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Preface 

This manual describes how to use Scientific Subroutine Library II (SSL II) Extended 
Capabilities II. 

This manual is a second volume for SSL II Extended Capabilities.  This manual provides 
additional algorithms and functions that are effective for high-speed processing of large-scale 
scientific computations on a supercomputer. 

This manual is organized as follows: 

Part I  Overview 

Part I describes briefly the functions provided in SSL II Extended Capabilities II and indicates 
precautions to take when using them. 

Part II  Using Subroutines 

Part II describes how to use individual subroutines.  Subroutines are listed and described in 
alphabetical order. 

In order to support the latest techniques, SSL II Extended Capabilities II contains 
improvements and additions.  Existing subroutine functions are preserved within the improved 
and added functions.  Please note that if the new subroutines perform better than the existing 
ones, the existing subroutines may be eliminated some time in the future. 

For a complete description of rules, standard functions, and extended capabilities, refer to the 
following manuals: 

Fujitsu SSL II User’s Guide (Scientific Subroutine Library), 

Fujitsu SSL II Extended Capabilities User’s Guide (Scientific Subroutine Library) 

SSL II Extended Capabilities II was developed through the collaboration of the Australian 
National University (ANU) and Fujitsu.  Development at the ANU was led by professors 
Mike Osborne and Richard Brent and coordinated by Dr. Bob Gingold, Head, ANU 
Supercomputer Facility.  The following ANU staff members were involved in the design and 
implementation of SSL II Extended Capabilities II.  Fujitsu acknowledges their cooperation. 

Professor Richard Peirce Brent 

Dr Andrew James Cleary 

Dr Murray Leslie Dow 

Dr Christopher Robert Dun 

Dr Lutz Grosz 

Dr David Laurence Harrar II 

Dr Markus Hegland 

Ms Judith Helen Jenkinson 

Dr Margaret Helen Kahn 
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Dr David Barry Singleton 

Dr David Edward Stewart 

Note 

The asterisks in the table of contents of this manual indicate items added or changed from the 
previous version. 

Export Controls 

Exportation/release of this document may require necessary procedures in accordance with the 
regulations of your resident country and/or US export control laws. 
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SSL II Extended Capabilities II Overview 

Linear calculations 
 
Subroutine name Description Page 

VLSPX System of linear equations with a symmetric positive definite 
matrix (blocked Cholesky decomposition method) 

II-102 

VSPLL LLT decomposition of a symmetric positive definite matrix 
(blocked Cholesky decomposition method) 

II-167 

VSPLX System of linear equations with a LLT -decomposed symmetric 
positive definite matrix 

II-170 

VLSBX System of linear equations with a symmetric positive definite 
banded matrix (modified Cholesky decomposition) 

II-98 

VBLDL LDLT decomposition of a symmetric positive definite banded 
matrix (modified Cholesky decomposition) 

II-22 

VBLDX System of linear equations with an LDLT decomposed 
symmetric positive definite banded matrix 

II-26 

VLBX System of linear equations with a banded real matrix (Gaussian 
elimination) 

II-90 

VBLU LU decomposition of a banded real matrix (Gaussian 
elimination) 

II-29 

VBLUX System of linear equations with an LU decomposed banded 
real matrix 

II-34 

VLDIV The inverse of a positive-definite symmetric matrix 
decomposed into the factors L,D and LT 

II-96 

VLTQR System of linear equations with real tridiagonal matrix (QR 
factorization) 

II-105 

VBCSD System of linear equations with an unsymmetric or indefinite 
sparse real matrix (BICGSTAB(l) method, diagonal storage 
format) 

II-14 

VBCSE System of linear equations with an unsymmetric or indefinite 
sparse real matrix (BICGSTAB(l) method, ELLPACK storage 
format) 

II-18 

VCGD System of linear equations with a symmetric positive definite 
sparse matrix (preconditioned CG method, diagonal storage 
format) 

II-51 

VCGE System of linear equations with a symmetric positive definite 
sparse matrix (preconditioned CG method, ELLPACK storage 
format) 

II-57 

VCRD System of linear equations with an unsymmetric or indefinite 
sparse real matrix (MGCR method, diagonal storage format) 

II-73 

VCRE System of linear equations with an unsymmetric or indefinite 
sparse real matrix (MGCR method, ELLPACK storage format) 

II-77 
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Subroutine name Description Page 

VQMRD System of linear equations with an unsymmetric or indefinite 
sparse real matrix (QMR method, diagonal storage format) 

II-143 

VQMRE System of linear equations with an unsymmetric or indefinite 
sparse real matrix (QMR method, ELLPACK storage format) 

II-147 

VTFQD System of linear equations with an unsymmetric or indefinite 
sparse real matrix (TFQMR method, diagonal storage format) 

II-183 

VTFQE System of linear equations with an unsymmetric or indefinite 
sparse real matrix (TFQMR method, ELLPACK storage 
format) 

II-187 

VMBV Multiplication of a real band matrix and a real vector II-108 

VMVSD Multiplication of a real sparse matrix and a real vector 
(diagonal storage format) 

II-137 

VMVSE Multiplication of a real sparse matrix and a real vector 
(ELLPACK storage format) 

II-140 

 
Eigenvalues and eigenvectors 
 
Subroutine name Description Page 

VHEVP Eigenvalues and eigenvectors of a Hermitian matrix 
(tridiagonalization, multisection method, and inverse iteration) 

II-80 

VLAND Eigenvalues and eigenvectors of a real symmetric sparse 
matrix (Lanczos method, diagonal storage format) 

II-85 

VSEVP Eigenvalues and eigenvectors of a real symmetric matrix 
(tridiagonalization, multisection method, and inverse iteration) 

II-162 

VTDEV Eigenvalues and eigenvectors of real tridiagonal matrix II-177 
 
Transforms 
 
Subroutine name Description Page 

VCFM1 One-dimensional discrete complex Fourier transforms (Mixed 
radices of 2, 3, 5 and 7) 

II-43 

VCFT3 One-dimensional discrete complex Fourier transforms (Radix 
2, for data sequence with a constant stride) 

II-47 

VCPF1 One-dimensional prime factor discrete complex Fourier 
transforms 

II-63 

VCPF3 Three-dimensional prime factor discrete complex Fourier 
transform 

II-67 

VMCF2 Singlevariate, multiple and multivariate discrete complex 
Fourier transform (complex array, mixed radix)  

II-110 
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Subroutine name Description Page 

VMCFT Singlevariate, multiple and multivariate discrete complex 
Fourier transform (real and imaginary array separated, mixed 
radix)  

II-114 

VMRF2 Singlevariate, multiple and multivariate discrete real Fourier 
transform (Mixed radix) 

II-122 

VMRFT Multiple and multivariate discrete real Fourier transform 
(Mixed radices of 2, 3, and 5) 

II-128 

VRPF3 Three-dimensional prime factor discrete real Fourier transform II-156 

VSRFT One-dimensional and multiple discrete real Fourier transform 
(Mixed radices of 2, 3, and 5) 

II-173 

VMCST Discrete cosine transform II-119 

VMSNT Discrete sine transform II-134 

VCCVF Discrete convolution or correlation of complex data II-38 

VRCVF Discrete convolution or correlation of real data II-151 

VWFLT Wavelet filter generation II-190 

V1DWT One-dimensional wavelet transform II-193 

V2DWT Two-dimensional wavelet transform II-197 

 

Random numbers 
 
Subroutine name Description Page 

DVRAN3 Generation of normal random numbers (double precision) II-1 

DVRAN4 Generation of normal random numbers (double precision, 
Wallace’s method) 

II-5 

DVRAU4 Generation of uniform random numbers [0, 1) (double 
precision) 

II-9 
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Chapter 1 
Description of SSL II Extended Capabilities II 

This chapter briefly describes the algorithms that are provided for use in large-scale, scientific 
computations as SSL II Extended Capabilities II. 

(1) Double-precision random numbers (uniform/normal) 

 These algorithms provide random numbers with good statistical characteristics and long 
periods of at least 1052 for large-scale simulation. For normal random numbers Polar 
method and faster Wallace’s method are provided. 

(2) Sparse matrix linear equations (symmetric positive definite matrix/unsymmetric or 
indefinite real matrix) 

 These subroutines solve sparse matrix linear equations using the iterative method.  These 
subroutines make it possible to solve large-scale problems at high speeds with reduced 
memory usage.  For data storage methods, see Chapter 3, “Data Storage Methods.” 

 For symmetric positive definite matrices, the conjugate gradient (CG) method is provided.  
Two types of preconditioners may be specified in CG method:  first order approximation 
of the Neumann series and modified incomplete Cholesky decomposition.  The 
preconditioner through the modified incomplete Cholesky decomposition is useful for 
linear equations obtained through discretization of elliptic partial differential equations. 

 For unsymmetric or indefinite real matrices, the robust and high-speed modified 
generalized conjugate residuals (MGCR) method is provided. 

 For unsymmetric or indefinite real matrices, the higher-speed quasi minimal residual 
method (QMR method) , transpose-free quasi-minimal residual method (TFQMR 
method) and Bi-Conjugate Gradient Stabilised (l) (BICGSTAB(l)) method are provided. 
About the guideline of the usage of these methods, refer to Chapter 4, “Iterative Linear 
Equation Solvers and Convergence”. 

(3) Sparse real matrix and vector multiplication 

(4) System of linear equations with real tridiagonal matrix 

 This system supplies a method of solving a large-scale system of linear equations with 
real tridiagonal matrix at high speed by QR factorization. 

(5) Banded matrix linear equations (symmetric positive definite/real matrix) 

 These subroutines use data storage methods and algorithms that optimize performance on 
vector computers.  Although the direct method is robust, it uses memory in proportion to 
the size of the bandwidth.  Therefore, the direct method is unsuitable for large banded 
matrices with a sparse structure.  For large banded matrices with sparse structure, please 
use the previously mentioned iterative method, which uses storage methods suited to 
sparse structures. 

(6) Eigenvalue problem 

 This system supplies the Lanczos method to obtain a few of the  largest and/or smallest 
eigenvalues and corresponding eivenvectors in a large-scale real symmetric sparse matrix. 

 It also supplies a method of obtaining eigenvalues and eigenvectors in real tridiagonal, 
real symmetric or Hermitian matrices at high speed. 
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(7) Fourier transforms 

 These subroutines provide high-performance algorithms (mixed radix and complex/real), 
multiple Fourier transforms and multivariate Fourier transforms on vector computers. 
The functions are also high-speed for one-dimensional Fourier transforms. Three-
dimensional, prime factor Fourier transforms (complex/real) are also provided. 

 For scalar computers high speed one-dimensional complex Fourier transforms, one-
dimensional prime factor complex Fourier transforms, multiple Fourier transforms and 
multivariate Fourier transforms (Complex/real) and cosine transforms and sine transforms 
are also provided. 

(8) Convolution and correlation 

 These subroutine provide discrete convolution and correlation functions that are 
frequently encountered in signal processing area. 

(9) Wavelet transform 

 This system supplies high-performance one- and two-dimensional wavelet transform. 
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Chapter 2 
General Rules for SSL II Extended Capabilities II 

This chapter provides general rules that are common to all of the functions. 

2.1 Subroutine Precision 
Single- and double-precision routines are provided.  However, random number routines are 
double precision only. 

2.2 Subroutine Names 
The names of single-precision routines start with a V.  The names of double-precision routines 
start with a DV. 

The names of slave routines start with a U (single precision) or DU (double precision). 

2.3 Parameters 
(1) Order of parameters 

 The order of parameters is the same as the order used in SSL II standard functions.  As a 
rule, the order conforms to the following format: 

 (Input-output-parameter-list, Input-parameter-list, Output-parameter-list, ICON) 

(2) Parameter types 

 Integer-type parameters start with an I, J, K, L, M or N.  Complex-type parameters start 
with a Z. 

 Unless otherwise specified, parameters that start with any other letter are single-precision 
real type in single-precision routines, and double-precision real type in double-precision 
routines. 

2.4 Condition Codes 
The ICON parameter indicates the resultant status after execution of the subroutine. 

The condition code is from 0 to 39,999.  As shown in the following table, the range into which 
the code falls indicates how reliable the processing results are. 
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Table 2.1 Results of condition codes 

Code Explanation Reliability of result Result 

0 Processing terminated normally. Result is guaranteed. Normal 

1 to 9999 Processing terminated normally, but 
additional information is included. 

  

10000 to 
19999 

Due to an internal restriction imposed 
during processing, processing terminated. 

The result is 
guaranteed subject to 
restrictions. 

Warning

20000 to 
29999 

Due to an error that occurred during 
processing, processing stopped. 

The result is not 
guaranteed. 

Error 

30000 to 
39999 

Due to an error in the input parameter(s), 
processing stopped. 
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Chapter 3 
Data Storage Methods 

SSL II Extended Capabilities provides the following storage methods for solving linear 
equations of banded and sparse matrices. 

3.1 Banded Matrices 
Storage methods suitable for vector computers are used instead of the standard SSL II storage 
methods for banded matrices.  See the descriptions of the routines used with banded matrices. 

3.2 Sparse Matrices 
This section describes the storage methods for sparse matrices. 

3.2.1 Storage methods for sparse matrices  
Each function that applies to sparse matrices is provided respectively for the ELLPACK 
storage format and the diagonal storage format respectively. 

The ELLPACK storage format is a method of compressing and storing the non-zero elements 
of each row vector in a coefficient matrix. 

The diagonal storage format is a method of storing diagonals containing non-zero elements. 

3.2.1.1 Storage method for general sparse matrices  
a. ELLPACK storage format for general sparse matrices 

 In the ELLPACK storage format for general sparse matrices, non-zero elements of row 
vectors in coefficient matrix A are compressed and stored in corresponding row vectors of 
array COEF.  (For the ELLPACK format, see [23] and [34]).  In addition, the column 
number of non-zero elements that were stored in COEF are stored in corresponding 
ICOL array elements.  It is not necessary to left-adjust the non-zero elements of the row 
vectors of coefficient matrix A when storing them in COEF. 

 For storage, the COEF (1 : N, *) and ICOL (1 : N, *) parts of the two arrays, COEF (K, 
IWIDT) and ICOL (K, IWIDT), are used. 

 If the maximum number of non-zero elements appearing in the row vectors of matrix A is 
set to nz and the order of the coefficient matrix is set to n, then IWIDT ≥ nz and K ≥ n. 

 When the number of non-zero elements in row vectors of coefficient matrix A is less than 
IWIDT, set the remaining elements in the row vectors of the array COEF to zero.  Set the 
corresponding array elements of ICOL to the values showing the row number of the row 
vectors in which they are contained.  (Assume COEF (i, j) = 0 and ICOL (i, j) = i.) 
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 Example: 

 Storing coefficient matrix A using COEF and ICOL 

D00-0010

1  0  0  2

0  3  4  0

0  0  5  0

6  0  0  0

1  2

3  4

5  0

6  0

1  4

2  3

3  3

1  4

COEF =

A =

ICOL =

 

b. Diagonal storage format for general sparse matrices 

 In the diagonal storage format for sparse matrices, diagonals containing non-zero 
elements are stored as column vectors of the array DIAG.  (For the diagonal format, see 
[27] and [31]. 

 In this manual, for the integer k, the following diagonal-direction vector is called a 
diagonal.  The vector consisting of diagonal elements is called the main diagonal. 

(a1, 1+k, a2, 2+k, ..., an, n+k) 

 if i + k < 1 or i + k > n, ai, i + k = 0. 

 There is no special restriction on the order in which a diagonal is stored in the array 
DIAG. 

 The offset between the diagonal vector stored in DIAG (*, i) and the main diagonal vector 
is stored in NOFST (i).  k in the previously mentioned diagonal indicates the offset.  The 
offset of the diagonal consisting of the main diagonal elements is zero.  The offset of 
diagonal in the upper triangular matrix is a positive integer.  The offset of diagonal in the 
lower triangular matrix is a negative integer. 

 If NOFST (m) = k, then storage is performed according to DIAG (i, m) = ai, i + k (i = 1, ..., 
n). 

 Two arrays, DIAG (K, NDIAG) and NOFST (NDIAG), are used.  The coefficient matrix 
is stored in DIAG (1 :  N, NDIAG).  When the number of diagonals to be stored is set to 
nd and the order of the coefficient matrix is set to n, then NDIAG ≥ nd and K ≥ n. 
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 Example: 

 Storing coefficient matrix A using DIAG and NOFST 

D00-0020

A =

DIAG =

1  2  3  0

5  0  6  4

8  9  0  7

11 0  0  10 

NOFST = (0  1  2 -1)

0  1  2  3  0

   4  5  0  6

   0  7  8  9  0

   0  0 10 11  0  0

 

3.2.1.2 Storage methods for symmetric positive definite sparse 
matrices  

In both the ELLPACK storage format and the diagonal storage format, the upper and lower 
triangular matrix parts of normalized symmetric positive definite matrices are stored in the 
order from the upper part then lower part. 

Using a diagonal matrix that has the reciprocals of the square root of the diagonal elements of 
a symmetric positive definite matrix A, the symmetric positive definite matrix A can be 
normalized into symmetric matrix A* with diagonal elements of 1. 

A* = D-1/2 A D-1/2 

), ..., d, ddiag (d

), ..., a, adiag (a
/-

n
/-/-

/-
nn

/-/-

2121
2

21
1

2121
22

21
11

21where

=

=−D
 

The linear equation with order n 

Ax = b 

can be transformed to a linear equation with the normalized matrix A*. 

(D-1/2 AD-1/2) (D1/2x) = D-1/2b 

A*x* = b* 

n ... j = n ...i = dxx

dbbddaa
/

ii
*
i

/
ii

*
i

/
j

/
iij

*
ij

,,1,,,1,

,
21

212121

=

== −−−

 

a. The ELLPACK storage format for symmetric positive definite sparse matrices 

 The upper and lower triangular matrix parts without diagonal elements in a normalized 
symmetric positive definite sparse matrix with unit diagonal elements are stored 
respectively using the ELLPACK storage format.  Then these stored matrix parts are 
stored in a single array COEF.  First, the upper triangular matrix part is stored.  Then the 
lower triangular matrix part is stored. 

 The maximum number of non-zero elements in each row vector of the upper triangular 
matrix part is set to NSU.  The maximum number of non-zero elements in each row vector 
of the lower triangular matrix part is set to NSL. 
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 When NSH = max (NSU, NSL), the non-zero elements of the upper triangular matrix part 
are stored in COEF (*, 1: NSH).  The non-zero elements of the lower triangular matrix 
part are stored in COEF (*, NSH + 1: 2 × NSH). 

 Set the remaining elements in the array COEF to zero.  Set the corresponding array 
elements of ICOL to the row numbers of the row vectors in which they are contained.  
(Assume COEF (i, j) = 0 and ICOL (i, j) = i.) 

 Example: 

 Storing the upper and lower triangular part of a normalized coefficient matrix A* using 
the ELLPACK storage format 

D00-0030

1  5  0  3  0

5  1  6  0  4

0  6  1  7  0

3  0  7  1  8

0  4  0  8  1

5  3  0  0

6  4  5  0

7  0  6  0

8  0  7  3

0  0  8  4

2  4  1  1

3  5  1  2

4  3  2  3

5  4  3  1

5  5  4  2

A* = COEF =

ICOL =

 

b. The diagonal storage format for symmetric positive definite sparse matrices 

 The upper and lower triangular matrix parts without diagonal elements in a normalized 
symmetric positive definite matrix with unit diagonal elements are stored respectively 
using the diagonal storage format.  Then, the stored matrix parts are stored in a single 
array DIAG.  When the number of diagonals in the upper (lower) triangular matrix part 
containing non-zero elements is set to NDT, the upper triangular matrix part is stored in 
DIAG (1 :  NDT), while the lower triangular matrix part is stored in DIAG (NDT + 1: 
NW). 
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 At that time, the upper triangular matrix part must be stored in ascending order with 
respect to distance (NDLT value).  The lower triangular matrix part must be stored in 
descending order. 

 This method uses arrays the DIAG (K, NW) and NDLT (NW). 

 The following equivalence applies:  NW = 2 × NDT. 

 Example: 

 Storing the upper and lower triangular part of a normalized coefficient matrix A* using 
the diagonal storage format 

D00-0040

1  5  0  3  0

5  1  6  0  4

0  6  1  7  0

3  0  7  1  8

0  4  0  8  1

5  3  0  0

6  4  5  0

7  0  6  0

8  0  7  3

0  0  8  4

A* = DIAG =

NDLT = (1  3 -1 -3)

 

3.2.1.3 Storage method selection criteria  
When the sparse matrix is structured so that its non-zero elements are concentrated in the 
diagonal-direction vectors of the coefficient matrix, use the diagonal storage format. 

3.2.2 Discretization of partial differential operators and 
storage examples for them  

This section describes the representative sparse coefficient matrices which appear when 
solving problems through discretizing elliptic partial differential equations and constructing 
linear equations.  When solving actual problems, these coefficient matrices must be stored 
using the ELLPACK storage format and diagonal storage format. 

Coefficient matrices by discretization of the elliptical partial differential operators in the three-
dimensional region with Dirichlet boundary conditions is shown in the following sections.  As 
a result of discretization, the operators appear in the unsymmetric sparse matrix.  Also shown 
are subroutines that store the generated coefficient matrices according to the sparse matrix 
storage methods. 

Linear equations with these coefficient matrices can be solved with subroutine (D) VCRE or 
(D) VCRD. 

a. Discretization of elliptic partial differential operators and construction of coefficient 
matrices 
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 Region Ω = [0,lx] × [0,ly] × [0,lz] 

 Boundary condition    Dirichlet boundary condition    u = 0 on the boundary Ω 

 Here, a1, a2, a3 as well as c are constants. 

