NMAX][NMAX];
double b[NMAX], x[NMAX], vw[NMAX];
int ip[NMAX];
/* initialize matrix and vector */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
for (j=i;j<n;j++) {
fa[i][j] = n-j;
fa[j][i] = n-j;
}
x[i] = i+1;
}
/* initialize constant vector zb = za*zx */
ierr = c_dmav((double*)fa, k, n, n, x, b, \&icon);
epsz = 1e-6;
/* perform LU decomposition */
ierr = c_dvalu((double*)fa, k, n, epsz, ip, \&is, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dlu failed with icon = %d\n", icon);
exit(1);
}
isw = 1;
/* solve system of equations using LU factors */
ierr = c_dlux(b, (double*)fa, k, n, isw, ip, \&icon);
if (icon != 0) {
printf("ERROR: c_dlux failed with icon = %d\n", icon);
exit(1);
}
/* check result */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((b[i]-x[i])/x[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for LUX in the Fortran SSL II User's Guide and [7], [34] and [83].

\section*{c_dmav}

> \begin{tabular}{|l} \hline Multiplication of a real matrix by a real vector. \\ \hline ierr \(=\mathrm{c} _\operatorname{dmav}(\mathrm{a}, \mathrm{k}, \mathrm{m}, \mathrm{n}, \mathrm{x}, \mathrm{y}, ~ \& i c o n)\); \\ \hline \end{tabular}

\section*{1. Function}

This function calculates the matrix-vector product of an \(m \times n\) real matrix \(\mathbf{A}\) with a real vector \(\mathbf{x}\) of size \(n\).
\[
\begin{equation*}
\mathbf{y}=\mathbf{A} \mathbf{x} \tag{1}
\end{equation*}
\]

The solution \(\mathbf{y}\) is a real vector of size \(m\) (\(m\) and \(n \geq 1\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dmav((double*)a, k, m, n, x, y, \&icon);
where:
\begin{tabular}{llll}
a & double & Input & Matrix A. \\
\(\mathrm{a}[\mathrm{m}][\mathrm{k}]\)
\end{tabular}\(\quad\)\begin{tabular}{lll}
int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
m & int & Input
\end{tabular} \begin{tabular}{l}
The number of rows \(m\) for matrices A. \\
n
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{m}<1\) \\
& \(\bullet \quad \mathrm{n}=0\) \\
& \(\bullet \mathrm{k}<\mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General Comments}

The function primarily performs computation for equation (1) but it can also manage to do equation (2) that is very much like (1).
\[
\begin{equation*}
\mathbf{y}=\mathbf{y}^{\prime}-\mathbf{A x} \tag{2}
\end{equation*}
\]

To tell the function to perform (2), specify argument \(n=-n\) and either copy or set the contents of the initial vector \(\mathbf{y}^{\prime}\) into \(\mathbf{y}\) before calling the function. Equation (2) is commonly use to compute the residual vector \(\mathbf{r}\) of linear equations (3) with a right-hand-side vector \(\mathbf{b}\).
\[
\begin{equation*}
\mathbf{r}=\mathbf{b}-\mathbf{A x} \tag{3}
\end{equation*}
\]

\section*{4. Example program}

This example program performs a matrix-vector multiplication.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int m, n, i, j, k;
double eps;
double a[NMAX][NMAX], x[NMAX], y[NMAX];
/* initialize matrix and vector */
m = NMAX;
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
for ( j=0;j<n;j++)
a[i][j] = 1.0/(j+1);
x[i] = i+1;
}
/* perform matrix vector multiply */
ierr = c_dmav((double*)a, k, m, n, x, y, \&icon);
if (icon != 0) {
printf("ERROR: c_dmav failed with icon = %d\n", icon);
exit(1);
}
/* check vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((y[i]-n)/n) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
príntf("Result OK\n");
return(0);
}

```

\section*{5. Method}

For further information consult the entry for MAV in the Fortran SSL II User's Guide.

\section*{c_dmcv}

> \begin{tabular}{|l|} \hline Multiplication of a complex matrix by a complex vector. \\ \hline ierr = c_dmcv(za, k, m, n, zx, zy, \&icon) ; \\ \hline \end{tabular}

\section*{1. Function}

This function calculates the matrix-vector product of an \(m \times n\) complex matrix \(\mathbf{A}\) with a complex vector \(\mathbf{x}\) of size \(n\).
\[
\begin{equation*}
\mathbf{y}=\mathbf{A x} \tag{1}
\end{equation*}
\]

The solution \(\mathbf{y}\) is a complex vector of size \(m\) (\(m\) and \(n \geq 1\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dmcv((dcomplex*)za, k, m, n, zx, zy, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline za & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { za[m][k] }
\end{aligned}
\] & Input & Matrix \(\mathbf{A}\). \\
\hline k & int & Input & C fixed dimension of array za (\(\geq \mathrm{n}\)). \\
\hline m & int & Input & The number of rows \(m\) for matrices \(\mathbf{A}\). \\
\hline n & int & Input & The number of columns \(n\) for matrices \(\mathbf{A}\). See Comments on use. \\
\hline ZX & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zx[n] }
\end{aligned}
\] & Input & Vector \(\mathbf{x}\). \\
\hline zy & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zy[m] }
\end{aligned}
\] & Input & \begin{tabular}{l}
Vector \(\mathbf{y}\). \\
Only applies to equation (2). See Comments on use
\end{tabular} \\
\hline & & Output & Solution vector of multiplication. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{m}<1\) \\
& \(\bullet \mathrm{n}=0\) \\
& \(\bullet \mathrm{k}<\mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General comments}

The function primarily performs computation for equation (1) but it can also manage to do equation (2) that is very much like (1).
\[
\begin{equation*}
\mathbf{y}=\mathbf{y}^{\prime}-\mathbf{A x} \tag{2}
\end{equation*}
\]

To tell the function to perform (2), specify argument \(\mathrm{n}=-n\) and either copy or set the contents of the initial vector \(\mathbf{y}^{\prime}\) into \(\mathbf{y}\) before calling the function. Equation (2) is commonly use to compute the residual vector \(\mathbf{r}\) of linear equations (3) with a right-hand-side vector \(\mathbf{b}\).
\[
\begin{equation*}
\mathbf{r}=\mathbf{b}-\mathbf{A x} \tag{3}
\end{equation*}
\]

\section*{4. Example program}

This example program performs a complex matrix-vector multiplication.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int m, n, i, j, k;
double eps;
dcomplex za[NMAX][NMAX], zx[NMAX], zy[NMAX], sum;
/* initialize matrix and vector */
m = NMAX;
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
for (j=0;j<n;j++) {
za[i][j].re = 1.0/(j+1);
za[i][j].im = 1.0/(j+1);
}
zx[i].re = i+1;
zx[i].im = i+1;
}
/* perform complex matrix vector multiply */
ierr = c_dmcv((dcomplex*)za, k, m, n, zx, zy, \&icon);
if (icon != 0) {
printf("ERROR: c_dmcv failed with icon = %d\n", icon);
exit(1);
}
/* check vector */
eps = 1e-6;
for (i=0;i<n;i++) {
sum.re = 0;
sum.im = 0;
for (j=0;j<n;j++) {
sum.re = sum.re + za[i][j].re*zx[j].re-za[i][j].im*zx[j].im;
sum.im = sum.im + za[i][j].im*zx[j].re+za[i][j].re*zx[j].im;
}
if (fabs((zy[i].re-sum.re)) > eps ||
fabs((zy[i].im-sum.im)) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

For further information consult the entry for MCV in the Fortran SSL II User's Guide.

\section*{c_dmdmx}
\begin{tabular}{l}
Solution of a system of linear equations with an indefinite symmetric \\
matrix in MDM \(^{T}\) - decomposed form. \\
\hline ierr \(=\) c_dmdmx(b, fa, \(n\), ip, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This routine solves a linear system of equations with an \(\mathrm{MDM}^{\mathrm{T}}\) - decomposed \(n \times n\) indefinite symmetric matrix
\[
\begin{equation*}
\mathbf{P}^{-1} \mathbf{M D M}^{\mathrm{T}} \mathbf{P}^{-\mathrm{T}} \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{P}\) is a permutation matrix (which performs row exchanges of the coefficient matrix based on the pivoting during the \(\mathrm{MDM}^{\mathrm{T}}\) - decomposition), \(\mathbf{M}=\left(m_{i j}\right)\) is a unit lower triangular matrix, and \(\mathbf{D}=\left(d_{i j}\right)\) is a symmetric block diagonal matrix with blocks of order at most \(2, \mathbf{b}\) is a constant vector, and \(\mathbf{x}\) is the solution vector. Both vectors are of size \(n(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dmdmx(b, fa, n, ip, \&icon);

```
where:
\begin{tabular}{llll}
b & double \(\mathrm{b}[\mathrm{n}]\) & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \begin{tabular}{l}
Constant vector \(\mathbf{b}\). \\
Solution vector \(\mathbf{x}\).
\end{tabular} \\
fa & \begin{tabular}{l}
double \\
fa[Falen]
\end{tabular} & Input & \begin{tabular}{l}
Matrix \(\mathbf{D}+(\mathbf{M}-\mathbf{I})\). Stored in symmetric storage format. See Array \\
storage formats in the Introduction section for details, and Comments on \\
use. Falen \(=n(n+1) / 2\).
\end{tabular} \\
n & int & Input & \begin{tabular}{l}
Order \(n\) of matrices \(\mathbf{M}\) and \(\mathbf{D}\), constant vector \(\mathbf{b}\) and solution vector \(\mathbf{x}\).
\end{tabular} \\
ip & int ip[n] & Input & \begin{tabular}{l}
Transposition vector that provides the row exchanges that occurred \\
during pivoting. See Comments on use.
\end{tabular} \\
icon & int & Output & \begin{tabular}{l}
Condition code. See below.
\end{tabular}
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Coefficient matrix was singular. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad\) error found in ip.
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{fa, ip and MDM \({ }^{\mathrm{T}}\) - decomposition}

A system of linear equations with an indefinite symmetric coefficient matrix \(\mathbf{A}\) can be solved by calling the routine c_dsmdm to MDM \({ }^{T}\) - decompose the coefficient matrix prior to calling this routine. The input arguments fa and ip of this routine are the same as the output arguments a and ip of routine c_dsmdm. Alternatively, the system of linear equations can be solved by calling the single routine c_dlsix.

\section*{Calculation of determinant}

The determinant of matrix \(\mathbf{A}\) is the same as the determinant of matrix \(\mathbf{D}\), that is the product of the determinants of the \(1 \times 1\) and \(2 \times 2\) blocks of \(\mathbf{D}\). See the example program with C_dsmdm.

\section*{Eigenvalues}

The number of positive and negative eigenvalues of matrix \(\mathbf{A}\) can be obtained. See the example program with c_dsmdm.

\section*{4. Example program}

This example program decomposes and solves a system of linear equations using MDM \({ }^{\mathrm{T}}\) decomposition and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, ij;
double epsz, eps, pi, an, ar
double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX];
int ip[NMAX], ivw[NMAX];
/* initialize matrix */
n = NMAX;
ij = 0;
pi = 2*asin(1);
an = 1.0/(n+1);
ar = pi*an;
an = sqrt(2*an);
for (i=1;i<=n;i++)
for (j=1;j<=i;j++) {
a[ij++] = an*sin(i*j*ar);
}
epsz = 1e-6;
/* initialize RHS vector */
for (i=0;i<n;i++)
x[i] = i+1;
/* initialize constant vector b = a*x */
ierr = c_dmsv(a, n, x, b, \&icon);
/* MDM decomposition of system */
ierr = c_dsmdm(a, n, epsz, ip, vw, ivw, \&icon);
if (icon != 0) {
printf("ERROR: c_dsmdm failed with icon = %d\n", icon);
exit(1);
}
* solve decomposed system of equations */
ierr = c_dmdmx(b, a, n, ip, \&icon);
if (icon != 0) {
printf("ERROR: c_dmdmx failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for MDMX in the Fortran SSL II User's Guide.

\section*{c_dmgsm}

> \begin{tabular}{|l} \(|\)\begin{tabular}{l} Multiplication of two matrices (general by symmetric). \\ \hline ierr \(=c _d m g s m(a, k a, b, ~ c, ~ k c, ~ n, ~ v w, ~ \& i c o n) ; ~\) \\ \hline \end{tabular} \\ \hline \end{tabular}

\section*{1. Function}

This routine performs multiplication of an \(n \times n\) general matrix \(\mathbf{A}\) by an \(n \times n\) symmetric matrix \(\mathbf{B}\).
\[
\begin{equation*}
\mathbf{C}=\mathbf{A B} \tag{1}
\end{equation*}
\]

In (1), the resultant \(\mathbf{C}\) is also an \(n \times n\) matrix \((n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dmgsm((double*)a, ka, b, (double*)c, kc, n, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double \(a[n][k a]\) & Input & Matrix \(\mathbf{A}\). \\
\hline ka & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline b & double b[Blen] & Input & Matrix B. Stored in symmetric storage format. See Array storage formats in the Introduction section for details. Blen \(=n(n+1) / 2\). \\
\hline C & \[
\begin{aligned}
& \text { double } \\
& c[\mathrm{n}][\mathrm{kc}]
\end{aligned}
\] & Output & Matrix C. See Comments on use. \\
\hline kc & int & Input & C fixed dimension of array \(\mathrm{C}(\geq \mathrm{n})\). \\
\hline n & int & Input & The order \(n\) of matrices \(\mathbf{A}, \mathbf{B}\) and \(\mathbf{C}\). \\
\hline VW & double vw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \mathrm{n}<1\) \\
& \(\bullet \mathrm{ka}<\mathrm{n}\) & \\
& \(\bullet \mathrm{kc}<\mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Efficient use of memory}

Storing the solution matrix \(\mathbf{C}\) in the same memory area as matrix \(\mathbf{A}\) is permitted if the array contents of matrix \(\mathbf{A}\) can be discarded after computation. To take advantage of this efficient reuse of memory, the array and dimension arguments associated with matrix \(\mathbf{A}\) need to appear in the locations reserved for matrix \(\mathbf{C}\) in the function argument list, as indicated below.
```

ierr = c_dmgsm(a, ka, b, a, ka, n, vw, \&icon);

```

Note, if matrix \(\mathbf{A}\) is required after the solution then a separate array must be supplied for storing matrix \(\mathbf{C}\).

\section*{4. Example program}

This program multiplies a standard matrix by a symmetric matrix.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 5
/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
int ij, i, j;
printf("symmetric matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
for ( j=0;j<=i;j++)
printf("%7.2f ",a[ij++]);
printf("\n");
}
}
/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
int i, j;
printf("general matrix format\n");
for (i=0;i<n;i++) {
for (j=0;j<m;j++)
printf("%7.2f ",a[i*k+j]);
printf("\n");
}
}
MAIN__()
{
int ierr, icon;
int n, i, j, ij, ka, kc;
double a[NMAX][NMAX], b[NMAX*(NMAX+1)/2], c[NMAX][NMAX], vw[NMAX];
n = NMAX;
/* initialize symmetric matrix */
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
b[ij++] = i-j+1;
/* }\mp@subsup{}{}{}}\mathrm{ initialize general matrix */
for (i=0;i<n;i++)
for (j=0;j<n;j++) {
a[i][j] = j+1;
}
ka = NMAX
kc = NMAX;
/* matrix matrix multiply */
ierr = c_dmgsm((double*)a, ka, b, (double*)c, kc, n, vw, \&icon);
/* print matrices */
printf("a: \n");
prtgenmat((double*)a, ka, n, n);
printf("b: \n");
prtsymmat(b, n);
printf("c:\n");
prtgenmat((doubĺe*)c, kc, n, n);
return(0);
}

```

\section*{c_dminf1}
```

Minimization of a function of several variables (revised quasi-Newton
method using function values only).
ierr = c_dminf1(x, n, fun, epsr, \&max, \&f, g,
$h, ~ v W, ~ \& i c o n) ;$

```

\section*{1. Function}

Given a real function \(f(\mathbf{x})\) of \(n\) variables and an initial vector \(\mathbf{x}_{0}\), the vector \(\mathbf{x}^{*}\) that gives a local minimum of \(f(\mathbf{x})\) and its function value \(f\left(\mathbf{x}^{*}\right)\) are obtained by using the revised quasi-Newton method.

The function \(f(\mathbf{x})\) is assumed to have at least continuous second partial derivatives.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dminf1(x, n, fun, epsr, \&max, \&f, g, h, vw, \&icon);
where:
\(\left.\begin{array}{llll}\mathrm{x} & \text { double } \mathrm{x}[\mathrm{n}] & \text { Input } & \text { Initial vector } \mathbf{x}_{0} . \\
\mathrm{n} & \text { Output } & \text { Vector } \mathbf{x}^{*} .\end{array}\right]\)\begin{tabular}{l}
Int \\
fun \\
function
\end{tabular}\(\quad\) Input \(\quad\)\begin{tabular}{l}
Number of variables \(n\). \\
\\
\end{tabular}
\(x\) double Input Independent variable. \(x[n]\)
Convergence criteria. A default value is used when epsr \(=0\). See Comments on use.
\(\max\) int Input Upper limit on the number of evaluations of fun. max may be negative. See Comments on use.

Output Number of times actually evaluated.
f double Output Value of \(f\left(\mathbf{x}^{*}\right)\).
\(g \quad\) double \(g[\mathrm{n}] \quad\) Output Gradient vector at \(\mathbf{x}^{*}\).
h double h [Hlen] Output Hessian matrix at \(\mathbf{x}^{*}\). Hlen \(=n(n+1) / 2\). This array is only used if c_dminf1 is called again after a value of 10000 has been returned in icon. See Comments on use.
This array must not be changed if c_dminf1 is called again. See Comments on use.
Condition code. See below.
icon int
Output

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Convergence condition was not satisfied within & Stopped. Arguments \(\times, f, g\) and \(h\) each contain \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & the specified number of function evaluations. & the last value obtained. \\
\hline 20000 & \begin{tabular}{l}
A descent direction could not be found so that no \\
decrease in function value could be obtained. \\
epsr was too small or the error in difference \\
approximation for a gradient vector was too large.
\end{tabular} & \begin{tabular}{l}
Stopped. Arguments \(\times\) and \(f\) contain the last \\
value obtained.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad \mathrm{n}<1\) \\
- epsr \(<0\) \\
- max \(=0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsr}

The function tests for
\[
\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|_{\infty} \leq \max \left(1,\left\|\mathbf{x}_{k}\right\|_{\infty}\right) \cdot \mathrm{epsr}
\]
for the iteration vector \(\mathbf{x}_{k}\) and if the above condition is satisfied, \(\mathbf{x}_{k+1}\) is taken as the local minimum point \(\mathbf{x}^{*}\). If the function value \(f\left(\mathbf{x}^{*}\right)\) is to be obtained as accurate as unit round-off, \(\mu\), then a value of epsr \(\approx \sqrt{\mu}\) is satisfactory. The default value of epsr is \(2 \cdot \sqrt{\mu}\).

\section*{max and recalling c_dminf1 when icon=10000}

The number of function evaluations is calculated as the number of calls to the user defined function fun.

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector and the convergence criterion. Generally, from a good initial vector, a value of \(\max =400 \cdot n\) is appropriate.

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon \(=10000\), the iteration can be continued by calling c_dminf1 again. In this case, max must be given a negative value, where its absolute value indicates the number of additional function evaluations to perform and the value of the other arguments must remain unaltered.

\section*{4. Example program}

A minimum of the function \(f(\mathbf{x})=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}\) is found from an initial starting guess of \(\mathbf{x}_{0}=(-1.2,1.0)^{\mathbf{T}}\) The computed solution is output together with an accuracy check.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 2
double fun(double x[]); /* user function prototype */
MAIN__()
{
int ierr, icon;
double f', x[N], g[N], h[N*(N+1)/2], vw[3*N+1], epsr, eps, exact;
int max, n;
/* initialize data */
x[0] = -1.2;

```
```

    x[1] = 1;
    n=N;
    epsr = 1e-3;
    max = 400*n;
    /* find minimum of function */
    ierr = c_dminf1(x, n, fun, epsr, &max, &f, g, h, vw, &icon);
    printf("icon = %i max = %i x = (%12.4e, %12.4e) f = %12.4e\n",
    icon, max, x[0], x[1], f);
    /* check result */
    exact = 0;
    eps = 1e-6;
    if (fabs(f-exact) > eps)
        printf("Inaccurate result\n");
    else
        printf("Result OK\n");
    return(0);
    }
/* user function */
double fun(double x[])
{
return(pow(1-x[0],2)+100* pow((x[1]-x[0]*x[0]),2));
}

```

\section*{5. Method}

For further information consult the entry for MINF1 in the Fortran SSL II User's Guide and [33].

\section*{c_dming1}
\[
\begin{aligned}
& \text { Minimization of a function of several variables (quasi-Newton method } \\
& \text { using function values and derivatives). } \\
& \text { ierr = c_dming1 (} x, n, \text { fun, grad, epsr, \&max, } \\
& \& f, g, h, v w, \& i c o n) ;
\end{aligned}
\]

\section*{1. Function}

Given a real function \(f(\mathbf{x})\) of \(n\) variables \((n \geq 1)\), its derivative \(\mathbf{g}(\mathbf{x})\), and an initial vector \(\mathbf{x}_{0}\), the vector \(\mathbf{x}^{*}\) that gives a local minimum of \(f(\mathbf{x})\) and its function value \(f\left(\mathbf{x}^{*}\right)\) are obtained using the quasi-Newton method.

The function \(f(\mathbf{x})\) is assumed to have at least continuous second partial derivatives.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dming1(x, n, fun, grad, epsr, \&max, \&f, g, h, vw, \&icon);
where:

\begin{tabular}{|c|c|c|c|}
\hline h & double \(\mathrm{h}[\) Hlen \(]\) & Output & Inverse of the Hessian matrix at \(\mathbf{x}^{*}\) stored in symmetric storage format See Array storage formats in the Introduction section for details. Hlen \(=n(n+1) / 2\). This array is only used if c_dming1 is called again after a value of 10000 has been returned in icon. See Comments on use. \\
\hline VW & \begin{tabular}{l}
double \\
\(\mathrm{vw}[3 \mathrm{n}+1]\)
\end{tabular} & Work & This array must not be changed if c_dming1 is called again after a value of 10000 has been returned in icon. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
Convergence criterion was not satisfied within the \\
specified number of function evaluations.
\end{tabular} & \begin{tabular}{l}
Stopped. Arguments \(\mathrm{x}, \mathrm{f}, \mathrm{g}\) and h contain the last \\
values obtained.
\end{tabular} \\
\hline 20000 & \begin{tabular}{l}
A descent direction could not be found such that a \\
decrease in function value could be obtained. \\
epsr was too small.
\end{tabular} & \begin{tabular}{l}
Discontinued. Arguments x and f contain the last \\
values obtained.
\end{tabular} \\
\hline 25000 & \begin{tabular}{l}
The function is monotonically decreasing along \\
the search direction.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet\) \\
epsr \(<0\) \\
\(\bullet \quad m a x=0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsr}

The routine tests for
\[
\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|_{\infty} \leq \max \left(1,\left\|\mathbf{x}_{k}\right\|_{\infty}\right) \cdot \mathrm{epsr}
\]
for the iteration vector \(\mathbf{x}_{k}\), and if the above condition is satisfied, \(\mathbf{x}_{k+1}\) is taken as the local minimum point \(\mathbf{x}^{*}\). If the function value \(f\left(x^{*}\right)\) is to be obtained as accurate as unit round-off, \(\mu\), then a value of epsr \(\approx \mu^{1 / 2}\) is satisfactory. The default value of epsr is \(\mu^{1 / 2} / 8\).

\section*{max and recalling c_dming1 when icon \(=10000\)}

The number of function evaluations is calculated as 1 for each call to the user defined function fun and \(n\) for each call to the user defined function grad.

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector and the convergence criterion. Generally, from a good initial vector, a value of \(\max =400 \cdot n\) is appropriate.

If the convergence criterion is not satisfied within the specified number of evaluations and the routine returns with icon \(=10000\), the iteration can be continued by calling c_dming1 again. In this case, max must be given a negative value, where its absolute value indicates the number of additional function evaluations to perform, and the values of the other arguments must remain unaltered.

\section*{4. Example program}

The global minimum point \(\mathbf{x}^{*}\) for \(f(\mathbf{x})=\left(1-x_{1}\right)^{2}+100\left(x_{2}-x_{1}^{2}\right)^{2}\) is obtained with the initial vector \(\mathbf{x}_{\mathbf{0}}=(-1.2,1.0)^{\mathrm{T}}\).
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 2
double fun(double x[]); /* user function prototype */
void grad(double x[], double g[]); /* derivative prototype */
MAIN__()
{
int ierr, icon;
double x[N], g[N], h[N*(N+1)/2], vw[3*N+1], f, epsr;
int i, n, max;
/* initialize data */
n = N;
x[0] = -1.2;
x[1] = 1;
epsr = 1e-4;
max = 400*n;
/* find minimum of function */
ierr = c_dming1(x, n, fun, grad, epsr, \&max, \&f, g, h, vw, \&icon);
if (icon >= 20000) {
printf("ERROR in c_dming1. icon = %i", icon);
exit(1);
}
printf("icon = %i max = %i f = %12.4e\n", icon, max, f);
printf("x: ");
for (i=0;i<n;i++) printf("%12.4e ",x[i]);
printf("\n");
return(0);
}
/* user function */
double fun(double x[])
{
return pow(1-x[0],2)+100*pow(x[1]-x[0]*x[0],2);
}
/* derivative function */
void grad(double x[], double g[])
{
g[0] = -2*(1-x[0])-400*x[0]*(x[1]-x[0]*x[0]);
g[1] = 200*(x[1]-x[0]*x[0]);
}

```

\section*{5. Method}

Consult the entry for MING1 in the Fortran SSL II User's Guide. and [95].

\section*{c_dmsbv}
\[
\begin{array}{|l}
\hline \text { Multiplication of a symmetric band matrix by a vector. } \\
\hline \text { ierr }=\mathrm{c} _\mathrm{dmsbv}(\mathrm{a}, \mathrm{n}, \mathrm{nh}, \mathrm{x}, \mathrm{y}, \text { \&icon }) \text {; } \\
\hline
\end{array}
\]

\section*{1. Function}

This routine calculates the matrix-vector product of an \(n \times n\) symmetric band matrix \(\mathbf{A}\), with upper and lower bandwidths \(h\), and a vector \(\mathbf{x}\) of size \(n\).
\[
\begin{equation*}
\mathbf{y}=\mathbf{A x} \tag{1}
\end{equation*}
\]

The solution \(\mathbf{y}\) is a real vector of size \(n\). \((n>h \geq 0)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dmsbv(a, n, nh, x, y, \&icon);
where:
a double a[Alen] Input Matrix A. Stored in symmetric band storage format. See Array storage formats in the Introduction section for details.
Alen \(=n(h+1)-h(h+1) / 2\).
\begin{tabular}{llll}
n & int & Input & The order \(n\) of matrix A. \\
nh & int & Input & The upper and lower bandwidths \(h\) of matrix \(\mathbf{A}\). \\
x & double \(\mathrm{x}[\mathrm{n}]\) & Input & Vector \(\mathbf{x}\). \\
y & double \(\mathrm{y}[\mathrm{n}]\) & Output & Solution vector \(\mathbf{y}\). \\
& & Input & Vector \(\mathbf{y}^{\prime}\). Only applies to equation (2). See Comments on use. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \mathrm{n}=0\) \\
& \(\bullet \mathrm{nh}<0\) \\
& \(\bullet \mathrm{nh} \geq|\mathrm{n}|\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General Comments}

The routine is used primarily for the computation of equation (1) but it can also be used for equation (2)
\[
\begin{equation*}
\mathbf{y}=\mathbf{y}^{\prime}-\mathbf{A x} \tag{2}
\end{equation*}
\]
by assigning \(-n\) to n and \(\mathbf{y}^{\prime}\) to y before calling the routine. Equation (2) is commonly used to compute a residual vector \(\mathbf{r}=\mathbf{b}-\mathbf{A x}\) of the linear equation \(\mathbf{A x}=\mathbf{b}\).

\section*{4. Example program}

This program multiplies a symmetric band matrix by a vector and prints the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define NMAX 5
\#define NHMAX 2
MAIN__()
{
int ierr, icon;
int n, nh, i, j, ij, jmin;
double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], x[NMAX], y[NMAX];
/* initialize matrix and vector */
n = NMAX;
nh = NHMAX;
ij = 0;
for (i=0;i<n;i++) {
jmin = max(i-nh, 0);
for (j=jmin;j<=i;j++)
a[ij++] = i-j+1;
}
for (i=0;i<n;i++)
x[i] = i;
/* perform matrix vector multiply */
ierr = c_dmsbv(a, n, nh, x, y, \&icon);
if (icon != 0) {
printf("ERROR: c_dmsbv failed with icon = %d\n", icon);
exit(1);
}
/* print result */
for (i=0;i<n;i++)
printf("%7.2f ",y[i]);
printf("\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for MSBV in the Fortran SSL II User's Guide.

\section*{c_dmsgm}
```

Multiplication of two matrices (symmetric by general).
ierr = c_dmsgm(a, b, kb, c, kc, n, vw, \&icon);

```

\section*{1. Function}

This routine performs multiplication of an \(n \times n\) symmetric matrix \(\mathbf{A}\) by an \(n \times n\) general matrix \(\mathbf{B}\)
\[
\begin{equation*}
\mathbf{C}=\mathbf{A B} \tag{1}
\end{equation*}
\]

In (1), the resultant \(\mathbf{C}\) is an \(n \times n\) matrix \((n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dmsgm(a, (double*)b, kb, (double*)c, kc, n, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input & Matrix A. Stored in symmetric storage format. See Array storage formats in the Introduction section for details. Alen \(=n(n+1) / 2\). \\
\hline b & \[
\begin{aligned}
& \text { double } \\
& \mathrm{b}[\mathrm{n}][\mathrm{kb}]
\end{aligned}
\] & Input & Matrix B. \\
\hline kb & int & Input & C fixed dimension of array \(b(\geq n)\). \\
\hline C & \[
\begin{aligned}
& \text { double } \\
& \mathrm{c}[\mathrm{n}][\mathrm{kc}]
\end{aligned}
\] & Output & Matrix C. See Comments on use. \\
\hline kc & int & Input & C fixed dimension of array \(\mathrm{C}(\geq \mathrm{n})\). \\
\hline n & int & Input & The order \(n\) of matrices \(\mathbf{A}, \mathbf{B}\) and \(\mathbf{C}\). \\
\hline VW icon & double \(\mathrm{Vw}[\mathrm{n}]\) int & Work Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \mathrm{n}<1\) \\
& \(\bullet \mathrm{~kb}<\mathrm{n}\) \\
& \(\bullet \mathrm{kc}<\mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Saving on storage space}

If there is no need to keep the contents of array, as, then saving on storage space is possible by specifying the same array for argument c . WARNING - make sure the array size is compliant for both arguments otherwise unpredictable results can occur.

\section*{4. Example program}

This program multiplies a symmetric matrix by a standard matrix.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 5
/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
int ij, i, j;
printf("symmetric matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
for ( }j=0;j<=i;j++
printf("%7.2f ",a[ij++]);
printf("\n");
}
}
/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
int i, j;
printf("general matrix format\n");
for (i=0;i<n;i++) {
for (j=0;j<m;j++) ", a[i*k+j]);
printf("%7.
}
}
MAIN__()
{
int ierr, icon;
int n, i, j, ij, kb, kc;
double b[NMAX][NMAX], a[NMAX*(NMAX+1)/2], c[NMAX][NMAX], vw[NMAX];
n = NMAX;
/* initialize symmetric matrix */
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[ij++] = i-j+1;
**
/* initialize general matrix */
for (i=0;i<n;i++)
for (j=0;j<n;j++) {
b[i][j] = i+1;
}
kb = NMAX;
kc = NMAX;
/* matrix matrix multiply */
ierr = c_dmsgm(a, (double*)b, kb, (double*)c, kc, n, vw, \&icon);
/* print matrices */
printf("a: \n");
prtsymmat(a, n);
printf("b: \n");
prtgenmat((double*)b, kb, n, n);
printf("c:\n");
prtgenmat((double*)c, kc, n, n);
return(0);
}

```

\section*{c_dmssm}

> \begin{tabular}{|l|} \hline Multiplication of two matrices (symmetric by symmetric). \\ \hline ierr = c_dmssm(a, b, c, kc, n, vw, \&icon) ; \\ \hline \end{tabular}

\section*{1. Function}

This routine performs multiplication of two \(n \times n\) symmetric matrices, \(\mathbf{A}\) and \(\mathbf{B}\).
\[
\begin{equation*}
\mathbf{C}=\mathbf{A B} \tag{1}
\end{equation*}
\]

In (1), the resultant matrix \(\mathbf{C}\) is also an \(n \times n\) matrix \((n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dmssm(a, b, (double *)c, kc, n, vw, \&icon);
where:
\begin{tabular}{llll}
a & double a[Alen] & Input & \begin{tabular}{l}
Matrix A. Stored in symmetric storage format. See Array storage \\
formats in the Introduction section for details. Alen \(=n(n+1) / 2\).
\end{tabular} \\
b & double \(\mathrm{b}[\) Blen \(]\) & Input & \begin{tabular}{l}
Matrix \(\mathbf{B}\). Stored in symmetric storage format. See Array storage formats \\
in the Introduction section for details. Blen \(=n(n+1) / 2\).
\end{tabular} \\
c & \begin{tabular}{l}
double \\
\(\mathrm{c}[\mathrm{n}][\mathrm{kc}]\)
\end{tabular} & Output & Matrix \(\mathbf{C}\). See Comments on use.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(n<1\) \\
- \(\mathrm{kc}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Saving on storage space}

If there is no need to keep the contents of array, a, then saving on storage space is possible by specifying the same array for argument c . WARNING - make sure the array size is compliant for both arguments otherwise unpredictable results can occur.

\section*{4. Example program}

This program multiplies two symmetric matrices together.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 5
/* print symmetric matrix */
void prtsymmat(double a[], int n)
{
int ij, i, j;
printf("symmetric matrix format\n");
ij = 0;
for (i=0;i<n;i++) {
for ( j=0;j<=i;j++)
printf("%7.2f ",a[ij++]);
printf("\n");
}
}
/* print general matrix */
void prtgenmat(double *a, int k, int n, int m)
{
int i, j;
printf("general matrix format\n");
for (i=0;i<n;i++) {
for (j=0;j<m;j++)
printf("%7.2f ",a[i*k+j]);
printf("\n");
}
}
MAIN__()
{
int ierr, icon;
int n, i, j, ij, kc;
double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], c[NMAX][NMAX], vw[NMAX];
n = NMAX;
/* initialize symmetric matrices */
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[ij] = i-j+1;
b[ij++] = i-j+1;
}
kc = NMAX;
/* matrix matrix multiply */
ierr = c_dmssm(a, b, (double*)c, kc, n, vw, \&icon);
/* print matrices */
printf("a: \n");
prtsymmat(a, n);
printf("b: \n");
prtsymmat(b, n);
printf("c: \n");
prtgenmat((double*)c, kc, n, n);
return(0);
}

```

\section*{c_dmsv}
\begin{tabular}{|l|}
\hline Multiplication of a symmetric matrix and a vector. \\
\hline ierr \(=c _\operatorname{dmsv}(a, n, x, y, \quad\) \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine calculates the matrix-vector product of an \(n \times n\) symmetric matrix \(\mathbf{A}\) and a vector \(\mathbf{x}\) of size \(n\).
\[
\begin{equation*}
\mathbf{y}=\mathbf{A x} \tag{1}
\end{equation*}
\]

The solution \(\mathbf{y}\) is a real vector of size \(n(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dmsv(a, n, x, y, \&icon);

```
where:
a double a[Alen] Input Matrix A. Stored in symmetric storage format. See Array storage
\begin{tabular}{llll}
\(n\) & int & Input & The order \(n\) of matrix A. \\
\(x\) & double \(x[n]\) & Input & Vector \(\mathbf{x}\). \\
\(y\) & double \(y[n]\) & Output & Solution vector \(\mathbf{y}\). \\
& & Input & Vector \(\mathbf{y}^{\prime}\). Only applies to equation (2). See Comments on use. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{n}=0\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General Comments}

The routine is used primarily for the computation of equation (1) but it can also be used for equation (2)
\[
\begin{equation*}
\mathbf{y}=\mathbf{y}^{\prime}-\mathbf{A x} \tag{2}
\end{equation*}
\]
by assigning \(-n\) to n and \(\mathbf{y}^{\prime}\) to y before calling the routine. Equation (2) is commonly used to compute a residual vector \(\mathbf{r}=\mathbf{b}-\mathbf{A x}\) of the linear equation \(\mathbf{A x}=\mathbf{b}\).

\section*{4. Example program}

This program multiplies a symmetric matrix by a vector and prints the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>

```
```

\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, ij;
double a[NMAX*(NMAX+1)/2], x[NMAX], y[NMAX];
/* initialize matrix and vector */
n = NMAX;
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[ij++]= i-j+1;
}
for (i=0;i<n;i++)
x[i] = i;
/* perform matrix vector multiply */
ierr = c_dmsv(a, n, x, y, \&icon);
if (icon != 0) {
printf("ERROR: c_dmsv failed with icon = %d\n", icon);
exit(1);
}*
/* print result */
for (i=0;i<n;i++)
printf("%7.2f ",y[i]);
printf("\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for MSV in the Fortran SSL II User's Guide.

\section*{c_dndf}
\[
\begin{aligned}
& \text { Normal distribution function } \phi(x) \text {. } \\
& \text { ierr = c_dndf }(x, \& f, \& i c o n) ;
\end{aligned}
\]

\section*{1. Function}

This routine computes the value of the normal distribution function
\[
\phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} e^{\frac{-t^{2}}{2}} d t
\]
by the relation
\[
\phi(x)=\operatorname{erf}(x / \sqrt{2}) / 2 .
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dndf(x, \&f, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
f & double & Output & Function value \(\phi(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Range of \(x\)}

There is no restriction with respect to the range of argument \(x\).

\section*{c_dndf and c_dndfc}

Using the relationship between the normal distribution function \(\phi(x)\) and the complimentary normal distribution function \(\psi(x)\)
\[
\phi(x)=1 / 2-\psi(x),
\]
the value of \(\phi(x)\) can be computed using the routine c_dndfc. However, in the range \(|x|<2\) this leads to less accuracy and less efficient computation than using this routine.

\section*{4. Example program}

This program generates a range of function values for 101 points in the the interval \([0,10]\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, f;
int i;
for (i=0;i<=100;i++) {
x = (double)i/10;
/* calculate normal distribution function */
ierr = c_dndf(x, \&f, \&icon);
if (icon == 0)
printf("x = %5.2f f = %f\n", x, f);
else
printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
}
return(0)
}

```

\section*{5. Method}

Consult the entry for NDF in the Fortran SSL II User's Guide.

\section*{c_dndfc}
```

Complimentary normal distribution function $\psi(x)$.

```
ierr = c_dndfc(x, \&f, \&icon);

\section*{1. Function}

This routine computes the value of the complimentary normal distribution function
\[
\psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{\frac{-t^{2}}{2}} d t
\]
by the relationship
\[
\psi(x)=\operatorname{erfc}(x / \sqrt{2}) / 2
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dndfc(x, \&f, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
f & double & Output & Function value \(\psi(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Range of \(\mathbf{x}\)}

There is no restriction with respect to the range of argument \(x\).

\section*{c_dndfc and c_dndf}

Using the relationship between the complimentary normal distribution function \(\psi(x)\) and the normal distribution function \(\phi(x)\),
\[
\psi(x)=1 / 2-\phi(x),
\]
the value of \(\psi(x)\) can be computed using the routine \(\mathrm{C}_{-}\)dndf. However, in the range \(|x|>2\) this leads to less accuracy and less efficient computation than using this routine.

\section*{4. Example program}

This program generates a range of function values for 101 points in the the interval \([0,10]\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, f;
int i;
for (i=0;i<=100;i++) {
x = (double)i/10;
/* calculate complementary normal distribution function */
ierr = c_dndfc(x, \&f, \&icon);
if (icon == 0)
printf("x = %5.2f f = %f\n", x, f);
else
printf("ERROR: x = %5.2f f = %f icon = %i\n", x, f, icon);
}
return(0)
}

```

\section*{5. Method}

Consult the entry for NDFC in the Fortran SSL II User's Guide.

\section*{c_dnlpg1}
Nonlinear programming (Powell's method using function values and
derivatives).
ierr = c_dnlpg1(x, n, fun, grad, func, jac, m,
\(\quad\)\begin{tabular}{l}
epsr, \&max, \&f, vw, k, ivw, \\
\&icon);
\end{tabular}

\section*{1. Function}

Given a real function \(f(\mathbf{x})\) of \(n\) variables, its gradient vector \(\mathbf{g}(\mathbf{x})\) and an initial vector \(\mathbf{x}_{0}\), the vector \(\mathbf{x}^{*}\) that gives a local minimum of \(f(\mathbf{x})\) and its function value \(f\left(\mathbf{x}^{*}\right)\) are obtained subject to the constraints:
\[
\begin{array}{ll}
c_{i}(\mathbf{x})=0, & i=1,2, \ldots, m_{1} \\
c_{i}(\mathbf{x}) \geq 0, & i=m_{1}+1, m_{1}+2, \ldots, m_{1}+m_{2}
\end{array}
\]

The Jacobian matrix \(\mathbf{J}(\mathbf{x})\) of \(\left\{c_{i}(\mathbf{x})\right\}\) must be provided as a procedure and the function \(f(\mathbf{x})\) is assumed to have at least continuous second partial derivatives.

Furthermore, if we define \(m=m_{1}+m_{2}\), where \(m_{1}\) is the number of equality constraints and \(m_{2}\) is the number of inequality constraints, then \(m_{1} \geq 0, m_{2} \geq 0\) and \(m \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dnlpg1(x, \(n\), fun, grad, func, jac, m, epsr, \&max, \&f, vw, k, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{x} & \multirow[t]{2}{*}{double \(\times\) [n]} & Input & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Initial vector \(\mathbf{x}_{0}\)}} \\
\hline & & Output & & & & \\
\hline n & int & Input & \multicolumn{4}{|l|}{Number of variables \(n\).} \\
\hline fun & function & Input & \multicolumn{4}{|l|}{User defined function to evaluate \(f(\mathbf{x})\). Its prototype is: double fun(double x[]); where:} \\
\hline & & & x & double \(x[n]\) & Input & Independent variable. \\
\hline grad & function & Input & & \multicolumn{3}{|l|}{void grad(double \(x[]\), double \(g[])\); where:} \\
\hline & & & x & double
\[
x[n]
\] & Input & Independent variable. \\
\hline & & & g & double g[n] & Output & Gradient vector, where:
\[
\mathrm{g}[\mathrm{i}-1]=\left\{\partial f / \partial x_{i}\right\}, \quad i=1, \ldots
\] \\
\hline
\end{tabular} \(n\).

\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Convergence condition was not satisfied within the specified number of function evaluations. & Stopped. Arguments \(x\) and \(f\), each contain the last value obtained. \\
\hline 20000 & A descent direction could not be found so that no decrease in function value could be obtained. epsr may have been too small. & \\
\hline 21000 & There may not be a solution that satisfies the constraints, or \(x_{0}\) may not be appropriate. Retry with a different initial value. & Stopped. \\
\hline 29000 & Memory allocation error. & Bypassed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(n<1\) \\
- \(\quad\) epsr \(<0\) \\
- \(k<m[0]+m[1]+n+4\) \\
- \(\max =0\) \\
- \(m[0]<0\) \\
- \(m[1]<0\) \\
- \(m[0]+m[i]<1\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}
epsr
The function tests for
\[
\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|_{\infty} \leq \max \left(1,\left\|\mathbf{x}_{k}\right\|_{\infty}\right) \cdot \text { epsr }
\]
for the iteration vector \(\mathbf{x}_{k}\) and if the above condition is satisfied, \(\mathbf{x}_{k+1}\) is taken as the local minimum point \(\mathbf{x}^{*}\). If the function value \(f\left(\mathbf{x}^{*}\right)\) is to be obtained as accurate as unit round-off, \(\mu\), then a value of epsr \(\approx \sqrt{\mu}\) is satisfactory. The default value of epsr is \(2 \cdot \sqrt{\mu}\).

\section*{max and recalling \(c\) _dnlpg1 when icon=10000}

The number of function evaluations is incremented by one every time fun is called, by \(n\) every time grad is called, by \(m\) every time func is called and by \(n^{*} m\) every time jac is called.

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector and the convergence criterion. Generally, from a good initial vector, a value of \(\max =800 \cdot n \cdot m\) is appropriate.

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon \(=10000\), the iteration can be continued by calling c_dnlpg1 again. In this case, max must be given a negative value, where its absolute value indicates the number of additional function evaluations to perform and the value of the other arguments must remain unaltered.

\section*{4. Example program}

A minimum of the function \(f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}-10 x_{1}+x_{2}\), subject to the constraints
\[
\begin{aligned}
& c_{1}\left(x_{1}, x_{2}\right)=0.5 x_{1}^{2}+1.5 x_{2}^{2}-2=0 \\
& c_{2}\left(x_{1}, x_{2}\right)=x_{2}-x_{1} \geq 0
\end{aligned}
\]
is found from an initial starting guess of \(\mathbf{x}_{0}=(-2,2)^{\mathbf{T}}\) The computed solution is output together with an accuracy check.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 2
\#define M1 1
\#define M2 1
double fun(double x[]);
void grad(double x[], double g[]);
void func(double x[], double c[]);
void jac(double x[], double *cj, int k);
MAIN__()
{
int ierr, icon;
double x[N], epsr, f, vw[M1+M2+2*N+12][M1+M2+N+4], eps;
int n, m[2], max, k, ivw[2*(M1+M2+N+4)];
/* initialize data */
x[0] = -2;
x[1] = 2;
n = N;
m[0] = M1;
m[1] = M2;
epsr = 1e-3;
max = 800*(M1+M2)*N;
k = M1+M2+N+4;
/* minimize */
ierr = c_dnlpg1(x, n, fun, grad, func, jac,
m, epsr, \&max, \&f, (double*)vw, k, ivw, \&icon);
printf("icon = %i max = %i f'= %f\n", icon, max, f);
printf("x[0] = %f x[1] = %f\n", x[0], x[1]);
/* check result */
eps = 1e-5;
if (fabs((f+8)/8) > eps)
printf("Inaccurate result\n");
else
printf("Result OK\n");
return(0);
}
/* objective function */
double fun(double x[])
{
return((x[0]-2*x[1]-10)*x[0] + (2*x[1]+1)*x[1]);
}
/* gradient function */
void grad(double x[], double g[])
{
g[0] = 2*x[0]-2*x[1]-10;
g[1] = -2*x[0]+4*x[1]+1;
return;
}
/* constraint function */
void func(double x[], double c[])
{
c[0] = 0.5*x[0]*x[0]+1.5*x[1]*x[1]-2;
c[1] = -x[0]+x[1];
return;
}
/* Jacobian function */
void jac(double x[], double *cj, int k)
{
cj[0]=x[0];
cj[k]= -1;
return;
}

```

\section*{5. Method}

For further information consult the entry for NLPG1 in the Fortran SSL II User's Guide and also [86] or [87].

\section*{c_dnolbr}
\[
\begin{array}{|l}
\hline \text { Solution of a system of nonlinear equations (Brent's method). } \\
\hline \text { ierr = c_dnolbr (x, n, fun, epsz, epst, fc, \&m, } \\
\text { \&fnor, vw, \&icon }) ;
\end{array}
\]

\section*{1. Function}

This function solves a system of nonlinear equations (1) by Brent's method.
\[
\left.\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \tag{1}\\
f_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0 \\
\vdots \\
f_{n}\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0
\end{array}\right\}
\]

If we let \(f(x)=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \cdots, f_{n}(\mathbf{x})\right)^{\mathrm{T}}\) and \(\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\mathrm{T}}\) then equation (2) is solved with the initial vector, \(\mathbf{x}_{0}\), and a zero right-hand-side vector, \(\mathbf{0}\), of order \(n\).
\[
\begin{equation*}
f(x)=0 \tag{2}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dnolbr(x, n, fun, epsz, epst, fc, \&m, \&fnor, vw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{X} & \multirow[t]{2}{*}{double \(\times[\mathrm{n}]\)} & & \multicolumn{4}{|l|}{An initial vector \(\mathbf{x}_{0}\) to solve equation (2).} \\
\hline & & Output & \multicolumn{4}{|l|}{Solution vector.} \\
\hline n & int & Input & \multicolumn{4}{|l|}{Dimension \(n\) of the system.} \\
\hline \multirow[t]{3}{*}{fun} & \multirow[t]{3}{*}{function} & \multirow[t]{3}{*}{Input} & & \begin{tabular}{l}
user defin \\
fun(doub
\end{tabular} & tion to [], & aluate \(f_{k}(\mathbf{x})\). Its prototype is: k) ; \\
\hline & & & X & \[
\begin{aligned}
& \text { double } \\
& x[n]
\end{aligned}
\] & Input & Vector \(\mathbf{x}\). \\
\hline & & & k & int & Input & Evaluate the \(k\) th equation, \(f_{k}(\mathbf{x})\). \\
\hline
\end{tabular}
epsz double Input The tolerance (\(\geq 0\)). The search for a solution vector is terminated when \(\left\|\boldsymbol{f}\left(\mathbf{x}_{i}\right)\right\|_{n} \leq\) epsz. See Comments on use.
epst double Input The tolerance \((\geq 0)\). The iteration is considered to have converged when \(\left\|\mathbf{x}_{i}-\mathbf{x}_{i-1}\right\|_{\sim} \leq\) epst \(\cdot\left\|\mathbf{x}_{i}\right\|_{\infty}\). See Comments on use.
fc double Input A value to indicate the range of search for the solution vector (\(>0\)). The search is terminated when \(\left\|\mathbf{x}_{i}\right\|_{\infty}>\mathrm{fc} \cdot \max \left(\left\|\mathbf{x}_{0}\right\|, 1\right)\). See Comments on use.
\begin{tabular}{llll}
m & int & Input & Upper limit of iterations \((>0)\). See Comments on use. \\
& & Output & Total number of iterations performed. \\
fnor & double & Output & The value of \(\left\|\boldsymbol{f}\left(\mathbf{x}_{i}\right)\right\|_{\infty}\) for the solution vector obtained. \\
VW & double & Work & Vhlen \(=\mathrm{n}^{*}(\mathrm{n}+3)\)
\end{tabular}
```

    vw[Vwlen]
    icon int Output Condition code. See below.

```

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 1 & \begin{tabular}{l}
Satisfied the convergence criterion, \\
\(\left\|f\left(\mathbf{x}_{i}\right)\right\|_{\infty} \leq\) epsz .
\end{tabular} & \\
\hline 2 & \begin{tabular}{l}
Satisfied the convergence criterion, \\
\(\left\|\mathbf{x}_{i}-\mathbf{x}_{i-1}\right\|_{\infty} \leq\) epst \(\cdot\left\|\mathbf{x}_{i}\right\|_{\infty} \cdot\)
\end{tabular} & \\
\hline 10000 & \begin{tabular}{l}
The specified convergence conditions were not \\
satisfied for the given number of iterations.
\end{tabular} & The last \(\mathbf{x}_{i}\) is returned in x. \\
\hline 20000 & \begin{tabular}{l}
A solution vector was not found within the search \\
range, see argument fc.
\end{tabular} & \\
\hline 25000 & \begin{tabular}{l}
The Jacobian of \(\boldsymbol{f}(\mathbf{x})\) reduced to 0 during \\
iterations (singularity).
\end{tabular} & \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\mathrm{n} \leq 0\) \\
epsz \(<0\) \\
epst \(<0\) \\
fc \(\leq 0\) \\
\(\mathrm{~m} \leq 0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz and epst}

Two convergence criteria are used in this function. When either one is met, the iteration terminates. if the user wishes to cancel one of the criteria then he needs to set the corresponding tolerance variable to zero. Below are all the possible options.
\(\operatorname{epsz}=\varepsilon_{A}(>0)\) and epst \(=0\)
Unless \(\left\|\mathbf{x}_{i}-\mathbf{x}_{i-1}\right\|_{\infty}=0\) is satisfied, the iteration continues until \(\left\|f\left(\mathbf{x}_{i}\right)\right\|_{\infty} \leq \varepsilon_{A}\) is satisfied or the upper limit on the number of iterations has been reached.
\(\mathrm{epsz}=0\) and epst \(=\varepsilon_{B}(>0)\)
Unless \(\left\|\boldsymbol{f}\left(\mathbf{x}_{i}\right)\right\|_{\infty}=0\) is satisfied, the iteration continues until \(\left\|\mathbf{x}_{i}-\mathbf{x}_{i-1}\right\|_{\infty} \leq \varepsilon_{B} \cdot\left\|\mathbf{x}_{i}\right\|_{\infty}\) is satisfied or the upper limit on the number of iterations has been reached.
epsz \(=0\) and epst \(=0\)
Unless \(\left\|\boldsymbol{f}\left(\mathbf{x}_{i}\right)\right\|_{\infty}=0\) or \(\left\|\mathbf{x}_{i}-\mathbf{x}_{i-1}\right\|_{\infty}=0\), the iteration continues until arriving at the set upper limit of iterations

This setting is useful for executing all the iterations, \(m\).

\section*{fc}

Sometimes a solution vector cannot be found in the neighbourhood of the initial vector \(\mathbf{x}_{0}\). When this happens, \(\mathbf{x}_{i}\) diverges from \(\mathbf{x}_{0}\) and numerical difficulties such as overflows may occur in evaluating \(f(\mathbf{x})\). The argument, fc, is set to make sure these anomalies don't occur by limiting the range of search for solution. A standard value for fc is around 100.

\section*{m}

The number of iterations needed for convergence to the solution vector depends on the nature of the equation and the magnitude of tolerances. When the initial vector is improperly set or the tolerances are set too small, the argument \(m\) should be set to a large number. As a rule of thumb, m should be set to around 50 for \(\mathrm{n}=10\).

\section*{4. Example program}

A root of the system of nonlinear equations:
\[
\begin{aligned}
& x_{1} \cdot\left(1-x_{2}^{2}\right)=2.25 \\
& x_{1} \cdot\left(1-x_{2}^{3}\right)=2.625
\end{aligned}
\]
is computed from a starting guess of \(\mathbf{x}_{0}=(5.0,0.8)^{\mathrm{T}}\). The solutions are \(\mathbf{x}=(3.0,0.5)^{\mathbf{T}}\) and \(\mathbf{x}=(81 / 32,-1 / 3)^{\mathbf{T}}\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 2
double fun(double x[], int k); /* user function prototype */
MAIN__()
{
int ierr, icon;
double x[N], epsz, epst, fc, fnor, vw[N*(N+3)];
int m, n;
n = N;
x[0] = 5.0;
x[1] = 0.8;
epsz = 1e-5;
epst = 0;
fc = 100;
m = 20;
/* solve equations */
ierr = c_dnolbr(x, n, fun, epsz, epst, fc, \&m, \&fnor, vw, \&icon);
printf("icon = %i m = %i fnor = %f x[0] = %12.4e x[1] = %12.4e\n",
icon, m, fnor, x[0], x[1]);
return(0);
}
/* user function */
double fun(double x[], int k)
{
double res;
switch (k) {
case (1):
res = x[0]*(1-x[1]*x[1])-2.25;
break;
case (2):
res = x[0]*(1-x[1]*x[1]*x[1])-2.625;
break;
}
return(res);
}

```

\section*{5. Method}

A system of nonlinear equations (1) is solved using Brent's method. For further information consult the entry for NOLBR in the Fortran SSL II User's Guide and [24].

\section*{c_dnolf1}
\[
\begin{aligned}
& \text { Minimization of the sum of squares of functions of several variables } \\
& \text { (revised Marquardt method using function values only). } \\
& \hline \text { ierr = c_dnolf1 }(x, n, \text { fun, } m, \text { epsr, \&max, f, } \\
& \text { \&sums, } v w, k, \& i c o n) ;
\end{aligned}
\]

\section*{1. Function}

Given \(m\) real functions \(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\) of \(n\) variables and an initial vector \(\mathbf{x}_{0}\), the vector \(\mathbf{x}^{*}\) that gives a local minimum of
\[
F(\mathbf{x})=\sum_{i=1}^{m}\left(f_{i}(\mathbf{x})\right)^{2}
\]
and its function value \(F\left(\mathbf{x}^{*}\right)\) are obtained by using the revised Marquardt method (Levenberg-Marquardt-Morrison or LMM method).

This routine does not require the derivative of \(F(\mathbf{x})\), but the functions \(f_{i}(\mathbf{x})\) are assumed to have at least continuous first partial derivatives and \(m \geq n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dnolf1(x, n, fun, m, epsr, \&max, f, \&sums, vw, k, \&icon);
where:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline X & double \(\mathrm{x}[\mathrm{n}]\) & Input & \multicolumn{4}{|l|}{Initial vector \(\mathbf{x}_{0}\).} \\
\hline & & Output & \multicolumn{4}{|l|}{Vector \(\mathbf{x}^{*}\).} \\
\hline n & int & Input & \multicolumn{4}{|l|}{Number of variables \(n\).} \\
\hline fun & function & Input & \multicolumn{4}{|l|}{User defined function to evaluate \(f_{i}(\mathbf{x})\). Its prototype is: void fun(double x[], double f[]); where:} \\
\hline & & & X & \[
\begin{aligned}
& \text { double } \\
& x[n]
\end{aligned}
\] & Input & Independent variable. \\
\hline & & & \(f\) & \[
\begin{aligned}
& \text { double } \\
& \text { f[m] }
\end{aligned}
\] & Output & Function values \(f_{i}(\mathbf{x})\), where
\[
\begin{aligned}
& \mathrm{f}[\mathrm{i}-1]=f_{i}(\mathbf{x}), \\
& i=1,2, \ldots, m .
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{m epsr} & \multirow[t]{3}{*}{int double} & Input & Number of functions \(m\). \\
\hline & & Input & Convergence criteria. A default value is used when epsr \(=0\). See \\
\hline & & & Comments on use. \\
\hline \multirow[t]{3}{*}{max} & \multirow[t]{3}{*}{int} & Input & Upper limit on the number of evaluations of fun. max may be negative. \\
\hline & & & See Comments on use. \\
\hline & & Output & Number of times actually evaluated. \\
\hline f & double f[m] & Output & Value of \(f\left(\mathbf{x}^{*}\right)\). \\
\hline sums & double & Output & \(F\left(\mathbf{x}^{*}\right)\), the sums of squares of the \(f_{i}(\mathbf{x})\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Vw & \begin{tabular}{l}
double \\
Vw [Rlen]
\end{tabular} & Work & Rlen \(=k \cdot(n+2)\). \\
\hline k & int & Input & Control on size of VW, where \(k \geq n+m\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
Convergence condition was not satisfied within \\
the specified number of function evaluations.
\end{tabular} & \begin{tabular}{l}
Stopped. Arguments \(\mathrm{x}, \mathrm{f}\) and sums each contain \\
the last value obtained.
\end{tabular} \\
\hline 20000 & \begin{tabular}{l}
Computation broke down and was not able to \\
proceed further. epsr was too small or the error \\
in the difference approximation to the Jacobian \\
was too large.
\end{tabular} & \begin{tabular}{l}
Stopped. Arguments \(\mathrm{x}, \mathrm{f}\) and sums contain the \\
last value obtained.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following occurred: \\
- \(\mathrm{n}<1\) \\
\(\bullet\) \\
- epsr \(<0\) \\
- max \(=0\) \\
\(\bullet ~\) \\
- \(<\mathrm{n}+\mathrm{m}\) \\
- \(<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsr}

The function tests for
\[
\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|_{\infty} \leq \max \left(1,\left\|\mathbf{x}_{k}\right\|_{\infty}\right) \cdot \text { epsr }
\]
for the iteration vector \(\mathbf{x}_{k}\) and if the above condition is satisfied, \(\mathbf{x}_{k+1}\) is taken as the local minimum point \(\mathbf{x}^{*}\).

This routine assumes that \(F(\mathbf{x})\) is approximately quadratic in the neighbourhood of \(\mathbf{x}^{*}\), the local minimum. To obtain \(F\left(\mathbf{x}^{*}\right)\) as accurately as the unit round-off, then a value of epsr \(\approx \sqrt{\mu}\) is appropriate, where \(\mu\) is the unit round-off. The default value of epsr is \(2 \cdot \sqrt{\mu}\).

\section*{max and recalling c_dnolf1 when icon=10000}

The number of function evaluations is calculated as the number of calls to the user defined function fun.

The number of function evaluations required depends upon the characteristics of the \(f_{i}(\mathbf{x})\) as well as the initial vector and the convergence criterion. Generally, with a good initial vector, a value of \(\max =100 \cdot m \cdot n\) is appropriate.

If the convergence criteria is not satisfied within the specified number of evaluations and the function returns with icon \(=10000\), the iteration can be continued by calling c_dnolf1 again. In this case, max must be given a negative value, where its absolute value indicates the number of additional function evaluations to perform and the value of the other arguments must remain unaltered.

\section*{4. Example program}

A minimum of the function \(F\left(x_{1}, x_{2}\right)=f_{1}^{2}\left(x_{1}, x_{2}\right)+f_{2}^{2}\left(x_{1}, x_{2}\right)\), where:
\[
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=1-x_{1} \\
& f_{2}\left(x_{1}, x_{2}\right)=10\left(x_{2}-x_{1}^{2}\right)
\end{aligned}
\]
is found from an initial starting guess of \(\mathbf{x}_{0}=(-1.2,1.0)^{\mathbf{T}}\) The computed solution is output together with an accuracy check.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 2
\#define M 2
void fun(double x[], double y[]); /* user function prototype */
MAIN__()
{
int ierr, icon;
double f[N], x[N], vw[N+2][M+N], epsr, sums, eps, exact;
int max, n, m, k;
/* initialize data */
x[0] = -1.2;
x[1] = 1;
n = N;
m= M;
epsr = 1e-3;
max = 100*n*m;
k = m+n;
/* find minimum of sum of squares */
ierr = c_dnolf1(x, n, fun, m, epsr, \&max, f, \&sums, (double*)vw, k, \&icon);
printf("icon = %i max = %i sums = %12.4e\n", icon, max, sums);
printf("x = (%12.4e, %12.4e) f = (%12.4e, %12.4e)\n",
x[0], x[1], f[0], f[1]);
/* check result */
exact = 0;
eps = 1e-6;
if (fabs(sums-exact) > eps)
printf("Inaccurate result\n");
else
printf("Result OK\n");
return(0);
}
/* user function */
void fun(double x[], double y[])
{
y[0] = 1 - x[0];
y[1] = (x[1] - x[0]*x[0])*10;
return;
}

```

\section*{5. Method}

For further information consult the entry for NOLF1 in the Fortran SSL II User's Guide, [69] or [82].

\section*{c_dnolg1}

Minimization of the sum of squares of functions of several variables (revised Marquardt method using function values and derivatives).
```

ierr = c_dnolg1(x, n, fun, jac, m, epsr, \&max,
f, \&sums, vw, k, \&icon);

```

\section*{1. Function}

Given \(m\) functions \(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\) of \(n\) variables, the Jacobian \(\mathbf{J}(\mathbf{x})\), and an initial vector \(\mathbf{x}_{0}\), the vector \(\mathbf{x}^{*}\) that gives a local minimum of
\[
F(\mathbf{x})=\sum_{i=1}^{m}\left(f_{i}(\mathbf{x})\right)^{2}
\]
and its function value \(F\left(\mathbf{x}^{*}\right)\) are obtained using the revised Marquardt method (Levenberg-Marquardt-Morrison or LMM method).

The functions \(f_{i}(\mathbf{x}), i=1, \ldots, m\) are assumed to have at least continuous first partial derivatives and \(m \geq n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dnolg1(x, n, fun, jac, m, epsr, \&max, f, \&sums, vw, k, \&icon); where:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{x} & \multirow[t]{2}{*}{double \(\mathrm{x}[\mathrm{n}]\)} & Input & \multicolumn{4}{|l|}{Initial vector \(\mathbf{x}_{0}\).} \\
\hline & & Output & \multicolumn{4}{|l|}{Vector \(\mathbf{x}^{*}\).} \\
\hline n & int & Input & \multicolumn{4}{|l|}{Number of variables \(n\).} \\
\hline \multirow[t]{3}{*}{fun} & \multirow[t]{3}{*}{function} & \multirow[t]{3}{*}{Input} & \multicolumn{4}{|l|}{User defined function to evaluate \(f_{i}(\mathbf{x})\). Its prototype is: void fun(double \(x[]\), double f[]); where} \\
\hline & & & x & double
\[
x[n]
\] & Input & Independent variable. \\
\hline & & & f & \begin{tabular}{l}
double \\
f[m]
\end{tabular} & Output & Function values \(f_{i}(\mathbf{x})\), where \(\mathrm{f}[\mathrm{i}-1]=f_{i}(\mathbf{x}), i=1,2, \ldots, m\). \\
\hline
\end{tabular}
jac function Input The name of the function that evaluates the analytical Jacobian matrix:
\[
\mathbf{J}=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
\]

The function prototype is:
void jac(double x[],double g[], long k);
where:

where \(i=1, \ldots, m\) and
\[
j=1, \ldots, n
\]

The declared storage for each "row" of g. The user must use the parameter passed by the library routine, as it may not be as expected.
\begin{tabular}{|c|c|c|c|}
\hline m & int & & Number \(m\) of functions. \\
\hline epsr & double & Input & Convergence criterion \((\geq 0)\). A default value is used when epsr \(=0\). See Comments on use. \\
\hline \multirow[t]{2}{*}{max} & \multirow[t]{2}{*}{int} & Input & Upper limit \((\neq 0)\) on the number of evaluations of fun and jac. max may be negative. See Comments on use. \\
\hline & & Output & Actual number of evaluations. \\
\hline \(f\) & double f[m] & Output & Value of \(\mathbf{f}\left(\mathbf{x}^{*}\right)\). \\
\hline sums & double & Output & \(F\left(\mathbf{x}^{*}\right)\), the sum of squares of \(f_{i}(\mathbf{x}), i=1,2, \ldots, m\). \\
\hline VW & double & Work & \(V\) wlen \(=k \cdot(n+2)\). \\
\hline & vw[Vwlen] & & \\
\hline k & int & Input & Control on size of array vw, where \(k \geq m+n\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
Convergence criterion was not satisfied within the \\
specified number of function evaluations.
\end{tabular} & \begin{tabular}{l}
Stopped. Arguments \(\mathrm{x}, \mathrm{f}\) and sums contain the \\
last values obtained.
\end{tabular} \\
\hline 20000 & \begin{tabular}{l}
Computation broke down and was not able to \\
proceed further. epsr was too small or the error \\
in the difference approximation to the Jacobian \\
was too large.
\end{tabular} & \begin{tabular}{l}
Stopped. Arguments \(\mathrm{x}, \mathrm{f}\) and sums contain the \\
last values obtained.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{n}<1\) \\
& • \(\mathrm{m}<\mathrm{n}\) & \\
& • \(\mathrm{epsr}<0\) \\
& - max \(=0\) \\
& \(\bullet \quad \mathrm{k}<\mathrm{m}+\mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}
epsr
The routine tests for
\[
\left\|\mathbf{x}_{k+1}-\mathbf{x}_{k}\right\|_{\infty} \leq \max \left(1,\left\|\mathbf{x}_{k}\right\|_{\infty}\right) \cdot \mathrm{epsr}
\]
for the iteration vector \(\mathbf{x}_{k}\). When the above condition is satisfied, \(\mathbf{x}_{k}\) is taken as the local minimum point \(\mathbf{x}^{*}\) if \(F\left(\mathbf{x}_{k}\right) \leq F\left(\mathbf{x}_{k+1}\right)\), and \(\mathbf{x}_{k+1}\) is taken as \(\mathbf{x}^{*}\) if \(F\left(\mathbf{x}_{k+1}\right)<F\left(\mathbf{x}_{k}\right)\).

This routine assumes that \(F(\mathbf{x})\) is approximately quadratic in the neighbourhood of \(\mathbf{x}^{*}\), the local minimum. To obtain \(F\left(\mathbf{x}^{*}\right)\) as accurately as the unit round-off a value of epsr \(=\mu^{1 / 2}\) is appropriate, where \(\mu\) is the unit round-off. The default value for epsr is \(2 \mu^{1 / 2}\).

\section*{max and recalling \(\mathbf{c}\) _dnolg1 when \(\mathbf{i c o n}=10000\)}

The number of function evaluations is calculated as 1 for each call to the user defined function fun and \(n\) for each call to the user defined function jac.

The number of function evaluations required depends upon the characteristics of the function as well as the initial vector and the convergence criterion. Generally, from a good initial vector, a value of \(\max =100 \cdot n \cdot m\) is appropriate.

If the convergence criterion is not satisfied within the specified number of evaluations and the routine returns with icon \(=10000\), the iteration can be continued by calling \(c_{-}\)dnolg1 again. In this case, max must be given a negative value, where its absolute value indicates the number of additional function evaluations to perform, and the values of the other arguments must remain unaltered.

\section*{4. Example program}

Given the function \(F\left(x_{1}, x_{2}\right)=f_{1}^{2}\left(x_{1}, x_{2}\right)+f_{2}^{2}\left(x_{1}, x_{2}\right)\), where \(f_{1}\left(x_{1}, x_{2}\right)=1-x_{1}\) and \(f_{2}\left(x_{1}, x_{2}\right)=10\left(x_{2}-x_{1}^{2}\right)\), the global minimum point \(\mathbf{x}^{*}\) is obtained with the initial vector \(\mathbf{x}_{\mathbf{0}}=(-1.2,1.0)^{\mathrm{T}}\).
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 2
\#define M 2
void fun(double x[], double y[]); /* user function prototype */
void jac(double x[], double *g, int k); /* derivative prototype */
MAIN__()
{
int ierr, icon;
double x[N], f[M], sums, epsr, vw[N+2][M+N];

```
```

    int i, n, m, k, max;
    /* initialize data */
    n = N;
    m = M;
    k = M+N;
    x[0] = -1.2;
    x[1] = 1;
    epsr = 1e-3;
    max = 100*n*m;
    /* find minimum of function */
    ierr = c_dnolg1(x, n, fun, jac, m, epsr, &max,
                f, &sums, (double*)vw, k, &icon)
    if (icon >= 20000) {
        printf("ERROR in c_dnolg1. icon = %i", icon);
        exit(1);
    }
    printf("icon = %i max = %i sums = %12.4e\n", icon, max, sums);
    printf("x: ");
    for (i=0;i<n;i++) printf("%12.4e ",x[i]);
    printf("\n");
    printf("f: ");
    for (i=0;i<m;i++) printf("%12.4e ",f[i]);
    printf("\n");
    return(0);
    }
/* user function */
void fun(double x[], double y[])
{
y[0] = 1-x[0];
y[1] = 10*(x[1]-x[0]*x[0]);
return;
}
/* derivative function */
void jac(double x[], double *g, int k)
{
g[0] = -1;
g[1] = 0;
g[k] = -20*x[0];
g[k+1] = 10;
return;
}

```

\section*{5. Method}

Consult the entry for NOLG1in the Fortran SSL II User's Guide and references [69], and [82].

\section*{c_dnrml}
```

Normalization of the eigenvectors of a real matrix.
ierr = c_dnrml(ev, k, n, ind, m, mode, \&icon);

```

\section*{1. Function}

This routine obtains eigenvectors \(\mathbf{y}_{j}\) by normalizing \(m\) eigenvectors \(\mathbf{x}_{j}, j=1,2, \ldots, m\) of an \(n \times n\) real matrix. Either (1) or (2) is used in the normalization process,
\[
\begin{align*}
& \mathbf{y}_{j}=\mathbf{x}_{j} /\left\|\mathbf{x}_{j}\right\|_{\infty}, \tag{1}\\
& \mathbf{y}_{j}=\mathbf{x}_{j} /\left\|\mathbf{x}_{j}\right\|_{2} . \tag{2}
\end{align*}
\]

Here \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dnrml((double *) ev, k, n, ind, m, mode, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{ev} & double & Input & The \(m\) eigenvectors \(\mathbf{x}_{i}, j=1, \ldots, m\). See Comments on use. \\
\hline & ev[m][k] & Output & The \(m\) normalized eigenvectors \(\mathbf{y}_{i}, j=1, \ldots, m\). \\
\hline k & int & Input & C fixed dimension of array ev (\(\geq \mathrm{n}\)). \\
\hline n & int & Input & Order \(n\) of the matrix. \\
\hline \multirow[t]{5}{*}{ind} & int ind[m] & Input & Indicates the type of each eigenvector: \\
\hline & & & ind \([\mathrm{j}-1]=1\) if the j -th row of ev is a real eigenvector \\
\hline & & & ind \([j-1]=-1\) if the \(j\)-th row of \(e v\) is the real part of a complex eigenvector \\
\hline & & & ind \([j-1]=0\) if the \(j\)-th row of \(e v\) is the imaginary part of a complex eigenvector. \\
\hline & & & \(\mathrm{j}=1,2, \ldots, \mathrm{~m}\). \\
\hline m & int & Input & Number \(m\) of eigenvectors. \\
\hline \multirow[t]{3}{*}{mode} & int & Input & Indicates method of normalization: \\
\hline & & & mode \(=1\) if (1) is to be used, \\
\hline & & & mode \(=2\) if (2) is to be used. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \(\mathrm{ev}[0][0]=1\). \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(m<1\) or \(m>n\) \\
- \(k<n\) \\
- mode \(\neq 1\) or 2
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet\) error found in ind & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{\(e v\), ind and \(m\)}

The eigenvectors are stored in ev such that each real eigenvector occupies one row and each row eigenvector occupied two columns (one for the real part and one for the imaginary part).

When the eigenvectors of a symmetrix matrix are to be normalized, all of the elements of ind are set to 1 .

If routine c_dhvec is called before this routine, input arguments ev , ind and m of this routine are the same as output arguments ev and ind and input argument m of c _dhvec.

If routine c_dhbk1 is called before this routine, input arguments ev , ind and m of this routine are the same as output argument ev and input arguments ind and m of c _dhbk1.

\section*{4. Example program}

This program finds the eigenvectors of a real matrix, and then such that \(\|x\|_{\infty}=1\).
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, mode, m, ind[NMAX];
double a[NMAX][NMAX], er[NMAX], ei[[NMAX], ev[NMAX][NMAX], vw[NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
a[i][i] = n-i;
for (j=0;j<i;j++) {
a[i][j] = n-i;
a[j][i] = n-i;
}
}
mode = 0;
/* find eigenvalues and eigenvectors */
ierr = c_deig1((double*)a, k, n, mode, er, ei, (double*)ev, vw, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_deig1 failed with icon = %i\n", icon);
exit (1);
}*
/* initialize ind array */
m = n;
mode = 1;
i = 0;
while' (i<m) {
if (ei[i] == 0) ind[i++] = 1;
else {
ind[i++] = -1;
ind[i++] = 0;
}
}
/* normalize eigenvectors */
ierr = c_dnrml((double*)ev, k, n, ind, m, mode, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dnrml failed with icon = %i\n", icon);
exit (1);

```
```

    }
    printf("icon = %i\n", icon);
    /* print eigenvalues' and eigenvectors */
    i = 0;
    k = 0;
    while (i<m) {
        if (ind[i] == 0) i++;
        else if (ei[i] == 0) {
            /* real eigenvector */
            printf("eigenvalue: %12.4f\n", er[i]);
            printf("eigenvector:");
                for (j=0;j<n;j++) (% evintf("%7.4f ", ev[k][j]);
            printf("\n");
            i++;
            k++;
        }
        else {
            /* complex eigenvector pair */
            printf("eigenvalue: %7.4f+i*%7.4f\n", er[i], ei[i]);
            printf("eigenvector: ");
            for (j=0;j<n;j++)
                printf("%7.4f+i*%7.4f ", ev[k][j], ev[k+1][j]);
            printf("\n");
            printf("eigenvalue: %7.4f+i*%7.4f\n", er[i+1], ei[i+1]);
            printf("eigenvector: ");
            for (j=0;j<n;j++)
                printf("%7.4f+i*%7.4f ", ev[k][j], -ev[k+1][j]);
            printf("\n");
            i = i+2;
            k = k+2;
        }
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for NRML in the Fortran SSL II User's Guide.

\section*{c_dodam}

Solution of a non-stiff system of first order initial value ordinary differential equations (Adams method).
```

ierr = c_dodam(\&x, y, fun, n, xend, \&isw,
\&epsa, \&epsr, vw, ivw, \&icon);

```

\section*{1. Function}

This subroutine solves a system of non-stiff first order ordinary differential equations of the form:
\[
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0} \tag{1}
\end{equation*}
\]
when written in vector notation, or in scalar notation:
\[
\begin{array}{ccc}
y_{1}^{\prime}= & f_{1}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), & y_{1}\left(x_{0}\right)=y_{10} \\
\vdots & \vdots & \vdots \\
y_{n}^{\prime}= & f_{n}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), & y_{n}\left(x_{0}\right)=y_{n 0}
\end{array}
\]
by Adams method, given
- The function \(\mathbf{f}\).
- the initial values \(x_{0}\) and \(\mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}\).
- and the final value of \(x\), namely \(x_{e}\).

That is, it obtains approximations \(\left(y_{1 m}, y_{2 m}, \cdots, y_{n m}\right)^{\mathrm{T}}\) to the solution \(\mathbf{y}\left(x_{m}\right)\) at points:
\[
x_{m}=x_{0}+\sum_{j=1}^{m} h_{j}, \quad m=1,2, \cdots, e
\]

Where the step size \(h_{j}\) is modified to give the required accuracy. This function provides two types of output mode that the user can choose between. These are:
1. Final value output: the function returns to the user when the solution at the final value \(x_{e}\) has been obtained.
2. Step output: the function returns to the user at the end of each successful step as solutions at \(x_{1}, x_{2}, \ldots, x_{e}\) are obtained.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dodam(\&x, y, fun, n, xend, \&isw, \&epsa, \&epsr, vw, ivw, \&icon);
where:
\begin{tabular}{lll}
x & double & \begin{tabular}{l}
Input \\
Output
\end{tabular} \\
y & dnput & \begin{tabular}{l}
Starting value \(x_{0}\). \\
Final value \(x_{e}\). When the step output is specified, an interim point to \\
which the solution is advanced by a single step.
\end{tabular} \\
Initial values \(y_{10}, y_{20}, \ldots, y_{n 0}\), which are specified in the obvious order: \(\mathrm{y}[\mathrm{n}] \quad\) & \(\mathrm{y}[0], \mathrm{y}[1], \ldots, \mathrm{y}[\mathrm{n}-1]\).
\end{tabular}

\begin{tabular}{llll}
epsa & double & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \begin{tabular}{l}
Absolute error tolerance. \\
If epsa is too small, it is set to an appropriate value. See Comments on \\
use.
\end{tabular} \\
epsr & double & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \begin{tabular}{l}
Relative error tolerance. \\
If epsr is too small, it is set to an appropriate value. See Comments on \\
use.
\end{tabular} \\
Vw & \begin{tabular}{lll}
double \\
Vw[RelLen] \\
int ivw[IntLen]
\end{tabular} & Work & \begin{tabular}{l}
RelLen must be at least \(21 \mathrm{n}+110\). The contents of Vw must not be altered \\
on subsequent calls.
\end{tabular} \\
ivw & int & Output & \begin{tabular}{l}
IntLen must be at least 11. The contents of ivw must not be altered on \\
subsequent calls. \\
Condition code. See below.
\end{tabular}
\end{tabular}

The complete list of condition codes:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & When in step output mode, a single step has been completed. & Subsequent calls are possible. \\
\hline 10 & Solution at xend was obtained. & Subsequent calls are possible after altering xend. \\
\hline 100 & A single step has been taken. It has been calculated that more than 500 steps will be required to reach xend. & To continue, simply recall the routine. The function evaluation counter will be reset to 0 . \\
\hline 200 & A single step has been completed, but it has been calculated that the given equations exhibit strong stiffness. & Though subsequent calls are possible, it is advisable to use the C-SSL II routine C_dodge which is designed for stiff equations. \\
\hline 10000 & epsa and epsr were too small for the arithmetic precision. & epsa and epsr are set to appropriate values (which should be checked by the user). Subsequent calls are possible. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n} \leq 0\). \\
- \(\quad x=x e n d\). \\
- isw specification error. \\
- epsr \(<0\), or epsa \(<0\). \\
- ivw was changed between calls.
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General comments}

This routine solves a system of non-stiff or partially stiff ordinary differential equations. If the equations are known to be stiff the C-SSL II routine C_dodge should be used instead.

This routine is most effective when:
- evaluating the functions takes a long time.
- a sequence of solutions is required.
- the derivatives of the functions have discontinuities.
- a highly accurate solution is required.

\section*{icon}

When the user specifies the final value output mode by setting the second digit of isw to 0 , he can obtain the solution at \(x_{e}\) only when icon \(=10\). However the subroutine may return control to the user when \(\mathrm{icon}=100,200\), or 10000 before \(x_{e}\) is reached.

When the step output mode is specified by setting the second digit of isw to 1 , the user can receive the output at each step not only when \(i\) con \(=0\), but also when \(i c o n=100\) or 200 . When \(i c o n=10\), the final solution at \(x_{e}\) has been reached.

\section*{epsa and epsr}

If \(\mathrm{y}[L]\) is the \(L\) th component of the solution vector, and \(l_{e}[L]\) is its local error, then C_dodam produces the solution vector such that:
\[
\left|l_{e}[L]\right| \leq \mathrm{epsr} \cdot|\mathrm{y}[L]|+\mathrm{epsa}
\]
where \(L=0,1,2, \cdots, \mathrm{n}-1\). Note that when epsa is set to zero, the relative error is used, and when epsr is set to zero, the absolute error is used.

The relative error test is suitable when the magnitude of the components of the solution vary greatly, whereas the absolute error is suitable for components with similar magnitudes, or are too small to be of interest. It is most stable however, to set neither error argument to zero, so that large components are tested against the relative error, and small components against the absolute error. When both epsa and epsr are set to zero, c_dodam sets the value of epsr to \(16 \mu\), where \(\mu\) is the unit round-off.

\section*{xend}

If a sequence of solutions is required, the library function should be called repeatedly, with xend changed each time. The library routine is designed to be called repeatedly, and so sets the arguments necessary for subsequent calls on returning to the user program. The user simply has to change xend. Note that epsa and epsr can be changed between calls.

\section*{Discontinuities}

If there are discontinuities in the solution or its derivatives, these need to be detected to produce an accurate solution. This library function will detect these points automatically, and perform any appropriate calculations. However, if the user specifies the location of any discontinuities using the method described below, the computation time can be reduced and the accuracy of the solution improved.

To specify a discontinuity, firstly call the routine with xend set to the discontinuous point with \(d_{3}\) in isw (See Arguments) set to 1 . Once the solution at xend has been reached, \(\mathrm{c}_{-}\)dodam returns to the user's program with \(d_{3}\) set to 0 . Then recall c_dodam after advancing xend and setting \(d_{1}\) to 0 . Setting isw in this way causes C_dodam to treat the solution at the discontinuity as a new initial value, with new equations to solve.

\section*{4. Example program}

This program produces an approximate solution to the initial value ordinary differential equation problem:
\[
\begin{array}{ll}
y_{1}^{\prime}=y_{3}, & y_{1}(0)=1 \\
y_{2}^{\prime}=y_{4}, & y_{2}(0)=0 \\
y_{3}^{\prime}=-\frac{y_{1}}{\left(y_{1}^{2}+y_{2}^{2}\right)^{3 / 2},} & y_{3}(0)=0 \\
y_{4}^{\prime}=-\frac{y_{2}}{\left(y_{1}^{2}+y_{2}^{2}\right)^{3 / 2}}, & y_{4}(0)=1
\end{array}
\]
over the interval \([0,2 \pi]\) with output at the points:
\[
x=\frac{2 \pi}{64} i, \quad i=1,2, \cdots, 64
\]
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 4 /* order of system */
/* user function prototypes */
void fun(double x, double y[], double yp[]);
MAIN__()
{
int ierr, icon;
int i, n, isw, ivw[11];
double x, y[N], pi, dx, xend, epsa, epsr, vw[21*N+110];
x = 0;
y[0] = 1;
y[1] = 0;
y[2] = 0;
y[3] = 1;
n = N;
epsa = 1e-8;
epsr = 1e-5;
isw = 0;
pi = 4*atan(1);
dx=pi/32; x yrintf(") y[0] y[1] y[2] y[3]\n");
for (i=1;i<65;i++) { y[y y[2] y[3]\n");
xend = dx*(double)i;
while(1) {
/* solve system */
ierr = c_dodam(\&x, y, fun, n, xend, \&isw, \&epsa, \&epsr,
vw, ivw, \&icon);
if (icon == 10) break;
if (icon == 100) printf("too many steps\n");
if (icon == 200) printf("the equations appear to be stiff\n");
if (icon == 10000)
printf("tolerance reset; epsa = %12.4e epsr = %12.4e\n", epsa, epsr);
if (icon == 30000) {
printf("invalid input\n");
exit(1);
}
}
printf("%12.4e %12.4e %12.4e %12.4e %12.4e\n",
x, y[0], y[1], y[2], y[3]);
}
return(0);
}
/* user function */
void fun(double x, double y[], double yp[])
{
double r3;
r3 = pow((y[0]*y[0]+y[1]*y[1]),1.5);
yp[0] = y[2];
yp[1] = y[3];
yp[2] = -y[0]/r3;
yp[3] = -y[1]/r3;
return;
}

```

\section*{5. Method}

For further information on Adams method, consult the entry for ODAM in the Fortran SSL II User's Guide, and also [94].

\section*{c_dodge}

Solution of a stiff or non-stiff system of first order initial value ordinary differential equations (Gear's or Adams method).
```

ierr = c_dodge(\&x, y, fun, n, xend, \&isw,
epsv, \&epsr, mf, \&h, jac, vw, ivw,
\&icon);

```

\section*{1. Function}

This function solves a system of first order ordinary differential equations of the form:
\[
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0} \tag{1}
\end{equation*}
\]
when written in vector notation, or in scalar notation:
\[
\begin{array}{ccc}
y_{1}^{\prime}= & f_{1}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), & y_{1}\left(x_{0}\right)=y_{10} \\
\vdots & \vdots & \vdots \\
y_{n}^{\prime}= & f_{n}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), & y_{n}\left(x_{0}\right)=y_{n 0}
\end{array}
\]
by Gear's method or Adams method, given
- the function \(\mathbf{f}\).
- the initial values \(x_{0}\) and \(\mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}\).
- and the final value of \(x\), namely \(x_{e}\).

That is, it obtains approximations, \(\left(y_{1 m}, y_{2 m}, \cdots, y_{n m}\right)^{\mathrm{T}}\) to the solution \(\mathbf{y}\left(x_{m}\right)\) at points:
\[
x_{m}=x_{0}+\sum_{j=1}^{m} h_{j}, \quad m=1,2, \cdots, e
\]

The step size is controlled so that solutions satisfy the desired accuracy.

Gear's method is suitable for stiff equations, whereas Adams method is suitable for non-stiff equations. The user may select either of these methods depending on the stiffness of the equations. This function provides two types of output mode, which the user can choose between according to his need. These are:
1. Final value output: the function returns to the user when the solution at the final value \(x_{e}\) has been obtained.
2. Step output: the function returns to the user at the end of each successful step as solutions at \(x_{1}, x_{2}, \ldots, x_{e}\) are obtained.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dodge(\&x, y, fun, \(n\), xend, \&isw, epsv, \&epsr, mf, \&h, jac, vw, ivw, \&icon);
where:

Output When the solutions at \(x_{e}\) or at an interim point are returned to the user program, the individual digits of isw are altered as follows:
\(d_{1} \quad\) Set to 1 . On subsequent calls, \(d_{1}\) should not be altered by the user. Resetting \(d_{1}\) to zero is only needed when the user starts solving another system of equations.
\(d_{3}\) When \(d_{3}=1\) on input, change it to \(d_{3}=0\) when the solution at \(x_{e}\) is obtained.
\(d_{4}\) When \(d_{4}=1\) on input, change it to \(d_{4}=0\).
Absolute error tolerances.
If epsv is too small, it is set to an appropriate value. See Comments on use.
epsr double
mf int
double

Input

Output

Relative error tolerance. If epsr is too small, it is set to an appropriate value. See Comments on use.
Method indicator. mf is an input only argument. It is a 2-digit integer comprised as follows:
\(\mathrm{mf}=10 \mathrm{meth}+\) iter
where:
meth This is the basic method indicator, which can take the following values:
1 Gear's method, suitable for stiff equations.
2 Adams method, suitable for non-stiff equations.
iter This is the corrector iteration method indicator, which can take the following values:
0 Newton method in which the analytical Jacobian matrix calculated in the jac function. This is the most suitable value for stiff equations.
1 Newton method in which the Jacobian matrix is internally approximated by finite differences. Used for stiff equations where the analytical Jacobian matrix cannot be prepared.
2 Same as iter = 1 except that the Jacobian matrix is approximated by a diagonal matrix. Used for stiff equations where the Jacobian is known to be a diagonally dominant matrix.
3 Function iteration in which the Jacobian matrix is not used. Used for non-stiff equations.
Initial step size \((h \neq 0)\) to be attempted for the first step of the first call. The sign of h must be the same as that of \(x_{e}-x_{0}\). A typical value of the modulus of h is given by: \(|\mathrm{h}|=\min \left(10^{-5}, \max \left(10^{-4}\left|x_{0}\right|,\left|x_{e}-x_{0}\right|\right)\right)\) The value of \(h\) is controlled to satisfy the required accuracy. The step size last used.
\begin{tabular}{rl}
jac function Input & The name of the function that \\
& \(J=\left[\begin{array}{ccccc}\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} & \cdots & \frac{\partial f_{1}}{\partial y_{n}} \\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}} & \cdots & \frac{\partial f_{2}}{\partial y_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial y_{1}} & \frac{\partial f_{n}}{\partial y_{2}} & \cdots & \frac{\partial f_{n}}{\partial y_{n}}\end{array}\right]\)
\end{tabular}

The function prototype is:
```

void jac(double x, double y[], double pd[],
int k);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline x & double & Input & The independent variable. \\
\hline \multirow[t]{2}{*}{y} & double & Input & Vector containing \\
\hline & \(y[n]\) & & \(y_{1}, y_{2}, \cdots, y_{n}\) in the obvious order. \\
\hline \multirow[t]{2}{*}{pd} & \begin{tabular}{l}
double \\
pd[k*k]
\end{tabular} & Output & The Jacobian matrix. Stored by rows, i.e.
\[
\operatorname{pd}[(i-1) * \mathrm{k}+(j-1)]
\] \\
\hline & & & \(=\partial f_{i} / \partial y_{j}\) \\
\hline
\end{tabular}
\(k\) int Input The number of equations in the original system (if n is reduced on subsequent calls).
\begin{tabular}{ll}
Vw & double \\
vw[RelLen] \\
ivw & \begin{tabular}{l}
int ivw[IntLen]
\end{tabular} \\
icon & int
\end{tabular}

Work

Work

Output
where \(1 \leq i \leq n\) and \(1 \leq j \leq n\). (
RelLen must be at least \(\mathrm{n} *(\mathrm{n}+17)+70\). The contents of VW must not be altered on subsequent calls.
IntLen must be at least \(\mathrm{n}+25\). The contents of \(\mathrm{i} v \mathrm{w}\) must not be altered on subsequent calls.
Condition code. See below.
The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & \begin{tabular}{l}
Single step completed. Further calls are possible. \\
See Comments on use.
\end{tabular} \\
\hline 10 & No error. & \begin{tabular}{l}
Solution completed. Further calls are possible if \\
xend is changed. See Comments on \(u s e\).
\end{tabular} \\
\hline 10000 & \begin{tabular}{l}
epsr and epsv \([l]: l=0,1,2, \ldots \mathrm{n}-1\) are too \\
small for the arithmetic precision.
\end{tabular} & \begin{tabular}{l}
epsr and epsv \([l]: l=0,1,2, \ldots \mathrm{n}-1\) were \\
increased to suitable values.
\end{tabular} \\
\hline 15000 & \begin{tabular}{l}
The requested accuracy could not be achieved \\
with a step size of \(10^{-10}\) times the initial step size.
\end{tabular} \\
\hline 16000 & \begin{tabular}{l}
The corrector iteration did not converge even \\
when the step size was \(10^{-10}\) times the initial step \\
size.
\end{tabular} & \begin{tabular}{l}
The methods specified by argument mf may not \\
be appropriate for the given equations. Alter mf \\
and retry.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n} \leq 0\). \\
- \(\quad \mathrm{x}=\) xend.
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet \quad\) isw specification error. & \\
& \(\bullet \quad\) epsr \(<0\), or there exists a value of \(l\) for & \\
& \begin{tabular}{l}
which \(\operatorname{epsv}[l]<0\).
\end{tabular} & \\
& \(\bullet \quad(x e n d-x) * \mathrm{~h} \leq 0\). & \\
& \(\bullet \quad\) ivw was changed between calls. & \\
\hline
\end{tabular}

\section*{3. Comments on use}
c_dodge can be used for stiff equations, or those that are initially non-stiff, but which become stiff within the integration interval. For purely non-stiff equations c_dodam should be used for efficiency.

\section*{icon}

When the user specifies the final value output mode, using the isw argument, he can obtain the solution at \(x_{e}\) only when icon \(=10\). When the step output mode is specified, a solution after each step can be obtained when \(i\) con \(=0\). When icon \(=10\), the final solution at \(x_{e}\) has been obtained.

\section*{The error arguments epsv and epsr}

If \(\mathrm{y}[L]\) is the \(L\) th component of the solution vector, and \(l_{e}[L]\) is its local error, then \(\mathrm{c} _\)dodge produces the solution vector such that:
\[
\left|l_{e}[L]\right| \leq \operatorname{epsr} \cdot|\mathrm{y}[L]|+\operatorname{epsv}[L]
\]
where \(L=0,1,2, \cdots, \mathrm{n}-1\). Note that when the relevant component of epsv is set to zero, the relative error is used, and when epsr is set to zero, the absolute error vector is used.

The relative error test is suitable for components that range over several orders of magnitude over the integration interval, whereas the absolute error is suitable for components with similar orders of magnitude, or are too small to be of interest. It is most stable however, to set neither error argument to zero, so that large components are tested against the relative error, and small components against the absolute error. Also, for stiff equations, the components of the solution may be greatly different in magnitude, and therefore setting different values to the absolute error arguments may be advisable. When both epsv and epsr are set entirely to zero, c_dodge sets the value of epsr to \(16 \mu\), where \(\mu\) is the unit round-off.

Note that changing epsv and epsr between calls to c_dodge (during the solution) is also possible.

\section*{xend}

If a sequence of solutions is required at several values of the independent variable, the routine automatically retains the arguments required for the second and subsequent calls. Therefore the user simply has to change xend and recall the routine.

\section*{Changing mf during the solution}

If the given equations are non-stiff initially, but become stiff during the integration integral, it is desirable to change the value of mf from 23 to 10 (or 11 or 12). This is achieved by setting the value of \(d_{4}\) in isw to 1 (see above), resetting the mf argument to the desired value, setting xend to the value of the next required output, and recalling C _dodge. If this is accomplished successfully, the value of \(d_{4}\) is reset to 0 on output.

If the solution at xend can be obtained without changing mf , then the routine will execute normally.

\section*{Changing \(\mathbf{n}\) during the solution}

In the solution of stiff equations, some components of the solution will vary very little compared to others, or will become small enough to be neglected. If these values are of no interest to the user, he can reduce the value of n between the different calls to the subroutine to reduce the number of calculations. If n is reduced to \(\mathrm{n}_{c}\), then the solution is stored in the first \(\mathrm{n}_{c}\) elements of vector y , with the remaining elements being unaltered on output. The responsibility for the modification of fun and jac to accommodate the new value of n is left to the user.

\section*{4. Example program}

This program produces an approximate solution to the initial value ordinary differential equation problem:
\[
\begin{array}{ll}
y_{1}^{\prime}=y_{2}, & y_{1}(0)=1 \\
y_{2}^{\prime}=-11 y_{2}-10 y_{1}, & y_{2}(0)=-1
\end{array}
\]
over the interval \([0,100]\), with output at \(x=10^{-3+i}, \quad i=1,2, \cdots, 5\). Options to solve a stiff problem with an explicit Jacobian matrix are used.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 2 /* order of system */
/* user function prototypes */
void fun(double x, double y[], double yp[]);
void jac(double x, double y[], double *pd, int k);
MAIN__()
{
int ierr, icon;
int i, n, isw, mf, ivw[N+25];
double x, y[N], xend, epsv[N], epsr, h, vw[N*(N+17)+70];
mf = 10;
n = N;
x = 0;
h = 1.0e-5;
y[0] = 1;
y[1] = -1;
isw = 0;
epsv[0] = 0;
epsv[1] = 0;
epsr = 1.0e-6;
xend = 1.0e-3; y y m[0] y[1]\n");
for (i=0;i<5;i++) {
xend = xend*10;
while(1) {
/* solve system */
ierr = c_dodge(\&x, y, fun, n, xend, \&isw, epsv, \&epsr,
mf, \&h, jac, vw, ivw, \&icon);
if (icon == 10) break;
if (icon == 16000){
printf("ERROR: no convergence\n");
exit(1);
}
if (icon == 10000 || icon == 15000){
/* repeat with new tolerances */
printf("WARNING: tolerance reset\n");
printf("epsr = %12.4e epsv[0] = %12.4e epsv[1] = %12.4e\n",
}
}
printf("%12.4e %12.4e %12.4e\n", x, y[0], y[1]);
}
return(0);
}

```
```

/* user function */
void fun(double x, double y[], double yp[])
{
yp[0] = y[1];
yp[1] = -11*y[1]-10*y[0];
return;
}
/* user Jacobian function */
void jac(double x, double y[], double *pd, int k)
{
pd[0] = 0;
pd[2] = -10; /* [1][0] */
pd[3] = -11; /* [1][1] */
return;
}

```

\section*{5. Method}

This routine uses Gear's or Adams methods with step size and order controls. For further information consult the entry for ODGE in the Fortran SSL II User's Guide, and also [19], [39], and [55].

\section*{c_dodrk1}

Solution of a system of first order ordinary differential equations (Runge-Kutta-Verner method).
\[
\begin{array}{r}
\text { ierr = c_dodrk1(\&x, y, fun, n, xend, \&isw, } \\
\text { epsa, \&epsr, vw, ivw, \&icon); }
\end{array}
\]

\section*{1. Function}

This routine solves a system of first order ordinary differential equations of the form:
\[
\begin{equation*}
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0} \tag{1}
\end{equation*}
\]
when written in vector notation, or in scalar notation:
\[
\begin{array}{ccc}
y_{1}^{\prime}= & f_{1}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), & y_{1}\left(x_{0}\right)=y_{10} \\
\vdots & \vdots & \vdots \\
y_{n}^{\prime}= & f_{n}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right), & y_{n}\left(x_{0}\right)=y_{n 0}
\end{array},
\]
by the Runge-Kutta-Verner method, given
- the function \(\mathbf{f}\),
- the initial values \(x_{0}\) and \(\mathbf{y}\left(x_{0}\right)=\mathbf{y}_{0}\),
- and the final value of \(x\), namely \(x_{e}\).

The routine obtains approximations, \(\left(y_{1 m}, y_{2 m}, \cdots, y_{n m}\right)^{\mathrm{T}}\) to the solution \(\mathbf{y}\left(x_{m}\right)\) at points
\[
x_{m}=x_{0}+\sum_{j=1}^{m} h_{j}, \quad m=1,2, \cdots, e
\]

The step size is controlled so that solutions satisfy the desired accuracy.

This routine provides two types of output mode. These are:
1. Final value output: the routine returns to the user when the solution at the final value \(x_{e}\) has been obtained.
2. Step output: the routine returns to the user at the end of each successful step as solutions at \(x_{1}, x_{2}, \ldots, x_{e}\) are obtained.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dodrk1(\&x, y, fun, n, xend, \&isw, epsa, \&epsr, vw, ivw, \&icon); where:
\begin{tabular}{lll}
Input & double & \begin{tabular}{l}
Starting value \(x_{0}\). \\
Output \\
Final value \(x_{e}\) \\
which the solution is advanced by a single step.
\end{tabular} \\
& Whe step output is specified, an interim point \(x_{m}\) to
\end{tabular}
y double \(\mathrm{y}[\mathrm{n}] \quad\) Input \(\quad\) Initial values \(y_{10}, y_{20}, \cdots, y_{n 0}\), with \(\mathrm{y}[\mathrm{i}-1]=y_{i 0}, i=1,2, \ldots, n\).
fun function Input User defined function that evaluates \(\mathbf{f}\) in equation (1). Its prototype is: void fun(double \(x\), double y[], double yp[]); where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). \\
y & double & Input & Solution vector \(\mathbf{y}\) associated with \\
\(\mathrm{y}[\mathrm{n}]\) & & \(x\). \\
& & & \(\mathrm{y}[\mathrm{i}-1]=y_{i}, i=1,2, \ldots, n\) \\
yp & double & Output & \begin{tabular}{l}
Derivative vector \(\mathbf{f}\) associated \\
\\
\(\mathrm{yp}[\mathrm{n}]\)
\end{tabular} \\
& & with \(x\). \\
& & \(\mathrm{yp}[\mathrm{i}-1]=f_{i}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)\) \\
& & \(i=1,2, \ldots, n\).
\end{tabular}
\begin{tabular}{lll}
n & int & Input \\
xend & double & Input \\
isw & int & Input
\end{tabular}

Number of equations \(n\) in the system.
Final point \(x_{e}\) to which the system should be solved. See Comments on use.
int
Variable to specify conditions in integration. isw is a non-negative integer with 2 digits that can be expressed as:
isw \(=10 d_{2}+d_{1}\)
where
\(d_{1} \quad\) Specifies whether or not this is the first call.
0 First call.
1 Subsequent calls.
The first call means that C_dodrk1 is called for the first time for this particular system of differential equations.
\(d_{2} \quad\) Specifies the output mode.
0 Final value output.
1 Step output.
Output When the solution vector at \(x_{e}\) or at an interim point is returned to the user program, the digit \(d_{1}\) is set to 1 . On subsequent calls, \(d_{1}\) should not be altered by the user. Resetting \(d_{1}\) to zero is only needed when the user starts solving another system of equations.
Absolute error tolerances. See Comments on use.
Relative error tolerance. See Comments on use.
If epsr is too small, it is set to an appropriate value.
When calling this routine repeatedly, the contents of VW should not be changed.
When calling this routine repeatedly, the contents of ivw should not be changed.
Condition code. See below.
The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & A single step has been taken. & Normal. Subsequent calls are possible. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 10 & Solution at xend obtained. & \begin{tabular}{l}
Normal. Subsequent calls are possible after \\
changing xend.
\end{tabular} \\
\hline 10000 & \begin{tabular}{l}
Integration was not completed because epsr was \\
too small in comparison with the arithmetic \\
precision of the computer used. See Comments on \\
use.
\end{tabular} & \begin{tabular}{l}
Returns to user program. Subsequent calls are \\
possible.
\end{tabular} \\
\hline 11000 & \begin{tabular}{l}
Integration was not completed because more than \\
4000 derivative evaluations were needed to reach \\
xend.
\end{tabular} & \begin{tabular}{l}
Returns to user program. The function counter \\
willl be reset to 0 on subsequent calls.
\end{tabular} \\
\hline 15000 & \begin{tabular}{l}
Integration was not completed because the \\
requested accuracy could not be achieved using \\
the smallest allowable stepsize, \(h_{\text {min }}\). See \\
Comments on use.
\end{tabular} & \begin{tabular}{l}
Returns to user program. The user must increase \\
epsa or epsr before calling the routine again.
\end{tabular} \\
\hline 16000 & \begin{tabular}{l}
(When epsa \(=0\)) Integration was not completed \\
because the solution vanished, making a pure \\
relative error test impossible.
\end{tabular} & \begin{tabular}{l}
Returns to user program. The user must increase \\
epsa before calling the routine again.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet\) \\
n \(\leq 0\) \\
- \(=\) x xend \\
- \\
isw was set to an invalid value \\
epsa \(<0\) or epsr \(<0\) \\
After icon \(=15000\) or 16000, subsequent \\
calling is done without changing epsa or \\
epsr.
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

This routine may be used to solve non-stiff and mildly stiff differential equations when derivative evaluations are inexpensive, but it cannot be used if high accuracy is desired.

\section*{icon}

Solutions may be acceptable only when icon is 0 or 10 . When icon \(=10000\) to 11000 , the routine returns control to the user program, and the user can call this routine sucessively after identifying the event that has occurred. When icon = 15000 to 16000 the routine returns control to the user program, but in these cases the user must increase epsa or epsr before calling the routine subsequently.

\section*{espr and epsa}

The relative error tolerance espr is required to satisfy
\[
\begin{equation*}
\operatorname{espr} \geq \varepsilon_{r \min }=10^{-12}+2 \mu \tag{2}
\end{equation*}
\]
where \(\mu\) is the unit round-off. When epsr does not satisfy (2), the routine increases epsr so that epsr \(=\varepsilon_{r \text { min }}\), and returns control to the user program with icon \(=10000\). The user may call the routine subsequently to continue the integration.

\section*{Smallest stepsize}

In this routine, the smallest stepsize \(h_{\min }\) is defined to satisfy
\[
h_{\min }=26 \mu \cdot \max (|x|,|d|),
\]
where \(x\) is the independent variable, and \(d=\left(x_{e}-x_{0}\right) / 100\). When the desired accuracy is not achieved using the smallest stepsize, the routine returns control to the user program with icon \(=15000\). To continue the integration, the user may call the routine again after increasing epsa or epsr to an appropriate value.

\section*{4. Example program}

A system of ODE's:
\[
\begin{cases}y_{1}^{\prime}=y_{1}^{2} y_{2} & , y_{1}(0)=1.0 \tag{2}\\ y_{2}^{\prime}=-1 / y_{1} & , y_{2}(0)=1.0\end{cases}
\]
is integrated from \(x_{0}=0.0\) to \(x_{e}=4.0\). Results are output at each step.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 2 /* order of system */
/* user function prototypes */
void fun(double x, double y[], double yp[]);
MAIN__()
{
int ierr, icon;
int n, isw, ivw[5];
double x, y[N], xend, epsa, epsr, vw[9*N+40];
x = 0;
y[0] = 1;
y[1] = 1;
n = N;
xend = 4;
epsa = 0;
epsr = 1e-5;
isw = 10;
while(1) {
/* solve system */
ierr = c_dodrk1(\&x, y, fun, n, xend, \&isw, epsa, \&epsr,
vW, ivW, \&icon);
if (icon == 0 || icon == 10) {
printf("x = %12.4e y[0] = %12.4e y[1] = %12.4e \n",
x, y[0], y[1]);
if (icon == 10) break;
}
else if (icon == 10000)
printf("relative error tolerance too small\n");
else if (icon == 11000)
printf("too many steps\n");
else if (icon == 15000) {
printf("tolerance reset\n");
epsr = 10*epsr;
}
else if (icon == 16000) {
printf("tolerance reset\n");
epsa = 1e-5;
}
else if (icon == 30000) {
printf("invalid input\n");
exit(1);
}
}
return(0);
}
/* user function */
void fun(double x, double y[], double yp[])
{

```
```

    yp[0] = y[0]*y[0]*y[1];
    yp[1] = -1/y[0];
    return;
    }

```

\section*{5. Method}

Consult the entry for ODRK1 in the Fortran SSL II User's Guide and [57] and [114].

\section*{c_drjetr}
\begin{tabular}{|l|}
\hline Roots of a polynomial with real coefficients (Jenkins-Traub method). \\
\hline ierr = c_drjetr \((a, \& n, z, \quad v w, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function finds the roots of a polynomial equation (1) with real coefficients by the Jenkins-Traub three-stage algorithm.
\[
\begin{equation*}
a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0 \tag{1}
\end{equation*}
\]

In (1), \(a_{i}\) are the real coefficients, \(a_{0} \neq 0\) and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_drjetr(a, \&n, z, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{a} & \multirow[t]{2}{*}{double a[n+1]} & Input & Coefficients of the polynomial equation, where a [i\(]=a_{i}\). \\
\hline & & Output & The contents of the array are altered on output. \\
\hline \multirow[t]{2}{*}{n} & \multirow[t]{2}{*}{int} & Input & Order \(n\) of the equation. \\
\hline & & Output & Number of roots found. See Comments on use. \\
\hline Z & dcomplex z[n] & Output & The n roots, returned in \(\mathrm{z}[0]\) to \(\mathrm{z}[\mathrm{n}-1]\). \\
\hline \multirow[t]{2}{*}{Vw} & double & Work & Vwlen \(=6 *(n+1)\). \\
\hline & vw [Vwlen] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Not all the n roots could be found. & \begin{tabular}{l}
The number of roots found is returned by the \\
argument n and the roots themselves are returned \\
in array z.
\end{tabular} \\
\hline 30000 & \(\left.\)\begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet\) \\
\(\bullet\)
\end{tabular}\(a_{0} \right\rvert\,=0\)
\end{tabular}\(\quad\) Bypassed..

\section*{3. Comments on use}

An \(n\)-th degree polynomial equation has \(n\) roots. However, it is possible, though rare, that not all the roots can be found. Therefore, it is good practice to check the arguments icon and \(n\), to see whether or not all the roots have been found.

\section*{4. Example program}

This example program computes the roots of the polynomial \(x^{3}-6 x^{2}+11 x-6=0\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 3
MAIN__()
{
int ierr, icon;
dcomplex z[N];
double a[N+1], vw[6*(N+1)];
int n, i;
/* initialize data */
n = N;
a[0] = 1;
a[1] = -6;
a[2] = 11;
/* find roots of polynomial */
ierr = c_drjetr(a, \&n, z, vw, \&icon);
printf("icon = %i n = %i\n", icon, n);
for (i=0;i<n;i++)
printf("z[%i] = {%12.4e, %12.4e}\n", i, z[i].re, z[i].im);
printf("exact roots are: {1, 0}, {2, 0} and {3, 0}\n");
return(0);
}

```

\section*{5. Method}

This function uses the Jenkins-Traub three-stage algorithm to find the roots of the polynomial equation. For further information consult the entry for RJETR in the Fortran SSL II User's Guide and [59] and [60].

\section*{c_drqdr}
\begin{tabular}{|l|}
\hline Roots of a quadratic with real coefficients. \\
\hline ierr = c_drqdr(a0, a1, a2, z, \&icon \()\); \\
\hline
\end{tabular}

\section*{1. Function}

This function finds the roots of a quadratic equation with real coefficients.
\[
\begin{equation*}
a_{0} x^{2}+a_{1} x+a_{2}=0 \tag{1}
\end{equation*}
\]
where \(a_{0} \neq 0\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_drqdr(a0, a1, a2, z, \&icon);

```
where:
\begin{tabular}{llll}
a0 & double & Input & The zeroth coefficient \(a_{0}\) of quadratic equation. \\
a1 & double & Input & The first coefficient \(a_{1}\) of quadratic equation. \\
a2 & double & Input & The second coefficient \(a_{2}\) of quadratic equation. \\
z & dcomplex z[2] & Output & Roots (both the real and imaginary parts) of quadratic equation. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(a_{0}=0\) & \begin{tabular}{l}
\(-a_{2} / a_{1}\) is stored in the real part of \(\mathrm{z}[0]\), and 0 \\
in the imaginary part. \\
\(z[1]\) is undefined.
\end{tabular} \\
\hline 30000 & \(a_{0}=0\) and \(a_{1}=0\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Example program}

This example program computes the roots of the quadratic \(x^{2}-5 x+6=0\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN___( )
{
int ierr, icon;
dcomplex z[2];
double a0, a1, a2;
/* initialize data */
a0 = 1;
a1 = -5;
a2 = 6;
/* find roots of quadratic */
ierr = c_drqdr(a0, a1, a2, z, \&icon);
printf("icon = %i z[0]={%12.4e, %12.4e} z[1]={%12.4e, %12.4e}\n",
icon, z[0].re, z[0].im, z[1].re, z[1].im);
printf("exact roots are: {3, 0} and {2, 0}\n");
return(0);

```

\section*{\}}

\section*{4. Method}

The roots of a quadratic equation (1) are obtained by the root formula. For further information consult the entry for RQDR in the Fortran SSL II User's Guide or [16].

\section*{c_dsbmdm}
\(\mathrm{MDM}^{\mathrm{T}}\) - decomposition of an indefinite symmetric band matrix (block diagonal pivoting method).
```

ierr = c_dsbmdm(a, n, \&nh, mh, epsz, ip, ivw,
\&icon);

```

\section*{1. Function}

This routine performs MDM \({ }^{\mathrm{T}}\)-decomposition of an \(n \times n\) indefinite symmetric band matrix \(\mathbf{A}\) with bandwidth \(h\) (\(n>h \geq 0\)), using the Gaussian-like block diagonal pivoting method.
\[
\begin{equation*}
\mathbf{P A P}^{\mathrm{T}}=\mathbf{M D M}^{\mathrm{T}} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{P}\) is a permutation matrix that performs the row exchanges of the matrix \(\mathbf{A}\) required during pivoting, \(\mathbf{M}=\left(m_{i j}\right)\) is a unit lower band matrix, and \(\mathbf{D}=\left(d_{i j}\right)\) is a symmetric block diagonal matrix with blocks of order at most 2 .

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dsbmdm(a, n, \&nh, mh, epsz, ip, ivw, \&icon);

```
where:
a double Input Matrix A. Stored in symmetric band storage format. See Array storage a[Alen] formats in the Introduction section for details. A must be stored as if it had bandwidth \(h_{m}\). See Comments on use.
Alen \(=n\left(h_{m}+1\right)-h_{m}\left(h_{m}+1\right) / 2\).
Output Matrix \(\mathbf{D}+(\mathbf{M}-\mathbf{I})\). Stored in symmetric band storage format. (Suitable for input to the linear equations routine c_dbmdmx.) See Comments on use.
\begin{tabular}{|c|c|c|c|}
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline \multirow[t]{2}{*}{nh} & \multirow[t]{2}{*}{int} & Input & Bandwidth \(h\) of matrix \(\mathbf{A}\). \\
\hline & & Output & Bandwidth \(\widetilde{h}\) of matrix M. See Comments on use. \\
\hline mh & int & Input & Maximum bandwidth \(h_{m}(\mathrm{n}>\mathrm{mh} \geq \mathrm{nh})\). See Comments on use. \\
\hline epsz & double & Input & Tolerance \((\geq 0)\) for relative zero test of pivots in decomposition process of matrix \(\mathbf{A}\). When epsz is zero a standard value is used. See Comments \\
\hline & & & on use. \\
\hline ip & int ip[n] & Output & Transposition vector that provides the row exchanges that occurred during pivoting. (Suitable for input to the linear equations routine c_dbmdmx.) See Comments on use. \\
\hline ivw & int ivw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Either all of the elements of some row are zero or & Discontinued. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline & a pivot is relatively zero. It is probable that matrix \(\mathbf{A}\) is singular. & \\
\hline 25000 & The maximum bandwidth was exceeded during decomposition. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad \mathrm{nh}<0\) \\
- \(m h<n h\) \\
- \(m h \geq n\) \\
- \(e p s z<0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a, nh and mh}

Generally, the matrix bandwidth increases when rows and columns are exchanged in the pivoting operation of the decomposition. Therefore, it is necessary to specify a maximum bandwidth \(h_{m}\) greater than or equal to the actual bandwidth \(h\) of \(\mathbf{A}\), and to store \(\mathbf{A}\) in symmetric band storage format assuming \(\mathbf{A}\) has bandwidth \(h_{m}\). The output of nh is the actual bandwidth \(\tilde{h}\) of matrix \(\mathbf{M}\). If the maximum bandwidth is exceeded during decomposition, processing is discontinued with icon=25000.

\section*{epsz}

The standard value of epsz is \(16 \mu\). where \(\mu\) is the unit round-off. If, during the block diagonal pivoting decomposition, a pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000. Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the required accuracy.

\section*{ip}

The transposition vector corresponds to the permutation matrix \(\mathbf{P}\) of the \(\mathrm{MDM}^{\mathrm{T}}\) - decomposition with pivoting. In this routine the elements of the array a are exchanged in the pivoting and the history of the exchanges is recorded in ip. At the \(k\)-th step of the decomposition, for a \(1 \times 1\) pivot, no row is exchanged and \(k\) is stored in \(i p[k-1]\), and for a \(2 \times 2\) pivot, \(-k\) is stored in ip \([k-1]\) and the negative value of the row (and column) number \(s(\geq k+1)\) that is exchanged with the \((k+1)\)-st row (and column) is stored in ip [k], i.e. \(-k\) is stored in ip[k-1] and \(-s\) is stored in ip[k].

\section*{Solution of linear equations}

To solve a system of linear equations with an indefinite symmetric band matrix \(\mathbf{A}, \mathrm{C}\) _dsbmdm can be called to perform the decomposition, followed by c_dbmdmx to solve the equations. Alternatively, the system of linear equations can be solved by calling the single routine c_dlsbix.

\section*{Eigenvalues}

The number of positive and negative eigenvalues of matrix \(\mathbf{A}\) can be obtained. See the example program below.

\section*{Calculation of determinant}

The determinant of matrix \(\mathbf{A}\) is the same as the determinant of matrix \(\mathbf{D}\), that is the product of the determinants of the \(1 \times 1\) and \(2 \times 2\) blocks of \(\mathbf{D}\). See the example program below.

\section*{4. Example program}

This example program decomposes the matrix, calculates the number of positive and negative eigenvalues, and the determinant.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define NMAX 100
\#define NHMAX 50
MAIN__()
{
int ierr, icon;
int n, nh, mh, i, j, ij, jj, jmin, peig, neig;
double epsz, det;
double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2];
int ivw[NMAX], ip[NMAX];
/* initialize matrix */
n = NMAX;
nh = 2;
mh = NHMAX;
ij = 0;
for (i=0;i<n;i++) {
jmin}=max(i-mh,0)
for ( }\textrm{j=jmin;j<=i;j++
if (i-j == 0)
a[ij++] = 10;
else if (i-j == 1)
a[ij++] = -3;
else if (i-j == 2)
a[ij++] = -6;
else
a[ij++] = 0;
}
epsz = 1e-6;
/* MDM decomposition of system */
ierr = c_dsbmdm(a, n, \&nh, mh, epsz, ip, ivw, \&icon);
if (icon != 0) {
printf("ERROR: c_dsbmdm failed with icon = %d\n", icon);
exit(1);
}
/* find number of positive and negative eigenvalues */
peig = 0;
neig = 0;
i = 1;
j = 1;
while (j<=n) {
if (ip[j-1] != j) {
peig++;
neig++;
i = min(mh,j)+min(mh,j+1)+2+i;
j = j+2;
}
else {
if (a[i-1] > 0) peig++;
else if (a[i-1] < 0) neig++;
i = min(mh,j)+1+i;
j++;
}
}
printf("Positive e-values: %i\n", peig);
printf("Negative e-values: %i\n", neig);
/* calculate determinant */
det = 1;
i = 1;
j = 1;
while'(i<=n)
if (ivw[i-1] == i) {
det = det*a[j-1];
j = min(mh, i)+1+j;
i++;

```
```

        }
        else {
        jj = min(mh, i)+1+j;
        det = det*(a[j-1]*a[jj-1]-a[jj-2]*a[jj-2]);
        j = min(mh,i+1)+1+jj;
    }
    }
    printf("Determinant: %12.5e\n", det);
    return(0);
    }

```

\section*{5. Method}

Consult the entry for SBMDM in the Fortran SSL II User's Guide and references [15].

\section*{c_dseig1}

Eigenvalues and corresponding eigenvectors of a real symmetric matrix (QL method).
```

ierr = c_dseig1(a, n, e, ev, k, \&m, vw,
\&icon);

```

\section*{1. Function}

All eigenvalues and corresponding eigenvectors for an \(n\) order real symmetric matrix \(\mathbf{A}\) are determined \((n \geq 1)\). The eigenvalues are normalised such that \(\|x\|_{2}=1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dseig1(a, n, e, (double *)ev, k, \&m, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input & Matrix A, stored in the symmetric storage format. See Array storage formats in the Introduction section. Alen is defined as \(\mathrm{n}(\mathrm{n}+1) / 2\). \\
\hline & & Output & The contents are altered on output. \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline e & double e[n] & Output & The eigenvalues. \\
\hline ev & double ev[n][k] & Output & Eigenvectors. They are stored in the rows of ev that correspond to their eigenvalues. \\
\hline k & int & Input & C fixed dimension of matrix ev. (\(k \geq n\)). \\
\hline m & int & Output & Number of eigenvalues/eigenvectors obtained. \\
\hline VW & double Vw[2n] & Work & \\
\hline icon & int & Output & Condition codes. See below. \\
\hline
\end{tabular}

The complete list of condition codes is.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \begin{tabular}{l}
\(\mathrm{e}[0]=\mathrm{a}[0][0]\) \\
\(\mathrm{ev}[0][0]=1\)
\end{tabular} \\
\hline 15000 & \begin{tabular}{l}
Some of the eigenvalues and eigenvectors could \\
not be determined.
\end{tabular} & \begin{tabular}{l}
m is set to the number of eigenvalues/eigenvectors \\
that were obtained.
\end{tabular} \\
\hline 20000 & \begin{tabular}{l}
None of the eigenvalues and eigenvectors could \\
be determined.
\end{tabular} & \(\mathrm{m}=0\) \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General Comments}

The eigenvalues and eigenvectors are stored in the order that they are determined.

\section*{m}

The argument m is set to \(n\) when the routine completes successfully, i.e. \(i\) con \(=0\). When \(i c o n=15000, \mathrm{~m}\) is set to the number of eigenvalues and eigenvectors that were obtained.

\section*{4. Example program}

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 matrix in the symmetric storage format.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, m, i, j, k;
double a[NMAX*(NMAX+1)/2], e[NMAX], ev[NMAX][NMAX], vw[2*NMAX];
/* initialize matrix */
n = NMAX;
k = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[k] = n-i;
k = k+1;
k }
k = NMAX;
/* find eigenvalues and eigenvectors */
ierr = c_dseig1(a, n, e, (double*)ev, k, \&m, vw, \&icon);
if (icon == 10000 || icon == 30000) {
printf("ERROR: c_dseig1 failed with icon = %d\n", icon);
exit(1);
}
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
printf("e-value %d: %10.4f\n",i+1,e[i]);
printf("e-vector:");
for ( }\textrm{j}=0;\textrm{j}<\textrm{n};\textrm{j}++
printf("%7.4f ",ev[i][j]);
printf("\n");
}
return(0);
}

```

\section*{5. Method}

For further information consult the entry for SEIG1 in the Fortran SSL II User's Guide, and also [118] and [119].

\section*{c_dsfri}
\begin{tabular}{|l|}
\hline Sine Fresnel integral \(S(x)\). \\
\hline ierr \(=\) c_dsfri(x, \&sf, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This routine computes the Sine Fresnel integral
\[
S(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \frac{\sin (t)}{\sqrt{t}} d t=\int_{0}^{\sqrt{\frac{2}{\pi} x}} \sin \left(\frac{\pi}{2} t^{2}\right) d t
\]
where \(x \geq 0\), by series and asymptotic expansions.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dsfri(x, \&sf, \&icon);
where:
\begin{tabular}{llll}
x & double & Input & Independent variable x . See Comments on use for range of x . \\
sf & double & Output & Sine Fresnel integral \(S(x)\). \\
icon & int & Output & Condition code. See below. \\
\multicolumn{2}{l}{ The complete list of condition codes is: }
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(\mathrm{x} \geq t_{\max }\) & sf is set to 0.5. \\
\hline 30000 & \(\mathrm{x}<0\) & sf is set to 0. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{range of \(x\)}

The valid range of argument x is \(0 \leq \mathrm{x}<t_{\max }\). This is because accuracy is lost if x is outside this range. For details on \(t_{\max }\) see the Machine constants section of the Introduction.

\section*{4. Example program}

This program generates a range of function values for 101 points in the the interval \([0,100]\).
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, sf;
int i;
for (i=0;i<=100;i++) {
x = i;

```
```

        /* calculate Sine Fresnel integral */
        ierr = c_dsfri(x, &sf, &icon);
        if (icon == 0)
        printf("x = %5.2f sf = %f\n", x, sf);
            else
        printf("ERROR: x = %5.2f sf = %f icon = %i\n", x, sf, icon);
    }
    return(0)
    }

```

\section*{5. Method}

Consult the entry for SFRI in the Fortran SSL II User's Guide.

\section*{c_dsggm}
\[
\begin{aligned}
& \text { Subtraction of two matrices (real - real). } \\
& \hline \text { ier }=\mathrm{c} \text { _dsggm(} \mathrm{a}, \mathrm{ka}, \mathrm{~b}, \mathrm{~kb}, \mathrm{c}, \mathrm{kc}, \mathrm{~m}, \mathrm{n}, \\
& \text { \&icon) } ;
\end{aligned}
\]

\section*{1. Function}

This function performs subtraction of two \(m \times n\) general real matrices, \(\mathbf{A}\) and \(\mathbf{B}\).
\[
\begin{equation*}
\mathbf{C}=\mathbf{A}-\mathbf{B} \tag{1}
\end{equation*}
\]

In (1), the resultant \(\mathbf{C}\) is also an \(m \times n\) matrix \((m, n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dsggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[m][ka] & Input & Matrix A. \\
\hline ka & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline b & double b[m][kb] & Input & Matrix B. \\
\hline kb & int & Input & \(C\) fixed dimension of array \(b(\geq n)\). \\
\hline C & double c [m] [kc] & Output & Matrix C. See Comments on use. \\
\hline kc & int & Input & C fixed dimension of array \(\mathrm{c}(\geq \mathrm{n})\). \\
\hline m & int & Input & The number of rows \(m\) for matrices \(\mathbf{A}, \mathbf{B}\) and \(\mathbf{C}\). \\
\hline n & int & Input & The number of columns \(n\) for matrices \(\mathbf{A}, \mathbf{B}\) and \(\mathbf{C}\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{m}<1\) \\
& \(\bullet \mathrm{n}<1\) \\
& \(\bullet \mathrm{ka}<\mathrm{n}\) & \\
& \(\bullet \mathrm{kb}<\mathrm{n}\) & \\
& \(\bullet \quad \mathrm{kc}<\mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Efficient use of memory}

Storing the solution matrix \(\mathbf{C}\) in the same memory area as matrix \(\mathbf{A}(\) or \(\mathbf{B})\) is permitted if the array contents of matrix \(\mathbf{A}\) (or B) can be discarded after computation. To take advantage of this efficient reuse of memory, the array and dimension arguments associated for matrix \(\mathbf{A}\) need to appear in the locations reserved for \(\mathbf{C}\) in the function argument list, as indicated below.

For A:
ierr = c_dsggm(a, ka, b, kb, a, ka, m, n, \&icon);

And for \(\mathbf{B}\) :
```

ierr = c_dsggm(a, ka, b, kb, b, kb, m, n, \&icon);

```

Note, if both matrices \(\mathbf{A}\) and \(\mathbf{B}\) are required after the solution then a separate array must be supplied for storing matrix \(\mathbf{C}\).

\section*{4. Example program}

This example program performs a matrix subtraction and checks the results. Each matrix is 100 by 100 elements.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, m, ka, kb, kc, i, j;
double eps;
double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX];
/* initialize matrices*/
m = NMAX;
n = NMAX;
ka = NMAX;
kb = NMAX;
kc = NMAX;
for (i=0;i<n;i++)
for (j=0;j<n;j++) {
a[i][j] = n+i+j;
b[i][j] = i+j;
*}
/* subtract matrices */
ierr = c_dsggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, \&icon);
if (icon != 0) {
printf("ERROR: c_dsggm failed with icon = %d\n", icon);
exit(1);
}
/* check matrix */
eps = 1e-6;
for (i=0;i<n;i++)
for (j=0;j<n;j++)
if (fabs((c[i][j]-n)/n) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{c_dsimp1}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Integration of a tabulated function (Simpson's rule, equally spaced \\
points).
\end{tabular} \\
\hline ierr \(=\) c_dsimp1(y, n, h, \&s, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

Given function values \(y_{i}=f\left(x_{i}\right)\) at equally spaced points \(x_{i}=x_{1}+(i-1) h, i=1,2, \ldots, n\), this function obtains the integral:
\[
S=\int_{x_{1}}^{x_{n}} f(x) d x, \quad n>2 \quad h>0
\]
by Simpson's rule, where \(h\) is the increment, as defined above.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dsimp1(y, n, h, \&s, \&icon);
where:
\begin{tabular}{llll}
y & double \(\mathrm{y}[\mathrm{n}]\) & Input & Function values \(y_{i}\). \\
n & int & Input & Number of points \(n\). \\
h & double & Input & Distance between successive points on the \(x\) axis. \\
s & double & Output & Approximation to the integral \(S\). \\
icon & int & Output & Condition codes. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=2\). & \begin{tabular}{l}
Calculation is based on the trapezoidal rule. See \\
Method.
\end{tabular} \\
\hline 30000 & \(\mathrm{n}<2\) or \(\mathrm{h} \leq 0\). & Bypassed. s is set to 0. \\
\hline
\end{tabular}

\section*{3. Example program}

This program produces an integral approximation from 100 equally spaced points and compares the result with the true integral of the underlying function.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int i, n;
double x, h, y[NMAX], s, eps, exact;

```
```

    /* initialize data */
    n = NMAX;
    x = 0;
    h = 1.0/(n-1);
    for (i=0;i<n;i++) {
        y[i] = x*x;
        x = x + h;
    }
/* calculate integral */
ierr = c_dsimp1(y, n, h, \&s, \&icon);
printf("\overline{icon = %i integral = %12.4e\n", icon, s);}
/* check result */
eps = 1e-6;
exact = 1.0/3.0;
if (fabs((s-exact)/exact) > eps)
printf("Inaccurate result\n");
else
printf("Result OK\n");
return(0);
}

```

\section*{4. Method}

In Simpson's rule, the first 3 points are approximated using a second degree interpolating polynomial and the integration over this interval is approximated by:
\[
\int_{x_{1}}^{x_{3}} f(x) d x \cong \frac{h}{3}\left(y_{1}+4 y_{2}+y_{3}\right)
\]

This is repeated over successive sets of points, with the results summed to give:
\[
\int_{x_{1}}^{x_{n}} f(x) d x \cong \frac{h}{3}\left(y_{1}+4 y_{2}+2 y_{3}+4 y_{4}+2 y_{5}+\ldots+4 y_{n-1}+y_{n}\right)
\]

This calculation can only be completed if the number of points is odd. If there are an even number of points, the above formula is used over the interval \(x_{1}\) to \(x_{n-3}\), and the Newton-Cotes \(3 / 8\) rule is used over the remaining interval \(x_{n-3}\) to \(x_{n}\) given by:
\[
\int_{x_{n-3}}^{x_{n}} f(x) d x \cong \frac{3 h}{8}\left(y_{n-3}+3 y_{n-2}+3 y_{n-1}+y_{n}\right)
\]

When \(\mathrm{n}=2\) the trapezoidal rule is used (as Simpson's rule requires at least 3 points). This is given by:
\[
\int_{x_{1}}^{x_{2}} f(x) d x \cong \frac{h}{2}\left(y_{1}+y_{2}\right)
\]

For further information, see [89].

\section*{c_dsini}
\[
\begin{array}{|l|}
\hline \text { Sine integral } S_{i}(x) . \\
\hline \text { ierr = c_dsini(x, \&si, \&icon) ; } \\
\hline
\end{array}
\]

\section*{1. Function}

This function computes the Sine integral
\[
S_{i}(x)=\int_{0}^{x} \frac{\sin (t)}{t} d t
\]
by series and asymptotic expansions.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dsini(x, \&si, \&icon);

```
where:
\begin{tabular}{llll}
x & double & Input & Independent variable \(x\). See Comments on use. \\
si & double & Output & Function value of \(S_{i}(x)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \(|x| \geq t_{\max }\). & \(\operatorname{si}=\operatorname{sign}(x) \cdot \pi / 2\). \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{X}

The range of values of x is limited because both \(\sin (x)\) and \(\cos (x)\) lose accuracy when \(x\) exceeds \(t_{\max }\). For details on the constant, \(t_{\text {max }}\), see the Machine constants section of the Introduction.

\section*{4. Example program}

This program evaluates a table of function values for \(x\) from 0.0 to 10.0 in increments of 0.1 .
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
MAIN__()
{
int ierr, icon;
double x, si;
int i;
for (i=0;i<100;i++) {
x = (double)i/10;
/* calculate complete elliptic integral */
ierr = c_dsini(x, \&si, \&icon);
if (icon == 0)
printf("x = %5.2f si = %f\n", x, si);

```
```

        else
        printf("ERROR: x = %5.2f si = %f icon = %i\n", x, si, icon);
    }
    return(0)
    }

```

\section*{5. Method}

Depending on the values of \(x\), the method used to compute the Sine integral, \(S_{i}(x)\), is:
- Power series expansion when \(0 \leq|x|<4\).
- Asymptotic expansion when \(|x| \geq 4\).

For further information consult the entry for SINI in the Fortran SSL II User's Guide.

\section*{c_dsmdm}
\(\mathrm{MDM}^{\mathrm{T}}\) - decomposition of an indefinite symmetric matrix (block diagonal pivoting method).
```

ierr = c_dsmdm(a, n, epsz, ip, vw, ivw,
\&icon);

```

\section*{1. Function}

This routine performs MDM \(^{\mathrm{T}}\) - decomposition of an \(n \times n\) indefinite symmetric matrix \(\mathbf{A}(n \geq 1)\), using the Crout-like block diagonal pivoting method.
\[
\begin{equation*}
\mathbf{P A P}^{\mathrm{T}}=\mathbf{M D M}^{\mathrm{T}} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{P}\) is a permutation matrix that performs the row exchanges of the matrix \(\mathbf{A}\) required during pivoting, \(\mathbf{M}=\left(m_{i j}\right)\) is a unit lower triangular matrix, and \(\mathbf{D}=\left(d_{i j}\right)\) is a symmetric block diagonal matrix with blocks of order at most 2 .

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dsmdm(a, n, epsz, ip, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[Alen]
\end{tabular} & Input & Matrix A. Stored in symmetric storage format. See Array storage formats in the Introduction section for details. Alen \(=n(n+1) / 2\) \\
\hline & & Output & Matrix \(\mathbf{D}+(\mathbf{M}-\mathbf{I})\). Stored in symmetric storage format. (Suitable for input to the linear equations routine c_dmdmx.) See Comments on use. \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline epsz & double & Input & Tolerance \((\geq 0)\) for relative zero test of pivots in decomposition process of matrix \(\mathbf{A}\). When epsz is zero a standard value is used. See Comments on use. \\
\hline ip & int ip[n] & Output & Transposition vector that provides the row exchanges that occurred during pivoting. (Suitable for input to the linear equations routine c_dmdmx.) See Comments on use. \\
\hline VW & double \(\mathrm{Vw}[2 \mathrm{n}]\) & Work & \\
\hline ivw & int ivw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline The c & list of condition cos & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Either all of the elements of some row are zero or \\
a pivot is relatively zero. It is probable that matrix \\
A is singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad\) epsz \(<0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

The standard value of epsz is \(16 \mu\). where \(\mu\) is the unit round-off. If, during the block diagonal pivoting decomposition, a pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon=20000. Decomposition can be continued by assigning a smaller value to epsz, however the result obtained may not be of the required accuracy.

\section*{ip}

The transposition vector corresponds to the permutation matrix \(\mathbf{P}\) of the \(\mathrm{MDM}^{\mathrm{T}}\) - decomposition with pivoting. In this routine the elements of the array a are exchanged in the pivoting and the history of the exchanges is recorded in ip. At the \(k\)-th step of the decomposition, for a \(1 \times 1\) pivot, the row (and column) number \(r(\geq k)\) that is exchanged with the \(k\)-th row (and column) is stored in ip [k-1], and for a \(2 \times 2\) pivot, the negative value of the row (and column) number \(s\) \((\geq k+1)\) that is exchanged with the \((k+1)\)-st row (and column) is also stored in ip[k], i.e. \(r\) is stored in ip [k-1] and \(-s\) is stored in ip[k].

\section*{Solution of linear equations}

To solve a system of linear equations with an indefinite symmetric matrix \(\mathbf{A}, \mathrm{c}\) _dsmdm can be called to perform the decomposition, followed by C_dmdmx to solve the equations. Alternatively, the system of linear equations can be solved by calling the single routine c_dlsix.

\section*{Eigenvalues}

The number of positive and negative eigenvalues of matrix \(\mathbf{A}\) can be obtained. See the example program below.

\section*{Calculation of determinant}

The determinant of matrix \(\mathbf{A}\) is the same as the determinant of matrix \(\mathbf{D}\), that is the product of the determinants of the \(1 \times 1\) and \(2 \times 2\) blocks of \(\mathbf{D}\). See the example program below.

\section*{4. Example program}

This example program decomposes the matrix, calculates the number of positive and negative eigenvalues, and the determinant.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN___()
{
int ierr, icon;
int n, i, j, ij, cnt, peig, neig;
double epsz, eps, pi, an, ar, det;
double a[NMAX*(NMAX+1)/2], Vw[2*NMAX];
int ip[NMAX], ivw[NMAX];
/* initialize matrix */
n = NMAX;
ij = 0;
pi = 2*asin(1);
an = 1.0/(n+1);
ar = pi*an;
an = sqrt(2*an);
for (i=1;i<=n;i++)
for (j=1;j<=i;j++) {

```
```

            a[ij++] = an*sin(i*j*ar);
        }
    epsz = 1e-6;
    /* MDM decomposition of system */
    ierr = c_dsmdm(a, n, epsz, ip, vw, ivw, &icon);
    if (icon != 0) {
        printf("ERROR: c_dsmdm failed with icon = %d\n", icon);
        exit(1);
    }
    /* find number of positive and negative eigenvalues */
    peig = 0;
    neig = 0;
    i = 1;
    j = 1;
    while (j<n) {
        if (ip[j] <= 0) {
            peig++;
            neig++;
            j = j+2;
            i = i+j-1+j;
        }
        else {
            if (a[i-1] > 0) peig++;
            else if (a[i-1] < 0) neig++;
            j++;
            i = i+j;
        }
    } f
    if (j == n) {
        if (a[i-1] > 0) peig++;
        else if (a[i-1] < 0) neig++;
    }
    printf("Positive e-values: %i\n", peig);
    printf("Negative e-values: %i\n", neig);
    /* calculate determinant */
    det = 1;
    i = 1;
    j = 1;
    while (j<n) {
        if (ip[j] <= 0) {
            det = det*(a[i-1]*a[i+j]-a[i+j-1]*a[i+j-1]);
            j = j+2;
            i = i+j-1+j;
        }
        else {
            det = det*a[i-1];
            j++;
            i = i+j;
        }
    }
    printf("Determinant: %12.5e\n", det);
    return(0);
    }

```

\section*{5. Method}

Consult the entry for SMDM in the Fortran SSL II User's Guide and reference [15].

\section*{c_dsmle1}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Data smoothing by local least squares polynomials (equally spaced \\
points).
\end{tabular} \\
\hline ierr \(=c _d s m l e 1(y, n, m, l, f, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

Given a set of observed data at equally spaced points, this function obtains the smoothed values based on polynomial local least squares fit.

Each of the data is smoothed by a fitting a least squares polynomial of specified degree, not over all data, but over a subrange of specified data points centred at the point to be smoothed. This process is applied to all observed values. A limitation exists concerning the degree \(m\) (either 1 or 3) and the number of observed values \(l\), that can only be 3 or 5 when \(m=1\), and 5 or 7 when \(m=3\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dsmle1(y, n, m, l, f, \&icon);
where:
\begin{tabular}{llll}
y & double \(\mathrm{y}[\mathrm{n}]\) & Input & Observed data \(y_{i}\). \\
n & int & Input & Number of observed data \(n\). \\
m & int & Input & Degree of local least squares polynomial \(m\). \\
l & int & Input & Number of observed data to fit. \\
f & double \(\mathrm{f}[\mathrm{n}]\) & Output & Smoothed values. \\
Icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\\
\\
\(\bullet \quad m \neq 1\) or 3 \\
\\
\(\bullet \quad\) with \(m=1, l \neq 3\) or 5 \\
• with \(m=3, l \neq 5\) or 7 \\
\\
\(\bullet \quad n<l\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

This function presupposes that the original function cannot be approximated by a single polynomial, but can be approximated locally by a certain degree of polynomial.

The choice of \(m\) and \(l\) should be done carefully after considering the scientific information of the observed data and the experience of the user.

It is possible to repeat calling this function, that is, to apply the \(m\) th degree least squares polynomial relevant to \(l\) points to the smoothed values. But if repeated too many times, the result tends to approach to one that is produced by applying the \(m\) th degree least squares polynomial over all observed data. So, when it is repeated, the user must decide when to stop.

\section*{4. Example program}

This program approximates the function \(f(x)=\sin (x) \sqrt{x}\) at 10 equally spaced points in the interval [0,1] with a piecewise-linear function obtained by a least squares fit.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 10
MAIN__()
{
int ierr, icon;
int i, n, m, l;
double y[NMAX], f[NMAX];
double h, p;
/* initialize data */
n = NMAX;
p = 0;
h = 1.0/n;
for (i=0;i<n;i++) {
y[i] = sin(p)*sqrt(p);
p = p + h;
}
m = 1;
l = 5;
/* smooth data */
ierr = c_dsmle1(y, n, m, l, f, \&icon);
if (icon != 0) {
printf("ERROR: c_dsmle1 failed with icon = %d\n", icon);
exit(1);
}
for (i=0;i<n;i++)
printf("%12.4e %12.4e \n", y[i], f[i]);
return(0);
}

```

\section*{5. Method}

For further information consult the entry for SMLE1 in the Fortran SSL II User's Guide and see [54] and [89].

\section*{c_dsmle2}

Data smoothing by local least squares polynomials (unequally spaced data points).
```

ierr = c_dsmle2(x, y, n, m, l, w, f, vw,
\&icon);

```

\section*{1. Function}

Given a set of observed data \(y_{i}, i=1,2, \ldots, n\) at unequally spaced data points \(x_{1}<x_{2}<\ldots<x_{n}\), and corresponding weights \(w\left(x_{i}\right) \geq 0, i=1,2, \ldots, n\), this routine obtains the smoothed data values based on a polynomial local least squares fit.

Each data value is smoothed by fitting the least squares polynomial of a specified degree \(m(\geq 1)\), not over all the data, but over a subrange of \(\ell(\leq n)\) data points centered at the point to be smoothed, where \(\ell\) is an odd integer such that \(\ell \geq m+2\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dsmle2(x, y, n, m, l, w, f, vw, \&icon);
where:
\begin{tabular}{llll}
x & double \(\mathrm{x}[\mathrm{n}]\) & Input & Discrete points \(x_{i}\). \\
y & double \(\mathrm{y}[\mathrm{n}]\) & Input & Observed data \(y_{i}\). \\
n & int & Input & Number \(n\) of observed values. \\
m & int & Input & Degree \(m\) of local least squares poynomials. \\
l & int & Input & Number \(\ell\) of observed values to which least squares polynomial is to fit. \\
w & double \(\mathrm{w}[\mathrm{n}]\) & Input & Weights \(w\left(x_{i}\right)\). Normally, \(w\left(x_{i}\right)=1\). \\
f & double \(\mathrm{f}[\mathrm{n}]\) & Output & Smoothed data. \\
Vw & double \(\mathrm{Vw}[2 l]\) & Work & \\
icon & int & Output & Condition code. See below. \\
\multicolumn{2}{l}{ The complete list of condition codes is: } &
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad x[0]<x[1]<\ldots<x[n-1]\) is not satisfied & \\
& \(\bullet \quad l\) is even or \(l>n\) & \\
& \(\bullet \quad \mathrm{~m}<1\) or \(l<m+2\) & \\
& \(\bullet \quad \mathrm{w}[\mathrm{i}]<0\) for some i & \\
\hline
\end{tabular}

\section*{3. Comments on use}

It is assumed that the original function cannot be approximated by a single polynomial, but can be approximated locally by a certain degree of polynomial.

The values of \(m\) and \(\ell\) should be chosen carefully based on scientific information about the observed data and the experience of the user.

Note that the extent of smoothing increases as \(\ell\) increases, but decreases as \(m\) increases.

It is possible to repeat the calling of this routine, that is, to apply the \(m\)-th degree least squares polynomial over \(\ell\) points to the smoothed data. However, if repeated too many times, the result tends to one that is produced by applying the \(m\)-th degree least squares polynomial over all the observed data. Therefore, the user must decide when it is appropriate to stop repeating.

\section*{4. Example program}

This program approximates the function \(f(x)=\sin (x) \sqrt{x}\) at 10 equally spaced points in the interval [0,1] using a quadratic polynomial.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10
\#define M 3
MAIN__()
{
int ierr, icon;
int i, n, m, l;
double x[N], y[N], w[N], f[N], vw[21];
double p, h;
/* initialize data */
n = N;
p = 0;
n = 1.0/(n-1)
for (i=0;i<n;i++) {
w[i] = 1;
x[i] = p+i*h;
y[i] = sin(x[i])*sqrt(x[i]);
}
l = 5;
m = 2;
/* smooth data */
ierr = c_dsmle2(x, y, n, m, l, w, f, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dsmle2 failed with icon = %d\n", icon);
exit(1);
}
for (i=0;i<n;i++)
printf("%12.4e %12.4e \n", y[i], f[i]);
return(0);
}

```

\section*{5. Method}

Consult the entry for SMLE2 in the Fortran SSL II User's Guide, and [89] and [54].

\section*{c_dsssm}
\[
\begin{array}{|l}
\hline \text { Subtraction of two matrices (symmetric - symmetric). } \\
\hline \text { ierr }=c _d \operatorname{sssm}(a, b, c, n, \text { \&icon }) ; \\
\hline
\end{array}
\]

\section*{1. Function}

This routine performs the subtraction of two \(n \times n\) symmetric matrices, \(\mathbf{A}\) and \(\mathbf{B}\).
\[
\begin{equation*}
\mathbf{C}=\mathbf{A}-\mathbf{B} \tag{1}
\end{equation*}
\]

In (1), the resultant matrix \(\mathbf{C}\) is also an \(n \times n\) matrix \((n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dsssm(a, b, c, n, \&icon);

```
where:
\begin{tabular}{llll}
a & double \(\mathrm{a}[\) Alen \(]\) & Input & \begin{tabular}{l}
Matrix A. Stored in symmetric storage format. See Array storage \\
formats in the Introduction section for details. Alen \(=n(n+1) / 2\).
\end{tabular} \\
b & double \(\mathrm{b}[\) Blen \(]\) & Input & \begin{tabular}{l}
Matrix \(\mathbf{B}\). Stored in symmetric storage format. See Array storage formats \\
in the Introduction section for details. Blen \(=n(n+1) / 2\).
\end{tabular} \\
c & double \(\mathrm{c}[\) Clen \(]\) & Input & \begin{tabular}{l}
Matrix \(\mathbf{C}\). Stored in symmetric storage format. See Array storage \\
formats in the Introduction section for details. Clen \(=n(n+1) / 2\).
\end{tabular} \\
n & int & int & \begin{tabular}{l}
See Comments on use.
\end{tabular} \\
icon & Output & \begin{tabular}{l}
The order \(n\) of matrices A, B and C. \\
Condition code. See below.
\end{tabular} \\
The complete list of condition codes is:
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{n}<1\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Efficient use of memory}

Storing the solution matrix \(\mathbf{C}\) in the same memory area as matrix \(\mathbf{A}(\) or \(\mathbf{B})\) is permitted if the array contents of matrix \(\mathbf{A}\) (or B) can be discarded after computation. To take advantage of this efficient reuse of memory, the array arguments associated with matrix \(\mathbf{A}(\) or \(\mathbf{B})\) need to appear in the locations reserved for matrix \(\mathbf{C}\) in the function argument list, as indicated below.

For A:
```

ierr = c_dsssm(a, b, a, n, \&icon);

```

For B:
```

ierr = c_dsssm(a, b, b, n, \&icon);

```

Note, if both matrices \(\mathbf{A}\) and \(\mathbf{B}\) are required after the solution then a separate array must be supplied for storing \(\mathbf{C}\).

\section*{4. Example program}

This program performs the subtraction of two symmetric matrices and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, ij;
double eps, err;
double a[NMAX*(NMAX+1)/2], b[NMAX*(NMAX+1)/2], c[NMAX*(NMAX+1)/2];
/* initialize matrices*/
n = NMAX;
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[ij] = n+i-j+1;
b[ij++] = i-j+1;
}
/* add matrices */
ierr = c_dsssm(a, b, c, n, \&icon);
if (icon!= 0) {
printf("ERROR: c_dsssm failed with icon = %d\n", icon);
exit(1);
}*
/* check matrix */
eps = 1e-6;
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
err = fabs((c[ijj++]-n)/n);
if (err > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
}
printf("Result OK\n");
return(0);
}

```

\section*{c_dteig1}

Eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix (QL method).
```

ierr = c_dteig1(d, sd, n, e, ev, k, \&m,
\&icon);

```

\section*{1. Function}

This routine obtains the eigenvalues and corresponding eigenvectors of an \(n \times n\) symmetric tridiagonal matrix \(\mathbf{T}\), using the QL method. The eigenvectors are normalized such that \(\|\mathbf{x}\|_{2}=1\). Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dteig1(d, sd, n, e, (double *)ev, k, \&m, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{d} & \multirow[t]{2}{*}{double d[n]} & Input & Diagonal elements of matrix \(\mathbf{T}\). \\
\hline & & Output & The contents of \(d\) are changed on output. \\
\hline \multirow[t]{2}{*}{sd} & double sd[n] & Input & Subdiagonal elements of matrix \(\mathbf{T}\), stored in \(\mathrm{sd}[\mathrm{i}-1], \mathrm{i}=2, \ldots, \mathrm{n}\), with \(\mathrm{sd}[0]\) set to 0 . \\
\hline & & Output & The contents of sd are changed on output. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{T}\). \\
\hline e & double e[n] & Output & Eigenvalues, stored in the order determined. \\
\hline ev & \begin{tabular}{l}
double \\
\(\mathrm{ev}[\mathrm{n}][\mathrm{k}]\)
\end{tabular} & Output & Eigenvectors, stored by row, in the order the eigenvalues are determined. \\
\hline k & int & Input & C fixed dimension of array ev (\(\geq \mathrm{n}\)). \\
\hline m & int & Output & Number of eigenvalues/eigenvectors that were determined. See \\
\hline & & & Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \(\mathrm{e}[0]=\mathrm{d}[0], \mathrm{ev}[0][0]=1\) \\
\hline 15000 & \begin{tabular}{l}
Some eigenvalues/eigenvectors could not be \\
determined.
\end{tabular} & \begin{tabular}{l}
m is set to the number of eigenvalues/eigenvectors \\
that were determined.
\end{tabular} \\
\hline 20000 & \begin{tabular}{l}
None of the eigenvalues/eigenvectors could be \\
determined.
\end{tabular} & \(\mathrm{m}=0\). \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{m}

Argument m is set to \(n\) when icon \(=0\), and is set to the number of eigenvalues/eigenvectors that were determined when icon \(=15000\).

\section*{General comments}

This routine is used to determine all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix. To determine all eigenvalues and corresponding eigenvectors of a symmetric matrix, routine c_dseig1 should be used. To determine all eigenvalues of a symmetric tridiagonal matrix, c_dtrql should be used.

\section*{4. Example program}

This program finds the eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix and prints the results.
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, m, i, j, k;
double d[NMAX], sd[NMAX], e[NMAX], ev[NMAX][NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
d[i] = n-i;
}
for (i=1;i<n;i++) {
sd[i] = (double)(n-i)/2;
}
/* find eigenvalues and eigenvectors */
ierr = c_dteig1(d, sd, n, e, (double*)ev, k, \&m, \&icon);
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
printf("eigenvalue: %7.4f\n", e[i]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f ", ev[i][j]);
printf("\n");
}
return(0);
}

```

\section*{5. Method}

Consult the entry for TEIG1 in the Fortran SSL II User's Guide and references [118] and [119].

\section*{c_dteig2}

Selected eigenvalues and corresponding eigenvectors of a real symmetric tridiagonal matrix (bisection and inverse iteration methods).
```

ierr = c_dteig2(d, sd, n, m, e, ev, k, vw,

```
 \&icon);

\section*{1. Function}

The \(m\) largest (or smallest) eigenvalues and corresponding eigenvectors for an \(n\) order real symmetric tridiagonal matrix \(\mathbf{T}\) are determined using the bisection method where \(1 \leq m \leq n\). The corresponding eigenvectors are then obtained using the inverse iteration method. The eigenvectors are then normalised such that \(\|x\|_{2}=1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dteig2(d, sd, n, m, e, (double *)ev, k, vw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline d & double d[n] & Input & The diagonal elements of \(\mathbf{T}\). \\
\hline sd & double sd[n] & Input & The subdiagonal elements of \(\mathbf{T}\), stored in sd [1] to \(\mathrm{sd}[\mathrm{n}-1]\). \\
\hline n & int & Input & The order \(n\) of matrix \(\mathbf{T}\). \\
\hline m & int & Input & If \(m\) is positive, the \(m\) largest eigenvalues are calculated. If \(m\) is negative the \(m\) smallest eigenvalues are calculated. \\
\hline e & double e[|m|] & Output & Eigenvalues. \\
\hline ev & \[
\begin{aligned}
& \text { double } \\
& \text { ev[|m|][k] }
\end{aligned}
\] & Output & Eigenvectors. They are stored in the rows of ev that correspond to their eigenvalues. \\
\hline k & int & Input & C fixed dimension of array ev. \((\mathrm{k} \geq \mathrm{n})\). \\
\hline vw & double vw[5n] & Work & \\
\hline icon & int & Output & Condition codes. See below. \\
\hline The co & list of condition cod & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \begin{tabular}{l}
\(\mathrm{e}[0]=\mathrm{d}[0]\) \\
\(\mathrm{ev}[0][0]=1\)
\end{tabular} \\
\hline 15000 & \begin{tabular}{l}
After calculation of the eigenvalues, some of the \\
eigenvectors could not be determined.
\end{tabular} & \begin{tabular}{l}
The eigenvectors that were not obtained are set to \\
0.
\end{tabular} \\
\hline 20000 & None of the eigenvectors could be determined. & All the eigenvectors are set to 0. \\
\hline 30000 & \begin{tabular}{ll}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<|\mathrm{m}|\)
\end{tabular} & Bypassed. \\
\hline & \(\mathrm{k}<\mathrm{n}\) \\
\(\bullet\) & \(\mathrm{m}=0\)
\end{tabular}\(\quad\)\begin{tabular}{l}
\\
\hline
\end{tabular}

\section*{3. Example program}

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 symmetric tridiagonal matrix.
```

\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, m, i, j, k;
double d[NMAX], sd[NMAX], e[NMAX], ev[NMAX][NMAX], vw[5*NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
d[i] = n-i;
}
for (i=1;i<n;i++) {
sd[i] = (double)(n-i)/2;
}
m = n;
/* find eigenvalues and eigenvectors */
ierr = c_dteig2(d, sd, n, m, e, (double*)ev, k, vw, \&icon);
printf("icon = %i\n", icon);
/* print eigenvalues' and eigenvectors */
for (i=0;i<m;i++) {
printf("eigenvalue: %7.4f\n", e[i]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f ", ev[i][j]);
printf("\n");
}
return(0)
}

```

\section*{4. Method}

For further information consult the entry for TEIG2 in the Fortran SSL II User's Guide, and also [118] and [119].

\section*{c_dtrap}
Integration of a tabulated function (trapezoidal rule, unequally spaced
points).
ierr = c_dtrap(x, y, n, \&s, \&icon);

\section*{1. Function}

Given unequally spaced points \(x_{1}, x_{2}, \ldots, x_{n}\), where \(x_{1}<x_{2}<\ldots<x_{n}\), and the corresponding function values, \(y_{i}=f\left(x_{i}\right), i=1,2, \ldots, n\), then this library function calculates:
\[
S=\int_{x_{1}}^{x_{n}} f(x) d x
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dtrap(x, y, n, \&s, \&icon);
where:
\begin{tabular}{llll}
x & double \(\mathrm{x}[\mathrm{n}]\) & Input & Discrete points \(x\). \\
y & double \(\mathrm{y}[\mathrm{n}]\) & Input & Function values \(y\). \\
n & int & Input & Number of points \(n\). \\
s & double & Output & The result of the integration \(S\). \\
icon & int & Output & Condition Code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & Either \(\mathrm{n}<2\) or \(x_{i} \geq x_{i+1}\). & Bypassed. s is set to 0. \\
\hline
\end{tabular}

\section*{3. Comments on use}

When the discrete points are equally spaced, this routine can be used, although it is preferable to use Simpson's rule, i.e. library function C_dsimp1.

\section*{4. Example program}

This program produces an integral approximation from 100 equally spaced points and compares the result with the true integral of the underlying function.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;

```
```

    int i, n;
    double h, p, x[NMAX], y[NMAX], s, eps, exact;
    /* initialize data */
    n = NMAX;
    p = 0;
    h = 1.0/(n-1);
    for (i=0;i<n;i++) {
        x[i] = p;
        y[i] = p*p;
        p = p + h;
    }
/* calculate integral */
ierr = c_dtrap(x, y, n, \&s, \&icon);
printf("icon = %i integral = %12.4e\n", icon, s);
/* check result */
eps = 1e-4;
exact = 1.0/3.0;
if (fabs((s-exact)/exact) > eps)
printf("Inaccurate result\n");
else
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

The integral is approximated in this library function using the trapezoidal rule given below:
\[
\begin{aligned}
\int_{x_{1}}^{x_{n}} f(x) d x & \cong \frac{1}{2}\left(\left(x_{2}-x_{1}\right)\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)+\left(x_{3}-x_{2}\right)\left(f\left(x_{2}\right)+f\left(x_{3}\right)\right)+\ldots+\left(x_{n}-x_{n-1}\right)\left(f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)\right) \\
& \cong \frac{1}{2}\left(\left(x_{2}-x_{1}\right) f\left(x_{1}\right)+\left(x_{3}-x_{1}\right) f\left(x_{2}\right)+\ldots+\left(x_{n}-x_{n-2}\right) f\left(x_{n-1}\right)+\left(x_{n}-x_{n-1}\right) f\left(x_{n}\right)\right)
\end{aligned}
\]

For further information, see [89].

\section*{c_dtrbk}
\[
\begin{aligned}
& \text { Back transformation of the eigenvectors of a symmetric tridiagonal } \\
& \text { matrix to the eigenvectors of a symmetric matrix. } \\
& \hline \text { ierr }=c _d t r b k(e v, k, n, m, p, \& i c o n) ; \\
& \hline
\end{aligned}
\]

\section*{1. Function}

This routine applies back transformation to \(m\) eigenvectors of an \(n \times n\) symmetric tridiagonal matrix \(\mathbf{T}\) to form eigenvectors of a symmetric matrix A. T must have been obtained by the Householder reduction of A. Here, \(1 \leq m \leq n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dtrbk((double *) ev, k, n, m, p, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{ev} & double & Input & The \(m\) eigenvectors of the symmetric tridiagonal matrix \(\mathbf{T}\). \\
\hline & ev[|m|][k] & Output & The \(m\) eigenvectors of the symmetric matrix \(\mathbf{A}\). \\
\hline k & int & Input & C fixed dimension of array ev (\(\geq \mathrm{n}\)). \\
\hline n & int & Input & Order \(n\) of matrices \(\mathbf{T}\) and \(\mathbf{A}\). \\
\hline m & int & Input & Number \(m\) of eigenvectors. If \(m<0\), then the absolute value of \(m\) is assumed. \\
\hline \(p\) & double
\[
\mathrm{p}[\mathrm{n}(\mathrm{n}+1) / 2]
\] & Input & Transformation matrix obtained by Householder's reduction of matrix A to matrix T. Stored in symmetric storage format. See Array storage formats in the Introduction section for details, and Comments on use. \\
\hline icon & int & Output & Condition code. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \(\mathrm{ev}[0][0]=1\). \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{m}=0\) or \(|\mathrm{m}|>\mathrm{n}\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

This routine is usually called after routine c_dtrid1. Output argument a of c_dtrid1 can be used as input argument \(p\) of this routine.