 When each dimension of Ω is divided into nx + 1, ny + 1, and nz + 1 in equal subintervals 
respectively, the nx × ny × nz grid points exist inside Ω.  When the value of variables x, y, 
and z at the grid point is expressed as (xi, yj, zk), 

 the value of function u at the grid point (1 ≤ i ≤ nx, 1 ≤ j ≤ny, 1 ≤ k ≤ nz) 

 is expressed as ui, j, k = u (xi, yj, zk). 

 Using this notation, the partial differential coefficient for variable x is approximated as 
follows. 
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 The partial differential coefficients for variables y and z are approximated in a similar 
fashion. 

 Considering function u = 0 on the boundary Ω, 

 the approximation Lu ≈ Av is obtained through discretizing Lu into coefficient matrix A. 

 Here, v is vector v = (v1, v2,...,vn), consisting of values at the grid point of function u, 

 and there is a corresponding relationship vm = ui, j, k,  m = (k - 1) nx ny + (j - 1) nx + i. 

b. Subroutines that store coefficient matrices using the sparse matrix storage method 

 Examples of subroutines that store discretized operators in the ELLPACK format or the 
diagonal format are described in this section. 

 The subroutine INIT_MAT_ELL stores coefficient matrices in the ELLPACK format.  
The subroutine INIT_MAT_DIAG stores them in the diagonal format. 

 The arguments nx, ny, and nz correspond to NX, NY, and NZ.  lx, ly, and lz correspond to 
XL, YL, and ZL.  a1, a2, a3, and c correspond to VA1, VA2, VA3, and VC. 

 In INIT_MAT_ELL, the coefficient matrix is stored in A_L and ICOL_L.  In 
INIT_MAT_DIAG, it is stored in D_L and OFFSET. 

 When a subroutine is called with IWIDTH = 7, a coefficient matrix for three-dimensional 
region Ω is generated. 

 A subroutine is called with NDIVP = nx ny nz. 

 (When using such a subroutine, the value of IWIDTH should not be greater than 7.  If the 
value is 7 or less (for example, 5 or 3), the number of diagonal columns decreases 
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correspondingly.  If IWIDTH = 5 or IWIDTH = 3, the problem is reduced to a two- or 
one-dimensional problem, respectively.  It is useful to set NZ = 1 when IWIDTH = 5, and 
NZ = 1, NY = 1 when IWIDTH = 3.  Values of IWIDTH other than 7, 5, or 3 have no 
special meaning and can be used in testing.) 

 Example 1: 

 Subroutine that discretizes the partial differential operators described previously and stores 
them according to the ELLPACK storage format 
      SUBROUTINE INIT_MAT_ELL(VA1,VA2,VA3,VC, 
     &   A_L,ICOL_L,NX,NY,NZ,XL,YL,ZL,IWIDTH,NDIVP,LD) 
      IMPLICIT NONE 
      INTEGER NX,NY,NZ,IWIDTH,NDIVP,LD 
      DOUBLE PRECISION A_L(LD,IWIDTH) 
      DOUBLE PRECISION VA1,VA2,VA3,VC,XL,YL,ZL 
      INTEGER ICOL_L(LD,IWIDTH) 
 
      DOUBLE PRECISION HX, HY, HZ  
      INTEGER I,J,L,JS,IWIDTH_LOC 
      INTEGER I0,J0,K0 
 
      IF (IWIDTH .LT. 1) THEN 
         WRITE (*,*) 'SUBROUTINE INIT_MAT_ELL:' 
         WRITE (*,*) ' IWIDTH SHOULD BE GREATER THAN OR 
     & EQUAL TO 1' 
         RETURN 
      ENDIF 
      IWIDTH_LOC = IWIDTH 
C     IWIDTH CANNOT BE GREATER THAN 7 
      IF (IWIDTH .GT. 7) IWIDTH_LOC = 7 
 
C     INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
      DO 110 J = 1,IWIDTH 
         DO 100 I = 1,NDIVP 
            A_L(I,J) = 0.0 
            ICOL_L(I,J) = I 
 100     CONTINUE 
 110  CONTINUE 
 
C     MAIN LOOP 
      DO 200 J = 1,NDIVP 
        JS = J 
        L = 1 
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C       DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NX/NY+1 
        IF (K0 .GT. NZ) RETURN 
        J0 = (JS-1-NX*NY*(K0-1))/NX+1 
        I0 = JS - NX*NY*(K0-1) - NX*(J0-1) 
 
        IF (IWIDTH_LOC .GE. 7) THEN 
           IF (K0 .GT. 1) THEN 
               A_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
               ICOL_L(J,L) = JS-NX*NY 
               L = L+1 
           ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 5) THEN 
           IF (J0 .GT. 1) THEN 
              A_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
              ICOL_L(J,L) = JS-NX 
              L = L+1 
           ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 3) THEN 
           IF (I0 .GT. 1) THEN 
              A_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
              ICOL_L(J,L) = JS-1 
              L = L+1 
           ENDIF 
        ENDIF 
        A_L(J,L) = 2.0/HX**2+VC 
        IF (IWIDTH_LOC .GE. 5) THEN 
           A_L(J,L) = A_L(J,L) + 2.0/HY**2 
           IF (IWIDTH_LOC .GE. 7) THEN 
              A_L(J,L) = A_L(J,L) + 2.0/HZ**2 
           ENDIF 
        ENDIF 
        ICOL_L(J,L) = JS 
        L = L+1 
        IF (IWIDTH_LOC .GE. 2) THEN 
           IF (I0 .LT. NX) THEN 
              A_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
              ICOL_L(J,L) = JS+1 
              L = L+1 
           ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 4) THEN 
           IF (J0 .LT. NY) THEN 
              A_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
              ICOL_L(J,L) = JS+NX 
              L = L+1 
           ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 6) THEN 
           IF (K0 .LT. NZ) THEN 
              A_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
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              ICOL_L(J,L) = JS+NX*NY 
           ENDIF  
        ENDIF 
 
 200  CONTINUE 
 
      RETURN 
      END 

 

Example 2: 

Subroutine that discretizes the partial differential operators described previously and stores 
them according to the diagonal storage format 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET, 
     &    NX,NY,NZ,XL,YL,ZL,NDIAG,NDIVP,LD) 
      IMPLICIT NONE 
      INTEGER NX,NY,NZ,NDIAG,NDIVP,LD 
      DOUBLE PRECISION D_L(LD,NDIAG) 
      DOUBLE PRECISION VA1,VA2,VA3,VC,XL,YL,ZL 
      INTEGER OFFSET(NDIAG) 
 
      DOUBLE PRECISION HX, HY, HZ 
      INTEGER I,J,L,JS,NXY,NDIAG_LOC 
      INTEGER J0,I0,K0 
 
      IF (NDIAG .LT. 1) THEN 
         WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
         WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR 
     & EQUAL TO 1' 
         RETURN 
      ENDIF 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C     INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
      DO 110 J = 1,NDIAG 
         DO 100 I = 1,NDIVP 
            D_L(I,J) = 0.0 
 100     CONTINUE 
 110  CONTINUE 
C     OFFSET SETTING 
      L = 1 
      NXY = NX*NY 
      IF (NDIAG_LOC .GE. 7) THEN 
         OFFSET(L) = -NXY 
         L = L+1 
      ENDIF 
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      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
         L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
         OFFSET(L) = -1 
         L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
         OFFSET(L) = 1 
         L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
         OFFSET(L) = NX 
         L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
         OFFSET(L) = NXY 
      ENDIF 
 
C     MAIN LOOP 
      DO 200 J = 1,NDIVP 
         JS = J 
C        DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
         K0 = (JS-1)/NXY+1 
         IF (K0 .GT. NZ) RETURN 
         J0 = (JS-1-NXY*(K0-1))/NX+1 
         I0 = JS - NXY*(K0-1) - NX*(J0-1) 
 
         L = 1 
         IF (NDIAG_LOC .GE. 7) THEN 
            IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
            L = L+1 
         ENDIF 
         IF (NDIAG_LOC .GE. 5) THEN 
            IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
            L = L+1 
         ENDIF 
         IF (NDIAG_LOC .GE. 3) THEN 
            IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
            L = L+1 
         ENDIF 
         D_L(J,L) = 2.0/HX**2+VC 
         IF (NDIAG_LOC .GE. 5) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HY**2 
            IF (NDIAG_LOC .GE. 7) THEN 
               D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
            ENDIF 
         ENDIF 
         L = L+1 
         IF (NDIAG_LOC .GE. 2) THEN 
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            IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
            L = L+1 
         ENDIF 
         IF (NDIAG_LOC .GE. 4) THEN 
            IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
            L = L+1 
         ENDIF 
         IF (NDIAG_LOC .GE. 6) THEN 
            IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
         ENDIF 
 200  CONTINUE 
 
      RETURN 
      END 
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Chapter 4 
Iterative Linear Equation Solvers and 
Convergence 

4.1 Scaling  
It is strictly recommended to scale the equation in order  to balance the matrix entries for the 
efficient usage of iterative linear equation solver. This normalization of the matrix strongly 
improves the numerical stability and the convergence rate of the iterative solver. The 
normalized coefficient matrix Â  should have non--negative entries in the main diagonal and, 
for instance, the sum of absolute values in each row should be approximately equal to one. 

Ax = b (1) 

A normalized form of the linear system (1) can be constructed by multiplying the coefficient 
matrix A by a diagonal matrix L from the left and with a diagonal matrix R from the right. By 
introducing a new variable xRx 1ˆ −=  the linear system(1) is written as 

bxALbxLAR ˆˆˆˆ =⇔=  (2) 

where, LARA =ˆ ,  Lbb =ˆ . 

Instead of A the normalized matrix Â  is used in the iterative solver. Keep in mind that the 
right hand side b has to be transformed by multiplication with L before the solver is called and 
the returned solution approximation has to be transformed by multiplication with R. 
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for all i,j=1,...,n.  It is emphasized that there are other possible ways of introducing a 
normalization with rather different effects on the convergence rate of the iterative solvers, see 
[44] for an overview. 
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Notice , that with selection (3) and (4) the normalized matrix Â  is symmetric and positive 
definite if and only if the original matrix is symmetric and positive definite. 

4.2 Symmetry of Matrix and Iterative solvers  
a. Symmetric Matrix 

 If the matrix A is symmetric, ie. aij=aji for all i,j=1,...,n, and positive definite the 
classical conjugate gradient method(see [21]) can be used to solve the linear system. 

 If the matrix is not positive definite a break down, that means the computation 
process for the iterative method can not be continued, will occur. 

b. Non-symmetrical or Indefinite Matrix  

 In case of a non-symmetrical or indefinite coefficient matrix a set of solvers are 
available. The optimal solver for the given linear system depends on the properties of 
the coefficient matrix A (or  if the normalized system Â  is considered). For the 
different classes of matrices the following solvers are available. 

 A break down may occur depending upon the iterative methods or the initial vector 
for computation, which means the computation process for the iterative method can 
not be continued. In this case changing the iterative methods or the initial vector is 
recommended. 

4.3 Eigenvalues Distribution of Matrix and 
Convergence  

a. MGCR method 

 If the eigenvalues of the coefficient matrix are close to the positive real axis (see 
Figure 4.3-1 ) can be used with a small number of search directions (eg. 5-10). If the 
imaginary part of any eigenvalue is large more search directions must be considered 
in order to get good convergence. This increases the storage requirements as well as 
the amount of computation per iteration step which makes MGCR (see [25]) less 
efficient. 

 For a small number of search directions MGCR is a very fast but not very robust 
method. 

 

b. TFQMR method 

 If the eigenvalues are in the positive half plane but there are eigenvalues with large 
imaginary part (see Figure 4.3-2)  TFQMR(see [12]) is the recommended method. 
Also the solvers converge best if the minimal real part of any eigenvalue is as large 
as possible. So, for example, the convergence will be poor if there is an eigenvalue 
which has a very small nonzero real part. The convergence rate of TFQMR can be 
worse than the convergence rate of MGCR with a large number of search directions. 
However, every iteration step of TFQMR is much cheaper than MGCR with a large 
number of search directions so that a solution is calculated within less CPU time. So 
TFQMR is more robust but slower than MGCR with a small number of search 
directions.   
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 Figure 4.3-2 
Eigenvalues distribution for convergent  
TFQMR and BICGSTAB(l) 
 

                        Imaginary part 
 
 
 
 
 
 
 
 
                                                         Real part 
 
 
 
 
 
 
Figure 4.3-1 
Eigenvalues distribution for convergent 
MGCR 

c. BICGSTAB(l) method 

Similarly to TFQMR BICGSTAB(l)(see [39]) is suitable for matrices with eigenvalues 
that are in the positive half plane. Also the solvers converge best if the minimal real 
part of any eigenvalue is as large as possible. So, for example, the convergence will be 
poor if there is an eigenvalue which has a very small nonzero real part. In some 
applications where the eigenvalues of the coefficient matrix are close to the positive 
real axis BICGSTAB(l) has an even faster convergence rate than MGCR with a small 
number of search directions. However, every iteration step of BICGSTAB(l) is very 
expensive as it requires two matrix vector multiplications. Therefore in some cases 
MGCR or TFQMR are faster than BICGSTAB(l) but BICGSTAB(l) is more robust. 

 

  If no information about the eigenvalues of the (normalized) coefficient matrix is available it 
is suggested to try the methods MGCR, TFQMR and BICGSTAB(l) one after the other. 
MGCR should be used with 5 and 10 search directions. The order in which the methods are 
tested is important. So the fast but less robust methods should be tested before more robust 
methods are used. A suitable criterion for the quality is the CPU time the solver needs to reach 
the accuracy 0.1. 

 

 

 





 

 

Part II  
Using Subroutines 
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J11-20-0401 DVRAN3 
 
Generation of normal random numbers (double precision) 

CALL DVRAN3 (DAM, DSD, IX, DA, N, DWORK, NWORK, ICON) 
 
(1) Function 

 This subroutine generates pseudo-random numbers from a normal distribution density 
function (1.1) with a given mean m and standard deviation σ. 

 )
2

)(
exp(

2
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2

2

σπσ
mx

 =xf
−−  (1.1) 

(2) Parameters 

DAM........... Input.  Mean m of normal distribution. 
Double-precision real type. 

DSD............ Input.  Standard deviation σ of normal distribution. 
Double-precision real type. 

IX................ Input.  Starting value. 
On the first call, set IX to a positive value.  Subsequently, call the subroutine 
with the return value remaining 0.  A different sequence of random numbers are 
generated with a different starting value on the first call. 
(See item (3), “Comments on use,” b., 1).) 
4-byte integer type (INTEGER*4). 
Output.  0. 

DA.............. Output.  N pseudo-random numbers. 
Double-precision real type one-dimensional array of size N. 

N................. Input.  The number of normally distributed pseudo-random numbers to be 
returned in DA. 
(See item (3), “Comments on use,” b., 2).) 

DWORK...... Work area.  One-dimensional array of the double-precision real type and size 
NWORK. 
Do not modify the contents of this subroutine between repeated calls. 
DWORK contains information necessary for repeated calls to this subroutine. 
(See item (3), “Comments on use,” b., 3).) 

NWORK...... Input.  The size of the array DWORK.  NWORK ≥ 1,156. 

ICON........... Output.  Condition code. 
See Table DVRAN3-1, “Condition codes.” 
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Table DVRAN3-1   Condition codes 

Code Description Processing 

0 No error  

30001 NWORK is too small. Processing is stopped. 

30002 IX<0  

30003 to 30008 DWORK was modified.  Or IX was set to zero 
on the initial call. 

 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  DUF2G3, DUITG3, DURN3B, DURUG3, DUR2G3, DUSKG3, DUSQG3, 
DUVRG3, DVRAU4, MGSSL 

b. Comments 

1) Starting point IX 

 When a sequence of pseudo-random numbers is to be generated by a 
deterministic program, there must be random input.  To do this, give a starting 
value IX.  On the first call to this subroutine, the starting value IX must be a 
positive integer.  (For exceptions, see item 5).)  For subsequent calls, set IX to 
zero.  This indicates that more pseudo-random numbers from the same sequence 
are to be generated.  To simplify programming, this subroutine returns zero in IX 
after the initial call. 

 This subroutine generates normal random numbers with the Polar method, which 
uses uniform random numbers with a long period of at least 1052.  A different 
starting value gives a different random number sequence.  That is, a random 
number sequence is generated from different random number subsequences that 
are created through the segmentation of a long-period random number sequence.  
These subsequences are separated by a distance of at least 260 > 1018 intervals.  
For details, see “DVRAU4,” item (4), “Method.” 

2) Parameter N 

 This subroutine returns the next N pseudo-random numbers from the infinite 
sequence defined by the starting value IX.  If N ≤ 0, no pseudo-random numbers 
are returned. 

 For efficiency, the user should make N sufficiently large (for instance, N = 
100,000).  This reduces the overhead of subroutine calls and allows vectorization.  
N may be changed on consecutive calls to this subroutine provided that the size 
of array DA is as large as the maximum value of N. 

3) Work area DWORK 

 DWORK is a work area to store state information for repeated calls to this 
subroutine.  The calling program must not change the contents of DWORK 
while the subroutine is being called. 
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4) Parameter NWORK 

 DWORK (1), ..., DWORK (NWORK) are used by this subroutine.  NWORK 
should remain unchanged on each call to the subroutine.  NWORK should be at 
least 1,156.  For efficiency on vector processors, NWORK should be large (for 
example, NWORK = 100,000). 

5) Repeated generation of the same random number 

 If DWORK (1), ..., DWORK (NWORK) is saved, the same sequence of random 
numbers can be generated again (from the point where DWORK was saved) by 
reusing DWORK (1), ..., DWORK (NWORK) and calling this subroutine with 
argument IX = 0. 

c. Example of use 

 In this example, one million normal pseudo-random numbers are generated, and the 
first- and second-order moments are calculated.  The starting value is 12345.  The 
first-order moment is ∑ XiFi when the frequency of the variable Xi is Fi.  The second-
order moment is ∑ Xi

2Fi when the frequency of the variable Xi is Fi. 
 
C     **EXAMPLE** 
      PARAMETER (NRAN = 1000000) 
      PARAMETER (NSEED = 12345) 
      PARAMETER (NWMAX = 100000) 
      PARAMETER (NBUF = 120000) 
      REAL*8 DA(NBUF) 
      REAL*8 DWORK(NWMAX) 
      REAL*8 DSUM,DSUM2 
      REAL*8 DMEAN,DM2 
      IA = NSEED 
      PRINT *, ' Seed ', IA 
      N = NBUF 
      NWORK = NWMAX 
      DSUM = 0.0D0 
      DSUM2 = 0.0D0 
C NGEN counts down to 0 
      NGEN = NRAN 
      PRINT *, ' Generating ', NGEN, 
     $ ' numbers' 
C Generate NRAN numbers , 
C maximum NBUF at a time 
      KRPT = (NRAN+NBUF-1)/NBUF 
      PRINT *, ' with ', KRPT, 
     $ ' call to dvran3' 
      DO 20 J = 1, KRPT 
      N = MIN0 (NBUF, NGEN) 
C First two arguments are mean 
C add standard deviation 
      CALL DVRAN3 (0.0D0, 1.0D0, IA, 
     $ DA, N, DWORK, NWORK, ICON) 
      IF (ICON .NE. 0) THEN 
        PRINT *, ' Error Return ', ICON 
        STOP 
      ENDIF 
C Accumulate sum of numbers generated 
      DO 10 I = 1, N 
      DSUM = DSUM + DA(I) 
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C Accumulate sum of squares 
   10 DSUM2 = DSUM2 + DA(I)*DA(I) 
   20 NGEN = NGEN - N 
C Compute sample mean 
      DMEAN = DSUM/DFLOAT(NRAN) 
      PRINT *, ' First moment ', DMEAN 
C Compute sample second moment about 0 
      DM2 = DSUM2/DFLOAT(NRAN) 
      PRINT *, ' Second moment ', DM2 
      STOP 
      END 
 

(4) Method 

 To generate normally distributed pseudo-random numbers, DVRAN3 uses the Polar 
method with fast elementary function evaluation.  The uniform pseudo-random numbers 
required in this method are generated using DVRAU4. 

 The Polar method is described in item [24].  For implementation details and a comparison 
with other methods, see [4]. 
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J11-20-0501 DVRAN4 
 
Generation of normal random numbers (double precision, Wallace’s method) 

CALL DVRAN4 (DAM, DSD, IX, DA, N, DWORK, NWORK, ICON) 
 
(1) Function 
 This subroutine generates pseudo-random numbers from a normal distribution density 

function (1.1) with a given mean m and standard deviation σ. 
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(2) Parameters 
DAM........... Input.  Mean m of normal distribution. 

Double-precision real type. 
DSD............ Input.  Standard deviation σ of normal distribution. 

Double-precision real type. 
IX................ Input.  Starting value. 

On the first call, set IX to a positive value.  Subsequently, call the subroutine 
with the return value remaining 0.  A different sequence of random numbers are 
generated with a different starting value on the first call. 
(See item (3), “Comments on use,” b., 1).) 
4-byte integer type (INTEGER*4). 
Output.  0. 

DA.............. Output.  N pseudo-random numbers. 
Double-precision real type one-dimensional array of size N. 

N................. Input.  The number of normally distributed pseudo-random numbers to be 
returned in DA. 
(See item (3), “Comments on use,” b., 2).) 

DWORK...... Work area.  One-dimensional array of the double-precision real type and size 
NWORK. 
Do not modify the contents of this subroutine between repeated calls. 
DWORK contains information necessary for repeated calls to this subroutine. 
(See item (3), “Comments on use,” b., 3).) 

NWORK...... Input.  The size of the array DWORK.  NWORK ≥ 1,350. 
ICON........... Output.  Condition code. 

See Table DVRAN4-1, “Condition codes.” 
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Table DVRAN4-1   Condition codes 

Code Description Processing 

0 No error  

30001 NWORK is too small.  IX < 0, DSD ≤ 0 Processing is stopped. 

30002 Internal check failed.  

30003 to 30008 DWORK was overwritten or IX was set to zero 
on the initial call. 