The eigenvectors are normalized, \(\left\|\mathbf{x}_{i}\right\|_{2}=1\).

\section*{4. Example program}

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back transformation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, ij, m;
double a[NMAX*(NMAX+1)/2], sd[NMAX], d[NMAX];
double e[NMAX], ev[NMAX][NMAX];
/* initialize matrix */
n = NMAX;
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[ij++] = n-i;
}
/* reduce matrix A to symmetric tridiagonal form */
ierr = c_dtrid1(a, n, d, sd, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dtrid1 failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvalues and eigenvectors */
k = NMAX;
ierr = c_dteig1(d, sd, n, e, (double*)ev, k, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dteig1 failed with icon = %i\n", icon);
exit (1);
}
/* back transformation to find e-vectors of A */
ierr = c_dtrbk((double*)ev, k, n, m, a, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dtrbk failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
printf("eigenvalue: %7.4f\n", e[i]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f ", ev[i][j]);
printf("\n");
}
return(0)
}

```

\section*{5. Method}

Consult the entry for TRBK in the Fortran SSL II User's Guide and reference [119].

\section*{c_dtrbkh}
```

Back transformation of the eigenvectors of a symmetric tridiagonal
matrix to the eigenvectors of a Hermitian matrix
ierr = c_dtrbkh(evr, evi, k, n, m, p, pv,
\&icon);

```

\section*{1. Function}

This routine applies back transformation (1) to \(m\) eigenvectors \(\mathbf{y}_{j}, j=1,2, \ldots, m\) of an \(n \times n\) symmetric tridiagonal matrix \(\mathbf{T}\) to form eigenvectors \(\mathbf{x}_{j}, j=1,2, \ldots, m\) of a Hermitian matrix \(\mathbf{A}\).
\[
\begin{equation*}
\mathbf{x}=\mathbf{P V}^{*} \mathbf{y} \tag{1}
\end{equation*}
\]
where \(\mathbf{P}\) and \(\mathbf{V}\) are transformation matrices obtained from the transformation of Hermitian matrix \(\mathbf{A}\) to tridiagonal matrix T by Householder reduction and diagonal unitary transformation. Here, \(1 \leq m \leq n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dtrbkh((double *) evr, (double *) evi, k, n, m, (double *) p, pv, \&icon);
where:

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & evr \([0][0]=1, \mathrm{evi}[0][0]=0\). \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{m}=0\) or \(|\mathrm{m}|>\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet \mathrm{k}<\mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

This routine is for a Hermitian matrix and is not to be applied to a general complex matrix.

\section*{evr and evi}

If input eigenvector \(\mathbf{y}_{j}\) is normalized such that \(\left\|\mathbf{y}_{j}\right\|_{2}=1\), then output eigenvector \(\mathbf{x}_{j}\) is normalized such that \(\left\|\mathbf{x}_{j}\right\|_{2}=1\).

The \(\ell\)-th element of the eigenvector that corresponds to the \(j\)-th eigenvalue is represented
\[
\operatorname{evr}[j-1][\ell-1]+i \cdot \operatorname{evi}[j-1][\ell-1] \text {, where } i=\sqrt{-1}, \ell=1,2, \ldots, n, j=1,2, . ., m
\]

\section*{\(p\) and pv}

Normally, this routine is used after routine c_dtridh. Output arguments a and pvof routine c_dtridh can be used as input arguments p and pv of this routine.

Note that array p does not directly represent transformation matrix \(\mathbf{P}\) for reduction of matrix \(\mathbf{A}\) to matrix \(\mathbf{T}\).

\section*{4. Example program}

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back transformation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, m;
double a[NMAX][NMAX], sd[NMAX], d[NMAX], pv[2*NMAX];
double e[NMAX], evr[NMAX][NMAX], evi[NMAX][NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
a[i][i] = n-i;
for (j=0;j<i;j++) {
a[i][j] = n-i;
a[j][i] = n-i;
}
}
* reduce matrix A to symmetric tridiagonal form */
ierr = c_dtridh((double*)a, k, n, d, sd, pv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dtridh failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvalues and eigenvectors */
ierr = c_dteig1(d, sd, n, e, (double*)evr, k, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dteig1 failed with icon = %i\n", icon);
exit (1);
}*
/* back transformation to find e-vectors of A */

```
```

    ierr = c_dtrbkh((double*)evr, (double*)evi, k, n, m, (double*)a, pv, &icon);
    if (icon > 10000 ) {
        printf("ERROR: c_dtrbkh failed with icon = %i\n", icon);
        exit (1);
    }
    printf("icon = %i\n", icon);
    /* print eigenvalues and eigenvectors */
    for (i=0;i<m;i++) {
        printf("eigenvalue: %7.4f\n", e[i]);
        printf("eigenvector: ");
        for (j=0;j<n;j++)
        printf("%7.4f+i*%7.4f ", evr[i][j], evi[i][j]);
        printf("\n");
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for TRBKH in the Fortran SSL II User's Guide and reference [74].

\section*{c_dtrid1}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Reduction of a symmetric matrix to a symmetric tridiagonal matrix \\
(Householder method).
\end{tabular} \\
\hline ierr \(=c _d t r i d 1(a, n, d, \quad\) sd, \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine reduces an \(n \times n\) symmetric matrix \(\mathbf{A}\) to a symmetric tridiagonal matrix \(\mathbf{T}\) using the Householder method (orthogonal similarity transformation),
\[
\mathbf{T}=\mathbf{P}^{\mathrm{T}} \mathbf{A P}
\]
where \(\mathbf{P}\) is the transformation matrix. Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dtrid1(a, n, d, sd, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \[
\begin{aligned}
& \text { double } \\
& \mathrm{a}[\mathrm{n}(\mathrm{n}+1) / 2]
\end{aligned}
\] & Input & Matrix A. Stored in symmetric storage format. See Array storage formats in the Introduction section for details. \\
\hline & & Output & Transformation matrix \(\mathbf{P}\). Stored in symmetric storage format. See Array storage formats in the Introduction section for details. \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline d & double d[n] & Output & Diagonal elements of tridiagonal matrix \(\mathbf{T}\). \\
\hline sd & double sd[n] & Output & Subdiagonal elements of tridiagonal matrix \(\mathbf{T}\), stored in \(\mathrm{sd}[\mathrm{i}-1]\), \(i=2, \ldots, n\), and \(s d[0]\) set to 0 . \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) or \(\mathrm{n}=2\) & Reduction is not performed. \\
\hline 30000 & \(\mathrm{n}<1\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

Output argument a can be used as input argument \(p\) for routine \(c _d t r b k\) when determining the eigenvectors of a symmetric matrix A using routine c_dteig1.

The precision of computed eigenvalues of a symmetric matrix \(\mathbf{A}\) is determined in the tridiagonal matrix reduction process. Therefore, this routine has been implimented so that the tridiagonal matrix is determined with as high a precision as possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process.

\section*{4. Example program}

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back transformation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, ij, m;
double a[NMAX*(NMAX+1)/2], sd[NMAX], d[NMAX];
double e[NMAX], ev[NMAX][NMAX];
/* initialize matrix */
n = NMAX;
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[ij++] = n-i;
}
/* reduce matrix A to symmetric tridiagonal form */
ierr = c_dtrid1(a, n, d, sd, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dtrid1 failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvalues and eigenvectors */
k = NMAX;
ierr = c_dteig1(d, sd, n, e, (double*)ev, k, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dteig1 failed with icon = %i\n", icon);
exit (1);
}
/* back transformation to find e-vectors of A */
ierr = c_dtrbk((double*)ev, k, n, m, a, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dtrbk failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
printf(""eigenvalue: %7.4f\n", e[i]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f ", ev[i][j]);
printf("\n");
}
return(0)
}

```

\section*{5. Method}

Consult the entry for TRID1 in the Fortran SSL II User's Guide and reference [119].

\section*{c_dtridh}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Reduction of a Hermitian matrix to a real symmetric tridiagonal matrix \\
(Householder method and diagonal unitary transformation).
\end{tabular} \\
\hline ierr \(=c _d t r i d h(a, k, n, d, s d, p v, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine reduces an \(n \times n\) Hermitian matrix \(\mathbf{A}\) first to a Hermitian tridiagonal matrix \(\mathbf{H}\),
\[
\mathbf{H}=\mathbf{P}^{*} \mathbf{A P}
\]
by the Householder method, and then it is further reduced to a real symmetric tridiagonal matrix \(\mathbf{T}\) by a diagonal unitary transformation
\[
\mathbf{T}=\mathbf{V}^{*} \mathbf{H} \mathbf{V}
\]
where \(\mathbf{P}\) and \(\mathbf{V}\) are transformation matrices and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dtridh((double *) a, k, n, d, sd, pv, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double \(a[n][k]\) & Input & Hermitian matrix A. Stored in Hermitian storage format. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline & & Output & Transformation matrix P. Stored in Hermitian storage format. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline d & double d[n] & Output & Diagonal elements of tridiagonal matrix \(\mathbf{T}\). \\
\hline sd & double sd[n] & Output & Subdiagonal elements of tridiagonal matrix \(\mathbf{T}\), stored in sd[i-1], \(i=2, \ldots, n\) and \(s d[0]\) set to 0 . \\
\hline pv & double pv[2n] & Output & Transformation vector \(\mathbf{V}\), with \(\mathrm{pv}[2(\mathrm{i}-1)]=\operatorname{Re}\left(v_{i i}\right)\), \(\mathrm{pv}[2(\mathrm{i}-1)+1]=\operatorname{Im}\left(v_{i i}\right), i=1, \ldots, n\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & Reduction is not performed. \\
\hline 30000 & \(\mathrm{n}<1\) or \(\mathrm{k}<\mathrm{n}\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

This routine is used for a Hermitian matrix, and not for a general complex matrix.

Output arrays a and pv are needed for determining the eigenvectors of the Hermitian matrix \(\mathbf{A}\). They correspond respectively to \(p\) and \(p v\) in routine \(c_{-} d t r b k h\) which is used to obtain eigenvectors of a Hermitian matrix.

The precision of computed eigenvalues of a Hermitian matrix \(\mathbf{A}\) is determined in the tridiagonal matrix reduction process. Therefore, this routine has been implimented so that the tridiagonal matrix is determined with as high a precision as possible. However, in the case of a matrix A with very large or very small eigenvalues, the precision of the smaller eigenvalues, some of which are difficult to determine precisely, tends to be affected most by the reduction process.

\section*{4. Example program}

This program reduces a matrix to tridiagonal form, finds the eigenvalues and eigenvectors, and then performs a back transformation to obtain the eigenvectors of the original matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, i, j, k, m;
double a[NMAX][NMAX], sd[NMAX], d[NMAX], pv[2*NMAX];
double e[NMAX], evr[NMAX][NMAX], evi[NMAX][NMAX];
/* initialize matrix */
n = NMAX;
k = NMAX;
for (i=0;i<n;i++) {
a[i][i] = n-i;
for (j=0;j<i;j++) {
a[i][j] = n-i;
}
}
/* reduce matrix A to symmetric tridiagonal form */
ierr = c_dtridh((double*)a, k, n, d, sd, pv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dtridh failed with icon = %i\n", icon);
exit (1);
}
/* find eigenvalues and eigenvectors */
ierr = c_dteig1(d, sd, n, e, (double*)evr, k, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dteig1 failed with icon = %i\n", icon);
exit (1);
}
/* back transformation to find e-vectors of A */
ierr = c_dtrbkh((double*)evr, (double*)evi, k, n, m, (double*)a, pv, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dtrbkh failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues' and eigenvectors */
for (i=0;i<m;i++) {
printf("eigenvalue: %7.4f\n", e[i]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f+i*%7.4f ", evr[i][j], evi[i][j]);
printf("\n");
}
return(0);
}

```

\section*{5. Method}

Consult the entry for TRIDH in the Fortran SSL II User's Guide and references [74] and [119].

\section*{c_dtrql}
\begin{tabular}{|l|}
\hline Eigenvalues of a symmetric tridiagonal matrix (QL method). \\
\hline ierr \(=c _d t r q l(d, s d, n, e, \& m, \& i c o n) ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine obtains the eigenvalues of an \(n \times n\) symmetric tridiagonal matrix \(\mathbf{T}\) using the QL method. Here \(\mathrm{n} \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr \(=c _d t r q l(d, s d, n, e, \& m, \& i c o n) ;\)
where:
\begin{tabular}{|c|c|c|c|}
\hline d & double d[n] & Input & Diagonal elements of matrix \(\mathbf{T}\). \\
\hline & & Output & The contents of \(d\) are changed on output. \\
\hline sd & double sd[n] & Input & Subdiagonal elements of matrix \(\mathbf{T}\), stored in \(\operatorname{sd}[i-1], i=2, \ldots, n\), with sd[0] set to 0 . \\
\hline & & Output & The contents of sd are changed on output. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{T}\). \\
\hline e & double e[n] & Output & Eigenvalues of matrix T. \\
\hline m & int & Output & Number of eigenvalues obtained. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \(\mathrm{e}[0]=\mathrm{d}[0]\). \\
\hline 15000 & Some of the eigenvalues could not be obtained. & \begin{tabular}{l}
m is set to the number of eigenvalues obtained. \\
\(1 \leq \mathrm{m}<\mathrm{n}\).
\end{tabular} \\
\hline 20000 & None of the eigenvalues could be obtained. & \(\mathrm{m}=0\). \\
\hline 30000 & \(\mathrm{n}<1\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}
m
\(m\) is set to \(n\) when \(i c o n=0\), or to the number of eigenvalues obtained when \(i\) con \(=15000\).

\section*{General comments}

This routine uses the QL method which is best suited for tridiagonal matrices in which the magnitude of the elements increases down the diagonals.

When approximately \(n / 4\) or less eigenvalues are required, it is generally faster to use routine c_dbsct1.
When the eigenvectors of matrix \(\mathbf{T}\) are also required, routine c_dteig1 should be used.

When eigenvalues of a real symmetric matrix are required the matrix can be reduced to a tridiagonal matrix using the routine c _dtrid1, before calling this routine or c _dbsct1.

\section*{4. Example program}

This program reduces the matrix to tridiagonal form, and calculates the eigenvalues using two different methods.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 15
\#define NHMAX 2
MAIN__()
{
int ierr, icon;
int n, nh, m, i, k, ij;
double a[NMAX*(NHMAX+1)-NHMAX*(NHMAX+1)/2], e[NMAX];
double sd[NMAX], d[NMAX], vw[NMAX+2*NMAX], epst;
/* initialize matrix */
n = NMAX;
k = NMAX;
nh = NHMAX
a[0] = 10;
a[1] = -3;
a[2] = 10;
ij = (nh+1)*nh/2
for (i=0;i<n-nh;i++) {
a[ij] = -6;
a[ij+1] = -3;
a[ij+2] = 10;
ij = ij+nh+1;
}
/* reduce to tridiagonal form */
ierr = c_dbtrid(a, n, nh, d, sd, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dbtrid failed with icon = %i\n", icon);
exit (1);
}
find eigenvalues using c_dbsct1 */
m = n;
epst = 1e-6;
ierr = c_dbsct1(d, sd, n, m, epst, e, vw, \&icon);
if (icon > 10000 ) {
printf("ERROR: c_dbsct1 failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
printf("eigenvalues:\n");
for (i=0;i<m;i++) {
printf("%7.4f ", e[i]);
}
printf("\n");
/* find eigenvalues using c_dtrql */
ierr = c_dtrql(d, sd, n, e, \&m, \&icon);
if (icon >= 20000 ) {
printf("ERROR: c_dbtrql failed with icon = %i\n", icon);
exit (1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
printf("eigenvalues:\n");
for (i=0;i<m;i++) {
printf("%7.4f ", e[i]);
}
printf("\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for TRQL in the Fortran SSL II User's Guide and references [118] and [119].

\section*{c_dtsd1}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Root of a real function which changes sign in a given interval (derivative \\
not required).
\end{tabular} \\
\hline ierr = c_dtsd1(ai, bi, fun, epst, \&x, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This function finds a root of the real transcendental equation (1), between two limits, \(a\) and \(b\), such that \(f(a) f(b) \leq 0\).
\[
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
\]

The derivatives of \(f(x)\) are not required when determining the root. The bisection method, linear interpolation method, and inverse quadratic interpolation method are used depending on the behaviour of \(f(x)\) during the calculations.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dtsd1(ai, bi, fun, epst, \&x, \&icon);
where:
\begin{tabular}{llll}
ai & double \\
bi & Input \\
double \\
fun & function & \begin{tabular}{l}
Input \\
Input
\end{tabular} & \begin{tabular}{l}
The lower limit \(a\) of the interval. \\
The upper limit \(b\) of the interval. \\
Name of the user defined function to evaluate \(f(x)\). Its prototype is: \\
double fun(double x\() ;\)
\end{tabular} \\
where:
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad f(a) f(b)>0\) \\
- epst \(<0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General Comments}

If there are several roots in the interval \([a, b]\), it is uncertain which root will be obtained.

\section*{epst}

The required accuracy of the root being determined is defined by argument epst. If the interval \([a, b]\) includes the origin, it is unwise to set epst=0 since there is a possibility that the exact root is the origin. Otherwise, epst can be set to zero and the function will calculate the root as precisely as possible.

\section*{4. Example program}

One root of the function \(f(x)=\sin ^{2}(x)-0.5\) is calculated in the interval \([0.0,1.5]\). The computed root is output along with an accuracy check.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
double fun(double x); /* user function prototype */
MAIN__()
{
int ierr, icon;
double ai, bi, x, epst, exact;
/* initialize data */
ai = 0;
bi = 1.5;
epst = 1e-6;
/* find zero of function */
ierr = c_dtsd1(ai, bi, fun, epst, \&x, \&icon);
printf("icon = %i x = %12.4e\n", icon, x);
/* check result */
exact = asin(sqrt(0.5));
if (fabs((x-exact)/exact) > epst)
printf("Inaccurate result\n");
else
printf("Result OK\n");
return(0);
}
/* user function */
double fun(double x)
{
return(pow(sin(x),2)-0.5);
}

```

\section*{5. Method}

With some modifications, this function uses what is widely known as the Dekker algorithm. The method to be used at each iteration stage (bisection method, linear interpolation method or inverse quadratic interpolation method) is determined by examining the behaviour of \(f(x)\), where the function \(f(x)\) is a real function that is continuous in the interval \([a, b]\) and \(f(a) f(b)<0\). For further information consult the entry for TSD1 in the Fortran SSL II User's Guide and [9].

\section*{c_dtsdm}
\begin{tabular}{|l|}
\hline Root of a real function (Muller's method). \\
\hline ierr = c_dtsdm(\&x, fun, isw, eps, eta, \&m, \\
\&icon);
\end{tabular}

\section*{1. Function}

This function finds a root of a real function (1) by Muller's method.
\[
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
\]

An initial approximation to the root must be given.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dtsdm(\&x, fun, isw, eps, eta, \&m, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline X & double & Input & Initial value of the root to be obtained. \\
\hline & & Output & Approximate root. \\
\hline fun & function & Input & Name of the user defined function to evaluate \(f(x)\). Its prototype is: double fun(double x); where: \\
\hline & & & \(x\) double Input Independent variable. \\
\hline isw & int & Input & Control information. \\
\hline & & & Specify the convergence criterion for finding the root; isw must be one of the following: \\
\hline & & & 1 Criterion I: when the condition \(\left|f\left(x_{i}\right)\right| \leq\) eps is satisfied, \(x_{i}\) becomes the root. \\
\hline & & & 2 Criterion II: when the condition \(\left|x_{i}-x_{i-1}\right| \leq\) eta \(\cdot\left|x_{i}\right|\) is satisfied, \(x_{i}\) becomes the root. \\
\hline & & & 3 When either criterion I or II is satisfied, \(x_{i}\) becomes the root. \\
\hline & & & See Comments on use. \\
\hline eps & double & Input & The tolerance value (\(\geq 0\)) for Criterion I. (See argument isw.) \\
\hline eta & double & Input & The tolerance value (\(\geq 0\)) for Criterion II. (See argument isw.) \\
\hline m & int & Input & Upper limit of iterations. See Comments on use. \\
\hline & & Output & Total number of iterations performed. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 1 & \begin{tabular}{l}
The result satisfied convergence Criterion I. (See \\
the argument isw.)
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 2 & The result satisfied convergence Criterion II. (See the argument isw.) & \\
\hline 10 & Completed the \(\mathrm{m}(\mathrm{m}=-\mathrm{m})\) iterations. & \\
\hline 11 & The condition \(f\left(x_{i}\right)=0\) was satisfied before finishing all the iterations \((\mathrm{m}=-\mathrm{m})\), therefore the iteration process was stopped and \(x_{i}\) returned as the root. & \\
\hline 12 & The condition \(\left|x_{i}-x_{i-1}\right| \leq \mu \cdot\left|x_{i}\right|\) was satisfied before finishing all the iterations \((\mathrm{m}=-\mathrm{m})\), therefore the iteration process was stopped and \(x_{i}\) returned as the root. & \\
\hline 10000 & The specified convergence criterion was not achieved after completing the given number of iterations. & Return the last iteration value of \(x_{i}\) in argument x. \\
\hline 20000 & The case \(f\left(x_{i-2}\right)=f\left(x_{i-1}\right)=f\left(x_{i}\right)\) has occurred and perturbation of \(x_{i-2}, x_{i-1}\), and \(x_{i}\) was tried to overcome the problem. This proved unsuccessful even when perturbation continued more than five times. & Processing stopped. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
When \(\mathrm{m}>0\) : \\
- isw \(=1\) and eps \(<0\) \\
- isw \(=2\) and eta \(<0\) \\
- isw \(=3\), eps \(<0\) or eta \(<0\) otherwise: \\
- \(\quad \mathrm{m}=0\) \\
- isw \(\neq 1,2\) or 3
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{isw}

This function will stop the iteration with icon=2 whenever \(\left|x_{i}-x_{i-1}\right| \leq \mu \cdot\left|x_{i}\right|\) is satisfied (where \(\mu\) is the unit roundoff) even when isw=1 is given. Similarly with isw=2, it will stop the iteration with icon=1 whenever \(f\left(x_{i}\right)=0\) is satisfied.

Note, when the root is a multiple root or very close to another root, et must be set sufficiently large. If \(0 \leq\) eta \(<\mu\), the function resets eta \(=\mu\).
m
Iterations are repeated \(m\) times when m is set as \(\mathrm{m}=-m(m>0)\). However, when either \(f\left(x_{i}\right)=0\) or \(\left|x_{i}-x_{i-1}\right| \leq \mu \cdot\left|x_{i}\right|\) is satisfied before finishing \(m\) iterations, the iteration process is stopped and the result is output with icon=11 or 12 .

\section*{4. Example program}

This example program computes a root of the function \(f(x)=e^{x}-1\) with a starting point of \(x_{0}=1\) and displays the result along with an accuracy check.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
double fun(double x); /* user function prototype */
MAIN__()
{
int ierr, icon;
double x, eps, eta, exact;
int isw, m;
/* initialize data */
x = 1;
isw = 3;
eps = 0;
eta = 1e-6;
m = 100;
/* find zero of function */
ierr = c_dtsdm(\&x, fun, isw, eps, eta, \&m, \&icon);
printf("icon = %i m = %i x = %12.4e\n", icon, m, x);
/* check result */
eps = 1e-6;
exact = 0;
if (fabs(x-exact) > eps)
printf("Inaccurate result\n");
else
printf("Result OK\n");
return(0);
}
/* user function */
double fun(double x)
{
return(exp(x)-1);
}

```

\section*{5. Method}

This function uses Muller's method for finding a root of a real function. For further information consult the entry for TSDM in the Fortran SSL II User's Guide and [111].

\section*{c_dv1dwt}
\[
\begin{array}{|l}
\hline \text { One-dimensional wavelet transform. } \\
\hline \text { ierr }=\text { c_dv1dwt }(x, n, y, \text { isn, } f, k, ~ l s, ~ \\
\text { \&icon }) ;
\end{array}
\]

\section*{1. Function}

This routine performs a one-dimensional wavelet transform or its inverse. The transform is defined by its high- and lowpass filter coefficients.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dv1dwt(x, n, y, isn, f, k, ls, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{X} & \multirow[t]{2}{*}{double \(\mathrm{x}[\mathrm{n}]\)} & Input & Data to be transformed in the case of wavelet transform (isn = 1). \\
\hline & & Output & Transformed data in the case of the inverse transform (isn \(=-1\)). \\
\hline \multirow[t]{2}{*}{n} & \multirow[t]{2}{*}{int} & \multirow[t]{2}{*}{Input} & Size (\(\geq 2\)) of the transformed data. n must be a power of 2 . See \\
\hline & & & Comments on use. \\
\hline \multirow[t]{3}{*}{\(y\)} & \multirow[t]{3}{*}{double \(\mathrm{y}[\mathrm{n}]\)} & Input & Data to be transformed in the case of the inverse transform (isn \(=-1\)). \\
\hline & & Output & Transformed data in the case of wavelet transform (isn = 1). See \\
\hline & & & Comments on use. \\
\hline \multirow[t]{3}{*}{isn} & \multirow[t]{3}{*}{int} & \multirow[t]{3}{*}{Input} & Control information. \\
\hline & & & isn = 1 for wavelet transform, \\
\hline & & & isn \(=-1\) for inverse transform. \\
\hline f & double f[2k] & Input & Wavelet filter coefficients used for transform. See Comments on use. \\
\hline k & int & Input & Number of wavelet filter coefficients. k must be positive and even. \\
\hline ls & int & Input & Depth of transform. \(\mathrm{n} \geq 2^{\text {ls }}\). When \(\mathrm{n}=2^{\text {ls }}\), a full wavelet transform is \\
\hline & & & performed. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & isn \(\neq 1\) or -1 & Bypassed. \\
\hline 30002 & \(\mathrm{n}<2\) & Bypassed. \\
\hline 30004 & n is not a power of 2. & Bypassed. \\
\hline 30008 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{k}\) is not an even number \\
\(\bullet \quad l s<0\) or \(l \mathrm{~s}>\log _{2} \mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{n}

When the size of the data to be transformed is not a power of 2, the wavelet transform can be performed by storing the data in an array with length \(n\) the smallest power of 2 that is greater than the size of the data, setting to zero the remaining array elements.

\section*{Storing the transform result}

For input vector \(\mathrm{x}(\mathrm{isn}=1)\) or \(\mathrm{y}(\mathrm{isn}=-1)\), the result of the high-pass filter in each wavelet transform is stored in \(y\left[n \times 2^{-i}\right], \ldots, y\left[n \times 2^{-i+1}-1\right]\), or \(x\left[n \times 2^{-i}\right], \ldots, x\left[n \times 2^{-i+1}-1\right], i=1, \ldots, l s\).

\section*{f}

The user can either supply the filter coefficients \(f\), or call routine \(c _d v w f l t\) before this routine to specify filter coefficients for the wavelet transform. Input argument \(n\) and output argument \(f\) of \(c _d v w f l t\) are the same as input arguments \(k\) and \(f\) of this routine.

The orthogonal filter used for this routine generally has vector of size \(2 k\) with \(f[0], f[1], \ldots, f[k-1]\) defining the lowpass filter coefficients and \(f[k], f[k+1], \ldots, f[2 k-1]\) defining the high-pass filter coefficients. These coefficients have the following relationships:
\[
\sum_{i=0}^{k-1} f[i]^{2}=1, \quad f[2 k-1-i]=(-1)^{i+1} f[i], \quad i=0,1, \ldots, k-1
\]

\section*{4. Example program}

This program forms the wavelet filter and performs the one-dimensional wavelet transform. The inverse transform is then performed and the result checked.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 1024
\#define KMAX 6
MAIN__()
{
int ierr, icon;
double phai, ran, eps;
double x[NMAX], y[NMAX], f[2*KMAX], xx[NMAX];
int isn, i, k, ls, n;
/* generate initial data */
n = NMAX;
ls = 10;
k = KMAX;
phai = (sqrt(5.0)-1.0)/2;
for (i=0;i<n;i++) {
ran = (i+1)*phai;
x[i] = ran - (int)ran;
}
for (i=0;i<n;i++)
xx[i] = x[i];
/* generate wavelet filter */
ierr = c_dvwflt(f, k, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dvwflt failed with icon = %i\n", icon);
exit (1);
}
/* perform normal wavelet transform */
isn = 1;

```
```

    ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon);
    if (icon != 0 ) {
        printf("ERROR: c_dv1dwt failed with icon = %i\n", icon);
        exit (1);
    }
    /* perform inverse wavelet transform */
    isn = -1;
    ierr = c_dv1dwt(x, n, y, isn, f, k, ls, &icon);
    if (icon != 0 ) {
        printf("ERROR: c_dv1dwt failed with icon = %i\n", icon);
        exit (1);
    }
    /* check results */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((x[i]-xx[i])/xx[i]) > eps) {
        printf("Inaccurate result\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

Consult the entry for V1DWT in the Fortran SSL II Extended Capabilities User's Guide II, and [20], [27], [43], [93], and [105].

\section*{c_dv2dwt}
```

Two-dimensional wavelet transform.
ierr = c_dv2dwt(x, m, n, y, isn, f, k, lsx,
lsy, \&icon);

```

\section*{1. Function}

This routine performs a two-dimensional wavelet transform or its inverse. The transform is defined by its high- and lowpass filter coefficients.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dv2dwt((double *) x, m, n, (double *) y, isn, f, k, lsx, lsy, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline x & \[
\begin{aligned}
& \text { double } \\
& x[\mathrm{n}][\mathrm{m}]
\end{aligned}
\] & Input & Data to be transformed in the case of wavelet transform (isn \(=1\)). \\
\hline & & Output & Transformed data in the case of the inverse transform (isn \(=-1\)). \\
\hline m & int & Input & Number (\(\geq 2\)) of columns containing data to be transformed. \(m\) must be a power of 2 . See Comments on use. \\
\hline n & int & Input & Number (\(\geq 2\)) of rows containing data to be transformed. n must be a power of 2 . See Comments on use. \\
\hline y & \[
\begin{aligned}
& \text { double } \\
& \mathrm{y}[\mathrm{~m}][\mathrm{n}]
\end{aligned}
\] & Input & Data to be transformed in the case of the inverse transform (isn \(=-1\)). \\
\hline & & Output & Transformed data in the case of wavelet transform (isn = 1). See Comments on use. \\
\hline isn & int & Input & \begin{tabular}{l}
Control information. \\
isn \(=1\) for wavelet transform, \\
isn \(=-1\) for inverse transform.
\end{tabular} \\
\hline f & double f[2k] & Input & Wavelet filter coefficients used for transform. See Comments on use. \\
\hline k & int & Input & Number of wavelet filter coefficients. k must be positive and even. \\
\hline lsx & int & Input & Depth of transform for each row. \(m \geq 2^{\text {ls } x}\). When \(m=2^{\text {ls } x}\), a full wavelet transform is performed. \\
\hline lsy & int & Input & Depth of transform for each column. \(\mathrm{n} \geq 2^{\text {lsy }}\). When \(\mathrm{n}=2^{\text {lsy }}\), a full wavelet transform is performed. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & isn \(\neq 1\) or -1 & Bypassed. \\
\hline 30002 & \(\mathrm{~m}<2\) or \(\mathrm{n}<2\) & Bypassed. \\
\hline 30004 & Either m or n is not a power of 2. & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30008 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{k}\) is not an even number & \\
& \(\bullet \quad l s x<0\) or \(l s x>\log _{2} \mathrm{~m}\) & \\
& \(\bullet \quad l s y<0\) or \(l s y>\log _{2} \mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{\(m\) and \(n\)}

When the size of the data to be transformed is not a power of 2 , the wavelet transform can be performed by storing the data in an array with lengths \(m\) and \(n\) the smallest powers of 2 that is greater than the size of the data, setting to zero the remaining array elements.

\section*{Storing the transform result}

For column vector \(c_{j}\) and row vector \(r_{k}\) in two-dimensional input data, the result of the high-pass filter in each wavelet transform column is stored in:
\[
c_{j}\left[\mathrm{n} \times 2^{-\mathrm{i}}\right], \ldots, c_{j}\left[\mathrm{n} \times 2^{-\mathrm{i}+1}-1\right], \mathbf{i}=1, \ldots, l \mathrm{lsy}
\]
and the result in each wavelet row is stored in:
\[
r_{k}\left[\mathrm{~m} \times 2^{-\mathrm{i}}\right], \ldots, r_{k}\left[\mathrm{~m} \times 2^{-\mathrm{i}+1}-1\right], \mathrm{i}=1, \ldots, \operatorname{lsx}
\]

The result of the two-dimensional wavelet transform is transposed and stored in array \(y\). For example, the output result of the high-pass filter for partial wavelet transform in the first stage is stored in \(y[k][j], k=m / 2, \ldots, m-1\) and \(j=\) \(\mathrm{n} / 2, \ldots, \mathrm{n}-1\).

\section*{f}

The user can either supply the filter coefficients \(f\), or call routine \(c _d v w f l t\) before this routine to specify filter coefficients for the wavelet transform. Input argument \(n\) and output argument \(f\) of \(c_{-} d v w f l t\) are the same as input arguments \(k\) and \(f\) of this routine.

The orthogonal filter used for this routine generally has vector of size \(2 k\) with \(f[0], f[1], \ldots, f[k-1]\) defining the lowpass filter coefficients and \(f[k], f[k+1], \ldots, f[2 k-1]\) defining the high-pass filter coefficients. These coefficients have the following relationships:
\[
\sum_{i=0}^{k-1} f[i]^{2}=1, \quad f[2 k-1-i]=(-1)^{i+1} f[i], \quad i=0,1, \ldots, k-1
\]

\section*{4. Example program}

This program forms the wavelet filter and performs the two-dimensional wavelet transform. The inverse transform is then performed and the result checked.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define MMAX 512
\#define NMAX }25
\#define KMAX 6

```
```

MAIN__()
{
int ierr, icon;
double phai, ran, eps;
double x[NMAX][MMAX], y[MMAX][NMAX], f[2*KMAX], xx[NMAX][MMAX];
int isn, i, j, k, lsx, lsy, m, n;
/* generate initial data */
m = MMAX;
n = NMAX;
lsx = 3;
lsy = 4;
k = KMAX;
phai = (sqrt(5.0)-1.0)/2;
for (j=0;j<n;j++) {
for (i=0;i<m;i++) {
ran = ((i*n+1)+j+1)*phai;
x[j][i] = ran - (int)ran;
}
}
for (j=0;j<n;j++)
for (i=0;i<m;i++)
xx[j][i] = x[j][i];
/* generate wavelet filter */
ierr = c_dvwflt(f, k, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dvwflt failed with icon = %i\n", icon);
exit (1);
}*
/* perform normal wavelet transform */
isn = 1;
ierr = c_dv2dwt((double*)x, m, n, (double*)y, isn, f, k, lsx, lsy, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dv2dwt failed with icon = %i\n", icon);
exit (1);
}
/* perform inverse wavelet transform */
isn = -1;
ierr = c_dv2dwt((double*)x, m, n, (double*)y, isn, f, k, lsx, lsy, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dv2dwt failed with icon = %i\n", icon);
exit (1);
}*
/* check results */
eps = 1e-6;
for (j=0;j<n;j++)
for (i=0;i<m;i++)
if (fabs((x[j][i]-xx[j][i])/xx[j][i]) > eps) {
printf("Inaccurate result\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for V2DWT in the Fortran SSL II Extended Capabilities User's Guide II, and [20], [27], [43], [93], and [105].

\section*{c_dvalu}
```

LU-decomposition of a real matrix (blocking LU-decomposition
method).
ierr = c_dvalu(a, k, n, epsz, ip, \&is, vw,
\&icon);

```

\section*{1. Function}

This function LU-decomposes an \(n \times n\) non-singular matrix \(\mathbf{A}\) using the blocking LU-decomposition method (Gaussian elimination method).
\[
\begin{equation*}
\mathbf{P A}=\mathbf{L} \mathbf{U} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{P}\) is the permutation matrix that performs the row exchanges required during partial pivoting, \(\mathbf{L}\) is a lower triangular matrix and \(\mathbf{U}\) is a unit upper triangular matrix \((n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvalu((double*)a, k, n, epsz, ip, \&is, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double \(a[n][k]\) & Input & Matrix \(\mathbf{A}\). \\
\hline & & Output & Matrices \(\mathbf{L}\) and \(\mathbf{U}\) (suitable for input to the matrix inverse function, c_dvluiv). See Comments on use. \\
\hline k & int & Input & \(C\) fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline epsz & double & Input & Tolerance for relative zero test of pivots during the decomposition of \(\mathbf{A}\) \((\geq 0)\). When epsz is zero, a standard value is used. See Comments on use. \\
\hline ip & int ip[n] & Output & Transposition vector that provides the row exchanges that occurred during partial pivoting (suitable for input to the matrix inverse function, c_dvluiv). See Comments on use. \\
\hline is & int & Output & Information for obtaining the determinant of matrix \(\mathbf{A}\). When the n elements of the calculated diagonal of array a are multiplied together, and the result multiplied by is, the determinant is obtained. \\
\hline Vw & double \(\mathrm{vw}[\mathrm{n}]\) & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Either all of the elements of some row were zero \\
or the pivot became relatively zero. It is highly \\
probable that the coefficient matrix is singular.
\end{tabular} & Discontinued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
& \(\bullet \mathrm{n}<1\) \\
& \(\bullet\) epsz \(<0\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:
If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix \(\mathbf{A}=\left(a_{i j}\right)\), that is:
\[
\left|a_{k k}^{k}\right| \leq \max \left|a_{i j}\right| \cdot \mathrm{epsz}
\]
then the relative pivot value is assumed to be zero and processing terminates with icon=20000. The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round off. If the processing is to proceed at a lower pivot value, epsz will be given the minimum value but the result is not always guaranteed.

\section*{ip}

The transposition vector corresponds to the permutation matrix \(\mathbf{P}\) of LU-decomposition with partial pivoting. In this function, the elements of the array a are actually exchanged in partial pivoting. In the \(J\)-th stage \((J=1, \ldots, n)\) of decomposition, if the \(I\)-th row has been selected as the pivotal row the elements of the \(I\)-th row and the elements of the \(J\) th row are exchanged. Then, in order to record the history of this exchange, \(I\) is stored in ip [j-1].

\section*{Matrix inverse}

This function is the first stage in a two-stage process to compute the inverse of an \(n \times n\) real general matrix. After calling this function, calling function C_dvluiv completes the task for matrix inversion.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\) (from \(\mathbf{A x}=\mathbf{b}\)), and then calculates \(\mathbf{b}\) by multiplication. Matrix \(\mathbf{A}\) is then decomposed into LU factors using the library routine. \(\mathbf{A}^{-1}\) is then calculated and used to calculate \(\mathbf{x}\) in the equation \(\mathbf{A}^{-1} \mathbf{b}=\mathbf{x}\) and this resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, k, is;
double epsz, eps;
double a[NMAX][NMAX], ai[NMAX][NMAX];
double b[NMAX], x[NMAX], y[NMAX], vw[NMAX];
int ip[NMAX];
/* initialize matrix and vector */
n = NMAX;
for (i=0;i<n;i++)
for (j=i;j<n;j++) {

```
```

            a[i][j] = n-j;
            a[j][i] = n-j
        for
    for (i=0;i<n;i++)
        x[i] = i+1;
    k = NMAX;
    /* initialize constant vector b = a*x */
    ierr = c_dmav((double*)a, k, n, n, x, b, &icon);
    epsz = 1e-6;
    /* perform LU decomposition */
    ierr = c_dvalu((double*)a, k, n, epsz, ip, &is, vw, &icon);
    if (icon != 0) {
        printf("ERROR: c_dvalu failed with icon = %d\n", icon);
        exit(1);
    }
    /* find matrix inverse from LU factors */
    ierr = c_dvluiv((double*)a, k, n, ip, (double*)ai, &icon);
    if (icon != 0) {
        printf("ERROR: c_dvluiv failed with icon = %d\n", icon);
        exit(1);
    }*
    /* calculate y = ai*b */
    ierr = c_dmav((double*)ai, k, n, n, b, y, &icon);
    /* compare x and y */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((x[i]-y[i])/y[i]) > eps) {
            printf("WARNING: result inaccurate\n");
            exit(1);
        }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

The blocking LU-decomposition method is applied by blocking the outer-product Gaussian elimination method. For further information consult the entry for VALU in the Fortran SSL II Extended Capabilities User's Guide as well as [5], [7], [34] and [83].

\section*{c_dvbesd}
```

Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (BICGSTAB}(l)\mathrm{ method, diagonal storage
format).
ierr = c_dvbcsd(a, k, ndiag, n, nofst, b,
itmax, eps, iguss, l, x, \&iter,
vw, \&icon);

```

\section*{1. Function}

This function solves a system of linear equations (1) using the Bi-Conjugate Gradient Stabilized \((l)\) (\(\operatorname{BICGSTAB}(l)\)) method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) real nonsymmetric or indefinite sparse matrix, \(\mathbf{b}\) is a real constant vector, and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvbcsd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, l, x, \&iter, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[ndiag][k]
\end{tabular} & Input & Sparse matrix A stored in diagonal storage format. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array a (\(\geq \mathrm{n}\)). \\
\hline ndiag & int & Input & The number of diagonal vectors in the coefficient matrix \(\mathbf{A}\) having nonzero elements. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nofst & int nofst[ndiag] & Input & Distance from the main diagonal vector corresponding to diagonal vectors in array a. Super-diagonal vector rows have positive values. Sub-diagonal vector rows have negative values. See Comments on use \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline itmax & int & Input & Upper limit of iterations in \(\operatorname{BICGSTAB}(l) .(>0)\) \\
\hline eps & double & Input & Tolerance for convergence test. \\
\hline iguss & int & Input & When eps is zero or less, eps is set to \(10^{-6}\). See Comments on use. Control information about whether to start the iterative computation from the approximate value of the solution vector specified in array \(x\). iguss \(=0\) : Approximate value of the solution vector is not specified. iguss \(\neq 0\) : The iterative computation starts from the approximate value of the solution vector specified in array \(x\). \\
\hline 1 & int & Input & The order of stabiliser in the BICGSTAB \((l)\) algorithm. \((1 \leq 1 \leq 8)\) \\
\hline & & & The value of 1 should usually be set to 1 or 2 . See Comments on use. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline X & double \(\times[\mathrm{n}]\) & Input & The starting values for the computation. This is optional and relates to argument iguss. \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline iter & int & Output & Number of iteration performed using the \(\operatorname{BICGSTAB}(l)\) method. \\
\hline VW & double & Work & Vwlen \(=\mathrm{k} *(4+2 * 1)+\mathrm{n}+\) NBANDL+NBANDR \\
\hline & vw [Vwlen] & & NBANDL indicates a lower bandwidth; NBANDR indicates an upper bandwidth. If the order or the bandwidth of the matrix are not constant parameters, it is enough to set the size of VW array to be k* \((4+2 * 1)+3 * k\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Break-down occurred. & Processing stopped. \\
\hline 20001 & Reached the set maximum number of iterations. & \begin{tabular}{l}
Processing stopped. \\
The approximate solution obtained up to this stage is returned, but its precision is not guaranteed.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(k<1\) \\
- \(\mathrm{n}>\mathrm{k}\) \\
- \(\quad l<1\) \\
- \(\quad l>8\) \\
- \(n d i a g<1\) \\
- ndiag \(>\mathrm{k}\) \\
- itmax \(\leq 0\)
\end{tabular} & Bypassed. \\
\hline 32001 & abs(nofst[i]) \(>\mathrm{n}-1 ; 0 \leq \mathrm{i}<\) ndiag & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Convergent criterion}

In the \(\operatorname{BICGSTAB}(l)\) method, if the residual Euclidean norm is equal to or less than the product of the initial residual Euclidean norm and eps, it is judged as having converged. The difference between the precise solution and the obtained approximation is roughly equal to the product of the condition number of Matrix \(\mathbf{A}\) and eps.

The residual which used for convergence judgement is computed recursively and it may differ from the true residual.

\section*{1}

The maximum value of \(l\) is set to 8 . For \(l=1\), this algorithm coincides with BiCGSTAB. Using smaller \(l\) usually results in faster speed, but in some situations larger 1 brings a good convergence, although the steps of an iteration are more expensive for larger \(l\).

\section*{Notes on using the diagonal format}

A diagonal vector element outside coefficient matrix A must be set to zero.

There is no restriction in the order in which diagonal vectors are stored in array a.

The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method.

\section*{Diagonal scaling}

Scaling the equations so that the main diagonal to be 1 may results in better convergence.

\section*{Break-down}

Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine c_dvcrd which uses the MGCR method should be used.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define UBANDW 2
\#define LBANDW 1
\#define L 2
MAIN__()
{
double one=1.0, bcoef=10.0, eps=1.e-6;
int ierr, icon, ndiag, nub, nlb, n, i, j, k;
int itmax, iguss, l, iter;
int nofst[UBANDW + LBANDW + 1];
double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
double vW[NMAX * (4 + 2 * L) + NMAX + UBANDW + LBANDW];
nub = UBANDW;
nlb = LBANDW;
ndiag = nub + nlb + 1;
n = NMAX;
k = NMAX;
/* Set A-mat \& b */
for (i=1; i<=nub; i++) {
for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
for (j=n-i; j<n ; j++) a[i][j] = 0.0;
nofst[i] = i;
}
for (i=1; i<=nlb; i++) {
for (j=0 ; j<i+1; j++) a[nub + i][j] = 0.0;
for (j=i+1; j<n ; j++) a[nub + i][j] = -2.0;
nofst[nub + i] = -i
}
nofst[0] = 0;
for (j=0; j<n; j++) {
b[j] = bcoef;
a[0][j] = bcoef;
for (i=1; i<ndiag; i++) b[j] += a[i][j];
}
/* solve the nonsymmetric system of linear equations */
itmax = n;
iguss = 0;
l = L;
ierr = c_dvbcsd ((double*)a, k, ndiag, n, nofst, b, itmax, eps,
iguss, l, x, \&iter, vw, \&icon);

```
```

    if (icon != 0) {
        printf("ERROR: c_dvbcsd failed with icon = %d\n", icon);
        exit(1);
    }
    /* check result */
    for (i=0;i<n;i++)
        if (fabs(x[i]-one) > eps*10.0) {
        printf("WARNING: result maybe inaccurate\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

Consult the entry for VBCSD in the Fortran SSL II Extended Capabilities User's Guide II and references [101] and [112].

\section*{c_dvbese}
```

Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (BICGSTAB(l) method, ELLPACK storage
format)
ierr = c_dvbcse(a, k, iwidt, n, icol, b,
itmax, eps, iguss, l, x, \&iter,
vw, \&icon);

```

\section*{1. Function}

This function solves a system of linear equations (1) using the Bi-Conjugate Gradient Stabilized \((l)\) (\(\operatorname{BICGSTAB}(l)\)) method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) real nonsymmetric or indefinite sparse matrix, \(\mathbf{b}\) is a real constant vector and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvbcse((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss, l, x, \&iter, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[iwidt][k]
\end{tabular} & Input & Sparse matrix A stored in ELLPACK storage format. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array a (\(\geq \mathrm{n}\)). \\
\hline iwidt & int & Input & The maximum number of non-zero elements in any row vectors of \(\mathbf{A}\) \((\geq 0)\). \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline icol & \[
\begin{aligned}
& \text { int } \\
& \text { icol[iwidt][k] }
\end{aligned}
\] & Input & Column indices used in the ELLPACK format, showing to which column the elements corresponding to a belong. See Comments on use. \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline itmax & int & Input & Upper limit of iterations in BICGSTAB(\(l\)) method.(>0) \\
\hline eps & double & Input & Tolerance for convergence test. \\
\hline iguss & int & Input & When eps is zero or less, eps is set to \(10^{-6}\). See Comments on use Control information about whether to start the iterative computation from the approximate value of the solution vector specified in array \(x\). iguss \(=0\) : Approximate value of the solution vector is not set. iguss \(\neq 0\) : The iterative computation starts from the approximate value of the solution vector specified in array \(x\). \\
\hline 1 & int & Input & The order of stabiliser in the BICGSTAB \((l)\) algorithm. \((1 \leq 1 \leq 8)\) \\
\hline & & & The value of 1 should usually be set to 1 or 2 . See Comments on use. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline X & double \(\times[\mathrm{n}]\) & Input & The starting values for the computation. This is optional and relates to argument iguss. \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline iter & int & Output & The real number of iteration steps in \(\operatorname{BICGSTAB}(l)\) method. \\
\hline VW & double & Work & Vwlen \(=\mathrm{k}\) (\(4+2 * 1)\) \\
\hline & vw[Vwlen] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Break-down occurred & Processing stopped. \\
\hline 20001 & Reached the set maximum number of iterations. & \begin{tabular}{l}
Processing stopped. \\
The approximate solution obtained up to this stage is returned, but its precision is not guaranteed.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(\mathrm{k}<1\) \\
- \(\mathrm{n}>\mathrm{k}\) \\
- \(\quad l<1\) \\
- \(\quad l>8\) \\
- iwidt \(<1\) \\
- iwidt \(>\mathrm{k}\) \\
- itmax \(\leq 0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Convergent criterion}

In the \(\operatorname{BICGSTAB}(l)\) method, if the residual Euclidean norm is equal to or less than the product of the initial residual Euclidean norm and eps, it is judged as having converged. The difference between the precise solution and obtained approximate solution is equal to the product of the condition number of matrix \(\mathbf{A}\) and eps.

The residual which used for convergence judgement is computed recursively and it may differ from the true residual.

\section*{1}

The maximum value of \(l\) is set to 8 . For \(l=1\), this algorithm coincides with BiCGSTAB. Using smaller \(l\) usually results in faster speed, but in some situations larger \(l\) brings a convergence, although the steps of a iteration are more expensive for larger \(l\).

\section*{Diagonal scaling}

Scaling the equations so that the main diagonal to be 1 may results in better convergence.

\section*{Break-down}

Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine c_dvcre which uses the MGCR method should be used.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define UBANDW 1}
\#define LBANDW 1
\#define L 2
MAIN__()
{
double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
int ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, l, iter, i, j, ix;
int icol[UBANDW + LBANDW + 1][NMAX];
double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
double vW[NMAX * (4 + 2 * L)];
nub = UBANDW;
nlb = LBANDW;
iwidt = UBANDW + LBANDW + 1;
n = NMAX
k = NMAX;
for (i=0; i<iwidt; i++)
for (j=0; j<n; j++) {
a[i][j] = 0.0;
icol[i][j] = j+1
/}
* Set A-mat \& b */
for (j=0; j<nlb; j++) {
for (i=0; i<j; i++) a[i][j] = lcf;
a[j][j] = bcoef;
b[j] = bcoef' + (double) j * lcf + (double) nub * ucf;
for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
for (i=0; i<=nub+j; i++) icol[i][j] = i+1
}
for (j=nlb; j<n-nub; j++) {
for (i=0; i<nlb; i++) a[i][j] = lcf;
a[nlb][j] = bcoef;
b[j] = bcoef' + (double) nlb * lcf + (double) nub * ucf;
for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;
for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
}
for (j=n-nub; j<n; j++){
for (i=0; i<nlb; i++) a[i][j] = lcf;
a[nlb][j] = bcoef;
b[j] = bcoef'+ (double) nlb * lcf + (double) (n-j-1) * ucf;
for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
ix = n - (j+nub-nlb-1);
for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
}
/* solve the nonsymmetric system of linear equations */
itmax = 2000;
iguss = 0;
l = L
ierr = c_dvbcse ((double*)a, k, iwidt, n, (int*)icol, b, itmax,
eps, iguss, l, x, \&iter, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvbcse failed with icon = %d\n", icon);
exit(1)
}
* check result */
for (i=0; i<n; i++)
if (fabs(x[i]-one) > eps*10.0) {
printf("WARNING: result maybe inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for VBCSE in the Fortran SSL II Extended Capabilities User's Guide II and references [101] and [112].

\section*{c_dvbldl}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
LDL \(^{\mathrm{T}}\) decomposition of a symmetric positive definite band matrix \\
(modified Cholesky's method).
\end{tabular} \\
\hline ierr \(=c _d v b l d l(a, n, n h, ~ e p s z, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine performs LDL \({ }^{\mathrm{T}}\) decomposition of an \(n \times n\) symmetric positive definite band matrix \(\mathbf{A}\), with bandwidth \(h\), using the modified Cholesky's method,
\[
\begin{equation*}
\mathbf{A}=\mathbf{L} \mathbf{D L}^{\mathrm{T}} \tag{1}
\end{equation*}
\]

In (1) \(\mathbf{L}\) is a unit lower band matrix and \(\mathbf{D}\) is a diagonal matrix. Here, \(0 \leq h<n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvbldl(a, n, nh, epsz, \&icon);
where:
\begin{tabular}{llll}
a & double a[Alen] & Input & \begin{tabular}{l}
Matrix \(\mathbf{A}\). Stored in symmetric positive definite band storage format. See \\
Array storage formats in the Introduction section for further details. \\
Alen \(=n(h+1)\).
\end{tabular} \\
& Output & \begin{tabular}{l}
Matrix \(\mathbf{D}+(\mathbf{L}-\mathbf{I})\). Stored in symmetric positive definite band storage \\
format. See Array storage formats in the Introduction section for further \\
details.
\end{tabular} \\
n & int & int & Input
\end{tabular} \begin{tabular}{l}
Order \(n\) of matrix \(\mathbf{A}\).
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
A pivot was negative. Matrix A is not positive \\
definite.
\end{tabular} & Continued. \\
\hline 20000 & \begin{tabular}{l}
A pivot is relatively zero. It is probable that \\
matrix A is singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad n h<0\) or \(\mathrm{nh} \geq \mathrm{n}\) \\
\(\bullet \quad\) epsz \(<0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off. If, during the decomposition process, a pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon \(=20000\). Decomposition can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy.

\section*{icon}

If a pivot is negative during decomposition, the matrix \(\mathbf{A}\) is not positive definite and icon \(=10000\) is set. Processing is continued, however no further pivoting is performed and the resulting calculation error may be significant.

\section*{Calculation of determinant}

The determinant of matrix \(\mathbf{A}\) is the same as the determinant of matrix \(\mathbf{D}\), and can be calculated by forming the product of the elements of output array a corresponding to the diagonal elements of \(\mathbf{D}\).

\section*{4. Example program}

This program solves a system of linear equations using \(\operatorname{LDL}^{\mathrm{T}}\) decomposition, and checks the result. The determinant is also obtained.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(i,j) (i<j) ? i : j
\#define NMAX 100
\#define HMAX 2
MAIN__()
{
int ierr, icon;
int n, nh, i, j, imax, jmax;
double epsz, det, eps, sum;
double a[(HMAX+1)*NMAX], b[NMAX], x[NMAX];
/* initialize matrix */
n = NMAX;
nh = HMAX;
for (j=0;j<n;j++) {
imax = min(j+nh,n-1);
for (i=j;i<=imax;i++)
a[j*(nh+1)+i-j] = n-(j-i);
}
for (i=0;i<n;i++) {
x[i] = i+1;
x[i]= 0;
}*
/* initialize constant vector b = a*x */
for (i=0;i<n;i++) {
sum = a[i*(nh+1)]*x[i];
jmax = min(i+nh,n-1);
for ( j=i+1;j<=jmax;j++) {
b[j] = b[j] + a[i*nh+j]*x[i];
sum = sum + a[i*nh+j]*x[j];
}
b}[i] = b[i]+sum
}
epsz = 1e-6;
/* LDL decomposition of system of equations */
ierr = c_dvbldl(a, n, nh, epsz, \&icon);
if (icon> 10000) {
printf("ERROR: c_dvbldl failed with icon = %d\n", icon);
exit(1);
}*
/* calculate determinant */

```
```

det = 1;
for (i=0;i<n;i++) {
det = det*a[i*(nh+1)];
}
printf("Determinant: %7.4e\n", det);
/* solve decomposed system of' equations */
ierr = c_dvbldx(b, a, n, nh, \&icon);
if (icon > 10000) {
printf("ERROR: c_dvbldx failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for VBLDL in the Fortran SSL II Extended Capabilities User's Guide II and reference [79].

\section*{c_dvbldx}

Solution of a system of linear equations with a symmetric positive definite band matrix in \(L^{2}{ }^{\mathrm{T}}\) - decomposed form. ierr = c_dvbldx(b, fa, n, nh, \&icon);

\section*{1. Function}

This routine solves a system of linear equations with an LDL \(^{\mathrm{T}}\) decomposed \(n \times n\) symmetric positive definite band coefficient matrix,
\[
\begin{equation*}
\mathbf{L D L}^{\mathrm{T}} \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1) \(\mathbf{L}\) is a unit lower band matrix with bandwidth \(h, \mathbf{D}\) is a diagonal matrix, \(\mathbf{b}\) is a constant vector, and \(\mathbf{x}\) is the solution vector. Here, \(0 \leq h<n\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvbldx(b, fa, n, nh, \&icon);

```
where:
\begin{tabular}{llll}
b & double \(\mathrm{b}[\mathrm{n}]\) & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \begin{tabular}{l}
Constant vector \(\mathbf{b}\). \\
folution vector \(\mathbf{x}\).
\end{tabular} \\
fa & \begin{tabular}{l}
double \\
fa[Falen]
\end{tabular} & Input & \begin{tabular}{l}
Matrix \(\mathbf{D}+(\mathbf{L}-\mathbf{I})\). Stored in symmetric positive definite band storage \\
format. See Array storage formats in the Introduction section for further \\
details. Falen \(=n(h+1)\).
\end{tabular} \\
n & int & Input & \begin{tabular}{l}
Order \(n\) of matrices \(\mathbf{L}\) and \(\mathbf{D}\). \\
nh \\
int
\end{tabular} \\
icon & int & Input & Bandwidth \(h\) of matrix \(\mathbf{L}\). \\
\multicolumn{2}{l}{ The complete list of condition codes is: }
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Coefficient matrix is not positive definite. & Continued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{nh}<0\) or \(\mathrm{nh} \geq \mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

A system of linear equations can be solved by calling the routine \(\mathbf{c}\) _dvbldl to LDL \(^{T}\) - decompose the coefficient matrix before calling this routine. The input argument fa of this routine is the same as the output argument a of c_dvbldl. Alternatively the system of linear equations can be solved by calling the single routine c_dvlsbx.

\section*{4. Example program}

This program solves a system of linear equations using \(\operatorname{LDL}^{T}\) decomposition, and checks the result. The determinant is also obtained.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(i,j) (i<j) ? i : j
\#define NMAX 100
\#define HMAX 2
MAIN__()
{
int ierr, icon;
int n, nh, i, j, imax, jmax;
double epsz, det, eps, sum;
double a[(HMAX+1)*NMAX], b[NMAX], x[NMAX];
/* initialize matrix */
n = NMAX;
nh = HMAX
for (j=0;j<n;j++) {
imax = min(j+nh,n-1);
for (i=j;i<=imax;i++)
a[j*(nh+1)+i-j] = n-(j-i);
}
for (i=0;i<n;i++) {
x[i] = i+1;
b[i] = 0;
}
* initialize constant vector b = a*x */
for (i=0;i<n;i++) {
sum = a[i*(nh+1)]*x[i];
jmax = min(i+nh,n-1);
for (j=i+1;j<=jmax;j++) {
b[j] = b[j] + a[i*nh+j]*x[i];
sum = sum + a[i*nh+j]*x[j];
}
b[i] = b[i]+sum;
}
epsz = 1e-6;
/* LDL decomposition of system of equations */
ierr = c_dvbldl(a, n, nh, epsz, \&icon);
if (icon > 10000) {
printf("ERROR: c_dvbldl failed with icon = %d\n", icon);
exit(1);
}
/* calculate determinant */
det = 1;
for (i=0;i<n;i++) {
det = det*a[i*(nh+1)];
}
printf("Determinant: %7.4e\n", det);
/* solve decomposed system of' equations */
ierr = c_dvbldx(b, a, n, nh, \&icon);
if (icon > 10000) {
printf("ERROR: c_dvbldx failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

The solution is obtained through forward and backward substitutions. Consult the entry for VBLDX in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvblu}
\[
\begin{gathered}
\hline \text { LU - decomposition of a band matrix (Gaussian elimination). } \\
\hline \text { ier }=c _d v b l u(a, n, n h 1, ~ n h 2, ~ e p s z, ~ \& i s, ~ i p, ~ \\
\text { vw, \&icon) ; }
\end{gathered}
\]

\section*{1. Function}

This routine performs LU - decomposition of an \(n \times n\) band matrix \(\mathbf{A}\), with lower bandwidth \(h_{1}\) and upper bandwidth \(h_{2}\) using Gaussian elimination,
\[
\mathbf{P A}=\mathbf{L U}
\]
where \(\mathbf{P}\) is a permutation matrix that performs the row exchanges of the matrix \(\mathbf{A}\) required during pivoting, \(\mathbf{L}\) is a unit lower band matrix, and \(\mathbf{U}\) is an upper band matrix. Here, \(0 \leq h_{1}<n\) and \(0 \leq h_{2}<n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvblu(a, n, nh1, nh2, epsz, \&is, ip, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input
Output & Matrix A. Stored in band storage format. See Array storage formats in the Introduction section for details. Alen \(=\left(2 h_{1}+h_{2}+1\right) n\). Matrix \((\mathbf{L}-\mathbf{I})+\mathbf{U}\). Stored in band storage format. See Array storage formats in the Introduction section for details. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nh1 & int & Input & Lower bandwidth \(h_{1}\) of matrix \(\mathbf{A}\). \\
\hline nh2 & int & Input & Upper bandwidth \(h_{2}\) of matrix \(\mathbf{A}\). \\
\hline epsz & double & Input & Tolerance \((\geq 0)\) for relative zero test of pivots in the decomposition process of matrix \(\mathbf{A}\). When epsz \(=0\), a standard value is used. See Comments on use. \\
\hline is & int & Output & Information available when calculating the determinant of matrix \(\mathbf{A}\). See Comments on use. \\
\hline ip & int ip[n] & Output & Transposition vector that provides the row exchanges that occurred during pivoting. See Comments on use. \\
\hline vw & double vw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline The co & list of condition cod & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
All the elements of a row of matrix A are zero, or \\
a pivot is relatively zero. It is probable that the \\
matrix is singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad\) nh1 \(<0\) or nh1 \(\geq \mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet \quad \mathrm{nh} 2<0\) or \(\mathrm{nh} 2 \geq \mathrm{n}\) & \\
& - epsz \(<0\)
\end{tabular}\(\quad\)\begin{tabular}{l}
\\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off. If, during the decomposition process, a pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon \(=20000\). Decomposition can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy.

\section*{Calculating the determinant}

The determinant of matrix \(\mathbf{A}\) is calculated by multiplying the value of argument is by the \(n\) diagonal elements of \(\mathbf{U}\) stored in array \(\mathbf{a}\) in the same locations as the diagonal elements of \(\mathbf{A}\).

\section*{ip}

In partial pivoting, this routine performs the actual exchange of the rows of array \(a\). If at the \(j\)-th step of the decomposition \((\mathrm{j}=1,2, \ldots, \mathrm{n}-1)\), the i -th row \((\mathrm{i} \geq \mathrm{j})\) is selected as the pivot row, the elements of array a corresponding to the \(i\)-th and \(j\)-th rows are interchanged. To show the history of exchanges, \(i\) is stored in \(\mathrm{ip}[\mathrm{j}-1]\).

\section*{Array storage area}

In order to save on storage, this routine stores the matrices in band storage format. However, when \(2 h_{1}+h_{2}+1 \geq n\), the routine c_dvalu requires less storage than this routine.

\section*{4. Example program}

This program solves a system of linear equations using LU decomposition, and checks the result. The determinant is also obtained.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(i,j) (i<j) ? i : j
\#define max(i,j) (i>j) ? i : j
\#define NMAX 100
\#define H1MAX 2
\#define H2MAX 2
MAIN__()
{
int ierr, icon;
int n, nh1, nh2, i, j, jmin, jmax, is, ip[NMAX];
double epsz, det, eps, sum;
double a[(2*H1MAX+H2MAX+1)*NMAX], b[NMAX], x[NMAX], vw[NMAX];
/* initialize matrix */
n = NMAX;
nh1 = H1MAX;
nh2 = H2MAX;
for (i=0;i<n*(2*nh1+nh2+1);i++)
a[i]=0;
for (i=0;i<n;i++) {
jmin = max(i-nh1,0);
jmax = min(i+nh2,n-1);
for (j=jmin;j<=jmax;j++)
a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i);
}
for (i=0;i<n;i++) {

```
```

        x[i] = i+1;
    }
    /* initialize constant vector b = a*x */
    for (i=0;i<n;i++) {
        jmin = max(i-nh1,0);
        jmax = min(i+nh2,n-1);
        sum = 0;
        for (j=jmin;j<=jmax;j++)
            sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j];
        b[i] = sum;
    }
    epsz = 1e-6;
    /* LU decomposition of system of equations */
    ierr = c_dvblu(a, n, nh1, nh2, epsz, &is, ip, vw, &icon);
    if (icon != 0) {
        printf("ERROR: c_dvblu failed with icon = %d\n", icon);
        exit(1)
    }*
    /* calculate determinant */
    det = is;
    for (i=0;i<n;i++) {
        det = det*a[i* (2*nh1+1+nh2)+nh1];
    }
    printf("Determinant: %7.4e\n", det);
    /* solve decomposed system of equations */
    ierr = c_dvblux(b, a, n, nh1, nh2, ip, &icon);
    if (icon != 0) {
        printf("ERROR: c_dvblux failed with icon = %d\n", icon);
        exit(1);
    }
    /* check solution vector */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((x[i]-b[i])/b[i]) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

LU decomposition is performed through LU decomposition of the outer product type. Consult the entry for VBLU in the Fortran SSL II Extended Capabilities User's Guide II and [42].

\section*{c_dvblux}

Solution of a system of linear equations with LU - decomposed band matrix.
```

ierr = c_dvblux(b, fa, n, nh1, nh2, ip,
\&icon);

```

\section*{1. Function}

This routine solves the linear system of equations
\[
\mathbf{A x}=\mathbf{b}
\]
where \(\mathbf{A}\) is an \(n \times n\) band matrix, with lower bandwidth \(h_{1}\) and upper bandwidth \(h_{2}\), through forward-substitution and backward-substitution, based on the decomposition
\[
\mathbf{P A}=\mathbf{L} \mathbf{U}
\]
obtained by LU-decomposition using Gaussian elimination.
\(\mathbf{P}\) is a permutation matrix that performs the row exchanges of the matrix \(\mathbf{A}\) required during pivoting, \(\mathbf{L}\) is a unit lower band matrix, and \(\mathbf{U}\) is an upper band matrix. Here, \(\mathbf{b}\) is a constant vector, \(\mathbf{x}\) is the solution vector, and \(0 \leq h_{1}<n\) and \(0 \leq\) \(h_{2}<n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvblux(b, fa, n, nh1, nh2, ip, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline b & double \(\mathrm{b}[\mathrm{n}]\) & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline fa & \begin{tabular}{l}
double \\
fa[Falen]
\end{tabular} & Input & Matrix \((\mathbf{L}-\mathbf{I})+\mathbf{U}\). Stored in band storage format. See Array storage formats in the Introduction section for details. Falen \(=\left(2 h_{1}+h_{2}+1\right) n\) \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nh1 & int & Input & Lower bandwidth \(h_{1}\) of matrix \(\mathbf{A}\). \\
\hline nh2 & int & Input & Upper bandwidth \(h_{2}\) of matrix \(\mathbf{A}\). \\
\hline ip & int ip[n] & Output & Transposition vector that provides the row exchanges that occurred during pivoting. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & The coefficient matrix is singular. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad n h 1<0\) or nh1 \(\geq \mathrm{n}\) \\
\(\bullet \quad \mathrm{nh} 2<0\) or \(\mathrm{nh} 2 \geq \mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline & \(\bullet\) error occurred in ip & \\
\hline
\end{tabular}

\section*{3. Comments on use}

A system of linear equations can be solved by calling the routine c_dvblu to LU-decompose the coefficient matrix before calling this routine. The input arguments fa and ip of this routine are the same as the output arguments a and ip of c_dvblu. Alternatively the system of linear equations can be solved by calling the single routine c_dvlbx.

\section*{4. Example program}

This program solves a system of linear equations using LU decomposition, and checks the result. The determinant is also obtained.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(i,j) (i<j) ? i : j
\#define max(i,j) (i>j) ? i : j
\#define NMAX 100
\#define H1MAX 2
\#define H2MAX 2
MAIN__()
{
int ierr, icon;
int n, nh1, nh2, i, j, jmin, jmax, is, ip[NMAX];
double epsz, det, eps, sum;
double a[(2*H1MAX+H2MAX+1)*NMAX], b[NMAX], x[NMAX], vw[NMAX];
/* initialize matrix */
n = NMAX;
nh1 = H1MAX;
nh2 = H2MAX;
for (i=0;i<n*(2*nh1+nh2+1);i++)
a[i] = 0;
for (i=0;i<n;i++) {
jmin = max(i-nh1,0);
jmax = min(i+nh2,n-1);
for (j=jmin;j<=jmax;j++)
a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i);
}
for (i=0;i<n;i++) {
x[i] = i+1;
}*
/* initialize constant vector b = a*x */
for (i=0;i<n;i++) {
jmin = max(i-nh1,0);
jmax = min(i+nh2,n-1);
sum = 0;
for (j=jmin;j<=jmax;j++)
sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j];
b[i] = sum;
}
epsz = 1e-6;
/* LU decomposition of system of equations */
ierr = c_dvblu(a, n, nh1, nh2, epsz, \&is, ip, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvblu failed with icon = %d\n", icon);
exit(1);
}
/* calculate determinant */
det = is;
for (i=0;i<n;i++) {
det = det*a[i*(2*nh1+1+nh2)+nh1];
}
printf("Determinant: %7.4e\n", det);

```
```

    /* solve decomposed system of equations */
    ierr = c_dvblux(b, a, n, nh1, nh2, ip, &icon);
    if (icon!= 0) {
        printf("ERROR: c_dvblux failed with icon = %d\n", icon);
        exit(1);
    }
    /* check solution vector */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((x[i]-b[i])/b[i]) > eps) {
            printf("WARNING: result inaccurate\n");
            exit(1);
        }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

The solution is obtained through forward and backward substitutions. Consult the entry for VBLUX in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvecvf}
```

Discrete convolution or correlation of complex data.
ierr = c_dvccvf(zx, k, n, m, zy, ivr, isw,
tab, \&icon);

```

\section*{1. Function}

This function performs one-dimensional complex discrete convolutions or correlations between a filter and multiple input data using discrete Fourier method.

The convolution and correlation of a filter \(y\) with a single input data \(x\) are defined as follows:

\section*{Convolution}
\[
z_{k}=\sum_{i=0}^{n-1} x_{k-i} y_{i}, \quad k=0, \ldots, n-1
\]

\section*{Correlation}
\[
z_{k}=\sum_{i=0}^{n-1} x_{k+i} \overline{y_{i}}, \quad k=0, \ldots, n-1
\]
where, \(x_{j}\) is a cyclic data with period \(n\). See Comments on use.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvccvf((dcomplex*)zx, k, n, m, zy, ivr, isw, tab, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{zx} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { dcomplex } \\
& \text { zx[m][k] }
\end{aligned}
\]} & Input & The \(m\) complex data sequences \(\left\{x_{j}\right\}\) are stored in \(\operatorname{zX}[\mathrm{i}][\mathrm{j}], \mathrm{i}=0, \ldots\) \(m-1, \mathrm{j}=0, \ldots, n-1\). \\
\hline & & Output & The \(m\) complex sequences \(\left\{z_{k}\right\}\) are stored in \(\mathbf{z x}[\mathrm{i}][\mathrm{k}], \mathbf{i}=0, \ldots\), \(m-1, \mathrm{k}=0, \ldots, n-1\). \\
\hline k & int & Input & \(C\) fixed dimension of array \(\mathrm{ZX}(\geq \mathrm{n})\). \\
\hline n & int & Input & The number of elements in one data sequence or in filter \(y\). See Comments on use. \\
\hline m & int & Input & The number of rows in the array \(\mathbf{z x}\). \\
\hline zy & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zy[n] }
\end{aligned}
\] & Input & Filter vector \(\left\{y_{i}\right\}\). The values of this array will be altered after calling with isw \(=0\) or 2 . See Comments on use. \\
\hline ivr & int & Input & \begin{tabular}{l}
Specify either convolution or correlation. \\
0 Convolution is calculated. \\
1 Correlation is calculated.
\end{tabular} \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. \\
0 all the procedure will be done at once. \\
If the calculation should be divided into step-by-step procedure, specify as follows. See Comments on use. \\
1 to prepare the array tab.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{llll}
tab & \begin{tabular}{l}
double \\
\(\operatorname{tab}[2 \times n]\)
\end{tabular} & Work & Trigonometric function table used for the transformation is stored. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
2 to perform the Fourier transform in array zy using the trigonometric function table tab.
3 to perform the convolution or correlation using the array \(z y\) and tab which are prepared in advance.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{n} \leq 0\) \\
& \(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
& \(\bullet \quad \mathrm{m} \leq 0\) \\
& \(\bullet \quad\) isw \(\neq 0,1,2,3\) & \\
& \(\bullet \quad\) ivr \(\neq 0,1\) & \\
& & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{To compute non-periodic convolution or correlation}

Non-periodic convolution or correlation can be calculated by this routine with padding the value of \(\mathrm{zx}[\mathrm{i}][\mathrm{j}], \mathrm{i}=0, \ldots\), \(m-1, \mathrm{j}=n_{x}, \ldots, n-1\) and \(\mathrm{zy}[\mathrm{k}], \mathrm{k}=n_{y}, \ldots, n-1\) with zeros, where \(n_{x}\) is the actual length of the data sequence, \(n_{y}\) is the actual length of the filter \(y\) and \(n\) must be larger or equal to \(n_{x}+n_{y}-1\). See Example Program.

The values of correlation \(z_{k}\), corresponding to \(k=-n_{y}+1, \ldots,-1\) are stored in \(\operatorname{zx}[i][j], i=0, \ldots, m-1, j=n-n_{y}+\) \(1, \ldots, n-1\) in this non-periodic case.

\section*{Recommended value of \(\mathbf{n}\)}

The \(n\) can be an arbitrary number, but the calculation is fast with the sizes which can be expressed as products of the powers of 2,3 , and 5 .

\section*{Efficient use of the array tab and zy}

When this routine will calculate convolution or correlation successively for a fixed value of \(n\), the trigonometric function table tab should be initialized once at first call with isw \(=0\) or 1 and should be kept intact for second and subsequent calls with \(i s w=2\) and 3 . This saves initialization procedure of array tab.

Furthermore, if the filter vector \(y\) is also fixed, the array \(z y\) which is transformed with isw \(=0\) or 2 can be reused for second and subsequent calls with isw \(=3\).

In these cases, the array \(z y\) must be transformed surely once.

\section*{To compute autocorrelation}

Autocorrelation or autoconvolution can be calculated by this routine with letting the filter array zy be identical to the data array ZX. In this case, specifying isw \(=2\) will be ignored. See Example Program.

\section*{Stack size}

This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack area runs out. The necessary size is \(16 \times \mathrm{n}\) byte.

It is recommended to specify the sufficiently large stacksize with "limit" or "ulimit" command under consideration that the stack area could be used for another work area of fixed size and for user's program also.

\section*{4. Example program}

Example 1) In this example, periodic convolution of a filter with three data vectors is calculated with \(n=8\).
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define K 8
\#define M 3
int MAIN__(void)
{
dcomplex zx[M][K], zy[K];
double tab[K*2];
int i, j, n;
int ivr, isw, icon;
n=K;
for (j=0; j<M; j++) {
for (i=0; i<n; i++) {
zx[j][i].re = i+j+1;
zx[j][i].im = i-j;
}
}
for (i=0; i<n; i++) {
zy[i].re = (i+1)* (i+1);
zy[i].im = 9-i;
}
printf("--INPUT DATA--\n");
for (j=0; j<M; j++) {
printf'("zx[%d][*] : ",j);
for (i=0; i<n; i++) {
if(i%4==0) printf("\n ");
printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
}
printf("\n");
}
printf("Filter zy : ");
for (i=0; i<n ; i++) {
if(i%4==0) printf("\n ");
printf("(%8.2f,%8.2f) ", zy[i].re, zy[i].im);
}
ivr = 0;
isw = 0;
c_dvccvf((dcomplex*)zx, K, n, M, zy, ivr, isw, tab, \&icon);
printf("\n\n--OUTPUT DATA--\n");
for (j=0; j<M; j++) {
printf("zx[%d][*] : ",j);
for (i=0; i<n; i++) {
if(i%4==0) printf("\n ");
printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
}
printf("\n");
}
}

```

Example 2) In this example, non-periodic convolution is calculated with \(n_{x}=7, n_{y}=9\) and \(n=16\).
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define K 16
\#define M 3
int MAIN__(void)
{
dcomplex zx[M][K], zy[K];
double tab[K*2];
int i, j, n, nx, ny;
int ivr, isw, icon;
nx=7, ny=9, n=nx+ny-1;
if(n%2) n=n+1;
for (j=0; j<M; j++) {
for (i=0; i<nx; i++) {
zx[j][i].re = i+j+1;
zx[j][i].im = i-j;
}
for (i=nx; i<n; i++) {
zx[j][i].re = 0.0;
zx[j][i].im = 0.0;
}
}
for (i=0; i<ny; i++) {
zy[i].re = (i+1)*(i+1);
zy[i].im = 9-i;
}
for (i=ny; i<n; i++) {
zy[i].re = 0.0;
zy[i].im = 0.0;
}
printf("--INPUT DATA--\n");
for (j=0; j<M; j++) {
printf("zx[%d][*] : ",j);
for (i=0; i<n; i++) {
if(i%4==0) printf("\n ");
printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
}
printf("\n");
}
printf("Filter zy : ");
for (i=0; i<n ; i++) {
if(i%4==0) printf("\n ");
printf("(%8.2f,%8.2f) ", zy[i].re, zy[i].im);
}
ivr = 0;
isw = 0;
c_dvccvf((dcomplex*)zx, K, n, M, zy, ivr, isw, tab, \&icon);
printf("\n\n--OUTPUT DATA--\n");
for (j=0; j<M; j++) {
printf("zx[%d][*] : ",j);
for (i=0; i<n; i++) {
if(i%4==0) printf("\n ");
printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
}
printf("\n");
}
}

```

Example 3) In this example, autocorrelation is calculated with \(n_{x}=4\).
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define K 8
\#define M 3
int MAIN__(void)
{

```
```

    dcomplex zx[M][K];
    double tab[K*2];
    int i, j, n, nx;
int ivr, isw, icon;
nx=4, n=nx*2;
for (j=0; j<M; j++) {
for (i=0; i<nx; i++) {
zx[j][i].re = i+j+1;
zx[j][i].im = i-j;
}
for (i=nx; i<n; i++) {
zx[j][i].re = 0.0;
zx[j][i].im = 0.0;
}
}
printf("--INPUT DATA--\n");
for (j=0; j<M; j++) {
printf("zx[%d][*] : ",j);
for (i=0; i<n; i++) {
if(i%4==0) printf("\n ");
printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
}
printf("\n");
}
ivr = 1;
isw = 1;
c_dvccvf((dcomplex*)zx, K, n, M, (dcomplex*)zx, ivr, isw, tab, \&icon);
isw=3;
c_dvccvf((dcomplex*)zx, K, n, M, (dcomplex*)zx, ivr, isw, tab, \&icon);
printf("\n--OUTPUT DATA--\n");
for (j=0; j<M; j++) {
printf("zx[%d][*] : ",j);
for (i=0; i<n; i++) {
if(i%4==0) printf("\n ");
printf("(%8.2f,%8.2f) ",zx[j][i].re, zx[j][i].im);
}
printf("\n");
}
}

```

\section*{5. Method}

For further information consult the entry for VCCVF in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvcfm1}
\begin{tabular}{|l|}
\hline One-dimensional discrete complex Fourier transforms (mixed radices of \\
\(2,3,5\) and 7). \\
\hline ierr \(=c _d v c f m 1(x, n\), \&isw, isn, w, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This function performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT.

The length of data transformed \(n\) is a product of the powers of \(2,3,5\) and 7 .

\section*{The one-dimensional Fourier transform}

When \(\left\{x_{j}\right\}\) is input, the transform defined by (1) below is calculated to obtain \(\left\{n \alpha_{k}\right\}\).
\[
\begin{align*}
n \alpha_{k}=\sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k} & , k=0,1, \ldots, n-1 \tag{1}\\
& , \omega_{n}=\exp (2 \pi i / n)
\end{align*}
\]

\section*{The one-dimensional Fourier inverse transform}

When \(\left\{\alpha_{k}\right\}\) is input, the transform defined by (2) below is calculated to obtain \(\left\{x_{j}\right\}\).
\[
\begin{align*}
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k} & , j=0,1, \ldots, n-1 \tag{2}\\
, & \omega_{n}=\exp (2 \pi i / n)
\end{align*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvcfm1(x, n, \&isw, isn, w, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline x & dcomplex \(\mathrm{x}[\mathrm{n}]\) & Input & Complex data. \\
\hline n & int & Input & The length of the data transformed. \\
\hline isw & int & Input & Control information. \\
\hline & & & \begin{tabular}{l}
isw=1 For the first call, to generate a trigonometric function table and control information in \(W\) and perform Fourier transform. \\
\(i s w \neq 1\) For the second or consecutive call, to perform Fourier transform for the data of the same length as in the first call. The contents in \(w\) must not be changed as the second or consecutive call uses the values in W generated in the first call.
\end{tabular} \\
\hline & & Output & When isw is set to 1 , isw is set to zero after performing transform. \\
\hline isn & int & Input & \begin{tabular}{l}
Either the transform or the inverse transform is indicated. \\
1 for the transform. \\
-1 for the inverse transform.
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
The value of n in second or consecutive call is \\
different from that of first call.
\end{tabular} & Bypassed. \\
\hline 30000 & The value of isn is incorrect. & \\
\hline 30008 & The order of transform is not radix \(2 / 3 / 5 / 7\). & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General definition of Fourier transform}

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).
\[
\begin{gather*}
\alpha_{k}=\frac{1}{n} \sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k} \quad, k=0,1, \ldots, n-1 \tag{3}\\
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k} \quad, j=0,1, \ldots, n-1 \tag{4}
\end{gather*}
\]
where, \(\omega_{n}=\exp (2 \pi i / n)\).

This function calculates \(\left\{n \alpha_{k}\right\}\) or \(\left\{x_{j}\right\}\) corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

\section*{Use of the array w}

When this routine is called successively with a fixed value of n , the trigonometric function table in w , which is initialized at the first call with \(i s w=1\), is reused for the subsequent calls with \(i s w \neq 1\).
Note that the array w is also used as a read-write work area even for the sebsequent calls.

\section*{4. Example program}

A one-dimensional FFT is computed.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define N 640
\#define max(a,b) ((a) > (b) ? (a) : (b))
int MAIN__(void)
{
dcomplex x[N], w[N*2+70], tmp;
double error;
int isw, isn, icon, i;
for (i=0; i<N; i++) {

```
```

        x[i].re=(double)(i+1)/(double)N;
        x[i].im=0.0;
    }
    /* do the forward transform */
    isw=1, isn=1;
    c_dvcfm1(x, N, &isw, isn, w, &icon);
    if (icon != 0) {
        printf("icon = %d",icon);
        exit(1);
    }
    /* do the reverse transform */
    isn=-1;
    c_dvcfm1(x, N, &isw, isn, w, &icon);
    if (icon != 0) {
        printf("icon = %d",icon);
        exit(1);
    }
    error = 0.0;
    for (i=0; i<N; i++) {
        tmp.re = fabs(x[i].re/(double)N - (double)(i+1)/(double)N);
        tmp.im = fabs(x[i].im/(double)N);
        tmp.re += tmp.im;
        error=max(error,tmp.re);
    }
    printf("error = %e\n", error);
    }

```

\section*{5. Method}

For further information consult the entry for VCFM1 in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dveft1}
```

Discrete complex Fourier transform (radix 2 FFT).
ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw,
\&icon);

```

\section*{1. Function}

Given one dimensional (n-term) complex time series data \(\left\{x_{j}\right\}\), this function computes the discrete complex Fourier transform or its inverse by the Fast Fourier Transform (FFT) using a method suited to a vector processor. It is assumed that \(n=2^{\ell}\), where \(\ell\) is a non-negative integer.

\section*{Fourier transform}

When \(\left\{x_{j}\right\}\) is provided, the transform defined below is used to obtain \(\left\{n a_{k}\right\}\).
\[
n a_{k}=\sum_{j=0}^{n-1} x_{j} \cdot \omega^{-j k}, \quad k=0,1, \ldots, n-1
\]
where \(\omega=e^{2 \pi i / n}\).

\section*{Fourier inverse transform}

When \(\left\{a_{k}\right\}\) is provided, the transform defined below is used to obtain \(\left\{x_{j}\right\}\).
\[
x_{j}=\sum_{k=0}^{n-1} a_{k} \cdot \omega^{j k}, \quad j=0,1, \ldots, n-1
\]
where \(\omega=e^{2 \pi i / n}\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{a} & \multirow[t]{2}{*}{double \(\mathrm{a}[\mathrm{n}]\)} & Input & Real part of \(\left\{x_{i}\right\}\) or \(\left\{a_{k}\right\}\) \\
\hline & & Output & Real part of \(\left\{n a_{k}\right\}\) or \(\left\{x_{i}\right\}\) \\
\hline \multirow[t]{2}{*}{b} & \multirow[t]{2}{*}{double \(\mathrm{b}[\mathrm{n}]\)} & Input & Imaginary part of \(\left\{x_{i}\right\}\) or \(\left\{a_{k}\right\}\) \\
\hline & & Output & Imaginary part of \(\left\{n a_{k}\right\}\) or \(\left\{x_{i}\right\}\) \\
\hline n & int & Input & Number of terms n of the transform. \\
\hline isn & int & Input & Indicates that the transform (isn=+1) or the inverse transform (isn=-1) is to be performed. See Comments on use \\
\hline isw & int & Input & \begin{tabular}{l}
Information controlling the initial state of the transform. Specified by: \\
0 for the first call \\
1 for the second and subsequent calls. \\
See Comments on use.
\end{tabular} \\
\hline VW & \begin{tabular}{l}
double \\
Vw [Rlen]
\end{tabular} & Work & Rlen \(=\max (n \cdot \ell, 1)\). \\
\hline
\end{tabular}
\begin{tabular}{llll}
ivw & int ivw[Ilen] & Work & Ilen \(=n \cdot \max (\ell-3,2)\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad\) isn \(=0\) \\
& \(\bullet \quad\) isw \(\neq 0\) or 1 \\
& \(\bullet \quad \mathrm{n} \neq 2^{\ell}(\ell \geq 0\) is an integer \()\). & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Use of this function}

This function performs the high-speed calculation of a complex FFT on a vector processor. Other routines might be more appropriate on a general purpose computer.

\section*{isw}

When multiple transforms are calculated, specify isw \(=1\) for the second and subsequent function calls. This enables the function to bypass the steps for generating a trigonometric table and a list vector, both of which are needed for the transform, thus improving processing efficiency. The contents of arrays VW and ivw must not be modified between function calls.

Even if the number of terms \(n\) of each of the multiple transforms varies, specifying isw \(=1\) improves processing efficiency. However, transforms with the same number of terms should be executed consecutively for the highest efficiency.

When calling this function together with the real Fourier transform function c_dvrft1, specifying isw \(=1\) improves processing efficiency.

\section*{isn}

Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used for strided access through data. Therefore, if the real and imaginary parts of \(\left\{x_{j}\right\}\) or \(\left\{n a_{k}\right\}\) are stored at intervals of length \(i\), specify isn \(=+i\) for a transform and isn \(=-i\) for an inverse transform. The results will be stored at intervals of length \(i\). Note however that when \(i>1\), it is also necessary for the length of the work array VW to be at least \(n \cdot(\ell+2)\).

When using a vector processor, the interval stride \(i\) should take the values \(i=2 p+1\), for \(p=1,2,3, \ldots\).

\section*{Work array size conversion table}

The table for \(16 \leq n \leq 4096\) is as follows. Figures in () are the lengths when \(\mid\) isn \(\mid>1\).
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{\(\ell\)} & \multicolumn{1}{|c|}{\(n\)} & \multicolumn{1}{c|}{ Length of VW } & \multicolumn{1}{c|}{\begin{tabular}{c}
Length of \\
ivw
\end{tabular}} \\
\hline 4 & 16 & \(64(96)\) & 32 \\
\hline 5 & 32 & \(160(224)\) & 64 \\
\hline 6 & 64 & \(384(512)\) & 192 \\
\hline 7 & 128 & \(896(1152)\) & 512 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{\(\ell\)} & \(n\) & \multicolumn{1}{c|}{ Length of VW } & \begin{tabular}{c}
Length of \\
ivW
\end{tabular} \\
\hline 8 & 256 & \(2048(2560)\) & 1280 \\
\hline 9 & 512 & \(4608(5632)\) & 3072 \\
\hline 10 & 1024 & \(10240(12288)\) & 7168 \\
\hline 11 & 2048 & \(22528(26624)\) & 16384 \\
\hline 12 & 4096 & \(49152(57344)\) & 36864 \\
\hline
\end{tabular}

\section*{General definition of Fourier transform}

The discrete complex Fourier transform and its inverse transform can be defined as shown below in (1) and in (2) respectively.
\[
\begin{gather*}
a_{k}=\frac{1}{n} \cdot \sum_{j=0}^{n-1} x_{j} \cdot \omega^{-j k}, \quad k=0,1, \ldots, n-1 \tag{1}\\
x_{j}=\sum_{k=0}^{n-1} a_{k} \cdot \omega^{j k}, \quad j=0,1, \ldots, n-1 \tag{2}
\end{gather*}
\]
where \(\omega=e^{2 \pi i / n}\).

This function computes \(\left\{n a_{k}\right\}\) or \(\left\{x_{j}\right\}\) corresponding to the left hand side of (1) or (2). The user is responsible for normalizing the result, if required.

\section*{4. Example program}

This program computes a 1-D FFT on 1024 elements, where the real and imaginary parts are chosen at random. The inverse transform is then computed and the normalized results of this are compared with the original data values.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 1024
MAIN__()
{
int ierr, icon;
double phai, ran, eps;
double a[NMAX], b[NMAX], aa[NMAX], bb[NMAX], vw[NMAX*10];
int i, n, isw, isn, ivw[NMAX*(10-3)];
/* generate initial data */
n = NMAX;
phai = (sqrt(5.0)-1.0)/2;
for (i=0;i<n;i++) {
ran = (i+1)*phai;
a[i] = ran - (int)ran;
ran = (i+n+1)*phai;
b[i] = ran - (int)ran;
}
for (i=0;i<n;i++) {
aa[i] = a[i];
bb[i] = b[i];
}
/* perform normal transform */
isw = 0;
isn = 1;
ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw, \&icon);

```
```

    /* perform inverse transform */
    isw = 1;
    isn = -1;
    ierr = c_dvcft1(a, b, n, isn, isw, vw, ivw, &icon);
    /* check results */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if ((fabs((a[i]/n - aa[i])/aa[i]) > eps) ||
            (fabs((b[i]/n - bb[i])/bb[i]) > eps)) {
        printf("Inaccurate result\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

For further information consult the entry for VCFT1 in the Fortran SSL II Extended Capabilities User's Guide and [110].

\section*{c_dveft2}
```

Discrete complex Fourier transform (memory efficient, radix 2 FFT)
ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw,
\&icon);

```

\section*{1. Function}

Given one dimensional (\(n\)-term) complex time-series data \(\left\{x_{j}\right\}\), this routine computes the discrete complex Fourier transform or its inverse transform by the Fast Fourier Transform (FFT) using a method suited to a vector processor. It is assumed that \(n=2^{\ell}\), where \(\ell\) is a non-negative integer.

\section*{Fourier transform}

When \(\left\{x_{j}\right\}\) is input, the transform defined below is used to obtain the Fourier coefficients \(\left\{n a_{k}\right\}\).
\[
n a_{k}=\sum_{j=0}^{n-1} x_{j} \omega^{-j k}, \quad k=0,1, \ldots, n-1,
\]
where \(\omega=e^{2 \pi i / n}\).

\section*{Fourier inverse transform}

When \(\left\{a_{k}\right\}\) is input, the transform defined below is used to obtain \(\left\{x_{j}\right\}\).
\[
x_{j}=\sum_{k=0}^{n-1} a_{k} \omega^{j k}, \quad j=0,1, \ldots, n-1,
\]
where \(\omega=e^{2 \pi i / n}\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[n] & Input & Real part of \(\left\{x_{j}\right\}\) or \(\left\{a_{k}\right\}\). \\
\hline & & Output & Real part of \(\left\{n a_{k}\right\}\) or \(\left\{x_{i}\right\}\). \\
\hline b & double b[n] & Input & Imaginary part of \(\left\{x_{i}\right\}\) or \(\left\{a_{k}\right\}\). \\
\hline & & Output & Imaginary part of \(\left\{n a_{k}\right\}\) or \(\left\{x_{i}\right\}\). \\
\hline n & int & Input & Number of terms \(n\) of the transform. \\
\hline isn & int & Input & Control information, indicating that the transform or the inverse transform is to be performed (isn \(\neq 0\)). \\
\hline & & & isn = 1 for transform, \\
\hline & & & isn \(=-1\) for inverse transform. \\
\hline & & & See Comments on use. \\
\hline isw & int & Input & Control information, indicating the initial state of the transform. \\
\hline & & & isw \(=0\) for first call, \\
\hline & & & isw \(=1\) for the second and subsequent calls. \\
\hline & & & See Comments on use. \\
\hline
\end{tabular}
\begin{tabular}{llll}
Vw & double \(\mathrm{VW}[5 \mathrm{n}]\) & Work & \\
ivw & int ivw[3n] & Work & \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad\) isn \(=0\) \\
& \(\bullet \quad\) isw \(\neq 0\) or 1 \\
& \(\bullet \quad \mathrm{n} \neq 2^{\ell}\), with \(\ell\) a non-negative integer. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Use of this routine}

This routine performs the high-speed calculation of a complex Fourier transform on a vector processor. On a generalpurpose computer other routines may be more appropriate.

This routine is suitable for calculating only a single transform. The work array area is limited to the required minimum; it is a memory-efficient routine. For multiple transforms, if there is sufficient work array area available, the highperformance routine c_dvcft1 is more suitable.

\section*{isn}

Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used for strided access through data. Therefore, if the real and imaginary parts of \(\left\{x_{j}\right\}\) or \(\left\{a_{k}\right\}\) are stored at intervals of length \(i\), specify isn \(=+i\) for a transform and isn \(=-i\) for an inverse transform. The results will be stored at intervals of length \(i\). Note, however, that when \(i>1\), it is also necessary for the length of the work array VW to be at least \(7 n\).

When using a vector processor, the interval stride \(i\) should take a value of the form \(i=2 p+1, p=1,2,3, \ldots\) for more efficient memory access.

\section*{isw}

When multiple transforms are calculated, specify isw \(=1\) for the second and subsequent routine calls. This enables the routine to bypass the steps generating a trigonometric table and a list vector, both of which are needed for the transform, thus improving processing efficiency. The contents of arrays VW and ivw must not be changed between routine calls.

Even if the number of terms \(n\) of each of the multiple transforms varies, specifying isw \(=1\) improves processing efficiency. However, transforms with the same number of terms should be executed consecutively for the highest efficiency.

When calling this routine together with the real Fourier transform routine \(c _d v r f t 2\), specifying isw \(=1\) improves processing efficiency.

\section*{Work array size conversion table}

The table for \(16 \leq \mathrm{n} \leq 4096\) is as follows. Figures in () are the lengths when \(\mid\) isn \(\mid>1\).
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{\(\ell\)} & \multicolumn{1}{|c|}{\(n\)} & Length of VW & \multicolumn{1}{c|}{\begin{tabular}{c}
Length of \\
ivw
\end{tabular}} \\
\hline 4 & 16 & \(80(112)\) & 48 \\
\hline 5 & 32 & \(160(224)\) & 96 \\
\hline 6 & 64 & \(320(448)\) & 192 \\
\hline 7 & 128 & \(640(896)\) & 384 \\
\hline 8 & 256 & \(1280(1792)\) & 768 \\
\hline 9 & 512 & \(2560(3584)\) & 1536 \\
\hline 10 & 1024 & \(5120(7168)\) & 3072 \\
\hline 11 & 2048 & \(10240(14336)\) & 6144 \\
\hline 12 & 4096 & \(20480(28672)\) & 12288 \\
\hline
\end{tabular}

\section*{General definition of Fourier transform}

The discrete complex Fourier transform and its inverse transform can be defined as in (1) and (2) respectively:
\[
\begin{align*}
a_{k} & =\frac{1}{n} \sum_{j=0}^{n-1} x_{j} \omega^{-j k}, \quad k=0,1, \ldots, n-1, \tag{1}\\
x_{j} & =\sum_{k=0}^{n-1} a_{k} \omega^{j k}, \quad j=0,1, \ldots, n-1, \tag{2}
\end{align*}
\]
where \(\omega=e^{2 \pi i / n}\).

This routine obtains \(\left\{n a_{k}\right\}\) or \(\left\{x_{j}\right\}\) corresponding to the left hand side of (1) or (2) respectively. The user is responsible for normalizing the result, if required.

\section*{4. Example program}

This program performs the Fourier transform followed by the inverse transform and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 1024
MAIN__()
{
int ierr, icon;
double phai, ran, eps;
double a[NMAX], b[NMAX], aa[NMAX], bb[NMAX], vw[NMAX*5];
int i, n, isw, isn, ivw[NMAX*3];
/* generate initial data */
n = NMAX;
phai = (sqrt(5.0)-1.0)/2;
for (i=0;i<n;i++) {
ran = (i+1)*phai;
a[i] = ran - (int)ran;
ran = (i+n+1)*phai;
b[i] = ran - (int)ran;
}
for (i=0;i<n;i++) {
aa[i] = a[i];

```
```

        bb[i] = b[i];
    }
    /* perform normal transform */
    isw = 0;
    isn = 1;
    ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw, &icon);
    /* perform inverse transform */
    isw = 1;
    isn = -1;
    ierr = c_dvcft2(a, b, n, isn, isw, vw, ivw, &icon);
    /* check results */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if ((fabs((a[i]/n - aa[i])/aa[i]) > eps) ||
            (fabs((b[i]/n - bb[i])/bb[i]) > eps)) {
            printf("Inaccurate result\n");
            exit(1);
        }
    printf("Result OK\n");
    return(0)
    }

```

\section*{5. Method}

Consult the entry for VCFT2 in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvcft3}

One-dimensional discrete complex Fourier transforms
(Radix 2, for data sequence with a constant stride).
```

ierr = c_dvcft3(x, n, ndist, \&isw, isn, w,
\&icon);

```

\section*{1. Function}

This routine c_dvcft3 performs a one-dimensional complex Fourier transform or its inverse transform using a radix 2 FFT.

The length of data transformed \(n\) is a power of 2 .
The one-dimensional Fourier transform
When \(\left\{x_{j}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{n \alpha_{k}\right\}\).
\[
n a_{k}=\sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k}, \quad k=0,1, \ldots, n-1,
\]
where \(\omega_{n}=\exp (2 \pi i / n)\).

\section*{The one-dimensional Fourier inverse transform}

When \(\left\{\alpha_{k}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{x_{j}\right\}\).
\[
x_{j}=\sum_{k=0}^{n-1} a_{k} \omega_{n}^{j k}, \quad j=0,1, \ldots, n-1,
\]
where \(\omega_{n}=\exp (2 \pi i / n)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvcft3(x, n, ndist, \&isw, isn, w, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline X & ```
dcomplex
x[(n-1)*ndist
+1]
``` & Input & Complex data. The data \(\left\{x_{j}\right\}\) or \(\left\{\alpha_{k}\right\}\) to be transformed is stored in \(\mathrm{x}[0], \mathrm{x}[\) ndist \(], \ldots, \mathrm{x}[(n-1) *\) ndist . \\
\hline & & Output & \begin{tabular}{l}
Complex data. Transformed data \(\left\{n \alpha_{k}\right\}\) or \(\left\{x_{j}\right\}\) is stored in \(\mathrm{X}[0]\), x[ndist], .., x[(n-1)*ndist]. \\
This is a complex one-dimensional array.
\end{tabular} \\
\hline n & int & Input & Number of terms \(n\) of the transform. \\
\hline ndist & int & Input & The stride size of data sequence in the array \(x\). Positive integer. ndist \(=1\) : Data sequence is stored consecutively in the array \(x\). \\
\hline isw & int & Input & Control information. isw \(=1\) : For the first call, to generate a trigonometric function table and control information in w and perform Fourier transform. isw \(\neq 1\) : For the second or consecutive call, to perform Fourier \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[b]{2}{*}{Output} & transform for the data of the same length as in the first call. The contents in w must not be changed as the second or consecutive call uses the values in w generated in the first call. \\
\hline & & & When isw is set to 1 , isw is set to zero after performing transform. Therefore the second or consecutive transform for new data in \(X\) can be performed easily without setting isw. \\
\hline isn & & Input & \begin{tabular}{l}
Either the transform or the inverse transform is indicated. isn \(=1\) for the transform \\
isn \(=-1\) for the inverse transform
\end{tabular} \\
\hline W & \[
\begin{aligned}
& \text { dcomplex } \\
& w[2 n+70]
\end{aligned}
\] & Work & \begin{tabular}{l}
When isw is set to 1 , the trigonometric function table for data length n is generated into w . \\
Otherwise the contents generated in the first call is reused. \\
See Comments on use.
\end{tabular} \\
\hline icon & int & Output & Condition code. See below. \\
\hline The co & e list of condi & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l} 
The value of \(n\) in second or consecutive call is \\
different from that of first call.
\end{tabular} & Bypassed. \\
\hline 30000 & \begin{tabular}{l} 
The value of isn is incorrect. ndist is not a positive \\
integer.
\end{tabular} \\
\hline 30008 & \begin{tabular}{l} 
The length of data sequence to be transformed is \\
not a power of 2.
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General definition of Fourier transform}

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (1) and (2):
\[
\begin{align*}
a_{k} & =\frac{1}{n} \sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k},  \tag{1}\\
x_{j} & =\sum_{k=0}^{n-1} a_{k} \omega_{n}^{j k}, \tag{2}
\end{align*}
\]
where \(\omega_{n}=\exp (2 \pi i / n)\).
This routine calculates \(\left\{n a_{k}\right\}\) or \(\left\{x_{j}\right\}\) corresponding to the left term of (1) or (2) respectively. Normalization of the results may be required.

\section*{Use of the array \(w\)}

When this routine is called successively with a fixed value of n , the trigonometric function table in w , which is initialized at the first call with isw=1, is reused for the subsequent calls with isw \(\neq 1\).
Note that the array W is also used as a read-write work area even for the sebsequent calls.

\section*{4. Example program}

One-dimensional FFTs are computed for plural data sequences with a constant stride.
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h"
\#define N 1024
\#define MULT 16
\#define NPAD 3
\#define NDIST (MULT+NPAD)
\#define max(a,b) ((a) > (b) ? (a) : (b))
MAIN__()
{
dcomplex x[N][NDIST],w[2*N+70];
int i,j;
int isw,icon,ierr;
double tmp;
for(j=0;j<MULT;j++)
for(i=0;i<N;i++) {
x[i][j].re=i/((double)N)+j;
x[i][j].im=0.0;
}
/*
multiple forward transform
*/
isw=1;
for(j=0;j<MULT;j++) {
ierr=c_dvcft3((dcomplex*)\&x[0][j],N,NDIST,\&isw,1,w,\&icon);
if(icon!=0) printf("icon=%d\n",icon);
/*
multiple reverse transform
*/
for(j=0;j<MULT;j++) {
ierr=c_dvcft3((dcomplex*)\&x[0][j],N,NDIST,\&isw, -1, w, \&icon);
if(icon!=0) printf("icon=%d\n",icon);
}
tmp=0.0;
for(j=0;j<MULT;j++) {
for(i=0;i<N;i++) {
tmp=max(tmp,fabs(x[i][j].re/N-(i/((double)N)+j))+fabs(x[i][j].im/N));
}
}
printf("error = %le\n",tmp);
return 0;
}

```

\section*{5. Method}

Consult the entry for VCFT3 in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvcgd}
\[
\begin{aligned}
& \begin{array}{l}
\text { Solution of a system of linear equations with a symmetric positive } \\
\text { definite sparse matrix (preconditioned CG method, diagonal storage } \\
\text { format). }
\end{array} \\
& \hline \text { ierr = c_dvcgd(a, k, nw, n, ndlt, b, ipc, } \\
& \text { itmax, isw, omega, eps, iguss, x, } \\
& \text { \&iter, \&rz, vw, ivw, \&icon); } \\
& \hline
\end{aligned}
\]

\section*{1. Function}

This function solves a system of linear equations (1) using the preconditioned conjugate gradient (CG) method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) real normalized symmetric positive definite sparse matrix, \(\mathbf{b}\) is a real constant vector and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvcgd((double*)a, k, nw, n, ndlt, b, ipc, itmax, isw, omega, eps,
iguss, x, \&iter, \&rz, vw, ivw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double
\[
a[n w][k]
\] & Input & Sparse matrix A stored in diagonal normalized symmetric positive definite storage format. See Comments on use. \\
\hline & & Output & The contents of the array are altered on output when ipc=3. \\
\hline k & int & Input & C fixed dimension of array a ( \(\geq \mathrm{n}\) ). \\
\hline nw & int & Input & The number of diagonal vectors in the coefficient matrix \(\mathbf{A}\) having nonzero elements (excluding the main diagonal), i.e. the lower bandwidth plus the upper bandwidth. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline ndlt & int ndlt[nw] & Input & Indicate the distance from the main diagonal vector. See Comments on use. \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline ipc & int & Input & \begin{tabular}{l}
Preconditioner control information. See Comments on use. \\
1 No preconditioner. \\
2 Neumann preconditioner. \\
3 Preconditioner with incomplete Cholesky decomposition. In this case, omega must be specified.
\end{tabular} \\
\hline itmax & int & Input & Upper limit of iterations. \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. See Comments on use. \\
1 Initial call. \\
2 Subsequent calls. \\
The arrays, a, ndlt, vw and ivw, must NOT be changed as the values set on the initial call are reused.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline omega & double & Input & Modification factor for incomplete Cholesky decomposition, \(0 \leq\) omega \(\leq 1\). Only use when ipc=3. See Comments on use. \\
\hline eps & double & Input & \begin{tabular}{l}
Tolerance for convergence test. \\
When eps is zero or less, eps is set to \(\varepsilon \cdot\|\mathbf{b}\|\), with \(\varepsilon=10^{-6}\). See Comments on use.
\end{tabular} \\
\hline iguss & int & Input & Control information on whether to start the computation with input values in array x . When iguss \(\neq 0\) then starts computation with input from array. \\
\hline X & double \(\times[\mathrm{n}]\) & Input Output & The starting values for the computation. This is optional, see iguss. Solution vector \(\mathbf{x}\). \\
\hline iter & int & Output & Total number of iterations performed. \\
\hline rz & double & Output & The square root of residual, \(r z\), after convergence. See Comments on use. \\
\hline VW & \begin{tabular}{l}
double \\
vw [Vwlen]
\end{tabular} & Work & When \(\mathrm{ipc}=3\), Vwlen \(=\mathrm{k} *(\mathrm{nw}+6)+2^{*}\) nband otherwise Vwlen \(=\mathrm{k} * 5+2\) * nband nband is size of the lower or upper bandwidth. \\
\hline ivw & int ivw[Ivwlen] & Work & Ivwlen \(=(\mathrm{k}+1) * 4\) \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20001 & Reached set maximum number of iterations. & \multirow[t]{2}{*}{\begin{tabular}{l}
Processing stopped. \\
The approximate solution obtained up to this stage is returned, but its precision is not guaranteed.
\end{tabular}} \\
\hline 20003 & Break down occurred. & \\
\hline 30003 & itmax \(\leq 0\) & \multirow[t]{15}{*}{Processing stopped.} \\
\hline 30005 & \(\mathrm{k}<\mathrm{n}\) & \\
\hline 30006 & Could not perform incomplete \(\mathbf{L} \mathbf{L}^{\mathrm{T}}\) decomposition. & \\
\hline 30007 & Pivot is negative. & \\
\hline 30089 & \(n \mathrm{w}\) is not an even number. & \\
\hline 30091 & nband \(=0\) & \\
\hline 30092 & \(\mathrm{nW} \leq 0, \mathrm{n} \leq 0\) & \\
\hline 30093 & \(\mathrm{k} \leq 0\) & \\
\hline 30096 & omega \(<0\) or omega \(>1\) & \\
\hline 30097 & ipc \(<1\) or ipc \(>3\) & \\
\hline 30102 & Upper triangular part is not correctly stored. & \\
\hline 30103 & Lower triangular part is not correctly stored. & \\
\hline 30104 & The number of super-diagonals in upper triangular part is not equal to sub-diagonals in the lower triangular part. & \\
\hline 30105 & isw \(=1\) or 2 & \\
\hline 30200 & abs(ndlt[i]) \(>\mathrm{n}-1\) or ndlt[i] \(=0 ; 0 \leq \mathrm{i}<\mathrm{nw}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a and ndlt}

The sparse matrix \(\mathbf{A}\) is normalized in such a way that the main diagonal elements are ones. The non-zero elements other than the main diagonal elements are stored using the diagonal storage format. For details on normalization of systems of linear equations and the diagonal normalized symmetric positive definite storage format, see the Array storage formats section of the Introduction.

\section*{isw}

When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with \(i p c=3\), the solution on the first call is with isw=1, and solutions on subsequent calls are with isw=2. In subsequent calls, the result of the incomplete Cholesky decomposition obtained on the initial call is reused.

\section*{eps and rz}

The solution is assumed to have converged in the \(m\)-th iteration when (2), the square root of residual \(r z\) is less than the set tolerance, eps:
\[
\begin{align*}
\mathrm{rz} & =\sqrt{r z}<\mathrm{eps}  \tag{2}\\
\mathbf{r} & =\mathbf{b}-\mathbf{A} \mathbf{x}_{m} \tag{3}
\end{align*}
\]

The residual vector \(\mathbf{r}\) for the solution at the \(m\)-th iteration is obtained from (3) and with the preconditioner matrix \(\mathbf{M}, r z\) is calculated by equation (4).
\[
\begin{equation*}
r z=\mathbf{r}^{\mathrm{T}} \mathbf{M}^{-1} \mathbf{r} \tag{4}
\end{equation*}
\]

\section*{ipc and omega}

Two types of preconditioners and a no-preconditioner option are provided.
Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a preconditioner based on an incomplete Cholesky decomposition to obtain the solution.

If \(\mathbf{A}=\mathbf{I}-\mathbf{N}\), the preconditioner \(\mathbf{M}\) of the linear equation \((\mathbf{I}-\mathbf{N}) \mathbf{x}=\mathbf{b}\) is as follows for the different values of ipc:
1. No preconditioner, \(\mathbf{M}=\mathbf{I}\).
2. Neumann, \(\mathbf{M}^{-1}=(\mathbf{I}+\mathbf{N})\).
3. Incomplete Cholesky decomposition, \(\mathbf{M}=\mathbf{L} \mathbf{L}^{\mathrm{T}}\).

When \(\mathrm{ipc}=2\), the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix \((\mathbf{I}+\mathbf{N})\) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not improve the convergence when the preconditioner does not approximate the inverse matrix of \(\mathbf{A}\) in some situations such that the maximum absolute value of the eigenvalues of the matrix \(\mathbf{N}\) is larger than one.

When ipc \(=3\), the user must provide a value for omega \((0 \leq\) omega \(\leq 1)\). For values of omega, 0 gives the incomplete Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the two decompositions.

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was found empirically to be in the range of 0.92 to 1.00 .

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define UBANDW 2
MAIN__()
{
double one=1.0, bcoef=10.0, eps=1.e-6;
int ierr, icon, nw, nub, n, i, j, k;
int ipc, itmax, isw, iguss, iter;
int ndlt[2 * UBANDW], ivw[4 * (NMAX + 1)];
double sum, omega, rz;
double a[2 * UBANDW][NMAX], b[NMAX], x[NMAX];
double vW[NMAX*(2 * UBANDW' + 6) + 2 * UBANDW];
/* initialize normalized symmetric matrix and vector */
nub = UBANDW;
nw = nub + nub;
n = NMAX;
k = NMAX;
for (i=0; i<nub; i++) {
for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
for (j=n-i; j<n ; j++) a[i][j] = 0.0;
ndlt[i] = i;
for (j=0; j<i; j++) a[nub + i][j] = 0.0;
for (j=i; j<n; j++) a[nub + i][j] = -1.0;
ndlt[nub + i] = -i;
}
for (j=0; j<n; j++) {
sum = bcoef;
for (i=0; i<nw; i++) sum -= a[i][j];
for (i=0; i<nw; i++) a[i][j] /= sum;
b[j] = bcoef / sum;
}*
/* solve the system of linear equations */
ipc = 3;
itmax = 8 * (int) sqrt ((double) n + 0.1);
isw = 1;
omega = 0.98;
iguss = 0;
ierr = c_dvcgd ((double*)a, k, nw, n, ndlt, b, ipc, itmax, isw,
omega, eps, iguss, x, \&iter, \&rz, vw, ivw, \&icon);
if (icon != 0) {
printf("
}
/* check vector */
for (i=0;i<n;i++)
if (fabs(x[i]-one) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

The standard conjugate gradient algorithm is used, see [42]. For the preconditioner method based on the incomplete Cholesky decomposition, see [77]. For further information consult the entry for VCGD in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvcge}
\[
\begin{aligned}
& \begin{array}{l}
\text { Solution of a system of linear equations with a symmetric positive } \\
\text { definite sparse matrix (preconditioned CG method, ELLPACK storage } \\
\text { format). }
\end{array} \\
& \hline \text { ierr = c_dvcge(a, k, nw, n, icol, b, ipc, } \\
& \text { itmax, isw, omega, eps, iguss, x, } \\
& \text { \&iter, \&rz, vw, ivw, \&icon); } \\
& \hline
\end{aligned}
\]

\section*{1. Function}

This function solves a system of linear equations (1) using the preconditioned conjugate gradient (CG) method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) real normalized symmetric positive definite sparse matrix, \(\mathbf{b}\) is a real constant vector and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvcge((double*)a, k, nw, n, (int*)icol, b, ipc, itmax, isw, omega, eps, iguss, x, \&iter, \&rz, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
\(a[n w][k]\)
\end{tabular} & Input & Sparse matrix A stored in the ELLPACK normalized symmetric positive definite storage format. See Comments on use. \\
\hline & & Output & The contents of the array are altered on output when ipc=3. \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline nW & int & Input & \begin{tabular}{l}
The size of the first dimension of array \(a\). \\
When the maximum number of non-zero elements of the row vector for the upper triangular matrix is \(N S U\) and \(N S L\) for the lower triangular, then \(\mathrm{nw}=2 \cdot \max (N S U, N S L)\). See Comments on use.
\end{tabular} \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline icol & \[
\begin{aligned}
& \text { int } \\
& \text { icol[nw][k] }
\end{aligned}
\] & Input & Column indices used in the ELLPACK format, showing to which column vector the elements corresponding to a belong. See Comments on use . \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline ipc & int & Input & \begin{tabular}{l}
Preconditioner control information. See Comments on use. \\
1 No preconditioner. \\
2 Neumann preconditioner. \\
3 Preconditioner with incomplete Cholesky decomposition. In this case, omega must be specified.
\end{tabular} \\
\hline itmax & int & Input & Upper limit of iterations. \\
\hline isw & int & Input & Control information. See Comments on use. \\
\hline & & & 1 Initial call. \\
\hline
\end{tabular}

2 Subsequent calls.
The arrays, a , icol, vw and \(i v w\), must NOT be changed as the values set on the initial call are reused.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{omega} & \multirow[t]{2}{*}{double} & Input & Modification factor for incomplete Cholesky decomposition, \(0 \leq\) omega \\
\hline & & & \(\leq 1\). Only use when ipc=3. See Comments on use. \\
\hline \multirow[t]{2}{*}{eps} & \multirow[t]{2}{*}{double} & Input & Tolerance for convergence test. \\
\hline & & & When eps is zero or less, eps is set to \(\varepsilon \cdot\|\mathbf{b}\|\), with \(\varepsilon=10^{-6}\). See Comments on use. \\
\hline iguss & int & Input & Control information on whether to start the computation with input values in array \(x\). When iguss \(\neq 0\) then starts computation with input from array. \\
\hline \multirow[t]{2}{*}{X} & \multirow[t]{2}{*}{double \(\mathrm{x}[\mathrm{n}]\)} & Input & The starting values for the computation. This is optional, see iguss. \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline iter & int & Output & Total number of iterations performed. \\
\hline rz & double & Output & The square root of residual, \(r z\), after convergence. See Comments on use. \\
\hline \multirow[t]{2}{*}{vw} & double & Work & When ipc \(=3\), Vwlen \(=\mathrm{k} * \mathrm{nw}+4 * \mathrm{n}\) otherwise Vwlen \(=\mathrm{n}\) * 3 \\
\hline & VW [Vwlen] & & \\
\hline ivw & int ivw[Ivwlen] & Work & When ipc=3, Ivwlen \(=\mathrm{k}\) * \(\mathrm{nw}+4\) * n otherwise Ivwlen \(=\mathrm{n}\) * 4 \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & a, icol elements are permuted to U/L format. & Processing continues. \\
\hline 20001 & Reached set maximum number of iterations. & \multirow[t]{2}{*}{\begin{tabular}{l}
Processing stopped. \\
The approximate solution obtained up to this stage is returned, but its precision is not guaranteed.
\end{tabular}} \\
\hline 20003 & Break down occurred. & \\
\hline 30003 & itmax \(\leq 0\) & \multirow[t]{11}{*}{Processing stopped.} \\
\hline 30005 & \(\mathrm{k}<\mathrm{n}\) & \\
\hline 30006 & Could not perform incomplete \(\mathbf{L L}^{\mathrm{T}}\) decomposition. & \\
\hline 30007 & Pivot is negative. & \\
\hline 30092 & \(\mathrm{nW} \leq 0\) & \\
\hline 30093 & \(\mathrm{k} \leq 0, \mathrm{n} \leq 0\) & \\
\hline 30096 & omega \(<0\) or omega \(>1\) & \\
\hline 30097 & ipc \(<1\) or ipc \(>3\) & \\
\hline 30098 & isw \(=1\) or 2 & \\
\hline 30100 & \(\mathrm{nW} \neq 2\) * max(NSU, NSL) & \\
\hline 30104 & Either the upper or lower triangular part is not stored correctly. & \\
\hline negative number & One of the rows in matrix A was found with a non-zero diagonal element. The row number on which it occurred is returned by icon as a negative value & Processing stopped. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a, nw and icol}

The sparse matrix \(\mathbf{A}\) is normalized in such a way that the main diagonal elements are ones. The non-zero elements other than the main diagonal elements are stored using the ELLPACK storage format. For details on normalization of systems of linear equations and ELLPACK normalized symmetric positive definite storage format, see the Array storage formats section of the Introduction.

Apart from the incomplete Cholesky decomposition preconditioner (ipc=3), both the storage formats for ELLPACK, normalized and unnormalized, are acceptable for the function. In the standard case (unnormalized), \(n \mathrm{w}=2 \cdot \max (N S U\), \(N S L\) ) is not required. For further information consult the Array storage formats section of the Introduction.

\section*{isw}

When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with \(i p c=3\), the solution on the first call is with \(i s w=1\), and solutions on subsequent calls are with isw=2. In subsequent calls, the result of the incomplete Cholesky decomposition obtained on the initial call is reused.

\section*{eps and rz}

The solution is assumed to have converged in the \(m\)-th iteration when (2), the square root of residual \(r z\) is less than the set tolerance, eps:
\[
\begin{align*}
\mathrm{rz} & =\sqrt{r z}<\mathrm{eps}  \tag{2}\\
\mathbf{r} & =\mathbf{b}-\mathbf{A} \mathbf{x}_{m} \tag{3}
\end{align*}
\]

The residual vector \(\mathbf{r}\) for the solution at the \(m\)-th iteration is obtained from (3) and with the preconditioner matrix \(\mathbf{M}, r z\) is calculated by equation (4).
\[
\begin{equation*}
r z=\mathbf{r}^{\mathrm{T}} \mathbf{M}^{-1} \mathbf{r} \tag{4}
\end{equation*}
\]

\section*{ipc and omega}

Two types of preconditioners and a no-preconditioner option are provided.
Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a preconditioner based on an incomplete Cholesky decomposition to obtain the solution.

If \(\mathbf{A}=\mathbf{I}-\mathbf{N}\), the preconditioner \(\mathbf{M}\) of the linear equation \((\mathbf{I}-\mathbf{N}) \mathbf{x}=\mathbf{b}\) is as follows for the different values of ipc:
1. No preconditioner, \(\mathbf{M}=\mathbf{I}\).
2. Neumann, \(\mathbf{M}^{-1}=(\mathbf{I}+\mathbf{N})\).
3. Incomplete Cholesky decomposition, \(\mathbf{M}=\mathbf{L} \mathbf{L}^{\mathrm{T}}\).

When ipc=2, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix \((\mathbf{I}+\mathbf{N})\) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not improve the convergence when the preconditioner does not approximate the inverse matrix of \(\mathbf{A}\) in some situations such that the maximum absolute value of the eigenvalues of the matrix \(\mathbf{N}\) is larger than one.

When ipc \(=3\), the user must provide a value for omega ( \(0 \leq\) omega \(\leq 1\) ). For values of omega, 0 gives the incomplete Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the two decompositions.

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was found empirically to be in the range of 0.92 to 1.00 .

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX
100
\#define UBANDW 1
MAIN__()
{
double cf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
int ierr, icon;
int nw, n, k, id, ipc, itmax, isw, iter, iguss, i, j;
int icol[2 * UBANDW][NMAX], ivw[NMAX * (2 * UBANDW + 5)];
double sum, omega, rz;
double a[2 * UBANDW][NMAX], b[NMAX], x[NMAX];
double vw[NMAX * (2 * UBANDW + 5)];
/* initialize matrix and vector */
nW = 2 * UBANDW;
n = NMAX;
k = NMAX;
id = 1;
for (i=0; i<nw; i++)
for (j=0; j<n; j++) {
a[i][j] = 0.0;
icol[i][j] = j+1;
}
for (j=0; j<n-id; j++) {
a[0][j] = cf;
icol[0][j] = j+id+1;
}
for (j=id; j<n; j++) {
a[1][j] = cf;
icol[1][j] = j-id+1;
}
for (j=0; j<n; j++) {
sum = bcoef;
for (i=0; i<nw; i++) sum -= a[i][j];
for (i=0; i<nw; i++) a[i][j] /= sum;
b[j] = bcoef / sum;
}
/* solve the system of linear equations */
ipc = 3;
itmax = 8 * (int) sqrt ((double) n + 0.1);
isw = 1;
omega = 0.98;
iguss = 0;
ierr = c_dvcge ((double*)a, k, nw, n, (int*)icol, b, ipc, itmax,
isw, omega, eps, iguss, x, \&iter, \&rz, vw, ivw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvcge failed with icon = %d\n", icon);
exit(1);
}
* check vector */
for (i=0; i<n; i++)
if (fabs(x[i]-one) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

The standard conjugate gradient algorithm is used, see [42]. For the preconditioner method based on the incomplete Cholesky decomposition, see [77]. For further information consult the entry for VCGE in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dveos1}
\begin{tabular}{|l|}
\hline Discrete cosine transform (radix 2 FFT). \\
\hline ierr = c_dvcos1( \(\mathrm{a}, \mathrm{n}, \mathrm{tab}, \mathrm{VW}\), ivw, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

Given \(n+1\) data points \(\left\{x_{j}\right\}\), obtained by dividing the first half of a \(2 \pi\) period, even function \(x(t)\) into \(n\) equal parts, that is
\[
x_{j}=x(j \cdot \theta), \quad j=0,1, \ldots, n, \quad \theta=\frac{\pi}{n} .
\]

The discrete cosine transform or its inverse transform is computed by a Fast Fourier Transform (FFT) algorithm suited to a vector processor.

It is assumed that \(n=2^{\ell}\), where \(\ell\) is a non-negative integer.

\section*{Cosine transform}

When \(\left\{x_{j}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{2 n a_{k}\right\}\).
\[
2 n a_{k}=2 x_{0}+2 x_{n} \cdot \cos (k \pi)+4 \cdot \sum_{j=1}^{n-1} x_{j} \cdot \cos (k j \theta), \quad k=0,1, \ldots, n
\]
where \(\theta=\pi / n\).

\section*{Cosine inverse transform}

When \(\left\{a_{k}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{4 x_{j}\right\}\).
\[
4 x_{j}=2 a_{0}+2 a_{n} \cdot \cos (j \pi)+4 \cdot \sum_{k=1}^{n-1} a_{k} \cdot \cos (k j \theta), \quad j=0,1, \ldots, n
\]
where \(\theta=\pi / n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvcos1(a, n, tab, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{a} & \multirow[t]{2}{*}{double a[n+2]} & Input & \(\left\{x_{i}\right\}\) or \(\left\{a_{k}\right\}\) where \(\mathrm{a}[\mathrm{n}+1]\) is ignored. \\
\hline & & Output & \(\left\{2 n a_{k}\right\}\) or \(\left\{4 x_{i}\right\}\) where \(\mathrm{a}[\mathrm{n}+1]\) always contains zero. \\
\hline n & int & Input & Number of terms \(n\) of the transform. \\
\hline tab & \begin{tabular}{l}
double \\
tab[Tlen]
\end{tabular} & Output & Trigonometric function table used in the transformation. Tlen \(=2 n+4\). \\
\hline \multirow[t]{2}{*}{Vw} & double & Work & Rlen \(=\max (n(\ell+1) / 2,1)\). \\
\hline & vw [Rlen] & & \\
\hline ivw & int ivw[Ilen] & Work & Ilen \(=n \cdot \max (\ell-4,2) / 2\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline The co & lete list of condition & des is: & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error & Completed. \\
\hline 30000 & \(n \neq 2^{\ell}(\ell \geq 0\) is an integer \()\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Use of this function}

This function performs the high-speed calculation of a discrete cosine transform on a vector processor. Other routines might be more appropriate on a general purpose computer.

\section*{Multiple transforms}

Multiple transforms are performed efficiently because the generation of the trigonometric table and list vector are only performed on the first call to the function. It is therefore essential that \(\mathrm{tab}, \mathrm{VW}\) and ivW remain unchanged between calls to this function.

The contents of these three arguments are valid even when the number of terms \(n\) are different for the multiple transforms. However, transforms with the same number of terms should be executed consecutively for the highest efficiency.

\section*{Work array size conversion table}

The table for \(16 \leq n \leq 4096\) is as follows:
\begin{tabular}{|r|r|r|r|r|}
\hline \multicolumn{1}{|c|}{\(\ell\)} & \multicolumn{1}{|c|}{\(n\)} & \multicolumn{1}{c|}{\begin{tabular}{c} 
Length of \\
tab
\end{tabular}} & \begin{tabular}{c} 
Length of \\
VW
\end{tabular} & \begin{tabular}{c} 
Length of \\
iVw
\end{tabular} \\
\hline 4 & 16 & 36 & 40 & 16 \\
\hline 5 & 32 & 68 & 96 & 32 \\
\hline 6 & 64 & 132 & 224 & 64 \\
\hline 7 & 128 & 260 & 512 & 192 \\
\hline 8 & 256 & 516 & 1152 & 512 \\
\hline 9 & 512 & 1028 & 2560 & 1280 \\
\hline 10 & 1024 & 2052 & 5632 & 3072 \\
\hline 11 & 2048 & 4100 & 12288 & 7168 \\
\hline 12 & 4096 & 8196 & 26624 & 16384 \\
\hline
\end{tabular}

\section*{General definition of discrete cosine transform}

The discrete cosine transform and its inverse transform can be defined as shown below in (1) and in (2) respectively.
\[
\begin{gather*}
a_{k}=\frac{x_{0}}{n}+\frac{x_{n}}{n} \cdot \cos (k \pi)+\frac{2}{n} \cdot \sum_{j=1}^{n-1} x_{j} \cdot \cos (k j \theta), \quad k=0,1, \ldots, n,  \tag{1}\\
x_{j}=\frac{a_{0}}{2}+\frac{a_{n}}{2} \cdot \cos (j \pi)+\sum_{k=1}^{n-1} a_{k} \cdot \cos (k j \theta), \quad j=0,1, \ldots, n \tag{2}
\end{gather*}
\]
where \(\theta=\pi / n\).

This function computes \(\left\{2 n a_{k}\right\}\) or \(\left\{4 x_{j}\right\}\) corresponding to the left hand side of (1) or (2). The user is responsible for normalizing the result, if required.

\section*{4. Example program}

This program computes a cosine transform on 1024 elements, where the input elements are chosen at random. The inverse transform is then computed and the normalized results of this are compared with the original data values.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 1024
MAIN__()
{
int ierr, icon;
double phai, ran, scale, eps;
double a[NMAX+2], b[NMAX+2], tab[2*NMAX+4], vw[NMAX*(10+1)/2];
int i, n, ivw[NMAX*(10-4)/2];
/* generate initial data */
n = NMAX;
phai = (sqrt(5.0)-1.0)/2;
for (i=0;i<n+1;i++) {
ran = (i+1)*phai;
a[i] = ran - (int)ran;
}
for (i=0;i<n+1;i++)
b[i] = a[i];
/* perform normal transform */
ierr = c_dvcos1(a, n, tab, vw, ivw, \&icon);
/* perform inverse transform */
ierr = c_dvcos1(a, n, tab, vw, ivw, \&icon);
/* check results *
scale = 1.0/(8*n);
eps = 1e-6;
for (i=0;i<n+1;i++)
if (fabs((scale*a[i]-b[i])/b[i]) > eps) {
printf("Inaccurate result\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

For further information consult the entry for VCOS1 in the Fortran SSL II Extended Capabilities User's Guide and [108].

\section*{c_dvcpf1}
\[
\begin{array}{|l}
\hline \text { One-dimensional prime factor discrete complex Fourier transforms. } \\
\hline \text { ier }=\text { c_dvcpf1 (x, } n, \& i s w, ~ i s n, ~ \& i o u t, ~ y, ~ w, ~ \\
\text { iw, \&icon) ; }
\end{array}
\]

\section*{1. Function}

This function performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT.
The length of data transformed \(n\) must satisfy the following condition.
The size must be expressed by a product of a mutual prime factor \(p\), selected from the following numbers:
factor \(p(p \in\{2,3,4,5,7,8,9,16,25\})\)

\section*{The one-dimensional Fourier transform}

When \(\left\{x_{j}\right\}\) is input, the transform defined by (1) below is calculated to obtain \(\left\{n \alpha_{k}\right\}\).
\[
\begin{align*}
n \alpha_{k}=\sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k} & , k=0,1, \ldots, n-1  \tag{1}\\
& , \omega_{n}=\exp (2 \pi i / n)
\end{align*}
\]

\section*{The one-dimensional Fourier inverse transform}

When \(\left\{\alpha_{k}\right\}\) is input, the transform defined by (2) below is calculated to obtain \(\left\{x_{j}\right\}\).
\[
\begin{align*}
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k} & , j=0,1, \ldots, n-1  \tag{2}\\
, \omega_{n} & =\exp (2 \pi i / n)
\end{align*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvcpf1(x, n, \&isw, isn, \&iout, y, w, iw, \&icon);
where:
\begin{tabular}{llll}
\(x\) & dcomplex & Input & Complex data. \\
& \begin{tabular}{ll}
\(\mathrm{x}[\mathrm{n}]\)
\end{tabular} & & \\
n & int & Input & The length of the data transformed. \\
isw & int & Input & Control information.
\end{tabular}
isw = 1 For the first call, to generate a trigonometric function table in W and a control information in IW and perform Fourier transform.
isw \(\neq 1\) For the second or consecutive call, to perform Fourier transform for the data of the same length as in the first call. In this time the contents set in W and iw is used, therefore the values in n , isn, \(w\) and iw must not be changed after the first call.
Output When isw is set to 1 , isw is set to zero after performing transform.
Therefore the second or consecutive transform for new data in \(x\) can be performed easily without setting isw.
\begin{tabular}{|c|c|c|c|}
\hline isn & int & Input & \begin{tabular}{l}
Either the transform or the inverse transform is indicated. \\
isn \(=1\) for the transform \\
isn \(=-1\) for the inverse transform.
\end{tabular} \\
\hline iout & int & Output & Information about where for transformed data to be stored. The transformed data is stored into different area due to the length of data \(n\).
\[
\begin{array}{ll}
\text { iout }=1 & \text { Transformed data is stored into } y[i], \mathbf{i}=0, \ldots, n-1 . \\
\text { iout } \neq 1 & \text { Transformed data is stored into } \mathrm{x}[\mathrm{i}], \mathbf{i}=0, \ldots, n-1 .
\end{array}
\] \\
\hline y & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { y[n] }
\end{aligned}
\] & Output & When iout \(=1\), the complex data transformed is stored. The area of this array must be different from that of array \(x\). \\
\hline W & \[
\begin{aligned}
& \text { dcomplex } \\
& \mathrm{w}[\mathrm{n}]
\end{aligned}
\] & Work & When isw is set to 1 , the trigonometric function table for the transform specified by n and isn is stored. \\
\hline iw & int iw[20] & Work & \begin{tabular}{l}
Otherwise the contents in the trigonometric function table generated in the first call with isw \(=1\) is used as input. \\
Control information for transform.
\end{tabular} \\
\hline & & & When \(\mathrm{isw}=1\), the control information regarding transform with data length n and specific isn is stored. \\
\hline & & & Otherwise the control information set in the first call with \(i s w=1\) is used as input. \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l} 
The number n can not be factored into the \\
product of the mutual prime factor in \(\{2,3,4,5\), \\
\(7,8,9,16,25\}\).
\end{tabular} & Bypassed. \\
\hline 20100 & \begin{tabular}{l} 
The value of n or isn in the second or \\
consecutive call is different from that in the first \\
call.
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General definition of Fourier transform}

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).
\[
\begin{gather*}
\alpha_{k}=\frac{1}{n} \sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k} \quad, k=0,1, \ldots, n-1  \tag{3}\\
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k} \quad, j=0,1, \ldots, n-1 \tag{4}
\end{gather*}
\]
where, \(\omega_{n}=\exp (2 \pi i / n)\).

This subroutine calculates \(\left\{n \alpha_{k}\right\}\) or \(\left\{x_{j}\right\}\) corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

\section*{4. Example program}

A one-dimensional FFT is computed.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define N 560
\#define max(a,b) ((a) > (b) ? (a) : (b))
int MAIN__(void)
{
dcomplex w[N], x[N], y[N], tmp;
double error;
int iw[20], isw, isn, iout, icon, i;
for (i=0; i<N; i++) {
x[i].re=(double)(i+1)/(double)N;
x[i].im=0.0;
}
/* do the forward transform */
isw=1, isn=1;
c_dvcpf1(x, N, \&isw, isn, \&iout, y, w, iw, \&icon);
if (icon != 0) {
printf("icon = %d",icon);
exit(1);
}
/* do the reverse transform */
if (iout != 1) {
isw=1, isn=-1;
c_dvcpf1(x, N, \&isw, isn, \&iout, y, w, iw, \&icon);
} else {
isw=1, isn=-1;
c_dvcpf1(y, N, \&isw, isn, \&iout, x, w, iw, \&icon);
}
if (icon != 0) {
printf("icon = %d",icon);
exit(1);
}
error = 0.0;
for (i=0; i<N; i++) {
tmp.re = fabs(x[i].re/(double)N - (double)(i+1)/(double)N);
tmp.im = fabs(x[i].im/(double)N);
tmp.re += tmp.im;
error=max(error,tmp.re);
}
printf("error = %e\n", error);
}

```

\section*{5. Method}

Consult the entry for VCPF1 in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvepf3}
```

Three-dimensional prime factor discrete complex Fourier transform.
ierr = c_dvcpf3(a, b, l, m, n, isn, vw1, vw2,
\&icon);

```

\section*{1. Function}

Given three-dimension complex time-series data \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\), where the size of each dimension is \(n_{1}, n_{2}, n_{3}\), this routine performs discrete complex Fourier transform or the inverse transform by using the prime factor Fourier transform (prime factor FFT). The size of each dimension must satisfy the following conditions:
- the size must be a product of mutually prime factors selected from \(\{2,3,4,5,7,8,9,16\}\).
- the size of the first dimension must be an even number \(2 \times \ell\), where \(\ell\) satisfies the previous condition.

\section*{Three-dimensional complex Fourier transform}

When \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\) is provided, the transform defined below is used to obtain \(\left\{n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right\}\)
\[
n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}=\sum_{j_{1}=0}^{n_{1}-1} \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{3}=0}^{n_{3}-1} x_{j_{1} j_{2} j_{3}} \omega_{1}^{-j_{1} k_{1}} \omega_{2}^{-j_{2} k_{2}} \omega_{3}^{-j_{3} k_{3}}
\]
where \(k_{r}=0, \ldots, n_{r}-1\), and \(\omega_{r}=\exp \left(2 \pi i / n_{r}\right), r=1,2,3\).

\section*{Three-dimensional complex Fourier inverse transform}

When \(\left\{\alpha_{k_{1} k_{2} k_{3}}\right\}\) is provided, the inverse transform defined below is used to obtain \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\).
\[
x_{j_{1} j_{2} j_{3}}=\sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} \sum_{k_{3}=0}^{n_{3}-1} \alpha_{k_{1} k_{2} k_{3}} \omega_{1}^{j_{1} k_{1}} \omega_{2}^{j_{2} k_{2}} \omega_{3}^{j_{3} k_{3}},
\]
where \(j_{r}=0, \ldots, n_{r}-1\), and \(\omega_{r}=\exp \left(2 \pi i / n_{r}\right), \mathrm{r}=1,2,3\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvcpf3((double *) a, (double *) b, l, m, n, isn, vw1, vw2, \&icon); where:
a
\begin{tabular}{lll} 
double & Input & Real part of \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\) or \(\left\{\alpha_{k_{1} k_{2} k_{3}}\right\}\). \\
\(\mathrm{a}[\mathrm{n}][\mathrm{m}][\mathrm{l}]\) & & See Comments on use for data storage. \\
& Output & Real part of \(\left\{n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right\}\) or \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\).
\end{tabular}

See Comments on use for data storage.
b
double Input Imaginary part of \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\) or \(\left\{\alpha_{k_{1} k_{2} k_{3}}\right\}\).
\(\mathrm{b}[\mathrm{n}][\mathrm{m}][\mathrm{l}] \quad\) See Comments on use for data storage.
Output Imaginary part of \(\left\{n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right\}\) or \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\). See Comments on use for data storage.
l int Input Number of data items of the third array dimension \(n_{1}\), with \(1 \leq 5040\).
m int Input Number of data items of the second dimension \(n_{2}\), with \(\mathrm{m} \leq 5040\).
\begin{tabular}{|c|c|c|c|}
\hline \multirow{5}{*}{\[
\begin{aligned}
& \mathrm{n} \\
& \text { isn }
\end{aligned}
\]} & & & \multirow[t]{3}{*}{Number of data items of the first array dimension \(n_{3}\), with \(\mathrm{n} \leq 5040\). Control information.} \\
\hline & int & Input & \\
\hline & int & Input & \\
\hline & & & isn \(\geq 0\) for the transform \\
\hline & & & isn \(<0\) for the inverse transform. \\
\hline vw1 & double & Work & \\
\hline & vw1[l*m*n] & & \\
\hline vw2 & double & Work & \\
\hline & vw2[l*m*n] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{ll} 
One of the following has occurred: \\
\(\bullet \quad\) • m, or n exceeds 5040 \\
• m, or n cannot be factored into the product \\
of mutually prime factors in \\
\(\{2,3,4,5,7,8,9,16\}\)
\end{tabular} & Bypassed. \\
\hline 30000 & \(\mathrm{l}, \mathrm{m}\), or n is zero or a negative number & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Data storage}

The real parts of data \(\left\{x_{j_{1} j_{2} j_{3}}\right\},\left\{n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right\}\) or \(\left\{\alpha_{k_{1} k_{2} k_{3}}\right\}\) are stored in array a, with
or \(\quad \mathrm{a}[\mathrm{k} 3][\mathrm{k} 2][\mathrm{k} 1]=\operatorname{Re}\left(n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right)\) or \(\operatorname{Re}\left(\alpha_{k_{1} k_{2} k_{3}}\right), \quad k_{i}=0,1, \ldots, n_{i}-1, \quad i=1,2,3\).
The imaginary parts of \(\left\{x_{j_{1} j_{2} j_{3}}\right\},\left\{n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right\}\) or \(\left\{\alpha_{k_{1} k_{2} k_{3}}\right\}\) are stored in array b , with
\[
\mathrm{b}[\mathrm{j} 3][\mathrm{j} 2][\mathrm{j} 1]=\operatorname{Im}\left(x_{j_{1} j_{2} j_{3}}\right), \quad j_{i}=0,1, \ldots, n_{i}-1, \quad i=1,2,3 .
\]
or
\[
\mathrm{b}[\mathrm{k} 3][\mathrm{k} 2][\mathrm{k} 1]=\operatorname{Im}\left(n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right) \text { or } \operatorname{Im}\left(\alpha_{k_{1} k_{2} k_{3}}\right), \quad k_{i}=0,1, \ldots, n_{i}-1, i=1,2,3 .
\]

\section*{Number of terms}

The number of terms in a dimension is a product of mutually prime factors from \(\{2,3,4,5,7,8,9,16\}\). The maximum number for each dimension is \(5 \times 7 \times 9 \times 16=5040\).

When this routine is called with input argument \(\mathrm{n}=1\), a two-dimensional complex prime factor fast Fourier transform is determined.

When this routine is called with input arguments \(\mathrm{n}=1\) and \(\mathrm{m}=1\), a one-dimensional complex prime factor fast Fourier transform is determined.

\section*{General definition of three-dimensional complex Fourier transform}

The three dimensional discrete complex Fourier transform and its inverse transform can be defined as shown below in (1) and (2) respectively.
\[
\begin{equation*}
\alpha_{k_{1} k_{2} k_{3}}=\frac{1}{n_{1} n_{2} n_{3}} \sum_{j_{1}=0}^{n_{1}-1} \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{3}=0}^{n_{3}-1} x_{j_{1} j_{2} j_{3}} \omega_{1}^{-j_{1} k_{1}} \omega_{2}^{-j_{2} k_{2}} \omega_{3}^{-j_{3} k_{3}} \tag{1}
\end{equation*}
\]
where \(k_{r}=0, \ldots, n_{r}-1\), and \(\omega_{r}=\exp \left(2 \pi i / n_{r}\right), r=1,2,3\).
\[
\begin{equation*}
x_{j_{1} j_{2} j_{3}}=\sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} \sum_{k_{3}=0}^{n_{3}-1} \alpha_{k_{1} k_{2} k_{3}} \omega_{1}^{j_{1} k_{1}} \omega_{2}^{j_{2} k_{2}} \omega_{3}^{j_{3} k_{3}} \tag{2}
\end{equation*}
\]
where \(j_{r}=0, \ldots, n_{r}-1\), and \(\omega_{r}=\exp \left(2 \pi i / n_{r}\right), r=1,2,3\).

This routine calculates \(\left\{n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right\}\) or \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\) corresponding to the left hand terms of (1) or (2) respectively. The user must normalize the results, if required.

\section*{4. Example program}

This program performs the Fourier transform followed by the inverse transform and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N1 4
\#define N2 3
\#define N3 2
MAIN__()
{
int ierr, icon;
double phai, ran, eps;
double a[N3][N2][N1],b[N3][N2][N1], vw1[N3][N2][N1], vw2[N3][N2][N1];
double aa[N3][N2][N1], bb[N3][N2][N1];
int i, j, k, cnt, l, m, n, isn, pr;
/* generate initial data */
l = N1;
m = N2;
n = N3;
pr = l*m*n;
phai = (sqrt(5.0)-1.0)/2;
cnt = 1;
for (k=0;k<n;k++) {
for (j=0;j<m;j++) {
for (i=0;i<l;i++) {
ran = cnt*phai;
a[k][j][i] = ran - (int)ran;
b[k][j][i] = a[k][j][i] - 0.5;
cnt++;
}
}
}*
keep copy */
for (k=0;k<n;k++) {
for (j=0;j<m;j++) {
for (i=0;i<l;i++) {
aa[k][j][i] = a[k][j][i];
bb[k][j][i] = b[k][j][i];
}
}
}
/* perform normal transform */
isn = 1;
ierr = c_dvcpf3((double*)a, (double*)b, l, m, n, isn,
(double*)vw1, (double*)vw2, \&icon);
/* perform inverse transform */
isn = -1;
ierr = c_dvcpf3((double*)a, (double*)b, l, m, n, isn,
(double*)vw1, (double*)vw2, \&icon);
/* check results */

```
```

eps = 1e-6;
for (k=0;k<n;k++) {
for (j=0;j<m;j++)
for (i=0;i<l;i++)
if ((fabs((a[k][j][i]/pr - aa[k][j][i])/aa[k][j][i]) > eps) ||
(fabs((b[k][j][i]/pr - bb[k][j][i])/bb[k][j][i]) > eps)) {
printf("WARNING: result inaccurate\n");
exit(1)
}
}
}
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for VCPF3 in the Fortran SSL II Extended Capabilities User's Guide II and references [17] and [120].

\section*{c_dverd}
```

Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (MGCR method, diagonal storage format).
ierr = c_dvcrd(a, k, ndiag, n, nofst, b,
itmax, eps, iguss, ndirv, x,
\&iter, vw, \&icon);

```

\section*{1. Function}

This function solves a system of linear equations (1) using the modified generalized conjugate residuals (MGCR) method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) real nonsymmetric or indefinite sparse matrix, \(\mathbf{b}\) is a real constant vector, and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvcrd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, ndirv, x,

```
    \&iter, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[ndiag][k]
\end{tabular} & Input & Sparse matrix A stored in diagonal storage format. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array a ( \(\geq \mathrm{n}\) ). \\
\hline ndiag & int & Input & The number of diagonal vectors in the coefficient matrix \(\mathbf{A}\) having nonzero elements. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nofst & int nofst[ndiag] & Input & Distance from the main diagonal vector corresponding to diagonal vectors in array a. Super-diagonal vector rows have positive values. Sub-diagonal vector rows have negative values. See Comments on use. \\
\hline b & double \(\mathrm{b}[\mathrm{n}]\) & Input & Constant vector \(\mathbf{b}\). \\
\hline itmax & int & Input & Upper limit of iterations. \\
\hline eps & double & Input & Tolerance for convergence test. \\
\hline iguss & int & Input & When eps is zero or less, eps is set to \(10^{-6}\). See Comments on use. Control information on whether to start the computation with input values in array x . When iguss \(\neq 0\) then starts computation with input from array. \\
\hline ndirv & int & Input & The number of search direction vectors used in the MGCR method \((\geq 1)\). Generally, a small number between 10 and 100 . \\
\hline X & double \(\times[\mathrm{n}]\) & Input & The starting values for the computation. This is optional and relates to argument iguss. \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline iter & int & Output & Total number of iterations performed. \\
\hline vw & double & Work &  \\
\hline
\end{tabular}
icon int \begin{tabular}{ll} 
& \\
Vw[Vwlen \(]\) & Output Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20001 & Reached the set maximum number of iterations. & \begin{tabular}{l}
Processing stopped. \\
The approximate solution obtained up to this stage is returned, but its precision is not guaranteed.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(k<1\) \\
- \(n>k\) \\
- ndiag<1 \\
- itmax \(\leq 0\)
\end{tabular} & Bypassed. \\
\hline 30004 & ndirv<1 & \\
\hline 32001 & abs(nofst[i]) \(>\mathrm{n}-1 ; 0 \leq \mathrm{i}<\) ndiag & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a and nofst}

The coefficients of matrix A are stored in two arrays using the diagonal storage format. For full details, see the Array storage formats section of the Introduction.

\section*{eps}

In the MGCR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and eps, the solution is judged to have converged. The difference between the precise solution and the obtained approximation is roughly equal to the product of the condition number of matrix \(\mathbf{A}\) and eps.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define UBANDW 2
\#define LBANDW 1
\#define NSDIR 50
MAIN__()
{
double one=1.0, bcoef=10.0, eps=1.e-6;
int ierr, icon, ndiag, nub, nlb, n, i, j, k;
int itmax, iguss, ndirv, iter;
int nofst[UBANDW + LBANDW + 1];
double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
double vw[NMAX * (NSDIR + 5) + NSDIR * (NSDIR + 1)];
/* initialize nonsymmetric matrix and vector */

```
```

 nub = UBANDW;
 nlb = LBANDW;
 ndiag = nub + nlb + 1;
 n = NMAX;
 k = NMAX;
 for (i=1; i<=nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
 for (j=n-i; j<n ; j++) a[i][j] = 0.0;
 nofst[i] = i;
 }
 for (i=1; i<=nlb; i++) {
 for (j=0 ; j<i+1; j++) a[nub + i][j] = 0.0;
 for (j=i+1; j<n ; j++) a[nub + i][j] = -2.0;
 nofst[nub + i] = -(i + 1);
 }
 nofst[0] = 0;
 for (j=0; j<n; j++) {
 a[0][j] = bcoef;
 for (i=1; i<ndiag; i++) a[0][j] -= a[i][j];
 b[j] = bcoef;
 }*
 /* solve the system of linear equations */
 itmax = n;
 iguss = 0;
 ndirv = NSDIR;
 ierr = c_dvcrd ((double*)a, k, ndiag, n, nofst, b, itmax, eps,
 iguss, ndirv, x, &iter, vw, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvcrd failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0;i<n;i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
 }

```

\section*{5. Method}

For the MGCR method, see [66]. The algorithm is a modification of the generalized conjugate residuals method. The algorithm is robust and is always faster than the GMRES method, see [92]. For further information consult the entry for VCRD in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvere}
\[
\begin{aligned}
& \text { Solution of a system of linear equations with a nonsymmetric or } \\
& \text { indefinite sparse matrix (MGCR method, ELLPACK storage format). } \\
& \hline \text { ierr = c_dvcre(a, k, iwidt, } n, ~ i c o l, ~ b, ~ i t m a x, ~ \\
& \text { eps, iguss, ndirv, x, \&iter, vw, } \\
& \text { \&icon); }
\end{aligned}
\]

\section*{1. Function}

This function solves a system of linear equations (1) using the modified generalized conjugate residuals (MGCR) method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) real nonsymmetric or indefinite sparse matrix, \(\mathbf{b}\) is a real constant vector and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvcre((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss, ndirv, x, \&iter, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[iwidt][k]
\end{tabular} & Input & Sparse matrix A stored in ELLPACK storage format. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array a ( \(\geq \mathrm{n}\) ). \\
\hline iwidt & int & Input & The maximum number of non-zero elements in any row vectors of \(\mathbf{A}\) \((\geq 0)\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline icol & ```
int
icol[iwidt][k
]
``` & Input & Column indices used in the ELLPACK format, showing to which column the elements corresponding to a belong. See Comments on use. \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline itmax & int & Input & Upper limit of iterations. \\
\hline eps & double & Input & Tolerance for convergence test. \\
\hline iguss & int & Input & When eps is zero or less, eps is set to \(10^{-6}\). See Comments on use. Control information on whether to start the computation with input values in array \(x\). When iguss \(\neq 0\) then starts computation with input from array. \\
\hline ndirv & int & Input & The number of search direction vectors used in the MGCR method \((\geq 1)\). Generally, a small number between 10 and 100 . \\
\hline X & double \(\mathrm{x}[\mathrm{n}]\) & Input & The starting values for the computation. This is optional and relates to argument iguss. \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline iter & int & Output & Total number of iterations performed. \\
\hline VW & double & Work & Vwlen \(=\) n*(ndirv+5)+ndirv*(ndirv+1) \\
\hline
\end{tabular}
```

Vw[Vwlen]
icon int Output Condition code. See below.

```

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20001 & Reached the set maximum number of iterations. & \begin{tabular}{l}
Processing stopped. \\
The approximate solution obtained up to this stage is returned, but its precision is not guaranteed.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(k<1\) \\
- \(n>k\) \\
- iwidt \(<0\) \\
- itmax \(\leq 0\)
\end{tabular} & Bypassed. \\
\hline 30004 & ndirv<1 & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a and icol}

The coefficients of matrix A are stored in two arrays using the ELLPACK storage format. For full details, see the Array storage formats section of the Introduction.

\section*{eps}

In the MGCR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and eps, the solution is judged to have converged. The difference between the precise solution and the obtained approximation is roughly equal to the product of the condition number of matrix \(\mathbf{A}\) and eps.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define UBANDW 2
\#define LBANDW 1
\#define NSDIR 50
MAIN__()
{
double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
int ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, ndirv, iter, i, j, ix;
int icol[UBANDW + LBANDW + 1][NMAX];
double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
double vw[NMAX * (NSDIR + 5) + NSDIR * (NSDIR + 1)];
/* initialize matrix and vector */
nub = UBANDW;
nlb = LBANDW;
iwidt = UBANDW + LBANDW + 1;

```
```

    n = NMAX;
    k = NMAX;
    for (i=0; i<n; i++) b[i] = bcoef;
    for (i=0; i<iwidt; i++)
        for (j=0; j<n; j++) {
        a[i][j] = 0.0;
        icol[i][j] = j+1;
    }
    for (j=0; j<nlb; j++) {
        for (i=0; i<j; i++) a[i][j] = lcf;
        a[j][j] = bcoef - (double) j * lcf - (double) nub * ucf;
        for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
        for (i=0; i<=nub+j; i++) icol[i][j] = i+1
    }
    for (j=nlb; j<n-nub; j++) {
        for (i=0; i<nlb; i++) a[i][j] = lcf;
        a[nlb][j] = bcoef - (double) nlb * lcf - (double) nub * ucf;
        for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;
        for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
    }
    for (j=n-nub; j<n; j++){
        for (i=0; i<nlb; i++) a[i][j] = lcf;
        a[nlb][j] = bcoef - (double) nlb * lcf - (double) (n-j-1) * ucf;
        for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
        ix = n - (j+nub-nlb-1);
        for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
    }*
    /* solve the system of linear equations */
    itmax = n;
    iguss = 0;
    ndirv = NSDIR;
    ierr = c_dvcre ((double*)a, k, iwidt, n, (int*)icol, b, itmax,
                        eps, iguss, ndirv, x, &iter, vw, &icon);
    if (icon != 0) {
        printf("ERROR: c_dvcre failed with icon = %d\n", icon);
        exit(1)
    }
    /* check vector */
    for (i=0; i<n; i++)
        if (fabs(x[i]-one) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
        }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

For the MGCR method, see [66]. The algorithm is a modification of the generalized conjugate residuals method. The algorithm is robust and is always faster than the GMRES method, see [92]. For further information consult the entry for VCRE in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvgsg2}
\[
\begin{aligned}
& \begin{array}{l}
\text { Selected eigenvalues and corresponding eigenvectors of a real symmetric } \\
\text { generalized eigenvalue problem: } \mathbf{A x}=\lambda \mathbf{B x} \text { (parallel bisection and } \\
\text { inverse iteration methods). }
\end{array} \\
& \hline \text { ierr }=c _d v g s g 2(a, b, n, m, e p s z, \text { epst, e, ev, } \\
& k, v w, i v w, \& i c o n) ;
\end{aligned}
\]

\section*{1. Function}

This function calculates \(m\) eigenvalues for the generalized eigenvalue problem expressed by (1) for an \(n\) order real symmetric matrix \(\mathbf{A}\) and \(n\) order real positive definite matrix \(\mathbf{B}\) in descending (or ascending) order, using the parallel bisection method.
\[
\begin{equation*}
\mathbf{A x}=\lambda \mathbf{B} \mathbf{x} \tag{1}
\end{equation*}
\]

It also calculates the corresponding \(m\) eigenvectors, \(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{m}}\) using the inverse iteration method. Eigenvectors must satisfy the relation expressed by:
\[
\mathbf{X}^{\mathrm{T}} \mathbf{B X}=\mathbf{I}
\]
where \(\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{m}\right]\) with \(1 \leq m \leq n\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, (double *)ev, k, vw, ivw, \&icon);

``` where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input & Symmetric matrix A with dimension of Alen \(=\mathrm{n}(\mathrm{n}+1) / 2\). The matrix is stored in symmetric storage format. See the Array storage formats section in the Introduction. \\
\hline & & Output & The content is altered on output. \\
\hline b & double \(\mathrm{b}[\) Blen \(]\) & Input & Positive definite matrix \(\mathbf{B}\) with dimension of Blen \(=n(n+1) / 2\). The matrix is stored in symmetric storage format. See the Array storage formats section in the Introduction. \\
\hline & & Output & The content is altered on output. \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline m & int & Input & Number \(m\) of the eigenvalues to be calculated. Calculate in descending order when \(\mathrm{m}=+m\). Calculate in ascending order when \(\mathrm{m}=-m\). \\
\hline epsz & double & Input & Relative error test of the pivot in the \(\mathbf{L L}^{\mathrm{T}}\) decomposition of \(\mathbf{B}\). A default value is used when a non-positive value is specified. See Comments on use. \\
\hline epst & double & Input & Upper bound of the absolute error used in eigenvalue convergence test. default value is used when a non-positive value is specified. See Comments on use. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline e & double e[|m|] & Output & Contains eigenvalues stored in descending or ascending order depending on the sign of \(m\). \\
\hline ev & \[
\begin{aligned}
& \text { double } \\
& \operatorname{ev}[|m|][k]
\end{aligned}
\] & Output & Eigenvector corresponding to eigenvalue \(\mathrm{e}[\mathrm{i}]\) is stored at \(\mathrm{ev}[\mathrm{i}][\mathrm{j}\)], \(j=0,1, \ldots, n-1\). \\
\hline k & int & Input & C fixed dimension of array ev (\(\geq n\)). \\
\hline VW & \begin{tabular}{l}
double \\
vw [15*n]
\end{tabular} & Work & \\
\hline ivw & int ivw[7*n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \(\mathrm{n}=1\) & \begin{tabular}{l}
\(\mathrm{ev}[0][0]\) is set to 1/sqrt (b[0]) and e[0] \\
is set to a[0]/b[0]
\end{tabular} \\
\hline 15000 & Some eigenvectors were not calculated. & The uncalculated eigenvectors are set to zero. \\
\hline 20000 & No eigenvectors were calculated. & All eigenvectors are set to zero. \\
\hline 28000 & \begin{tabular}{l}
Pivot became negative during \(\mathbf{L L}^{\mathrm{T}}\) decomposition \\
of \(\mathbf{B}\). B is indefinite.
\end{tabular} & Stopped. \\
\hline 29000 & \begin{tabular}{l}
Pivot became relatively zero during \(\mathbf{L L}^{\mathrm{T}}\) \\
decomposition of \(\mathbf{B}\). \(\mathbf{B}\) may be singular.
\end{tabular} & Stopped. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{m}=0\) \\
\(\bullet\) \\
\\
\(\bullet\) \\
- \(<m<n\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

The default value for epsz is \(16 \mu\), where \(\mu\) is the unit round-off.
If epsz for this routine is set at \(10^{-s}\), the condition code (icon=29000) is set assuming that the pivot is zero and processing is terminated when the pivot value is zero to \(s\) decimal digits of accuracy during the \(\mathbf{L L}^{\mathrm{T}}\) decomposition of the symmetric matrix \(\mathbf{B}\).