 

30009 IX is too large.  

40001 to 40002 DWORK was over written or IX was set to zero 
on the initial call. 

 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  DUF2G3, DUITG3, DURN3B, DURUG3, DUR2G3, DUSKG3, DUSQG3, 
DUVRG3, DVRAU4, MGSSL 

b. Comments 

1) Starting point IX 

 When a sequence of pseudo-random numbers is to be generated by a 
deterministic program, there must be random input.  To do this, give a starting 
value IX.  On the first call to this subroutine, the starting value IX must be a 
positive integer.  (For exceptions, see item 5).)  For subsequent calls, set IX to 
zero.  This indicates that more pseudo-random numbers from the same sequence 
are to be generated.  To simplify programming, this subroutine returns zero in IX 
after the initial call. 

2) Parameter N 

 This subroutine returns the next N pseudo-random numbers from the infinite 
sequence defined by the starting value IX.  If N ≤ 0, no pseudo-random numbers 
are returned. 

 For efficiency, the user should make N sufficiently large (for instance, N = 
100,000).  This reduces the overhead of subroutine calls and allows vectorization.  
N may be changed on consecutive calls to this subroutine provided that the size 
of array DA is as large as the maximum value of N. 

3) Work area DWORK 

 DWORK is a work area to store state information for repeated calls to this 
subroutine.  The calling program must not change the contents of DWORK 
while the subroutine is being called. 

4) Parameter NWORK 

 DWORK (1), ..., DWORK (NWORK) are used by this subroutine.  NWORK 
should remain unchanged on each call to the subroutine.  NWORK should be at 
least 1,350.  For efficiency on vector processors, NWORK should be large (for 
example, NWORK = 500,000). 
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5) Repeated generation of the same random number 

 If DWORK (1), ..., DWORK (NWORK) is saved, the same sequence of random 
numbers can be generated again (from the point where DWORK was saved) by 
reusing DWORK (1), ..., DWORK (NWORK) and calling this subroutine with 
argument IX = 0. 

6)  The implementation of Wallace's method in DVRAN4 is about three times faster 
than the implementation of the Polar method in DVRAN3. 

 
c. Example of use 

 In this example, one million normal pseudo-random numbers are generated, and the 
first- and second-order moments are calculated.  The starting value is 12345.  The 
first-order moment is ∑ XiFi when the frequency of the variable Xi is Fi.  The second-
order moment is ∑ Xi

2Fi when the frequency of the variable Xi is Fi. 
 
C     ** EXAMPLE ** 
      PARAMETER  (NRAN  = 1000000) 
      PARAMETER  (NSEED = 12345) 
      PARAMETER  (NWMAX = 100000) 
      PARAMETER  (NBUF  = 120000) 
      REAL*8     DA(NBUF) 
      REAL*8     DWORK(NWMAX) 
      REAL*8     DSUM, DSUM2 
      REAL*8     DMEAN, DM2 
      IA = NSEED 
      PRINT *, ' Seed ', IA 
      N = NBUF 
      NWORK = NWMAX 
      DSUM  = 0.0D0 
      DSUM2 = 0.0D0 
C NGEN counts down to 0 
      NGEN = NRAN 
      PRINT *, ' Generating ', NGEN, 
     $           ' numbers' 
C Generate NRAN numbers , 
C maximum NBUF at a time 
      KRPT = (NRAN+NBUF-1)/NBUF 
      PRINT *, ' with ', KRPT, 
     $           ' call to dvran4' 
      DO 20 J = 1, KRPT 
      N = MIN0 (NBUF, NGEN) 
C First two arguments are mean 
C add standard deviation 
      CALL DVRAN4 (0.0D0, 1.0D0, IA, 
     $ DA, N, DWORK, NWORK, ICON) 
      IF (ICON .NE. 0) THEN 
        PRINT *, ' Error Return ', ICON 
        STOP 
        ENDIF 
C Accumulate sum of numbers generated 
      DO 10 I = 1, N 
      DSUM = DSUM + DA(I) 
C Accumulate sum of squares 
 10   DSUM2 = DSUM2 + DA(I)*DA(I) 
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 20   NGEN  = NGEN - N 
C Compute sample mean 
      DMEAN = DSUM/DFLOAT(NRAN) 
      PRINT *, ' First moment ', DMEAN 
C Compute sample second moment about 0 
      DM2 = DSUM2/DFLOAT(NRAN) 
      PRINT *, ' Second moment ', DM2 
      STOP 
      END 
 

(4) Method 

 DVRAN4 uses a variant of Wallace’s method to generate normally distributed pseudo-
random numbers. This requires uniform pseudo-random numbers, which are generated 
using DVRAU4. 

 Wallace's method is described in reference [43]. Implementation details and comparisons 
with other methods are given in references [4] and [5] 
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J11-11-0301  DVRAU4 
 
Generation of uniform [0, 1) pseudo-random numbers (double precision) 

CALL DVRAU4 (IX, DA, N, DWORK, NWORK, ICON) 
 
(1) Function 

 This subroutine generates a sequence of pseudo-random numbers from a uniform 
distribution on [0, 1). 

(2) Parameters 

IX............... Input.  Starting value. 
On the first call, set IX to a positive value.  Subsequently, call the subroutine 
with the return value remaining 0. 
(See item (3), “Comments on use,” b., 1).) 
A different sequence of random numbers are generated with a different IX value 
on the first call. 
(See item (4), “Method.”) 
4-byte integer type (INTEGER*4). 
Output.  0. 

DA.............. Output.  N pseudo-random numbers independent and uniform in [0, 1). 
Double-precision real type one-dimensional array of size N. 

N................. Input.  The number of uniformly distributed pseudo-random numbers to be 
returned in DA. 
(See item (3), “Comments on use,” b., 2).) 

DWORK..... Work area.  One-dimensional array of double-precision real type with size of at 
least NWORK. 
Do not modify the contents between repeated calls to this subroutine.   
DWORK contains all of the current state information necessary to call this 
subroutine again from its current point. 
(See item (3), “Comments on use,” b., 3).) 

NWORK..... Input.  The size of the array DWORK.  NWORK ≥ 388. 

ICON.......... Output.  Condition code. 
See Table DVRAU4-1, “Condition codes.” 
 

Table DVRAU4-1   Condition codes 

Code Description Processing 

0 No error  

30001 NWORK is too small. Processing is stopped. 

30002 IX<0  

30003 to 30008 DWORK was modified.  Or IX was set to zero 
on the initial call. 
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(3) Comments on use 

a. Subprograms used 

 SSL II:  DUITG3, DURUG3, DUR2G3, DUF2G3, DUSKG3, DUSQG3, DUVRG3, 
MGSSL 

b. Comments 

1) Starting value IX 

 When a sequence of pseudo-random numbers is to be generated by a 
deterministic program, there must be random input.  To do this, give a starting 
value IX.  This starting value is often called the “seed.”  On the first call to this 
subroutine, the starting value IX must be a positive integer.  (For exceptions, see 
item 5).)  On subsequent calls, set IX to zero.  This indicates that subsequent 
pseudo-random numbers from the same sequence are to be generated.  To 
simplify programming, this subroutine returns zero in IX after the initial call. 

2) Parameter N 

 This subroutine returns the next N pseudo-random numbers from the infinite 
sequence defined by the starting value IX.  If N ≤ 0, no pseudo-random numbers 
are returned. 

 For efficiency, make N sufficiently large (for example, N = 100,000).  This 
reduces the overhead of subroutine calls and allows vectorization.  A sequence 
of random numbers are affected by N and NWORK values on the first call. For 
details, see item (4), “Method.” N may be different on successive calls to this 
subroutine, provided that the size of array DA is as large as the maximum value 
of N. 

3) Work area DWORK 

 DWORK is a work area used to store state information for repeated calls to this 
subroutine.  The calling program must not change the contents of DWORK 
while the subroutine is being called. 

4) Parameter NWORK 

 DWORK (1), ..., DWORK (NWORK) are used by this subroutine.  NWORK 
should remain unchanged on each call to the subroutine.  NWORK should be at 
least 388.  For efficiency on vector processors, NWORK should be large (for 
example, NWORK = 45,000). A sequence of random numbers are affected by N 
and NWORK values on the first call. For details, see item (4), “Method.” 

5) Repeated generation of the same random number 

 If DWORK (1), ..., DWORK (NWORK) is saved, the same sequence of random 
numbers can be generated again (from the point where DWORK was saved).  
Reusing DWORK (1), ..., DWORK (NWORK) and call this subroutine with 
argument IX = 0. 

c. Example of use 

 In this example, one million uniform pseudo-random numbers are generated and their 
mean value is calculated.  The starting value is 123. 

 
C     **EXAMPLE** 
      PARAMETER (NRAN = 1000000) 
      PARAMETER (NSEED = 123) 
      PARAMETER (NWMAX = 45000) 
      PARAMETER (NBUF = 160000) 
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      REAL*8 DA(NBUF) 
      REAL*8 DWORK(NWMAX) 
      REAL*8 DSUM, DMEAN, DSIG 
      IX = NSEED 
      PRINT *, ' SEED ', IX 
      N = NBUF 
      NWORK = NWMAX 
      DSUM = 0.0D0 
C NGEN counts down to 0 
      NGEN = NRAN 
      PRINT *, ' Generating ', NGEN, 
     $ ' Numbers' 
C Generate NRAN numbers, 
C Maximum NBUF at a time 
      KRPT = (NRAN+NBUF-1)/NBUF 
      PRINT *, ' with ', KRPT, 
     $ ' calls to dvrau4' 
      DO 20 J = 1, KRPT 
      N = MIN0 (NBUF, NGEN) 
      CALL DVRAU4 (IX, DA, N, 
     $ DWORK, NWORK, ICON) 
      IF (ICON .NE. 0) THEN 
        PRINT *, ' Error return ', ICON 
        STOP 
      ENDIF 
C Accumulate sun of numbers generated 
      DO 10 I = 1, N 
   10 DSUM = DSUM + DA(I) 
   20 NGEN = NGEN - N 
C Compute mean 
      DMEAN = DSUM/DFLOAT(NRAN) 
      PRINT *, ' Mean ', DMEAN 
C Compute deviation from 0.5 normalized 
C by expected value 1/sqrt(12*NRAN). 
C This should be (approximately) normally 
C distributed with mean 0, variance 1. 
      DSIG = DMEAN - 0.5D0 
      DSIG = DSIG*DSQRT(12.0D0*NRAN) 
      PRINT *, ' Norm. deviation ', DSIG 
      STOP 
      END 
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(4) Method 

 This subroutine uses the generalized Fibonacci method.  If the sequence of pseudo-
random numbers is X (1), X (2), ..., then 

X (J) = α*X (U - r) + β*X (J - s) (modulo 1) 

 where J > r > s. 

 Here, r and s are fixed positive integers (often called “lags”), and α and β are small odd 
integers. 

 On the first call (or any call with IX > 0), this subroutine selects a pair (r, s) defining a 
primitive trinomial (mod 2) and a corresponding linear recurrence.  There are 14 possible 
pairs (r, s), and the one with the largest r is chosen, subject to the constraint that N and 
NWORK are large enough. 

 Thus, the user can choose: 

- A good generator with a moderately long period, low initialization overhead, and 
small storage requirements by setting NWORK = 1,000, for example 

- A very good generator with an extremely long period, high initialization overhead, 
and high storage requirements by setting NWORK = 133,000, for example 

- An intermediate compromise, without having to know the precise details of how to 
choose (r, s). 

 The pairs (r, s) used by this subroutine are given in Table DVRAU4-2.  For tables of 
primitive trinomials, see [20]. 

 
Table DVRAU4-2   Pairs (r, s) 

r s r s 

127 
258 
521 
607 
1279 
2281 
3217 

97 
175 
353 
334 
861 
1252 
2641 

4423 
9689 
19937 
23209 
44497 
110503 
132049 

2325 
5502 
10095 
13470 
23463 
56784 
79500 

 
 This subroutine chooses the parameters (α, β) = (7, 9) if r ≤ 1,000, and (α, β) = (1, 15) if r 

> 1,000.  The rationale is that performance on statistical tests is likely to be improved if α 
> 1.  However, this improvement is only significant for smaller choices of r.  For larger 
choices of r, the performance on statistical tests is very good, even if α = 1.  This choice 
increases the speed of random number generation. 

 The period of the sequence is W(2r - 1), where r is in the range 127 (for the smallest 
NWORK) to 132,049 (for N ≥ 264,098 and NWORK ≥ 132,056).  The factor W depends 
on the wordlength.  (On the Fujitsu VPP series, W = 248, and the minimum period is at 
least 1052.) 

 The initialization ensures that sequences of pseudo-random numbers returned for different 
starting value IX are separated by a distance of at least 260 > 1018 in the full periodic 
sequence.  Thus, for all practical purposes, different starting values IX ensure different 
sequences of pseudo-random numbers. 
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 The method and implementation details are described in more detail in [2] and [3].  For a 
further explanation and comparison with other methods, see [1], [11], [22], and [28]. 

(5) Testing of uniform random numbers 

 Table DVRAU4-3 shows the result of testing statistical hypotheses for the pseudo-
random numbers generated by DVRAU4 with NWORK = 44,504 (so r = 44,497 and s = 
23,463). 

 
Table DVRAU4-3   Results of χ2 testing (uniform deviation at n-dimensions unit  

          hypercube) 

Dimension(*1) Size(*2) resl
(*3) resv

(*4) Density(*5) 1 - 2 - 2 fχ2  

1 109 5 × 107 50000000 20.00 1.21 

1 0.8 × 109 1.25 × 107 12500000 64.00 -0.67 

2 109 7071 49999041 10.00 -0.10 

2 2 × 109 3535 12496225 80.02 -0.37 

3 2 × 109 368 49836032 13.38 1.40 

3 2 × 109 232 12487168 53.39 -0.96 

4 2 × 109 84 49787136 10.04 0.76 

4 2 × 109 59 12117361 41.26 -0.38 

 
*1 Dimension:  Dimension of the unit hypercube. 

*2 Size:  Number of pseudo-random numbers generated. 

*3 resl:  Number of equal subintervals partitioning [0, 1) in each dimension. 

*4 resv:  Number of equal hypercubes partitioning the unit hyper cube. 

*5 Density:  Average number of random points per small hypercube. 

 In the table, the number of degrees of freedom ’f’ of chi-squared testing is very large 

(1,000,000 level).  In this case, the expression 1 - 2 - 2 2 fχ  should be approximated 
extremely well as a normal deviate with unit variance. 
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A72-27-0101  VBCSD, DVBCSD 
 
System of linear equations with unsymmetric or indefinite sparse matrix 
(BICGSTAB(l) method, diagonal storage format) 

CALL VBCSD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS, L, X, ITER,  
                             VW, ICON) 
 
(1) Function 

 This routine solves linear equations with an n × n unsymmetric or indefinite sparse matrix 
using the Bi-Conjugate Gradient Stabilized(l) method (BICGSTAB(l)).   

 Ax = b 

 The n × n coefficient is stored with the diagonal storage format.  Vectors b and x are n-
dimensional vectors. 

 Regarding the convergence and the guideline on the usage of iterative methods, see 
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I. 

 

(2) Parameters 

A................ Input.  Stores non-zero elements in a coefficient matrix. 
Two-dimensional array A (K, NDIAG).  Stores coefficient matrix A in  
A (1:N, NDIAG) with the diagonal storage format. For the diagonal storage 
format, see Part I, “Overview,” Section 3.2.1.1, “Storage Methods for General 
Sparse Matrices,” b., “Diagonal Storage Format for General Sparse Matrices.” 

K................ Input.  Size of adjustable dimension of array A  

NDIAG....... Input.  The number of diagonal vectors in coefficient matrix A that contain non-
zero elements. 
Size of second-dimension of array A. 

N................ Input.  Order n of matrix A. 

NOFST.... Input.  Stores the distance from the main diagonal vector corresponding to 
diagonal vectors stored in array A.  Superdiagonal vectors have positive values; 
Subdiagonal vectors have negative values. 
One-dimensional array NOFST (NDIAG). 

B................. Input.  One-dimensional array of size n.  Stores the constant vector of the right-
hand side term of a linear equation system. 

ITMAX....... Input. The upper limit of iterations in BICGSTAB(l) method (> 0). 

EPS............. Input.  A convergence criterion value in judgment of convergency. 
If EPS is 0.0 or less, it is set to 10-6 in double-precision routines and 10-4 in 
single-precision routines.   
(See item (3), “Comments on use,” b., 1).) 

IGUSS........ Input.  Sets control information about whether to start the iterative computation 
from the approximate value of the solution vector specified in array X.   
IGUSS=0:  Approximate value of the solution vector is not specified. 
IGUSS≠0:  The iterative computation starts from the approximate value of the 
solution vector specified in array X. 
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L................. Input.  The order of stabiliser in the BICGSTAB(l) algorithm. ( 1 ≤ L ≤ 8 ). 
The value of L should usually be set to 1 or 2. (See item(3), “Comments on 
use,” b., 2).) 

X................. Input.  One-dimensional array of size n.  Can specify the approximate value of 
the solution vector. 
Output.  The solution vector is stored. 

ITER........... Output. Number of iteration performed using the BICGSTAB(l) method. 

VW............. Work area.  One-dimensional array K × (4+2×L) + N + NBANDL + NBANDR.  
NBANDL indicates a lower bandwidth; NBANDR indicates an upper 
bandwidth. If the order or the bandwidth of the matrix are not constant 
parameters,  it is enough to set the size of VW array to be K × (4+2×L) +3×K. 

ICON.......... Output.  Condition code 
See Table VBCSD-1, “Condition codes.” 

 
Table VBCSD-1   Condition codes 

Code Meaning Processing  

0 No error - 

20000 Break-down occurred Processing is stopped. 

20001 The upper limit of iteration steps was 
reached. 

Processing is stopped. 

The approximate value obtained up to 
this point in array X is output, but their 
precision cannot be guaranteed. 

30000 K<1, N<1, K<N, NDIAG<1, L<1, L>8, 
K<NDIAG, or ITMAX≤ 0 

Processing is stopped. 

32001 | NOFST (I) | > N-1 Processing is stopped. 
 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, UBCRL, UBCSD, UBGRS, UQITB, URELT, URIPA,  

 URITI, URITT, URMVD, URSTE, USVCN, USVCP, USVN2,  

 MGSSL, UMGSL 

b. Comments 

1) Convergent criterion 
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less 
than the product of the initial residual Euclidean norm and EPS, it is judged as 
having converged.  The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of Matrix 
A and EPS. 
The residual which used for convergence judgement is computed recursively and 
it may differ from the true residual. 

2) Parameter L 
The maximum value of L is set to 8.  For L=1, this algorithm coincides with 
BiCGSTAB.  Using smaller L usually results in faster speed, but in some 
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situations larger L brings a good convergence, although the steps of an iteration 
are more expensive for larger L. 

3) Notes on using the diagonal format 
A diagonal vector element outside coefficient matrix A must be set to zero. 
There is no restriction in the order in which diagonal vectors are stored in array 
A.   
The advantage of this method lies in the fact that the matrix vector multiplication 
can be calculated without the use of indirect indices.  The disadvantage is that 
matrices without the diagonal structure cannot be stored efficiently with this 
method. 

4) Diagonal scaling 
Scaling the equations so that the main diagonal to be 1 may results in better 
convergence. 

c. Example of use 

 In this example, linear equations of coefficient matrices obtained by discretizing 
partial differential operators are solved in the region [0,1] × [0,1] × [0,1], with the 
Dirichlet boundary condition (function value zero at the boundary). 

 This type of partial differential operator is described in Part I, “Overview,” Section 
3.2.2 “Discretization of partial differential operators and storage examples for them.” 

 For INIT_MAT_DIAG, see Part I, “Overview,” Section 3.2.2, “Discretization of 
partial differential operators and storage examples for them.”  
GET_BANDWIDTH_DIAG is a routine that estimates band width.  INIT_SOL is a 
routine that generates solution vectors to be sought with random numbers. 

 
c     **EXAMPLE** 
      PROGRAM TEST_ITER_SOLVERS 
      IMPLICIT REAL*8 (A-H,O-Z) 
      INTEGER MACH 
      PARAMETER (MACH = 0) 
      PARAMETER (K = 10000) 
      PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ) 
      PARAMETER (NDIAG = 7, LEN = N+400+400) 
      PARAMETER (L = 4) 
      PARAMETER (NVW = (4+2*L)*K+LEN) 
      DOUBLE PRECISION A(K,NDIAG),X(N),B(N),SOLEX(N) 
      INTEGER NOFST(NDIAG) 
      DOUBLE PRECISION VW(NVW) 
C 
      CALL INIT_SOL(SOLEX,N,1D0,MACH) 
      PRINT*,'EXPECTED SOLUSIONS' 
      PRINT*,'X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
C 
      PRINT * 
      PRINT *,'    BiCGstab(l) METHOD' 
      PRINT *,'    DIAGONAL FORMAT' 
C 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
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      ZL = 1.0 
C 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST 
     &            ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
      CALL GET_BANDWIDTH_DIAG(NOFST,NDIAG,NBANDL,NBANDR) 
          DO 110 I = 1,N 
              VW(I+NBANDL) = SOLEX(I) 
 110      CONTINUE 
      CALL DVMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON) 
      PRINT*,'DVMVSD ICON= ',ICON 
C 
      EPS = 1D-10 
      IGUSS = 0 
      ITMAX = 2000 
      CALL DVBCSD(A,K,NDIAG,N,NOFST,B,ITMAX 
     &              ,EPS,IGUSS,L,X,ITER,VW,ICON) 
C 
      PRINT* ,'ITER = ',ITER 
      PRINT* ,'DVBCSD ICON = ',ICON 
      PRINT*, 'COMPUTED VALUES' 
      PRINT*, 'X(1) = ',X(1),' X(N) = ',X(N) 
      STOP 
      END 
 

(4) Method 

 The BICG algorithm is described in [38] in Appendix B, “References.”  The 
BICGSTAB(l) algorithm is a modification of the BICGSTAB method, see [42] and [16] 
in Appendix B, “References.” 
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A72-28-0101  VBCSE, DVBCSE 
 
System of linear equations with unsymmetric or indefinite sparse matrix 
(BICGSTAB(l) method, ELLPACK storage format) 

CALL VBCSE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS, L,  X, ITER,  
                          VW, ICON) 
 
(1) Function 

 This routine solves linear equations with an n × n unsymmetric or indefinite sparse matrix 
using the Bi-Conjugate Gradient Stabilized(l) method (BICGSTAB(l)) method. 

 Ax = b 

 Coefficient matrices (n × n) are stored with the ELLPACK format.  Vectors b and x are n-
dimensional vectors. 

 Regarding the convergence and the guideline on the usage of iterative methods, see 
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I. 

 (2) Parameters 

A................ Input.  Stores non-zero elements of the coefficient matrix. 
Two-dimensional array A (K, IWIDT).   
For the ELLPACK storage format, see Part I, “Overview,” Section 3.2.1.1, 
“Storage Method for General Sparse Matrices.” 

K................ Input.  Size of adjustable dimension (≥ n) of A and ICOL. 

IWIDT...... Input.  The maximum number of non-zero-elements in row vector direction on  
the coefficient matrix A. 
Two dimensional size of A and ICOL. 

N................ Input.  Order n of matrix A. 

ICOL.......... Input.  Store the column indices of the element stored in the array A using the 
ELLPACK format, indicating which column vectors the corresponding 
elements in the array A belong to. 
Two-dimensional array ICOL (K, IWIDT) 

B................. Input.  One-dimensional array of size n.  Stores a constant vector of the right-
hand-side term of a linear equation system. 

ITMAX....... Input.  The upper limit of iterations in BICGSTAB(l) method (> 0). 

EPS............. Input.  A convergence criterion value in judgment of convergency. 
If EPS is 0.0 or less, it is set to 10-6 in double-precision routines and 10-4 in 
single-precision routines.   
(See item (3), “Comments on use,” b., 1).) 

IGUSS........ Input.  Control information about whether to start the iterative computation 
from the approximate value of the solution vector specified in array X.  
IGUSS=0:  Approximate value of the solution vector is not set. 
IGUSS≠0:  The iterative computation starts from the approximate value of the 
solution vector specified in array X. 

L................. Input.  The order of stablilser in the BICGSTAB(l) algorithm. ( 1 ≤ L ≤ 8). 
The value of L should usually be set to 1 or 2. (See item(3), “Comments on 
use,” b., 2).) 
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X................ Input.  One-dimensional array of size n.  An approximate value of a solution 
vector can be specified. 
Output.  Stores a solution vector. 

ITER.......... Output.  The real number of iteration steps in BICGSTAB(l) method. 

VW............. Work area.  One-dimensional array K × (4+2 × L). 

ICON.......... Output.  Condition code 
See Table VBCSE-1, “Condition codes.” 

 
Table VBCSE-1   Condition codes 

Code Meaning Processing  

0 No error - 

20000 Break-down occurred Processing is stopped. 

20001 The upper limit of iteration steps was 
reached. 

Processing is stopped. 

The approximate values obtained up to 
this point in array X are output, but their 
precision cannot be guaranteed. 

30000 K<1, N<1, K<N, IWIDT<1, L<1, L>8, 
K<IWIDT, or ITMAX≤ 0 

Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, UBCRL, UBCSE, UBGRS, UQITB, URELT, URIPA,  
             URITI, URITT, URMVE, URSTE, USVCN, USVCP, USVN2,  
             MGSSL, UMGSL 

 b. Comments 

1) Convergent criterion 
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less 
than the product of the initial residual Euclidean norm and EPS, it is judged as 
having converged.  The difference between the precise solution and obtained 
approximate solution is equal to the product of the condition number of matrix A 
and EPS. 
The residual which used for convergence judgement is computed recursively and 
it may differ from the true residual. 

2) Parameter L 
The maximum value of L is set to 8.  For L=1, this algorithm coincides with 
BiCGSTAB.  Using smaller L usually results in faster speed, but in some 
situations larger L brings a convergence, although the steps of a iteration are 
more expensive for larger L. 

3) Diagonal scaling 
Scaling the equations so that the main diagonal to be 1 may results in better 
convergence. 

c. Example of use 

 In this example, linear equations of coefficient matrices obtained by discretizing 
partial differential operators are solved in the region [0,1] × [0,1] × [0,1] with the 
Dirichlet boundary condition (function value zero at the boundary).  This type of 
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partial differential operator is described in Part I, “Overview,” Section 3.2.2, 
“Discretization of partial differential operator and storage examples for them.” 

 For INIT_MAT_ELL, see Part I, “Overview,” Section 3.2.2, “Discretization of 
partial differential operators and storage examples for them.” 

 INIT_SOL is the routine that generates the solution vectors to be sought in random 
numbers. 

 
C     **EXAMPLE** 
      PROGRAM TEST_ITER_SOLVERS 
      IMPLICIT REAL*8 (A-H,O-Z) 
      INTEGER MACH 
      PARAMETER (MACH = 0) 
      PARAMETER (K = 10000) 
      PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ) 
      PARAMETER (IWIDT = 7, L = 4) 
      PARAMETER (NVW = (4+2*L)*K) 
      DOUBLE PRECISION A(K,IWIDT),X(N),B(N),VW(NVW),SOLEX(N) 
      INTEGER ICOL(K,IWIDT) 
C 
      CALL INIT_SOL(SOLEX,N,1D0,MACH) 
      PRINT*,'EXPECTED SOLUTION' 
      PRINT*,'X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
C 
      PRINT * 
      PRINT *,'    BiCGstab(l) METHOD' 
      PRINT *,'    ELLPACK FORMAT' 
C 
      AVI = 3D0 
      AV2 = 1D0/3D0 
      AV3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
C 
      CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL, 
     &          NX,NY,NZ,XL,YL,ZL,IWIDT,N,K) 
      CALL DVMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON) 
      PRINT*,'DVMVSE ICON = ',ICON 
C 
      EPS = 1D-10 
      IGUSS = 0 
      ITMAX = 2000 
      CALL DVBCSE(A,K,IWIDT,N,ICOL,B,ITMAX, 
     &            EPS,IGUSS,L,X,ITER,VW,ICON) 
C 
      PRINT*,'DVBCSE ICON = ',ICON 
      PRINT*,'COMPUTED VALUE' 
      PRINT*,'X(1) = ',X(1),' X(N) = ',X(N) 
      STOP 
      END 
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(4) Method 

 The BICG algorithm is described in [38] in Appendix B, “References.”  The 
BICGSTAB(l) algorithm is a modification of the BICGSTAB method, see [42] and [16] 
in Appendix B, “References.” 
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A53-31-0102  VBLDL, DVBLDL 
 
LDLT decomposition of symmetric positive definite banded matrix (modified 
Cholesky decomposition) 

CALL VBLDL (A, N, NH, EPSZ, ICON) 
 
(1) Function 

 Using modified Cholesky decomposition, this routine computes the LDLT decomposition 

 A = LDLT 

 of an n × n symmetric positive definite banded matrix A with an upper and lower 
bandwidth h, where L is a unit lower banded matrix with the lower bandwidth h, and D is 
a diagonal matrix. 

 The condition n > h ≥ 0 must be met. 

 In order to exploit vector computer performance, this routine adopts the method of 
storage in the order of column vectors. 

(2) Parameters 

A................. Input.  One-dimensional array of size (h + 1) × n. 
Stores diagonal elements of the coefficient matrix A and the lower banded 
matrix. 
For the storage method for matrix A, see Figure VBLDL-1. 
Output.  Stores LDLT decomposed D and L. 
For the storage method for matrices L and D, see Figure VBLDL-2. 

N................. Input.  Order n of matrix A. 

NH.............. Input.  Lower bandwidth h. 

EPSZ........... Input.  Value of pivot judgment of relative zero (≥ 0.0). 
When it is 0.0, standard values are applied. 
(See item (3), “Comments on use,” b., 1).) 

ICON.......... Output.  Condition code. 
See Table VBLDL-1, “Condition codes.” 
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Figure VBLDL-1  Storage method for matrix A in array A 

i column vectors of the lower banded matrix A are stored according to 

A ( (h + 1) × (i - 1) + j - i + 1) = aji 

where j = i, ..., i + h,  i = 1, ... , n 
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* (asterisk):  Undefined value 

Figure VBLDL-2  Storage method for matrices L and D in array A 

dii is stored in A ( (h + 1) × (i - 1) + 1). 

lji is stored in A ( (h + 1) × (i - 1) + j - i + 1). 

j = i + 1, ... , i + h,  i = 1, ... , n 
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Table VBLDL-1   Condition codes 

Code Description Processing 

0 No error  

10000 A negative pivot.  Matrix A is not positive definite. Processing continues. 

20000 Pivot is relative zero.  Strong possibility that matrix A is 
singular. 

Processing is stopped. 

30000 NH < 0, NH ≥ N or EPSZ < 0.0 Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, MGSSL 

b. Comments 

1) In this subroutine, the case of the pivot value being less than EPSZ is considered 
relative zero, and processing is stopped with ICON = 20,000. 

 The standard value of EPSZ is 16 × u, where u is the round off unit. 

2) If the pivot value becomes negative during decomposition, the coefficient matrix 
is not positive definite.  In such a case, this subroutine continues processing, but 
with ICON = 10,000. 

3) The elements of matrix L that result from the decomposition are stored in array 
A, as demonstrated in Figure VBLDL-2.  Thus, the determinant is obtained from 
the multiplication of n diagonal elements:  A ( (h + 1) × (i - 1) + 1),  i = 1, ..., n. 

c. Example of use 
 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER(NH=128) 
      PARAMETER(N=128*128) 
      DIMENSION A((NH+1)*N),C(NH+1,N) 
      EQUIVALENCE(A,C) 
C 
C     Zero clear 
C 
      DO 10 I=1,N*(NH+1) 
      A(I)=0.0 
   10 CONTINUE 
C 
C     Coefficient Matrix is built 
C     b = A*y , where y=(1,1,....,1) 
C 
      DO 20 I=1,N 
      C(1,I)=1.0 
      IF(I+NH.LE.N)THEN 
      C(NH+1,I)=-0.25 
      ENDIF 
      IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN 
      C(2,I)=-0.25 
      ENDIF 
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   20 CONTINUE 
C 
C     LDL^T decomposition 
C 
      EPSZ=0.0D0 
      CALL DVBLDL(A,N,NH,EPSZ,ICON) 
      PRINT*,'ICON=',ICON 
      IF(ICON.NE.0)STOP 
C 
      DET=1.0D0 
      DO 30 I=1,N 
      DET=DET*C(1,I) 
   30 CONTINUE 
C 
      PRINT*,'DETERMINANT=',DET 
      STOP 
      END 
 

(4) Method 

LDLT decomposition is performed with the modified Cholesky decomposition of the outer 
product type.  (See [32].) 
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A53-31-0202  VBLDX, DVBLDX 
 
System of linear equations with an LDLT decomposed symmetric positive definite 
banded matrix 

CALL VBLDX (B, FA, N, NH, ICON) 
 
(1) Function 

 This routine solves the following linear equations of LDLT decomposed symmetric 
positive definite banded matrix contained in the coefficient matrix: 

 LDLTx = b                                                                                (1.1) 

 L and D are each an n × n unit lower banded matrix with the lower bandwidth h.  D is a 
diagonal matrix, b is an n-dimensional real constant vector, and x is an n-dimensional 
solution vector. 

 The condition n > h ≥ 0 must be met. 

(2) Parameters 

B................. Input.  Constant vector b. 
Output.  Solution vector x. 
One-dimensional array of size n. 

FA............... Input.  One-dimensional array of size (h + 1) × n. 
See Figure VBLDX-1, “Storage method for matrices L and D in array FA,” for 
the storage method of LDLT decomposed matrices L and D. 

N................. Input.  Order n of matrix A. 

NH.............. Input.  Lower bandwidth h. 

ICON.......... Output.  Condition code. 
See Table VBLDX-1, “Condition codes.” 
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* (asterisk):  Undefined value 

Figure VBLDX-1  Storage method for matrices L and D in array FA 

 dii is stored in FA ( (h + 1) × (i - 1) + 1). 
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 lji is stored in FA ( (h + 1) × (i - 1) + j - i + 1). 

 j = i + 1, ..., i + h,  i = 1, ... , n 
 

Table VBLDX-1   Condition codes 

Code Description Processing 

0 No error  

10000 Coefficient matrix A is not positive definite. Processing continues. 

30000 NH < 0, NH ≥ N Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  UBLTS, UBUTS, MGSSL 

b. Comments 

1) Linear equations can be solved by calling this routine consecutively after the 
subroutine VBLDL.  However, one call to the subroutine VLSBX usually brings 
the same solution. 

c. Example of use 

 In this example, a symmetric positive definite banded matrix, where bandwidth h = 
256 and n = 256 × 256, is LDLT decomposed and Ax = b is solved. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER(NH=128) 
      PARAMETER(N=128*128) 
      DIMENSION A((NH+1)*N),B(N),C(NH+1,N) 
      EQUIVALENCE(A,C) 
C 
C     Zero clear 
C 
      DO 10 I=1,N*(NH+1) 
      A(I)=0.0 
   10 CONTINUE 
C 
      DO 15 I=1,N 
      B(I)=0.0 
   15 CONTINUE 
C 
C     Coefficient Matrix is built 
C     b = A*y , where y=(1,1,....,1) 
C 
      DO 20 I=1,N 
      C(1,I)=4.0 
      B(I)=B(I)+4.0 
C 
      IF(I+NH.LE.N)THEN 
      C(NH+1,I)=-1.0 
      B(I+NH)=B(I+NH)-1.0 
      B(I)=B(I)-1.0 
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      ENDIF 
C 
      IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN 
      C(2,I)=-1.0 
      B(I+1)=B(I+1)-1.0 
      B(I)=B(I)-1.0 
      ENDIF 
   20 CONTINUE 
C 
C     Solve Symmetric Positive Definite linear equation 
C 
      EPSZ=0.0D0 
      CALL DVBLDL(A,N,NH,EPSZ,ICON) 
      PRINT*,'VBLDL ICON=',ICON 
      IF(ICON.NE.0)STOP 
      CALL DVBLDX(B,A,N,NH,ICON) 
      PRINT*,'VBLDX ICON=',ICON 
      IF(ICON.NE.0)STOP 
C 
      PRINT*,'B(1)= ',B(1) 
      PRINT*,'B(N)= ',B(N) 
      STOP 
      END 
 

(4) Method 

 The solution is obtained through forward-substitution and back-substitution. 
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A53-11-0102  VBLU, DVBLU 
 
LU decomposition of banded real matrix (Gaussian elimination) 

CALL VBLU (A, N, NH1, NH2, EPSZ, IS, IP, VW, ICON) 
 
(1) Function 

 This routine LU decomposes an n × n banded matrix with a lower bandwidth h1 and an 
upper bandwidth h2 using Gaussian elimination: 

 P A = L U 

 where P is a permutation matrix on which the exchange of rows is performed through 
partial pivoting.  L is a unit lower banded matrix, and U is an upper banded matrix. 

 The condition n > h1 ≥ 0, n > h2 ≥ 0 must be met. 

 In order to exploit vector computer performance, this routine adopts an appropriate 
banded matrix storage method. 

(2) Parameters 

A................. Input.  One-dimensional array of size (2 × h1 + h2 + 1) × n that stores the banded 
coefficient matrix A. 
For the storage method for matrix A, see Figure VBLU-1, “Storage method for 
banded matrix in array A.” 
Output.  Stores the LU decomposed L and U. 
For the storage method for matrices L and U, see Figure VBLU-2, “Storage 
method for matrices L and U in array A.” 

N................. Input.  Order of matrix A. 

NH1............ Input.  Lower bandwidth h1 of matrix A. 

NH2............ Input.  Upper bandwidth h2 of matrix A. 

EPSZ........... Input.  Value of pivot judgment of relative zero (≥ 0.0).  If it is 0.0, the standard 
value is set. 

IS................ Output.  Information used when seeking the determinant of matrix A. 
(See item (3), “Comments on use,” b., 2).) 

IP................ Output.  Transposition vector that shows the history of the exchange of rows 
performed through partial pivoting.  One-dimensional array of size n. 

VW............. Work area.  One-dimensional array of size n. 

ICON.......... Output.  Condition code. 
See Table VBLU-1, “Condition codes.” 
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Figure VBLU-1   Storage method for banded matrix in array A 

The i-th row vector of the coefficient matrix A is stored consecutively in A ( (2 × h1 + h2 + 1) 
× (i - 1) + 1: (2 × h1 + h2 + 1) × i).  Diagonal elements aii are stored in A ( (2 × h1 + h2 + 1) × (i 
- 1) + h1 + 1).  The elements outside coefficient matrix of the banded part are set to zero when 
being stored. 
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* (asterisk):  Undefined value 

Figure VBLU-2   Storage method for matrices L and U in array A 

The i-th row vector without diagonal elements of matrix L is stored in A ( (2 × h1 + h2 + 1) × 
(i - 1) + 1:  (2 × h1 + h2 + 1) × (i - 1) + h1).  The i-th row vector of matrix U is stored in A ( (2 
× h1 + h2 + 1) × (i - 1) + h1 + 1:  (2 × h1 + h2 + 1) × i), consecutively from the diagonal 
elements. 
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Table VBLU-1   Condition codes 

Code Description Processing 

0 No error  

20000 All the elements of a row of matrix A were zero, or the 
pivot is relative zero.  There is a strong possibility that 
matrix A is singular. 

Processing is stopped. 

30000 N ≤ NH1, N ≤ NH2, NH1 < 0, NH2 < 0 or EPSZ < 0.0 Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, MGSSL 

b. Comments 

1) In this subroutine, the case of the pivot value being less than EPSZ is considered 
relative zero.  Processing is stopped with ICON = 20,000. 

 The standard value of EPSZ is 16 × u, where u is the round off unit. 

2) Elements of matrix U are stored in array A, as demonstrated in Figure VBLU-2.  
Therefore, the determinant is obtained by multiplying the IS value by n diagonal 
elements, that is, the multiplication A ( (2 × h1 + h2 + 1) × (i - 1) + h1 + 1), i = 
1, ... , n. 

3) In partial pivoting, this subroutine performs an actual exchange of the rows of 
array A.  If at the J-th step of decomposition (J = 1, 2, ..., n-1) the I-th row (I ≥ J) 
is selected as the pivot row, the contents of the I-th and J-th row of array A are 
interchanged.  In order to show the history, I is then stored in IP (J). 

4) In order to save space in the data storage area, this subroutine stores banded 
matrices by taking advantage of their characteristics.  However, depending on 
bandwidth size, a data storage area that is larger than VALU may be required.  In 
such cases, space in the data storage area can be saved by using VALU. 

 Characteristics of this subroutine can be exploited when n > 2 × h1 + h2 + 1. 

c. Example of use 

 In this example, the determinant of an unsymmetric banded matrix with h1 = h2 = 160, 
n = 160 × 160, is computed. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER(NH=80) 
      PARAMETER(NH1=NH) 
      PARAMETER(NH2=NH) 
      PARAMETER(N=NH*NH) 
      PARAMETER(ALPHA=0.5/(NH1+1)/4,BETA=-ALPHA) 
      DIMENSION A((2*NH1+NH2+1)*2*N) 
      DIMENSION C(2*NH1+NH2+1,N),IP(N),VW(N) 
      EQUIVALENCE(A,C) 
C 
C     Zero clear 
C 
      DO 10 I=1,N*(3*NH+1) 



VBLU, DVBLU 

Fujitsu SSL II Extended Capabilities User’s Guide II II-33 

      A(I)=0.0 
   10 CONTINUE 
C 
C     Coefficient Matrix is built 
C 
      DO 20 I=1,N 
      C(NH1+1,I)=1.0 
      IF(I.GT.NH)THEN 
      C(1,I)=-0.25+ALPHA 
      ENDIF 
      IF(I+NH.LE.N)THEN 
      C(1+NH1+NH2,I)=-0.25+BETA 
      ENDIF 
      IF(I.GT.1.AND.MOD(I-1,NH).NE.0)THEN 
      C(NH1,I)=-0.25+ALPHA 
      ENDIF 
      IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN 
      C(NH1+2,I)=-0.25+BETA 
      ENDIF 
   20 CONTINUE 
C 
C     LU decomposition 
C 
      EPSZ=0.0D0 
      ICON=0 
      CALL DVBLU(A,N,NH1,NH2,EPSZ,IS,IP,VW,ICON) 
      PRINT*,'ICON= ',ICON 
      IF(ICON.NE.0)STOP 
C 
      DET=IS 
      DO 30 I=1,N 
      DET=DET*C(NH1+1,I) 
   30 CONTINUE 
C 
      PRINT*,'DETERMINANT=',DET 
      STOP 
      END 
 

(4) Method 

 LU decomposition is performed through LU decomposition of the outer product type.  
(See [14]). 
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A53-11-0202  VBLUX, DVBLUX 
 
System of linear equations with an LU decomposed banded real matrix 

CALL VBLUX (B, FA, N, NH1, NH2, IP, ICON) 
 
(1) Function 

 This routine solves linear equations 

 Ax = b 

 through forward-substitution and back-substitution, based on the result 

 P A = L U 

 obtained by LU decomposing an n × n banded matrix with a lower bandwidth h1 and an 
upper bandwidth h2 using Gaussian elimination. 

 P is a permutation matrix on which the exchange of rows is performed through partial 
pivoting.  L is a unit lower banded matrix, and U is an upper banded matrix. 

 The condition n > h1 ≥ 0, n > h2 ≥ 0 must be met. 