Even when the pivot becomes small, calculation can continue if a sufficiently small value of epsz is specified, but the calculation accuracy cannot be guaranteed.

When the pivot value becomes negative during decomposition, the matrix \(\mathbf{B}\) is assumed to be indefinite and calculation is terminated, setting the condition code appropriately (icon=28000).

\section*{epst}

The default value of the argument epst is expressed by (2) where \(\mu\) is the unit round-off.
\[
\begin{equation*}
\text { epst }=\mu \cdot \max \left(\left|\lambda_{\max }\right|,\left|\lambda_{\min }\right|\right) \tag{2}
\end{equation*}
\]
where \(\lambda_{\text {max }}\) and \(\lambda_{\text {min }}\) are the upper and lower bounds of the existence range (given by Gerschgorin's theorem) of the eigenvalues of \(\mathbf{A x}=\lambda \mathbf{B x}\).

When very large and small absolute eigenvalues co-exist and a convergence test is performed using (2), it is generally difficult to calculate smaller eigenvalues with adequate precision. In such cases, smaller eigenvalues may be calculated with higher precision by setting epst to a smaller value. However, processing speed decreases as the number of iterations increases.

See the entry for VSEG2 in the Fortran SSL II Extended Capability User's Guide I to obtain details on the convergence criterion.

\section*{4. Example program}

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 matrix.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, m, i, j, k, ij, ivw[7*NMAX];
double a[NMAX**'(NMAX+1)/2], b[NMAX*'(NMAX+1)/2];
double e[NMAX], ev[NMAX][NMAX], vw[15*NMAX], epsz, epst;
/* initialize matrix */
n = NMAX;
ij = 0;
for (i=0;i<n;i++) {
for (j=0;j<i;j++) {
a[ij] = n-i;
b[ij++] = 0;
}
a[ij] = n-i;
b[ij++] = 1;
}
k = NMAX;
m = n;
epsz = 0;
epst = 0;
/* find eigenvalues and eigenvectors */
ierr = c_dvgsg2(a, b, n, m, epsz, epst, e, (double*)ev, k, vw, ivw, \&icon);
if (icon >= 20000) {
printf("ERROR: c_dvgsg2 failed with icon = %d\n", icon);
exit(1);
}
/* print eigenvalues and eigenvectors */
for (i=0;i<m;i++) {
printf("e-value %d: %10.4f\n",i+1,e[i]);
printf("e-vector:")
for (j=0;j<n;j++)
printf("%7.4f ",ev[i][j]);
printf("\n");
}
return(0);
}

```

\section*{5. Method}

This function calculates \(m\) eigenvalues and eigenvectors of a generalized eigenvalue problem (1) with an \(n\) by \(n\) real symmetric matrix A and an \(n\) by \(n\) positive definite matrix B. For more information consult the entry for VGSG2 for the generalized eigenvalue problem and VSEG2 for the related symmetric eigenvalue value in the Fortran SSL II Extended Capabilities User's Guide as well as [16] or [118].

\section*{c_dvhevp}
\[
\begin{aligned}
& \begin{array}{l}
\text { Eigenvalues and eigenvectors of a Hermitian matrix } \\
\text { (tridiagonalization, multisection method, and inverse iteration) }
\end{array} \\
& \hline \text { ierr }=c _d v h e v p(a r, ~ a i, ~ k, ~ n, ~ n f, ~ n l, ~ i v e c, ~ \\
& \text { \&etol, \&ctol, nev, e, maxne, m, } \\
& \text { evr, evi, vw, iw, \&icon); } \\
& \hline
\end{aligned}
\]

\section*{1. Function}

This routine calculates specified eigenvalues and, optionally, eigenvectors of an \(n\)-dimensional Hermitian matrix.
\[
\begin{equation*}
\mathbf{A x}=\lambda \mathbf{x} \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
\begin{tabular}{|c|c|c|c|}
\hline & nev, e, \&icon) & e, (il & *)m, (double *)evr, (double *)evi, vw, iw, \\
\hline \multicolumn{4}{|l|}{where:} \\
\hline ar & \begin{tabular}{l}
double \\
\(\operatorname{ar}[\mathrm{n}][\mathrm{k}]\)
\end{tabular} & Input & The real part of Hermitian matrix \(\mathbf{A}\), stored in the Hermitian storage format. See Array storage formats in the Introduction section. \\
\hline ai & \begin{tabular}{l}
double \\
ai[n][k]
\end{tabular} & Input & The imaginary part of Hermitian matrix \(\mathbf{A}\), stored in the Hermitian storage format. See Array storage formats in the Introduction section. \\
\hline k & int & Input & C fix dimension of matrix A. \((\mathrm{k} \geq \mathrm{n})\) \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nf & int & Input & Number assigned to the first eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.) \\
\hline nl & int & Input & Number assigned to the last eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.) \\
\hline ivec & int & Input & \begin{tabular}{l}
Control information. \\
ivec \(=1\) if both the eigenvalues and eigenvectors are sought. \\
ivec \(\neq 1\) if only the eigenvalues are sought.
\end{tabular} \\
\hline \multirow[t]{2}{*}{etol} & double & Input & Tolerance for determining whether an eigenvalue is distinct or numerically multiple. \\
\hline & & Output & etol is set to the default value of \(3 \times 10^{-16}\) when etol is set to less than it. See Comments on use. \\
\hline \multirow[t]{2}{*}{ctol} & double & Input & Tolerance (\(\geq\) etol) for determining whether adjacent eigenvalues are approximately multiple, i.e. clustered. \\
\hline & & Output & When ctol is less than etol, ctol is set to etol. See Comments on use. \\
\hline nev & int nev[3] & Output & Number of eigenvalues calculated. nev [0] indicates the number of distinct eigenvalues, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & nev [1] indicates the number of distinct clusters, nev[2] indicates the total number of eigenvalues including multiplicities. \\
\hline e & double e[maxne] & Output & Eigenvalues. Stored in \(\mathrm{e}[\mathrm{i}-1]\), \(\mathrm{i}=1, \ldots, \mathrm{nev}[2]\). \\
\hline maxne & int & Input & Maximum number of eigenvalues that can be computed. See Comments on use. \\
\hline m & \[
\begin{aligned}
& \text { int } \\
& \mathrm{m}[2][\operatorname{maxne}]
\end{aligned}
\] & Output & Information about the multiplicity of the computed eigenvalues. \(\mathrm{m}[0][\mathrm{i}-1]\) indicates the multiplicity of the i -th eigenvalue \(=\lambda_{i}\), \(\mathrm{m}[1][i-1]\) indicates the size of the \(i\)-th cluster of eigenvalues, \(i=1, \ldots, \min \{\operatorname{maxne}, \operatorname{nev}[2]\}\). \\
\hline evr & \begin{tabular}{l}
double \\
evr[maxne][k]
\end{tabular} & Output & When ivec \(=1\), the real part of the eigenvectors corresponding to the computed eigenvalues. Stored by row in \(\operatorname{evr}[\mathrm{i}-1][\mathrm{j}-1]\), \(i=1, \ldots, n e v[2], j=1, \ldots, n\). \\
\hline evi & \begin{tabular}{l}
double \\
evi[maxne][k]
\end{tabular} & Output & When ivec \(=1\), the imaginary part of the eigenvectors corresponding to the computed eigenvalues. Stored by row in evi[i-1] [j-1], \(i=1, \ldots, \operatorname{nev}[2], j=1, \ldots, n\). \\
\hline VW & double vw[17k] & Work & \\
\hline iw & int iw[Ivwlen] & Work & Ivwlen \(=9 \times\) maxne +128. \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & The total number of eigenvalues exceeded maxne during computation of multiple and/or clustered eigenvalues. & Discontinued. The eigenvectors cannot be computed. Eigenvalues are returned but are not stored taking into account multiplicities. See Comments on use. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(k<n\) \\
- \(n f<1\) \\
- \(n l>n\) \\
- \(\mathrm{nl}<\mathrm{nf}\) \\
- maxne < nl-nf+1
\end{tabular} & Bypassed. \\
\hline 30100 & The input matrix may not be a Hermitian matrix. & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{etol and ctol}

If the eigenvalues \(\lambda_{j}, j=s, s+1, \ldots, s+k,(k \geq 0)\) satisfy
\[
\begin{equation*}
\frac{\left|\lambda_{i}-\lambda_{i-1}\right|}{1+\max \left(\left|\lambda_{i-1}\right|,\left|\lambda_{i}\right|\right)} \leq \varepsilon \tag{2}
\end{equation*}
\]
with \(\varepsilon=\) etol, and if \(\lambda_{s-1}\) and \(\lambda_{s+k+1}\) do not satisfy (2), then the eigenvalues \(\lambda_{j}, j=s, s+1, \ldots, s+k\), are considered to be identical, that is, a single eigenvalue of multiplicity \(k+1\).

The default value of etol is \(3 \times 10^{-16}\). Using this value, the eigenvalues are refined to machine precision.
When (2) is not satisfied for \(\varepsilon=\) etol, \(\lambda_{i-1}\) and \(\lambda_{i}\) are assumed to be distinct eigenvalues.
If (2) is satisfied for \(\varepsilon=\mathrm{ctol}\) (but is not satisfied with \(\varepsilon=\) etol) for eigenvalues \(\lambda_{j}, j=t, t+1, \ldots, t+k\), but not for \(\lambda_{t-1}\) and \(\lambda_{t+k+1}\), then eigenvalues \(\lambda_{j}, j=t, t+1, \ldots, t+k\), are considered to be approximately multiple, that is, clustered, though distinct (not numerically multiple). In order to obtain an invariant subspace, eigenvectors corresponding to clustered eigenvalues are computed using orthogonal starting vectors and are re-orthogonalized.

If ctol < etol, then ctol = etol is set.

\section*{maxne}

Assume \(r\) eigenvalues are requested. Note that if the first or last requested eigenvalue has a multiplicity greater than 1 then more than \(r\) eigenvalues, are obtained. The corresponding eigenvectors can be computed only when the corresponding eigenvector storage area is sufficient.

The maximum number of computable eigenvalues can be specified in maxne. If the total number of eigenvalues exceeds maxne, icon = 20000 is returned. The corresponding eigenvectors cannot be computed. In this case, the eigenvalues are returned, but they are not stored repeatedly according to multiplicities.

When all eigenvalues are distinct, it is sufficient to set maxne \(=n l-n f+1\).
When the total number of eigenvalues to be sought exceeds maxne, the necessary value for maxne for seeking eigenvalues again is returned in nev[2].

\section*{4. Example program}

This program obtains eigenvalues and prints the results.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define K }51
\#define N
K
\#define NF
\#define NL
\#define MAXNE NL-NF+1
\#define NVW
\#define NIW 9*MAXNE+128
MAIN__()
{
double ar[N][K], ai[N][K];
double e[MAXNE], evr[MAXNE][K], evi[MAXNE][K];
double VW[NVW];
double etol, ctol;
int nev[3], m[2][MAXNE], iw[NIW];
int ierr, icon;
int i, j, k, n, nf, nl, maxne, ivec;
n = N;
k = K;
nf = NF;
nl = NL;
ivec = 1;
maxne = MAXNE;
etol = 1.0e-14;
ctol = 5.0e-12;
printf(" Number of data points = %d\n", n);

```
```

    printf(" Parameter k = %d\n", k);
    printf(" Eigenvalue calculation tolerance = %12.4e\n", etol);
    printf(" Cluster tolerance = %12.4e\n", ctol);
    printf(" First eigenvalue to be found is %d\n", nf);
    printf(" Last eigenvalue to be found is %d\n", nl);
    /* Set up real and imaginary parts of matrix in AR and AI */
    for(i=0; i<n; i++) {
        for(j=0; j<n; j++) {
            ar[i][j] = (double)(i+j+2)/(double)n;
            if(i==j) {
                ai[i][j] = 0.0;
                ar[i][j] = (double)(j+1);
            } else {
                ai[i][j] = (double)((i+1)*(j+1))/(double)(n*n);
            }
        }
    }
    for(i=0; i<n; i++) {
        for(j=0; j<n; j++) {
            if(i > j) ai[i][j] = -ai[i][j];
        }
    }
    /* Call complex eigensolver */
    ierr = c_dvhevp ((double*)ar, (double*)ai, k, n, nf, nl, ivec, &etol, &ctol, nev, e,
                        maxne, (int*)m, (double*)evr, (double*)evi, vw, iw, &icon);
    if (icon > 20000) {
        printf("ERROR: c_dvhevp failed with icon = %d\n", icon);
        exit(1);
    }
    printf("icon = %i\n", icon);
    /* print eigenvalues */
    printf(" Number of Hermitian eigenvalues = %d\n", nev[2])
    printf(" Eigenvaluse of complex Hermitian matrix\n");
    for(i=0; i<nev[2]; i++) {
        printf(" e[%d] = %12.4e\n", i, e[i]);
    }
    return(0)
    }

```

\section*{5. Method}

Consult the entry for VHEVP in the Fortran SSL II Extended Capabilities User's Guide II and [81], [118].

\section*{c_dvland}
\[
\begin{aligned}
& \text { Eigenvalues and corresponding eigenvectors of a symmetric sparse } \\
& \text { matrix (Lanczos method, diagonal storage format). } \\
& \hline \text { ierr = c_dvland(a, k, ndiag, n, nofst, ivec, } \\
& \text { ix, eps, nmin, nmax, nlmin, nlmax, } \\
& \text { kr, maxc, e, indx, \&ncmin, \&ncmax, } \\
& \text { ev, vw, ivw, \&icon); }
\end{aligned}
\]

\section*{1. Function}

This routine computes a few of the largest and/or smallest eigenvalues and corresponding eigenvectors of a largescale symmetric sparse matrix \(\mathbf{A}\) using the Lanczos method.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvland((double *) a, k, ndiag, n, nofst, ivec, ix, eps, nmin, nmax, nlmin, nlmax, kr, maxc, e, indx, \&ncmin, \&ncmax, (double *) ev, vw, iwv, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[ndiag][k]
\end{tabular} & Input & Matrix A. Stored in diagonal storage format for general sparse matrices. See Array storage formats in the Introduction section for details. \\
\hline k & int & Input & C fixed dimension of arrays \(a\) and ev (\(\geq \mathrm{n}\)). \\
\hline ndiag & int & Input & Number (\(\geq 1\)) of diagonals of matrix \(\mathbf{A}\) that contain non-zero elements. \\
\hline n & int & Input & Order \(n(\geq 1)\) of matrix \(\mathbf{A}\). \\
\hline nofst & int nofst[ndiag] & Input & Offsets from the main diagonal corresponding to diagonals stored in \(\mathbf{A}\). Upper diagonals have positive offsets, the main diagonal has a zero offset, and the lower diagonals have negative offsets. See Array storage formats in the Introduction section for details. \\
\hline ivec & int & Input & \begin{tabular}{l}
Control information indicating whether an initial vector is specified in \(e v[0][i], i=0, \ldots, n-1\). \\
ivec \(=1\) when the initial vector in ev is to be used \\
ivec \(\neq 1\) when the initial vector is to be generated randomly.
\end{tabular} \\
\hline ix & int & Input & Seed value used to generate a random number sequence when an initial vector is generated randomly for ivec \(\neq 1\). ix must be an integer value from 1 to 100,000 . \\
\hline eps & double & Input & Tolerance to decide whether the computed eigenpair \(\left(\lambda_{i}, \mathbf{x}_{i}\right)\) is to be accepted. When eps is zero or less, eps is set to \(10^{-6}\). See Comments on use. \\
\hline nmin & int & Input & Number (\(\geq 0\)) of smallest eigenvalues and corresponding eigenvectors to be computed. nmin should be a small number and can be 0 if \(n \max \geq 1\). \\
\hline nmax & int & Input & Number (\(\geq 0\)) of largest eigenvalues and corresponding eigenvectors to be computed. nmax should be a small number and can be 0 if \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{nlmin} & \multirow{3}{*}{int} & \multirow{3}{*}{Input} & \(n \mathrm{~min} \geq 1\). \\
\hline & & & Number of eigenvalues (\(\geq\) nmin) to be used in the search for the nmin smallest eigenvalues. Generally, nlmin \(=2 \times\) nmin. See \\
\hline & & & Comments on use. \\
\hline nlmax & int & Input & Number of eigenvalues (\(\geq \mathrm{nmax}\)) to be used in the search for the nmax largest eigenvalues. Generally, nlmax \(=2 \times\) nmax. See \\
\hline & & & Comments on use. \\
\hline kr & int & Input & Maximum dimension (\(\geq\) nlmin + nlmax) of the Krylov subspace generated in the Lanczos method. See Comments on use. \\
\hline maxc & int & Input & Maximum number \((\geq 0)\) of eigenvalues in a cluster, for example 10. See Comments on use. \\
\hline e & double e[Elen] & Output & Largest and smallest eigenvalues stored in ascending order using the indirect index list indx. Elen \(=\) nlmin + nlmax. The smallest are stored in e [indx[i-1]], \(i=1, \ldots\), ncmin, the largest are stored in \(e[i n d x[n m i n+n m a x-i]], i=1, \ldots, n c m a x\). \\
\hline indx & int indx [nmin+nmax] & Output & Stores indirect indices of arrays e and ev . The eigenvector corresponding to eigenvalue \(e\) [indx[i]] is stored in \(\operatorname{ev}[i n d x[i]][j], j=0, \ldots, n-1 ; i=0, \ldots, n m i n+n m a x-1\). \\
\hline ncmin & int & Output & Number of smallest eigenvalues and corresponding eigenvectors computed. \\
\hline ncmax & int & Output & Number of largest eigenvalues and corresponding eigenvectors computed. \\
\hline \multirow[t]{2}{*}{ev} & \multirow[t]{2}{*}{\begin{tabular}{l}
double \\
ev [Evlen] [k]
\end{tabular}} & Input & When \(\mathbf{i v e c}=1\), an initial vector is stored in ev[0][j], \(\mathrm{j}=0, \ldots, \mathrm{n}-1\). Evlen \(=\mathrm{nlmin}+\mathrm{nlmax}\). \\
\hline & & Output & Computed eigenvectors. The eigenvector corresponding to eigenvalue \(e[i n d x[i]]\) is stored in \(e v[i n d x[i]][j], j=0, \ldots, n-1\); \(\mathbf{i}=0, \ldots, n m i n+n m a x-1\). \\
\hline VW & \begin{tabular}{l}
double \\
vw [Vwlen]
\end{tabular} & Work & \[
\begin{aligned}
& \text { Vwlen }=(\operatorname{maxc}+m n l)(\mathrm{kr}+2)+(m d+14)(\mathrm{kr}+1)+7 \mathrm{k}, \text { with } \\
& m n l=\max \{\mathrm{nlmin}, \mathrm{nlmax}\}, m d=\mathrm{nlmin}+\mathrm{nlmax} .
\end{aligned}
\] \\
\hline ivw & int ivw[Ivwlen] & Work & \[
\begin{aligned}
& \text { Ivwlen }=11 \times(\operatorname{maxc}+m n l)+m d+128, \text { with } \\
& m n l=\max \{n l m i n, \operatorname{nlmax}\}, m d=\text { nlmin }+\mathrm{nlmax} .
\end{aligned}
\] \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Number of eigenvalues in a cluster exceeded maxc. Eigenvectors cannot be computed. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(k<n\) \\
- \(n d i a g<1\) \\
- \(\mathbf{i x}<1\) or \(\mathbf{i x}>100000\) \\
- nlmin \(<\) nmin or nlmax \(<\operatorname{nmax}\) \\
- \(n m i n<0\) or \(\operatorname{nmax}<0\) \\
- \(\mathrm{nmin}=\mathrm{nmax}=0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30004 & \(\mathrm{kr}<\mathrm{nlmin}+\mathrm{nlmax}\) & Bypassed. \\
\hline 32001 & \(\mid\) nofst \([\mathrm{i}-1] \mid>\mathrm{n}-1, \mathrm{i}=1, \ldots\), ndiag & Bypassed. \\
\hline 39001 & The initial vector is 0 or near 0. & Bypassed. \\
\hline 39006 & The input matrix is not symmetric. & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ivec and ix}

The results obtained using the Lanczos method depend on the choice of initial vector. If the initial vector contains large components in the directions of the requested eigenvectors, then good approximations to the requested eigenvalues and eigenvectors will be computed. If these components are small or absent in the initial vector then the desired eigenpairs may not be obtained; however, the returned values may be good approximations to some eigenpairs of the matrix \(\mathbf{A}\).

In most cases, a good initial vector is not known and in these instances the initial vector is generated randomly.

\section*{Accuracy}

When the eigenpair (\(\lambda_{i}, \mathbf{x}_{i}\)) satisfies \(\left\|\mathbf{A x}_{i}-\lambda_{i} \mathbf{x}_{i}\right\| \leq \kappa \varepsilon\left|\lambda_{i}\right|\), it is accepted as an eigenvalue and eigenvector of matrix A. Otherwise, the pair is rejected. Here, \(\varepsilon=\mathrm{eps}\), and \(\kappa\) indicates the dimension of the Krylov subspace.

\section*{nlmin and nlmax}

In the Lanczos method spurious eigenvalues and eigenvectors, not belonging to the original matrix \(\mathbf{A}\), may be obtained. As these values will be rejected, the number of eigenvalues and eigenvectors used in the search must be sufficiently large.
 small. Generally, nlmin \(=2 \times\) nmin and \(n l m a x=2 \times n \max\) will suffice.

\section*{kr}

The quality of the computed eigenvalues and eigenvectors depends on the dimension kr of the Krylov subspace and the initial vector. Increasing kr enables the user to obtain better approximate eigenvalues and eigenvectors. However, since memory and computional costs are increased, kr should be chosen as small as possible. In some cases, it is not possible to choose kr smaller than n (for example, the one-dimensional discrete Laplacian). When kr is equal to n , this routine works correctly but may be unacceptably slow. kr should exceed n .

\section*{\(\operatorname{maxc}\)}

A cluster is a set of very close eigenvalues with the distance between adjacent eigenvalues (relative to the eigenvalue magnitude) of order machine epsilon.

\section*{General comments}

The Lanczos method is not a deterministic procedure, and hence is not as robust as, for example, the method based on the tridiagonalization by Householder reduction.

\section*{4. Example program}

This program finds the largest and smallest eigenvalues and corresponding eigenvectors, and prints the result.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NDIM 15

```
```

\#define NDIAG 5
\#define NMIN 1
\#define NMAX 1
\#define NEV NMIN+NMAX
\#define NLMIN 2*NMIN
\#define NLMAX 2*NMAX
\#define NEVL NLMIN+NLMAX
\#define max(a,b) ((a) > (b) ? (a) : (b))
MAIN__()
{
int ierr, icon;
int n, i, j, k;
int ivec, ix, nmin, nmax, nlmin, nlmax, kr, maxc, ncmin, ncmax;
double a[NDIAG][NDIM], e[NEVL], ev[NEVL][NDIM];
int ndiag, nofst[NDIAG], indx[NEV], *iw, mnl, md;
double *wv, eps;
/* initialize matrix */
ndiag = NDIAG;
n = NDIM;
k = NDIM;
for (i=0;i<n;i++) {
a[0][i] = -6;
a[1][i] = -3;
a[2][i] = 10;
a[3][i] = -3;
a[4][i] = -6;
}
a[0][0] = 0;
a[0][1] = 0;
a[1][0] = 0;
a[3][n-1] = 0;
a[4][n-2] = 0;
a[4][n-1] = 0;
nofst[0] = -2;
nofst[1] = -1;
nofst[2] = 0
nofst[3] = 1;
nofst[4] = 2;
ivec = 0;
ix = 1
eps = 1e-6;
nmin = NMIN;
nmax = NMAX;
nlmin = NLMIN;
nlmax = NLMAX;
kr = n;
maxc = 10;
mnl = max(nlmin,nlmax);
md = nlmin+nlmax;
wv = (double*)malloc(((maxc+mnl)*(kr+2)+md*(kr+1)+7*k+14*(kr+1))
*sizeof(double));
iw = (int*)malloc((11*(maxc+mnl)+md+128)*sizeof(int))
/* find eigenvalues and eigenvectors */
ierr = c_dvland((double*)a, k, ndiag, n, nofst, ivec, ix, eps, nmin, nmax,
nlmin, nlmax, kr, maxc, e, indx, \&ncmin, \&ncmax,
(double*)ev, wv, iw, \&icon);
printf("icon = %i\n", icon);
/* print smallest eigenvalues and eigenvectors */
for (i=0;i<ncmin;i++) {
printf("eigenvalue: %7.4f\n", e[indx[i]]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f ", ev[indx[i]][j]);
printf("\n");
}*
/* print largest eigenvalues and eigenvectors */
for (i=0;i<ncmax;i++) {
printf("eigenvalue: %7.4f\n", e[indx[NEV-ncmax+i]]);
printf("eigenvector: ");
for (j=0;j<n;j++)
printf("%7.4f ", ev[indx[NEV-ncmax+i]][j]);
printf("\n");
}
free(wv);
free(iw);
return(0);
}

```

\section*{5. Method}

For information on the Lanczos method consult [25] and [42]. The algorithm used for this routine generates a tridiagonal matrix \(\mathbf{T}\) of size less than (or equal) to that of the matrix \(\mathbf{A}\). The eigenvalues and eigenvectors of this tridiagonal matrix are computed using a multisection sturm count procedure and inverse iteration, respectively. See the entry for VTDEV in the Fortran SSL II Extended Capabilities User's Guide II. The eigenvectors of matrix A are recovered from those of T using the Krylov subspace basis vectors generated by the Lanczos process.

\section*{c_dvlax}

Solution of a system of linear equations with a real matrix (blocking LUdecomposition method).
```

ierr = c_dvlax(a, k, n, b, epsz, isw, \&is, vw,
ip, \&icon);

```

\section*{1. Function}

This function solves a system of linear equations (1) using the blocking LU-decomposition (Gaussian elimination method).
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) regular real matrix, \(\mathbf{b}\) is a real constant vector and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvlax((double*)a, k, n, b, epsz, isw, \&is, vw, ip, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double & Input & Matrix A. \\
\hline & a [n][k] & Output & The contents of the array are altered on output. \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline epsz & double & Input & Tolerance for relative zero test of pivots in decomposition process of \(\mathbf{A}\) (\(\geq 0\)). When epsz is zero, a standard value is used. See Comments on use. \\
\hline isw & int & Input & Control information. \\
\hline & & & When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use. \\
\hline is & int & Output & Information for obtaining the determinant of matrix \(\mathbf{A}\). When the n elements of the calculated diagonal of array a are multiplied together, and the result is then multiplied by is, the determinant is obtained. \\
\hline vw & double vw[n] & Work & \\
\hline ip & int ip[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 20000 & \begin{tabular}{l}
Either all of the elements of some row are zero or \\
the pivot became relatively zero. It is highly \\
probable that the coefficient matrix is singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad \mathrm{k}<\mathrm{n}\) \\
- \(\quad \mathrm{n}<1\) \\
-
\end{tabular} & Bypassed. \\
- \(\quad\) isw \(\neq 1\) or 2
\end{tabular}\(\quad\)\begin{tabular}{l}
\\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:
If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix \(\mathbf{A}=\left(a_{i j}\right)\), that is:
\[
\left|a_{k k}^{k}\right| \leq \max \left|a_{i j}\right| \text { epsz }
\]
then the relative pivot value is assumed to be zero and processing terminates with icon=20000. The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off. If the processing is to proceed at a lower pivot value, epsz will be given the minimum value but the result is not always guaranteed.

\section*{isw}

When solving several sets of linear equations with same coefficient matrix, specify isw=2 for any second and subsequent sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise. The value of is is identical for all sets and any valid isw.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, k, isw, is;
double epsz, eps;
double a[NMAX][NMAX], b[NMAX], x[NMAX], vw[NMAX];
int ip[NMAX];
/* initialize matrix and vector */
n = NMAX;
for (i=0;i<n;i++)
for (j=i;j<n;j++) {
a[i][j] = n-j;
a[j][i] = n-j;

```
```

    }
    for (i=0;i<n;i++)
        x[i] = i+1;
    k = NMAX;
    /* initialize constant vector b = a*x */
    ierr = c_dmav((double*)a, k, n, n, x, b, &icon);
    epsz = 1e-6;
    isw = 1;
    /* solve system of equations */
    ierr = c_dvlax((double*)a, k, n, b, epsz, isw, &is, vw, ip, &icon);
    if (icon != 0) {
        printf("ERROR: c_dvlax failed with icon = %d\n", icon);
        exit(1);
    }
    /* check solution vector */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((x[i]-b[i])/b[i]) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    prin
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

The blocking LU-decomposition method is used for matrix decomposition before solving the system of linear equations by forward and backward substitutions. For further information consult the entry for VLAX in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvlbx}
```

Solution of a system of linear equations with a band matrix (Gaussian
elimination).
ierr = c_dvlbx(a, n, nh1, nh2, b, epsz, isw,
\&is, ip, vw, \&icon);

```

\section*{1. Function}

This function solves a system of linear equations (1) using the Gaussian elimination method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) real band matrix with lower bandwidth \(h_{1}\) and upper bandwidth \(h_{2}, \mathbf{b}\) is a real constant vector and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n\left(n>h_{1} \geq 0, n>h_{2} \geq 0\right)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvlbx(a, n, nh1, nh2, b, epsz, isw, \&is, ip, vw, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input & Matrix A sored in band storge format, with Alen=(2*nh1+nh2+1)*n \\
\hline & & Output & LU-decomposed matrices \(\mathbf{L}\) and \(\mathbf{U}\). Suitable for subsequent calls to this routine. See Comments on use. \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline nh1 & int & Input & Lower bandwidth \(h_{1}\) of matrix \(\mathbf{A}\). \\
\hline nh2 & int & Input & Upper bandwidth \(h_{2}\) of matrix \(\mathbf{A}\). \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline epsz & double & Input & Value for relative zero test of pivots (\(\geq 0\)). When epsz is zero, a standard value is used. See Comments on use. \\
\hline isw & int & Input & Control information. \\
\hline & & & When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use. \\
\hline is & int & Output & Information for obtaining the determinant of matrix A. See Comments on use. \\
\hline ip & int ip[n] & Output & Transposition vector that shows the history of the exchanges of rows performed during partial pivoting. \\
\hline VW & double vw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 20000 & All the elements of a row of matrix A are zero, or pivot is relative zero. Strong possibility that matrix A is singular. & Processing stopped. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n} \leq \mathrm{nh} 1\) \\
- \(\mathrm{n} \leq \mathrm{nh} 2\) \\
- \(\mathrm{nh} 1<0\) \\
- \(\mathrm{nh} 2<0\) \\
- epsz<0 \\
- isw \(=1\) or 2
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a}

The band matrix \(\mathbf{A}\) is stored in band storage format, for details see the Array storage formats section of the Introduction.

\section*{epsz}

In this function, the case of the pivot value being less than epsz is considered relative zero and processing is stopped with \(\mathrm{icon}=20000\).

The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off.

\section*{isw}

When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and subsequent sets after successfully completing the first with isw=1. This will bypass the LU-decomposition section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise.

\section*{Calculation of determinant - is}

The elements of matrix \(\mathbf{U}\) are stored in array \(a\). Therefore, the determinant is obtained by multiplying the is value by \(n\) diagonal elements, that is, the multiplication of \(a[(2 * h 1+h 2+1) * i+h 1], i=0, \ldots, n-1\).

\section*{Storage space}

In order to save space in the data storage area, this function stores band matrices by taking advantage of their characteristics. However, depending on bandwidth size, a data storage area that is larger than c_dvalu may be required. In such cases, space in the data storage area can be save by using c_dvalu.

Characteristics of this function can be exploited when \(n>2 h_{1}+h_{2}+1\).

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */

```
```

\#define min(i,j) (i<j) ? i : j
\#define max(i,j) (i>j) ? i : j
\#define NMAX 100
\#define H1MAX 2
\#define H2MAX 2
MAIN__()
{
int ierr, icon;
int n, nh1, nh2, i, j, jmin, jmax, isw, is, ip[NMAX];
double epsz, eps, sum;
double a[(2*H1MAX+H2MAXX+1)*NMAX], b[NMAX], x[NMAX], vw[NMAX];
/* initialize matrix */
n = NMAX;
nh1 = H1MAX;
nh2 = H2MAX;
for (i=0;i<n*(2*nh1+nh2+1);i++)
a[i] = 0;
for (i=0;i<n;i++) {
jmin = max(i-nh1,0);
jmax = min(i+nh2,n-1);
for (j=jmin;j<=jmax;j++)
a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i);
}
for (i=0;i<n;i++) {
x[i] = i+1;
}/*
/* initialize constant vector b = a*x */
for (i=0;i<n;i++) {
jmin = max(i-nh1,0);
jmax = min(i+nh2,n-1);
sum = 0;
for (j=jmin;j<=jmax;j++)
sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j];
b[i] = sum;
}
epsz = 1e-6;
isw = 1;
/* solve system of equations */
ierr = c_dvlbx(a, n, nh1, nh2, b, epsz, isw, \&is, ip, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvlbx failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

After LU-decomposition of the outer product type (see [42]) is performed, equation (1) is solved through forward and backward substitutions. For further information consult the entry for VLBX in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvldiv}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
The inverse of a real symmetric positive definite matrix decomposed into \\
LDL \(^{\mathbf{T}}\) factors.
\end{tabular} \\
\hline ierr \(=c _d v l d i v(a, n, \mathrm{vw}\), \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

The inverse matrix \(\mathbf{A}^{\mathbf{- 1}}\) of an \(n \times n\) symmetric positive definite matrix \(\mathbf{A}\) given in the decomposed form of \(\mathbf{A}=\mathbf{L D L} \mathbf{L}^{\mathbf{T}}\) is given by:
\[
\begin{equation*}
\mathbf{A}^{-1}=\left(\mathbf{L}^{\mathbf{T}}\right)^{-1} \mathbf{D}^{-1} \mathbf{L}^{-1} \tag{1}
\end{equation*}
\]
where \(\mathbf{L}\) is the unit lower triangular matrix, and \(\mathbf{D}\) is the diagonal matrix. \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvldiv(a, n, vw, \&icon);

```
where:
\begin{tabular}{llll}
a & double a[Alen] & Input & \begin{tabular}{l}
Matrices \(\mathbf{L}\) and \(\mathbf{D}^{-1}\) (obtained from routine C _dvsldl). Stored in \\
symmetric positive definite storage format. See Array storage formats in
\end{tabular} \\
& & Output \\
the Introduction section for further details. Alen \(=n(n+1) / 2\). \\
n & int & \begin{tabular}{l}
Lower triangular part of inverse \(\mathbf{A}^{-1}\) stored by columns.
\end{tabular} \\
Vw & double \(\mathrm{Vw}[\mathrm{n}]\) & Work & Order \(n\) of matrix \(\mathbf{A}\). \\
icon & int & Output & Condition code. See below. \\
The complete list of condition codes is:
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Matrix was not positive definite. & Continued. \\
\hline 30000 & \(\mathrm{n}<1\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General comments}

Prior to calling this function, the factors \(\mathbf{L}\) and \(\mathbf{D}^{\mathbf{- 1}}\) must be obtained by the function, \(\mathbf{c}\) _dvsldl, and passed into this routine via parameter a to obtain the inverse. For solving linear equations use the c_dvlsx function. This is far more efficient than calculating the inverse matrix. Users should only use this function when calculating the inverse matrix is unavoidable.

\section*{4. Example program}

This program solves a system of linear equations by calculating the inverse matrix and then checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, ij;
double epsz, eps, sum;
double a[NMAX*(N'MAX+1)/2], b[NMAX], x[NMAX], y[NMAX], vw[2*NMAX];
int ivw[NMAX];
/* initialize matrix and vector */
n = NMAX;
ij = 0;
for ( }\textrm{j}=0;\textrm{j}<n;\textrm{j}++
for (i=j;i<n;i++)
a[ij++] = n-i;
for (i=0;i<n;i++)'{
x[i] = i+1;
b[i] = 0;
y[i] = 0;
}*
/* initialize constant vector b = a*x */
ij = 0;
for (i=0;i<n;i++) {
sum = a[ij++]*x[i];
for (j=i+1;j<n;j++)
b[j] = b[j] + a[ij]*x[i];
sum = sum + a[ij++]*x[j];
}
b[i] = b[i]+sum;
}
epsz = 1e-6;
/* LDL decomposition of system of equations */
ierr = c_dvsldl(a, n, epsz, vw, ivw, \&icon);
if (icon > 10000) {
printf("ERROR: c_dvsldl failed with icon = %d\n", icon);
exit(1);
}
/* find matrix inverse from LDL factors */
ierr = c_dvldiv(a, n, vw, \&icon);
if (icon!= 0) {
printf("ERROR: c_dvldiv failed with icon = %d\n", icon);
exit(1);
}
/* calculate y = a*b */
ij = 0;
for (i=0;i<n;i++) {
sum = a[ij++]*b[i];
for (j=i+1;j<n;j++)
y[j] = y[j] + a[ij]*b[i];
sum = sum + a[ij++]*b[j];
}
y[i] = y[i]+sum;
}*
/* compare x and y */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-y[i])/y[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

For further information on the algorithm used consult the entry for LDIV in the Fortran SSL II User's Guide, and [71]. Note that the storage format used in LDIV is different from that used in this routine, but the underlying algorithm is the same.

\section*{c_dvldlx}

Solution of a system of linear equations with a symmetric positive definite matrix in LDL \(^{\mathrm{T}}\) - decomposed form. ierr = c_dvldlx(b, fa, n, \&icon);

\section*{1. Function}

This routine solves a system of linear equations with an LDL \(^{\mathrm{T}}\) decomposed \(n \times n\) symmetric positive definite coefficient matrix,
\[
\begin{equation*}
\mathbf{L D L}^{\mathrm{T}} \mathbf{x}=\mathbf{b} . \tag{1}
\end{equation*}
\]

In (1) \(\mathbf{L}\) is a unit lower triangular matrix, \(\mathbf{D}\) is a diagonal matrix, \(\mathbf{b}\) is a constant vector, and \(\mathbf{x}\) is the solution vector. Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvldlx(b, fa, n, \&icon);

```
where:
\begin{tabular}{llll}
b & double \(\mathrm{b}[\mathrm{n}]\) & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \begin{tabular}{l}
Constant vector \(\mathbf{b}\). \\
fa \\
Solution vector \(\mathbf{x}\).
\end{tabular} \\
n & \begin{tabular}{l}
double \\
fa[Falen]
\end{tabular} & Input & \begin{tabular}{l}
Matrix \(\mathbf{D}^{-1}+(\mathbf{L}-\mathbf{I})\). Stored in symmetric positive definite storage \\
format. See Array storage formats in the Introduction section for further \\
details. Falen \(=n(n+1) / 2\).
\end{tabular} \\
icon & int & Input & \begin{tabular}{l}
Order \(n\) of matrices \(\mathbf{L}\) and \(\mathbf{D}\).
\end{tabular} \\
The & Output & Condition code. See below.
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Coefficeint matrix is not positive definite. & Continued. \\
\hline 30000 & \(\mathrm{n}<1\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

A system of linear equations can be solved by calling the routine \(c _d v s l d l\) to \(L D L^{T}\)-decompose the coefficient matrix before calling this routine. The input argument fa of this routine is the same as the output argument a of c_dvsldl. Alternatively the system of linear equations can be solved by calling the single rotuine c_dvlsx.

\section*{4. Example program}

This program solves a system of linear equations using \(\operatorname{LDL}^{\mathrm{T}}\) decomposition, and checks the result.
```

\#include <stdlib.h>

```
```

\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, ij;
double epsz, eps, sum;
double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX];
int ivw[NMAX];
/* initialize matrix and vector */
n = NMAX;
ij = 0;
for (j=0;j<n;j++)
for (i=j;i<n;i++)
a[ij++] = n-i;
for (i=0;i<n;i++) {
x[i] = i+1;
b[i] = 0;
}
/* initialize constant vector b = a*x */
ij = 0;
for (i=0;i<n;i++) {
sum = a[ij++]*x[i];
for (j=i+1;j<n;j++) {
b[j] = b[j] + a[ij]*x[i];
sum = sum + a[ij++]*x[j];
}
b[i] = b[i]+sum;
}
epsz = 1e-6;
/* LDL decomposition of system of equations */
ierr = c_dvsldl(a, n, epsz, vw, ivw, \&icon);
if (icon > 10000) {
printf("ERROR: c_dvsldl failed with icon = %d\n", icon);
exit(1);
}
/* solve decomposed system of equations */
ierr = c_dvldlx(b, a, n, \&icon);
if (icon > 10000) {
printf("ERROR: c_dvldlx failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for VLDLX in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvlsbx}

Solution of a system of linear equations with a symmetric positive definite band matrix (modified Cholesky decomposition).
```

ierr = c_dvlsbx(a, n, nh, b, epsz, isw,
\&icon);

```

\section*{1. Function}

This function solves a system of linear equations (1) using the modified Cholesky method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) symmetric positive definite real band matrix with upper and lower bandwidths, \(h, \mathbf{b}\) is a real constant vector and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n(n>h \geq 0)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvlsbx(a, n, nh, b, epsz, isw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{a} & \multirow[t]{3}{*}{double a[Alen]} & Input & Symmetric band matrix \(\mathbf{A}\) with Alen \(=(\mathrm{nh}+1)\) * n . The diagonal and lower triangular elements of the band matrix. \\
\hline & & Output & Decomposed matrices D and \(\mathbf{L}\) \\
\hline & & & See Comments on use. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nh & int & Input & Lower bandwidth \(h\). \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline epsz & double & Input & Value for relative zero test of pivots \((\geq 0)\). When epsz is zero, a standard value is used. See Comments on use. \\
\hline \multirow[t]{2}{*}{isw} & int & Input & Control information. \\
\hline & & & When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
Pivot is negative. Matrix A is not positive \\
definite.
\end{tabular} & Processing continues. \\
\hline 20000 & \begin{tabular}{l}
Pivot is relatively zero. Strong possibility that \\
matrix A is singular.
\end{tabular} & Processing stopped. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{nh}<0\) \\
& \(\bullet \mathrm{nh} \geq \mathrm{n}\) & \\
& \(\bullet \quad\) epsz \(<0\) \\
& \(\bullet \quad\) isw \(\neq 1\) or 2 & \\
& & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a}

Matrix A is stored in symmetric positive definite band storage format. For details see the Array storage formats section of the Introduction.

\section*{epsz}

In this function, the case of the pivot value being less than epsz is considered relative zero and processing is stopped with \(i c o n=20000\).

The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off.

\section*{isw}

When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and subsequent sets after successfully completing the first with isw=1. This will bypass the \(\mathbf{L D L}{ }^{\mathrm{T}}\) decomposition section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise.

\section*{Negative pivot during the solution}

When the pivot becomes negative during the decomposition process, the coefficient matrix is not positive definite. In this function, processing continues, but icon is set to 10000 .

\section*{Calculation of determinant}

The elements of matrix \(\mathbf{L}\) are stored in array \(\mathbf{a}\), for storage details see above. Therefore, the determinant is obtained by multiplying the \(n\) diagonal elements, that is, the multiplication of \(a[(h+1) * i], i=0, \ldots, n-1\).

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(i,j) (i<j) ? i : j
\#define NMAX 100
\#define HMAX 2
MAIN__()
{
int ierr, icon;
int n, nh, i, j, jmax, imax, isw;
double epsz, eps, sum;
double a[(HMAX+1)*NMAX], b[NMAX], x[NMAX];

```
```

    /* initialize matrix */
    n = NMAX;
    nh = HMAX
    for (j=0;j<n;j++) {
        imax = min(j+nh,n-1);
        for (i=j;i<=imax;i++)
            a[j*(nh+1)+i-j] = n-(j-i);
    }
    for (i=0;i<n;i++) {
        x[i] = i+1;
        b[i] = 0;
    }
    /* initialize constant vector b = a*x */
    for (i=0;i<n;i++) {
        sum = a[i*(nh+1)]*x[i]
        jmax = min(i+nh,n-1);
        for (j=i+1;j<=jmax;j++) {
            b[j] = b[j] + a[i*nh+j]*x[i];
            sum = sum + a[i*nh+j]*x[j];
        }
        b[i] = b[i]+sum;
    }
    epsz = 1e-6;
    isw = 1;
    /* solve system of equations */
    ierr = c_dvlsbx(a, n, nh, b, epsz, isw, &icon);
    if (icon > 10000) {
        printf("ERROR: c_dvlsbx failed with icon = %d\n", icon);
        exit(1);
    }*
    * check solution vector */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((x[i]-b[i])/b[i]) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

After \(\mathbf{L D L}^{\mathrm{T}}\) decomposition of the outer product type (see [42]) is performed, the equation is solved through forward and backward substitutions. For further information consult the entry for VLSBX in the Fortran SSL II Extended Capabilities User's Guide II and [79].

\section*{c_dvlspx}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Solution of a system of linear equations with a symmetric positive \\
definite matrix (blocked Cholesky decomposition method).
\end{tabular} \\
\hline ierr \(=c _d v l s p x(a, k, n, b, e p s z, ~ i s w, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This function decomposes the coefficient matrix \(\mathbf{A}\) of a system of a real coefficient linear equation (1) as shown in (2) using the blocked Cholesky decomposition of outer products.
\[
\begin{gather*}
\mathbf{A x}=\mathbf{b} \tag{1}\\
\mathbf{A}=\mathbf{L L}^{\mathrm{T}} \tag{2}
\end{gather*}
\]

In (1) and (2), \(\mathbf{A}\) is an \(n \times n\) positive definite symmetric real matrix, \(\mathbf{b}\) is a real constant vector, \(\mathbf{x}\) is the real solution vector, and \(\mathbf{L}\) is a lower triangular matrix. It is assumed that \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvlspx((double*)a, k, n, b, epsz, isw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{a} & \multirow[t]{4}{*}{double a[n][k]} & \multirow[t]{3}{*}{Input} & The upper triangular part \(\left\{a_{i j}, i \leq j\right\}\) of A is stored in the upper triangular part \(\{a[i-1][j-1], i \leq j\}\) of a for input. \\
\hline & & & See Figure dvlspx-1. \\
\hline & & & The contents of the array are altered on output. \\
\hline & & Output & Decomposed matrix. After the first set of equations has been solved, the upper triangular part of a [i-1] [j-1] \((\mathrm{i} \leq \mathrm{j})\) contains \(l_{i j}(i \leq j)\) of the upper triangular matrix \(\mathbf{L}^{\mathrm{T}}\). \\
\hline k & int & Input & A fixed dimension of matrix \(\mathbf{A} .(\geq n)\) \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline epsz & double & Input & Tolerance for relative zero test (\(\geq 0\)). \\
\hline isw & int & Input & When epsz is zero, a standard value is assigned. See Comments on use. Control information. \\
\hline & & & When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. When specifying isw \(=2\), only argument \(b\) is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

Figure dvlspx-1. Storing the data for the Cholesky decomposition method
The diagonal elements and upper triangular part \(\left(a_{i j}\right)\) of the \(L^{\mathrm{T}}\)-decomposed positive definite matrix are stored in array \(a[i-1][j-1], i=1, \ldots, n, j=i, \ldots, n\).
After \(L^{\mathrm{T}}\) decomposition, the upper triangular matrix \(\mathbf{L}^{\mathrm{T}}\) is stored in the upper triangular part of the array a.

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Pivot became relatively zero. Coefficient matrix \\
might be singular.
\end{tabular} & Discontinued. \\
\hline 20100 & \begin{tabular}{l}
Pivot became negative. \\
Coefficient matrix is not positive definite.
\end{tabular} & \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
• \(\quad \mathrm{n}<1\) \\
\(\bullet\) \\
- epsz \(<0\) \\
- \(\quad \mathrm{k}<\mathrm{n}\) \\
\(\bullet\) \\
isw \(\neq 1\) or 2
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If a value is set for the judgment of relative zero, it has the following meaning:

If the value of the selected pivot is positive and less than epsz during \(L L^{\mathrm{T}}\) decomposition by the Cholesky decomposition, the pivot is assumed to be relatively zero and decomposition is discontinued with icon=20000. When unit round off is \(\mu\), the standard value of epsz is \(16 \mu\).

When the computation is to be continued even if the pivot becomes small, assign the minimum value to epsz. In this case, however the result is not assured.

\section*{isw}

When several sets of linear equations having an identical coefficient matrix are solved, the value of isw should be 2 from the second time on. This reduces the execution time because \(\operatorname{LL}^{\mathrm{T}}\) decomposition for coefficient matrix \(\mathbf{A}\) is bypassed.

\section*{Negative pivot during the solution}

If the pivot value becomes negative during decomposition, the coefficient matrix is no longer positive definite. Processing is discontinued with icon=20100.

\section*{Calculation of determinant}

After the calculation has been completed, the determinant of the coefficient matrix is computed by multiplying all the \(n\) diagonal elements of the array \(a\) and taking the square of the result.

\section*{4. Example program}

A system of linear equations with a \(2000 \times 2000\) coefficient matrix is solved.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 2000
\#define KMAX NMAX+1
MAIN__()
{
int epsz, isw, icon, ierr, i, j;
double a[NMAX][KMAX], b[NMAX];
for (i=0; i<NMAX; i++) {
for (j=i; j<NMAX; j++) {
a[i][j] = i+1;
}
}
for (i=0; i<NMAX; i++) {
b[i] = (i+1)*(i+2)/2+(i+1)*(NMAX-i-1);
}
isw = 1, epsz = 1e-13;
ierr = c_dvlspx((double*)a, KMAX, NMAX, b, epsz, isw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvlspx failed with icon = %d\n", icon);
exit(1);
}
printf ("Solution vector\n");
for (i=0; i<10; i++) {
printf ("b[%d] = %15.10le\n", i, b[i]);
}
}

```

\section*{5. Method}

For further information consult the entry for VLSPX in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvlsx}

Solution of a system of linear equations with a symmetric positive definite matrix (modified Cholesky's method).
```

ierr = c_dvlsx(a, n, b, epsz, isw, vw, ivw,
\&icon);

```

\section*{1. Function}

This function solves a system of linear equations (1) with a real coefficient matrix by modified Cholesky's method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) positive definite symmetric real matrix, \(\mathbf{b}\) is a real constant vector, and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvlsx(a, n, b, epsz, isw, vw, ivw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input & Matrix A stored insymmetric positive definite storage format. See the Array storage formats section in the Introduction. Alen \(=\mathrm{n}(\mathrm{n}+1) / 2\). \\
\hline & & Output & The contents of the array are altered on output. \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline epsz & double & Input & Tolerance for relative zero test (\(\geq 0\)). \\
\hline & & & When epsz is zero, a standard value is assigned. See Comments on use. \\
\hline isw & int & Input & Control information. \\
\hline & & & When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use. \\
\hline VW & double & Work & \\
\hline & Vw[2* n] & & \\
\hline ivw & int ivw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline The com & te list of condition cod & is given & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
Pivot became negative. \\
Coefficient matrix is not positive definite.
\end{tabular} & Processing continues. \\
\hline 20000 & \begin{tabular}{l}
Pivot became smaller then relative zero value. \\
Coefficient matrix might be singular.
\end{tabular} & Discontinued. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{n}<1\) \\
& \(\bullet \quad\) epsz \(<0\) \\
& \(\bullet \quad \mathrm{isw} \neq 1\) or 2 & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If the value \(10^{-s}\) is given for epsz as the tolerance for relative zero test then it has the following meaning:
If the pivot value loses more than \(s\) significant digits during \(\mathbf{L D L}^{\mathrm{T}}\) decomposition in the modified Cholesky's method, the value is assumed to be zero and decomposition is discontinued with icon=20000. The standard value of epsz is normally \(16 \mu\), where \(\mu\) is the unit round-off.

Decomposition can be continued by assigning the smallest value (e.g. \(10^{-70}\)) to epsz even when pivot values become smaller than the standard value, however the result obtained may not be of the desired accuracy.

\section*{isw}

When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and subsequent sets after successfully completing the first with isw=1. This will bypass the \(\mathbf{L D L}{ }^{\mathrm{T}}\) decomposition section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise.

\section*{Negative pivot during the solution}

If the pivot value becomes negative during decomposition, it means the coefficient matrix is no longer positive definite. The calculation is to continued and icon=10000 is returned on exit. Note, however, that the resulting calculation error may be significant, because no pivoting is performed.

\section*{Calculation of determinant}

To calculate the determinant of the coefficient matrix, multiply all the \(n\) diagonal elements of the array a together(i.e., diagonal elements of \(\mathbf{D}^{-1}\)) after calculation is completed, and take the reciprocal of this result.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\), and calculates \(\mathbf{b}\) by multiplication. The library routine is then called and the resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, ij, isw;
double epsz, eps, sum;
double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX];
int ivw[NMAX];
/* initialize matrix and vector */
n = NMAX;

```
```

    ij = 0;
    for ( }\textrm{j}=0;\textrm{j}<\textrm{n};\textrm{j}++
        for (i=j;i<n;i++)
        a[ij++] = n-i;
    for (i=0;i<n;i++) {
        x[i] = i+1;
        b[i] = 0;
    }*
    /* initialize constant vector b = a*x */
    ij = 0;
    for (i=0;i<n;i++) {
        sum = a[ij++]*x[i];
        for (j=i+1;j<n;j++) {
            b[j] = b[j] + a[ij]*x[i];
            sum = sum + a[ij++]*x[j];
        }
        b}[i]= b[i]+sum
    }
    epsz = 1e-6;
    isw = 1;
    /* solve system of equations */
    ierr = c_dvlsx(a, n, b, epsz, isw, vw, ivw, &icon);
    if (icon> 10000) {
        printf("ERROR: c_dvlsx failed with icon = %d\n", icon);
        exit(1);
    }
    /* check solution vector */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((x[i]-b[i])/b[i]) > eps) {
            printf("WARNING: result inaccurate\n");
            exit(1);
        }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

The modified Cholesky's method is used for matrix decomposition before solving the system of linear equations by forward and backward substitutions. For further information consult the entry for VLSX in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvltqr}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Solution of a system of linear equations with a tridiagonal matrix (QR \\
factorization).
\end{tabular} \\
\hline ierr \(=c _d v l t q r(s u, d, s l, n, b, ~ v w, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine solves a system of linear equations
\[
\mathbf{T x}=\mathbf{b}
\]
using QR factorization, where \(\mathbf{T}\) is an \(n \times n\) tridiagonal matrix, \(\mathbf{b}\) is a constant vector, and \(\mathbf{x}\) is the solution vector. Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvltqr(su, d, sl, n, b, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline su & double su[n] & Input & Upper diagonal of matrix \(\mathbf{T}\), stored in \(\mathrm{su}[\mathrm{i}], \mathrm{i}=0, \ldots, \mathrm{n}-2\), with \(\operatorname{su}[\mathrm{n}-1]=0\). \\
\hline d & double d[n] & Input & Diagonal of matrix \(\mathbf{T}\). \\
\hline sl & double sl[n\(]\) & Input & Lower diagonal of matrix \(\mathbf{T}\), stored in \(\mathrm{sl}[\mathrm{i}], \mathbf{i}=1, \ldots, \mathrm{n}-1\), with \(\mathrm{sl}[0]=0\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{T}\). \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline VW & double vw[7n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Matrix T is near singular. & Completed. \\
\hline 20000 & It is probable that the matrix is singular. & Discontinued. \\
\hline 30000 & \(\mathrm{n}<1\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{icon}

When icon \(=10000\), the matrix \(\mathbf{T}\) is near singular, but processing continues and a solution is obtained. When icon \(=\) 20000 , the matrix \(\mathbf{T}\) is probably singular and processing is discontinued.

\section*{4. Example program}

This program solves a system of linear equations and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i;
double eps, vw[7*NMAX];
double sl[NMAX], d[NMAX], su[NMAX], b[NMAX], x[NMAX];
/* initialize matrix and vector */
n = NMAX;
for (i=0;i<n;i++) {
sl[i] = -1;
su[i] = -1;
d[i] = 10;
}
sl[0] = 0;
su[n-1] = 0;
for (i=0;i<n;i++)
x[i] = i+1;
/* initialize constant vector b=a*x */
b[0] = d[0]*x[0] + su[0]*x[1];
for (i=1;i<n-1;i++)
b[i] = sl[i]*x[i-1] + d[i]*x[i] + su[i]*x[i+1];
}
b[n-1] = sl[n-1]*x[n-2] + d[n-1]*x[n-1];
/* solve system of equations */
ierr = c_dvltqr(su, d, sl, n, b, vw, \&icon);
if (icon > 10000) {
printf("ERROR: c_dvltqr failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for VLTQR in the Fortran SSL II Extended Capabilities User's Guide II. and [42] and [51].

\section*{c_dvltx}

Solution of a system of linear equations with a tridiagonal matrix (cyclic reduction method).
\[
\begin{gathered}
\text { ierr }=\text { c_dvltx(sbd, d, spd, n, b, isw, ind, } \\
\text { ivw, \&icon); }
\end{gathered}
\]

\section*{1. Function}

This routine solves a tridiagonal matrix equation
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]
using the cyclic reduction method, where \(\mathbf{A}\) is an \(n \times n\) irreducible diagonally dominant tridiagonal matrix of the form:
\[
\mathbf{A}=\left[\begin{array}{ccccc}
d_{1} & f_{1} & & & \\
e_{2} & d_{2} & f_{2} & & \\
& e_{3} & \cdot & \cdot & \\
& & & \cdot & \cdot \\
0 & & & & f_{n-1} \\
0 & & & & e_{n}
\end{array}\right]
\]
with
\[
\left|d_{i}\right| \geq\left|e_{i}\right|+\left|f_{i}\right|, \quad i=1,2, \ldots, n
\]
where \(e_{1}=f_{n}=0\), and for at least one \(i\) a strict inequality holds.
In (1) \(\mathbf{b}\) is a constant vector, \(\mathbf{x}\) is the solution vector, and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvltx(sbd, d, spd, n, b, isw, ind, ivw, \&icon);
where:
sbd double Input Sub-diagonal of matrix \(\mathbf{A}\), with \(\operatorname{sbd}[i-1]=e_{i}, i=2, \ldots, n\)
\(\operatorname{sbd}[2 \mathrm{n}] \quad\) Output The contents of sbd are changed on output. See Comments on use.
d double \(\mathrm{d}[2 \mathrm{n}] \quad\) Input \(\quad\) Diagonal of matrix \(\mathbf{A}\), with \(\mathrm{d}[\mathrm{i}-1]=d_{i}, i=1, \ldots, n\).
Output The contents of d are changed on output. See Comments on use.
spd double Input Super-diagonal of matrix \(\mathbf{A}\), with \(\operatorname{spd}[i-1]=f_{i}, i=1, \ldots, n-1\).
spd[2n] Output The contents of spd are changed on output. See Comments on use.
n int
\(b \quad\) double \(b[2 n]\)
Input Order \(n\) of matrix \(\mathbf{A}\).
Input Constant vector \(\mathbf{b}\), with \(\mathrm{b}[\mathrm{i}-1]=b_{i}, i=1, \ldots, n\).
Output Solution vector \(\mathbf{x}\), with \(\mathrm{b}[\mathrm{i}-1]=x_{i}, i=1, \ldots, n\). See Comments on use.
isw int
Input Control information.
isw \(=1\), except when solving several sets of equations that have the same coefficient matrix, then isw=1 for the first set, and isw=2 for the
second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\), the other arguments must not be changed. See Comments on use.
ind int Input
Control information:
ind \(=0\) to check the coefficient matrix is irreducibly diagonally dominant,
ind \(=1\) not to check the coefficient matrix is irreducibly diagonally dominant.

Normally, ind \(=0\) is specified.
\(\begin{array}{llll}\text { ivw } & \text { int ivw[Ivwlen }] & \text { Work } & \text { Ivwlen }=\left\lceil\log _{2} n\right\rceil+10 \\ \text { icon } & \text { int } & \text { Output } & \text { Condition code. See below. }\end{array}\)
The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Coefficient matrix is not irreducibly diagonally \\
dominant.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad\) isw \(\neq 1\) or 2 \\
\(\bullet \quad\) ind \(\neq 0\) or 1
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{sbd, d, spd and b}

Elements \(\operatorname{sbd}[n], \operatorname{sbd}[n+1], \ldots, \operatorname{sbd}[2 n-1]\) are used as work areas. The same elements of arrays \(d, s p d\), and \(b\) are also used as work areas.

If the routine is called with \(i s w=1\), arrays \(s b d, \mathrm{~d}\), and spd on output are as follows:
\[
\operatorname{sbd}[\mathrm{i}-1]=e_{i} / d_{i}, i=2, \ldots, n, \quad \mathrm{~d}[\mathrm{i}-1]=1 / d_{i}, i=1, \ldots, n, \quad \operatorname{spd}[\mathrm{i}-1]=f_{i} / d_{i}, i=1, \ldots, n-1 .
\]

\section*{isw}

When solving several sets of equations with the same coefficient matrix \(\mathbf{A}\), solve the first set with isw=1, then specify isW \(=2\) for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution stage, thereby reducing the computation time.

\section*{ind}

If the coefficient matrix is known in advance to be irreducibly diagonally dominant, specify \(i n d=1\) to bypass testing for irreducible diagonal dominance, thereby reducing the computation time. If ind \(=1\) is specified for a matrix that is not irreducibly diagonally dominant, the solution may not be as accurate as desired.

\section*{General comments}

This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor has the following features:
- It is much faster than the Gaussian elimination method used in routine \(c _d l t x\).
- Processing time increases almost linearly with \(n\).
- The more diagonally dominant the matrix is, the faster it is processed.
- This routine is about as accurate as routine c_dltx when processing irreducible diagonally dominant matrices.

\section*{4. Example program}

This program solves a system of linear equations and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, isw, ind, ivw[20];
double eps;
double sbd[2*NMAX], d[2*NMAX], spd[2*NMAX], b[2*NMAX], x[NMAX];
/* initialize matrix and vector */
n = NMAX;
for (i=0;i<n;i++) {
sbd[i] = -1;
spd[i] = -1;
d[i] = 10;
}
sbd[0] = 0;
spd[n-1] = 0;
for (i=0;i<n;i++)
x[i] = i+1;
/* initialize constant vector b=a*x */
b[0] = d[0]*x[0] + spd[0]*x[1];
for (i=1;i<n-1;i++) {
b[i] = sbd[i]*x[i-1] + d[i]*x[i] + spd[i]*x[i+1];
}
b}[n-1]=\operatorname{sbd[n-1]*x[n-2] + d[n-1]*x[n-1];
isw = 1;
ind = 0;
/* solve system of equations */
ierr = c_dvltx(sbd, d, spd, n, b, isw, ind, ivw, \&icon);
if (icon !=0) {
printf("ERROR: c_dvltx failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for VLTX in the Fortran SSL II Extended Capabilities User's Guide and reference [104].

\section*{c_dvltx1}

Solution of a system of linear equations with a constant-tridiagonal matrix (Dirichlet type and cyclic reduction method).
```

ierr = c_dvltx1(d, sd, n, b, isw, vw, ivw,
\&icon);

```

\section*{1. Function}

This routine solves a tridiagonal matrix equation
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b}, \tag{1}
\end{equation*}
\]
using the cyclic reduction method, where \(\mathbf{A}\) is an \(n \times n\) irreducible diagonally dominant constant-tridiagonal matrix of the form:
\[
\mathbf{A}=\left[\begin{array}{lllll}
d & e & & & 0 \tag{2}\\
e & d & & & \\
& & & & \\
& & \cdots & & \\
& & \cdots & \cdots & e \\
0 & & & & e
\end{array}\right]
\]
with \(d \neq 0,|d| \geq 2|e|\).

In (1) \(\mathbf{b}\) is a constant vector, \(\mathbf{x}\) is the solution vector, and \(n \geq 1\).

This routine restricts the coefficient matrix to the form in (2) in order to achieve high performance. Routine c_dvltx processes a general tridiagonal matrix.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvltx1(d, sd, n, b, isw, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline d & double & Input & Diagonal element \(d\) of matrix A. \\
\hline sd & double & Input & Off-diagonal element e of matrix A. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline b & double b[2n] & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \begin{tabular}{l}
Constant vector \(\mathbf{b}\), with \(\mathrm{b}[\mathrm{i}-1]=b_{i}, i=1, \ldots, n\). \\
Solution vector \(\mathbf{x}\), with \(\mathrm{b}[\mathrm{i}-1]=x_{i}, i=1, \ldots, n\). See Comments on use.
\end{tabular} \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. \\
isw=1, except when solving several sets of equations that have the same coefficient matrix, then isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\), the other arguments must not be changed. See Comments on use.
\end{tabular} \\
\hline Vw & double & Work & Vwlen \(=2\left(\left\lceil\log _{2} n\right\rceil+1\right)\). \\
\hline
\end{tabular}
\begin{tabular}{llll}
& VW[Vwlen] & & \\
ivw & int ivw[Ivwlen] & Work & Ivwlen \(=2\left(\left[\log _{2} n\right\rceil+1\right)+10\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Coefficient matrix is not irreducibly diagonally \\
dominant.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad n<1\) \\
\(\bullet \quad\) isw \(\neq 1\) or 2
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{A}

This form of coefficient matrix (2) arises from the discretization of simple Dirichlet boundary value problems.

\section*{b}

Elements \(b[n], b[n+1], \ldots, b[2 n-1]\) are used as work areas.

\section*{isw}

When solving several sets of equations with the same coefficient matrix \(\mathbf{A}\), solve the first set with isw=1, then specify isw \(=2\) for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution stage, thereby reducing the computation time.

\section*{General comments}

This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor has the following features:
- It is much faster than the Gaussian elimination method used in routine \(c _d l t x\) or \(C _d l s t x\).
- Processing time increases almost linearly with \(n\).
- The more diagonally dominant the matrix is, the faster it is processed.
- This routine is about as accurate as routine c_dltx or c_dlstx when processing irreducible diagonally dominant matrices.

\section*{4. Example program}

This program solves a system of linear equations and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{

```
```

int ierr, icon;
int n, i, isw, ivw[50];
double eps;
double d, sd, b[2*NMAX], x[NMAX], vw[30];
/* initialize matrix and vector */
n = NMAX;
d = 10;
sd = -1;
for (i=0;i<n;i++)
x[i] = i+1;
/* initialize constant vector b=a*x */
b[0] = d*x[0] + sd**[1];
for (i=1;i<n-1;i++) {
b[i] = sd*x[i-1] + d*x[i] + sd*x[i+1];
}
b[n-1] = sd*x[n-2] + d*x[n-1];
isw = 1;
/* solve system of equations */
ierr = c_dvltx1(d, sd, n, b, isw, vw, ivw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvltx1 failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for VLTX1 in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvltx 2}

Solution of a system of linear equations with a constant-tridiagonal matrix (Neumann type and cyclic reduction method).
\[
\begin{gathered}
\text { ierr }=\text { c_dvltx2(d, sd, n, b, isw, ind, vw, } \\
\text { ivw, \&icon); }
\end{gathered}
\]

\section*{1. Function}

This routine solves a tridiagonal matrix equation
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]
using the cyclic reduction method, where \(\mathbf{A}\) is an \(n \times n\) irreducible diagonally dominant constant-tridiagonal matrix of one of the following forms:
\[
\left.\left.\begin{array}{l}
{\left[\begin{array}{lllll}
d & 2 e & & & 0 \\
e & d & e & & \\
& e & \cdots & & \\
& & \cdots & & \\
0 & & & e & \\
0
\end{array}\right], \quad d \neq 0,|d| \geq 2|e| .}
\end{array}\right] \begin{array}{lllll}
d & e & & & 0 \\
e & d & e & & \\
& e & \cdots & & \tag{4}\\
& & \cdots & \cdots & e \\
0 & & & 2 e & d
\end{array}\right], \quad d \neq 0,|d| \geq 2|e| .
\]

In (1) \(\mathbf{b}\) is a constant vector, \(\mathbf{x}\) is the solution vector, and \(n \geq 1\).

This routine restricts the coefficient matrix to the form above in order to achieve high performance. Routine c_dvltx processes a general tridiagonal matrix.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvltx2(d, sd, n, b, isw, ind, vw, ivw, \&icon);
where:
\begin{tabular}{llll}
d & double & Input & Diagonal element \(d\) of matrix \(\mathbf{A}\). \\
sd & double & Input & Off-diagonal element \(e\) of matrix \(\mathbf{A}\). \\
n & int & Input & Order \(n\) of matrix \(\mathbf{A}\).
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{isw} & \multirow{3}{*}{int} & Input & Constant vector \(\mathbf{b}\), with \(\mathrm{b}[\mathrm{i}-1]=b_{i}, i=1, \ldots, n\). Blen \(=2 n+\left\lceil\log _{2} n\right\rceil\). \\
\hline & & \begin{tabular}{l}
Output \\
Input
\end{tabular} & Solution vector \(\mathbf{x}\), with \(\mathrm{b}[\mathrm{i}-1]=x_{i}, i=1, \ldots, n\). See Comments on \(u\) e . Control information. \\
\hline & & & isw \(=1\), except when solving several sets of equations that have the same coefficient matrix, then isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\), the other arguments must not be changed. See Comments on use. \\
\hline ind & int & Input & Control information specifying the form of matrix \(\mathbf{A}\). \\
\hline & & & ind = 1 for (2), \\
\hline & & & ind \(=2\) for (3), \\
\hline \multirow{3}{*}{VW} & & & ind \(=3\) for (4). \\
\hline & double & Work & Vwlen \(\left.=2\left(\mid \log _{2} n\right\rceil+1\right)\). \\
\hline & vw[Vwlen] & & \\
\hline ivw & int ivw[Ivwlen] & Work & Ivwlen \(=2\left(\left\lceil\log _{2} n\right\rceil+1\right)+10\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Coefficient matrix is not irreducibly diagonally \\
dominant.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad\) isw \(\neq 1\) or 2 \\
\(\bullet \quad\) ind \(\neq 1,2\) or 3
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{A}

These forms of coefficient matrices arise from the discretization of simple Neumann boundary value problems.

\section*{b}

Elements \(\mathrm{b}[\mathrm{n}], \mathrm{b}[\mathrm{n}+1], \ldots, \mathrm{b}[\) Blen -1\(]\) are used as work areas.

\section*{isw}

When solving several sets of equations with the same coefficient matrix \(\mathbf{A}\), solve the first set with isw=1, then specify isw \(=2\) for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution stage, thereby reducing the computation time.

\section*{General comments}

This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor has the following features:
- It is much faster than the Gaussian elimination method used in routine \(c _d l t x\).
- Processing time increases almost linearly with \(n\).
- The more diagonally dominant the matrix is, the faster it is processed.
- This routine is about as accurate as routine c_dltx when processing irreducible diagonally dominant matrices.

\section*{4. Example program}

This program solves a system of linear equations and checks the result. ind is set to 3 .
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, isw, ind, ivw[30];
double eps;
double d, sd, b[2*NMAX+10], x[NMAX], vw[20];
/* initialize matrix and vector */
n = NMAX;
d = 10;
sd = -1;
for (i=0;i<n;i++)
x[i] = i+1;
/* initialize constant vector b=a*x */
ind = 3;
b[0] = d*x[0] + 2*sd*x[1];
for (i=1;i<n-1;i++) {
b[i] = sd*x[i-1] + d*x[i] + sd*x[i+1];
}
b[n-1] = 2*sd*x[n-2] + d*x[n-1];
isw = 1;
/* solve system of equations */
ierr = c_dvltx2(d, sd, n, b, isw, ind, vw, ivw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvltx2 failed with icon = %d\n", icon);
exit(1);
}
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
printf("%12.5e %12.5e\n", x[i], b[i]);
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for VLTX2 in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvltx3}

Solution of a system of linear equations with a constant almost tridiagonal matrix (periodic type and cyclic reduction method).
```

ierr = c_dvltx3(d, sd, n, b, isw, vw, ivw,
\&icon);

```

\section*{1. Function}

This routine solves a tridiagonal matrix equation
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]
using the cyclic reduction method, where \(\mathbf{A}\) is an \(n \times n\) irreducible diagonally dominant constant almost tridiagonal matrix of the form:
\[
\mathbf{A}=\left[\begin{array}{lllll}
d & e & & & \tag{2}\\
e & d & & & \\
& & & & \\
& e & \cdots & \\
& 0 & \cdots & & \\
e & & & e & \\
e & & & e &
\end{array}\right]
\]
with \(d \neq 0,|d|>2|e|\).

In (1) \(\mathbf{b}\) is a constant vector, \(\mathbf{x}\) is the solution vector, and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvltx3(d, sd, n, b, isw, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline d & double & Input & Diagonal element \(d\) of matrix A. \\
\hline sd & double & Input & Off-diagonal element e of matrix \(\mathbf{A}\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline \multirow[t]{2}{*}{b} & \multirow[t]{2}{*}{double b[Blen]} & Input & Constant vector \(\mathbf{b}\), with \(\mathrm{b}[\mathrm{i}-1]=b_{i}, i=1, \ldots, n\). Blen \(=2 n+\left\lceil\log _{2} n\right\rceil\). \\
\hline & & Output & Solution vector \(\mathbf{x}\), with \(\mathrm{b}[\mathrm{i}-1]=x_{i}, i=1, \ldots, n\). See Comments on use. \\
\hline \multirow[t]{2}{*}{isw} & \multirow[t]{2}{*}{int} & Input & Control information. \\
\hline & & & isw \(=1\), except when solving several sets of equations that have the same coefficient matrix, then isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument \(b\) is assigned a new constant vector \(\mathbf{b}\), the other arguments must not be changed. See Comments on use. \\
\hline VW & double & Work & \(V\) wlen \(=3\left(\left\lceil\log _{2} n\right\rceil+1\right)\). \\
\hline & vw [Vwlen] & & \\
\hline iVW & int ivw[Ivwlen] & Work & Ivwlen \(=4\left(\left\lceil\log _{2} n\right\rceil+1\right)+10\). \\
\hline
\end{tabular}
icon int Output Condition code. See below.

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Coefficient matrix is not irreducibly diagonally \\
dominant.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad\) isw \(\neq 1\) or 2
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

A
This form of coefficient matrix (2) arises from the discretization of simple periodic boundary value problems.

\section*{b}

Elements \(\mathrm{b}[\mathrm{n}], \mathrm{b}[\mathrm{n}+1], \ldots, \mathrm{b}[\) Blen -1\(]\) are used as work areas.

\section*{isw}

When solving several sets of equations with the same coefficient matrix \(\mathbf{A}\), solve the first set with isw=1, then specify isw \(=2\) for the second and subsequent sets. This bypasses the decomposition stage and goes directly on to the solution stage, thereby reducing the computation time.

\section*{General comments}

This routine uses the cyclic reduction method, an algorithm suited to a vector processor. Processing on a vector processor has the following features:
- It is much faster than the Gaussian elimination method.
- Processing time increases almost linearly with \(n\).
- The more diagonally dominant the matrix is, the faster it is processed.
- This routine is about as accurate as the Gaussian elimination method when processing irreducible diagonally dominant matrices.

\section*{4. Example program}

This program solves a system of linear equations and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, isw, ivw[50];
double eps;

```
```

double d, sd, b[2*NMAX+10], x[NMAX], vw[30];
/* initialize matrix and vector */
n = NMAX;
d = 10;
sd = -1;
for (i=0;i<n;i++)
x[i] = i+1;
/* initialize constant vector b=a*x */
b[0] = d*x[0] + sd*x[1] + sd*x[n-1];
for (i=1;i<n-1;i++) {
b[i] = sd*x[i-1] + d*x[i] + sd*x[i+1];
}
b[n-1] = sd*x[0] + sd*x[n-2] + d*x[n-1];
isw = 1;
/* solve system of equations */
ierr = c_dvltx3(d, sd, n, b, isw, vw, ivw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvltx3 failed with icon = %d\n", icon);
exit(1);
}*
/* check solution vector */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for VLTX3 in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvluiv}
\begin{tabular}{|l|}
\hline The inverse of a real matrix decomposed into L and U factors. \\
\hline ierr \(=\mathrm{c}\) _dvluiv(\(\mathrm{fa}, \mathrm{k}, \mathrm{n}\), ip, ai, \&icon \()\); \\
\hline
\end{tabular}

\section*{1. Function}

This function computes the inverse \(\mathbf{A}^{-1}\) of an \(n \times n\) real general matrix \(\mathbf{A}\) given in decomposed form \(\mathbf{P A}=\mathbf{L} \mathbf{U}\).
\[
\begin{equation*}
\mathbf{A}^{-1}=\mathbf{U}^{-1} \mathbf{L}^{-1} \mathbf{P} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{L}\) and \(\mathbf{U}\) are the respective \(n \times n\) lower and unit upper triangular matrices, \(\mathbf{P}\) is the permutation matrix that performs the row exchanges in partial pivoting for LU-decomposition (\(n \geq 1\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvluiv((double*)fa, k, n, ip, (double*)ai, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline fa & double & Input & Matrices \(\mathbf{L}\) and \(\mathbf{U}\), the obtained from function c_dvalu. See \\
\hline & \(\mathrm{fa}[\mathrm{n}][\mathrm{k}]\) & & Comments on use. \\
\hline k & int & Input & C fixed dimension of array fa (\(\geq \mathrm{n}\)). \\
\hline n & int & Input & Order \(n\) of matrices \(\mathbf{L}\) and \(\mathbf{U}\). \\
\hline ip & int ip[n] & Input & Transposition vector that provides the row exchanges that occurred in partial pivoting, the output obtained from function c_dvalu. See Comments on use. \\
\hline ai & double & Output & Inverse \(\mathbf{A}^{-1}\). \\
\hline & ai[n][k] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Singular matrix. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\\
\(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet\) \\
an error in array ip
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General comments}

Prior to calling this function, the LU-decomposed matrix and transposition vector must be obtained by the function, c_dvalu, and passed into this function via fa and ip, to obtain the inverse. For the solution of linear equations use the c_dvlax function. This is far more efficient than the inverse matrix route. Users should only use this function when the use of the inverse matrix is unavoidable.

The transposition vector corresponds to the permutation matrix \(\mathbf{P}\), equation (1), for LU-decomposition with partial pivoting, please see the notes for the C_dvalu function.

\section*{4. Example program}

This example program initializes \(\mathbf{A}\) and \(\mathbf{x}\) (from \(\mathbf{A x}=\mathbf{b}\)), and then calculates \(\mathbf{b}\) by multiplication. Matrix \(\mathbf{A}\) is then decomposed into LU factors. The library routine is then called to calculate \(\mathbf{A}^{-1}\) which is then used in the equation \(\mathbf{A}^{-1} \mathbf{b}=\mathbf{x}\) to calculate \(\mathbf{x}\), and this resulting \(\mathbf{x}\) vector is checked against the original version.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, k, is;
double epsz, eps;
double a[NMAX][NMAX], ai[NMAX][NMAX];
double b[NMAX], x[NMAX], y[NMAX], vw[NMAX];
int ip[NMAX];
/* initialize matrix and vector */
n = NMAX;
for (i=0;i<n;i++)
for (j=i;j<n;j++) {
a[i][j] = n-j;
a[j][i] = n-j;
}
for (i=0;i<n;i++)
x[i] = i+1;
k = NMAX;
/* initialize constant vector b = a*x */
ierr = c_dmav((double*)a, k, n, n, x, b, \&icon);
epsz = 1e-6;
* perform LU decomposition */
ierr = c_dvalu((double*)a, k, n, epsz, ip, \&is, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvalu failed with icon = %d\n", icon);
exit(1);
}
/* find matrix inverse from LU factors */
ierr = c_dvluiv((double*)a, k, n, ip, (double*)ai, \&icon);
if (icon != 0) {
printf("ERROR: c_dvluiv failed with icon = %d\n", icon);
exit(1);
}
/* calculate y = ai*b */
ierr = c_dmav((double*)ai, k, n, n, b, y, \&icon);
/* compare x and y */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-y[i])/y[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Given LU-decomposed matrices \(\mathbf{L}, \mathbf{U}\) and permutation matrix \(\mathbf{P}\) that indicates row exchanges in partial pivoting then the inverse of \(\mathbf{A}\) is computed by calculating \(\mathbf{L}^{-1}\) and \(\mathbf{U}^{-1}\). For further information consult the entry for VLUIV in the Fortran SSL II Extended Capabilities User's Guide

\section*{c_dvmbv}
\begin{tabular}{|l|}
\hline Multiplication of a real banded matrix by a real vector. \\
\hline ierr \(=c _\operatorname{dvmbv}(\mathrm{a}, \mathrm{n}, \mathrm{nh} 1, \mathrm{nh} 2, \mathrm{x}, \mathrm{y}\), \&icon \()\); \\
\hline
\end{tabular}

\section*{1. Function}

This function calculates the matrix-vector product of an \(n \times n\) real band matrix \(\mathbf{A}\) with lower bandwidth \(h_{1}\) and upper bandwidth \(h_{2}\left(0 \leq h_{1}<n\right.\) and \(\left.0 \leq h_{2}<n\right)\) with a real vector \(\mathbf{x}\) of size \(n\).
\[
\begin{equation*}
\mathbf{y}=\mathbf{A} \mathbf{x} \tag{1}
\end{equation*}
\]

The solution \(\mathbf{y}\) is a real vector of size \(n(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvmbv(a, n, nh1, nh2, x, y, \&icon);
where:
\begin{tabular}{llll}
a & double \(\mathrm{a}[\) Alen \(]\) & Input & \begin{tabular}{l}
Matrix A. Stored in band storage format. See Array storage formats in \\
the Introduction section for details. Alen \(=\left(2 h_{1}+h_{2}+1\right) n\). \\
n
\end{tabular} \\
nh1 & int & int & Input
\end{tabular} \begin{tabular}{l}
Order \(n\) of matrix \(\mathbf{A}\). \\
nh 2
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & \\
& \(\bullet \mathrm{n}=0\) \\
& \(\bullet \mathrm{nh} 1<0\) or \(\mathrm{nh} 1 \geq \mathrm{n}\) & \\
& \(\bullet \mathrm{nh} 2<0\) or \(\mathrm{nh} 2 \geq \mathrm{n}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

The function primarily performs computation for equation (1) but it can also perform a residual calculation as shown in equation (2).
\[
\begin{equation*}
\mathbf{y}=\mathbf{y}^{\prime}-\mathbf{A x} \tag{2}
\end{equation*}
\]

To perform this operation, specify argument \(\mathrm{n}=-n\) and set the contents of the initial vector \(\mathbf{y}^{\prime}\) into argument y before calling the function.

\section*{4. Example program}

This program multiplies a band matrix by a vector and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(i,j) (i<j) ? i : j
\#define max(i,j) (i>j) ? i : j
\#define NMAX 100
\#define H1MAX 2
\#define H2MAX 2
MAIN__()
{
int ierr, icon;
int n, nh1, nh2, i, j, jmin, jmax;
double eps, sum;
double a[(2*H1MAX+H2MAX+1)*NMAX], x[NMAX], y[NMAX], yy[NMAX];
/* initialize matrix */
n = NMAX;
nh1 = H1MAX;
nh2 = H2MAX;
for (i=0;i<n*(2*nh1+nh2+1);i++)
a[i] = 0;
for (i=0;i<n;i++) {
jmin = max(i-nh1,0);
jmax = min(i+nh2,n-1);
for (j=jmin;j<=jmax;j++)
a[i*(2*nh1+1+nh2)+j-i+nh1] = n-fabs(j-i);
}
for (i=0;i<n;i++) {
x[i] = i+1;
}
/* multiply directly for checking: yy = a*x */
for (i=0;i<n;i++) {
jmin = max(i-nh1,0);
jmax = min(i+nh2,n-1);
sum = 0;
for (j=jmin;j<==jmax;j++)
sum = sum + a[i*(2*nh1+1+nh2)+j-i+nh1]*x[j];
yy[i] = sum;
}
/* perform matrix vector multiply using c_dvmbv */
ierr = c_dvmbv(a, n, nh1, nh2, x, y, \&icon);
if (icon != 0) {
printf("ERROR: c_dvmbv failed with icon = %d\n", icon);
exit(1);
}
/* check result */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((y[i]-yy[i])/y[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

This routine performs the multiplication \(\mathbf{y}=\left(y_{i}\right)\) of an \(n \times n\) real band matrix \(\mathbf{A}=\left(a_{i j}\right)\) (\(\mathbf{A}\) with lower bandwidth \(h_{1}\) and upper bandwidth \(\left.h_{2}\right)\) by a vector \(\mathbf{x}=\left(x_{j}\right)\) given by:
\[
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, \quad i=1, \ldots, n
\]

However, as \(\mathbf{A}\) is a band matrix, the actual calculation is given by:
\[
y_{i}=\sum_{j=\max \left(1, i-h_{1}\right)}^{\min \left(i+h_{2}, n\right)} a_{i j} x_{j}, \quad i=1, \ldots, n
\]

\section*{c_dvmef2}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Singlevariate, multiple and multivariate discrete complex Fourier \\
transform (complex array, mixed radix).
\end{tabular} \\
\hline ierr \(=\) c_dvmcf2(\(z, ~ n, ~ m, \quad\) isn, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This function performs singlevariate, multiple and multivariate discrete complex Fourier transforms using complex array.
For each dimension, it is possible to specify whether the Fourier transform is to be performed, and whether it is normal or inverse.

The size of each dimension can be an arbitrary number, but the transform is fast when the size has factors 2,3 or 5 .

\section*{Multivariate Fourier transform}

By inputting \(m\)-dimensional data \(\left\{x_{j 1 j 2 . . j m}\right\}\) and performing the transform defined in (1), \(\left\{\alpha_{k 1 k 2 . . k m}\right\}\) is obtained.
\[
\begin{align*}
& \alpha_{k 1 k 2 \ldots k m}=\sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \ldots \sum_{j m=0}^{n m-1} x_{j 1 j 2 \ldots j m} \cdot \omega_{n 1}^{-j 1 k 1 r 1} \omega_{n 2}^{-j 2 k 2 r 2} \ldots \omega_{n m}^{-j m k m r m} \tag{1}\\
& k 1=0,1,2, \ldots, n 1-1 \quad \omega_{n 1}=\exp (2 \pi i / n 1) \\
& k 2=0,1,2, \ldots, n 2-1 \quad \text { and } \quad \omega_{n 2}=\exp (2 \pi i / n 2) \\
& k m=0,1,2, \ldots, n m-1 \quad \omega_{n m}=\exp (2 \pi i / n m)
\end{align*}
\]
where, \(n 1, n 2, \ldots, n m\) is the size of each dimension.

When \(r i=1\), the transform is normal. When \(r i=-1\), the transform is inverse.
If \(r=(1,1,1)\) for example, the following three-dimensional transform is obtained:
\[
\alpha_{k 1 k 2 k 3}=\sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1 j 2 j 3} \cdot \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \omega_{n 3}^{-j 3 k 3}
\]

\section*{Multiple transform}

For \(r i=0\), the summation \(\sum_{j i=0}^{n i-1}\) is omitted, and index \(j i\) of \(x\) in (1) is changed to \(k i\).
For example, a singlevariate multiple transform has only one summation. When performing the following transform with respect to only the second dimension of a three-dimensional data, specify \(r=(0,1,0)\).
\[
\alpha_{k 1 k 2 k 3}=\sum_{j 2=0}^{n 2-1} x_{k 1 j 2 k 3} \cdot \omega_{n 2}^{-j 2 k 2}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvmcf2((dcomplex*)z, n, m, isn, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline z & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { z[nm]...[n2][n1] }
\end{aligned}
\] & Input & Complex data \(\left\{x_{j 112 . . j m}\right\}\) is stored in \(\times[\mathrm{jm}] \ldots[\mathrm{j} 2][\mathrm{j} 1], \mathrm{jm}=\) \(0, \ldots, n[m-1]-1, \ldots, j 2=0, \ldots, n[1]-1, j 1=0, \ldots, n[0]-1\). \\
\hline n & int n [m] & Output
Input & Complex data \(\left\{\alpha_{k 1 k 2 . . k n}\right\}\) is stored in \(\times[\mathrm{km}] \ldots[\mathrm{k} 2][\mathrm{k} 1], \mathrm{km}=\) \(0, \ldots, \mathrm{n}[\mathrm{m}-1]-1, \ldots, \mathrm{k} 2=0, \ldots, \mathrm{n}[1]-1, \mathrm{k} 1=0, \ldots, \mathrm{n}[0]-1\). \(\mathrm{n}[i-1]\) is the size of the \(i\) th dimension. \\
\hline m & int & Input & Number of dimensions \(m\) of the multivariate Fourier transform. \\
\hline isn & int isn[m] & Input & \begin{tabular}{l}
isn [i-1] shows the direction \(r i\) of the Fourier transform in the \(i\) th dimension, and can take the following values: \\
1 Normal transform. \\
0 No transform. \\
-1 Inverse transform.
\end{tabular} \\
\hline icon & int & Output & Condition code. See below. \\
\hline The com & list of condition cod & n below & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{~m} \leq 0\). & Processing is stopped. \\
\hline 30002 & isn[i] \(>1\) or isn[i] \(<-1\). & \\
\hline 30003 & \(\mathrm{n}[\mathrm{i}]<1\). & \\
\hline 30004 & isn[i] were all zero. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General definition of the Fourier transform}

The multivariate discrete complex Fourier transform and inverse transform are generally defined in (2) and (3).
\[
\begin{gather*}
\alpha_{k 1 k 2 k \ldots k m}=\frac{1}{n 1 n 2 . . n m} \times \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \ldots \sum_{j m=0}^{n m-1} x_{j 1 j 2 \ldots j m} . \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \ldots \omega_{n m}^{-j m k m} \tag{3}\\
x_{j 1 j 2 \ldots j m}=\sum_{k 1=0}^{n 1-1} \sum_{k 2=0}^{n 2-1} \ldots \sum_{k m=0}^{n m-1} \alpha_{k 1 k 2 \ldots k m} . \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \ldots \omega_{n m}^{-j m k m} \tag{4}
\end{gather*}
\]
where:
\[
\left.\begin{array}{cccc}
j 1=0,1,2, \ldots, n 1-1 & k 1=0,1,2, \ldots, n 1-1 & & \omega_{n 1}=\exp (2 \pi i / n 1) \\
j 2=0,1,2, \ldots, n 2-1 & \text { and } & k 2=0,1,2, \ldots, n 2-1 \\
\ldots & \ldots & & \\
j m & =0,1,2, \ldots, n m-1 & & k m
\end{array}\right)
\]

The routine calculates \(\left\{n 1 n 2 \ldots n m \alpha_{k \mid k 2 . . k m}\right\}\) or \(\left\{x_{j \mid j 2 . . j m}\right\}\) corresponding to the left-hand-side terms in equations (2) and (3). The user must normalize the terms if necessary.

\section*{Stack size}

This function exploits work area internally on stack area. Therefore an abnormal termination could be occur when the stack area runs out. The necessary size is shown below.

If \(n i\) can be expressed as products of powers of 2,3 , and 5 , then the work area size is \(16 \times \max \{n i \mid i=1, \ldots, m\) and isn[i] \(\neq 0\).\(\} byte.\)

If there are numbers among \(n i\) that cannot be expressed as products of powers of 2,3 , and 5 , then the work area size is 80 \(\times \max \{n i \mid i=1, \ldots, m\) and isn[i] \(\neq 0\).\(\} byte.\)

It is recommended to specify the sufficiently large stacksize with "limit" or "ulimit" command under consideration that the stack area could be used for another work area of fixed size and for user's program also.

\section*{4. Example program}

In this example, a singlevariate fast Fourier transform is computed.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100000
\#define NDIM 1
\#define max(a,b) ((a) > (b) ? (a) : (b))
int MAIN__(void)
{
int nval[6] = { 16199,16200,16201,16383,16384,16385 };
dcomplex z[NMAX], tmp;
double pi, error, theta;
int m, n[NDIM], isn[NDIM], icon;
int n1, in, i, k, l;
pi = 4.0 * atan(1.0);
for (in=0; in<6; in++) {
n1 = nval[in];
n[0] = n1;
for (i=0; i<n1; i++) {
z[i].re = 0.0;
z[i].im = 0.0;
}
z[l].re = 1.0;
z[1].im = 0.0;
isn[0] = 1;
c_dvmcf2(z, n, m, isn, \&icon);
if (icon != 0) {
printf("icon = %d\n",icon);
}
error = 0.0;
for (k=0; k<n1; k++) {
theta = pi*2*l*k/(double)n1;
tmp.re = fabs(z[k].re-cos(theta));
tmp.im = fabs(z[k].im+sin(theta));
error = max(error,tmp.re+tmp.im);
}
printf("n = %d, error = %10.3e\n", n1, error);
}
}

```

\section*{5. Method}

For further information consult the entry for VMCF2 in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvmcft}

Singlevariate, multiple and multivariate discrete complex Fourier transform (real and imaginary array separated, mixed radix).
```

ierr = c_dvmcft(xr, xi, n, m, isn, w, \&iw,
\&icon);

```

\section*{1. Function}

This routine performs singlevariate, multiple and multivariate discrete complex Fourier transforms. For each dimension, it is possible to specify whether the Fourier transform is to be performed, and whether it will be normal or inverse. The size of any dimension can be an arbitrary number, but decomposition is faster if it has factors of 2,3 or 5 .

\section*{Singlevariate Fourier transform}

By inputting \(\left\{x_{j_{1} j_{2} \ldots j_{m}}\right\}\) and performing the transform described in (1), \(\left\{\alpha_{k_{1} k_{2} \ldots k_{m}}\right\}\) is obtained.
\[
\begin{equation*}
\alpha_{k_{1} k_{2} \ldots k_{m}}=\sum_{j_{1}=0}^{n_{1}-1} \sum_{j_{2}=0}^{n_{2}-1} \ldots \sum_{j_{m}=0}^{n_{m}-1} x_{j_{1} j_{2} \ldots j_{m}} \cdot \omega_{n_{1}}^{-j_{1} k_{1} r_{1}} \cdot \omega_{n_{2}}^{-j_{2} k_{2} r_{2}} \cdot \ldots \cdot \omega_{n_{m}}^{-j_{m} k_{m} r_{m}} \tag{1}
\end{equation*}
\]
where:
\[
\begin{aligned}
& k_{1}=0,1,2, \ldots, n_{1}-1 \quad \omega_{n_{1}}=\exp \left(2 \pi i / n_{1}\right) \\
& \begin{array}{clc}
k_{2}=0,1,2, \ldots, n_{2}-1 & \text { and } & \omega_{n_{2}}=\exp \left(2 \pi i / n_{2}\right) \\
& \vdots &
\end{array} \\
& k_{m}=0,1,2, \ldots, n_{m}-1 \quad \omega_{n_{m}}=\exp \left(2 \pi i / n_{m}\right)
\end{aligned}
\]

When \(r_{i}=1\) the transform is normal, and when \(r_{i}=-1\) the transform is inverse. When \(r_{i}=0\), the summation over \(j_{i}\) (from 0 to \(n_{i}-1\)) is omitted, and \(j_{i}\) is changed to \(k_{i}\), where \(j_{i}\) is an index of \(x\) in equation (1). Therefore if \(r=(0,1,1)\), the following equation is obtained:
\[
\alpha_{k_{1} k_{2} k_{3}}=\sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{3}=0}^{n_{3}-1} x_{k_{1} j_{2} j_{3}} \cdot \omega_{n_{2}}^{-j_{2} k_{2}} \cdot \omega_{n_{3}}^{-j_{3} k_{3}}
\]

\section*{Multiple transform}

A multiple transform has only one summation. When performing the second dimension transform, the following equation is obtained:
\[
\alpha_{k_{1} k_{2} k_{3}}=\sum_{j_{2}=0}^{n_{2}-1} x_{k_{1} j_{2} k_{3}} \cdot \omega_{n_{2}}^{-j_{2} k_{2}}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvmcft(xr, xi, n, m, isn, w, \&iw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{xr} & double & Input & Real part of \(x_{j_{1} j_{2} \ldots j_{m}}\). Xlen \(=n_{1} \cdot n_{2} \cdot \ldots \cdot n_{m}\). \\
\hline & xr [Xlen] & Output & Real part of \(\alpha_{k_{1} k_{2} \ldots k_{m}}\). \\
\hline \multirow[t]{2}{*}{xi} & double & Input & Imaginary part of \(x_{j_{1} j_{2} \ldots j_{m}}\). Xlen \(=n_{1} \cdot n_{2} \cdot \ldots \cdot n_{m}\). \\
\hline & xi[Xlen] & Output & Imaginary part of \(\alpha_{k_{1}, \ldots, \ldots k_{m}}\). \\
\hline n & int n [m] & Input & \(\mathrm{n}[i-1]\) is the size of the \(i\) th dimension. \\
\hline m & int & Input & Number of dimensions \(m\) of the multivariate Fourier transform. \\
\hline \multirow[t]{4}{*}{isn} & int isn[m] & Input & isn [i-1] shows the direction \(r_{i}\) of the Fourier transform in the \(i\) th dimension, and can take the following values: \\
\hline & & & 1 Normal transform. \\
\hline & & & 0 No transform. \\
\hline & & & -1 Inverse transform. \\
\hline W & double w[iw] & Work & \\
\hline \multirow[t]{2}{*}{iw} & int & Input & Size of the workspace. See Comments on use. \\
\hline & & Output & If the workspace is too small, the minimum required size is output. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{~m} \leq 0\). & Processing is stopped. \\
\cline { 1 - 2 } 30001 & Insufficient work area. & \\
\cline { 1 - 2 } 30002 & isn \([\mathrm{i}]<-1\) or isn \([\mathrm{i}]>1\). & \\
\hline 30003 & \(\mathrm{n}[\mathrm{i}]<1\). & \\
\cline { 1 - 2 } 30004 & isn \([\mathrm{i}]=0\) for all dimensions. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General definition of the Fourier transform}

The multivariate discrete complex Fourier transform and inverse transform are generally defined in (2) and (3) respectively:
\[
\begin{gather*}
\alpha_{k_{1} k_{2} \ldots k_{m}}=\frac{1}{n_{1} n_{2} \ldots n_{m}} \sum_{j_{1}=0}^{n_{1}-1} \sum_{j_{2}=0}^{n_{2}-1} \ldots \sum_{j_{m}=0}^{n_{m}-1} x_{j_{1} j_{2} \ldots, j_{m}} \cdot \omega_{n_{1}}^{-j_{1} k_{1}} \cdot \omega_{n_{2}}^{-j_{2} k_{2}} \cdot \ldots \cdot \omega_{n_{m}}^{-j_{m} k_{m}} \tag{2}\\
x_{k_{1} k_{2} \ldots k_{m}}=\sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} \ldots \sum_{k_{m}=0}^{n_{m}-1} \alpha_{j_{1} j_{2} \ldots j_{m}} \cdot \omega_{n_{1}}^{j_{1} k_{1}} \cdot \omega_{n_{2}}^{j_{2} k_{2}} \cdot \ldots \cdot \omega_{n_{m}}^{j_{m} k_{m}} \tag{3}
\end{gather*}
\]
where:
\[
\begin{array}{cccc}
j_{1}=0,1,2, \ldots, n_{1}-1 \\
j_{2}=0,1,2, \ldots, n_{2}-1 \\
\vdots & \text { and } & k_{1}=0,1,2, \ldots, n_{1}-1 \\
k_{2}=0,1,2, \ldots, n_{2}-1 \\
j_{m} & =0,1,2, \ldots, n_{m}-1 & \vdots & \\
& k_{m}=0,1,2, \ldots, n_{m}-1 & & \omega_{n_{1}}=\exp \left(2 \pi i / n_{1}\right) \\
\omega_{n_{2}}=\exp \left(2 \pi i / n_{2}\right) \\
\vdots & & \omega_{n_{m}}=\exp \left(2 \pi i / n_{m}\right)
\end{array}
\]

The routine calculates \(\left\{n_{1} \cdot n_{2} \cdot \ldots \cdot n_{m} \cdot \alpha_{k_{1} k_{2} \ldots k_{m}}\right\}\) or \(\left\{x_{j_{1} j_{2} \ldots j_{m}}\right\}\) corresponding to the left-hand-side terms in equations (2) and (3). The user must normalize the terms if necessary.

\section*{Size of the workspace iw}

The size of the workspace required by the routine is calculated as follows:

Define:
- RADIX is the set of natural numbers that can be expressed as powers of 2,3 and 5 only.
- NORAD is the set of natural numbers, which are the differences between the elements of RADIX and any other natural numbers, i.e. \(N O R A D=\) any natural number \(-R A D I X\).
- \(\quad \operatorname{minrad}(n)\) is the smallest member of \(R A D I X\) that is larger than the dimension size \(n\).
- \(\operatorname{relfac}(n)\) is the smallest member of NORAD which can be multiplied by any member of \(R A D I X\) to give the dimension size \(n\), i.e. \(\operatorname{relfec}(n)\) is the minimum natural number \(q\) where: \(n=p \cdot q\) and \(p \in R A D I X\) and \(q \in \operatorname{NORAD}\).
- \(\quad N P\) is the product of all the dimension sizes. i.e. \(N P=n_{1} \cdot n_{2} \cdot \ldots \cdot n_{m}\).

For each dimension \(i\), where \(i=1,2, \ldots, m\), provided that isn \([i-1] \neq 0\).
1. If \(n_{i} \in R A D I X\), then the size required by dimension \(i\) is: \(2 n_{i}\).
2. If \(\operatorname{relfac}\left(n_{i}\right)=n_{i}\), then the size required by dimension \(i\) is: \(2 N P \cdot \operatorname{minrad}\left(n_{i}\right) / n_{i}+4 \operatorname{minrad}\left(n_{i}\right)\).
3. Otherwise, the size required is: \(2 N P \cdot \operatorname{minrad}\left(\operatorname{relfac}\left(n_{i}\right)\right) / \operatorname{relfac}\left(n_{i}\right)+\max \left(4 \operatorname{minrad}\left(\operatorname{relfac}\left(n_{i}\right), 2 n_{i}\right)\right.\).

From the set of sizes obtained above, the maximum size is taken as the size of the workspace array.
If the routine is called with no workspace (i.e. with \(i w=0\)) then the minimum required size is returned in \(i w\).

\section*{4. Example program}

This program computes a 1-D FFT on 16384 elements where all of the elements are zero, except for the \(101^{\text {st }}\) element, which has the value \(1+i 0\). The results are checked against the correct transform values.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define M 1
\#define N 16384
\#define W 2*N
\#define max(i,j) (i>j) ? i : j
MAIN__()
{
int ierr, icon;
double xr[N], xi[N], w[W], eps, pi;
int i, k, n[M], m, isn[M], iw;
/* generate initial data */
m = M;
n[0] = N;
k = 100;
for (i=0;i<n[0];i++) {
xr[i] = 0;
xi[i] = 0;
}
xr[k] = 1;
isn[0] = 1;
iw = W;
/* perform transform */

```
```

    ierr = c_dvmcft(xr, xi, n, m, isn, w, &iw, &icon);
    /* check results */
    if (icon != 0) {
        printf("ERROR: c_dvmcft failed with icon = %d\n", icon);
        exit(1);
    }
    pi = 4*atan(1);
    eps = 1e-6;
    for (i=0;i<n[0];i++)
        if ((xr[i]-cos(2* pi*i*k/n[0]) > eps) ||
            (xi[i]+sin(2*pi*i*k/n[0]) > eps)) {
        printf("Inaccurate result\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

For further information consult the entry for VMCFT in the Fortran SSL II Extended Capabilities User's Guide II and [49] and [50].

\section*{c_dvmest}
\begin{tabular}{|l|}
\hline Discrete cosine transforms \\
\hline ierr \(=\) c_dvmcst \((x, k, n, m\), isw, tab, \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function performs one-dimensional, multiple discrete cosine transforms.
Given one-dimensional \(n+1\) sample data \(\left\{x_{j}\right\}\) defined on both end points and internal points dividing a half of \(2 \pi\) period of even-function \(x(t)\) into \(n\) parts equally as follows:
\[
x_{j}=x\left(\frac{\pi}{n} j\right), j=0,1, \ldots, n
\]
this function calculate the discrete cosine transform defined as follows in each row of the array:
\[
\begin{equation*}
a_{k}=x_{0}+(-1)^{k} x_{n}+2 \sum_{j=1}^{n-1} x_{j} \cos \frac{\pi}{n} k j, \quad k=0,1, \ldots, n \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvmcst((double*)x, k, n, m, isw, tab, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline X & \[
\begin{aligned}
& \text { double } \\
& x[\mathrm{~m}][\mathrm{k}]
\end{aligned}
\] & Input & The \(m\) sequences of \(\left\{x_{j}\right\}, j=0, \ldots, n\) are stored in \(\times\) [i1][i2], i1 \(=\) \(0, \ldots, m-1\), i2 \(=0, \ldots, n\). \\
\hline & & Output & The \(m\) sequences of \(\left\{a_{k}\right\}, k=0, \ldots, n\) are stored in \(\times\) [i1][i2], \(\mathrm{i} 1=\) \(0, \ldots, m-1\), i2 \(=0, \ldots, n\). \\
\hline k & int & Input & C fixed dimension of array \(x(\geq n+1)\). \\
\hline n & int & Input & The number of partition of the half period. \(n\) must be an even number. See Comments on use. \\
\hline m & int & Input & The multiplicity \(m\) of the transform. \\
\hline isw & int isw & Input & \begin{tabular}{l}
Control information. See Comments on use. \\
isw should be set as follows. \\
0 to generate the array tab and perform the cosine transforms.. \\
1 to prepare the array tab only. \\
2 to perform the cosine transforms using the array tab prepared before calling.
\end{tabular} \\
\hline tab & \begin{tabular}{l}
double \\
tab[2×n]
\end{tabular} & Work & Trigonometric function table used for the transformation is stored. \\
\hline icon & int & Output & Condition code. See below. \\
\hline The co & e list of condi & is given & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Processing is stopped. \\
& \(\bullet \quad \mathrm{n} \leq 0\) \\
& \(\bullet \quad \mathrm{k}<\mathrm{n}+1\) & \\
& \(\bullet \quad \mathrm{~m} \leq 0\) \\
& \(\bullet \quad \mathrm{isw} \neq 0,1,2\) & \\
& \(\bullet \quad \mathrm{n}\) is not an even number. & \\
& & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Recommended value of \(\mathbf{n}\)}

The \(n\) can be an arbitrary even number, but the transform is fast with the sizes which can be expressed as products of the powers of 2,3 , and 5 .

\section*{Efficient use of the array tab}

When this routine is called successively with a fixed value of \(n\), the trigonometric function table tab should be initialized once at first call with isw \(=0\) or 1 and should be kept intact for second and subsequent calls with \(i s w=2\). This saves initialization procedure of array \(t a b\).

\section*{Normalization}

The cosine transform defined as in (1) is also an inverse transform itself. Applying the transform twice results in the original sequences multiplied by \(2 \times \mathrm{n}\).

If necessary, the user must normalize the results.

\section*{Stack size}

This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack area runs out. The necessary size is \(8 \times \mathrm{n}\) byte.

It is recommended to specify the sufficiently large stacksize with "limit" or "ulimit" command under consideration that the stack area could be used for another work area of fixed size and for user's program also.

\section*{4. Example program}

In this example, cosine transforms are calculated with multiplicity of 5 .
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define N 1024
\#define K (1024+1)
\#define M 5
\#define max(a,b) ((a) > (b) ? (a) : (b))
int MAIN__(void)
{
double x[M][K], tab[N*2];
double vnrm, error, t1, t2;
int isw, icon;
int i, j;
for (j=0; j<M; j++) {

```
```

    for (i=0; i<N+1; i++) {
    x[j][i]=(double)max(i,(N-i)/(j+1));
    }
    }
    /* FORWARD TRANSFORM */
    isw=0;
    c_dvmcst((double*)x, K, N, M, isw, tab, &icon);
    printf("icon = %d\n",icon);
    /* BACKWARD TRANSFORM */
    isw=2;
    c_dvmcst((double*)x, K, N, M, isw, tab, &icon);
    printf("icon = %d\n",icon);
    for (j=0; j<M; j++) {
        error=0.0;
        vnrm =0.0;
        for (i=0; i<N+1; i++) {
            t1=x[j][i]/(double)(N*2);
            t2=t1-(double)(max(i,(N-i)/(j+1)));
            vnrm +=t1*t1;
            error+=t2*t2;
        }
    printf("error = %e\n",sqrt(error/vnrm));
    }
    }

```

\section*{5. Method}

For further information consult the entry for VMCST in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvmggm}
\[
\begin{array}{|l}
\text { Multiplication of two matrices (real by real). } \\
\hline \text { ier }=\text { c_dvmggm(} \mathrm{a}, \mathrm{ka}, \mathrm{~b}, \mathrm{~kb}, \mathrm{c}, \mathrm{kc}, \mathrm{~m}, \mathrm{n}, \mathrm{l}, \\
\text { \&icon); }
\end{array}
\]

\section*{1. Function}

This function performs multiplication of an \(m \times n\) real matrix \(\mathbf{A}\) by an \(n \times l\) real matrix \(\mathbf{B}\).
\[
\begin{equation*}
\mathbf{C}=\mathbf{A B} \tag{1}
\end{equation*}
\]

In (1), the resultant \(\mathbf{C}\) is an \(m \times l\) matrix \((m, n, l \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvmggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, l, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[m][ka] & Input & Matrix \(\mathbf{A}\). \\
\hline ka & int & Input & C fixed dimension of array a (\(\geq \mathrm{n}\)). \\
\hline b & double b[n][kb] & Input & Matrix B. \\
\hline kb & int & Input & C fixed dimension of array \(\mathrm{b}(\geq 1)\). \\
\hline C & double
\[
c[m][k c]
\] & Output & Matrix C. See Comments on use. \\
\hline kc & int & Input & C fixed dimension of array \(\mathrm{c}(\geq 1)\). \\
\hline m & int & Input & The number of rows \(m\) in matrices \(\mathbf{A}\) and \(\mathbf{C}\). \\
\hline n & int & Input & The number of columns \(n\) in matrix \(\mathbf{A}\) and number of rows \(n\) in matrix \(\mathbf{B}\). \\
\hline 1 & int & Input & The number of columns \(l\) in matrices \(\mathbf{B}\) and \(\mathbf{C}\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{m}<1\) \\
& \(\bullet \mathrm{n}<1\) \\
& \(\bullet \quad \mathrm{l}<1\) \\
& \(\bullet \quad \mathrm{ka}<\mathrm{n}\) & \\
& \(\bullet \quad \mathrm{kb}<1\) & \\
& \(\bullet \quad \mathrm{kc}<1\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

This function is design to perform high-speed computations on a vector processor.

\section*{Storage space}

Storing the solution matrix \(\mathbf{C}\) in the same memory area used for matrix \(\mathbf{A}\) or \(\mathbf{B}\) is NOT permitted. \(\mathbf{C}\) must be stored in a separate array otherwise the result will be incorrect.

\section*{4. Example program}

This example program performs a matrix-matrix multiplication and checks the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j;
double eps;
double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX];
/* initialize matrices */
n = NMAX;
for (i=0;i<n;i++)
for (j=0;j<n;j++) {
a[i][j] = j+1;
b[j][i] = 1.0/(j+1);
*
/* matrix matrix multiply */
ierr = c_dvmggm((double*)a, NMAX, (double*)b, NMAX,
(double*)c, NMAX, n, n, n, \&icon);
/* check result */
eps = 1e-5;
for (i=0;i<n;i++)
for ( }j=0;j<n;j++
if (fabs((c[i][j]-n)/n) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{c_dvmrf2}

> Singlevariate, multiple and multivariate discrete real Fourier transform (mixed radix).
ierr = c_dvmrf2(x, n, m, isin, isn, \&icon);

\section*{1. Function}

This function performs singlevariate, multiple and multivariate discrete real Fourier transforms.

Whether the Fourier transform is to be performed, and its direction, can be specified for each dimension. For the 1-st dimension, "no transform" cannot be specified, and the size of the 1 -st dimension must be an even number. The sizes of all other dimension can be arbitrary numbers, but the transform is fast with the sizes which can be expressed as products of the powers of 2,3 , and 5 .

The result of a multiple and multivariate discrete real Fourier transform has a complex conjugate relation. For the 1-st dimension, the first \(n 1 / 2+1\) complex elements are stored.

\section*{Multivariate Fourier Transform}

Transform: Inputting \(m\)-dimensional data \(\left\{x_{j \mid j 2 . . j m}\right\}\) and performing the transform defined in (1) obtains \(\left\{\alpha_{k \mid k 2 \ldots k n}\right\}\).
\[
\begin{gather*}
\alpha_{k 1 k 2 \ldots k m}=\sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \ldots \sum_{j m=0}^{n m-1} x_{j 1 j 2 \ldots j m} \cdot \omega_{n 1}^{-j 1 k 1 r 1} \omega_{n 2}^{-j 2 k 2 r 2} \ldots \omega_{n m}^{-j m k m r m} \tag{1}\\
k 1=0,1,2, \ldots, n 1-1 \\
k 2=0,1,2, \ldots, n 2-1
\end{gather*} \quad \text { and } r \begin{aligned}
& \omega_{n 1}=\exp (2 \pi i / n 1) \\
& \ldots \\
& k m=0,1,2, \ldots, n m-1
\end{aligned}
\]
where, \(n 1, n 2, \ldots, n m\) is the size of each dimension. \(r i=1\) or \(r i=-1\) can be specified for the transform direction.

If \(r=(1,1,1)\) for example, the following three-dimensional Fourier transform is obtained:
\[
\alpha_{k 1 k 2 k 3}=\sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1 j 2 j 3} . \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \omega_{n 3}^{-j 3 k 3}
\]

Inverse transform: Inputting \(\left\{\alpha_{k \mid k 2 \ldots k n}\right\}\) and performing the transform defined in (2), obtains \(\left\{x_{j \mid j 2 . . . j m}\right\}\).
\[
\begin{align*}
& x_{j 1 j 2 \ldots j m}=\sum_{k 1=0}^{n 1-1} \sum_{k 2=0}^{n 2-1} \ldots \sum_{k m=0}^{n m-1} \alpha_{k 1 k 2 \ldots k m} \cdot \omega_{n 1}^{-j 1 k 1 r 1} \omega_{n 2}^{-j 2 k 2 r 2} \ldots \omega_{n m}^{-j m k m r m} \tag{2}\\
& j 1=0,1,2, \ldots, n 1-1 \quad \omega_{n 1}=\exp (2 \pi i / n 1) \\
& j 2=0,1,2, \ldots, n 2-1 \quad \text { and } \quad \omega_{n 2}=\exp (2 \pi i / n 2) \\
& \text {... } \\
& j m=0,1,2, \ldots, n m-1 \\
& \omega_{n m}=\exp (2 \pi i / n m)
\end{align*}
\]
where, \(n 1, n 2, \ldots, n m\) is the size of each dimension.

In an inverse transform, a direction that is inverse to that specified in the transform must be specified. \(r i=-1\) or \(r i=1\)

\section*{Multiple transform}

When \(r i=0\) is specified, the summation \(\sum_{j i=0}^{n i-1}\) is omitted.

In the case of real-to-complex transform, index \(j i\) of \(x\) in (1) is changed to \(k i\). In the case of complex-to-real transform, index \(k i\) of \(\alpha\) in (2) is changed to \(j i\).

For example, singlevariate multiple transform has only one summation. When performing the following transform with respect to only the first-dimension of a three-dimensional data, specify \(r=(1,0,0)\)
\[
\alpha_{k 1 k 2 k 3}=\sum_{j 1=0}^{n l-1} x_{j 1 k 2 k 3} \cdot \omega_{n 1}^{-j 1 k 1}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvmrf2((double*)x, n, m, isin, isn, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline X & \[
\begin{aligned}
& \text { double } \\
& \times[n m] \ldots[n 2][n 1+2]
\end{aligned}
\] & Input

Output & \begin{tabular}{l}
If isn \(=1\) (transform from real to complex). \\
The real data \(\left\{x_{j 1 j 2 \ldots . . j m}\right\}\) is stored in \(\times[j m] \ldots[j 2][j 1], j m=\) \(0, \ldots, n[m-1]-1, \ldots, j 2=0, \ldots, n[1]-1, j 1=0, \ldots, n[0]-1\) \\
If isn \(=-1\) (transform from complex to real). \\
The real and imaginary part of \(\left\{\alpha_{k 112 \ldots . . . k n}\right\}\) are stored in \\
\(x[k m] \ldots[k 2][k 1], k m=0, \ldots, n[m-1]-1, \ldots, k 2=0, \ldots\), \\
\(n[1]-1, k 1=0, \ldots, n[0]+1\) by turns. \\
If isn=1 (transform from real to complex). \\
The real and imaginary part of \(\left\{\alpha_{k 1 k 2 \ldots k n}\right\}\) are stored in \\
\(x[k m] \ldots[k 2][k 1], k m=0, \ldots, n[m-1]-1, \ldots, k 2=0, \ldots\), \\
\(n[1]-1, k 1=0, \ldots, n[0]+1\) by turns. \\
If isn \(=-1\) (transform from complex to real). \\
The real data \(\left\{x_{j 1 j 2 . . j m}\right\}\) is stored in \(\times[j m] \ldots[j 2][j 1], j m=\) \(0, \ldots, n[m-1]-1, \ldots, j 2=0, \ldots, n[1]-1, j 1=0, \ldots, n[0]-1\).
\end{tabular} \\
\hline n & int n [m] & Input & Sizes \(n_{i}, i=1,2, \ldots, m\) of the dimensions, with \(\mathrm{n}[\mathrm{i}-1]=n_{i}, i=1\), \(2, \ldots, m\). The size of the 1 -st dimension must be an even number. \\
\hline m & int & Input & The number of dimensions \(m\) of the multivariate Fourier transform. \\
\hline isin & int isin[m] & Input & Direction \(r_{i}\) of the Fourier transform in the \(i\)-th dimension, \(i=1\),
\[
\begin{aligned}
& 2, \ldots, m . \\
& \text { isin }[0] \text { cannot be } 0 . \\
& \text { isin }[i-1]=1 \text { for } r_{i}=1 \\
& \text { isin }[i-1]=0 \text { for no transform } \\
& \text { isin }[i-1]=-1 \text { for } r_{i}=-1
\end{aligned}
\] \\
\hline isn & int & Input & \begin{tabular}{l}
Control information. \\
isn \(=1\) for the normal transform (real to complex) \\
isn \(=-1\) for the inverse transform (complex to real).
\end{tabular} \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30001 & \begin{tabular}{l}
One of the following has occurred: \\
- \(n[i] \leq 0\) for some \(i\) \\
- \(\mathrm{m} \leq 0\).
\end{tabular} & \multirow[t]{4}{*}{Bypassed.} \\
\hline 30016 & \begin{tabular}{l}
One of the following has occurred: \\
- isin[i] \(<-1\) \\
- isin[i] > 1 \\
- isin[0] =0
\end{tabular} & \\
\hline 30032 & isn \(\neq-1\) or 1 . & \\
\hline 30512 & The size of first dimension is odd number. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{General definition of Fourier transform}

The multivariate discrete Fourier transform and inverse transform are generally defined as in (3) and (4).
\[
\begin{align*}
& \alpha_{k 1 k 2 \ldots k m}=\frac{1}{n 1 n 2 \ldots n m} \times \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \ldots \sum_{j m=0}^{n m-1} x_{j 1 j 2 \ldots j m} \cdot \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \ldots \omega_{n m}^{-j m k m} \tag{3}\\
& k 1=0,1,2, \ldots, n 1-1 \quad \omega_{n 1}=\exp (2 \pi i / n 1) \\
& k 2=0,1,2, \ldots, n 2-1 \quad \text { and } \quad \omega_{n 2}=\exp (2 \pi i / n 2) \\
& k m=0,1,2, \ldots, n m-1 \quad \omega_{n m}=\exp (2 \pi i / n m) \\
& x_{j 1 j 2 \ldots j m}=\sum_{k 1=0}^{n 1-1} \sum_{k 2=0}^{n 2-1} \ldots \sum_{k m=0}^{n m-1} \alpha_{k 1 k 2 \ldots k m} \cdot \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \omega_{n m}^{j m k m} \tag{4}\\
& j 1=0,1,2, \ldots, n 1-1 \quad \omega_{n 1}=\exp (2 \pi i / n 1) \\
& j 2=0,1,2, \ldots, n 2-1 \quad \text { and } \quad \omega_{n 2}=\exp (2 \pi i / n 2) \\
& \text {... } \\
& j m=0,1,2, \ldots, n m-1 \\
& \omega_{n m}=\exp (2 \pi i / n m)
\end{align*}
\]

The routine calculates \(\left\{n 1 n 2 \ldots n m \alpha_{k 1 k 2 \ldots k m}\right\}\) or \(\left\{x_{j \mid j 2 . . j m}\right\}\) corresponding to the left-hand terms of (3) and (4). For \(i\), where isin[i] \(=0, n i\) is replaced with 1 . If necessary, the user must normalize the results.

\section*{Complex conjugate relation}

The result of the multivariate discrete real Fourier transform has the following complex conjugate relation:
\[
\begin{aligned}
\alpha_{k_{1} k_{2} \ldots k_{m}} & =\overline{\alpha_{n 1-k 1 n 2-k 2 \ldots n m-k m}} \\
k 1 & =0,1,2, \ldots, n 1 / 2 \\
k 2 & =0,1,2, \ldots, n 2-1 \\
& \ldots \\
k m & =0,1,2, \ldots, n m-1
\end{aligned}
\]

In the case of \(k i=0, n i-k i\) is regarded as 0 . For \(h\), where isin \([h]=0\), the \(h\)-th index in the right-hand terms is still \(k h\). The rest of terms can be calculated using this relation.

\section*{Stack size}

This function exploits work area internally on stack area. Therefore an abnormal termination could be occur when the stack area runs out. The necessary size is shown below.

If \(n i\) can be expressed as products of powers of 2,3 , and 5 , then the work area size is \(24 \times \max \{n i \mid i=1, \ldots, m\) and isn[i] \(\neq 0\).\(\} byte.\)

If there are numbers among \(n i\) that cannot be expressed as products of powers of 2,3 , and 5 , then the work area size is 80 \(\times \max \{n i \mid i=1, \ldots, m\) and isn[i] \(\neq 0\).\(\} byte.\)

It is recommended to specify the sufficiently large stacksize with "limit" or "ulimit" command under consideration that the stack area could be used for another work area of fixed size and for user's program also.

\section*{4. Example program}

In this example, a two-dimensional real Fourier transform is calculated.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define N1 1024
\#define N2 1024
\#define M 2
\#define max(a,b) ((a) > (b) ? (a) : (b))
int MAIN__(void)
{
double x[N2][N1+2], error, tmp;
int n[M], isn, isin[M], icon;
int i, j;
for (i=0; i<N2; i++) {
for (j=0; j<N1; j++) {
x[i][j]=(double)(N1*i+j+1);
}
}
n[0] = N1;
n[1] = N2;
isin[0] = 1;
isin[1] = 1;
isn = 1;
/* REAL TO COMPLEX TRANSFORM */
c_dvmrf2((double*)x, n, M, isin, isn, \&icon);
printf("icon = %d\n",icon);
n[0] = N1;
isin[0] = -1;
isin[1] = -1;
isn = -1;
/* COMPLEX TO REAL TRANSFORM */
c_dvmrf2((double*)x, n, M, isin, isn, \&icon);
printf("icon = %d\n",icon);
error = 0.0;
for (i=0; i<N2; i++) {
for (j=0; j<N1; j++) {
tmp = fabs(x[i][j]/(double)(N1*N2)-(double)(N1*i+j+1));
error = max(error,tmp);
}
}

```
```

    printf("error = %e\n",error);
    ```
\}

\section*{5. Method}

For further information consult the entry for VMRF2 in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvmrft}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Multiple and multivariate discrete real Fourier transform (mixed radices \\
of 2, 3, and 5).
\end{tabular} \\
\hline ierr \(=c _d v m r f t(x, n, m\), \\
isin, isn, w, \&icon) ; \\
\hline
\end{tabular}

\section*{1. Function}

This routine performs multiple and multivariate discrete real Fourier transforms (or the inverse transforms). Whether the Fourier transform is to be performed, and its direction, can be specified for each of \(m\) dimensions. All dimensions on which a transform is to be performed must have sizes that are products of the powers 2,3 , and 5 .

At least one of the first \(m-1\) dimensions must be an even number. A transform must be specified for the \(m\)-th dimension.
The result of a multiple and multivariate discrete real Fourier transform has a complex conjugate relation. By using this relation, it is only necessary to store the first floor \(\left(n_{m} / 2\right)+1\) elements for the \(m\)-th dimension, where \(n_{m}\) is the size of the \(m\)-th dimension.

\section*{Multivariate Fourier Transform}

Transform: When \(\left\{x_{j_{1} j_{2} \ldots j_{m}}\right\}\) is provided, the transform defined below is used to obtain \(\left\{n_{1} n_{2} \ldots n_{m} \alpha_{k_{1} k_{2} \ldots k_{m}}\right\}\)
\[
n_{1} n_{2} \ldots n_{m} \alpha_{k_{1} k_{2} \ldots k_{m}}=\sum_{j_{1}=0}^{n_{1}-1} \sum_{j_{2}=0}^{n_{2}-1} \ldots \sum_{j_{m}=0}^{n_{m}-1} x_{j_{1} j_{2} \ldots j_{m}} \omega_{n_{1}}^{-j_{1} k_{1} r_{1}} \omega_{n_{2}}^{-j_{2} k_{2} r_{2}} \ldots \omega_{n_{m}}^{-j_{m} k_{m} r_{m}}
\]
where \(k_{\ell}=0, \ldots, n_{\ell}-1, \omega_{n_{\ell}}=\exp \left(2 \pi i / n_{\ell}\right), r_{\ell}=1\) or \(-1, \ell=1,2, \ldots, m\), and \(r_{\ell}\) specifies the transform direction in the \(\ell\)-th dimension.

For \(r_{\ell}=0\), the summation \(\sum_{j_{\ell}=0}^{n_{\ell}-1}\) is omitted, the \(j_{\ell}\)-th index of \(x\) is changed to \(k_{\ell}\), and \(n_{\ell}\) on the left hand side of the above definition is replaced with 1 . For example, for \(r=(0,1,1)\), the following is obtained:
\[
n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}=\sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{3}=0}^{n_{3}-1} x_{k_{1} j_{2} j_{3}} \omega_{n_{2}}^{-j_{2} k_{2}} \omega_{n_{3}}^{-j_{3} k_{3}}
\]

Fourier inverse transform: When \(\left\{\alpha_{k_{1} k_{2} \ldots k_{m}}\right\}\) is provided, the inverse transform defined below is used to obtain \(\left\{x_{j_{1} j_{2} \ldots j_{m}}\right\}\).
\[
x_{j_{1} j_{2} \ldots j_{m}}=\sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} \ldots \sum_{k_{m}=0}^{n_{m}-1} \alpha_{k_{1} k_{2} \ldots k_{m}} \omega_{n_{1}}^{-j_{1} k_{1} r_{1}} \omega_{n_{2}}^{-j_{2} k_{2} r_{2}} \ldots \omega_{n_{m}}^{-j_{m} k_{m} r_{m}}
\]
where \(j_{\ell}=0, \ldots, n_{\ell}-1, \omega_{n_{\ell}}=\exp \left(2 \pi i / n_{\ell}\right), r_{\ell}=-1\) or \(1, \ell=1,2, \ldots, m\), and \(r_{\ell}\) specifies the transform direction in the \(\ell\)-th dimension. With an inverse transform, a direction that is the inverse to that specified in the transform must be specified.

For \(r_{\ell}=0\), the summation \(\sum_{k_{\ell}=0}^{n_{\ell}-1}\) is omitted, the \(k_{\ell}\)-th index of \(\alpha\) is changed to \(j_{\ell}\). For example, for \(r=(0,-1,-1)\), the following is obtained:
\[
x_{j_{1} j_{2} j_{3}}=\sum_{k_{2}=0}^{n_{2}-1} \sum_{k_{3}=0}^{n_{3}-1} \alpha_{j_{1} k_{2} k_{3}} \omega_{n_{2}}^{j_{2} k_{2}} \omega_{n_{3}}^{j_{3} k_{3}} .
\]

\section*{Multiple transform}

A multiple transform has only one summation. With a three-dimensional transform, the following is obtained:
\[
n_{3} \alpha_{k_{1} k_{2} k_{3}}=\sum_{j_{3}=0}^{n_{3}-1} x_{k_{1} k_{2} j_{3}} \omega_{n_{3}}^{-j_{3} k_{3} r_{3}} .
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvmrft((double *)x, n, m, isin, isn, w, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline x & \[
\begin{aligned}
& \text { double } \times[\text { Nmlen }] \\
& {[\mathrm{n}[\mathrm{~m}-2]] \ldots[\mathrm{n}[0]]}
\end{aligned}
\] & Input & \begin{tabular}{l}
If isn \(=1\) (transform from real to complex), real data \(\left\{x_{j_{1} j_{2} . . . j_{m}}\right\}\). \\
If isn \(=-1\) (transform from complex to real), complex data
\[
\left\{\alpha_{k_{1} k_{2} \ldots k_{m}}\right\} . \text { Nmlen }=2 \times\left(\text { floor }\left(n_{m} / 2\right)+1\right)=2(\mathrm{n}[\mathrm{~m}-1] / 2+1) .
\] \\
See Comments on use for data storage.
\end{tabular} \\
\hline & & Output & \begin{tabular}{l}
If isn \(=1\) (transform from real to complex), complex data \(\left\{n_{1} n_{2} \ldots n_{m} \alpha_{k_{1} k_{2} \ldots k_{m}}\right\}\). \\
If isn \(=-1\) (transform from complex to real) real data \(\left\{x_{j_{1} j_{2} \ldots j_{m}}\right\}\). \\
See Comments on use for data storage.
\end{tabular} \\
\hline n & int n [m] & Input & Sizes \(n_{i}, i=1,2, \ldots, m\) of the dimensions, with \(\mathrm{n}[\mathrm{i}-1]=n_{i}\), \(i=1,2, \ldots, \mathrm{~m}\). If isin[\(\mathrm{i}-1\)] is non-zero, \(\mathrm{n}[\mathrm{i}-1]\) must be a product of powers of 2,3 , and 5 . At least one of the first \(\mathrm{m}-1\) elements of n must be an even number. \\
\hline m & int & Input & The number of dimensions \(m\) of the multivariate Fourier transform. \\
\hline isin & int isin[m] & Input & \begin{tabular}{l}
Direction \(r_{i}\) of the Fourier transform in the \(i\)-th dimension, \(\mathrm{i}=1,2, \ldots, \mathrm{~m}\). \\
isin[i-1] \(=1\) for \(r_{i}=1\) \\
isin[i-1] \(=0\) for no transform \\
isin[i-1] \(=-1\) for \(r_{i}=-1\) \\
isin [m-1] cannot be 0 .
\end{tabular} \\
\hline isn & int & Input & \[
\begin{aligned}
& \text { Control information. } \\
& \text { isn }=1 \text { for the transform (real to complex) } \\
& \text { isn }=-1 \text { for the inverse transform (complex to real). }
\end{aligned}
\] \\
\hline W & double w[Wlen] & Work & Wlen \(=2\left(\max \left(n_{1}, n_{2}, \ldots, n_{m}\right)+n_{1} n_{2} \ldots n_{m-1}\left(\right.\right.\) floor \(\left.\left.\left(n_{m} / 2\right)+1\right)\right)\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30001 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}[\mathrm{i}] \leq 0\) for some i \\
\(\bullet \quad \mathrm{m}<2\).
\end{tabular} & Bypassed. \\
\hline 30008 & \(\mathrm{n}[\mathrm{i}]\) is not a product of powers of 2,3, and 5, & Bypassed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30016 & when isin \([\mathrm{i}] \neq 0\) for some \(\mathbf{i}\). & Bypassed. \\
\hline 30032 & \begin{tabular}{l}
isin \([\mathrm{i}] \neq-1,0\), or 1 for some i or \\
isin \([\mathrm{m}-1]=0\).
\end{tabular} & Bypassed. \\
\hline 30512 & isn \(\neq-1\) or 1. & Bypassed. \\
\hline & \begin{tabular}{l}
The first \(\mathrm{m}-1\) elements of array n are odd \\
numbers.
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Data storage}

The real data (transform input and inverse transform output) is stored in array X with
\(\mathrm{x}[\mathrm{jm}] \ldots[\mathrm{j} 2][\mathrm{j} 1]=x_{j_{1} j_{2} \ldots j_{m}}, j_{i}=0,1, \ldots, n_{i}-1, i=1,2, \ldots, m\).
For complex data (transform output and inverse transform input), the real part is stored in one half of array \(x\) and the imaginary part in the other half of \(x\).
\(\begin{array}{ll}\mathrm{x}[\mathrm{km}] \ldots[\mathrm{k} 2][\mathrm{k} 1]=\operatorname{Re}\left(\alpha_{k_{1} k_{2} \ldots k_{m}}\right) \text { or } \operatorname{Re}\left(n_{1} n_{2} \ldots n_{m} \alpha_{k_{1} k_{2} \ldots k_{m}}\right), & k_{i}=0,1, \ldots, n_{i}-1, i=1,2, \ldots, m-1, \\ \times[\mathrm{km}+\mathrm{n}[\mathrm{m}-1] / 2+1] \ldots[\mathrm{k} 2][\mathrm{k} 1]=\operatorname{Im}\left(\alpha_{k_{1} k_{2} \ldots k_{m}}\right) \text { or } \operatorname{Im}\left(n_{1} n_{2} \ldots n_{m} \alpha_{k_{1} k_{2} \ldots k_{m}}\right), & k_{m}=0, \ldots, \text { floor }\left(n_{m} / 2\right)\end{array}\)

An alternative way to reference the imaginary part of the data, as a separate array that is aliased to x , is shown in the sample calling program. For \(\operatorname{isin}[i-1]=0, n_{i}\) in \(\left\{n_{1} n_{2} \ldots n_{m} \alpha_{k_{1} k_{2} \ldots k_{m}}\right\}\) is replaced with \(1, i=1, \ldots, m\).

\section*{Complex conjugate relation}

The result of the multivariate discrete real Fourier transform has the following complex conjugate relation:
\[
\alpha_{k_{1} k_{2} \ldots k_{m}}=\bar{\alpha}_{n_{1}-k_{1} n_{2}-k_{2}} \ldots n_{m}-k_{m},
\]
\(k_{i}=0,1, \ldots, n_{i}-1, i=1,2, \ldots, m-1, k_{m}=1,2, \ldots\), floor \(\left(n_{m} / 2\right)\). In the case of \(k_{i}=0, n_{i}-k_{i}\) is regarded as 0.

For \(h\), where \(\operatorname{isin}[\mathrm{h}]=0\), the \(h\)-th index in the right hand terms is \(k_{h}\).
Only the terms \(\left\{n_{1} n_{2} \ldots n_{m} \alpha_{k_{1} k_{2} \ldots k_{m}}\right\}, k_{i}=0,1, \ldots, n_{i}-1, i=1, \ldots, m-1, k_{m}=1,2, \ldots\), floor \(\left(n_{m} / 2\right)\). need be stored, as this relation can be used to determine the remaining terms.

\section*{General definition of Fourier transform}

The multivariate discrete Fourier transform and inverse transform can be defined as in (1) and (2).
\[
\begin{equation*}
\alpha_{k_{1} k_{2} \ldots k_{m}}=\frac{1}{n_{1} n_{2} \ldots n_{m}} \sum_{j_{1}=0}^{n_{1}-1} \sum_{j_{2}=0}^{n_{2}-1} \ldots \sum_{j_{m}=0}^{n_{m}-1} x_{j_{1} j_{2} \ldots j_{m}} \omega_{n_{1}}^{-j_{1} k_{1} r_{1}} \omega_{n_{2}}^{-j_{2} k_{2} r_{2}} \ldots \omega_{n_{m}}^{-j_{m} k_{m} r_{m}} \tag{1}
\end{equation*}
\]
where \(k_{\ell}=0, \ldots, n_{\ell}-1, \omega_{n_{\ell}}=\exp \left(2 \pi i / n_{\ell}\right), r_{\ell}=1\) or \(-1, \ell=1,2, \ldots, m\),
\[
\begin{equation*}
x_{j_{1} j_{2} \ldots j_{m}}=\sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} \ldots \sum_{k_{m}=0}^{n_{m}-1} \alpha_{k_{1} k_{2} \ldots k_{m}} \omega_{n_{1}}^{-j_{1} k_{1} r_{1}} \omega_{n_{2}}^{-j_{2} k_{2} r_{2}} \ldots \omega_{n_{m}}^{-j_{m} k_{m} r_{m}} \tag{2}
\end{equation*}
\]
where \(j_{\ell}=0, \ldots, n_{\ell}-1, \omega_{n_{\ell}}=\exp \left(2 \pi i / n_{\ell}\right), r_{\ell}=-1\) or \(1, \ell=1,2, \ldots, m\).

This routine calculates \(\left\{n_{1} n_{2} \ldots n_{m} \alpha_{k_{1} k_{2} \ldots k_{m}}\right\}\) or \(\left\{x_{j_{1} j_{2} \ldots j_{m}}\right\}\) corresponding to the left hand terms of (1) or (2) respectively. For \(i\), where \(i \sin [i-1]=0, n_{i}\) is replaced with 1 . The user must normalize the results, if required.

\section*{4. Example program}

This program performs the Fourier transform and prints out the transformed data. It then performs the inverse transform and checks the result. Both the normal and inverse transforms are performed on the second dimension only.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define M 2
\#define N1 4
\#define N2 4
\#define LDIM 2*(N2/2+1)
\#define WLEN 2*N1+N1*LDIM
MAIN__()
{
int ierr, icon;
double x[LDIM][N1], xx[LDIM][N1], w[WLEN], eps;
double (*Cx)[2][LDIM/2][N1];/* pointer to complex data */
int i, j, n[M], isn, isin[M], m, pr;
/* generate initial data */
m = M;
n[0] = N1;
n[1] = N2;
for ( }\textrm{j}=0;\textrm{j}<n[1];j++
for (i=0;i<n[0];i++)
x[j][i] = (i+1)*(j+1);
/* keep copy */
for (j=0;j<N2;j++)
for (i=0;i<N1;i++)
xx[j][i] = x[j][i];
/* perform normal transform */
isn = 1;
isin[0] = 0;
isin[1] = 1;
pr = n[1];
ierr = c_dvmrft((double*)x, n, m, isin, isn, w, \&icon);
/* check results */
if (icon != 0) {
printf("ERROR: c_dvmrft failed with icon = %d\n", icon);
exit(1);
}
/* print complex transformed data */
cx = (double(*)[2][LDIM/2][N1])x; /* complex data overwrites real data */
for ( }\textrm{j}=0;\textrm{j}<\textrm{N}2/2+1;\textrm{j}++)
for (i=0;i<N1;i++) {
printf("%8.5f + i*%8.5f ", (*cx)[0][j][i], (*cx)[1][j][i]);
}
printf("\n");
}
/* perform inverse transform */
isn = -1;
isin[0] = 0;
isin[1] = -1;
ierr = c_dvmrft((double*)x, n, m, isin, isn, w, \&icon);
/* check results */
eps = 1e-6;
for ( j=0;j<n[1];j++)
for (i=0;i<n[0];i++)
if (fabs((x[j][i]/pr - xx[j][i])/xx[j][i]) > eps) {
printf("Inaccurate result\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{c_dvmsnt}
\begin{tabular}{|l|}
\hline Discrete sine transforms \\
\hline ierr \(=\) c_dvmsnt \((x, k, n, m\), isw, tab, \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This function performs one-dimensional, multiple discrete sine transforms.
Given one-dimensional \(n-1\) sample data \(\left\{x_{j}\right\}\) defined on the internal points except both end points dividing a half of \(2 \pi\) period of odd-function \(x(t)\) into \(n\) parts equally as follows:
\[
x_{j}=x\left(\frac{\pi}{n} j\right), \quad j=1,2, \ldots, n-1
\]
this function calculate the discrete sine transform defined as follows in each row of the array:
\[
\begin{equation*}
a_{k}=2 \sum_{j=1}^{n-1} x_{j} \sin \frac{\pi}{n} k j, \quad k=1,2, \ldots, n-1 \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvmsnt((double*)x, k, n, m, isw, tab, \&icon);
where:

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Processing is stopped. \\
& \(\bullet \quad \mathrm{n} \leq 0\) \\
& \(\bullet \quad \mathrm{k}<\mathrm{n}-1\) & \\
& \(\bullet \quad \mathrm{~m} \leq 0\) \\
& \(\bullet \quad \mathrm{isw} \neq 0,1,2\) & \\
& \(\bullet \quad \mathrm{n}\) is not an even number. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Recommended value of \(\mathbf{n}\)}

The \(n\) can be an arbitrary even number, but the transform is fast with the sizes which can be expressed as products of the powers of 2,3 , and 5 .

\section*{Efficient use of the array tab}

When this routine is called successively with a fixed value of \(n\), the trigonometric function table tab should be initialized once at first call with isw \(=0\) or 1 and should be kept intact for second and subsequent calls with \(i s w=2\). This saves initialization procedure of array \(t a b\).

\section*{Normalization}

The cosine transform defined as in (1) is also an inverse transform itself. Applying the transform twice results in the original sequences multiplied by \(2 \times \mathrm{n}\).

If necessary, the user must normalize the results.

\section*{Stack size}

This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack area runs out. The necessary size is \(16 \times \mathrm{n}\) byte.

It is recommended to specify the sufficiently large stacksize with "limit" or "ulimit" command under consideration that the stack area could be used for another work area of fixed size and for user's program also.

\section*{4. Example program}

In this example, sine transforms are calculated with multiplicity of 5.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define N 1024
\#define K (N-1)
\#define M 5
\#define min(a,b) ((a) < (b) ? (a) : (b))
int MAIN__(void)
{
double x[M][K], tab[N*2];
double vnrm, error, t1, t2;
int isw, icon, i, j;
for (j=0; j<M; j++) {
for (i=0; i<N-1; i++) {

```
```

                x[j][i]=(double)min(i+1,(N-i-1)/(j+1));
        }
    }
    /* FORWARD TRANSFORM */
isw = 0;
c_dvmsnt((double*)x, K, N, M, isw, tab, \&icon);
printf("icon = %d\n", icon);
/* BACKWARD TRANSFORM */
isw = 2;
c_dvmsnt((double*)x, K, N, M, isw, tab, \&icon);
printf("icon = %d\n", icon);
for (j=0; j<M; j++) {
error = 0.0;
vnrm = 0.0;
for (i=0; i< N-1; i++) {
t1=x[j][i]/(double)(N*2);
t2=t1-(double)(min(i+1,(N-i-1)/(j+1)));
vnrm +=t1*t1;
error+=t2*t2;
}
printf("error = %e\n",sqrt(error/vnrm));
}
}

```

\section*{5. Method}

For further information consult the entry for VMSNT in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{c_dvmvsd}
```

Multiplication of a real sparse matrix by a real vector (diagonal storage
format).
ierr = c_dvmvsd(a, k, ndiag, n, nofst, nlb, x,
$y, ~ \& i c o n) ;$

```

\section*{1. Function}

This function computes the product in equation (1).
\[
\begin{equation*}
\mathbf{y}=\mathbf{A x} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) real sparse matrix with \(\mathbf{x}\) and \(\mathbf{y}\) both real vectors of size \(n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvmvsd((double*)a, k, ndiag, n, nofst, nlb, x, y, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[ndiag][k]
\end{tabular} & Input & Sparse matrix A stored in diagonal storage format. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array a (\(\geq \mathrm{n}\)). \\
\hline ndiag & int & Input & The number of diagonal vectors in the coefficient matrix \(\mathbf{A}\) having nonzero elements. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nofst & int nofst[ndiag] & Input & Distance from the main diagonal vector corresponding to diagonal vectors in array a. Super-diagonal vectors have positive values. Subdiagonal vectors have negative values. See Comments on use. \\
\hline nlb & int & Input & Lower bandwidth of matrix \(\mathbf{A}\). \\
\hline X & double \(\times\) [Xlen] & Input & Vector \(\mathbf{x}\) is stored in \(\mathrm{x}[\mathrm{i}], \mathrm{nlb} \leq \mathrm{i}<\mathrm{nlb}+\mathrm{n}\). Xlen \(=\mathrm{n}+\mathrm{ndiag}-1\). \\
\hline y & double y[n] & Output & Product vector \(\mathbf{y}\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(k<1\) \\
- \(\mathrm{n}<1\) \\
- \(n>k\) \\
- ndiag \(<1\) \\
- nlb \(\neq \max (-n o f s t[i]) ; 0 \leq i<n d i a g\) \\
- abs(nofst[i]) \(>\) n-1; \(0 \leq i<n d i a g\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{\(a\) and nofst}

The coefficients of matrix A are stored in two arrays using the diagonal storage format. For full details, see the Array storage formats section of the Introduction.

The advantage of this method lies in the fact that the matrix-vector product can be computed without the use of indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method.

\section*{4. Example program}

This example program calculates a matrix-vector multiplication and checks the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define UBANDW 2
\#define LBANDW 1
MAIN__()
{
double one=1.0, eps=1.e-6;
int ierr, icon;
int ndiag, nlb, nub, n, i, j, k;
int nofst[UBANDW + LBANDW + 1];
double a[UBANDW + LBANDW + 1][NMAX], x[NMAX + UBANDW + LBANDW], y[NMAX];
/* initialize matrix and vector */
ndiag = UBANDW + LBANDW + 1;
nlb}= LBANDW
nub = UBANDW;
n = NMAX
k = NMAX;
for (i=1; i<=nub; i++) {
for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
for (j=n-i; j<n ; j++) a[i][j] = 0.0;
nofst[i] = i;
}
for (i=1; i<=nlb; i++) {
for (j=0; j<i; j++) a[nub + i][j] = 0.0;
for (j=i; j<n; j++) a[nub + i][j] = -2.0;
nofst[nub + i] = -i;
}
for (i=0; i<n+nlb+nub; i++) x[i] = 0.0;
nofst[0] = 0;
for (j=0; j<n; j++) {
a[0][j] = one;
for (i=1; i<ndiag; i++) a[0][j] -= a[i][j];
x[nlb + j] = one;
}
/* perform matrix-vector multiply */
ierr = c_dvmvsd((double*)a, k, ndiag, n, nofst, nlb, x, y, \&icon);
if (icon != 0) {
printf("ERROR: c_dvmvsd failed with icon = %d\n", icon);
exit(1);
}
/* check vector */
for (i=0;i<n;i++)
if (fabs(y[i]-one) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{c_dvmvse}

Multiplication of a real sparse matrix by a real vector (ELLPACK storage format).
ierr = c_dvmvse(a, k, nw, n, icol, x, y, \&icon);

\section*{1. Function}

This function computes the product of equation (1).
\[
\begin{equation*}
\mathbf{y}=\mathbf{A x} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) real sparse matrix with \(\mathbf{x}\) and \(\mathbf{y}\) both real vectors of size \(n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvmvse((double*)a, k, nw, n, (int*)icol, x, y, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double
\[
\mathrm{a}[\mathrm{nw}][\mathrm{k}]
\] & Input & Sparse matrix A stored in ELLPACK storage format. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array a (\(\geq n\)). \\
\hline nw & int & Input & The maximum number of non-zero elements in any row of matrix \(\mathbf{A}\) \((\geq 0)\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline icol & \[
\begin{aligned}
& \text { int } \\
& \text { icol[nw][k] }
\end{aligned}
\] & Input & Column indices used in the ELLPACK format, showing to which column the elements corresponding to a belong. See Comments on use. \\
\hline x & double \(x[n]\) & Input & Vector \(\mathbf{x}\). \\
\hline y & double y[n] & Output & Solution vector \(\mathbf{y}\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{k}<1\) \\
& \(\bullet \mathrm{n} \leq 0\) \\
& \(\bullet \mathrm{nw}<1\) & \\
& \(\bullet \mathrm{n}>\mathrm{k}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a and icol}

The coefficients of matrix A are stored in two arrays using the ELLPACK storage format. For full details, see the Array storage formats section of the Introduction.

Before storing data in the ELLPACK format, it is recommended that the user initialize the arrays a and icol with zero and the row number, respectively.

\section*{4. Example program}

This example program calculates a matrix-vector multiplication and checks the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 1000
\#define UBANDW 1
\#define LBANDW 1
MAIN__()
{
double lcf=-2.0, ucf=-1.0, one=1.0, eps=1.e-6;
int ierr, icon;
int nlb, nub, nw, n, i, j, k, ix;
int icol[UBANDW + LBANDW + 1][NMAX];
double a[UBANDW + LBANDW + 1][NMAX], x[NMAX], y[NMAX];
/* initialize matrix and vector */
nub = UBANDW;
nlb = LBANDW;
nW = UBANDW + LBANDW + 1;
n = NMAX;
k = NMAX
for (i=0; i<n; i++) x[i] = one;
for (i=0; i<nw; i++)
for (j=0; j<n; j++) {
a[i][j] = 0.0;
icol[i][j] = j+1;
}
for (j=0; j<nlb; j++) {
for (i=0; i<j; i++) a[i][j] = lcf;
a[j][j] = one - (double) j * lcf - (double) nub * ucf;
for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
}
for (j=nlb; j<n-nub; j++) {
for (i=0; i<nlb; i++) a[i][j] = lcf;
a[nlb][j] = one - (double) nlb * lcf - (double) nub * ucf;
for (i=nlb+1; i<nw; i++) a[i][j] = ucf;
for (i=0; i<nw; i++) icol[i][j]= i+1+j-nlb;
}
for (j=n-nub; j<n; j++){
for (i=0; i<nlb; i++) a[i][j] = lcf;
a[nlb][j] = one - (double) nlb * lcf - (double) (n-j-1) * ucf;
for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
ix = n - (j+nub-nlb-1);
for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
}/*
/* perform matrix-vector multiply */
ierr = c_dvmvse((double*)a, k, nw, n, (int*)icol, x, y, \&icon);
if (icon != 0) {
printf("ERROR: c_dvmvse failed with icon = %d\n", icon);
exit(1);
}
/* check vector */
for (i=0; i<n; i++)
if (fabs(y[i]-one) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n")
return(0);
}

```

\section*{c_dvqmrd}
```

Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (QMR method, diagonal storage format).
ierr = c_dvqmrd(a, k, ndiag, n, nofst, at,
ntofst, b, itmax, eps, iguss, x,
\&iter, vw, \&icon);

```

\section*{1. Function}

This routine solves a system of linear equations (1) using the quasi-minimal residual (QMR) method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) nonsymmetric or indefinite sparse matrix, \(\mathbf{b}\) is a constant vector, and \(\mathbf{x}\) is the solution vector. Both the vectors are of size \(n\), and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvqmrd((double *) a, k, ndiag, n, nofst, (double *) at, ntofst, b,
itmax, eps, iguss, x, \&iter, vw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[ndiag][k]
\end{tabular} & Input & Matrix A. Stored in diagonal storage format for general sparse matrices. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline k & int & Input & C fixed dimension of arrays a and at (\(\geq \mathrm{n}\)). \\
\hline ndiag & int & Input & Number (\(>0\)) of diagonals of matrix \(\mathbf{A}\) that contain non-zero elements. \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline nofst & int nofst[ndiag] & Input & Offsets from the main diagonal corresponding to diagonals stored in \(\mathbf{A}\). Upper diagonals have positive offsets, the main diagonal has a zero offset, and the lower diagonals have negative offsets. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline at & \begin{tabular}{l}
double \\
at[ndiag][k]
\end{tabular} & Input & Matrix \(\mathbf{A}^{\mathrm{T}}\). Stored in diagonal storage format for general sparse matrices. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline ntofst & int ntofst[ndiag] & Input & Offsets from the main diagonal corresponding to diagonals stored in \(\mathbf{A}^{\mathrm{T}}\). Upper diagonals have positive offsets, the main diagonal has a zero offset, and the lower diagonals have negative offsets. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline itmax & int & Input & Upper limit (\(>0\)) on the number of iteration steps in the QMR method. \\
\hline eps & double & Input & Tolerance for convergence test. \\
\hline iguss & int & Input & When eps is zero or less, eps is set to \(10^{-6}\). See Comments on use. Control information on whether to start the computation with approximate solution values in array x . When iguss \(\neq 0\), computation \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline X & double \(\mathrm{x}[\mathrm{n}]\) & Input & \begin{tabular}{l}
is to start from approximate solution values in x . \\
The starting approximations for the computation. This is optional and relates to argument iguss.
\end{tabular} \\
\hline & & Output & Solution vector. \\
\hline iter & int & Output & Total number of iteration steps performed in QMR method. \\
\hline vw & double & Work & Vwlen \(=9 \mathrm{k}+\mathrm{n}+\mathrm{ndiag}-1\). \\
\hline & vw [Vwlen] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Break-down occurred. See Comments on use. & Discontinued. \\
\hline 20001 & \begin{tabular}{l}
Upper limit of number of iteration steps was \\
reached.
\end{tabular} & \begin{tabular}{l}
Stopped. The approximate solution obtained up to \\
this stage is returned, but its precision is not \\
guaranteed.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<1\) or \(\mathrm{k}<\mathrm{n}\) \\
\(\bullet \quad\) ndiag \(<1\) or ndiag \(>\mathrm{k}\) \\
\(\bullet \quad\) itmax \(\leq 0\)
\end{tabular} & Bypassed. \\
\hline 32001 & \begin{tabular}{l}
|nofst \([\mathrm{i}-1] \mid>\mathrm{n}-1\) or \\
|ntofst \([\mathrm{i}-1] \mid>\mathrm{n}-1\) \\
for some \(\mathrm{i}=1, \ldots, \mathrm{ndiag}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a, at, nofst and ntofst}

The coefficients of matrix \(\mathbf{A}\) (and \(\mathbf{A}^{\mathrm{T}}\)) are stored using two arrays a and nofst (at and ntoftst) and the diagonal storage format. For full details, see the Array storage formats section of the Introduction.
eps
In the QMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and eps, the solution is judged to have converged. The difference between the precise solution and the obtained approximation is roughly equal to the product of the condition number of matrix \(\mathbf{A}\) and eps.

\section*{Break-down}

Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine c_dverd which uses the MGCR method should be used.

\section*{General comments}

The speed of the QMR method is generally higher than the MGCR method.

\section*{4. Example program}

This program solves a system of linear equations and checks the result.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define UBANDW 2
\#define LBANDW 1
MAIN__()
{
double one=1.0, zero=0.0, lcoef=-2.0, ucoef=-1.0, bcoef=10.0, eps=1.e-06;
int ierr, icon, ndiag, nub, nlb, n, itmax, iguss, iter, i, j, k;
int nofst[UBANDW + LBANDW + 1], ntofst[UBANDW + LBANDW + 1];
double a[UBANDW + LBANDW + 1][NMAX], at[UBANDW + LBANDW + 1][NMAX];
double b[NMAX], x[NMAX], vW[NMAX * 9 + NMAX + UBANDW + LBANDW];
nub = UBANDW;
nlb = LBANDW;
ndiag = nub + nlb + 1;
n = NMAX
k = NMAX;
/* Set A-mat \& b */
for (i=1; i<=nub; i++) {
for ( }j=0,\mp@code{j<n-i; j++) a[i][j] = ucoef;
for (j=n-i; j<n ; j++) a[i][j] = zero;
nofst[i] = i;
}
for (i=1; i<=nlb; i++) {
for (j=0; j<i; j++) a[nub + i][j] = zero;
for ( j=i; j<n; j++) a[nub + i][j] = lcoef;
nofst[nub + i] = -i;
}
nofst[0] = 0;
for (j=0; j<n; j++) {
b[j] = bcoef
a[0][j] = bcoef;
for (i=1; i<ndiag; i++) b[j] += a[i][j];
1* }
/* Set A-mat transpose */
ntofst[0] = 0;
for (j=0; j<n; j++) at[0][j] = a[0][j];
for (i=1; i<ndiag; i++) {
ntofst[i] = - nofst[i];
for (j=0; j<n; j++) at[i][j] = a[i][n-j-1];
}
/* solve the nonsymmetric system of linear equations */
itmax = 2000;
iguss = 0;
ierr = c_dvqmrd ((double*)a, k, ndiag, n, nofst, (double*)at,
ntofst, b, itmax, eps, iguss, x, \&iter, vw, \&icon);
if (icon != 0) {
printf("ERROR: c_dvqmrd failed with icon = %d\n", icon);
exit(1);
}
/* check result */
for (i=0;i<n;i++)
if (fabs(x[i]-one) > eps*10.0) {
printf("WARNING: result maybe inaccurate\n");
exit(1)
}
printf("Result OK\n");
exit(0);
}

```

\section*{5. Method}

For the QMR method consult [37].

\section*{c_dvqmre}
\[
\begin{aligned}
& \text { Solution of a system of linear equations with a nonsymmetric or } \\
& \text { indefinite sparse matrix (QMR method, ELLPACK storage format). } \\
& \hline \text { ierr = c_dvqmre(a, } k \text {, iwidt, } n, \text { icol, at, } \\
& \text { iwidtt, icolt, b, itmax, eps, } \\
& \text { iguss, x, \&iter, vw, \&icon); } \\
& \hline
\end{aligned}
\]

\section*{1. Function}

This routine solves a system of linear equations (1) using the quasi-minimal residual method (QMR) method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) nonsymmetric or indefinite sparse matrix, \(\mathbf{b}\) is a constant vector and \(\mathbf{x}\) is the solution vector. Both the vectors are of size \(n\) and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvqmre((double *) a, k, iwidt, n, (double *) icol, (double *) at, iwidtt, (double *) icolt, b, itmax, eps, iguss, x, \&iter, vw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[iwidt][k]
\end{tabular} & Input & Matrix A. Stored in ELLPACK storage format for general sparse matrices. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline k & int & Input & C fixed dimension of arrays a, at, icol and icolt (\(\geq \mathrm{n}\)). \\
\hline iwidt & int & Input & The maximum number (\(>0\)) of non-zero elements in any row vectors of \(\mathbf{A}\). \\
\hline n & int & Input & Order \(n\) of matrices \(\mathbf{A}\) and \(\mathbf{A}^{\text {T }}\). \\
\hline icol & \[
\begin{aligned}
& \text { int } \\
& \text { icol[iwidt][k] }
\end{aligned}
\] & Input & Column indices used in the ELLPACK format, showing to which column the elements corresponding to a belong. See Comments on use. \\
\hline at & \begin{tabular}{l}
double \\
at[iwidtt][k]
\end{tabular} & Input & Matrix \(\mathbf{A}^{\mathrm{T}}\). Stored in ELLPACK storage format for general sparse matrices. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline iwidtt & int & Input & The maximum number (\(>0\)) of non-zero elements in any row vectors of \(\mathbf{A}^{\mathrm{T}}\). \\
\hline icolt & \begin{tabular}{l}
int icolt \\
[iwidtt][k]
\end{tabular} & Input & Column indices used in the ELLPACK format, showing to which column the elements corresponding to at belong. See Comments on use. \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline itmax & int & Input & Upper limit (\(>0\)) on the number of iteration steps in the QMR method. \\
\hline eps & double & Input & Tolerance for convergence test. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Break-down occurred. See Comments on use. & Discontinued. \\
\hline 20001 & Upper limit of number of iteration steps was reached. & Stopped. The approximate solution obtained up to this stage is returned, but its precision is not guaranteed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(\mathrm{k}<1\) or \(\mathrm{k}<\mathrm{n}\) \\
- iwidt \(<1\) or iwidt \(>k\) \\
- iwidtt \(<1\) or iwidtt \(>k\) \\
- itmax \(\leq 0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a, at, icol, and icolt}

The coefficients of matrix \(\mathbf{A}\) (and \(\mathbf{A}^{\mathrm{T}}\)) are stored using two arrays a and icol (at and icolt) and the ELLPACK storage format for general sparse matrices. For full details, see the Array storage formats section of the Introduction.