(2) Parameters 

B................. Input.  Constant vector b. 
Output.  Solution vector x. 
One-dimensional array of size n. 

FA............... Input.  Stores LU decomposed L and U. 
One-dimensional array of size (2 × h1 + h2 + 1) × n. 
For the storage method of matrices L and U, see Figure VBLUX-1, “Storage 
method for L and U in array A.” 

N................. Input.  Order of matrix A. 

NH1............ Input.  Lower bandwidth h1 of matrix A. 

NH2............ Input.  Upper bandwidth h2 of matrix A. 

IP................ Input.  Transposition vector that shows the history of the exchange of rows 
performed through partial pivoting.  One-dimensional array of size n. 

ICON.......... Output.  Condition code. 

See Table VBLUX-1, “Condition codes.” 
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* (asterisk):  Undefined value 

Figure VBLUX-1   Storage method for L and U in array FA 

The i-th row vector without diagonal elements of matrix L is stored in FA ( (2 × h1 + h2 + 1) × 
(i - 1) + 1:  (2 × h1 + h2 + 1) × (i - 1) + h1).  The i-th row vector of matrix U is stored 
consecutively from the diagonal elements in FA ( (2 × h1 + h2 + 1) × (i - 1) + h1 + 1:  (2 × h1 + 
h2 + 1) × i). 
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Table VBLUX-1   Condition codes 

Code Description Processing 

0 No error  

20000 Coefficient matrix is singular. Processing is stopped. 

30000 N ≤ NH1, N ≤ NH2, NH1 < 0, NH2 < 0, or error occurred 
in IP. 

Processing is stopped. 

 
(3) Comments on use 

a. Subprogram used 

 SSL II:  MGSSL 

b. Comments 

1) A linear equation can be solved by calling this subroutine after calling the 
subroutine VBLU.  At that time, set the input parameters of this subroutine (with 
the exception of constant vectors) to the output parameters of VBLU. 

c. Example of use 

 In this example, a linear equation Ax = b, which takes the unsymmetric matrix A with 
h1 = h2 = 160, n = 160 × 160 as a coefficient matrix, is solved. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER(NH=80) 
      PARAMETER(NH1=NH) 
      PARAMETER(NH2=NH) 
      PARAMETER(N=NH*NH) 
      PARAMETER(ALPHA=0.5/(NH1+1),BETA=-ALPHA) 
      DIMENSION A((2*NH1+NH2+1)*2*N),B(N) 
      DIMENSION C(2*NH1+NH2+1,N),IP(N),VW(N) 
      EQUIVALENCE(A,C) 
C 
C     Zero clear 
C 
      DO 10 I=1,N*(3*NH+1) 
      A(I)=0.0 
   10 CONTINUE 
C 
      DO 15 I=1,N 
      B(I)=0.0 
      IP(I)=0 
   15 CONTINUE 
C 
C     Coefficient Matrix is built 
C 
      DO 20 I=1,N 
      C(NH1+1,I)=4.0 
      B(I)=B(I)+4.0 
      IF(I.GT.NH)THEN 
      C(1,I)=-1.0+ALPHA 
      B(I)=B(I)-1.0+ALPHA 
      ENDIF 
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      IF(I+NH.LE.N)THEN 
      C(1+NH1+NH2,I)=-1.0+BETA 
      B(I)=B(I)-1.0+BETA 
      ENDIF 
      IF(I.GT.1.AND.MOD(I-1,NH).NE.0)THEN 
      C(NH1,I)=-1.0+ALPHA 
      B(I)=B(I)-1.0+ALPHA 
      ENDIF 
      IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN 
      C(NH1+2,I)=-1.0+BETA 
      B(I)=B(I)-1.0+BETA 
      ENDIF 
   20 CONTINUE 
C 
C     Solve Banded linear equation 
C 
      EPSZ=0.0D0 
      ICON=0 
      CALL DVBLU(A,N,NH1,NH2,EPSZ,IS,IP,VW,ICON) 
      PRINT*,'VBLU ICON= ',ICON 
      IF(ICON.NE.0)STOP 
      CALL DVBLUX(B,A,N,NH1,NH2,IP,ICON) 
      PRINT*,'VBLUX ICON= ',ICON 
      IF(ICON.NE.0)STOP 
      PRINT*,'B(1)= ',B(1) 
      PRINT*,'B(N)= ',B(N) 
      STOP 
      END 
 

(4) Method 

 The following expression is solved through forward-substitution and back-substitution: 

 L U x = P b 
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F17-13-0101  VCCVF, DVCCVF 
 
Discrete convolution or correlation of complex data 

CALL VCCVF (ZX, K, N, M, ZY, IVR, ISW, TAB, ICON) 
 
(1) Function 

 This subroutine performs one-dimensional complex discrete convolutions or correlations 
between a filter and multiple input data using discrete Fourier method. 

 The convolution and correlation of a filter y with a single input data x are defined as 
follows: 

 a) convolution 

 ∑
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n
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 b) correlation 
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 where, xj is a cyclic data with period n. (See item (3), “Comments on use,” b., 1).) 

  

(2) Parameters 

ZX.............. Two-dimensional complex array ZX(K, M). 

 Input.  The m complex data sequences {xj}, j=0,...,n−1, are stored in 
ZX(1:N,1:M). 

 Output.  The m complex sequences {zk}, k=0,...,n−1, are stored in ZX(1:N,1:M). 

K................ Input.  Size of adjustable dimension of the array ZX. (K ≥ N) 

N................ Input.  The number of elements in one data sequence or in filter y. (See item (3), 
“Comments on use,” b., 2).) 

M............... Input.  The number of rows in the array ZX. 

ZY............. Input.  Filter vector {yi}.  One-dimensional complex array ZY(N). 

 The values of this array will be altered after calling with ISW=0 or 2. 

 (See item (3), “Comments on use, ” b., 3) and 4).) 

IVR............ Input.  Specify either convolution or correlation. 

 When IVR = 0, convolution is calculated. 

 When IVR = 1, correlation is calculated. 

ISW........... Input.  Control information. 

 When ISW = 0, all the procedure will be done at once 

 If the calculation should be divided into step-by-step procedure, specify as 
follows. (See item (3), “Comments on use,” b., 3).) 

 ISW = 1 to prepare the array TAB 
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 ISW = 2 to perform the Fourier transform in array ZY using the trigonometric 
function table TAB. 

 ISW = 3 to perform the convolution or correlation using the array ZY and TAB 
which are prepared in advance. 

TAB............ Work area.  Trigonometric function table used for the transformation is stored. 

 One-dimensional array of size 2N. (See item (3), “Comments on use,” b., 3).) 

ICON.......... Output.  Condition code. 

See Table VCCVF-1, “Condition codes.” 
 

Table VCCVF-1   Condition codes 

Code Description Processing 

0 No error - 

30000 N ≤ 0, K<N, M ≤ 0, IVR ≠ 0,1 or ISW ≠ 0,1,2,3. Processing is stopped. 

 
(3) Comments on use 

a. Subprogram used 

 SSLII: UZFB2, UZFB3, UZFB4, UZFB5, UZFB8, UZFB6, UZFF2, UZFF3, UZFF4, 
UZFF5, UZFF8, UZFF6, UZFPB, UZFPF, UZFTB, UZFTF, UZUNI, MGSSL 

b. Comments 

1) To compute non-periodic convolution or correlation 

 Non-periodic convolution or correlation can be calculated by this routine with 
padding the value of ZX(nx+1:n, *) and ZY(ny+1:n) with zeros, where nx is the 
actual length of the data sequence, ny is the actual length of the filter y and n 
must be larger or equal to nx+ny−1.  (See example 2 in “c. Example of use.”) 

 The values of correlation zk, corresponding to k = −ny+1,..., −1 are stored in 
ZX(n−ny+2:n, *) in this non-periodic case. 

2) Recommended value of N 

 The n can be an arbitrary number, but the calculation is fast with the sizes which 
can be expressed as products of the powers of 2, 3, and 5. 

3) Efficient use of the array TAB and ZY 

 When this routine will calculate convolution or correlation successively for a 
fixed value of n, the trigonometric function table TAB should be initialized once 
at first call with ISW=0 or 1 and should be kept intact for second and subsequent 
calls with ISW=2 and 3.  This saves initialization procedure of array TAB. 
Furthermore, if the filter vector y is also fixed, the array ZY which is 
transformed with ISW=0 or 2 can be reused for second and subsequent calls with 
ISW=3. 

 In these cases, the array ZY must be transformed surely once. 

4) To compute autocorrelation 

 Autocorrelation or autoconvolution can be calculated by this routine with letting 
the filter array ZY be identical to the data array ZX.  In this case, specifying 
ISW=2 will be ignored.  (See example 3 in “c. Example of use.”) 
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5) Stack size 

 This subroutine exploits work area internally as an auto allocatable array on 
stack area.  Therefore an abnormal termination could occur when the stack area 
runs out.  The necessary size for the auto allocatable array is 8 × N byte for 
single precision, and twice for double precision. 

 It is recommended to specify the sufficiently large stacksize with "limit" or 
"ulimit" command under consideration that the stack area could be used for 
another work area of fixed size and for user's program also. 

c. Example of use 
example 1)  In this example, periodic convolution of a filter with three data vectors is 

calculated with n=8. 
C     ** PERIODIC CONVOLUTION EXAMPLE ** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER(K=8,M=3) 
      COMPLEX*16 X(K,M),Y(K) 
      DIMENSION TAB(K*2) 
 
      N=8 
 
C     --SET SAMPLE DATA-- 
      DO 100 J=1,M 
      DO 100 I=1,N 
      X(I,J)=DCMPLX(FLOAT(I+J-1),FLOAT(I-J)) 
  100 CONTINUE 
      DO 110 I=1,N 
      Y(I)=DCMPLX(FLOAT(I*I),FLOAT(10-I)) 
  110 CONTINUE 
 
      WRITE(*,*)'--INPUT DATA--' 
      DO 120 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  120 CONTINUE 
      WRITE(*,910)(Y(I),I=1,N) 
 
C     --CALL DVCCVF-- 
      IVR=0 
      ISW=0 
      CALL DVCCVF(X,K,N,M,Y,IVR,ISW,TAB,ICON) 
 
      WRITE(*,*)'--OUTPUT DATA--' 
      DO 130 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  130 CONTINUE 
 
  900 FORMAT('X(*,',I2,') :'/(12X,4('(',F8.2,',',F8.2,')'))) 
  910 FORMAT('Filter Y:'/(12X,4('(',F8.2,',',F8.2,')'))) 
      STOP 
      END 
 

example 2) In this example, non-periodic convolution is calculated with nx=7, ny=9 
and n=16. 

C     ** NONPERIODIC CONVOLUTION EXAMPLE ** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER(K=16,M=3) 
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      COMPLEX*16 X(K,M),Y(K) 
      DIMENSION TAB(K*2) 
 
      NX=7 
      NY=9 
      N=NX+NY-1 
      IF(MOD(N,2).NE.0)N=N+1 
 
C     --SET SAMPLE DATA-- 
      DO 100 J=1,M 
      DO 110 I=1,NX 
      X(I,J)=DCMPLX(FLOAT(I+J-1),FLOAT(I-J)) 
  110 CONTINUE 
      DO 120 I=NX+1,N 
      X(I,J)=(0.0D0,0.0D0) 
  120 CONTINUE 
  100 CONTINUE 
      DO 130 I=1,NY 
      Y(I)=DCMPLX(FLOAT(I*I),FLOAT(10-I)) 
  130 CONTINUE 
      DO 140 I=NY+1,N 
      Y(I)=(0.0D0,0.0D0) 
  140 CONTINUE 
 
      WRITE(*,*)'--INPUT DATA--' 
      DO 150 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  150 CONTINUE 
      WRITE(*,910)(Y(I),I=1,N) 
 
C     --CALL DVCCVF-- 
      IVR=0 
      ISW=0 
      CALL DVCCVF(X,K,N,M,Y,IVR,ISW,TAB,ICON) 
      WRITE(*,*)'--OUTPUT DATA--' 
      DO 160 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  160 CONTINUE 
 
  900 FORMAT('X(*,',I2,') :'/(12X,4('(',F8.2,',',F8.2,')'))) 
  910 FORMAT('Filter Y:'/(12X,4('(',F8.2,',',F8.2,')'))) 
      STOP 
      END 
 

example 3) In this example, autocorrelation is calculated with nx=4. 
C     ** AUTOCORRELATION EXAMPLE ** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER(K=8,M=3) 
      COMPLEX*16 X(K,M) 
      DIMENSION TAB(K*2) 
 
      NX=4 
      N=NX*2 
 
C     --SET SAMPLE DATA-- 
      DO 100 J=1,M 
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      DO 110 I=1,NX 
      X(I,J)=DCMPLX(FLOAT(I+J-1),FLOAT(I-J)) 
  110 CONTINUE 
      DO 120 I=NX+1,N 
      X(I,J)=(0.0D0,0.0D0) 
  120 CONTINUE 
  100 CONTINUE 
 
      WRITE(*,*)'--INPUT DATA--' 
      DO 130 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  130 CONTINUE 
 
C     --CALL DVCCVF-- 
      IVR=1 
      ISW=1 
      CALL DVCCVF(X,K,N,M,X,IVR,ISW,TAB,ICON) 
      ISW=3 
      CALL DVCCVF(X,K,N,M,X,IVR,ISW,TAB,ICON) 
 
      WRITE(*,*)'--OUTPUT DATA--' 
      DO 140 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  140 CONTINUE 
 
  900 FORMAT('X(*,',I2,') :'/(12X,4('(',F8.2,',',F8.2,')'))) 
      STOP 
      END 
 

(4) Method 

 This subroutine performs discrete complex convolution or correlation efficiently on a 
scalar CPU. 

 The convolution can be calculated efficiently using Fourier method.  It is based on the 
fact that the Fourier transform of the convolution of two sequences is evaluated by 
pointwise multiplication of the individual Fourier transformed sequences.  The correlation 
is calculated similarly to take the Fourier transform of x and the conjugate of the Fourier 
transform of y and apply the inverse transform of their pointwise product. 

 For further information on the algorithm, refer to [26] in Appendix B, “References. ” 
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F17-11-0501  VCFM1, DVCFM1 
 
One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7)

CALL VCFM1 (X, N, ISW, ISN, W, ICON) 
 
(1) Function 

 This subroutine VCFM1 performs a one-dimensional complex Fourier transform or its 
inverse transform using a mixed radix FFT. 

 The length of data transformed n is a product of the powers of 2, 3, 5 and 7. 

 a. The one-dimensional Fourier transform 

When {xj} is input, the transform defined by (1.1) below is calculated to obtain {nk}. 

)/2exp(,

1,...,1,0,
1

0
ni

nkxn

n

n

j

jk
njk














 (1.1) 

 b. The one-dimensional Fourier inverse transform 

When {k} is input, the transform defined by (1.2) below is calculated to obtain {xj}. 
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(2) Parameters 

X................ Input.  Complex data. The data {xj} or {k} to be transformed is stored in 
X(1:N). 

 Output.  Complex data. Transformed data  {nk}or {xj}  is stored in X(1:N). 

 This is a complex one-dimensional array X(N). 

N................ Input.  The length of the data to be transformed. 

ISW............ Input.  Control information. 

 ISW = 1 : For the first call, to generate a trigonometric function table and 
control information in W and perform Fourier transform. 

 ISW  1 : For the second or consecutive call, to perform Fourier transform for 
the data of the same length as in the first call.  The contents in W must not be 
changed as the second or consecutive call uses the values in W generated in the 
first call. 

 Output.  When ISW is set to 1, ISW is set to zero after performing transform. 
Therefore the second or consecutive transform for new data in X can be 
performed easily without setting ISW. 

ISN............. Input.  Either the transform or the inverse transform is indicated. 

 ISN = 1 for the transform 

 ISN = -1 for the inverse transform 

W............... Work area. 
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 When ISW is set to 1, the trigonometric function table for data length N is 
generated into W. 

 Otherwise the contents generated in the first call is reused. 

 (See item (3), "Comments on use," b., 2).) 

 This is a complex one-dimensional array W(2N+70). 

ICON.......... Output.  Condition code. 

See Table VCFM1-1, “Condition codes.” 
 

Table VCFM1-1   Condition codes 

Code Description Processing 

0 No error - 

20000 The value of N in second or consecutive call is different 
from that of first call. 

Processing is stopped. 

30000 The value of ISN is incorrect. 

30008 The order of transform is not radix 2/3/5/7 
 
(3) Comments on use 

a. Subprogram used 

 SSLII: UCFM1X,UFR10T,UFR10TI,UFR16,UFR16T,UFR16TI,UFR2T,UFR2TI, 
UFR3T,UFR3TI,UFR4,UFR4_5,UFR4_5I,UFR4_8,UFR4_8I,UFR4_R,UFR4_RI, 
UFR4_S,UFR4_SI,UFR4_U,UFR4_UI,UFR4I,UFR4T,UFR4TI,UFR5T,UFR5TI, 
UFR6T,UFR6TI,UFR7_7,UFR7T,UFR7TI,UFR8,UFR8_6,UFR8_6I,UFR8_7I, 
UFR8_9,UFR8_9I,UFR8I,UFR8T,UFR8TI,UFR9T,UFR9TI,UFRDX2,UFTBL, 
UFTBLMX2,UFTBLX,UFTBLX8,UFTINY,UFTINYI,UPBITR,UPERM, 
UPERM5,UPERM6,UPERM7,UPERM8,UPERM9,MGSSL 

b. Note 

1) General definition of Fourier transform 

 The one-dimensional discrete complex Fourier transform and its inverse 
transform is defined as in (3.1) and (3.2). 
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 where, n = exp(2i/n) 

 This subroutine calculates {nk} or {xj} corresponding to the left term of (3.1) or 
(3.2), respectively.  Normalization of the results may be required. 

2) Use of the array W 

 When this routine is called successively with a fixed value of n, the 
trigonometric function table in W, which is initialized at the first call with 
ISW=1, is reused for the subsequent calls with ISW1. 
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 Note that the array W is also used as a read-write work area even for the 
sebsequent calls. 

c. Example 
A one-dimensional FFT is computed. 

 
c     **example** 
      implicit real*8(a-h,o-z) 
      parameter(n=640) 
      complex*16 x(n),w(2*n+70) 
c 
      do i=1,n 
      x(i)=i/dble(n) 
      enddo 
c 
c     do the forward transform 
c 
      isw=1 
      call dvcfm1(x,n,isw,1,w,icon) 
      if(icon.ne.0)then 
      print*,'icon = ',icon 
      stop 
      endif 
c 
c     do the reverse transform 
c 
      call dvcfm1(x,n,isw,-1,w,icon) 
      if(icon.ne.0)then 
      print*,'icon = ',icon 
      stop 
      endif 
c 
      tmp=0.0d0 
      do i=1,n 
      tmp=max(tmp,abs(x(i)/dble(n)-i/dble(n))) 
      enddo 
c 
      print*,'error=',tmp 
      stop 
      end 
 

(4) Method 

This subroutine performs one-dimensional complex Fourier transform. 

The algorithm for scalar computer based on the following 4-step algorithm is used. 
The data to be transform is referred on the cache in stride one access and use of a 
trigonometric function table is extremely reduced. 

A.  Splitting the order of the transform into factors n = p q. 

B.  After implementing the basic factorization of the order into n = p q, the following four-step 
algorithm is performed. 
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Step 1 and step 4 are multiple Fourier transforms of order p and q respectively. 

 

 

C.  Suppose the length of data is factored as N = N1N2...Nm, Fourier transform is 
performed by the repeated application of 4-step algorithm. 
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F17-11-0701  VCFT3, DVCFT3 
 
One-dimensional discrete complex Fourier transforms (Radix 2, for data sequence 
with a constant stride) 

CALL VCFT3 (X, N, NDIST, ISW, ISN, W, ICON) 
 
(1) Function 

 This subroutine VCFT3 performs a one-dimensional complex Fourier transform or its 
inverse transform using a radix 2 FFT. 

 The length of data transformed n is a power of 2. 

 a. The one-dimensional Fourier transform 

When {xj} is input, the transform defined by (1.1) below is calculated to obtain {nk}. 
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 b. The one-dimensional Fourier inverse transform 

When {k} is input, the transform defined by (1.2) below is calculated to obtain {xj}. 
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(2) Parameters 

X................ Input.  Complex data. The data {xj} or {k} to be transformed is stored in X(1), 
X(1+ NDIST),…, X(1+ (n-1)*NDIST). 

 Output.  Complex data. Transformed data  {nk}or {xj}  is stored in X(1), X(1+ 
NDIST),…, X(1+ (n-1)*NDIST). 

 This is a complex one-dimensional array. 

N................ Input.  The length of the data to be transformed. 

NDIST.......  Input. The stride size of data sequence in the array X . Positive integer. 
NDIST1 = 1 : Data sequence is stored consecutively in the array X. 

ISW............ Input.  Control information. 

 ISW = 1 : For the first call, to generate a trigonometric function table and 
control information in W and perform Fourier transform. 

 ISW  1 : For the second or consecutive call, to perform Fourier transform for 
the data of the same length as in the first call.  The contents in W must not be 
changed as the second or consecutive call uses the values in W generated in the 
first call. 

 Output.  When ISW is set to 1, ISW is set to zero after performing transform. 
Therefore the second or consecutive transform for new data in X can be 
performed easily without setting ISW. 

ISN............. Input.  Either the transform or the inverse transform is indicated. 
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 ISN = 1 for the transform 

 ISN = -1 for the inverse transform 

W............... Work area. 

 When ISW is set to 1, the trigonometric function table for data length N is 
generated into W. 

 Otherwise the contents generated in the first call is reused. 

 (See item (3), "Comments on use," b., 2).) 

 This is a complex one-dimensional array W(2N+70). 

ICON.......... Output.  Condition code. 