\section*{eps}

In the QMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and eps, the solution is judged to have converged. The difference between the precise solution and the obtained approximation is roughly equal to the product of the condition number of matrix \(\mathbf{A}\) and eps.

\section*{Break-down}

Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine c_dvcre which uses the MGCR method should be used.

\section*{General comments}

The speed of the QMR method is generally higher than the MGCR method.

\section*{4. Example program}

This program solves a system of linear equations and checks the result.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define UBANDW 2
\#define LBANDW 1
MAIN__()
{
double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, zero = 0.0, eps=1.e-06;
int ierr, icon, nlb, nub, iwidt, iwidtt, n, k, itmax, iguss, iter, i, j, ix;
int icol[UBANDW + LBANDW + 1][NMAX], icolt[UBANDW + LBANDW + 1][NMAX];
double a[UBANDW + LBANDW + 1][NMAX], at[UBANDW + LBANDW + 1][NMAX];
double b[NMAX], x[NMAX], vw[NMAX * 12];
nub = UBANDW;
nlb = LBANDW;
iwidt = UBANDW + LBANDW + 1;
iwidtt = iwidt;
n}=\mathrm{ NMAX;
k = NMAX;
/* Initialize A-mat and A-mat transpose */
for (i=0; i<iwidt; i++)
for (j=0; j<n; j++) {
a [i][j] = zero;
at[i][j] = zero;
icol [i][j] = j+1;
icolt[i][j] = j+1;
}
/* Set A-mat \& b */
for (j=0; j<nlb; j++) {
for (i=0; i<j; i++) a[i][j] = lcf;
a[j][j] = bcoef
b[j] = bcoef + (double) j * lcf + (double) nub * ucf;
for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
}
for (j=nlb; j<n-nub; j++) {
for (i=0; i<nlb; i++) a[i][j] = lcf;
a[nlb][j] = bcoef;
b[j] = bcoef + (double) nlb * lcf + (double) nub * ucf;
for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;
for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
}
for (j=n-nub; j<n; j++){
for (i=0; i<nlb; i++) a[i][j] = lcf;
a[nlb][j] = bcoef;
b[j] = bcoef + (double) nlb * lcf + (double) (n-j-1) * ucf;
for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
ix = n - (j+nub-nlb-1);
for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
}
/* Set A-mat transpose */
for (j=0; j<nub; j++) {
for (i=0; i<j; i++) at[i][j] = ucf;
at[j][j] = bcoef;
for (i=j+1; i<j+1+nlb; i++) at[i][j] = lcf;
for (i=0; i<=nlb+j; i++) icolt[i][j] = i+1;
}
for (j=nub; j<n-nlb; j++) {
for (i=0; i<nub; i++) at[i][j] = ucf;
at[nub][j] = bcoef;
for (i=nub+1; i<iwidtt; i++) at[i][j] = lcf;
for (i=0; i<iwidtt; i++) icolt[i][j] = i+1+j-nub;
}
for (j=n-nlb; j<n; j++){
for (i=0; i<nub; i++) at[i][j] = ucf;
at[nub][j] = bcoef;
for (i=1; i<nlb-1+n-j; i++) at[i+nub][j] = lcf;
ix = n - (j+nlb-nub);
for (i=n; i>=j+nlb-nub; i--) icolt[ix--][j] = i;
}
/* solve the nonsymmetric system of linear equations */
itmax = 2000;
iguss = 0;
ierr = c_dvqmre ((double*)a, k, iwidt, n, (int*)icol, (double*)at,
iwidtt, (int*)icolt, b, itmax, eps, iguss, x,
\&iter, vw, \&icon);

```
```

    if (icon != 0) {
        printf("ERROR: c_dvqmre failed with icon = %d\n", icon);
        exit(1);
    **
/* check result */
for (i=0; i<n; i++)
if (fabs(x[i]-one) > eps*10.0) {
printf("WARNING: result maybe inaccurate\n");
exit(1);
}
printf("Result OK\n");
exit(0);
}

```

\section*{5. Method}

For QMR method consult [37].

\section*{c_dvran3}

Normal pseudo-random numbers.
```

Ierr = c_dvran3(dam, dsd, \&ix, da, n, dwork,

```
 nwork, \&icon);

\section*{1. Function}

This subroutine generates pseudo-random numbers from a normally distributed probability density function with a mean of \(m\) and a standard deviation \(\sigma\) :
\[
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \cdot \exp \left(\frac{-(x-m)^{2}}{2 \sigma^{2}}\right)
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvran3(dam, dsd, \&ix, da, n, dwork, nwork, \&icon);
where:
\begin{tabular}{llll}
dam & double & Input & The mean \(m\) of the normal distribution. \\
dsd & double & Input & Input
\end{tabular} \begin{tabular}{l}
int \\
ix
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30001 & nwork is too small. & Bypassed. \\
\hline 30002 & ix \(<0\). & \\
\cline { 1 - 2 } 30003 to 30008 & \begin{tabular}{l}
dwork was modified between calls or ix was set \\
to 0 on the first call.
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

This routine generates normally distributed pseudo-random numbers using the Polar method, which uses uniform random numbers with a long period of at least \(10^{52}\). A different starting value, or 'seed' gives a different sequence of numbers (see ix below). That is, a random number sequence is generated from different random number subsequences. These
subsequences are created through the segmentation of a long period random number sequence, and are separated by a distance of at least \(2^{60}\left(>10^{18}\right)\) intervals. For details, see the entry for DVRAU4 in the Fortran SSL II Extended Capabilities User's Guide II.

\section*{ix}

Since a sequence of pseudo-random numbers is to be generated by a deterministic program, there must be some form of random input. This is provided by ix. It should be set to a positive integer on the first call, and then left unaltered to generate more numbers in the same sequence on subsequent calls, i.e. it is output as 0 after each call, and should be left unaltered.

\section*{n}

This argument controls the number of pseudo-random numbers generated from the infinite sequence defined by the starting value of \(i x\). If \(n \leq 0\), no random numbers are returned. For efficiency, \(n\) should be set to a large number, e.g. 100,000 . This reduces the overheads involved in calling the routine several times, and allows vectorization. n can be changed between successive calls provided that the size of da is as large as the maximum value of n .

\section*{dwork}

This work space array is used to store the state information required for repeated calls to the library function. Therefore its contents should not be altered between successive calls.

\section*{nwork}

The size of the work space array, nwork should be at least 1,156 and should remain unchanged between successive calls to the library function. For efficiency on vector processors however, nwork should be large, e.g. 100,000.

\section*{Repeated generation of the same random numbers}

As dwork contains all the state information for the routine, it can be saved and reused to generate precisely the same numbers from the same point in a particular sequence of random numbers, provided that \(i x\) is set to 0 . That is, if \(i x\) is set to 0 , and a particular state is input in dwork, the same pseudo-random numbers will always be generated.

\section*{4. Example program}

This program calculates 10000 normally distributed pseudo-random numbers, and their mean and standard deviation is then determined. These observed values and the expected values of the mean and standard deviation are displayed.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 10000
MAIN__()
{
int ierr, icon;
int n, nwork, ix, i;
double dsd, dam, dwork[NMAX], da[NMAX], sum, sumsq, mean, dev;
/* initialize parameters */
n = NMAX;
nwork = NMAX;
ix = 12345;
dsd = 1;
dam = 0;
/* generate pseudo-random numbers */
ierr = c_dvran3(dam, dsd, \&ix, da, n, dwork, nwork, \&icon);
if (icon != 0) {

```
```

        printf("ERROR: c_dvran3 failed with icon = %d\n", icon);
        exit(1);
    }
    /* calculate mean and normal deviation */
    sum = 0;
    sumsq = 0;
    for (i=0;i<n;i++) {
        sum = sum+da[i];
        sumsq = sumsq+da[i]*da[i];
    }
    mean = sum/n;
    dev = sqrt(sumsq/n - mean*mean);
    printf("observed mean = %12.4e deviation = %12.4e\n",
        mean, dev);
    printf("calculated mean = %12.4e deviation = %12.4e\n",
        dam, dsd);
    return(0);
    }

```

\section*{5. Method}

To generate normally distributed pseudo-random numbers, this routine uses the Polar method, with fast elementary function evaluation. The uniform pseudo-random numbers are generated by the Fortran routine DVRAU4.

The Polar method is described in [64]. Implementation details and comparison with other methods are discussed in [10].

\section*{c_dvran4}
```

Generation of normal random numbers.(Wallace's method)
Ierr = c_dvran4(dam, dsd, \&ix, da, n, dwork,
nwork, \&icon);

```

\section*{1. Function}

This subroutine generates pseudo-random numbers from a normal distribution density function with a given mean \(m\) and standard deviation \(\sigma\) :
\[
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \cdot \exp \left(\frac{-(x-m)^{2}}{2 \sigma^{2}}\right)
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvran4(dam, dsd, \&ix, da, n, dwork, nwork, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline dam & double & Input & The mean \(m\) of the normal distribution. \\
\hline dsd & double & Input & Standard deviation \(\sigma\) of the normal distribution. \\
\hline ix & int & Input & Starting value, or 'seed'. Set \(\mathbf{i x}>0\) on the first call. See Comments on use. \\
\hline & & Output & Return value is 0 . Should not be changed on subsequent calls. See Comments on use. \\
\hline da & double da[n] & Output & Pseudo-random numbers. \\
\hline n & int & Input & Number of pseudo-random numbers to be generated. \\
\hline dwork & \begin{tabular}{l}
double \\
dwork[nwork]
\end{tabular} & Work & Contents should not be changed on subsequent calls. \\
\hline nwork & int & Input & Size of workspace. nwork \(\geq 1,350\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is given below.} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30001 & nwork is too small. & Bypassed. \\
\hline 30002 & Internal check failed. & \\
\cline { 1 - 2 } 30003 to 30008 & \begin{tabular}{l}
dwork was modified between calls or ix was set \\
to 0 on the first call.
\end{tabular} & \\
\cline { 1 - 2 } 30009 & ix is too large. & \\
\cline { 1 - 2 } 40001 to 40002 & \begin{tabular}{l}
dwork was over written or ix was set to zero on \\
the initial call.
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ix}

Since a sequence of pseudo-random numbers is to be generated by a deterministic program, there must be some form of random input. This is provided by ix. It should be set to a positive integer on the first call, and then left unaltered to generate more numbers in the same sequence on subsequent calls, i.e. it is output as 0 after each call, and should be left unaltered.

\section*{n}

This argument controls the number of pseudo-random numbers generated from the infinite sequence defined by the starting value of ix. If \(n \leq 0\), no random numbers are returned. For efficiency, \(n\) should be set to a large number, e.g. 100,000 . This reduces the overheads involved in calling the routine several times, and allows vectorization. n can be changed between successive calls provided that the size of da is as large as the maximum value of \(n\).

\section*{dwork}

This work space array is used to store the state information required for repeated calls to the library function. Therefore its contents should not be altered between successive calls.

\section*{nwork}

The size of the work space array, nwork should be at least 1,350 and should remain unchanged between successive calls to the library function. For efficiency on vector processors however, nwork should be large, e.g. 500,000.

\section*{Repeated generation of the same random numbers}

If dwork [0], ..., dwork [nwork-1] is saved, the same sequence of random numbers can be generated again (from the point where dwork was saved) by reusing dwork[0], ... dwork[nwork] and calling this subroutine with argument \(i x=0\).

\section*{Wallace's method}

The implementation of Wallace's method in c_dvran4 is about three times faster than the implementation of the Polar method in C_dvran3.

\section*{4. Example program}

This program calculates 10000 normally distributed pseudo-random numbers, and their mean and standard deviation is then determined. These observed values and the expected values of the mean and standard deviation are displayed.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 10000
MAIN__()
{
int ierr, icon;
int n, nwork, ix, i;
double dsd, dam, dwork[NMAX], da[NMAX], sum, sumsq, mean, dev;
/* initialize parameters */
n = NMAX;
nwork = NMAX;
ix = 12345;
dam = 0;
dsd = 1;

```
```

/* generate pseudo-random numbers */
ierr = c_dvran4(dam, dsd, \&ix, da, n, dwork, nwork, \&icon);
if (icon != 0) {
printf("ERROR: c_dvran4 failed with icon = %d\n", icon);
exit(1);
}
/* calculate mean and normal deviation */
sum = 0;
sumsq = 0;
for (i=0;i<n;i++) {
sum = sum+da[i];
sumsq = sumsq+da[i]*da[i];
}
mean = sum/n;
dev = sqrt(sumsq/n - mean*mean);
printf("observed mean = %12.4e deviation = %12.4e\n",
mean, dev);
printf("calculated mean = %12.4e deviation = %12.4e\n",
dam, dsd);
return(0);
}

```

\section*{5. Method}

This routine uses a variant of Wallace's method to generate normally distributed pseudo-random numbers. The uniform pseudo-random numbers are generated by the Fortran routine DVRAU4. For further information consult the entry for DVRAN4 and DVRAU4 in the Fortran SSL II Extended Capabilities User's Guide II, and also [8], [10] and [115].

\section*{c_dvrau4}
\[
\begin{array}{|l|}
\hline \text { Uniform [0.1) pseudo-random numbers. } \\
\hline \text { ierr = c_dvrau4(\&ix, da, n, dwork, nwork, } \\
\text { \&icon); }
\end{array}
\]

\section*{1. Function}

This subroutine generates pseudo-random numbers from a uniform distribution on \([0,1)\).

\section*{2. Arguments}

The routine is called as follows:

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30001 & nwork is too small. & Bypassed. \\
\hline 30002 & ix \(<0\). & \\
\cline { 1 - 2 } 30003 to 30008 & \begin{tabular}{l}
dwork was modified between calls or ix was set \\
to 0 on the first call.
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ix}

Since a sequence of pseudo-random numbers is to be generated by a deterministic program, there must be some form of random input. This is provided by \(i x\). It should be set to a positive integer on the first call, and then left unaltered to generate more numbers in the same sequence on subsequent calls, i.e. it is output as 0 after each call, and should be left unaltered.
n
This argument controls the number of pseudo-random numbers generated from the infinite sequence defined by the starting value of \(i x\). If \(n \leq 0\), no random numbers are returned. For efficiency, \(n\) should be set to a large number, e.g.

100,000 . This reduces the overheads involved in calling the routine several times, and allows vectorization. n can be changed between successive calls provided that the size of da is as large as the maximum value of n .

\section*{dwork}

This work space array is used to store the state information required for repeated calls to the library function. Therefore its contents should not be altered between successive calls.

\section*{nwork}

The size of the work space array, nwork should be at least 388 and should remain unchanged between successive calls to the library function. For efficiency on vector processors however, nwork should be large, e.g. 45,000.

\section*{Repeated generation of the same random numbers}

As dwork contains all the state information for the routine, it can be saved and reused to generate precisely the same numbers from the same point in a particular sequence of random numbers, provided that \(\mathbf{i x}\) is set to 0 . That is, if \(i x\) is set to 0 , and a particular state is input in dwork, the same pseudo-random numbers will always be generated.

\section*{4. Example program}

This program calculates 10000 pseudo-random numbers, and their mean and standard deviation is then determined. These observed values and the expected values of the mean and standard deviation are displayed.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 10000
MAIN__()
{
int ierr, icon;
int n, nwork, ix, i;
double dwork[NMAX], da[NMAX], sum, sumsq, mean, dev;
/* initialize parameters */
n = NMAX;
nwork = NMAX;
ix = 12345;
/* generate pseudo-random numbers */
ierr = c_dvrau4(\&ix, da, n, dwork, nwork, \&icon);
if (icon != 0) {
printf("ERROR: c_dvrau4 failed with icon = %d\n", icon);
exit(1);
}
/* calculate mean and normal deviation */
sum = 0;
sumsq = 0;
for (i=0;i<n;i++) {
sum = sum+da[i];
sumsq = sumsq+da[i]*da[i];
}
mean = sum/n;
dev = sqrt(sumsq/n - mean*mean);
printf("observed mean = %12.4e deviation = %12.4e\n",
mean, dev);
printf("calculated mean = %12.4e deviation = %12.4e\n",
0.5, sqrt(1.0/12));
return(0);
}

```

\section*{5. Method}

For more information on the methods used in this routine, see the entry for DVRAU4 in the Fortran SSL II Extended Capabilities User's Guide II, and also [11] and [12]. For a comparison with other methods, see [6], [32], [58] and [70].

\section*{c_dvrevf}
\[
\begin{aligned}
& \text { Discrete convolution or correlation of real data. } \\
& \text { ierr = c_dvrcvf(x, k, } n, m, y, i v r, i s w, ~ t a b, \\
& \quad \text { \&icon); }
\end{aligned}
\]

\section*{1. Function}

This function performs one-dimensional discrete convolutions or correlations between a filter and multiple input data using discrete Fourier method.

The convolution and correlation of a filter \(y\) with a single input data \(x\) are defined as follows:

\section*{Convolution}
\[
z_{k}=\sum_{i=0}^{n-1} x_{k-i} y_{i}, \quad k=0, \ldots, n-1
\]

\section*{Correlation}
\[
z_{k}=\sum_{i=0}^{n-1} x_{k+i} y_{i}, \quad k=0, \ldots, n-1
\]
where, \(x_{j}\) is a cyclic data with period \(n\). See Comments on use.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvrcvf((double*)x, k, n, m, y, ivr, isw, tab, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline X & \[
\begin{aligned}
& \text { double } \\
& x[\mathrm{~m}][\mathrm{k}]
\end{aligned}
\] & Input & The \(m\) data sequences \(\left\{x_{j}\right\}, j=0, \ldots, n-1\), are stored in \(\times[\mathrm{i}][\mathrm{j}], \mathrm{i}=\) \(0, \ldots, m-1, j=0, \ldots, n-1\). \\
\hline & & Output & The \(m\) sequences \(\left\{z_{k}\right\}, k=0, \ldots, n-1\), are stored in \(\mathrm{X}[\mathrm{i}][\mathrm{k}], \mathbf{i}=0, \ldots\), \(m-1, \mathrm{k}=0, \ldots, n-1\). \\
\hline k & int & Input & \(C\) fixed dimension of array \(x(\geq n)\). \\
\hline n & int & Input & The number of elements in one data sequence or in filter \(y\). n must be an even number. See Comments on use. \\
\hline m & int & Input & The number of rows in the array \(x\). \\
\hline y & double y[n] & Input & Filter vector \(\left\{y_{i}\right\}\). The values of this array will be altered after calling with isw \(=0\) or 2 . See Comments on use. \\
\hline ivr & int & Input & Specify either convolution or correlation. \\
\hline & & & 0 Convolution is calculated. \\
\hline & & & 1 Correlation is calculated. \\
\hline isw & int & Input & Control information. \\
\hline & & & 0 all the procedure will be done at once. \\
\hline & & & If the calculation should be divided into step-by-step procedure, specify as follows. See Comments on use. \\
\hline & & & 1 to prepare the array tab. \\
\hline
\end{tabular}
\begin{tabular}{llll}
tab & double & Work & Trigonometric function table used for the transformation is stored. \\
tab \([2 \times n]\)
\end{tabular}\(\quad\) Output \(\quad\) Condition code. See below.

The complete list of condition codes is:
2 to perform the Fourier transform in array y using the trigonometric function table tab.
3 to perform the convolution or correlation using the array y and tab which are prepared in advance.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{n} \leq 0\) \\
& \(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
& \(\bullet \quad \mathrm{m} \leq 0\) \\
& \(\bullet \quad \mathrm{ivr} \neq 0,1\) & \\
& \(\bullet \quad\) isw \(\neq 0,1,2,3\) & \\
& \(\bullet \quad \mathrm{n}\) is not an even number. & \\
& & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{To compute non-periodic convolution or correlation}

Non-periodic convolution or correlation can be calculated by this routine with padding the value of \(\times \mathrm{i}][\mathrm{j}], i=0, \ldots\), \(m-1, j=n_{x}, \ldots, n-1\) and \(\mathrm{y}[\mathrm{k}], k=n_{y}, \ldots, n-1\) with zeros, where \(n_{x}\) is the actual length of the data sequence, \(n_{y}\) is the actual length of the filter \(y\) and \(n\) must be larger or equal to \(n_{x}+n_{y}-1\). See Example Program.

The values of correlation \(z_{k}\), corresponding to \(k=-n_{y}+1, \ldots,-1\) are stored in \(\times[\mathrm{i}][\mathrm{j}], i=0, \ldots, m-1, j=n-n_{y}+\) \(1, \ldots, n-1\) in this non-periodic case.

\section*{Recommended value of \(\mathbf{n}\)}

The \(n\) can be an arbitrary even number, but the calculation is fast with the sizes which can be expressed as products of the powers of 2,3 , and 5 .

\section*{Efficient use of the array tab and \(y\)}

When this routine will calculate convolution or correlation successively for a fixed value of \(n\), the trigonometric function table \(t a b\) should be initialized once at first call with \(i s w=0\) or 1 and should be kept intact for second and subsequent calls with \(i s w=2\) and 3 . This saves initialization procedure of array \(t a b\).

Furthermore, if the filter vector \(y\) is also fixed, the array \(y\) which is transformed with isw \(=0\) or 2 can be reused for second and subsequent calls with isw \(=3\).

In these cases, the array y must be transformed surely once.

\section*{To compute autocorrelation}

Autocorrelation or autoconvolution can be calculated by this routine with letting the filter array y be identical to the data array X. In this case, specifying isw \(=2\) will be ignored. See Example Program.

\section*{Stack size}

This function exploits work area internally on stack area. Therefore an abnormal termination could occur when the stack area runs out. The necessary size is \(8 \times \mathrm{n}\) byte.

It is recommended to specify the sufficiently large stacksize with "limit" or "ulimit" command under consideration that the stack area could be used for another work area of fixed size and for user's program also.

\section*{4. Example program}

Example 1) In this example, periodic convolution of a filter with three data vectors is calculated with \(n=8\).
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define K 8
\#define M 3
int MAIN__(void)
{
double x[M][K], y[K], tab[K*2];
int ivr, isw, icon;
int i, j, n;
n = 8;
for (j=0; j<M; j++) {
for (i=0; i<n; i++) {
x[j][i] = (double)(i+j+1);
}
}
for (i=0; i<n; i++) {
y[i] = (double)(i+11);
}
printf("--INPUT DATA--\n");
for (j=0; j<M; j++) {
printf("x[%d][*] : ",j);
for (i=0; i<n; i++) {
printf("%8.2f ",x[j][i]);
}
printf("\n");
}
printf("Filter y : ");
for (i=0; i<n ; i++) {
printf("%8.2f ", y[i]);
}
ivr = 0;
isw = 0;
c_dvrcvf((double*)x, K, n, M, y, ivr, isw, tab, \&icon);
printf("\n\n--OUTPUT DATA--\n");
for (j=0; j<M; j++) {
printf("x[%d][*] : ",j);
for (i=0; i<n; i++) {
printf("%8.2f ",x[j][i]);
}
printf("\n");
}
}

```

Example 2) In this example, non-periodic convolution is calculated with \(n_{x}=7, n_{y}=9\) and \(n=16\).
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL header file */

```
```

\#define K 16
\#define M 3
int MAIN__(void)
{
double x[M][K], y[K], tab[K*2];
int ivr, isw, icon;
int i, j, n, nx, ny;
nx=7, ny=9, n=nx+ny-1;
if(n%2) n=n+1;
for (j=0; j<M; j++) {
for (i=0; i<nx; i++) {
x[j][i] = (double)}(\textrm{i}+j+1)
}
for (i=nx; i<n; i++) {
x[j][i] = 0.0;
}
}
for (i=0; i<ny; i++) {
y[i] = (double)(i+11);
}
for (i=ny; i<n; i++) {
y[i] = 0.0;
}
printf("--INPUT DATA--\n");
for (j=0; j<M; j++) {
printf("x[%d][*] : ",j)
for (i=0; i<n; i++) {
if(i%8==0) printf("\n ");
printf("%8.2f ",x[j][i]);
}
printf("\n");
}
printf("Filter y : ");
for (i=0; i<n ; i++) {
if(i%8==0) printf("\n
printf("%8.2f ", y[i]);
}
ivr = 0;
isw = 0;
c_dvrcvf((double*)x, K, n, M, y, ivr, isw, tab, \&icon);
printf("\n\n--OUTPUT DATA--\n");
for (j=0; j<M; j++) {
printf("x[%d][*] : ",j);
for (i=0; i<n; i++) {
if(i%8==0) printf("\n ");
printf("%8.2f ",x[j][i]);
}
printf("\n");
}
}

```

Example 3) In this example, autocorrelation is calculated with \(n_{x}=4\).
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define K 8
\#define M 3
int MAIN__(void)
{
double x[M][K], tab[K*2];
int ivr, isw, icon;
int i, j, n, nx;
nx=4, n=nx*2;
for (j=0; j<M; j++) {
for (i=0; i<nx; i++) {
x[j][i] = (double)(i+j+1);

```
```

        }
        for (i=nx; i<n; i++) {
        x[j][i] = 0.0;
    }
    }
    printf("--INPUT DATA--\n");
    for (j=0; j<M; j++) {
    printf("x[%d][*] : ",j);
    for (i=0; i<n; i++) {
        printf("%8.2f ",x[j][i]);
    }
    printf("\n");
    }
    ivr = 1;
    isw = 1;
    c_dvrcvf((double*)x, K, n, M, (double*)x, ivr, isw, tab, &icon);
    isw = 3;
    c_dvrcvf((double*)x, K, n, M, (double*)x, ivr, isw, tab, &icon);
    printf("\n--OUTPUT DATA--\n");
    for (j=0; j<M; j++) {
        printf("x[%d][*] : ",j)
        for (i=0; i<n; i++) {
            printf("%8.2f ",x[j][i]);
        }
        printf("\n");
    }
    }

```

\section*{5. Method}

For further information consult the entry for VRCVF in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvrft1}
```

Discrete real Fourier transform (radix 2 FFT).
ierr = c_dvrft1(a, n, isn, isw, vw, ivw,
\&icon);

```

\section*{1. Function}

Given one dimensional (\(n\)-term) real time series data \(\left\{x_{j}\right\}\), this function computes the discrete real Fourier transform or its inverse by the Fast Fourier Transform (FFT) using a method suited to a vector processor. It is assumed that \(n=2^{\ell}\), where \(\ell\) is a non-negative integer.

\section*{Fourier transform}

When \(\left\{x_{j}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{n a_{k}\right\}\) and \(\left\{n b_{k}\right\}\).
\[
\begin{aligned}
& n a_{k}=2 \cdot \sum_{j=0}^{n-1} x_{j} \cdot \cos (k j \theta), \quad k=0,1, \ldots, n / 2 \\
& n b_{k}=2 \cdot \sum_{j=0}^{n-1} x_{j} \cdot \sin (k j \theta), k=1,2, \ldots, n / 2-1
\end{aligned}
\]
where \(\theta=2 \pi / n\).

\section*{Fourier inverse transform}

When \(\left\{a_{k}\right\}\) and \(\left\{b_{k}\right\}\) are input, the transform defined below is calculated to obtain \(\left\{2 x_{j}\right\}\).
\[
2 x_{j}=a_{0}+a_{n / 2} \cdot \cos (\pi j)+2 \cdot \sum_{k=1}^{n / 2-1}\left(a_{k} \cdot \cos (k j \theta)+b_{k} \cdot \sin (k j \theta)\right), j=0,1, \ldots, n-1
\]
where \(\theta=2 \pi / n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvrft1(a, n, isn, isw, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{a} & \multirow[t]{2}{*}{double a[n+2]} & Input & \(\left\{x_{i}\right\}\) or \(\left\{a_{k}\right\},\left\{b_{k}\right\}\). See Comments on use for data storage. \\
\hline & & Output & \(\left\{n a_{k}\right\},\left\{n b_{k}\right\}\) or \(\left\{x_{i}\right\}\) \\
\hline n & int & Input & Number of terms \(n\) of the transform. \\
\hline isn & int & Input & Indicates that the transform (isn=+1) or the inverse transform (isn=-1) is to be performed. See Comments on use. \\
\hline isw & int & Input & \begin{tabular}{l}
Information controlling the initial state of the transform. Specified by: \\
0 for the first call \\
1 for the second and subsequent calls. \\
See Comments on use.
\end{tabular} \\
\hline VW & double & Work & Rlen \(=\max (n(\ell+1) / 2,1)\). \\
\hline
\end{tabular}
\begin{tabular}{llll}
& \(\mathrm{VW}[\) Rlen \(]\) & & \\
ivw & int ivw[Ilen] & Work & Ilen \(=n \cdot \max (\ell-4,2) / 2\). \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes :
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad\) isn \(=0\), & \\
& \(\bullet \quad\) isw \(\neq 0\) or 1 \\
\(\bullet \quad n \neq 2^{\ell}(\ell \geq 0\) is an integer \()\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Use of this function}

This function performs the high-speed calculation of a real FFT on a vector processor. Other routines might be more appropriate on a general purpose computer.

\section*{Data storage for input data in array a}
Array

\(a[0]\)
\(a[1]\)
\(a[2]\)
\(a[3]\)
\(\cdot\)
\(\cdot\)
\(\cdot\)
\(a[n-2]\)
\(a[n-1]\)
\(a[n]\)
\(a[n+1]\)
\begin{tabular}{|l|l|}
\hline\(\left\{x_{j}\right\}\) & \begin{tabular}{l}
\(\left\{a_{k}\right\}\) \\
\(\left\{b_{k}\right\}\)
\end{tabular} \\
\hline\(x_{0}\) & \(a_{0}\) \\
\hline\(x_{1}\) & \(*\) \\
\hline\(x_{2}\) & \(a_{1}\) \\
\hline\(x_{3}\) & \(b_{1}\) \\
\hline\(\cdot\) & \(\cdot\) \\
\hline\(\cdot\) & \(\cdot\) \\
\hline\(\cdot\) & \(\cdot\) \\
\hline\(x_{n-2}\) & \(a_{n / 2-1}\) \\
\hline\(x_{n-1}\) & \(b_{n / 2-1}\) \\
\hline\(*\) & \(a_{n / 2}\) \\
\hline\(*\) & \(*\) \\
\hline
\end{tabular}

The elements indicated by * are ignored on input and are set to zero on output.

\section*{isw}

When multiple transforms are calculated, specify isw \(=1\) for the second and subsequent function calls. This enables the function to bypass the steps for generating a trigonometric table and a list vector, both of which are needed for the transform, thus improving processing efficiency. The contents of arrays VW and iVW must not be modified between function calls.

Even if the number of terms \(n\) of each of the multiple transforms varies, specifying isw \(=1\) improves processing efficiency. However, it is desirable that transforms with the same number of terms are executed consecutively for the highest efficiency.

When calling this function together with the complex Fourier transform function c_dvcft1, specifying isw \(=1\) improves processing efficiency.

\section*{isn}

Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used for strided access through data. Therefore, if the real and imaginary parts of \(\left\{x_{j}\right\}\) or \(\left\{a_{k}\right\},\left\{b_{k}\right\}\) are stored at intervals of length \(i\), specify isn \(=+i\) for a transform and isn \(=-i\) for an inverse transform. The results will be stored at intervals of length \(i\).

When using a vector processor, the interval stride \(i\) should take the values \(i=2 p+1\), for \(p=1,2,3, \ldots\).

\section*{Work array size conversion table}

The table for \(16 \leq n \leq 4096\) is as follows:
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{\(\ell\)} & \multicolumn{1}{|c|}{\(n\)} & \begin{tabular}{c}
Length of \\
VW
\end{tabular} & \begin{tabular}{c}
Length of \\
ivW
\end{tabular} \\
\hline 4 & 16 & 40 & 16 \\
\hline 5 & 32 & 96 & 32 \\
\hline 6 & 64 & 224 & 64 \\
\hline 7 & 128 & 512 & 192 \\
\hline 8 & 256 & 1152 & 512 \\
\hline 9 & 512 & 2560 & 1280 \\
\hline 10 & 1024 & 5632 & 3072 \\
\hline 11 & 2048 & 12288 & 7168 \\
\hline 12 & 4096 & 26624 & 16384 \\
\hline
\end{tabular}

\section*{General definition of Fourier transform}

The discrete real Fourier transform and its inverse transform can be defined as shown below in (1) and in (2) respectively.
\[
\begin{gather*}
a_{k}=\frac{2}{n} \cdot \sum_{j=0}^{n-1} x_{j} \cdot \cos (k j \theta), k=0,1, \ldots, n / 2 \\
b_{k}=\frac{2}{n} \cdot \sum_{j=0}^{n-1} x_{j} \cdot \sin (k j \theta), k=1,2, \ldots, n / 2-1 \tag{1}\\
x_{j}=\frac{1}{2} a_{0}+\frac{1}{2} a_{n / 2} \cdot \cos (\pi j)+\sum_{k=1}^{n / 2-1}\left(a_{k} \cdot \cos (k j \theta)+b_{k} \cdot \sin (k j \theta)\right), j=0,1, \ldots, n-1, \tag{2}
\end{gather*}
\]
where \(\theta=2 \pi / n\).

This function computes \(\left\{n a_{k}\right\},\left\{n b_{k}\right\}\) or \(\left\{x_{j}\right\}\) corresponding to the left hand side of (1) or (2). The user is responsible for normalizing the result, if required.

\section*{4. Example program}

This program computes a 1-D real FFT on 1024 elements, where the input elements are chosen at random. The inverse transform is then computed and the normalized results of this are compared with the original data values.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */

```
```

\#define NMAX 1024
MAIN__()
{
int ierr, icon;
double phai, ran, eps;
double a[NMAX+2], b[NMAX+2], vw[NMAX*(10+1)/2];
int i, n, isw, isn, ivw[NMAX*(10-4)/2];
/* generate initial data */
n = NMAX;
phai = (sqrt(5.0)-1.0)/2;
for (i=0;i<n;i++) {
ran = (i+1)*phai;
a[i] = ran - (int)ran;
}
for (i=0;i<n;i++)
b[i] =a[i];
/* perform normal transform */
isw = 0;
isn = 1;
ierr = c_dvrft1(a, n, isn, isw, vw, ivw, \&icon);
/* perform inverse transform */
isw = 1;
isn = -1;
ierr = c_dvrft1(a, n, isn, isw, vw, ivw, \&icon);
/* check results */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((a[i]/(2*n) - b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

For further information consult the entries for VCFT1 and VRFT1 in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvrft2}
\[
\begin{gathered}
\hline \text { Discrete real Fourier transform (memory efficient, radix } 2 \text { FFT). } \\
\hline \text { ierr }=\text { c_dvrft2(a, n, isn, isw, vw, ivw, } \\
\text { \&icon); }
\end{gathered}
\]

\section*{1. Function}

Given one dimensional (n-term) real time-series data \(\left\{x_{j}\right\}\), this routine computes the discrete real Fourier transform or its inverse transform by the Fast Fourier Transform (FFT) using a method suited to a vector processor. It is assumed that \(n=2^{l}\), where \(l\) is a non-negative integer.

\section*{Fourier transform}

When \(\left\{x_{j}\right\}\) is input, the transform defined below is used to obtain the Fourier coefficients \(\left\{n a_{k}\right\}\) and \(\left\{n b_{k}\right\}\).
\[
\begin{array}{ll}
n a_{k}=2 \sum_{j=0}^{n-1} x_{j} \cos (k j \theta), & k=0,1, \ldots, n / 2,
\end{array} \quad \theta=2 \pi / n, ~ 子=1, \ldots, n / 2-1, \quad \theta=2 \pi / n .
\]

\section*{Fourier inverse transform}

When \(\left\{a_{k}\right\}\) and \(\left\{b_{k}\right\}\) are input, the transform defined below is used to obtain \(\left\{2 x_{j}\right\}\).
\[
2 x_{j}=a_{0}+2 \sum_{k=1}^{n / 2-1}\left[a_{k} \cos (k j \theta)+b_{k} \sin (k j \theta)\right]+a_{n / 2} \cos (\pi j), \quad j=0,1, \ldots, n-1, \quad \theta=2 \pi / n
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvrft2(a, n, isn, isw, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[n+2] & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \(\left\{x_{i}\right\}\) or \(\left\{a_{k}\right\},\left\{b_{k}\right\}\). See Comments on use for data storage. \(\left\{n a_{k}\right\},\left\{n b_{k}\right\}\) or \(\left\{2 x_{j}\right\}\). \\
\hline n & int & Input & Number of terms \(n\) of the transform. \\
\hline isn & int & Input & \begin{tabular}{l}
Control information, indicating that the transform or the inverse transform is to be performed (isn \(\neq 0\)). \\
isn \(=1\) for transform, \\
isn \(=-1\) for inverse transform. \\
See Comments on use.
\end{tabular} \\
\hline isw & int & Input & \begin{tabular}{l}
Control information, indicating the initial state of the transform. \(i s W=0\) for first call, isw \(=1\) for the second and subsequent calls. \\
See Comments on use.
\end{tabular} \\
\hline VW & double
\[
\mathrm{vw}[7 \mathrm{n} / 2]
\] & Work & \\
\hline
\end{tabular}
\begin{tabular}{llll}
ivw & int ivw[3n/2] & Work & \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad\) isn \(=0\) \\
& \(\bullet \quad\) isw \(\neq 0\) or 1 \\
& \(\bullet \quad \mathrm{n} \neq 2^{\ell}\), with \(\ell\) a non-negative integer. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Use of this routine}

This routine performs the high-speed calculation of a real Fourier transform on a vector processor. On a general-purpose computer other routines may be more appropriate.

The function of this routine is the same as that of routine \(\mathrm{c} _\)dvrft1, which is also suited to a vector processor. This routine is suitable for calculating only a single transform. The work array area is limited to the required minimum; it is a memory-efficient routine. For multiple transforms, if there is sufficient work array area available, the high-performance routine c_dvrft1 is more suitable.

\section*{Data storage for input data in array a}
\begin{tabular}{|c|c|c|}
\hline Array & \(\left\{x_{j}\right\}\) & \[
\begin{aligned}
& \left\{a_{k}\right\}, \\
& \left\{b_{k}\right\}
\end{aligned}
\] \\
\hline a[0] & \(x_{0}\) & \(a_{0}\) \\
\hline a [1] & \(x_{1}\) & * \\
\hline a[2] & \(x_{2}\) & \(a_{1}\) \\
\hline a [3] & \(x_{3}\) & \(b_{1}\) \\
\hline . & . & . \\
\hline & . & . \\
\hline & . & . \\
\hline \(a[n-2]\) & \(x_{n-2}\) & \(a_{n / 2-1}\) \\
\hline \(a[n-1]\) & \(x_{n-1}\) & \(b_{n / 2-1}\) \\
\hline a [n] & * & \(a_{n / 2}\) \\
\hline \(a[n+1]\) & * & * \\
\hline
\end{tabular}

The elements indicated by * are ignored on input and are set to zero on output.

\section*{isn}

Although the isn argument is used to specify whether to calculate a transform or an inverse transform, it can also be used for strided access through data. Therefore, if \(\left\{x_{j}\right\}\) or \(\left\{a_{k}\right\},\left\{b_{k}\right\}\) are stored at intervals of length \(i\), specify isn \(=+i\) for a transform and isn \(=-i\) for an inverse transform. The results will be stored at intervals of length \(i\).

When using a vector processor, the interval stride \(i\) should take a value of the form \(i=2 p+1, p=1,2,3, \ldots\) for more efficient memory access.

\section*{isw}

When multiple transforms are calculated, specify isw \(=1\) for the second and subsequent routine calls. This enables the routine to bypass the steps generating a trigonometric table and a list vector, both of which are needed for the transform, thus improving processing efficiency. The contents of arrays VW and iVW must not be changed between routine calls.

Even if the number of terms \(n\) of each of the multiple transforms varies, specifying isw \(=1\) improves processing efficiency. However, transforms with the same number of terms should be executed consecutively for the highest efficiency.

When calling this routine together with the complex Fourier transform routine c_dvcft2, specifying isw \(=1\) improves processing efficiency.

\section*{Work array size conversion table}

The table for \(16 \leq n \leq 4096\) is as follows.
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{\(\ell\)} & \multicolumn{1}{|c|}{\(n\)} & \begin{tabular}{c}
Length of \\
VW
\end{tabular} & \begin{tabular}{c}
Length of \\
ivw
\end{tabular} \\
\hline 4 & 16 & 56 & 24 \\
\hline 5 & 32 & 112 & 48 \\
\hline 6 & 64 & 224 & 96 \\
\hline 7 & 128 & 448 & 192 \\
\hline 8 & 256 & 896 & 384 \\
\hline 9 & 512 & 1792 & 768 \\
\hline 10 & 1024 & 3584 & 1536 \\
\hline 11 & 2048 & 7168 & 3072 \\
\hline 12 & 4096 & 14336 & 6144 \\
\hline
\end{tabular}

\section*{General definition of Fourier transform}

The discrete Fourier transform and its inverse transform can be defined as in (1) and (2):
\[
\begin{gather*}
a_{k}=\frac{2}{n} \sum_{j=0}^{n-1} x_{j} \cos (k j \theta), \quad k=0,1, \ldots, n / 2, \quad \theta=2 \pi / n \\
b_{k}=\frac{2}{n} \sum_{j=0}^{n-1} x_{j} \sin (k j \theta), \quad k=1, \ldots, n / 2, \quad \theta=2 \pi / n \tag{1}\\
x_{j}=\frac{1}{2} a_{0}+\sum_{k=1}^{n / 2-1}\left[a_{k} \cos (k j \theta)+b_{k} \sin (k j \theta)\right],+\frac{1}{2} a_{n / 2} \cos (\pi j), \quad j=0,1, \ldots, n-1, \quad \theta=2 \pi / n . \tag{2}
\end{gather*}
\]

This routine obtains \(\left\{n a_{k}\right\},\left\{n b_{k}\right\}\) or \(\left\{2 x_{j}\right\}\) corresponding to the left hand side of (1) or (2) respectively. The user is responsible for normalizing the result, if required.

\section*{4. Example program}

This program performs the Fourier transform followed by the inverse transform and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 1024
MAIN__()
{
int ierr, icon;
double phai, ran, eps;
double a[NMAX+2], b[NMAX+2], vw[7*NMAX/2];
int i, n, isw, isn, ivw[3*NMAX/2];
/* generate initial data */
n = NMAX;
phai = (sqrt(5.0)-1.0)/2;
for (i=0;i<n;i++) {
ran = (i+1)*phai;
a[i] = ran - (int)ran;
}
for (i=0;i<n;i++)
b[i] = a[i];
/* perform normal transform */
isw = 0;
isn = 1;
ierr = c_dvrft2(a, n, isn, isw, vw, ivw, \&icon);
/* perform inverse transform */
isw = 1;
isn = -1;
ierr = c_dvrft2(a, n, isn, isw, vw, ivw, \&icon);
/* check results */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((a[i]/(2*n) - b[i])/b[i]) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for VRFT2 in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvrpf3}
\begin{tabular}{|l|}
\hline Three-dimensional prime factor discrete real Fourier transform. \\
\hline ierr \(=\mathrm{c} _\operatorname{dvrpf3}(\mathrm{a}, \mathrm{l}, \mathrm{m}, \mathrm{n}\), isn, vW, \&icon \()\); \\
\hline
\end{tabular}

\section*{1. Function}

Given three-dimension real time-series data \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\), where the size of each dimension is \(n_{1}, n_{2}, n_{3}\), this routine performs discrete real Fourier transform or the inverse transform by using the prime factor Fourier transform (prime factor FFT). The size of each dimension must satisfy the following conditions:
-the size must be a product of mutually prime factors selected from \(\{2,3,4,5,7,8,9,16\}\).
-the size of the first dimension must be an even number \(2 \times \ell\), where \(\ell\) satisfies the previous condition.

\section*{Three-dimensional Fourier transform}

When \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\) is provided, the transform defined below is used to obtain \(\left\{n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right\}\)
\[
n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}=\sum_{j_{1}=0}^{n_{1}-1} \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{3}=0}^{n_{3}-1} x_{j_{1} j_{2} j_{3}} \omega_{1}^{-j_{1} k_{1}} \omega_{2}^{-j_{2} k_{2}} \omega_{3}^{-j_{3} k_{3}}
\]
where \(k_{r}=0, \ldots, n_{r}-1\), and \(\omega_{r}=\exp \left(2 \pi i / n_{r}\right), r=1,2,3\).

For a three-dimensional real Fourier transform \(\left\{\alpha_{k_{1} k_{2} k_{3}}\right\}\) is needed only for \(k_{1}=0,1, .\). floor \(\left(n_{1} / 2\right)\). A conjugate relation can be used to calculate the remaining elements of the first dimension, \(k_{1}=\) floor \(\left(n_{1} / 2\right)+1, \ldots, n_{1}-1\).
\[
\alpha_{k_{1} k_{2} k_{3}}=\bar{\alpha}_{n_{1}-k_{1} k_{2} k_{3}}
\]

Three-dimensional Fourier inverse transform: When \(\left\{\alpha_{k_{1} k_{2} k_{3}}\right\}\) is provided, the inverse transform defined below is used to obtain \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\).
\[
x_{j_{1} j_{2} j_{3}}=\sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} \sum_{k_{3}=0}^{n_{3}-1} \alpha_{k_{1} k_{2} k_{3}} \omega_{1}^{j_{1} k_{1}} \omega_{2}^{j_{2} k_{2}} \omega_{3}^{j_{3} k_{3}}
\]
where \(j_{r}=0, \ldots, n_{r}-1\), and \(\omega_{r}=\exp \left(2 \pi i / n_{r}\right), \mathrm{r}=1,2,3\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvrpf3((double *) a, l, m, n, isn, vw, \&icon);
where:
a double Input If isn \(\geq 0\) (transform from real to complex), real data \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\). \(\mathrm{a}[\mathrm{n}][\mathrm{m}][\mathrm{l}] \quad\) If isn \(<0\) (transform from complex to real), complex data \(\left\{\alpha_{k_{1} k_{2} k_{3}}\right\}\). See Comments on use for data storage.
Output If isn \(\leq 0\) (transform from real to complex), complex data \(\left\{n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right\}\).
If isn \(<0\) (transform from complex to real) real data \(\left\{x_{i_{1} i_{j} j_{2}}\right\}\).

\section*{3. Comments on use}

\section*{Data storage}

The real data (transform input and inverse transform output) is stored in array a with
\[
\mathrm{a}[\mathrm{j} 3][\mathrm{j} 2][\mathrm{j} 1]=x_{j_{1} j_{2} j_{3}}, \quad j_{i}=0,1, \ldots, n_{i}-1, \quad i=1,2,3 .
\]

For complex data (transform output and inverse transform input), the real part is stored in one half of array a and the imaginary part in the other half of a.
\(\mathrm{a}[\mathrm{k} 3][\mathrm{k} 2][\mathrm{k} 1]=\operatorname{Re}\left(\alpha_{k_{1} k_{2} k_{3}}\right)\) or \(\operatorname{Re}\left(n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right)\),
\(k_{1}=0,1, \ldots\), floor \(\left(n_{1} / 2\right)\),
\(\mathrm{a}[\mathrm{k} 3+1+\mathrm{n} 1 / 2][\mathrm{k} 2][\mathrm{k} 1]=\operatorname{Im}\left(\alpha_{k_{1} k_{2} k_{3}}\right)\) or \(\operatorname{Im}\left(n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right)\),
\(k_{i}=0,1, \ldots, n_{i}-1, \quad i=2,3\).

The sample calling program shows how it is possible to alias the portion of array a containing the imaginary part with a second array, which makes it easier to work with the data.

\section*{Number of terms}

The number of terms in a dimension is a product of mutually prime factors from \(\{2,3,4,5,7,8,9,16\}\). The maximum number for the second and third dimensions is \(5 \times 7 \times 9 \times 16=5040\). The number of terms in the last dimension must be an even number up to \(2 \times 5040\).

When this routine is called with input argument \(\mathrm{n}=1\), a two-dimensional prime factor fast Fourier transform is determined.

When this routine is called with input arguments \(\mathrm{n}=1\) and \(\mathrm{m}=1\), a one-dimensional prime factor fast Fourier transform is determined.

\section*{General definition of three-dimensional Fourier transform}

The three dimensional discrete Fourier transform and its inverse transform can be defined as shown below in (1) and (2) respectively.
\[
\begin{equation*}
\alpha_{k_{1} k_{2} k_{3}}=\frac{1}{n_{1} n_{2} n_{3}} \sum_{j_{1}=0}^{n_{1}-1} \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{3}=0}^{n_{3}-1} x_{j_{1} j_{2} j_{3}} \omega_{1}^{-j_{1} k_{1}} \omega_{2}^{-j_{2} k_{2}} \omega_{3}^{-j_{3} k_{3}} \tag{1}
\end{equation*}
\]
where \(k_{r}=0, \ldots, n_{r}-1\), and \(\omega_{r}=\exp \left(2 \pi i / n_{r}\right), r=1,2,3\).
\[
\begin{equation*}
x_{j_{1} j_{2} j_{3}}=\sum_{k_{1}=0}^{n_{1}-1} \sum_{k_{2}=0}^{n_{2}-1} \sum_{k_{3}=0}^{n_{3}-1} \alpha_{k_{1} k_{2} k_{3}} \omega_{1}^{j_{1} k_{1}} \omega_{2}^{j_{2} k_{2}} \omega_{3}^{j_{3} k_{3}} \tag{2}
\end{equation*}
\]
where \(j_{r}=0, \ldots, n_{r}-1\), and \(\omega_{r}=\exp \left(2 \pi i / n_{r}\right), r=1,2,3\).
This routine calculates \(\left\{n_{1} n_{2} n_{3} \alpha_{k_{1} k_{2} k_{3}}\right\}\) or \(\left\{x_{j_{1} j_{2} j_{3}}\right\}\) corresponding to the left hand terms of (1) or (2) respectively. The user must normalize the results, if required.

\section*{4. Example program}

This program performs the Fourier transform followed by the inverse transform and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
/* problem dimensions */
\#define N1 4
\#define N2 3
\#define N3 2
MAIN__()
{
int ierr, icon;
double phai, ran, eps;
double a[N3][N2][N1+2]; /* allocate real data */
double (*b)[2][N3][N2][(N1+2)/2]; /* pointer to complex data */
double aa[N3][N2][N1+2], vw[N3][N2][N1+2];
int i, j, k, cnt, l, m, n, isn, pr;
/* generate initial real data */
l = N1+2;
m = N2;
n = N3;
pr = (1-2)*m*n;
phai = (sqrt(5.0)-1.0)/2;
cnt = 1;
for (k=0;k<N3;k++) {
for (j=0;j<N2;j++) {
for (i=0;i<N1;i++) {
ran = cnt*phai;
a[k][j][i] = ran - (int)ran;
cnt++;
}
}
}
/* keep copy */
for (k=0;k<N3;k++) {
for ( }\textrm{j}=0;\textrm{j}<N2;j++)
for (i=0;i<N1;i++)
aa[k][j][i] = a[k][j][i];
}

```
```

    }/*
    /* perform normal transform */
    isn = 1;
    ierr = c_dvrpf3((double*)a, l, m, n, isn, (double*)vw, &icon);
    /* print complex transformed data */
    b = (double(*)[2][N3][N2][(N1+2)/2])a; /* complex data overwrites real data */
    for (k=0;k<N3;k++) {
        for (j=0;j<N2;j++) {
            for (i=0;i<=N1/2;i++) {
                printf("%8.5f + i*%8.5f ", (*b)[0][k][j][i], (*b)[1][k][j][i]);
        }
        printf("\n");
        }
        printf("\n");
    }
    /* perform inverse transform */
    isn = -1;
    ierr = c_dvrpf3((double*)a, l, m, n, isn, (double*)vw, &icon);
    /* check results */
    eps = 1e-6;
    for (k=0;k<N3;k++) {
        for ( j=0;j<N2;j++) {
            for (i=0;i<N1;i++) {
                if (fabs((a[k][j][i]/pr - aa[k][j][i])/aa[k][j][i]) > eps) {
                printf("WARNING: result inaccurate\n");
                exit(1);
            }
        }
        }
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

Consult the entry for VRPF3 in the Fortran SSL II Extended Capabilities User's Guide II and references [17] and [120].

\section*{c_dvseg2}

Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix (parallel bisection and inverse iteration methods).
```

ierr = c_dvseg2(a, n, m, epst, e, ev, k, vw,
ivw, \&icon);

```

\section*{1. Function}

This function calculates \(m\) eigenvalues of an \(n\) order real symmetric matrix \(\mathbf{A}\) given by:
\[
\mathbf{A x}=\lambda \mathbf{x}
\]
in descending (or ascending) order, using the parallel bisection method. It also calculates the corresponding \(m\) eigenvectors, using the inverse iteration method. Eigenvectors are normalised such that \(\|\mathbf{x}\|_{2}=1\). The result must be such that \(1 \leq m \leq n\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvseg2(a, n, m, epst, e, (double *)ev, k, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a [Alen] & Input & Symmetric matrix \(\mathbf{A}\) with dimension of Alen \(=\mathrm{n}(\mathrm{n}+1) / 2\). The matrix is stored in symmetric storage format. See the Array storage formats section in the Introduction. \\
\hline & & Output & The content is altered on output. \\
\hline n & int & Input & Order \(n\) of the symmetric matrix \(\mathbf{A}\). \\
\hline m & int & Input & Number \(m\) of the eigenvalues to be calculated. Calculate in descending order when \(\mathrm{m}=+m\). Calculate in ascending order when \(\mathrm{m}=-m\). \\
\hline epst & double & Input & Upper bound of the absolute errors used in eigenvalue convergence test. A default value is used when a non-positive value is specified. See Comments on use. \\
\hline e & double e[|m|] & Output & Contains eigenvalues stored in ascending or descending order depending on the sign of \(m\). \\
\hline ev & double ev[|m|][k] & Output & Eigenvector corresponding to eigenvalue e [i] is stored at \(\operatorname{ev}[i][j], j=0,1, \ldots, n-1\). \\
\hline k & int & Input & C fixed dimension of array ev (\(\geq n)\). \\
\hline VW & \begin{tabular}{l}
double \\
vw[15*n]
\end{tabular} & Work & \\
\hline ivw & int ivw[7*n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline The com & list of condition cod & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 10000 & \(\mathrm{n}=1\) & \(\operatorname{ev}[0][0]\) is set to 1.0 , and \(\mathrm{e}[0]\) is set to \(\mathrm{a}[0]\). \\
\hline 15000 & Some eigenvectors were not calculated. & The uncalculated eigenvectors are set to zero. \\
\hline 20000 & No eigenvectors were calculated. & All of the eigenvectors are set to zero. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad m=0\). \\
- \(\mathrm{n}<\mathrm{m}\). \\
- \(\mathrm{k}<\mathrm{n}\).
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epst}

The default value of the argument epst is expressed by (1) where \(\mu\) is the unit round-off:
\[
\begin{equation*}
\text { epst }=\mu \cdot \max \left(\left|\lambda_{\max }\right|,\left|\lambda_{\min }\right|\right) \tag{1}
\end{equation*}
\]
where \(\lambda_{\text {max }}\) and \(\lambda_{\text {min }}\) are the upper and lower bounds of the existence range (given by Gerschgorin's theorem) of the eigenvalues of \(\mathbf{A x}=\lambda \mathbf{x}\).

When very large and small absolute eigenvalues co-exist and a convergence test is performed using (1), it is generally difficult to calculate smaller eigenvalues with adequate precision. In such cases, smaller eigenvalues may be calculated with higher precision by setting epst to a smaller value. However, processing speed decreases as the number of iterations increases.

See the entry for VSEG2 in the Fortran SSL II Extended Capability User's Guide to obtain details on the convergence criterion.

\section*{4. Example program}

This program calculates all the eigenvalues and eigenvectors for a 5 by 5 symmetric matrix.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 5
MAIN__()
{
int ierr, icon;
int n, m, i, j, ij, k, ivw[7*NMAX];
double a[NMAX**(NMAX+1)/2], e[NMAX], ev[NMAX][NMAX], vw[15*NMAX], epst;
/* initialize matrix */
n = NMAX;
ij = 0;
for (i=0;i<n;i++)
for (j=0;j<=i;j++) {
a[ij++] = n-i;
}
k = NMAX;
m = n;
epst = 0;
/* find eigenvalues and eigenvectors */
ierr = c_dvseg2(a, n, m, epst, e, (double*)ev, k, vw, ivw, \&icon);
if (icon >= 20000) {
printf("ERROR: c_dvseg2 failed with icon = %d\n", icon);
exit(1);

```
```

    }
    /* print eigenvalues and eigenvectors */
    for (i=0;i<m;i++) {
        printf("e-value %d: %10.4f\n",i+1,e[i]);
        printf("e-vector:");
        for ( j=0;j<n;j++)
            printf("%7.4f ",ev[i][j]);
        printf("\n");
    }
    return(0);
    }

```

\section*{5. Method}

This function calculates \(m\) eigenvalues of an \(n\) by \(n\) real symmetric matrix \(\mathbf{A}\) in descending (or ascending) order using the parallel bisection method and their corresponding eigenvectors using the inverse iteration method.

For further information consult the entry for VSEG2 in the Fortran SSL II Extended Capability User's Guide.

\section*{c_dvsevp}
```

Eigenvalues and eigenvectors of a real symmetric matrix
(tridiagonalization, multisection method, and inverse iteration)
ierr = c_dvsevp(a, k, n, nf, nl, ivec, \&etol,
\&ctol, nev, e, maxne, m, ev, vw,
iw, \&icon);

```

\section*{1. Function}

This routine calculates specified eigenvalues and, optionally, eigenvectors of an \(n\)-dimensional real symmetric matrix \(\mathbf{A}\).

First, the matrix is reduced to tridiagonal form using the Householder reductions. Then, the specified eigenvalues are obtained by the multisection method. The eigenvectors are obtained by the inverse iteration.
\[
\begin{equation*}
\mathbf{A x}=\lambda \mathbf{x} \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvsevp((double *)a, k, n, nf, nl, ivec, \&etol, \&ctol, nev, e, maxne, (int *)m, (double *)ev, vw, iw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double \(\mathrm{a}[\mathrm{n}][\mathrm{k}]\) & Input & Real symmetric matrix \(\mathbf{A}\), stored in the real symmetric storage format. See Array storage formats in the Introduction section. \\
\hline k & int & Input & C fix dimension of matrix A. \((\mathrm{k} \geq \mathrm{n})\) \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline nf & int & Input & Number assigned to the first eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.) \\
\hline nl & int & Input & Number assigned to the last eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.) \\
\hline ivec & int & Input & \begin{tabular}{l}
Control information. \\
ivec \(=1\) if both the eigenvalues and eigenvectors are sought. \\
ivec \(\neq 1\) if only the eigenvalues are sought.
\end{tabular} \\
\hline etol & double & Input & Tolerance for determining whether an eigenvalue is distinct or numerically multiple. \\
\hline & & Output & etol is set to the default value of \(3 \times 10^{-16}\) when etol is set to less than it. See Comments on use. \\
\hline ctol & double & Input & Tolerance (\(\geq\) etol) for determining whether adjacent eigenvalues are approximately multiple, i.e. clustered. \\
\hline & & Output & When ctol is less than etol, ctol is set to etol. See Comments on use. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline nev & int nev[3] & Output & \begin{tabular}{l}
Number of eigenvalues calculated. \\
nev [0] indicates the number of distinct eigenvalues, nev[1] indicates the number of distinct clusters, nev[2] indicates the total number of eigenvalues including multiplicities.
\end{tabular} \\
\hline e & double e[maxne] & Output & Eigenvalues. Stored in \(\mathrm{e}[\mathrm{i}-1]\), i \(=1, \ldots, \mathrm{nev}[2]\). \\
\hline maxne & int & Input & Maximum number of eigenvalues that can be computed. See Comments on use. \\
\hline m & \[
\begin{aligned}
& \text { int } \\
& \text { m[2][maxne] }
\end{aligned}
\] & Output & Information about the multiplicity of the computed eigenvalues. \(\mathrm{m}[0][\mathrm{i}-1]\) indicates the multiplicity of the i -th eigenvalue \(=\lambda_{i}\), \(m[1][i-1]\) indicates the size of the i-th cluster of eigenvalues, \(i=1, \ldots, \min \{\operatorname{maxne}, \operatorname{nev}[2]\}\). \\
\hline ev & double ev[maxne][k] & Output & When \(\mathrm{ivec}=1\), the eigenvectors corresponding to the computed eigenvalues. Stored by row in \(\operatorname{ev}[i-1][j-1], i=1, \ldots, \operatorname{nev}[2]\), \(j=1, \ldots, n\). \\
\hline vw & double vw[17n] & Work & \\
\hline iw & int iw[Ivwlen] & Work & Ivwlen \(=9 \times \mathrm{k}+128\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & The total number of eigenvalues exceeded maxne during computation of multiple and/or clustered eigenvalues. & Discontinued. The eigenvectors cannot be computed. Eigenvalues are returned but are not stored taking into account multiplicities. See Comments on use. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(k<n\) \\
- \(n f<1\) \\
- \(\mathrm{nl}>\mathrm{n}\) \\
- \(\mathrm{nl}<\mathrm{nf}\) \\
- maxne <nl-nf+1
\end{tabular} & Bypassed. \\
\hline 30100 & The input matrix may not be a symmetric matrix. & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{etol and ctol}

If the eigenvalues \(\lambda_{j}, j=s, s+1, \ldots, s+k,(k \geq 0)\) satisfy
\[
\begin{equation*}
\frac{\left|\lambda_{i}-\lambda_{i-1}\right|}{1+\max \left(\left|\lambda_{i-1}\right|,\left|\lambda_{i}\right|\right)} \leq \varepsilon \tag{2}
\end{equation*}
\]
with \(\varepsilon=\) etol, and if \(\lambda_{s-1}\) and \(\lambda_{s+k+1}\) do not satisfy (2), then the eigenvalues \(\lambda_{j}, j=s, s+1, \ldots, s+k\), are considered to be identical, that is, a single eigenvalue of multiplicity \(k+1\).

The default value of etol is \(3 \times 10^{-16}\). Using this value, the eigenvalues are refined to machine precision.
When (2) is not satisfied for \(\varepsilon=\) etol, \(\lambda_{i-1}\) and \(\lambda_{i}\) are assumed to be distinct eigenvalues.
If (2) is satisfied for \(\varepsilon=\mathrm{ctol}\) (but is not satisfied with \(\varepsilon=\) etol) for eigenvalues \(\lambda_{j}, j=t, t+1, \ldots, t+k\), but not for \(\lambda_{t-1}\) and \(\lambda_{t+k+1}\), then eigenvalues \(\lambda_{j}, j=t, t+1, \ldots, t+k\), are considered to be approximately multiple, that is, clustered, though distinct (not numerically multiple). In order to obtain an invariant subspace, eigenvectors corresponding to clustered eigenvalues are computed using orthogonal starting vectors and are re-orthogonalized.

If ctol < etol, then ctol \(=\) etol is set.

\section*{maxne}

Assume \(r\) eigenvalues are requested. Note that if the first or last requested eigenvalue has a multiplicity greater than 1 then more than \(r\) eigenvalues, are obtained. The corresponding eigenvectors can be computed only when the corresponding eigenvector storage area is sufficient.

The maximum number of computable eigenvalues can be specified in maxne. If the total number of eigenvalues exceeds maxne, icon = 20000 is returned. The corresponding eigenvectors cannot be computed. In this case, the eigenvalues are returned, but they are not stored repeatedly according to multiplicities.

When all eigenvalues are distinct, it is sufficient to set maxne \(=n l-n f+1\).

When the total number of eigenvalues to be sought exceeds maxne, the necessary value for maxne for seeking eigenvalues again is returned in nev[2].

\section*{4. Example program}

This program obtains eigenvalues and prints the results.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define K 500
\#define N
K
\#define NF 1
\#define NL 100
\#define MAXNE NL-NF+1
\#define NVW 17*K
\#define NIW 9*MAXNE+128
MAIN__()
{
double a[N][K], ab[N][K];
double e[MAXNE], ev[MAXNE][K], vw[NVW];
double vv[N][K];
double etol, ctol, pi;
int nev[3], m[2][MAXNE], iw[NIW];
int ierr, icon;
int i, j, k, n, nf, nl, maxne, ivec;
n = N;
k = K;
nf = NF;
nl = NL;
ivec = 1;
maxne = MAXNE;
etol = 3.0e-16;
ctol = 5.0e-12;

```
```

    /* Generate real symmetric matrix with known eigenvalues */
    /* Initialization
    pi = 4.0 * atan(1.0);
    for(i=0; i<n; i++) {
        for(j=0; j<n; j++) {
            vv[i][j] = sqrt(2.0/(double)(n+1))*sin((double)(i+1)*pi*
                                    (double)(j+1)/(double)(n+1));
        a[i][j] = 0.0;
    }
    }
for(i=0; i<n; i++) {
a[i][i] = (double)(-n/2+(i+1));
}
printf(" Input matrix size is %d\n", n);
printf(" Matrix calculations use k = %d\n", k);
printf(" Desired eigenvalues are nf to nl %d %d\n", nf, nl);
printf(" That is, request %d eigenvalues.\n", maxne) ;
printf(" True eigenvalues are as follows\n");
for(i=nf-1; i<nl; i++) {
printf("a(%d,%d) = %12.4e\n", i, i, a[i][i]);
}
ierr = c_dvmggm ((double*)a, k, (double*)vv, k, (double*)ab, k, n, n, n, \&icon);
ierr = c_dvmggm ((double*)vv, k, (double*)ab, k, (double*)a, k, n, n, n, \&icon);
/* Calculate the eigendecomposition of A */
ierr = c_dvsevp ((double*)a, k, n, nf, nl, ivec, \&etol, \&ctol, nev, e, maxne,
(int*)m, (double*)ev, vw, iw, \&icon);
if (icon > 0) {
printf("ERROR: c_dvsevp failed with icon = %d\n", icon);
exit(1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
printf(" Number of eigenvalues %d\n", nev[2]);
printf(" Number of distinct eigenvalues %d\n", nev[0]);
printf(" Solution to eigenvalues\n");
for(i=0; i<nev[2]; i++) {
printf(" e[%d] = %12.4e\n", i, e[i]);
}
return(0);
}

```

\section*{5. Method}

Consult the entry for VSEVP in the Fortran SSL II Extended Capabilities User's Guide II and [81].

\section*{c_dvsin1}
```

Discrete sine transform (radix 2 FFT).
ierr = c_dvsin1(b, n, tab, vw, ivw, \&icon);

```

\section*{1. Function}

Given \(n\) data points \(\left\{x_{j}\right\}\), obtained by dividing the first half of a \(2 \pi\) period, odd function \(x(t)\) into \(n\) equal parts, that is
\[
x_{j}=x(j \cdot \theta), \quad j=0,1, \ldots, n-1, \quad \theta=\frac{\pi}{n} .
\]

The discrete sine transform or its inverse transform is computed by a Fast Fourier Transform (FFT) algorithm suited to a vector processor.

It is assumed that \(n=2^{\ell}\), where \(\ell\) is a non-negative integer.

\section*{Sine transform}

When \(\left\{x_{j}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{2 n b_{k}\right\}\).
\[
2 n b_{k}=4 \cdot \sum_{j=1}^{n-1} x_{j} \cdot \sin (k j \theta), \quad k=0,1, \ldots, n-1
\]
where \(\theta=\pi / n\) and \(x_{0}=0\).

\section*{Sine inverse transform}

When \(\left\{b_{k}\right\}\) is input, the transform defined below is calculated to obtain \(\left\{4 x_{j}\right\}\).
\[
4 x_{j}=4 \cdot \sum_{k=1}^{n-1} b_{k} \cdot \sin (k j \theta), \quad j=0,1, \ldots, n-1
\]
where \(\theta=\pi / n\) and \(b_{0}=0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvsin1(b, n, tab, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline b & double \(\mathrm{b}[\mathrm{n}+2]\) & Input & \(\left\{x_{j}\right\}\) or \(\left\{b_{k}\right\}\). As \(x_{0}\) and \(b_{0}\) are assumed to be zero; \(\mathrm{b}[0], \mathrm{b}[\mathrm{n}]\) and \(\mathrm{b}[\mathrm{n}+1]\) are ignored. \\
\hline & & Output & \(\left\{2 n b_{k}\right\}\) or \(\left\{4 x_{i}\right\} ; \mathrm{b}[0], \mathrm{b}[\mathrm{n}]\) and \(\mathrm{b}[\mathrm{n}+1]\) are set to zero. \\
\hline n & int & Input & Number of samples \(n\). \\
\hline tab & \begin{tabular}{l}
double \\
tab[Tlen]
\end{tabular} & Output & Trigonometric function table used in the transformation. Tlen \(=2 n+4\). \\
\hline VW & \begin{tabular}{l}
double \\
vw [Rlen]
\end{tabular} & Work & Rlen \(=\max (n(\ell+1) / 2,1)\). \\
\hline ivw & int ivw[Ilen] & Work & Ilen \(=n \cdot \max (\ell-4,2) / 2\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{n} \neq 2^{\ell}(\ell \geq 0\) is an integer \()\). & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Use of this function}

This function performs the high-speed calculation of a discrete sine transform on a vector processor. Other routines might be more appropriate on a general purpose computer.

\section*{Multiple transforms}

Multiple transforms are performed efficiently because the generation of the trigonometric table and list vector are only performed on the first call to the function. It is therefore essential that \(\mathrm{tab}, \mathrm{VW}\) and iVW remain unchanged between calls to this function.

The contents of these three arguments are valid even when the number of terms \(n\) are different for the multiple transforms. However, it is desirable that transforms with the same number of terms are executed consecutively for the highest efficiency.

\section*{Work array size conversion table}

The table for \(16 \leq n \leq 4096\) is as follows:
\begin{tabular}{|r|r|r|r|r|}
\hline \multicolumn{1}{|c|}{\(\ell\)} & \multicolumn{1}{|c|}{\(n\)} & \begin{tabular}{c}
Length of \\
tab
\end{tabular} & \begin{tabular}{c}
Length of \\
VW
\end{tabular} & \multicolumn{1}{c|}{\begin{tabular}{c}
Length of \\
ivw
\end{tabular}} \\
\hline 4 & 16 & 36 & 40 & 16 \\
\hline 5 & 32 & 68 & 96 & 32 \\
\hline 6 & 64 & 132 & 224 & 64 \\
\hline 7 & 128 & 260 & 512 & 192 \\
\hline 8 & 256 & 516 & 1152 & 512 \\
\hline 9 & 512 & 1028 & 2560 & 1280 \\
\hline 10 & 1024 & 2052 & 5632 & 3072 \\
\hline 11 & 2048 & 4100 & 12288 & 7168 \\
\hline 12 & 4096 & 8196 & 26624 & 16384 \\
\hline
\end{tabular}

\section*{General definition of discrete sine transform}

The discrete sine transform and its inverse transform can be defined as shown below in (1) and in (2) respectively.
\[
\begin{gather*}
b_{k}=\frac{2}{n} \cdot \sum_{j=1}^{n-1} x_{j} \cdot \sin (k j \theta), \quad k=0,1, \ldots, n-1, \tag{1}\\
x_{j}=\sum_{k=1}^{n-1} b_{k} \cdot \sin (k j \theta), \quad j=0,1, \ldots, n-1, \tag{2}
\end{gather*}
\]
where \(\theta=\pi / n\).

This function computes \(\left\{2 n b_{k}\right\}\) or \(\left\{4 x_{j}\right\}\) corresponding to the left hand side of (1) or (2). The user is responsible for normalizing the result, if required.

\section*{4. Example program}

This program computes a sine transform on 1024 elements, where the input elements are chosen at random. The inverse transform is then computed and the normalized results of this are compared with the original data values.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 1024
MAIN__()
{
int ierr, icon;
double phai, ran, scale, eps;
double a[NMAX+2], b[NMAX+2], tab[2*NMAX+4], vw[NMAX*(10+1)/2];
int i, n, ivw[NMAX*(10-4)/2];
/* generate initial data */
n = NMAX;
phai = (sqrt(5.0)-1.0)/2;
for (i=1;i<n;i++) {
ran = (i+1)*phai;
a[i] = ran - (int)ran;
}
for (i=1;i<n;i++)
b[i] = a[i];
/* perform normal transform */
ierr = c_dvsin1(a, n, tab, vw, ivw, \&icon);
/* perform inverse transform */
ierr = c_dvsin1(a, n, tab, vw, ivw, \&icon);
/* check results */
scale = 1.0/(8*n);
eps = 1e-6;
for (i=0;i<n+1;i++)
if (fabs((scale*a[i]-b[i])) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

For further information consult the entry for VSIN1 in the Fortran SSL II Extended Capabilities User's Guide and [88] and [108].

\section*{c_dvsldl}
\begin{tabular}{|l|}
\hline LDL \(^{\mathrm{T}}\) decomposition of a symmetric positive definite matrix (modified \\
Cholesky's method). \\
\hline ierr = c_dvsldl(a, \(n, ~ e p s z, ~ v w, ~ i v w, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine performs \(\operatorname{LDL}^{\mathrm{T}}\) decomposition of an \(n \times n\) symmetric positive definite matrix \(\mathbf{A}\), using the modified Cholesky's method,
\[
\begin{equation*}
\mathbf{A}=\mathbf{L D L}^{\mathrm{T}} \tag{1}
\end{equation*}
\]

In (1) \(\mathbf{L}\) is a unit lower triangular matrix and \(\mathbf{D}\) is a diagonal matrix. Here, \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvsldl(a, n, epsz, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[Alen] & Input
Output & \begin{tabular}{l}
Matrix A. Stored in symmetric positive definite storage format. See Array storage formats in the Introduction section for further details.
\[
\text { Alen }=n(n+1) / 2 .
\] \\
Matrix \(\mathbf{D}^{-1}+(\mathbf{L}-\mathbf{I})\). Stored in symmetric positive definite storage format. See Array storage formats in the Introduction section for further details.
\end{tabular} \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline epsz & double & Input & Tolerance \((\geq 0)\) for relative zero test of pivots in the decomposition process of matrix \(\mathbf{A}\). When epsz = 0, a standard value is used. See Comments on use. \\
\hline Vw & double \(\mathrm{Vw}[2 \mathrm{n}]\) & Work & \\
\hline ivw & int ivw[n] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline The com & list of condition cod & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
A pivot was negative. Matrix \(\mathbf{A}\) is not positive \\
definite.
\end{tabular} & Continued. \\
\hline 20000 & \begin{tabular}{l}
A pivot is relatively zero. It is probable that \\
matrix \(\mathbf{A}\) is singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad\) epsz \(<0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off. If, during the decomposition process, a pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon \(=20000\). Decomposition can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy.

\section*{icon}

If a pivot is negative during decomposition, the matrix \(\mathbf{A}\) is not positive definite and icon \(=10000\) is set. Processing is continued, however no further pivoting is performed and the resulting calculation error may be significant.

\section*{Calculation of determinant}

The determinant of matrix \(\mathbf{A}\) is the same as the determinant of matrix \(\mathbf{D}\), and can be calculated by forming the product of the elements of output array a corresponding to the diagonal elements of \(\mathbf{D}^{-1}\), and then taking the reciprocal of the result.

\section*{4. Example program}

This program solves a system of linear equations using \(\operatorname{LDL}^{\mathrm{T}}\) decomposition, and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int ierr, icon;
int n, i, j, ij;
double epsz, eps, sum;
double a[NMAX*(NMAX+1)/2], b[NMAX], x[NMAX], vw[2*NMAX];
int ivw[NMAX];
/* initialize matrix and vector */
n = NMAX;
ij = 0;
for (j=0;j<n;j++)
for (i=j;i<n;i++)
a[ij++] = n-i;
for (i=0;i<n;i++) {
x[i] = i+1;
b[i] = 0;
}
ij = 0;
for (i=0;i<n;i++) {
sum = a[ij++]*x[i];
for (j=i+1;j<n;j++)
b[j] = b[j] + a[ij]**[i];
sum = sum + a[ij++]*x[j];
}
b[i] = b[i]+sum;
}
epsz = 1e-6;
/* LDL decomposition of system of equations */
ierr = c_dvsldl(a, n, epsz, vw, ivw, \&icon);
if (icon > 10000) {
printf("ERROR: c_dvsldl failed with icon = %d\n", icon);
exit(1);
}
/* solve decomposed system of equations */
ierr = c_dvldlx(b, a, n, \&icon);
if (icon > 10000)' {
printf("ERROR: c_dvldlx failed with icon = %d\n", icon);
exit(1);
}

```
```

    /* check solution vector */
    eps = 1e-6;
    for (i=0;i<n;i++)
        if (fabs((x[i]-b[i])/b[i]) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

Consult the entry for VSLDL in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvspll}

> \begin{tabular}{l} \(\mathrm{LL}^{\mathrm{T}}\) decomposition of symmetric positive definite matrix (blocked \\ Cholesky decomposition method). \\ \hline ierr \(=c _\operatorname{dvspll}(a, k, n, \quad e p s z, \quad \& i c o n) ;\) \end{tabular}

\section*{1. Function}

This function executes \(L L^{\mathrm{T}}\) decomposition for an \(n \times n\) positive definite matrix \(\mathbf{A}\) using the blocked Cholesky decomposition of outer products.
\[
\mathbf{A}=\mathbf{L L}^{\mathrm{T}}
\]
where, \(\mathbf{L}\) is a lower triangular matrix. It is assumed that \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvspll((double*)a, k, n, epsz, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{a} & \multirow[t]{4}{*}{double a[n][k]} & \multirow[t]{3}{*}{Input} & The upper triangular part \(\left\{a_{i j}, i \leq j\right\}\) of A is stored in the upper triangular part \(\{a[i-1][j-1], i \leq j\}\) of a for input. \\
\hline & & & See Figure dvspll-1. \\
\hline & & & The contents of the array are altered on output. \\
\hline & & Output & Decomposed matrix. After the first set of equations has been solved, the upper triangular part of a [i-1] [j-1] \(\mathrm{i} \leq \mathrm{j})\) contains \(l_{i j}(i \leq j)\) of the upper triangular matrix \(\mathbf{L}^{\mathrm{T}}\). \\
\hline k & int & Input & A fixed dimension of matrix \(\mathbf{A} .(\geq n)\) \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline epsz & double & Input & Tolerance for relative zero test (\(\geq 0\)). \\
\hline & & & When epsz is zero, a standard value is assigned. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

Figure dvspll-1. Storing the data by Cholesky decomposition

The diagonal elements and upper triangular part \(a_{i j}\) of the positive definite matrix for whith \(\mathrm{LL}^{\mathrm{T}}\) decomposition is performed is stored in array \(a[i-1][j-1], i=1, \ldots, n, j=i, \ldots, n\).
After \(L^{\mathrm{T}}\) decomposition, the upper triangular matrix \(\mathbf{L}^{\mathrm{T}}\) is stored in the upper triangular part.

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
Pivot became relatively zero. Coefficient matrix \\
might be singular.
\end{tabular} & Discontinued. \\
\hline 20100 & \begin{tabular}{l}
Pivot became negative. \\
Coefficient matrix is not positive definite.
\end{tabular} & \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet\) \\
epsz \(<0\) \\
\(\bullet\) \\
\(\mathrm{k}<\mathrm{n}\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If a value is set for the judgment of relative zero, it has the following meaning:

If the value of the selected pivot is positive and less than epsz during \(L^{T}\) decomposition by the Cholesky decomposition, the pivot is assumed to be relatively zero and decomposition is discontinued with icon=20000. When unit round off is \(\mu\), the standard value of epsz is \(16 \mu\).

When the computation is to be continued even if the pivot becomes small, assign the minimum value to epsz. In this case, however the result is not assured.

\section*{Negative pivot during the solution}

If the pivot value becomes negative during decomposition, the coefficient matrix is no longer positive definite. Processing is discontinued with icon=20100.

\section*{Calculation of determinant}

After the calculation has been completed, the determinant of the coefficient matrix is computed by multiplying all the \(n\) diagonal elements of the array a and taking the square of the result.

\section*{4. Example program}
\(L^{T}\) decomposition is executed for a \(2000 \times 2000\) matrix.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 2000
\#define KMAX NMAX+1
MAIN__()
{
int epsz, icon, ierr, i, j;
double a[NMAX][KMAX], b[NMAX], s, det;

```
```

    for (i=0; i<NMAX; i++) {
        for (j=i; j<NMAX; j++) {
        a[i][j] = i+1;
    }
    }
    epsz = 0.0;
ierr = c_dvspll((double*)a, KMAX, NMAX, epsz, \&icon);
if (icon != 0) {
printf("ERROR: c_dvspll failed with icon = %d\n", icon);
exit(1);
}
for (i=0, s=1.0; i<NMAX; i++) {
s = s*a[i][i];
}
det = s*s;
printf ("Determinant of matrix = %15.10le\n\n", det);
printf ("Decomposed matrix\n");
for (i=0; i<5; i++) {
printf ("i=%d ",i);
for ( }\textrm{j}=\textrm{i};(\textrm{j}<5; j++)
printf'("%15.101e ", a[i][j]);
}
printf ("\n");
}
}

```

\section*{5. Method}

For further information consult the entry for VSPLL in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvsplx}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Solution of a system of linear equations with \(L L^{T}\)-decomposed positive \\
definite matrix.
\end{tabular} \\
\hline ierr \(=c _d v s p l x(b, f a, ~ k f a, ~ n, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This function solves a system of linear equations with \(\mathrm{LL}^{\mathrm{T}}\)-decomposed symmetric positive definite coefficient matrix.
\[
\begin{equation*}
\mathbf{L L}^{\mathrm{T}} \mathbf{x}=\mathbf{b} \tag{1}
\end{equation*}
\]

Where, \(\mathbf{L}\) is a lower triangular matrix, \(\mathbf{b}\) is a real constant vector, and \(\mathbf{x}\) is the real solution vector. It is assumed that \(n \geq 1\).
This function receives the \(L L^{T}\)-decomposed matrix from function c_dvspll and calculates the solution of a system of linear equations.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvsplx(b, (double*)fa, kfa, n, \&icon);
where:
\begin{tabular}{llll}
b & double \(\mathrm{b}[\mathrm{n}]\) & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \begin{tabular}{l}
Constant vector \(\mathbf{b}\). \\
Solution vector \(\mathbf{x}\).
\end{tabular} \\
fa & double & Input & \begin{tabular}{l}
The \(L^{\mathrm{T}}\)-decomposed matrix \(\mathbf{L}^{\mathrm{T}}\) is stored. \\
fa \([\mathrm{n}][\mathrm{k}]\)
\end{tabular} \\
& & \begin{tabular}{l}
The upper triangular matrix \(\mathbf{L}^{\mathrm{T}}\left\{l_{i j}, i \leq j\right\}\) is stored in the upper triangular \\
part \(\{\mathrm{fa}[\mathrm{i}-1][j-1], \mathrm{i} \leq \mathrm{j}\}\) of fa.
\end{tabular} \\
kfa & int & See Figure dvsplx-1. \\
n & int & Input & A fixed dimension of array fa. \((\geq n)\) \\
icon & int & Input & Order \(n\) of matrix \(\mathbf{L}\).
\end{tabular}

Figure dvsplx-1. Storing the data for the Cholesky decomposition method
After \(L L^{\mathrm{T}}\) decomposition, the upper triangular matrix \(\mathbf{L}\) is stored in the upper triangular part of the array.