See Table VCFT3-1, “Condition codes.” 
 

Table VCFT3-1   Condition codes 

Code Description Processing 

0 No error - 

20000 The value of N in second or consecutive call is different 
from that of first call. 

Processing is stopped. 

30000 The value of ISN is incorrect. NDIST is not a positive 
integer. 

30008 The length of data sequence to be transformed is not a 
power of 2. 

 
(3) Comments on use 

a. Subprogram used 
SSLII:UFFT16,UFFT32,UFFT16INV,UFFT32INV,UFFT64,UFFT64INV, 
UFFT32_1,UFFT32INV_1,U1DFFTDST16,UFFT16DST,UFFT16INVDST, 
U1DFFTDST32,UFFT32DST,UFFT32INVDST,U1DFFTDST64,UFFT64DST, 
UFFT32_1DST,UFFT64INVDST,UFFT32INV_1DST,UFFT256,UFFT8TWIST2, 
UFFT128,UFFT8TWIST1,UFFT8TWIST4,UFFT512,UFFT1024,UFFT4096, 
UFFT8TWIST3,UFFT8TWIST43,U2DFFT512_2,U2DFFT256_2,U2DFFT128_2, 
UFFT8TWIST43_16,UFFT2048,UFFT8192,UFFT256INV,UFFT8TWISTINV2, 
UFFT128INV,UFFT8TWISTINV1,UFFT8TWISTINV4,UFFT512INV, 
UFFT1024INV,UFFT4096INV,UFFT8TWISTINV3,UFFT8TWISTINV43, 
U2DFFT512INV_2,U2DFFT256INV_2,U2DFFT128INV_2, 
UFFT8TWISTINV43_16,UFFT2048INV,UFFT8192INV,UFFT16TWIST1, 
UFFT16TWIST2,UFFT16TWIST4_8,UFFT16TWIST4,UFFT16TWISTINV1, 
UFFT16TWISTINV2,UFFT16TWISTINV4_8,UFFT16TWISTINV4, 
U1DFFTDST4096,UFFT4096DST,UFFT4096INVDST,UFFT8TWIST1DST, 
UFFT8TWIST43DST,UFFT8TWISTINV1DST,UFFT8TWISTINV43DST, 
U1DFFTDST512,UFFT512DST,UFFT512INVDST,UFFT8TWIST4DST, 
UFFT8TWISTINV4DST,U1DFFTDST1024,UFFT1024DST,UFFT1024INVDST, 
UFFT16TWIST4DST,UFFT16TWISTINV4DST,U1DFFTDST1024, 
U1DFFTDST2048,UFFT16TWIST1DST,UFFT16TWISTINV1DST, 
UFFT2048DST,UFFT2048INVDST,UFFT8TWIST43_16DST, 
UFFT8TWISTINV43_16DST,U1DFFTDST256,UFFT16TWIST2DST, 
UFFT16TWISTINV2DST,UFFT256DST,UFFT256INVDST,U1DFFTDST128, 
UFFT128DST,UFFT128INVDST,UFFT8TWIST2DST,UFFT8TWISTINV2DST, 
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U1DFFTDST8192,UFFT16TWIST4_8DST,UFFT16TWISTINV4_8DST, 
UFFT8192DST,UFFT8192INVDST,UCFTDIS3X,UFR16T,UFR16TI,UFR2T, 
UFR2TDSTPE,UFR2TI,UFR2TIDSTPE,UFR4T,UFR4TDSTPE,UFR4TI, 
UFR4TIDSTPE,UFR8T,UFR8TDSTPE,UFR8TI,UFR8TIDSTPE,UFTBL, 
UFTBLMX2,UFTBLX, UFTBLX8, MGSSL 

  

b. Note 

1) General definition of Fourier transform 

 The one-dimensional discrete complex Fourier transform and its inverse 
transform is defined as in (3.1) and (3.2). 

 1,...,1,0,1 1
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 

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 nkx
n

n

j

jk
njk   (3.1) 

 1,...,1,0,
1
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



njx
n

k

jk
nkj   (3.2) 

 where, n = exp(2i/n) 

 This subroutine calculates {nk} or {xj} corresponding to the left term of (3.1) or 
(3.2), respectively.  Normalization of the results may be required. 

2) Use of the array W 

 When this routine is called successively with a fixed value of n, the 
trigonometric function table in W, which is initialized at the first call with 
ISW=1, is reused for the subsequent calls with ISW1. 

 Note that the array W is also used as a read-write work area even for the 
sebsequent calls. 

c. Example 
One-dimensional FFTs are computed for plural data sequences with a constant stride. 

 
c     **example** 
      implicit real*8(a-h,o-z) 
      parameter(n=1024,mult=16,npad=3,ndist=mult+npad) 
      complex*16 x(ndist,n),w(2*n+70) 
c 
      do j=1,mult 
      do i=1,n 
      x(j,i)=i/dble(n)+j 
      enddo 
      enddo 
c 
c     multiple forward transform 
c 
      isw=1 
      do j=1,mult 
      call dvcft3(x(j,1),n,ndist,isw,1,w,icon) 
      if(icon.ne.0)then 
      print*,'icon = ',icon 
      endif 
      enddo 
c 
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c     multiple reverse transform 
c 
      do j=1,mult 
      call dvcft3(x(j,1),n,ndist,isw,-1,w,icon) 
      if(icon.ne.0)then 
      print*,'icon = ',icon 
      endif 
      enddo 
c 
      tmp=0.0d0  
      do j=1,mult 
      do i=1,n 
      tmp=max(tmp,abs(x(j,i)/dble(n)-(i/dble(n)+j))) 
      enddo 
      enddo 
c 
      print*,'error = ',tmp 
      stop 
      end 
 
 

(4) Method 

This subroutine calculates the One dimensional Radix 2 complex Fourier Transform for data  
sequence with a constant stride at high speed on the scalar computer. 
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A72-11-0101  VCGD, DVCGD 
 
System of linear equations with a symmetric positive definite sparse matrix 
(preconditioned CG method, diagonal storage format) 

CALL VCGD (A, K, NW, N, NDLT, B, IPC, ITMAX, ISW, OMEGA, EPS,  
                        IGUSS, X, ITER, RZ, VW, IVW, ICON)  
 
(1) Function 

 This routine solves linear equations 

 Ax = b 

 using the preconditioned conjugate gradient (CG) method, where an n × n normalized 
symmetric positive definite sparse matrix A must be used as a coefficient matrix. 

 The n × n coefficient matrix is normalized in such a way that the diagonal elements are 1.  
The non-zero elements other than the diagonal elements are stored using the diagonal 
storage format. 

 For normalization of linear equations that use symmetric positive definite sparse matrices 
as coefficient matrices, and for the diagonal storage format, see Part I, “Overview,” 
Section 3.2.1.2, “Storage methods for symmetric positive definite sparse matrices.”  The 
diagonal storage format assumes that the non-zero elements of the coefficient matrix A lie 
on a limited number of diagonal vectors, parallel to the main diagonal vector. 

 This structure applies to linear equations arising from discretizing partial differential 
equations, particularly at lattices parallel to the defined boundaries of the region.  This 
storage format is particularly efficient because the column vector number for each entry 
element in the coefficient array does not need to be stored.  Only the distance from the 
main diagonal vector needs to be stored. 

(2) Parameters 

A................. Input.  Two-dimensional array A (K, NW).  Uses diagonal format to store non-
zero elements of the coefficient matrix, which is a normalized symmetric 
positive definite sparse matrix. 
For information about the diagonal storage format for normalized symmetric 
positive definite sparse matrices, see Part I, “Overview,” Section 3.2.1.2, 
“Storage methods for symmetric positive definite sparse matrices,” b., “The 
diagonal storage format for symmetric positive definite sparse matrices.” 

K................. Input.  Size of adjustable dimension (≥ N) of array A. 

NW............. Input.  The size of the second dimension of array A.  The number of diagonals 
that store coefficient matrix A using the diagonal storage format.  Even number. 

N................. Input.  Order n of matrix A. 

NDLT......... Input.  One-dimensional array NDLT (NW) indicating the offset from the main 
diagonal. 

B................. Input.  One-dimensional array of size n.  Stores the constant vector specified in 
the right-hand-side term of the linear equations. 

IPC.............. Input.  Preconditioner control information. 
IPC = 1  No preconditioner. 
IPC = 2  Neumann preconditioner. 
IPC = 3  Preconditioner with incomplete Cholesky decomposition. 
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In this case, the user must specify OMEGA. 
(See item (3), “Comments on use,” b., 3).) 

ITMAX....... Input.  The upper limit of iterations (> 0). 

ISW............ Input.  Control information. 
ISW = 1  Initial call. 
ISW = 2  Subsequent calls.  Must not be changed because the values of A, 
NDLT, VW, and IVW are used, which were set during the initial call. 
(See item (3), “Comments on use,” b., 1).) 

OMEGA...... Input.  Modification factor for incomplete Cholesky decomposition. 
0 ≤ OMEGA ≤ 1 
Used for IPC = 3. 
(See item (3), “Comments on use,” b., 3).) 

EPS............. Input.  Criterion value in judgment of convergency. 
Judged as convergent when RZ < EPS. 
If EPS ≤ 0, EPS is set to ε × | b |.  ε = 10-6 is used in double-precision routines, 
and ε = 10-4 is used in single-precision routines. 
(See item (3), “Comments on use,” b., 2).) 

IGUSS......... Input.  Information about whether to start iterations from the approximate value 
of the solution vector specified in the array X. 
IGUSS = 0  Approximation of the solution vector is not set. 
IGUSS ≠ 0  Iteration computation starts from the approximate value of the 
solution vector specified in the array X. 

X................. Input.  One-dimensional array of size n.  Can specify the approximate value of 
the solution vector of linear equations. 
Output.  One-dimensional array of size n.  Stores solution vector of linear 
equations. 

ITER........... Output.  Number of actually performed iterations. 

RZ............... Output.  Value of the square root of residuals rz after judgment of convergency. 
(See item (3), “Comments on use,” b., 2).) 

VW............. Work area. 

1)  When IPC = 3 
     One-dimensional array of size K × (NW + 6) + 2 × NBAND.  NBAND is the  
      size of the lower bandwidth or the upper bandwidth. 
2)  When IPC ≠ 3 
     One-dimensional array of size K × 5 + 2 × NBAND.  NBAND is the size of  
     the lower bandwidth or the upper bandwidth. 

IVW............ Work area.  One-dimensional array of size (K + 1) × 4. 

ICON.......... Output.  Condition code. 
See Table VCGD-1, “Condition codes.” 
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Table VCGD-1   Condition codes 

Code Description Processing 

0 No error  

20001 Reached the maximum number of 
iterations. 

Processing is stopped.  The 
approximate values obtained up to 
this point in array X are output, but 
their precision cannot be 
guaranteed. 

20003 Break down occurred.  

30003 ITMAX ≤ 0 Processing is stopped. 

30005 K < N  

30006 Could not perform incomplete LLT 
decomposition. 

 

30007 Pivot is negative.  

30089 NW is not an even number.  

30091 NBAND = 0  

30092 NW ≤ 0, n ≤ 0  

30093 K ≤ 0  

30096 OMEGA < 0, OMEGA > 1  

30097 IPC < 1, IPC > 3  

30102 Upper triangular part is not 
correctly stored. 

 

30103 Lower triangular part is not 
correctly stored. 

 

30104 The number of super-diagonals in 
the upper triangular part is not 
equal to the number of sub-
diagonals in the lower triangular 
part. 

 

30105 ISW≠1, 2  

30200 | NDLT (i) | > n - 1 or 
NDLT (i) = 0 

 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, UGCRI, UGULD, UGECD, UGFCD, UGINP, UGIPD, UGITB, 
UGITI, UGITN, UGITT, UGMVD, UGCGP, USSCP, USSPS, UGSD2, UGSD3, 
UGSTE, UGSWD, USVAD, USVCN, USVCP, USVSC, USVSU, USVUP, USVN1, 
USVN2, USVNM, UGWVD, URELT, MGSSL 
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b. Comments 

1) When multiple sets of linear equations with the same coefficient matrix but 
different constant vectors are solved for IPC = 3, the solution on the first call is 
with ISW = 1, and solutions on subsequent calls are with ISW = 2.  In 
subsequent calls, the result of the incomplete Cholesky decomposition obtained 
on the initial call is reused. 

2) Judgment of convergency 

 The convergence of the solution obtained in the n-th iteration is assumed when 

 RZ =  EPS< )( zr  

 where .r is the residual vector defined by 

 r = b - Axn 

 M is the preconditioner matrix, and  

 rz = rT M -1 r 

3) Preconditioners 

 Two types of preconditioners and a no-preconditioner function are provided. 

 When elliptic partial differential equations are solved by discretization, it is 
effective to use a preconditioner based on an incomplete Cholesky 
decomposition. 

 If A = I -N, the preconditioner M of the linear equation (I - N) x = b is as 
follows: 

 IPC = 1  No preconditioner  M = I 

 IPC = 2  Neumann  M -1 = (I + N) 

 IPC = 3  Incomplete Cholesky decomposition  M = LLT 

 When IPC = 2, the preconditioner also must be a positive definite matrix. For 
example, diagonal dominance of the matrix (I + N) is a sufficient condition for 
the positive definiteness. Additionally, note that using a preconditioner may not 
improve the convergence when the preconditioner does not approximate the 
inverse matrix of  A in some situations such that the maximum absolute value of 
the eigenvalues of the matrix N is larger than one. 

 When IPC = 3, the user must specify a value for OMEGA (0  OMEGA  1). 

 When OMEGA = 0, this is incomplete Cholesky decomposition.  When OMEGA = 1, 
this is modified incomplete Cholesky decomposition. 

 For linear equations derived from discretizing partial differential equations, an 
optimal OMEGA value was found empirically to be in the range of 0.92 to 1.00. 

c. Example of use 

 In this example, a linear equation is solved for a symmetric positive definite sparse 
matrix with n = 51,200 and the distance of the diagonal vector +5, -5. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (N=51200,K=N+1) 
      PARAMETER (NW=2,IWKS=4,N2=K+1) 
      PARAMETER (NVW=K*(NW+6)+10) 
      REAL*8 B(N),EPS,OMEGA,RZ,VW(NVW),X(N) 
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      INTEGER NDLT(NW) 
      REAL*8 A(K,NW) 
      INTEGER IVW(N2,IWKS) 
C 
C INITIALISE A 
C 
      CALL SET(A,NDLT,K,NW,N) 
      ISHIFT=0 
      DO 10 J=1,NW 
      ISHIFT=MAX(ISHIFT,ABS(NDLT(J))) 
   10 CONTINUE 
C COMPUTE RHS SO AX=B SO WE KNOW SOLUTION X (X(I)=I) 
      DO 30 I=1,N 
   30 VW(I+ISHIFT)=I 
C 
C B=(A-E)*X+X 
C 
      CALL DVMVSD(A,K,NW,N,NDLT,ISHIFT,VW,B,ICON) 
      DO 70 I=1,N 
      B(I)=B(I)+VW(I+ISHIFT) 
   70 CONTINUE 
C 
      ITMAX=8*SQRT(N+0.1) 
      EPS=1D-10 
      OMEGA=0D0 
      ISW=1 
      IGUSS=0 
      DO 100 IPC=1,3 
      IF(IPC.EQ.3) OMEGA=0.98 
      CALL DVCGD(A,K,NW,N,NDLT,B,IPC,ITMAX,ISW,OMEGA, 
     &           EPS,IGUSS,X,ITER,RZ,VW,IVW,ICON) 
      IF(ICON.NE.0) WRITE(6,*)'ICON=',ICON 
      IF(RZ.LE.EPS) WRITE(6,41)'CONVERGED. ACCURACY=',RZ 
      IF(RZ.GT.EPS) WRITE(6,41)'FAILED. ACCURACY=',RZ 
      WRITE(6,*)'X' 
      DO 60 I=1,MIN(N,16),4 
   60 WRITE(6,42) I,(X(M),M=I,I+3) 
  100 CONTINUE 
   42 FORMAT(1X,I3,4(1X,F20.10)) 
   41 FORMAT(A,2X,E10.3) 
      STOP 
      END 
 
      SUBROUTINE SET(A,NDLT,K,NW,N) 
      REAL*8 A(K,NW) 
      INTEGER NDLT(NW) 
      DO 10 J=1,NW 
      DO 10 I=1,K 
   10 A(I,J)=0D0 
      N3=5 
      NDLT(1)=N3 
      NDLT(2)=-N3 
      DO 20 I=1,N 
      L=I 
      IF(L.LE.N-N3) THEN 
      A(I,1)=-0.25D0 
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      ENDIF 
   20 CONTINUE 
      DO 30 I=1,N 
      L=I 
      IF(L.GE.N3+1.AND.L.LE.N) THEN 
      A(I,2)=-0.25D0 
      ENDIF 
   30 CONTINUE 
      RETURN 
      END 
 

(4) Method 

 The standard conjugate gradient algorithm is used.  (See [14].) 

 For the preconditioner method based on the incomplete Cholesky decomposition, see [30].  
For the vectorization based on wavefront ordering, see [23]. 

(5) Acknowledgment 

 The author wishes to express thanks to the authors of ITPACK and NSPCG for 
permission to use the modified incomplete Cholesky decomposition and the wavefront 
ordering routine. 
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A72-12-0101  VCGE, DVCGE 
 
System of linear equations with a symmetric positive definite sparse matrix 
(preconditioned CG method, ELLPACK storage format) 

CALL VCGE (A, K, NW, N, ICOL, B, IPC, ITMAX, ISW, OMEGA, EPS, IGUSS,  
                        X, ITER, RZ, VW, IVW, ICON) 
 
(1) Function 

 This routine solves linear equations 

 Ax = b 

 using the preconditioned conjugate gradient (CG) method, where an n × n normalized 
symmetric positive definite sparse matrix A must be used as a coefficient matrix. 

 The n × n coefficient matrix is normalized in such a way that the diagonal elements are 1. 
The ELLPACK storage format is used to store the non-zero elements other than the 
diagonal elements. 

 For information about normalization of linear equations that use symmetric positive 
definite sparse matrices as coefficient matrices, see Part I, “Overview,” Section 3.2.1.2, 
“Storage methods for symmetric positive definite sparse matrices.” 

(2) Parameters 

A................. Input.  Two-dimensional array A (K, NW).  Stores non-zero elements of the 
coefficient matrix in the A (1:N, NW) part. 
The reordering of the elements in the array A is performed for IPC = 3, when 
the upper triangular matrix part is not stored in A (*, 1:NW/2) and the lower 
triangular matrix part is not stored in A (*, NW/2 + 1:NW). 
For information about the ELLPACK storage format for normalized symmetric 
positive definite sparse matrices, see Part I, “Overview,” Section 3.2.1.2, 
“Storage methods for symmetric positive definite sparse matrices,” a., 
“ELLPACK storage format for symmetric positive definite sparse matrices.” 
(See item (3), “Comments on use,” b., 1).) 

K................. Input.  Size of adjustable dimension (≥ N) of arrays A and ICOL. 

NW............. Input.  The size of the second dimension of array A. 
When the maximum number of non-zero elements on the row vectors of the 
upper triangular matrix is NSU and the maximum number of non-zero elements 
on the row vectors of the lower triangular matrix is NSL,  
then NW = 2 × max (NSU, NSL). 
For details, see Part I, “Overview,” Section 3.2.1.2, “Storage methods for 
symmetric positive definite sparse matrices,” a., “ELLPACK storage format for 
symmetric positive definite sparse matrices.” 

N................. Input.  Order n of matrix A. 

ICOL........... Input.  A two-dimensional array ICOL (K, NW).  The information about the 
column vectors to which the non-zero elements belong is stored in ICOL (1 : N, 
NW). 

B................. Input.  One-dimensional array of size n.  Stores the constant vector specified in 
the right-hand-side term of the linear equation. 

IPC.............. Input.  Preconditioner control information. 
IPC = 1  No preconditioner. 
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IPC = 2  Neumann preconditioner. 
IPC = 3  Preconditioner with incomplete Cholesky decomposition. 
In this case, the user must specify OMEGA. 
(See item (3), “Comments on use,” b., 4).) 

ITMAX....... Input.  The upper limit of iterations (> 0). 

ISW............ Input.  Control information. 
ISW = 1  Initial call. 
ISW = 2  Subsequent calls.  Must not be changed because the values of A, 
ICOL, VW and IVW, which were set during the initial call, are used. 
(See item (3), “Comments on use,” b., 2).) 

OMEGA...... Input.  Modification factor for incomplete Cholesky decomposition. 
0 ≤ OMEGA ≤ 1 

EPS............. Input.  Criterion value in judgment of convergency. 
Judged as convergent when RZ < EPS. 
If EPS ≤ 0, ε × | b | is set to EPS.  ε = 10-6 is used in double-precision routines,  
and  
ε = 10-4 is used in single-precision routines. 
(See item (3), “Comments on use,” b., 3).) 

IGUSS......... Input.  Sets control information about whether to start the iteration computation 
from the approximate value of the solution vector specified in array X. 
IGUSS = 0  Approximation of the solution vector is not set. 
IGUSS ≠ 0  Iteration starts from the approximate value of the solution vector 
specified in array X. 

X................. Input.  One-dimensional array of size n.  Can specify the approximation vector 
of the solution for the linear equation. 
Output.  Stores the solution vector for the linear equation. 

ITER........... Output.  Number of iterations actually performed. 

RZ............... Output.  Value of the square root of residuals rz after judgment of convergency. 
(See item (3), “Comments on use,” b., 2).) 

VW............. Work area. 
1)  If IPC = 3 
     One-dimensional array of size K × NW + 4 × N. 
2)  If IPC ≠ 3 
     One-dimensional array of size N × 3. 

IVW............ Work area. 
1)  If IPC = 3 
     One-dimensional array of size K × NW + N × 4. 
2)  If IPC ≠ 3 
     One-dimensional array of size N × 4. 

ICON.......... Output.  Condition code. 
See Table VCGE-1, “Condition codes.” 
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Table VCGE-1   Condition codes 

Code Description Processing 

0 No error.  

10000 A, ICOL elements are permuted to U/L 
format. 

Processing continues. 

20001 Reached the upper limit of iterations. Processing is stopped.  The 
approximate values obtained up to this 
point in array X are output, but their 
precision cannot be guaranteed. 

20003 Break down occurred.  

30003 ITMAX ≤ 0 Processing is stopped. 

30005 K < N  

30006 Could not perform incomplete LLT 
decomposition. 

 

30007 Pivot is negative.  

30092 NW ≤ 0  

30093 K ≤ 0, N ≤ 0  

30096 OMEGA < 0, OMEGA > 1  

30097 IPC < 1, IPC > 3  

30098 ISW ≠ 1, 2  

30100 NW ≠ 2 × max (NSU, NSL)  

30104 Either the upper triangular part or the 
lower triangular part is not stored 
correctly. 

 

negative 
number 

(-ICON)-th row has a non-zero 
diagonal element. 

 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, UGECP, UGEUL, UGEFA, UGEMV, UGEPD, UGECG, 
UGEPM, UGEPV, UGESV, UGEWV, URELT, MGSSL 

b. Comments 

1) Sparse matrix is stored using the ELLPACK format storage method.  (See [23] 
and [34]). 

 The upper triangular part is stored in A (*, 1:NW/2).  The lower triangular part is 
stored in A (*, NW/2 + 1:NW), where NW = 2 × max (NSU, NSL). 

 If IPC ≠ 3 (when a preconditioner other than an incomplete Cholesky 
decomposition preconditioner is specified), a storage method is acceptable with 
conditions less stringent than those described in Part I, “Overview, “ Section 
3.2.1.2, “Storage methods for symmetric positive definite sparse matrices,” a., 
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“ELLPACK storage format for symmetric positive definite sparse matrices.”  A 
normalized symmetric positive definite sparse matrix without diagonal elements 
that is stored with the general sparse matrix ELLPACK storage method is also 
acceptable as input.  In this case, it is not required that NW = 2  max (NSU, 
NSL). 

2) When multiple sets of linear equations with the same coefficient matrix but 
different constant vectors are solved for IPC = 3, the solution on the first call is 
with ISW = 1.  Solutions on subsequent calls are with ISW = 2.  In subsequent 
calls, the result of the incomplete Cholesky decomposition obtained on the initial 
call is reused. 

3) Judgment of convergency 

 The convergence of the solution obtained in the n-th iteration is assumed when 

 RZ = EPS< )( zr  

 where r is the residual vector defined by 

 r = b - Axn 

 M is the preconditioner matrix, and  

 rz = rT M-1 r 

4) Preconditioners 

 Two types of preconditioner and the no-preconditioner functions are provided. 

 If A = I - N, the preconditioner M of the linear equation (I - N) x = b is as 
follows: 

 IPC = 1  No preconditioner; M = I. 

 IPC = 2  Neumann; M-1 = (I + N). 

 IPC = 3  Incomplete Cholesky decomposition; M = LLT. 

 When IPC = 2, the preconditioner also must be a positive definite matrix. For 
example, diagonal dominance of the matrix (I + N) is a sufficient condition for 
the positive definiteness. Additionally, note that using a preconditioner may not 
improve the convergence when the preconditioner does not approximate the 
inverse matrix of A in some situations such that the maximum absolute value of 
the eigenvalues of the matrix N is larger than one. 

 When IPC=3, the user must specify a value for OMEGA (0  OMEGA  1).  

When OMEGA = 0, this is incomplete Cholesky decomposition.  When 
OMEGA = 1, this is modified incomplete Cholesky decomposition. 

 For linear equations derived from discretizing partial differential equations, an 
optimal OMEGA value was found empirically to be in the range of 0.92 to 1.00. 

 For IPC = 3, in order to optimize the preconditioners, the equations are permuted 
in the wavefront order. 

c. Example of use 

 In this example, a linear equation is solved for a symmetric positive definite 
sparse matrix containing non-zero elements, where n = 51,200 and the distance 
from the diagonal elements is  int (sqrt (n + 0.001)). 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
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      PARAMETER (NW=2,N=51200,K=N+1) 
      REAL*8 B(N),X(N),EPS,OMEGA,RZ, 
     &       A(K,NW),VW(K*NW+4*N) 
      INTEGER ICOL(K,NW),IVW(K*NW+4*N) 
      WRITE(6,*) ' EXAMPLE DVCGE ' 
C INITIALISE A,ICOL 
      CALL SET(A,ICOL,K,NW,N) 
C GENERATE RHS B 
      DO 10 I=1,N 
   10 VW(I)=I 
C COMPUTE RHS SO AX=B SO WE KNOW SOLUTION X (X(I)=I) 
C 
C B = (A-E)*X + E*X 
      CALL DVMVSE(A,K,NW,N,ICOL,VW,B,ICON) 
      PRINT*,'ERROR CODE =',ICON 
      DO 20 I=1,N 
      B(I)=B(I)+VW(I) 
   20 CONTINUE 
C 
      ITMAX=4000 
      EPS=1D-10 
      ISW=1 
      IGUSS=0 
      DO 30 IPC=1,3 
      IF(IPC.EQ.3)OMEGA=0.98 
      CALL DVCGE(A,K,NW,N,ICOL,B,IPC,ITMAX,ISW,OMEGA 
     &          ,EPS,IGUSS,X,ITER,RZ,VW,IVW,ICON) 
C 
      PRINT*,'ERROR CODE= ',ICON 
      IF(RZ.LE.EPS) WRITE(6,41)'CONVERGED. ACCURACY=',RZ 
      IF(RZ.GT.EPS) WRITE(6,41)'FAILED. ACCURACY=',RZ 
      WRITE(6,*)'X' 
      DO 60 I=1,MIN(N,16),4 
   60 WRITE(6,42) I,(X(M),M=I,I+3) 
   30 CONTINUE 
   42 FORMAT(I3,4(F12.4)) 
   41 FORMAT(A,2X,E10.3) 
      STOP 
      END 
 
      SUBROUTINE SET(A,ICOL,K,NW,N) 
      INTEGER ICOL(K,NW) 
      REAL*8 A(K,NW) 
      N3=SQRT(N+0.001) 
      DO 10 I=1,NW 
      DO 10 J=1,N 
      A(J,I)=0.0D0 
      ICOL(J,I)=J 
   10 CONTINUE 
      DO 20 I=1,N-N3 
      A(I,1)=-0.49D0 
      ICOL(I,1)=I+N3 
   20 CONTINUE 
      DO 30 I=N3+1,N 
      A(I,2)=-0.49D0 
      ICOL(I,2)=I-N3 
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   30 CONTINUE 
      RETURN 
      END 
 

(4) Method 

 The standard conjugate gradient algorithm is used.  (See [14]).  For information about the 
preconditioner based on the incomplete Cholesky decomposition, see [30].  For 
information about vectorization based on wavefront ordering, see [23]. 

(5) Acknowledgment 

 The author wishes to express thanks to the authors of ITPACK and NSPCG for 
permission to use the modified incomplete Cholesky decomposition preconditioner and 
wavefront ordering routine. 
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F17-11-0601  VCPF1, DVCPF1 
 
One-dimensional prime factor discrete complex Fourier transforms 

CALL VCPF1 (X, N, ISW, ISN, IOUT, Y, W, IW, ICON) 
 
(1) Function 

 This subroutine VCPF1 performs a one-dimensional complex Fourier transform or its 
inverse transform using a mixed radix FFT. 

 The length of data transformed n must satisfy the following condition. 

 The size must be expressed by a product of a mutual prime factor p, selected from the 
following numbers: 

 factor p (p  {2, 3, 4, 5, 7, 8, 9, 16, 25}) 

 a. The one-dimensional Fourier transform 

When {xj} is input, the transform defined by (1.1) below is calculated to obtain {nk}. 
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 b. The one-dimensional Fourier inverse transform 

When {k} is input, the transform defined by (1.2) below is calculated to obtain {xj}. 
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(2) Parameters 

X................ Input.  Complex data. The data {xj} or {k} to be transformed is stored in 
X(1:N). 

 Output.  Complex data. Transformed data  {nk}or {xj}  is stored in X(1:N). 

 This is a complex one-dimensional array X(N). 

N................ Input.  The length of the data to be transformed. 

ISW............ Input.  Control information. 

 ISW = 1 : For the first call, to generate a trigonometric function table in W and  
a control information in IW and perform Fourier transform. 

 ISW  1 : For the second or consecutive call, to perform Fourier transform for 
the data of the same length as in the first call.  In this time the contents set in W 
and IW is used, therefore the values in N, ISN, W and IW must not be changed 
after the first call. 

 Output.  When ISW is set to 1, ISW is set to zero after performing transform. 
Therefore the second or consecutive transform for new data in X can be 
performed easily without setting ISW. 

ISN............. Input.  Either the transform or the inverse transform is indicated. 

 ISN = 1 for the transform 
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 ISN = -1 for the inverse transform 

IOUT ........ Output.  Information about where for transformed data to be stored. The 
transformed data is stored into different area due to the length of data N. 

 IOUT = 1 ; Transformed data is stored into Y(1:N). 

 IOUT ≠ 1 ; Transformed data is stored into X(1:N). 

Y ............... Output.  When IOUT=1, the complex data transformed is stored.  The area of 
this array must be different from that of array X. 

 This is a complex one dimensional array Y(N). 

W............... Input / Output. 

 When ISW is set to 1, the trigonometric function table for the transform 
specified by N and ISN is stored. 

 Otherwise the contents in the trigonometric function table generated in the first 
call with ISW=1 is used as input. 

 This is a complex one dimensional array W(N). 

IW .............. Input / Output.  Control information for transform. 

 When ISW=1, the control information regarding transform with data length N 
and specific ISN is stored. 

 Otherwise the control information set in the first call with ISW=1 is used as 
input. 

 This is a 4-byte integer one dimensional array IW(20). 

ICON.......... Output.  Condition code. 

See Table VCPF1-1, “Condition codes.” 
 

Table VCPF1-1   Condition codes 

Code Description Processing 

0 No error - 

20000 The number N can not be factored into the product of the 
mutual prime factor in {2, 3, 4, 5, 7, 8, 9, 16, 25}. 

20100 The value of N or ISN in the second or consecutive call is 
different from that in the first call. 

Processing is stopped. 

 
(3) Comments on use 

a. Subprogram used 

 SSLII: UFTPR2, UFTPR2I, UFTPR3, UFTPR3I, UFTPR5, UFTPR5I, UFTPRFNL, 
UFTPRFNLI, URARNG, UTBL, MGSSL 

b. Note 

1) General definition of Fourier transform 

 The one-dimensional discrete complex Fourier transform and its inverse 
transform is defined as in (3.1) and (3.2). 
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 where, ωn = exp(2πi/n) 

 This subroutine calculates {nαk} or {xj} corresponding to the left term of (3.1) or 
(3.2), respectively.  Normalization of the results may be required. 

c. Example 
A one-dimensional FFT is computed. 

 
c     **example** 
      implicit real*8(a-h,o-z) 
      parameter(n=560) 
      complex*16 x(n),y(n),w(n) 
      integer iw(20) 
c 
      do i=1,n 
      x(i)=i/dble(n) 
      enddo 
c 
c     do the forward transform 
c 
      isw=1 
      call dvcpf1(x,n,isw,1,iout,y,w,iw,icon) 
      if(icon.ne.0)then 
      print*,'icon = ',icon 
      stop 
      endif 
c 
c     do the reverse transform 
c 
      if(iout.ne.1)then 
      isw=1 
      call dvcpf1(x,n,isw,-1,iout,y,w,iw,icon) 
      if(icon.ne.0)then 
      print*,'icon = ',icon 
      stop 
      endif 
      else 
      isw=1 
      call dvcpf1(y,n,isw,-1,iout,x,w,iw,icon) 
      if(icon.ne.0)then 
      print*,'icon = ',icon 
      stop 
      endif 
      endif 
c 
      tmp=0.0d0 
      do i=1,n 
      tmp=max(tmp,abs(x(i)/dble(n)-i/dble(n))) 
      enddo 
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c 
      print*,'error=',tmp 
 
 
      stop 
      end 
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F16-15-0401  VCPF3, DVCPF3 
 
Three-dimensional prime factor discrete complex Fourier transform 

CALL VCPF3 (A, B, L, M, N, ISN, VW1, VW2, ICON) 
 
(1) Function 

 This subroutine performs a discrete complex Fourier transform or its inverse transform 
using the prime factor fast Fourier transform (prime factor FFT).  This subroutine is for 
when three-dimensional (where the size of each dimension is N1, N2, N3) complex time 
series data {xJ1,J2,J3} is given.  The size of each dimension must satisfy the following 
condition. 

 The size must be expressed by a product of a mutual prime factor p, selected from the 
following numbers: 

 factor p (p ∈ {2, 3, 4, 5, 7, 8, 9, 16}) 

 Calling this subroutine with 1 entered for parameter N specifies a two-dimensional 
complex prime factor fast Fourier transform.  Calling this subroutine with 1 entered for 
parameter N and 1 entered for parameter M specifies a one-dimensional complex prime 
factor fast Fourier transform. 

1) Three-dimensional complex Fourier transform 

 By inputting {xJ1,J2,J3} and performing the transform defined in (1.1), a three-
dimensional Fourier transform seeks {N1 × N2 × N3 × αK1, K2, K3}. 

     N1 × N2 × N3 × αK1, K2, K3 
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     , K1 = 0,1, ..., N1-1 

     , K2 = 0,1, ..., N2-1 

     , K3 = 0,1, ..., N3-1 

     , ωj = exp(2πi/Nj), j = 1, 2, 3 

2) Three-dimensional complex Fourier inverse transform 

 By inputting {αK1,K2,K3} and performing the transform defined in (1.2), a three-
dimensional Fourier inverse transform seeks {xJ1,J2,J3}. 

     xJ1,J2,J3 

 =
K

N

K

N
K ,K ,K

K

N J .K J .K J .K

1 0

1 1

2 0

2 1
1 2 3

3 0

3 1 1

=

−

=

−

=

−
∑ ∑ ∑ α ω ω ω1

1
2

2 2
3

3 3   (1.2) 

     , J1 = 0, 1, ..., N1-1 

     , J2 = 0, 1, ..., N2-1 

     , J3 = 0, 1, ..., N3-1 

     ,ωj = exp (2πi/Nj),     j = 1, 2, 3 
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(2) Parameters 

A................. Input.  Real part of {xJ1,J2,J3} or Fourier transformed {αK1,K2,K3}. 
Output.  Real part of Fourier transformed {αK1,K2,K3} or inverse transformed 
{xJ1,J2,J3}. 
A (L, M, N) is a three-dimensional array. 
L, M, and N are the number of data items of the first, second, and third 
dimensions, respectively. 

B................. Input.  Imaginary part of {xJ1,J2,J3} or Fourier transformed {αK1,K2,K3}. 
Output.  Imaginary part of Fourier transformed {αK1,K2,K3} or inverse 
transformed {xJ1,J2,J3}. 
B (L, M, N) is a three-dimensional array. 
L, M, and N are the number of data items of the first, second, and third 
dimensions, respectively. 

L................. Input.  Number of data items in the first dimension. 
L ≤ 5,040. 

M................ Input.  Number of data items in the second dimension. 
M ≤ 5,040. 

N................. Input.  Number of data items in the third dimension. 
N ≤ 5,040. 

ISN............. Input.  Specify either transform or inverse transform. 
If ISN ≥ 0 (non-negative integer), then transform. 
If ISN < 0 (negative integer), then inverse transform. 

VW1........... Work area.  Three-dimensional array with the same size as A or B. 

VW2........... Work area.  Three-dimensional array with the same size as A or B. 

ICON.......... Output.  Condition code. 
See Table VCPF3-1, “Condition codes.” 

 
Table VCPF3-1   Condition codes 

Code Description Processing 

0 No error  

20000 L, M, or N exceeded 5,040.  Or the product of the mutual 
prime factor in {2, 3, 4, 5, 7, 8, 9, 16} could not be 
factored. 

Processing is stopped. 

30000 L, M, or N is zero or a negative value.  
 
(3) Comments on use 

a. Subprograms used 

 SSL II:  UTRSP, UPFT1, UPFT2, MGSSL 
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b. Comments 

1) General definition of three-dimensional Fourier transform 

 The three-dimensional Fourier transform and its inverse transform are generally 
defined in (3.1) and (3.2). 
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 The subroutine looks for {N1 × N2 × N3 × αK1,K2,K3} or {xJ1,J2,J3} corresponding 
to the left-hand-side terms of (3.1) and (3.2), respectively.  The user must 
normalize the results, if necessary.  If the transform and inverse transform are 
executed by calling the subroutine consecutively without being normalized, each 
element of the input data is multiplied by N1 × N2 × N3, and then output. 

2) Number of data items in each dimension 

 The number of data items is expressed as a product of a mutual prime factor p, 
selected from the numbers that follow. 

 The maximum number is 5 × 7 × 9 × 16 = 5,040. 

 factor p (p ∈ {2, 3, 4, 5, 7, 8, 9, 16}) 

3) Data storage method 

 The real parts of complex data {xJ1,J2,J3} and {N1 × N2 × N3 × αK1,K2,K3} are 
stored in array A.  The imaginary parts are stored in array B. 

c. Example of use 

 In this example, complex time series data {xJ1,J2,J3} of N1, N2, and N3 terms are input, 
and a Fourier transform is performed.  The results are used to perform a Fourier 
inverse transform to look for {xJ1,J2,J3}. 

 Here N1 = 12, N2 = 12, and N3 = 12. 
 
C     **EXAMPLE** 
      DIMENSION A(12,12,12),B(12,12,12),NI(3) 
      DIMENSION VW1(12,12,12),VW2(12,12,12) 
      DATA NI/12,12,12/,L,M,N/12,12,12/ 
      READ(5,500) (((A(I,J,K),B(I,J,K),I=1,NI(1)), 
     *             J=1,NI(2)),K=1,NI(3)) 
      WRITE(6,600) (NI(I),I=1,3), 
     *             (((I,J,K,A(I,J,K),B(I,J,K),I=1,NI(1)), 
     *             J=1,NI(2)),K=1,NI(3)) 
C     NORMAL TRANSFORM 
      CALL VCPF3(A,B,L,M,N,1,VW1,VW2,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
C     INVERSE TRANSFORM 
      CALL VCPF3(A,B,L,M,N,-1,VW1,VW2,ICON) 
      NT=NI(1)*NI(2)*NI(3) 
      DO 10 K=1,NI(3) 
      DO 10 J=1,NI(2) 
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      DO 10 I=1,NI(1) 
      A(I,J,K)=A(I,J,K)/FLOAT(NT) 
      B(I,J,K)=B(I,J,K)/FLOAT(NT) 
   10 CONTINUE 
      WRITE(6,620) (((I,J,K,A(I,J,K),B(I,J,K),I=1,NI(1)), 
     *             J=1,NI(2)),K=1,NI(3)) 
      STOP 
  500 FORMAT(2E20.7) 
  600 FORMAT('0',10X,'INPUT DATA',5X, 
     * '(',I3,',',I3,',',I3,')'/ 
     * (15X,'(',I3,',',I3,',',I3,')', 
     * 2E20.7)) 
  610 FORMAT('0',10X,'RESULT ICON=',I5) 
  620 FORMAT('0',10X,'OUTPUT DATA'/ 
     * (15X,'(',I3,',',I3,',',I3,')', 
     * 2E20.7)) 
      END 
 

(4) Method 

 The three-dimensional real Fourier transform is performed by using the prime factor fast 
Fourier transform with the factorized mutually prime factor as the radix (prime factor 
FFT). 

1) Three-dimensional transform 

 The three-dimensional transform defined in (1.1) can be performed in the order 
shown in (4.1) by simplifying common terms.  The order for obtaining the sum of J1, 
J2, and J3 can also be replaced. 

 N1 × N2 × N3 × αK1,K2,K3 
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 In (4.1), ∑J3 takes N1 × N2 sets of one-dimensional transforms of N3 data.  ∑J2 takes 
N1 × N3 sets of one-dimensional transforms of N2 data items.  ∑J1 takes N2 × N3 sets 
of one-dimensional transforms of N1 data items.  

 This routine applies the fast Fourier transform with the factorized mutually prime 
factor as the radix to perform a one-dimensional transform for each dimension. 

2) Prime factor fast Fourier transform 

 The three-dimensional real Fourier transform can be calculated by performing a 
multi-set of one-dimensional Fourier transforms three times.  The one-dimensional 
Fourier transforms are performed using the prime factor fast Fourier transform 
(prime factor FFT). 

 The following explains the one-dimensional prime factor fast Fourier transform. 
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 K=0, ..., N - 1                                                                                    (4.2) 

 When N is factored into two mutually prime factors, N1 and N2, the one-dimensional 
fast Fourier transform can be regarded as a two-dimensional fast Fourier transform. 
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 <>N expresses the remainder of N.  ( , ) expresses the greatest common divisor. 

 The appropriate Ki is present, and mappings (4.3) and (4.4) are determined. 

 N=N1 N2 

 j = <K1 j1 + K2 j2 > N                                                                         (4.3) 

 k = <K3 k1 + K4 k2 > N                                                                       (4.4) 

 j, k = 0, ..., N-1 

 j1, k1 = 0, ..., N1 - 1 

 j2, k2 = 0, ..., N2 - 1 

 The presence of this mapping is known from the Chinese remainder theorem as 
follows. 