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & The coefficient matrix is singular. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{kfa}<\mathrm{n}\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

A system of linear equations with a positive definite coefficient matrix can be solved by calling this function after calling function c_dvspll. However, function c_dvlspx should be usually used to solve a system of linear equations in one step.

\section*{4. Example program}

A \(2000 \times 2000\) coefficient matrix is decomposed into \(L L^{T}\)-decomposed matrix, then the system of linear equations is solved.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 2000
\#define KMAX NMAX+1
MAIN__()
{
int epsz, isw, icon, ierr, i, j;
double a[NMAX][KMAX], b[NMAX], s, det;
for (i=0; i<NMAX; i++) {
for (j=i; j<NMAX; j++) {
a[i][j] = i+1;
}
}
for (i=0; i<NMAX; i++) {
b[i] = (i+1)*(i+2)/2+(i+1)*(NMAX-i-1);
}
epsz = 0.0;
ierr = c_dvspll((double*)a, KMAX, NMAX, epsz, \&icon);
if (icon != 0) {
printf("ERROR: c_dvspll failed with icon = %d\n", icon);
exit(1)
}
ierr = c_dvsplx(b, (double*)a, KMAX, NMAX, \&icon);
if (icon != 0) {
printf("ERROR: c_dvsplx failed with icon = %d\n", icon);
exit(1)
}
printf ("Solution vector\n");
for (i=0; i<10; i++) {
printf ("b[%d] = %23.16le\n", i, b[i]);
}
for (i=0, s=1.0; i<NMAX; i++) {
s = s*a[i][i];
}

```
```

    det = s*s;
    printf ("\nDeterminant of coefficient matrix = %15.10le\n", det);
    }

```

\section*{5. Method}

For further information consult the entry for VSPLX in the Fortran SSL II Extended Capabilities User's Guide.

\section*{c_dvsrft}
\begin{tabular}{l}
\hline \begin{tabular}{l}
One-dimensional and multiple discrete real Fourier transform (mixed \\
radices of 2, 3, and 5).
\end{tabular} \\
\hline ierr \(=\mathrm{c}\) _dvsrft \((x, m, n\), isin, isn, \(w, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine performs one-dimensional discrete real Fourier transforms (for \(m\) multiplicity). The size of the data to be transformed \(n\) must be a product of powers of 2,3 , and 5 , and either \(m\) or \(n\) must be an even integer.

\section*{Fourier transform}

When \(\left\{x_{k j}\right\}\) is provided, \(\left\{n \alpha_{k \ell}\right\}\) is defined by the transform (1).
\[
\begin{equation*}
n \alpha_{k \ell}=\sum_{j=0}^{n-1} x_{k j} \omega_{n}^{-j \ell r} \tag{1}
\end{equation*}
\]
where \(\omega_{n}=\exp (2 \pi i / n), k=0, \ldots, m-1, \quad \ell=0, \ldots, n-1\), and \(r=1\) or -1 for the transform direction.

Only the terms \(n \alpha_{k \ell}, k=0, \ldots, m-1, \ell=0, \ldots, n / 2\) are computed by (1), as the remaining terms \(n \alpha_{k \ell}, k=0, \ldots, m-1\), \(\ell=n / 2+1, \ldots, n-1\) are computed using the complex conjugate relation (2).
\[
\begin{equation*}
\alpha_{k \ell}=\bar{\alpha}_{k n-\ell} . \tag{2}
\end{equation*}
\]

\section*{Fourier inverse transform}

When \(\left\{\alpha_{k \ell}\right\}\) is provided, the inverse transform defined below is used to obtain \(\left\{x_{k j}\right\}\).
\[
x_{k j}=\sum_{\ell=0}^{n-1} \alpha_{k \ell} \omega_{n}^{j \ell r}
\]
where \(\omega_{n}=\exp (2 \pi i / n), k=0, \ldots, m-1, j=0, \ldots, n-1\), and \(r=-1\) or 1 . With the inverse transform, the direction \(r\) must be the inverse to that specified in the transform.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dvsrft(x, n, m, isin, isn, w, \&icon);
where:
X double \(\mathrm{X}[\) Nlen \(][\mathrm{m}]\) Input \(\quad\) Nlen \(=n+4 \times\) floor \((\sqrt{n / 2})\).
If isn \(=1\) (transform from real to complex), real data \(\left\{x_{k j}\right\}\), with \(\mathrm{x}[\mathrm{j}][\mathrm{k}]=x_{k j}, k=0, \ldots, m-1, j=0, \ldots, n-1\).
If isn \(=-1\) (transform from complex to real), complex data \(\left\{\alpha_{k \ell}\right\}\),
with \(\times[\ell][\mathrm{k}]=\operatorname{Re}\left(\alpha_{k \ell}\right), \quad k=0, \ldots, m-1\), and \(\times[\ell+(\mathrm{n} / 2)+1][\mathrm{k}]=\operatorname{Im}\left(\alpha_{k \ell}\right), \ell=0, \ldots, n / 2\),
Output If isn \(=1\) (transform from real to complex), complex data \(\left\{n \alpha_{k \ell}\right\}\), with \(\times[\ell][\mathrm{k}]=\operatorname{Re}\left(n \alpha_{k \ell}\right), \quad k=0, \ldots, m-1\), , and \(\times[\ell+(\mathrm{n} / 2)+1][\mathrm{k}]=\operatorname{Im}\left(n \alpha_{k \ell}\right), \ell=0, \ldots, n / 2\),
\begin{tabular}{|c|c|c|c|}
\hline & & & If isn \(=-1\) (transform from complex to real), real data \(\left\{x_{k j}\right\}\), with \(\mathrm{x}[\mathrm{j}][\mathrm{k}]=x_{k j}, k=0, \ldots, m-1, j=0, \ldots, n-1\). \\
\hline m & int & Input & Multiplicity \(m\). Either m or n must be an even integer. \\
\hline n & int & Input & Size of data \(n\), which must be a product of powers of 2,3 , and 5 . Either m or n must be an even integer. \\
\hline isin & int & Input & Fourier transform direction.
\[
\begin{aligned}
& \text { isin }=1 \text { for } r=1, \\
& \text { isin }=-1 \text { for } r=-1 .
\end{aligned}
\] \\
\hline isn & int & Input & \begin{tabular}{l}
Control information. \\
isn \(=1\) for the transform (real to complex) \\
isn \(=-1\) for the inverse transform (complex to real).
\end{tabular} \\
\hline W & double w[Wen] & Work & \[
\text { Wlen }=2 n+m(n+4 \text { floor }(\sqrt{n / 2}))
\] \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30001 & \(\mathrm{n} \leq 0\) or \(\mathrm{m} \leq 0\). & Bypassed. \\
\hline 30008 & n is not a product of powers of 2, 3, and 5. & Bypassed. \\
\hline 30016 & isin \(\neq 1\) or -1. & Bypassed. \\
\hline 30032 & isn \(\neq 1\) or -1 & Bypassed. \\
\hline 30512 & Both n and m are odd integers. & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{\(n\) and \(m\)}

Two methods are used, one for when \(n\) is an even number and one for when \(m\) is an even number. The method when \(n\) is even has a vector length of about \(m \sqrt{n}\). The method when \(m\) is even has a vector length of \(m / 2\), but it performs less data movement. The routine performs transforms at maximum speed when \(m\) is a large even number.

\section*{Accessing the imaginary part of complex data}

The sample calling program demonstrates how the imaginary part of complex data can be more easily manipulated by defining an array that is aliased to the part of array \(x\) that contains the imaginary data.

\section*{General definition of Fourier transform}

The multiple discrete Fourier transform and its inverse transform can be defined as in (3) and (4).
\[
\begin{equation*}
\alpha_{k \ell}=\frac{1}{n} \sum_{j=0}^{n-1} x_{k j} \omega_{n}^{-j \ell r} \tag{3}
\end{equation*}
\]
where \(\omega_{n}=\exp (2 \pi i / n), k=0, \ldots, m-1, \quad \ell=0, \ldots, n-1\), and \(r=1\) or -1.
\[
\begin{equation*}
x_{k j}=\sum_{\ell=0}^{n-1} \alpha_{k \ell} \omega_{n}^{j \ell r} \tag{4}
\end{equation*}
\]
where \(\omega_{n}=\exp (2 \pi i / n), k=0, \ldots, m-1, j=0, \ldots, n-1\), and \(r=-1\) or 1 .

The routine calculates \(n \alpha_{k \ell}\) or \(x_{k j}\) corresponding to the left hand sides of (3) or (4) respectively. The user must normalize the results, if required.

\section*{4. Example program}

This program performs the Fourier transform and prints out the transformed data. It then performs the inverse transform and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define M 2
\#define N 8
\#define LDIM (N+4*2)
\#define WLEN 2*N+M*LDIM
MAIN__()
{
int ierr, icon;
double x[LDIM][M], xx[LDIM][M], eps;
double (*cx)[2][N/2+1][M]; /* pointer to complex data */
double w[WLEN];
int i, j, n, isn, isin, m;
/* generate initial data */
m = M;
n=N;
for ( j=0;j<n;j++)
for (i=0;i<m;i++)
x[j][i] = (i+1)*(j+1);
/* keep copy */
for ( j=0;j<n;j++)
for (i=0;i<m;i++)
xx[j][i] = x[j][i];
/* perform normal transform */
isn = 1;
isin = 1;
ierr = c_dvsrft((double*)x, m, n, isin, isn, w, \&icon);
if (icon != 0) {
printf("ERROR: c_dvsrft failed with icon = %d\n", icon);
exit(1);
}
/* print complex transformed data */
cx = (double(*)[2][N/2+1][M])x; /* complex data overwrites real data */
for ( }\textrm{j}=0;\textrm{j}<\textrm{n}/2+1;j++)
for (i=0;i<m;i++) {
printf("%8.5f + i*%8.5f ", (*cx)[0][j][i], (*cx)[1][j][i]);
}
printf("\n");
}*
/* perform inverse transform */
isn = -1;
isin = -1;
ierr = c_dvsrft((double*)x, m, n, isin, isn, w, \&icon);
if (icon != 0) {
printf("ERROR: c_dvsrft failed with icon = %d\n", icon);
exit(1);
}
/* check results */
eps = 1e-6;
for ( j=0;j<n;j++)
for (i=0;i<m;i++)
if (fabs((x[j][i]/n - xx[j][i])/xx[j][i]) > eps) {
printf("Inaccurate result\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{c_dvtdev}
\[
\begin{array}{|l}
\hline \text { Eigenvalues and eigenvectors of a tridiagonal matrix. } \\
\hline \text { ierr = c_dvtdev(d, sl, su, n, \&nf, ivec, etol, } \\
\text { ctol, nev, e, \&maxne, ev, k, m, } \\
\text { vw, ivw, \&icon); } \\
\hline
\end{array}
\]

\section*{1. Function}

This routine computes the eigenvalues and, optionally, the corresponding eigenvectors of a tridiagonal matrix.
\[
\begin{equation*}
\mathbf{T} \mathbf{x}=\lambda \mathbf{x} \tag{1}
\end{equation*}
\]

The lower diagonal and upper diagonal elements of the tridiagonal matrix \(\mathbf{T}\) must satisfy the following condition:
\[
l_{i} u_{i-1}>0, \quad i=2, \ldots, n
\]
where \((\mathbf{T x})_{i}=l_{i} x_{i-1}+d_{i} x_{i}+u_{i} x_{i+1}, i=1, \ldots, n\), with \(l_{1}=u_{n}=0\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvtdev(d, sl, su, n, \&nf, ivec, etol, ctol, nev, e, \&maxne,
(double *) ev, k, (int *) m, vw, ivw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline d & double d[n] & Input & Diagonal of matrix \(\mathbf{T}\). \\
\hline sl & double sl[n\(]\) & Input & Lower diagonal of matrix \(\mathbf{T}\), with \(\mathrm{sl}[\mathrm{i}-1]=l_{i}, i=1, \ldots, n\). \\
\hline su & double su[n] & Input & Upper diagonal of matrix \(\mathbf{T}\), with su[i-1] \(=u_{i}, i=1, \ldots, n\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{T}\). \\
\hline nf & int & Input & Index of the first eigenvalue sought, where eigenvalues are numbered in ascending order. Eigenvalues with indices in the range \(n f\) to \(\mathrm{nf}+\mathrm{nev}\) [0]-1 are computed. \\
\hline & & Output & Index of the first eigenvalue obtained, taking into account the case in which the first obtained eigenvalue is multiple and/or part of a cluster. \\
\hline ivec & int & Input & \begin{tabular}{l}
Control information. \\
ivec \(=1\) if both the eigenvalues and eigenvectors are sought. \\
ivec \(\neq 1\) if only the eigenvalues are sought.
\end{tabular} \\
\hline etol & double & Input & Tolerance for determining whether an eigenvalue is distinct or numerically multiple. The default value is \(3 \times 10^{-16}\), and etol is set to the default whenever a smaller value is specified. See Comments on use. \\
\hline ctol & double & Input & Tolerance (\(\geq\) etol) for determining whether adjacent eigenvalues are approximately multiple, i.e. clustered. When ctol is less than etol, ctol is set to etol. See Comments on use. \\
\hline nev & int nev[3] & Input & nev [0] indicates the number of eigenvalues to be computed. \\
\hline & & Output & nev [0] indicates the number of distinct eigenvalues, nev [1] indicates the number of distinct clusters, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline e & double e[maxne] & Output & Eigenvalues. Stored in \(\mathrm{e}[\mathrm{i}-1]\), \(\mathrm{i}=1, \ldots, \mathrm{nev}[2]\). \\
\hline \multirow[t]{2}{*}{maxne} & \multirow[t]{2}{*}{int} & Input & Maximum number of eigenvalues that can be computed. See Comments on use. \\
\hline & & Output & When nev [2] is greater than maxne, eigenvectors cannot be computed, and maxne contains the smallest number, nev[2], required to compute the eigenvectors. \\
\hline ev & \begin{tabular}{l}
double \\
ev[maxne][k]
\end{tabular} & Output & When ivec \(=1\), the eigenvectors corresponding to the computed eigenvalues. Stored by row in \(\operatorname{ev}[i-1][j-1], i=1, \ldots, n e v[2]\), \(j=1, \ldots, n\). \\
\hline k & int & Input & \(C\) fixed dimension of array ev (\(\geq \mathrm{n}\)). \\
\hline m & \[
\begin{aligned}
& \text { int } \\
& \text { m[2][maxne] }
\end{aligned}
\] & Output & Information about the multiplicity of the computed eigenvalues. \(\mathrm{m}[0][\mathrm{i}-1]\) indicates the multiplicity of the i-th eigenvalue \(=\lambda_{i}\), \(m[1][i-1]\) indicates the size of the i-th cluster of eigenvalues, \(i=1, \ldots, \min \{\operatorname{maxne}, \operatorname{nev}[2]\}\). \\
\hline VW & double vw[12n] & Work & \\
\hline iVw & int & Work & Ivwlen \(=9 \times\) maxne +128. \\
\hline & ivw[Ivwlen] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
nev [2] indicates the total number of eigenvalues including multiplicities.
Eigenvalues. Stored in \(\mathrm{e}[\mathrm{i}-1]\), \(\mathbf{i}=1, \ldots, \mathrm{nev}[2]\).

Maximum number of eigenvalues that can be computed. See Comments

When nev [2] is greater than maxne, eigenvectors cannot be computed, and maxne contains the smallest number, nev[2], required to compute the eigenvectors.
When ivec \(=1\), the eigenvectors corresponding to the computed eigenvalues. Stored by row in \(\operatorname{ev}[i-1][j-1], i=1, \ldots, n e v[2]\), \(=1, \ldots, n\).

C fixed dimension of array \(\mathrm{ev}(\geq \mathrm{n})\).
Information about the multiplicity of the computed eigenvalues.
\(m[0][i-1]\) indicates the multiplicity of the i-th eigenvalue \(=\lambda_{i}\), \(m\) [1] [i-1] indicates the size of the \(i\)-th cluster of eigenvalues, \(i=1, \ldots, \min \{\operatorname{maxne}, \operatorname{nev}[2]\}\).

Condition code. See below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & The total number of eigenvalues exceeded maxne during computation of multiple and/or clustered eigenvalues. & Discontinued. The eigenvectors cannot be computed. Eigenvalues are returned but are not stored taking into account multiplicities. See Comments on use. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(k<1\) or \(k<n\) \\
- \(\mathrm{nf}<1\) \\
- \(n e v[0]<1\) \\
- \(n f+n e v[0]>n\)
\end{tabular} & Bypassed. \\
\hline 30100 & sl[i] \(\times \operatorname{su}[i-1] \leq 0\), for some \(i\). The matrix cannot be reduced to symmetric form. & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{etol and ctol}

If the eigenvalues \(\lambda_{j}, j=s, s+1, \ldots, s+k,(k \geq 0)\) satisfy
\[
\begin{equation*}
\frac{\left|\lambda_{i}-\lambda_{i-1}\right|}{1+\max \left(\left|\lambda_{i-1}\right|,\left|\lambda_{i}\right|\right)} \leq \varepsilon \tag{2}
\end{equation*}
\]
with \(\varepsilon=\) etol, and if \(\lambda_{s-1}\) and \(\lambda_{s+k+1}\) do not satisfy (2), then the eigenvalues \(\lambda_{j}, j=s, s+1, \ldots, s+k\), are considered to be identical, that is, a single eigenvalue of multiplicity \(k+1\).

The default value of etol is \(3 \times 10^{-16}\). Using this value, the eigenvalues are refined to machine precision.
When (2) is not satisfied for \(\varepsilon=\) etol, \(\lambda_{i-1}\) and \(\lambda_{i}\) are assumed to be distinct eigenvalues.
If (2) is satisfied for \(\varepsilon=\mathrm{ctol}\) (but is not satisfied with \(\varepsilon=\) etol) for eigenvalues \(\lambda_{j}, j=t, t+1, \ldots, t+k\), but not for \(\lambda_{t-1}\) and \(\lambda_{t+k+1}\), then eigenvalues \(\lambda_{j}, j=t, t+1, \ldots, t+k\), are considered to be approximately multiple, that is, clustered, though distinct (not numerically multiple). In order to obtain an invariant subspace, eigenvectors corresponding to clustered eigenvalues are computed using orthogonal starting vectors and are re-orthogonalized.

If ctol < etol, then ctol = etol is set.

\section*{maxne}

If \(r\) eigenvalues are requested, then, depending on the multiplicities of the eigenvalues, more than \(r\) eigenvalues may be obtained. The corresponding eigenvectors can be computed only when the corresponding eigenvector storage area is sufficient.

The maximum number of eigenvalues to be computed can be specified in maxne. If the total number of eigenvalues exceeds maxne, processing is discontinued with icon \(=20000\). The corresponding eigenvectors cannot be computed. The eigenvalues are returned, but they are not stored repeatedly according to multiplicities.

When all eigenvalues are known to be distinct, it is sufficient to set maxne \(=\) nev [0], the number of eigenvalues to be computed.

\section*{General comments}

This routine requires only that \(l_{i} u_{i-1}>0\). The eigenvalue problem (1) can be reduced to a symmetric generalized eigenvalue problem,
\[
(\mathbf{D T}-\lambda \mathbf{D}) \mathbf{x}=\mathbf{0},
\]
where \(\mathbf{D}\) is a diagonal matrix with \(\mathbf{D}_{1}=1\) and \(\mathbf{D}_{i}=u_{i-1} \mathbf{D}_{i-1} / l_{i}, i=2, \ldots, n\). If \(\mathbf{D}_{i}\) can cause a scaling problem, it is preferable to consider the symmetric problem,
\[
\left(\mathbf{D}^{1 / 2} \mathbf{T D}^{-1 / 2}-\lambda \mathbf{I}\right) \mathbf{w}=\mathbf{0}
\]
where \(\mathbf{w}=\mathbf{D}^{1 / 2} \mathbf{x}\).

This routine can also be used to solve the generalized eigenvalue problem
\[
\mathbf{T} \mathbf{x}=\lambda \mathbf{D} \mathbf{x}
\]
by the replacement \(\mathbf{T} \leftarrow \mathbf{T D}^{-1}\), where the diagonal matrix must satisfy \(\mathbf{D}>\mathbf{0}\).

\section*{4. Example program}

This program obtains 103 eigenvalues and prints the results.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define P1 350
\#define Q1 2
\#define NMAX P1*Q1
\#define N0 584
\#define N1 }68
\#define NE N1-N0+1
\#define MAXNE NE+2*Q1
MAIN__()
{
int ierr, icon;
int n, m[2][NMAX], nf, ivec, maxne, nev[3], i, j, k, ii;
double d[NMAX], sl[NMAX], su[NMAX], e[MAXNE], ev[MAXNE][NMAX];
double etol, ctol, vw[12*NMAX];
int ivw[9*MAXNE+128];
/* initialize matrix */
n = NMAX;
k = NMAX
j = (P1+1)/2;
d[j-1] = 0;
for (i=1;i<j;i++) {
sl[i] = 1;
su[i-1] = 1
sl[j+i-1] = 1;
su[j+i-2] = 1;
d[i-1]= j-i;
d[2*j-i-1] = d[i-1];
}
sl[0] = 0;
su[P1-1] = 0;
for (j=2;j<=Q1;j++) {
ii = (j-1)*P1;
for (i=1;i<=P1;i++) {
sl[ii+i-1] = sl[i-1];
su[ii+i-1] = su[i-1];
d[ii+i-1] = d[i-1];
}
}
sl[0] = 0;
su[n-1] = 0;
nf = N0;
ivec = 1;
etol = 0;
ctol = 0;
nev[0] = NE;
maxne = MAXNE;
/* find eigenvalues only */
ierr = c_dvtdev(d, sl, su, n, \&nf, ivec, etol, ctol, nev, e, \&maxne,
(double*)ev, k, (int*)m, vw, ivw, \&icon);
if (icon > 20000) {
printf("ERROR: c_dvtdev failed with icon = %d\n", icon);
exit(1);
}
printf("icon = %i\n", icon);
/* print distinct eigenvalues */
ii = 0;
for (i=0;i<nev[0];i++) {
printf("eigenvalue %i : %7.4f with multiplicity %i\n", nf+ii, e[ii], m[0][ii]);
if (icon == 20000) ii = ii+1;
else ii = ii+m[0][ii];
}
return(0)
}

```

\section*{5. Method}

Consult the entry for VTDEV in the Fortran SSL II Extended Capabilities User's Guide II and [31], [81], [96] and [118].

\section*{c_dvtfqd}
```

Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (TFQMR method, diagonal storage format).
ierr = c_dvtfqd(a, k, ndiag, n, nofst, b,
itmax, eps, iguss, x, \&iter, vw,
\&icon);

```

\section*{1. Function}

This routine solves a system of linear equations (1) using the transpose-free quasi-minimal residual method (TFQMR).
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) nonsymmetric or indefinite sparse matrix, \(\mathbf{b}\) is a constant vector, and \(\mathbf{x}\) is the solution vector. Both the vectors are of size \(n\) and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvtfqd((double *) a, k, ndiag, n, nofst, b, itmax, eps, iguss, x,
\&iter, vw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[ndiag][k]
\end{tabular} & Input & Matrix A. Stored in diagonal storage format for general sparse matrices. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline ndiag & int & Input & The number (>0) of diagonals in the coefficient matrix \(\mathbf{A}\) having non-zero elements. \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nofst & int nofst[ndiag] & Input & Offsets from the main diagonal corresponding to diagonals stored in \(\mathbf{A}\). Upper diagonals have positive offsets, the main diagonal has a zero offset, and the lower diagonals have negative offsets. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline itmax & int & Input & Upper limit (\(>0\)) on the number of iteration steps in the TFQMR method. \\
\hline eps & double & Input & Tolerance for convergence test. \\
\hline iguss & int & Input & When eps is zero or less, eps is set to \(10^{-6}\). See Comments on use. Control information on whether to start the computation with approximate solution values in array \(x\). When iguss \(\neq 0\), computation is to start from approximate solution values in X . \\
\hline x & double \(\times\) [n\(]\) & Input & The starting values for the computation. This is optional and relates to argument iguss. \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline iter & int & Output & Total number of iterations performed in the TFQMR method. \\
\hline vw & double & Work & Vwlen \(=10 \mathrm{k}+\mathrm{n}+\mathrm{ndiag}-1\). \\
\hline
\end{tabular}
```

        vw[Vwlen]
    icon int Output Condition code. See below.

```

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Break-down occurred. See Comments on use. & Discontinued. \\
\hline 20001 & \begin{tabular}{l}
Upper limit of number of iteration steps was \\
reached.
\end{tabular} & \begin{tabular}{l}
Stopped. The approximate solution obtained up to \\
this stage is returned, but its precision is not \\
guaranteed.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet\) \\
\(\mathrm{k}<1\) or \(\mathrm{k}<\mathrm{n}\) \\
\(\bullet\) \\
ndiag \(<1\) or ndiag \(>\mathrm{k}\) \\
\(\bullet \quad\) itmax \(\leq 0\)
\end{tabular} & Bypassed. \\
\hline 32001 & \(|n o f s t[\mathrm{i}-1]|>\mathrm{n}-1\) for some \(\mathrm{i}=1, \ldots\), ndiag & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a and nofst}

The coefficients of matrix \(\mathbf{A}\) are stored using two arrays a and nofst and the diagonal storage format. For full details, see the Array storage formats section of the Introduction.

\section*{eps}

In the TFQMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and eps, the solution is judged to have converged. The difference between the precise solution and the obtained approximation is roughly equal to the product of the condition number of matrix \(\mathbf{A}\) and eps.

\section*{Break-down}

Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine c_dvcrd which uses the MGCR method should be used.

\section*{General comments}

The speed of the TFQMR method is generally higher than the MGCR method.

\section*{4. Example program}

This program solves a system of linear equations and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define UBANDW 2
\#define LBANDW 1
MAIN__()
{
double one=1.0, bcoef=10.0, eps=1.e-6;
int ierr, icon, ndiag, nub, nlb, n, i, j, k;

```
```

    int itmax, iguss, iter;
    int nofst[UBANDW + LBANDW + 1];
    double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
    double vw[NMAX*10+NMAX+UBANDW+LBANDW];
    /* initialize nonsymmetric matrix and vector */
    nub = UBANDW;
    nlb = LBANDW;
    ndiag = nub + nlb + 1;
    n = NMAX;
    k = NMAX;
    for (i=1; i<=nub; i++) {
        for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
        for (j=n-i; j<n ; j++) a[i][j] = 0.0;
        nofst[i] = i;
    }
    for (i=1; i<=nlb; i++) {
    for (j=0 ; j<i+1; j++) a[nub + i][j] = 0.0;
        for (j=i+1; j<n ; j++) a[nub + i][j] = -2.0;
        nofst[nub + i] = -(i + 1);
    }
    nofst[0] = 0;
    for (j=0; j<n; j++) {
        a[0][j] = bcoef;
        for (i=1; i<ndiag; i++) a[0][j] -= a[i][j];
        b[j] = bcoef;
    }
    /* solve the system of linear equations */
    itmax = n;
    iguss = 0;
    ierr = c_dvtfqd ((double*)a, k, ndiag, n, nofst, b, itmax, eps,
                iguss, x, &iter, vw, &icon);
    if (icon != 0) {
        printf("ERROR: c_dvtfqd failed with icon = %d\n", icon);
        exit(1);
    }
    /* check vector */
    for (i=0;i<n;i++)
        if (fabs(x[i]-one) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
    printf("Result OK\n")
    return(0);
    }

```

\section*{5. Method}

For the TFQMR method consult [36].

\section*{c_dvtfqe}
```

Solution of a system of linear equations with a nonsymmetric or
indefinite sparse matrix (TFQMR method, ELLPACK storage format).
ierr = c_dvtfqe(a, k, iwidt, n, icol, b,
itmax, eps, iguss, x, \&iter, vw,
\&icon);

```

\section*{1. Function}

This routine solves a system of linear equations (1) using the transpose-free quasi-minimal residual (TFQMR) method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) nonsymmetric or indefinite sparse matrix, \(\mathbf{b}\) is a constant vector and \(\mathbf{x}\) is the solution vector. Both the vectors are of size \(n\) and \(n \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvtfqe((double *) a, k, iwidt, n, (double *) icol, b, itmax, eps,
iguss, x, \&iter, vw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[iwidt][k]
\end{tabular} & Input & Matrix A. Stored in ELLPACK storage format for general sparse matrices. See Array storage formats in the Introduction section for details. See Comments on use. \\
\hline k & int & Input & C fixed dimension of arrays a and icol (\(\geq \mathrm{n}\)). \\
\hline iwidt & int & Input & The maximum number (\(>0\)) of non-zero elements in any row vectors of \(\mathbf{A}\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline icol & \[
\begin{aligned}
& \text { int } \\
& \text { icol[iwidt][k] }
\end{aligned}
\] & Input & Column indices used in the ELLPACK format, showing to which column the elements corresponding to a belong. See Comments on use. \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline itmax & int & Input & Upper limit (>0) on the number of iteration steps in the TFQMR method. \\
\hline eps & double & Input & Tolerance for convergence test. \\
\hline iguss & int & Input & When eps is zero or less, eps is set to \(10^{-6}\). See Comments on use. Control information on whether to start the computation with approximate solution values in array \(x\). When iguss \(\neq 0\) computation is to start from approximate solution values in X . \\
\hline X & double \(\times[\mathrm{n}]\) & Input & The starting values for the computation. This is optional and relates to argument iguss. \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline iter & int & Output & Total number of iteration steps performed in TFQMR method. \\
\hline vw & double \(\mathrm{Vw}[13 \mathrm{k}\)] & Work & \\
\hline
\end{tabular}
icon int Output Condition code. See below.

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Break-down occurred. See Comments on use. & Discontinued. \\
\hline 20001 & \begin{tabular}{l}
Upper limit of number of iteration steps was \\
reached.
\end{tabular} & \begin{tabular}{l}
Stopped. The approximate solution obtained up to \\
this stage is returned, but its precision is not \\
guaranteed.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<1\) or \(\mathrm{k}<\mathrm{n}\) \\
\(\bullet \quad\) iwidt \(<1\) or iwidt \(>\mathrm{k}\) \\
\(\bullet \quad\) itmax \(\leq 0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{\(a\) and icol}

The coefficients of matrix \(\mathbf{A}\) are stored using two arrays a and icol and the ELLPACK storage format for general sparse matrices. For full details, see the Array storage formats section of the Introduction.

\section*{eps}

In the TFQMR method, when the residual (Euclidean norm) is equal to or less than the product of the initial residual and eps, the solution is judged to have converged. The difference between the precise solution and the obtained approximation is roughly equal to the product of the condition number of matrix \(\mathbf{A}\) and eps.

\section*{Break-down}

Break-down occurs when the iterative calculation cannot be continued because characteristics of the initial vector or the coefficient matrix give rise to a zero as an intermediate result in the recursive calculation formula. In such cases, routine c_dvcre which uses the MGCR method should be used.

\section*{General comments}

The speed of the TFQMR method is generally higher than the MGCR method.

\section*{4. Example program}

This program solves a system of linear equations and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
\#define UBANDW 2
\#define LBANDW 1
MAIN__()
{
double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
int ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, iter, i, j, ix;
int icol[UBANDW + LBANDW + 1][NMAX];
double a[UBANDW + LBANDW + 1][NMAX], b[NMAX], x[NMAX];
double vw[NMAX * 13];

```
```

    /* initialize matrix and vector */
    nub = UBANDW;
    nlb = LBANDW;
    iwidt = UBANDW + LBANDW + 1;
    n = NMAX;
    k = NMAX;
    for (i=0; i<n; i++) b[i] = bcoef;
    for (i=0; i<iwidt; i++)
        for (j=0; j<n; j++) {
        a[i][j] = 0.0;
        icol[i][j] = j+1;
        }
    for (j=0; j<nlb; j++) {
        for (i=0; i<j; i++) a[i][j] = lcf;
        a[j][j] = bcoef - (double) j * lcf - (double) nub * ucf;
        for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
        for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
    }
    for (j=nlb; j<n-nub; j++) {
        for (i=0; i<nlb; i++) a[i][j] = lcf;
        a[nlb][j] = bcoef - (double) nlb * lcf - (double) nub * ucf;
        for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;
        for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
    }
    for (j=n-nub; j<n; j++){
        for (i=0; i<nlb; i++) a[i][j] = lcf;
        a[nlb][j] = bcoef - (double) nlb * lcf - (double) (n-j-1) * ucf;
        for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
        ix = n - (j+nub-nlb-1);
        for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
    }
    /* solve the system of linear equations */
    itmax = n;
    iguss = 0;
    ierr = c_dvtfqe ((double*)a, k, iwidt, n, (int*)icol, b, itmax,
    eps, iguss, x, &iter, vw, &icon);
    if (icon != 0) {
        printf("ERROR: c_dvtfqe failed with icon = %d\n", icon);
        exit(1);
    }
    /* check vector */
    for (i=0; i<n; i++)
    if (fabs(x[i]-one) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
    printf("Result OK\n");
    return(0);
    }

```

\section*{5. Method}

For TFQMR method consult [36].

\section*{c_dvwflt}
\begin{tabular}{|l|}
\hline Wavelet filter generation. \\
\hline ierr \(=\) c_dvwflt(f, n, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This routine generates a filter corresponding to the Daubechies wavelet (order \(n\)) having a compact support. A filter of order \(2,4,6,12\) or 20 can be generated.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dvwflt(f, n, \&icon);

```
where:
\begin{tabular}{llll}
\(f\) & double \(\mathrm{f}[2 \mathrm{n}]\) & Input & Wavelet filter coefficients used for transform. See Comments on use. \\
n & int & Input & \begin{tabular}{l}
Order \(n(2,4,6,12\), or 20) of wavelet filter. (Number of wavelet filter \\
coefficients.)
\end{tabular} \\
icon & int & Output & \begin{tabular}{l}
Condition code. See below.
\end{tabular}
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & n is not \(2,4,6,12\), or 20. & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

The orthogonal filter used for this routine generally has a vector of size \(2 n\) with \(f[0], f[1], \ldots, f[n-1]\) defining the lowpass filter coefficients and \(f[n], f[n+1], \ldots, f[2 n-1]\) defining the high-pass filter coefficients. These coefficients have the following relationships:
\[
\sum_{i=0}^{n-1} f[i]^{2}=1, \quad f[2 n-1-i]=(-1)^{i+1} f[i], \quad i=0,1, \ldots, n-1
\]

\section*{c_dv1dwt and c_dv2dwt}

The filter coefficients generated by this routine can be used with routine \(c _d v 1 d w t\) or \(c _d v 2 d w t\) to perform one or two dimensional wavelet transforms or inverse transforms. Input argument \(n\) and output argument \(f\) of this routine are the same as input arguments \(k\) and \(f\) of \(c _d v 1 d w t\) and \(c _d v 2 d w t\).

\section*{4. Example program}

This program forms the wavelet filter and performs the one-dimensional wavelet transform. The inverse transform is then performed and the result checked.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>

```
```

\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 1024
\#define KMAX 6
MAIN__()
{
int ierr, icon;
double phai, ran, eps;
double x[NMAX], y[NMAX], f[2*KMAX], xx[NMAX];
int isn, i, k, ls, n;
/* generate initial data */
n = NMAX;
ls = 10;
k = KMAX;
phai = (sqrt(5.0)-1.0)/2;
for (i=0;i<n;i++) {
ran = (i+1)*phai;
x[i] = ran - (int)ran;
}
for (i=0;i<n;i++)
xx[i] = x[i];
/* generate wavelet filter */
ierr = c_dvwflt(f, k, \&icon);
if (icon != 0 ) {'
printf("ERROR: c_dvwflt failed with icon = %i\n", icon);
exit (1);
}
/* perform normal wavelet transform */
isn = 1;
ierr = c_dv1dwt(x, n, y, isn, f, k, ls, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dv1dwt failed with icon = %i\n", icon);
exit (1);
}
/* perform inverse wavelet transform */
isn = -1;
ierr = c_dv1dwt(x, n, y, isn, f, k, ls, \&icon);
if (icon != 0 ) {
printf("ERROR: c_dv1dwt failed with icon = %i\n", icon);
exit (1);
}
/* check results */
eps = 1e-6;
for (i=0;i<n;i++)
if (fabs((x[i]-xx[i])/xx[i]) > eps) {
printf("Inaccurate result\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult references [20] and [27].

\section*{c_ranb2}
```

Binomial pseudo-random numbers.
ierr = c_ranb2(m, p, \&ix, ia, n, vw, ivw,
\&icon);

```

\section*{1. Function}

This library function generates a sequence of \(n\) pseudo-random numbers from the probability density function of the binomial distribution with moduli \(m\) and \(p\), as given below:
\[
P_{k}=\binom{m}{k} p^{k}(1-p)^{m-k}, \quad 0<p<1 \quad k=0,1,2, \ldots, m \quad m=1,2,3, \ldots
\]
where \(n \geq 1\). A sequence of uniformly distributed pseudo-random numbers is used to generate a sequence of values for \(k\), where \(k \in\{0,1,2, \ldots, m\}\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_ranb2(m, p, \&ix, ia, n, vw, ivw, \&icon);
where:
\begin{tabular}{llll}
\(m\) & int & Input & Modulus \(m\). \\
p & float & Input & Modulus \(p\). \\
ix & int & Input & \begin{tabular}{l}
Starting value or 'seed'. Must be non-negative integer. See Comments on \\
use.
\end{tabular} \\
& & Output & Starting value for subsequent call. \\
ia & int ia[n] & Output & The pseudo-random numbers. \\
n & int & Input & Number of pseudo-random numbers to be produced. \\
Vw & float \(\mathrm{Vw}[\mathrm{m}+1]\) & Work & \\
ivw & int ivw[m+1] & Work & \\
icon & int & Output & Condition code. See below. \\
The complete list of condition codes is given below.
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{m}<1\) \\
& \(\bullet \quad \mathrm{p} \leq 0\) or \(\mathrm{p} \geq 1\) & \\
& \(\bullet \quad \mathrm{ix}<0\) \\
& \(\bullet \quad \mathrm{n}<1\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ix}

This library function converts uniformly distributed pseudo-random numbers into binomial random numbers. ix is used as the starting value, or 'seed', to generate the uniform random numbers.

\section*{vw and ivw}

VW and iVw should not be altered as long as m and p are unchanged between subsequent calls.

\section*{4. Example program}

This program calculates 10000 binomial pseudo-random numbers, and their mean and standard deviation is then determined. These observed values and the expected values of the mean and standard deviation are displayed.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 10000
\#define M 20
MAIN__()
{
int ierr, icon;
int m, n, ix, i, ia[N], ivw[M+1], sum, sumsq;
float p, vw[M+1], mean, dev;
/* initialize parameters */
n = N;
ix = 12345;
m = M;
p = 0.75;
/* generate pseudo-random numbers */
ierr = c_ranb2(m, p, \&ix, ia, n, vw, ivw, \&icon);
if (icon != 0) {
printf("ERROR: c_ranb2 failed with icon = %d\n", icon);
exit(1);
}
/* calculate mean and deviation */
sum = 0;
sumsq = 0;
for (i=0;i<n;i++) {
sum = sum+ia[i];
sumsq = sumsq+ia[i]*ia[i];
}
mean = (double)sum/n;
dev = sqrt((double)sumsq/n - mean*mean);
printf("observed mean = %12.4e deviation = %12.4e\n",
mean, dev);
printf("calculated mean = %12.4e deviation = %12.4e\n",
m*p, sqrt(m*p*(1-p)));
return(0);
}

```

\section*{5. Method}

For further information, see the entry for RANB2 in the Fortran SSL II User's Guide.

\section*{c_rane2}
\begin{tabular}{|l|}
\hline Exponential pseudo-random numbers (single precision). \\
\hline ierr = c_rane2(am, \&ix, a, n, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This library function generates a sequence of \(n\) pseudo-random numbers from the probability density function of the exponential distribution with a mean value of \(m\), as given below:
\[
g(x)=\frac{1}{m} e^{-x / m}
\]
where \(x \geq 0, m>0\), and \(n \geq 1\). A sequence of uniform pseudo-random numbers is used to generate a sequence of values for \(x\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_rane2(am, \&ix, a, n, \&icon);
where:
\begin{tabular}{llll}
am & float & Input & Mean value of the exponential distribution \(m\). \\
ix & int & Input & \begin{tabular}{l}
Starting value, or 'seed'.
\end{tabular} \\
& & Output & Starting value for the next call. See Comments on use. \\
a & float \(\mathrm{a}[\mathrm{n}]\) & Output & \(n\) exponentially distributed pseudo-random numbers. \\
n & int & Input & Number \(n\) of pseudo-random numbers to be generated. \\
icon & int & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{am} \leq 0\). & \\
& \(\bullet \quad \mathrm{ix}<0\). & \\
& \(\bullet \quad \mathrm{n}<1\). & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ix}

This library function generates uniformly distributed pseudo-random numbers and then converts then into exponentially distributed random numbers. ix is used as the starting value, or 'seed', to generate the uniform random numbers.

\section*{4. Example program}

This program calculates 10000 exponential pseudo-random numbers, and their mean and standard deviation is then determined. These observed values and the expected values of the mean and standard deviation are displayed.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 10000
MAIN__()
{
int ierr, icon;
int n, ix, i;
float a[NMAX], am, sum, sumsq, mean, dev;
/* initialize parameters */
n = NMAX;
ix = 12345;
am = 1;
/* generate pseudo-random numbers */
ierr = c_rane2(am, \&ix, a, n, \&icon);
if (icon != 0) {
printf("ERROR: c_rane2 failed with icon = %d\n", icon);
exit(1);
}
/* calculate mean and deviation */
sum = 0;
sumsq = 0;
for (i=0;i<n;i++) {
sum = sum+a[i];
sumsq = sumsq+a[i]*a[i];
}
mean = sum/n
dev = sqrt(sumsq/n - mean*mean);
printf("observed mean = %12.4e deviation = %12.4e\n",
mean, dev);
printf("calculated mean = %12.4e deviation = %12.4e\n",
1.0, 1.0);
return(0);
}

```

\section*{5. Method}

For further information, see the entry for RANE2 in the Fortran SSL II User's Guide.

\section*{c_ranp2}
```

Poisson pseudo-random numbers.
ierr = c_ranp2(am, \&ix, ia, n, vw, ivw,
\&icon);

```

\section*{1. Function}

This library function generates a sequence of \(n\) pseudo-random numbers from the probability density function of the Poisson distribution with a mean value of \(m\), as given below:
\[
\begin{equation*}
P_{k}=\frac{m^{k}}{k!} e^{-m} \tag{1}
\end{equation*}
\]
where \(m>0\), and \(k \in\{1,2, \ldots\}\). Thus a sequence of uniform pseudo-random numbers is used to generate a sequence of values for \(k\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_ranp2(am, \&ix, ia, n, vw, ivw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline am & float & Input & Mean value \(m\) of the Poisson distribution. See Comments on use. \\
\hline \multirow[t]{2}{*}{ix} & \multirow[t]{2}{*}{int} & Input & Starting value, or 'seed'. \\
\hline & & Output & Starting value for the next call. See Comments on use. \\
\hline ia & int ia[n] & Output & \(n\) Poisson pseudo-random numbers. \\
\hline n & int & Input & Number \(n\) of pseudo-random numbers to be generated. \\
\hline Vw & float & Work & \\
\hline & \(\mathrm{Vw}[2 m+10]\) & & \\
\hline ivw & int & Work & \\
\hline & ivw[2m+10] & & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
am \(\leq 0, \mathrm{ix}<0, \mathrm{n}<1\), or \(\mathrm{am}>\log \left(f l_{\max }\right)\). \\
See Comments on use..
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{am}

The criterion that \(a \mathrm{~m} \leq \log \left(f l_{\max }\right)\) is required in this routine, as otherwise an underflow could occur during the calculation of \(e^{-m}\) in the cumulative Poisson distribution. For details of \(f l_{\text {max }}\) see the Machine Constants section in the Introduction. Note that where am is large (\(\mathrm{am} \geq 20\)), Poisson pseudo-random numbers can be approximated by normally distributed pseudo-random numbers, with mean \(m\) and standard deviation \(m\).

\section*{ix}

This library function converts uniformly distributed pseudo-random numbers into Poisson random numbers. ix is used as the starting value, or 'seed', to generate the uniform random numbers.

\section*{4. Example program}

This program calculates 10000 Poisson pseudo-random numbers, and their mean and standard deviation is then determined. These observed values and the expected values of the mean and standard deviation are displayed.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define NMAX 10000
\#define MMAX 20
MAIN__()
{
int ierr, icon;
int n, ix, i, ia[NMAX], ivw[2*MMAX+10], sum, sumsq;
float am, vw[2*MMAX+10], mean, dev;
/* initialize parameters */
n = NMAX;
am = 1;
ix = 12345;
/* generate pseudo-random numbers */
ierr = c_ranp2(am, \&ix, ia, n, vw, ivw, \&icon);
if (icon !=0) {
printf("ERROR: c_ranp2 failed with icon = %d\n", icon);
exit(1);
}
/* calculate mean and deviation */
sum = 0;
sumsq = 0;
for (i=0;i<n;i++) {
sum = sum+ia[i];
sumsq = sumsq+ia[i]*ia[i];
}
mean = (double)sum/n;
dev = sqrt((double)sumsq/n - mean*mean);
printf("observed mean = %12.4e deviation = %12.4e\n",
mean, dev);
printf("calculated mean = %12.4e deviation = %12.4e\n",
am, sqrt(am));
return(0);
}

```

\section*{5. Method}

For further information consult the entry for RANP2 in the Fortran SSL II User's Guide.

\section*{Description of the auxiliary routines}

\section*{c_dcsum}
\begin{tabular}{|l|}
\hline Inner product (complex vector). \\
\hline ierr = c_dcsum(za, zb, n, ia, ib, \&zsum); \\
\hline
\end{tabular}

\section*{1. Function}

Given \(n\)-dimensional complex vectors \(\mathbf{a}\) and \(\mathbf{b}\), this routine computes the inner product (product sum) \(\sigma\),
\[
\sigma=\sum_{i=1}^{n} a_{i} b_{i}
\]
where \(\mathbf{a}^{\mathrm{T}}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \mathbf{b}^{\mathrm{T}}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dcsum(za, zb, n, ia, ib, \&zsum);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{za} & dcomplex & \multirow[t]{2}{*}{Input} & \multirow[t]{2}{*}{Vector a. Alen \(=|\mathrm{ia}| * \mathrm{n}\).} \\
\hline & za[Alen] & & \\
\hline \multirow[t]{2}{*}{zb} & dcomplex & \multirow[t]{2}{*}{Input} & \multirow[t]{2}{*}{Vector \(\mathbf{b}\). Blen \(=|\mathrm{ib}| * \mathrm{n}\).} \\
\hline & zb[Blen] & & \\
\hline n & int & Input & Dimension \(n\) of vectors \(\mathbf{a}\) and \(\mathbf{b}\). \\
\hline \multirow[t]{2}{*}{ia} & \multirow[t]{2}{*}{int} & \multirow[t]{2}{*}{Input} & Interval (\(\neq 0\)) in array za between consecutive elements of vector \(\mathbf{a}\). \\
\hline & & & Generally, ia \(=1\). See Comments on use. \\
\hline ib & int & Input & Interval (\(\neq 0\)) in array zb between consecutive elements of vector \(\mathbf{b}\). \\
\hline & & & Generally, ib \(=1\). See Comments on use. \\
\hline zsum & dcomplex & Output & Inner product \(\sigma\). See Comments on use. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Data spacing in arrays za and zb}

Set \(\mathrm{ia}=p\) when elements of vector \(\mathbf{a}\) are stored in array za with spacing \(p\). Likewise set \(\mathrm{ib}=q\) when elements of vector \(\mathbf{b}\) are stored in array \(\mathbf{z} \mathbf{b}\) with spacing \(q\). If \(p, q<0\), care must be taken in assigning arrays \(z \mathbf{a}\) and \(\mathbf{z b}\).

\section*{4. Example program}

This program finds the sum of a row and a column of a matrix and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{

```
```

int n, i, j, ia, ib;
double eps;
dcomplex zsum, zsum2;
dcomplex zmat[NMAX][NMAX], *za, *zb;
/* initialize matrix */
n = NMAX;
for (i=0;i<n;i++)
for (j=0;j<n;j++) {
zmat[i][j].re = i+j+1;
zmat[i][j].im = i-j+1;
}
/* calculate the product sum of row 6 and column 3 */
za = \&zmat[6][0];
ia = 1;
zb = \&zmat[0][3];
ib = NMAX;
c_dcsum(za, zb, n, ia, ib, \&zsum);
/* check sum */
eps = 1e-6;
zsum2.re = 0;
zsum2.im = 0;
for (i=0;i<n;i++) {
zsum2.re = zsum2.re + za[i*ia].re*zb[i*ib].re-za[i*ia].im*zb[i*ib].im;
zsum2.im = zsum2.im + za[i*ia].re*zb[i*ib].im+za[i*ia].im*zb[i*ib].re;
}
if ((fabs((zsum2.re-zsum.re)/zsum.re) > eps) ||
(fabs((zsum2.im-zsum.im)/zsum.im) > eps)) {
printf("WARNING: result inaccurate\n");
exit(1);
}
printf("Result OK\n");
return(0);
}

```

\section*{c_dfmax}
\begin{tabular}{|l|}
\hline Positive maximum value of the floating-point number system. \\
\hline result \(=\) c_dfmax ()\(;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine returns the positive maximum value \(f l_{\max }\), of the floating-point number system.

\section*{2. Arguments}

The routine returns a result of type double and is called as follows:
result = c_dfmax();

\section*{3. Comments on use}

Values of \(f l_{\text {max }}\) are given below.
\begin{tabular}{|l|l|l|}
\hline Arithmetic & Maximum values & Application \\
\hline \multirow{3}{*}{ Hexadecimal } & \(\left(1-16^{-14}\right) \cdot 16^{63}\) & \begin{tabular}{l}
FACOM M series \\
FACOM S series \\
SX/G 200 series
\end{tabular} \\
\hline \multirow{2}{*}{ Binary } & & \begin{tabular}{l}
VPP series \\
FM series
\end{tabular} \\
& \(\left(1-2^{-53}\right) \cdot 2^{1024}\) & SX/G 100 series \\
\cline { 2 - 3 } & \(\left(1-2^{-56}\right) \cdot 2^{252}\) & \\
\hline
\end{tabular}

\section*{c_dfmin}

> \begin{tabular}{|l} \hline Positive minimum value of the floating-point number system. \\ \hline result \(=\) c_dfmin (); \\ \hline \end{tabular}

\section*{1. Function}

This routine returns the positive minimum value \(f l_{\min }\), of the floating-point number system.

\section*{2. Arguments}

The routine returns a result of type double and is called as follows:
result = c_dfmin();

\section*{3. Comments on use}

Values of \(f l_{\text {min }}\) are given below.
\begin{tabular}{|l|l|l|}
\hline Arithmetic & Minimum values & Application \\
\hline Hexadecimal & \(16^{-1} \cdot 16^{-64}\) & \begin{tabular}{l}
FACOM M series \\
FACOM S series \\
SX/G 200 series
\end{tabular} \\
\hline \multirow{3}{*}{ Binary } & \(2^{-1} \cdot 2^{-1021}\) & \begin{tabular}{l}
VPP series \\
FM series
\end{tabular} \\
\cline { 2 - 3 } & \(2^{-1} \cdot 2^{-259}\) & SX/G 100 series \\
\hline
\end{tabular}

\section*{c_dmach}
\begin{tabular}{|l|}
\hline Unit round-off. \\
\hline result = c_dmach ();
\end{tabular}

\section*{1. Function}

This routine defines the unit round-off \(\mu\) in normalized floating-point arithmetic.
\[
\begin{array}{ll}
\mu=M^{1-L / 2} & \text { for correctly rounded arithmetic, } \\
\mu=M^{1-L} & \text { for chopped arithmetic, }
\end{array}
\]
where M is the radix of the number system, and L is the number of digits contained in the mantissa.

\section*{2. Arguments}

The routine returns a result of type double and is called as follows:
```

result = c_dmach();

```

\section*{3. Comments on use}

Values of the unit round-off are given below.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ Arithmetic method } & dmach & Application \\
\hline Hexadecimal: \(\mathrm{M}=16\) & Chopped arithmetic & \(\mathrm{L}=14, \quad \mu=16^{-13}\) & \begin{tabular}{l}
FACOM M series \\
FACOM S series \\
SX/G 200 series
\end{tabular} \\
\hline Binary: \(\mathrm{M}=2\) & Rounded arithmetic & \(\mathrm{L}=52 \quad \mu=\frac{1}{2} 2^{-51}\) & \begin{tabular}{l}
VPP series \\
FM series \\
SX/G series
\end{tabular} \\
\hline
\end{tabular}

\section*{c_dsum}
\[
\begin{array}{|l|}
\hline \text { Inner product (real vector). } \\
\hline \text { ierr = c_dsum(a, b, n, ia, ib, \&sum); } \\
\hline
\end{array}
\]

\section*{1. Function}

Given \(n\)-dimensional real vectors \(\mathbf{a}\) and \(\mathbf{b}\), this routine computes the inner product (product sum) \(\sigma\),
\[
\sigma=\sum_{i=1}^{n} a_{i} b_{i},
\]
where \(\mathbf{a}^{\mathrm{T}}=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \mathbf{b}^{\mathrm{T}}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dsum(a, b, n, ia, ib, \&sum);
where:
\begin{tabular}{llll}
a & double \(\mathrm{a}[\) Alen] & Input & Vector \(\mathbf{a}\). Alen \(=|\mathrm{ia}| * \mathrm{n}\). \\
b & double \(\mathrm{b}[\) Blen] & Input & Vector \(\mathbf{b}\). Blen \(=|\mathrm{ib}| * \mathrm{n}\). \\
n & int & Input & \begin{tabular}{l}
Dimension \(n\) of vectors \(\mathbf{a}\) and \(\mathbf{b}\).
\end{tabular} \\
ia & int & Input & \begin{tabular}{l}
Interval \((\neq 0)\) in array a between consecutive elements of vector \(\mathbf{a}\). \\
Generally, ia \(=1\). See Comments on use.
\end{tabular} \\
ib & int & Input & \begin{tabular}{l}
Interval \((\neq 0)\) in array b between consecutive elements of vector \(\mathbf{b}\). \\
Generally, ib \(=1\). See Comments on use.
\end{tabular} \\
sum & double & Output & Inner product \(\sigma\). See Comments on use.
\end{tabular}

\section*{3. Comments on use}

\section*{Data spacing in arrays \(a\) and \(b\)}

Set \(\mathrm{ia}=p\) when elements of vector \(\mathbf{a}\) are stored in array a with spacing \(p\). Likewise set \(\mathrm{ib}=q\) when elements of vector \(\mathbf{b}\) are stored in array b with spacing \(q\). If \(p, q<0\), care must be taken in assigning arrays a and b .

\section*{4. Example program}

This program finds the sum of a row and a column of a matrix and checks the result.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX 100
MAIN__()
{
int n, i, j, ia, ib;
double eps, err, sum, sum2;
double mat[NMAX][NMAX], *a, *b;

```
```

    /* initialize matrix */
    n = NMAX;
    for (i=0;i<n;i++)
        for (j=0;j<n;j++)
            mat[i][j] = i+j+1;
    /* calculate the product sum of row 6 and column 3 */
    a = &mat[6][0];
    ia = 1;
    b = &mat[0][3];
    ib = NMAX;
    c_dsum(a, b, n, ia, ib, &sum);
    /* check sum */
    eps = 1e-6;
    sum2 = 0;
    for (i=0;i<n;i++)
        sum2 = sum2 + a[i*ia]*b[i*ib];
    err = fabs((sum2-sum)/sum);
    if (err > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1)
    }
    printf("Result OK\n");
    return(0)
    }

```

\section*{c_iradix}
\begin{tabular}{|l}
\hline Radix of the floating-point number system. \\
\hline radix \(=c\)
\end{tabular}
radix = c_iradix();

\section*{1. Function}

This routine returns the radix of the floating-point number system.

\section*{2. Arguments}

The routine returns a result of type int and is called as follows:
radix = c_iradix();

\section*{3. Comments on use}

Values of the iradix are given below.
\begin{tabular}{|l|l|l|}
\hline Arithmetic & iradix & Application \\
\hline Binary & iradix \(=2\) & \begin{tabular}{l}
VPP Series \\
FM series \\
SX/G series
\end{tabular} \\
\hline Hexadecimal & iradix \(=16\) & \begin{tabular}{l}
FACOM M series \\
\\
\end{tabular} \\
& \begin{tabular}{l}
FACOM S series \\
SX/G 200 series
\end{tabular} \\
\hline
\end{tabular}

\section*{Bibliography}
[1] Ahlberg, J. H., Nilson, E. N. and Walsh, J. L. The Theory of Splines and Their Applications, Academic Press, 1967.
[2] Akima, H. "A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedure", Journal of the ACM, Vol.17, No.41, pp.589-602, 1970.
[3] Akima, H. "Bivariate Interpolation and Smooth Surface Fitting Based on Local Procedures", Comm. ACM, Vol.17, No.1, pp.26-31, 1974.
[4] "Algorithm 334, Normal Random Deviates", Comm. ACM, Vol.11, p.498, (July 1968).
[5] Amestoy, P., Dayde, M. and Duff, I. "Use of computational kernels in the solution of full and sparse linear equations", Parallel and Distributed Algorithms, (M. Cosnard, Y. Robert, Q. Quinton and M. Raynal eds.), pp.13-19, NorthHolland, 1989.
[6] Anderson, S. L. "Random number generators on vector supercomputers and other advanced architectures", SIAM Rev, Vol. 32 (1990), pp.221-251.
[7] Bowdler, H. J., Martin, R. S. and Wilkinson, J. H. "Solution of Real and Complex Systems of Linear Equations", Linear Algebra Handbook for Automatic Computation, Vol.2, pp.93-110, Springer-Verlag, 1971.
[8] Brent, R. P. A Fast Vectorised Implementation of Wallace's Normal Random Number Generator, Technical Report, Computer Sciences Laboratory, Australian National University, To appear.
[9] Brent, R. P. Algorithms for Minimization without Derivatives, Prentice-Hall, pp.47-60, 1973.
[10] Brent, R. P. "Fast normal random number generators on vector processors", Technical Report TR-CS-93-04, Computer Sciences Laboratory, Australian National University, Canberra, March 1993.
[11] Brent, R. P. "Uniform random number generators for supercomputers", Proc. Fifth Australian Supercomputer Conference, Melbourne, Dec. 1992, pp.95-104.
[12] Brent, R. P. "Uniform random number generators for vector and parallel computers", Report TR-CS-92-02, Computer Sciences Laboratory, Australian National University, Canberra, March 1992.
[13] Brezinski, C. Acceleration de la Convergence en Analyse Numerique, Lecture Notes in Mathematics 584, SpringerVerlag, pp.136-159, 1977.
[14] Bromwich, T. J. Introduction to the Theory of Infinite Series, Macmillan, 1926.
[15] Bunch, J. R. and Kaufman, L. "Some Stable Methods for Calculation Inertia and Solving Symmetric. Linear Systems", Math. Comp., Vol.13, No.137, January 1977, pp.163-179.
[16] Burden, R.L. and Faires, J. D. Numerical Analysis, Fifth Edition, PWS Publishing Company, 1993.
[17] Burrus, C. S., and Eschenbacher, P. W. "An In Place, In-Order Prime Factor FFT Algorithm", IEEE Trans. on Acous, Speech, Signal Processing, Vol.ASSP-29, No.4, pp.806-817, August 1981.
[18] Businger, P. and Golub, G. H. "Linear Least Squares Solutions by Householder Transformations", Linear Algebra Handbook for Automatic Computation, Vol.2, pp.111-118, Springer-Verlag, 1971.
[19] Byrne, G. D. and Hindmarsh, A. C. "A Polyalgorithm for the Numerical Solution of Ordinary Differential Equations", ACM Trans. Math. Soft., Vol.1, No.1, pp.71-96, March 1975.
[20] Chui, C.K. "Wavelets and Splines" in Advances in Numerical. Analysis, Vol. II, Oxford Scientific Publishers, 1992.
[21] Clenshaw, C.W. and Curtis, A. R. "A method for numerical integration on an automatic computer", Numer. Math., Vol.2, 1960, pp.197-205.
[22] Cody, W. J. and Thacher Jr, C. H. "Chebyshev Approximations for the Exponential Integral \(E_{i}(x)\) ", Math. Comp., Vol.23, pp.289-303, Apr. 1969.
[23] Cody, W. J. and Thacher Jr., C. H. "Rational Chebyshev Approximations for the Exponential Integral \(E_{i}(x)\) ", Math. Comp., Vol.22, pp.641-649, July 1968.
[24] Cosnard, M. Y. "A Comparison of Four Methods for Solving Systems of Nonlinear Equations", Cornell University Computer Science Technical Report TR75-248, 1975.
[25] Cullum, J.K. and Willoughby, R.A. Lanczos algorithm for large symmetric eigenvalue computations, Birkhauser, 1985.
[26] Dantzig, G. Linear Programming and Extensions, Princeton University Press, 1963.
[27] Daubechies, I. Ten lectures on wavelets, SIAM, 1992.
[28] Davis, P. J. and Rabinowitz, P. Methods of Numerical Integration, Academic Press, 1975.
[29] De Boor, C. "CADRE: An algorithm for numerical quadrature", in Mathematical Software (ed. J. R. Rice), Academic Press, 1971, pp.417-449.
[30] De Boor, C. "On Calculating with B-splines", J. Approx. Theory, Vol.6, 1972, pp.50-62.
[31] Demmel, J. and Kahan, W. "Accurate singular values of bidiagonal matrices", SIAM J. Sci. Comput, Vol.11, pp.873912, 1990.
[32] Ferrenberg, A. M., Landau, D. P. and Wong, Y. J. "Monte Carlo simulations: Hidden errors from "good" random number generators", Phys. Rev. Lett, Vol.69, (1992), pp.3382-3384.
[33] Fletcher, R. "Fortran subroutines for minimization by quasi-Newton methods", Report R7125 AERE, Harwell, England, 1972.
[34] Forsythe, G. E. and Moler, C. B. Computer Solution of Linear Algebraic Systems, Prentice-Hall Inc., 1967.
[35] Fox, L. and Parker, A. B. Chebyshev Polynomials in Numerical Analysis, Oxford University Press, 1972.
[36] Freund, R. "A transpose-free quasi-minimal residual algorithm for nonhermitian linear systems", SIAM J. Sci. Comput. Vol. 14, pp.470-482, 1993.
[37] Freund, R. and Nachtigal, N., "QMR: a quasi minimal residual method for non-Hermitian linear systems", Numerische Mathematik Vol. 60, pp. 315-339, 1991.
[38] Garside, G. R., Jarratt, P. and Mack, C. "A New Method for Solving Polynomial Equations", Computer Journal, Vol.11, pp.87-90, 1968.
[39] Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, 1971.
[40] Gershinsky, M. and Levine, D. "Aitken-Hermite Interpolation", Journal of the ACM, Vol.11, No.3, 1964, pp.352-356.
[41] Golub, G. H. and Reinsch, C. "Singular Value Decomposition and Least Squares Solutions", Linear Algebra Handbook for Automatic Computation, Vol.2, pp.134-151, Springer-Verlag, 1971.
[42] Golub, G. H. and Van Loan, C. Matrix computations, The Johns Hopkins University Press, Baltimore, 1989.
[43] Graps, A. "An introduction to wavelets", IEEE Computational Science and Engineering, Vol. 9, No.2, 1995.
[44] Greville, T. N. E. "Spline Function, Interpolation and Numerical Quadrature", Mathematical Methods for Digital Computers, Vol.2, John-Wiley \& Sons, 1967, pp.156-168.
[45] Gutknecht, M. H. Variants of BiCGStab for matrices with complex spectrum, IPS Research report No. 91-14, 1991.
[46] Hamming, R. W. "Stable Predictor Corrector Methods for Ordinary Differential Equations", Journal of the ACM, Vol.6, 1956, pp.37-47.
[47] Hamming, W. Numerical Methods for Scientists and Engineers, McGraw-Hill, 1973.
[48] Hart, J. F. Complete Elliptic Integrals, John Wiley \& Sons, 1968.
[49] Hegland, M. "A self-sorting in-place fast Fourier transform algorithm suitable for vector and parallel processing", Numerische Mathematik, 1994.
[50] Hegland, M. "An Implementation of Multiple and Multivariate Fourier Transforms on Vector Processors", SIAM J. Sci. Comput, Vol.16, No.2, pp.271-288, March 1995.
[51] Hegland, M. "On the parallel solution of tridiagonal systems by wrap-around partitioning and incomplete LU factorization", Numerische Mathematik, Vol. 59, No.5, pp.453-472, 1991.
[52] Heringa, J.R, Blöte, H.W .J. and Compagner, A. "New primitive trinomials of Mersenne-exponent degrees for random-number generation", International J. of Modern Physics C 3(1992), pp.561-564.
[53] Hestenes, M. R. and Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Nat Bur. Standards, 49:409-433, 1952.
[54] Hildebrand, F. B. Introduction to Numerical Analysis, Second Edition. McGraw-Hill, 1974.
[55] Hindmarsh, A. C. and Byrne, G. D. "EPISODE: An Effective Package for the Integration of Systems of Ordinary Differential Equations", UCID- 30112, Rev. 1, Lawrence Livermore Laboratory, April 1977.
[56] Hosono, T. "Numerical inversion of Laplace Transform and some applications to wave optics", International U.R.S.I. - Symposium 1980 on Electromagnetic Waves, Munich, 1980.
[57] Jackson, K. R. Enright, W. H. and Hull, T. E. "A theoretical criterion for comparing Runge-Kutta formulas", SIAMJ. Numer. Anal., Vol.15, No.3, 1978, pp.618-641.
[58] James, F. "A review of pseudo-random number generators", Computer Physics Communication, Vol. 60 (1990), pp.329-344.
[59] Jenkins, M. A. "Algorithm 493 Zeros of a real polynomial", ACM Trans. Math. Soft., Vol.1, No.2, pp.178-187, 1975.
[60] Jenkins, M. A. and Traub, J. F. "A three-stage algorithm for real polynomials using quadratic iteration", SIAM J. Numer. Anal. Vol.17, pp.545-566, 1970.
[61] Jennings, A. Matrix Computation for Engineers and Scientists, J.Wiley, pp.301-310, 1977.
[62] Kahaner, D. K. "Comparison of numerical quadrature formulas", in Mathematical Software (J. R. Rice ed.), Academic Press, 1971, pp.229-259.
[63] Kincaid, D. and Oppe, T. "ITPACK on supercomputers", Numerical methods, Lecture Notes in Mathematics 1005, Springer-Verlag, (1982).
[64] Knuth, D.E. The Art of Computer Programming, Volume 2: Seminumerical Algorithms (second edition). AddisonWesley, Menlo Park, 1981, Sec. 3.4.1, Algorithm P.
[65] Lambert, J. D. Computational Methods in Ordinary Differential Equations, Wiley, 1973.
[66] Leyk, Z. "Modified generalized conjugate residuals for nonsymmetric systems of linear equations", Proceedings of the 6th Biennial Conference on Computational Techniques and Applications: CTAC93, D. Siewart, H. Gardner and D. Singleton. eds., World Scientific, 1994, pp.338-344. Also published as CMA Research Report CMA-MR33-93, Australian National University, 1993.
[67] Lyness, J. N. "Notes on the Adaptive Simpson Quadrature Routine", Journal of the ACM, Vol.16, No.3, 1969, pp.483-495.
[68] Madsen, N. K., Rodrigue, G. H. and Karush, J.I. "Matrix multiplication by diagonals on a vector/parallel processor", Information Processing Letters, Vol.5, 1976, pp.41-45.
[69] Marquardt, D.W. "An algorithm for least squares estimation of nonlinear parameters", SIAM J. Appl. Math., Vol.11, pp.431-441, 1963.
[70] Marsaglia, G. "A current view of random number generators", Computer Science and Statistics: The Interface (L. Billard ed.), Elsevier Science Publishers B.V., 1985, pp.3-10.
[71] Martin, R. S., Peters, G. and Wilkinson, J. H. "Symmetric Decomposition of a Positive Definite Matrix", Linear Algebra Handbook for Automatic Computation, Vol.2, pp.9-30, Springer-Verlag, 1971.
[72] Martin, R. S. and Wilkinson, J. H. "Solution of Symmetric and Unsymmetric Band Equations and the Calculations of Eigenvectors of Band Matrices", Linear Algebra Handbook for Automatic Computation, Vol.2, pp 70-92, SpringerVerlag, 1971.
[73] Martin, R. S. and Wilkinson, J. H. "Symmetric Decomposition of Positive Definite Band Matrices", Linear Algebra Handbook for Automatic Computation, Vol.2, pp 50-56, Springer-Verlag, 1971.
[74] Mueller, D. J. "Householder's Method for Complex Matrices and Eigensystems of Hermitian Matrices", Numer.Math. 8, pp.72-92, 1966.
[75] Nayler, T R. Computer Simulation Techniques, John Wiley \& Sons, 1966, pp.43-67.
[76] Ninomiya, I. "Improvements of Adaptive Newton-Cotes Quadrature Methods, Journal of Information Processing, Vol.3, No.3, 1980, pp.162-170.
[77] Oppe, T., Joubert, W. and Kincaid, D. "An overview of NSPCG: a nonsymmetric preconditioned conjugate gradient package", Computer physics communications, Vol.53, p283, (1989).
[78] Oppe, T. C. and Kincaid, D. R. "Are there interactive BLAS?", Int. J. Sci. Comput. Modeling, (to appear).
[79] Ortega, J. Introduction to parallel and vector solution of linear systems, Plenum Press, 1988.
[80] Ortega, J. "The Givens-Householder Method for Symmetric Matrix", Mathematical Methods for Digital Computors, Vol.2, John Wiley \& Sons, pp.94-115,1967.
[81] Osborne, M. "Computing the eigenvalues of tridiagonal matrices on parallel vector processors", Mathematics Research Report No. MRR 044-94, Australian National University, 1994.
[82] Osborne, M. "Nonlinear least squares-the Levenberg algorithm revisited", J. of the Australian Mathematical Society, Vol.19, pp.343-357, 1976.
[83] Parlett, B. N. and Wang, Y. "The Influence of The Compiler on The Cost of Mathematical Software-- in Particular on The Cost of Triangular Factorization, ACM Trans. Math. Soft., Vol.1, No.1, pp.35-46, March, 1975.
[84] Peters, G. and Wilkinson, J.H. "Eigenvalues of Ax= Bx with Band Symmetric A and B", Comp. J. Vol.12, pp.398404, 1969.
[85] Pike, M. C. "Algorithm 267, Random Normal Deviate", Comm. ACM, Vol. 8 (Oct.1965), p. 606.
[86] Powell, M. J. D. "A fast algorithm for nonlinearly constrained optimization calculations", Proceedings of the 1977 Dundee Conference on Numerical Analysis, Lecture Notes in Mathematics, Springer-Verlag, 1978.
[87] Powell, M. J. D. et al. "The Watchdog technique for forcing convergence in algorithms for constrained optimization", presented at the Tenth International Symposium on Mathematical Programming, Montreal, 1979.
[88] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. Numerical Recipes in C, Second Edition, Cambridge University Press, 1995.
[89] Ralston, A. A First Course in Numerical Analysis, McGraw-Hill, 1965.
[90] Rice, J.R. and Boisvert, R.F. Solving Elliptic Problems Using ELLPACK, Springer-Verlag, 1985.
[91] Romanelli, M. J. "Runge-Kutta Methods for Solution of Ordinary Differential Equations", Mathematical Methods for Digital Computers, Vol.2, pp.110-120, John Wiley \& Sons, 1967.
[92] Saad, Y. and Schultz, M. H. "GMRES. A generalized minimal residual algorithm for solving non-symmetric linear systems", SIAM J. Sci. Stat. Comp., Vol.7, 1986, pp.856-869.
[93] Salesin, D.H., Stollnitz, E.J. and DeRose, T.D. "Wavelets for computer graphics: A primer, part 1 and 2", IEEE Computer Graphics and Applications, Vol.15, 1995.
[94] Shampine, L. F. and Gordon, M. K. Computer Solution of Ordinary Differential Equations, Freeman, 1975.
[95] Shanno, D. F. and Phua, K. H. "Numerical comparison of several variable metric algorithms", J. of Optimization Theory and Applications, Vol.25, No.4, 1978.
[96] Simon, H. "Bisection is not optimal on vector processors", SIAM J. Sci. Stat. Comp., Vol.10, pp.205-209, 1989.
[97] Simonnard, M. (translated by W. S. Jeweli) Linear Programming, Prentice -Hall, 1966.
[98] Singlton, C. "An Algorithm for Computing The Mixed Radix Fast Fourier Transform", IEEE Transactions on Audio and Electroacoustics, Vol.AU-17, No.2, pp.93-103, June 1969.
[99] Singlton, R. C. "An ALGOL Convolution Procedure Based On The Fast Fourier Transform", Comm. ACM, Vol.12, No.3, pp.179-184, March 1969.
[100] Singlton, R. C. "On Computing The Fast Fourier Transform", Comm. ACM, Vol.10, No.10, pp.647-654, October 1967.
[101] Sleijpen, G. and Fokkema, D. BICG_STAB(L) for linear equations involving unsymmetric matrices with complex spectrum, Electronic Transqctions on Numerical Analysis, Vol 1, p11-32, 1993.
[102] Sleijpen, G. L. G., van der Vorst, H. A.. and Fokkema, D. R. \(\operatorname{BiCGSTAB}(l)\) and other hybrid Bi-CG methods. Numerical Algorithms, 7:75-109, 1994.
[103] Smith, B. T., Boyle, J. M., Garbow, B. S., Ikebe, Y., Kiema, V. C. and Moler, C. B. Matrix Eigensystem RoutineEISPACK Guide 2nd edition, Lecture Notes in Computer Science 6, Springer-Verlag, 1976.
[104] Stone, H. S. "Parallel Tridiagonal Equation Solvers", ACM Trans. Math. Soft., Vol.1, No.4, pp.289-307.
[105] Strang, G. and Nguyen, T. Wavelets and filter banks, Wellesley-Cambridge Press, 1996.
[106] Streck, A. J. "On the Calculation of the Inverse of Error Function", Math. Comp., Vol.22, 1968.
[107] Swarztrauber, P. N., "Bluestein's FFTs for arbitrary N on the hypercube", Parallel Comput. Vol.17, (1991), pp.607-617, 1975.
[108] Swarztrauber, P.N. "Vectorizing the FFTs", Parallel Comput., Academic Press, 1982, pp.51-83.
[109] Takahashi, H. and Mori, M. Double Exponential Formulas for Numerical Integration, Publications of R. I. M. S, Kyoto Univ.
[110] Temperton, C. "Fast Fourier Transforms and Poisson solvers on CRAY-I", INFOTECH, 1979.
[111] Traub, J. F. "The Solution of Transcendental Equations", Mathematical Methods for Digital Computers, Vol.2, pp.171-184, 1967.
[112] Van Der Vorst, H. A. "BCG: A fast and smoothly converging variant of BI-CG for the solution of non-symmetric linear systems", SIAM J. Sci Statist. Comput., 13 p631 1992.
[113] Vande Panne, C. Linear Programming and Related Techniques, North-Holland, 1971.
[114] Verner, J. H. "Explicit Runge-Kutta methods with estimate of the local truncation error", SIAM J. Numer. Anal. Vol.15, No.4, 1978, pp,772-790.
[115] Wallace, C. S. "Fast Pesudo-Random Generators for Normal and Exponential Variates", ACM Trans. on Mathematical Software 22 (1996), 119-127.
[116] Weiss, R. Parameter-Free Iterative Linear Solvers. Mathematical Research, vol. 97. Akademie Verlag, Berlin, 1996.
[117] Wilkinson, J. H. Rounding Errors in Algebraic Process, Her Britannic Majesty's Stationary Office, London, 1963.
[118] Wilkinson, J. H. The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[119] Wilkinson, J. H. and Reinsch, C. Linear Algebra Handbook for Automatic Computation, Vol.2, Springer-Verlag, 1971.
[120] Winograd, S. "On computing the discrete Fourier transform", Math. Comp., Vol.32, pp.175-199, Jan 1978.
[121] Wynn, P. "Acceleration Techniques for Iterated Vector and Matrix Problems", Math. Comp., Vol.16, pp.301-322, 1962.
[122] Yamashita, S. "On the Error Estimation in Floating-point Arithmetic. " Information Processing in Japan Vol.15, pp.935-939, 1974.```

[^0]: c_daqme8 Uses Clenshaw-Curtis quadrature for each dimension. It can be used for a smooth and oscillatory functions. However, it is not applicable to functions having singular points or peaked functions.
 c_daqme Uses double exponential formula for each dimension. Since this routines has all formulas used in c_daqe, c_daqeh and c_daqei, it can be used for any type of intervals (finite, semifinite or infinite interval).