 Assuming N1, N2, ..., Nk are mutual primes, and n1, n2, ..., nk are random integers, and 
the solution of the simultaneous modulus expression 

 x ≡ ni      (mod   Ni )                     i = 1, ..., k (4.5) 

 N = N1 × N2 × ... × Nk, 

 N is present as a unique modulus as follows: 
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i
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 Mi = N/Ni,        Miqi ≡ 1     (mod Ni)     i = 1, ..., k  (4.7) 

 By using this mapping, the one-dimensional prime factor fast Fourier transform in 
(4.2) is expanded. 

 Xj1j2 = xk1j1 + K2j2 

 Ck1,k2 = cK3k1 + K4k2 
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 By selecting Ki as follows, (4.2) becomes a two-dimensional fast Fourier transform. 

 <K1 K3>N = N2, <K2 K4>N = N1 

 <K1 K4>N = 0, <K2 K3>N = 0 
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 In addition, by factorizing the mutual prime factors, a multi-dimensional Fourier 
transform that has dimensions up to the number of factors can be obtained.  The 
Fourier transform performs an in-place operation for the factorized factor to obtain an 
in-place algorithm. 

 The following is an example of a two-dimensional transform to illustrate permutation.  
This can easily be expanded into a multi-dimensional transform. 

 (j1, j2) and (k1, k2) are viewed as two-dimensional indices, but the mappings (4.3) and 
(4.4) transform them into one-dimensional indices. 

 j -> (j1, j2):  (k1, k2) -> k (4.10) 
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 The generalized Chinese remainder theorem, below, is obtained.  N is factorized to a 
mutual prime factor, and the following expression is obtained. 

 N = N1 × N2 × ... × Nm 

 ni = <ain>Ni and (ai, Ni) = 1 (4.11) 

 11)/(/ −− >><=< NiNiii aNNNNK
i

 (4.12) 

 Here, n can be expressed as unique, shown as follows. 

 n K ni
i

i= ∑  (4.13) 

 0 ≤ n ≤ N-1 

 0 ≤ ni ≤ Ni-1        i = 1, ..., m 

 By performing the mappings defined in (4.3) and (4.4), the actual one-dimensional 
positions of the two-dimensional indices (k1, k2) are determined from the relationship 
that follows: 

 j = <K1 k1 + K2 k2> N 

 k = <K3 k1 + K4 k2> N 

 By applying the generalized Chinese remainder theorem, it becomes clear that the 
two-dimensional (k1, k2) has the relationship in (4.14) because of mappings (4.3) and 
(4.4).  The computed results after the two-dimensional transform can be permuted. 

 J = <K1<a1k>N1 + K2<a2k>N2>N 

 K1 = αN2 K2 = βN1 adding the condition 

 j = <<K1a1k>N + <K2a2k>N>N 

 = <(K1a1 + K2a2)k>N (4.14) 

 For details on permutation and fast Fourier transform using each factor as a radix, see 
[6] and [46]. 

 



VCRD, DVCRD 

Fujitsu SSL II Extended Capabilities User’s Guide II II-73 

A72-21-0101  VCRD, DVCRD 
 
System of linear equations with an unsymmetric or indefinite sparse matrix (MGCR 
method, diagonal storage format) 

CALL VCRD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS, NDIRV, X,  
                        ITER, VW, ICON) 
 
(1) Function 

 This routine solves linear equations 

 Ax = b 

 using the modified generalized conjugate residuals (MGCR) method, where an n × n 
unsymmetric or indefinite sparse matrix is treated as a coefficient matrix. 

 The n × n coefficient matrix is stored with the diagonal storage format, using two arrays. 

 b and x are n-dimensional vectors. 

 Regarding the convergence and the guideline on the usage of iterative methods, see 
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I. 

  

(2) Parameters 

A................. Input.  Stores non-zero elements of the coefficient matrix. 
Two-dimensional array A (K, NDIAG).  Stores coefficient matrix A is stored in 
A (1 : N, NDIAG). 
For the diagonal storage format, see Part I, “Overview,” Section 3.2.1.1, 
“Storage methods for general sparse matrices,” b., “Diagonal storage format for 
general sparse matrices.” 

K................. Input.  Size of adjustable dimension of array A. 

NDIAG....... Input.  The number of diagonals in the coefficient matrix A that contain non-
zero elements. 
Size of second dimension of array A. 

N................. Input.  Order n of matrix A. 

NOFST....... Input. One-dimensional array NOFST (NDIAG).  Stores the offset from the 
main diagonal corresponding to diagonals stored in array A.  Superdiagonals 
have positive values.  Subdiagonals have negative values. 

B................. Input.  One-dimensional array of size n.  Stores the constant vector specified in 
the right-hand-side term of the linear equation. 

ITMAX....... Input.  The upper limit of iterations in the MGCR method (> 0). 

EPS............. Input.  Criterion value in judgment of convergency. 
If EPS = 0 or less, EPS is set to 10-6 in double-precision routines.  EPS is set to 
10-4 in single-precision routines. 
(See item (3), “Comments on use,” b., 1).) 

IGUSS......... Input.  Sets control information about whether to start the iteration computation 
from the approximate value of the solution vector specified in the array X. 
IGUSS = 0  Approximate value of the solution vector is not set.
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IGUSS ≠ 0  Iterative computation starts from the approximate value of the 
solution vector specified in the array X. 

NDIRV....... Input.  The number of search direction vectors used in the MGCR method 
(≥ 1). 
Generally, a small number between 10 and 100. 

X................. Input.  One-dimensional array of size n.  Can specify the approximate value of 
the solution vector. 
Output.  The solution vector is stored. 

ITER........... Output.  Number of iterations actually performed using the MGCR method. 

VW............. Work area.  One-dimensional array of the size N × (NDIRV + 5) + NDIRV × 
(NDIRV + 1). 

ICON.......... Output.  Condition code. 
See Table VCRD-1, “Condition codes.” 

 
Table VCRD-1   Condition codes 

Code Description Processing 

0 No error  

20001 Reached the upper limit of iterations. Processing is stopped.  The approximate 
values obtained up to this point in array X 
are output, but their precision cannot be 
guaranteed. 

30000 N < 1, K < 1, N > K or NDIAG < 1, 
ITMAX ≤ 0. 

Processing is stopped. 

30004 NDIRV<1  

32001 | NOFST (I) | > N-1  
 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, URGWD, URIPA, URITI, URITT, URMDG, URMVD, URMGD, 
URRCI, URRAN, USSCP, URSTE, URSTI, USVAD, USVCN, USVCP, USVSC, 
USVSU, USVUP, USVN1, USVN2, USVNM, URELT, MGSSL 

b. Comments 

1) In the MGCR method, if the residual Euclidean norm is equal to or less than the 
product of the initial residual Euclidean norm and EPS, it is judged as having 
converged.  The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of matrix 
A and EPS. 

2) Comments on use of the diagonal format 

 The elements of diagonals out of the coefficient matrix A must be set to zero. 

 There is no special restriction on the order of storing the diagonal columns in 
array A. 

 The advantage of this method lies in the fact that the matrix vector multiplication 
can be calculated without the use of indirect indices.  The disadvantage is that 
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matrices without the diagonal structure cannot be stored efficiently with this 
method. 

c. Example of use 

 In this example, linear equations of coefficient matrices obtained by discretizing 
partial differential operators are solved in the region [0, 1] × [0, 1] × [0, 1] with the 
Dirichlet boundary condition (function value zero at the boundary).  This type of 
partial differential operator is described in Part I, “Overview,” Section 3.2.2  
“Discretization of partial differential operators and storage examples for them.” 

 For INIT_MAT_DIAG, see Part I, “Overview,” Section 3.2.2, “Discretization of 
partial differential operators and storage examples for them.”  
GET_BANDWIDTH_DIAG is a routine that estimates bandwidth.  INIT_SOL is a 
routine that generates solution vectors to be sought with random numbers. 

 
C     **EXAMPLE** 
      PROGRAM TEST_ITER_SOLVERS 
      IMPLICIT REAL*8 (A-H,O-Z) 
      INTEGER MACH 
      PARAMETER (MACH = 0) 
      PARAMETER (K = 10000,NDIRV = 50) 
      PARAMETER (NX=20,NY=20,NZ=20,N=NX*NY*NZ) 
      PARAMETER (NDIAG = 7,NVW=N*(NDIRV+5)+NDIRV*(NDIRV+1)) 
      REAL*8 A(K,NDIAG),X(N),B(N),VW(NVW),SOLEX(N) 
      INTEGER NOFST(NDIAG) 
C 
      CALL INIT_SOL(SOLEX,N,1D0,MACH) 
 
      PRINT*,'EXPECTED SOLUSIONS' 
      PRINT*,'X(1)= ',SOLEX(1),' X(N)=',SOLEX(N) 
C 
      PRINT * 
      PRINT *,' MGCR METHOD' 
      PRINT *,' DIAGONAL FORMAT' 
C 
      VA1=3D0 
      VA2=1D0/3D0 
      VA3=5D0 
      VC=1.0 
      XL=1.0 
      YL=1.0 
      ZL=1.0 
C 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST, 
     &     NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
      CALL GET_BANDWIDTH_DIAG(NOFST,NDIAG,NBANDL,NBANDR) 
      DO 110 I = 1,N 
      VW(I+NBANDL) = SOLEX(I) 
  110 CONTINUE 
      CALL DVMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON) 
      PRINT*,'DVMVSD ICON= ',ICON 
      ITMAX=2000 
      IGUSS=0 
      EPS = 1D-10 
      CALL DVCRD(A,K,NDIAG,N,NOFST,B,ITMAX,EPS,IGUSS,NDIRV, 
     &           X,ITER,VW,ICON) 
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C 
      PRINT* ,'ITER = ',ITER 
      PRINT* ,'DVCRD ICON= ',ICON 
      PRINT*, 'COMPUTED VALUES' 
      PRINT*, 'X(1)= ',X(1),' X(N)= ',X(N) 
      STOP 
      END 
 

(4) Method 

 For the MGCR method, see [25].  The algorithm is a modification of the generalized 
conjugate residuals method.  The algorithm is robust and is always faster than the 
GMRES method.  (See [35].) 
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A72-22-0101  VCRE, DVCRE 
 
System of linear equations with an unsymmetric or indefinite sparse matrix (MGCR 
method, ELLPACK storage format) 

CALL VCRE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS, NDIRV, X, ITER, 
                       VW, ICON) 
 
(1)  Function 

 This routine solves linear equations 

 Ax = b 

 using the modified generalized conjugate residuals (MGCR) method, where an n × n 
asymmetrical or indefinite sparse matrix is treated as a coefficient matrix. 

 The n × n coefficient matrix is stored with the ELLPACK storage format using two arrays. 

 b and x are n-dimensional vectors. 

 Regarding the convergence and the guideline on the usage of iterative methods, see 
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I. 

  

(2) Parameters 

A................. Input.  Stores non-zero elements of the coefficient matrix. 
Two-dimensional array A (K, IWIDT). 
For the ELLPACK storage format, see Part I, “Overview,” Section 3.2.1.1, 
“Storage method for general sparse matrices.” 

K................. Input.  Size of adjustable dimension (≥ n) of A and ICOL. 

IWIDT........ Input.  The maximum number of non-zero elements in row vector direction on 
the coefficient matrix A.  Size of the second dimension of ICOL and A. 

N................. Input.  Order n of matrix A. 

ICOL........... Input.  Stores the column indices of the elements stored in the array A using the 
ELLPACK format, indicating which column vectors the corresponding 
elements in the array A belong to. 
Two-dimensional array of size ICOL (K, IWIDT). 

B................. Input.  One-dimensional array of size n.  Stores the constant vector specified in 
the right-hand-side term of the linear equation in B. 

ITMAX....... Input.  The upper limit of iterations in the MGCR method (> 0). 

EPS............. Input.  Criterion value in judgment of convergency. 
If EPS = 0.0 or less, EPS is set to 10-6 in double-precision routines.  EPS is set 
to 10-4 in single-precision routines. 
(See item (3), “Comments on use,” b., “Comments,” 1).) 

IGUSS......... Input.  Control information about whether to start iteration computation from 
the approximate value of the solution vector specified in the array X. 
IGUSS = 0  Approximate value of the solution vector is not set. 
IGUSS ≠ 0  Iteration computation starts from the approximate value of the 
solution vector specified in the array X. 
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NDIRV....... Input.  The number of search direction vectors used in the MGCR method  
(≥ 1). 
Generally, a small number between 10 and 100. 

X................. Input.  One-dimensional array of size n.  Can specify the approximate value of 
the solution vector. 
Output.  The solution vector is stored. 

ITER........... Output.  Number of iterations actually performed using the MGCR method. 

VW............. Work area.  One-dimensional array of the size N × (NDIRV + 5) + NDIRV × 
(NDIRV + 1). 

ICON.......... Output.  Condition code. 
See Table VCRE-1, “Condition codes.” 

 
Table VCRE-1   Condition codes 

Code Description Processing 

0 No error  

20001 Reached the maximum number of 
iterations. 

Processing is stopped.  The approximate 
values obtained up to this point in array 
X are output, but their precision cannot 
be guaranteed. 

30000 K < 1, IWIDT < 0, N < 1 or N > K, 
ITMAX ≤ 0 

Processing is stopped. 

30004 NDIRV<1  
 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, URIPA, URITI, URITT, URMEG, URMVE, URMGE, URRCI, 
URRAN, USSCP, URSTE, URSTI, USVAD, USVCN, USVCP, USVSC, USVSU, 
USVUP, USVN1, USVN2, USVNM, URELT, MGSSL 

b. Comments 

1) In the MGCR method, if the residual Euclidean norm is equal to or less than the 
product of the initial residual Euclidean norm and EPS, it is judged as having 
converged. 

 The difference between the precise solution and the obtained approximation is 
roughly equal to the product of the condition number of matrix A and EPS. 

c. Example of use 

 In this example, linear equations of coefficient matrices obtained by discretizing 
partial differential operators are solved in the region [0, 1] × [0, 1] × [0, 1] with the 
Dirichlet boundary condition (function value zero at the boundary).  This type of 
partial differential operator is described in Part I, “Overview,” Section 3.2.2, 
“Discretization of partial differential operators and storage examples for them.”  For 
INIT_MAT_ELL, see Part I, “Overview,” Section 3.2.2, “Discretization of partial 
differential operators and storage examples for them.”  INIT_SOL is the routine that 
generates the solution vectors to be sought in random numbers. 
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C     **EXAMPLE** 
      PROGRAM TEST_ITER_SOLVERS 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (MACH = 0) 
      PARAMETER (K = 10000,NDIRV = 50) 
      PARAMETER (IWIDT = 7,NX=20,NY=20,NZ=20,N=NX*NY*NZ) 
      PARAMETER (NVW=N*(NDIRV+5)+NDIRV*(NDIRV+1)) 
      REAL*8 A(K,IWIDT),X(N),B(N),VW(NVW),SOLEX(N) 
      INTEGER ICOL(K,IWIDT) 
C 
      XL=1.0 
      YL=1.0 
      ZL=1.0 
C 
      CALL INIT_SOL(SOLEX,N,1D0,MACH) 
      PRINT*,'EXPECTED SOLUTION' 
      PRINT*,'X(1)= ',SOLEX(1),' X(N)= ',SOLEX(N) 
      PRINT*,'    MGCR METHOD' 
      PRINT*,'    ELLPACK FORMAT' 
C 
      VA1=3D0 
      VA2=1D0/3D0 
      VA3=5D0 
      VC=5D0 
C 
      CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL,NX,NY,NZ, 
     &    XL,YL,ZL,IWIDT,N,K) 
      CALL DVMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON) 
      PRINT*,'DVMVSE ICON = ',ICON 
      IGUSS =0 
      EPS = 1D-10 
      ITMAX=800 
      CALL DVCRE(A,K,IWIDT,N,ICOL,B,ITMAX,EPS,IGUSS,NDIRV 
     &     ,X,ITER,VW,ICON) 
C 
      PRINT*,'DVCRE ICON = ',ICON 
      PRINT*,'COMPUTED VALUE' 
      PRINT*,'X(1)= ',X(1),' X(N)= ',X(N) 
      STOP 
      END 
 

(4) Method 

 For the MGCR method, see [25].  The algorithm is a modification of the generalized 
conjugate residuals method.  The algorithm is robust and is always faster than the 
GMRES method.  (See [35]). 
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B71-13-0101 VHEVP,DVHEVP 
 
Eigenvalues and eigenvectors of a Hermitian matrix (tridiagonalization, multisection method, 
and inverse iteration) 

CALL VHEVP (AR, AI, K, N, NF, NL, IVEC, ETOL, CTOL, NEV, E, MAXNE, 
                 M, EVR, EVI, VW, IW, ICON) 
 
(1) Function 

 This subroutine calculates specified eigenvalues and, optionally, eigenvectors of an n-
dimensional Hermitian matrix. 

 Ax = λx (1.1) 

(2) Parameters 

AR ........... Input.  The real part of Hermitian matrix A whose eigenvalues and eigenvectors 
are to be calculated is stored in AR(1:N,1:N). 

Two-dimensional array AR(K,N) . 

AI ............. Input.  The imaginary part of Hermitian matrix A whose eigenvalues and 
eigenvectors are to be calculated is stored in AI(1:N,1:N). 

Two-dimensional array AI(K,N) . 

K ............... Input.  Size of first-dimension of array AR or of array AI. (K ≥ N) 

N ............... Input.  Order n of Hermitian matrix A 

NF ............. Input.  Number assigned to the first eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

NL ............. Input.  Number assigned to the last eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

IVEC ......... Input.  Control information. 

IVEC=1:  Both the eigenvalues and the corresponding eigenvectors are sought. 

IVEC≠1:  Only the eigenvalues are sought. 

ETOL ........ Input.  A criterion value required to determine whether an eigenvalue is distinct 
or numerically multiple based on expression (3.1).  The default value is 3.0D-16 
for double precision (2.0D-7 for single precision) when this value is set to less 
than. 

(See 1) in b, “Notes,” in (3), “Comments on use.”) 

CTOL ........ Input.  A criterion value required to determine whether adjacent eigenvalues are 
approximately multiple i.e. clustered according to expression (3.1).  CTOL ≥ 
ETOL 
When CTOL is less than ETOL, CTOL = ETOL is set. 
(See 1) in b, “Notes,” in (3), “Comments on use.”) 

NEV .......... Output.  Number of eigenvalues calculated. 

Details are given below. 
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NEV (1) indicates the number of distinct eigenvalues. 
NEV (2) indicates the number of distinct clusters. 
NEV (3) indicates the total number of eigenvalues including multiplicities. 
One-dimensional array NEV (3). 

E ................ Output. The eigenvalues calculated are stored in E(1:NEV(3)). 

One-dimensional array E(MAXNE) 

MAXNE .... Input.  Maximum number of eigenvalues that can be computed. 
Size of the array E. 

When NEV(3) is greater than MAXNE,  eigenvectors cannot be computed. 

(See 2) in b, “Notes,” in (3), “Comments on use.”) 

M .............. Output.  Information about the multiplicity of the computed eigenvalues. 
M (i, 1) indicates the multiplicity of the i-th eigenvalue λi.  M (i, 2) indicates the 
size of the i-th cluster of eigenvalues. 

(See 1) in b, “Notes,” in (3), “Comments on use.”) 

Two-dimensional array M(MAXNE,2). 

EVR ......... Output.  When IVEC = 1, the real part of the eigenvectors corresponding to the 
eigenvalues is stored in EVR. 

The eigenvectors are stored in EVR(1:N,1:NEV(3)). 

Two-dimensional array EVR(K,MAXNE). 

EVI ........... Output.  When IVEC = 1, the imaginary part of the eigenvectors corresponding 
to the eigenvalues is stored in EVI. 

The eigenvectors are stored in EVI(1:N,1:NEV(3)). 

Two-dimensional array EVI(K,MAXNE). 

VW ............ Work area.  One-dimensional array of size 17 × K. 

IW ............. Work area.  One-dimensional array of size 9 × MAXNE+128. 

ICON ......... Output.  Condition code. 

See Table VHEVP-1. 
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Table VHEVP-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 During calculation of clustered eigenvalues, the 
total number of eigenvalues exceeded 
MAXNE. 

Processing is discontinued. 

The eigenvectors cannot be 
calculated, but the different 
eigenvalues themselves are 
already calculated. 

(See 2) in b, “Notes,” in (3), 
“Comments on use.”) 

30000 NF < 1, NL > N, NL < NF, K < N, N < 1, or 
MAXNE < NL - NF + 1. 

Processing is discontinued. 

30100 The input matrix may not be a Hermitian 
matrix. 

 

 
(3) Comments on use 

a. Subprograms used 

SSLII ........ UHEVP, UIBBS, UIBFC, UIBFE, UIBSL, UITBS, UITFC, UITFE, UITSL, 
UTDEX, UTDEY, UTMLS, UTRZB, UTRZV, UZRDM, MGSSL, UMGSL, 
UMGSL2 

b. Notes 

1) This routine pays special attention to a clustered eigenvalue.   

 With ε is equal to ETOL, suppose that the eigenvalues ,...1,, += ssjjλ , and s+k 

(k ≥ 0) are such that 

ε
λλ

λλ
≤

− −

),max(1 1

1

ii-

ii

+
 (3.1) 

 While (3.4) is not satisfied for i = s-1 and i = s + k + 1, then eigenvalues jλ , j = 
s - 1, s, ..., s + k are considered to be identical, i.e., a single multiple eigenvalue 
of multiplicity k + 1. 

 The default value of ETOL is 3.0D-16 for double precision (2.0D-7 for single-
precision).  Using this value, eigenvalues are refined to machine precision.  

 When (3.1) is not satisfied for ETOL=ε , 1−iλ  and iλ  are assumed to be 
distinct eigenvalues. 

 If (3.1) holds with ε = CTOL (but not with ε = ETOL) for eigenvalues mλ , m=t, 
t+1, ..., t+k but not for 1−tλ  and 1++ktλ , these eigenvalues are considered to be 
approximately multiple, i.e. clustered, though distinct (not numerically multiple).  
In order to obtain an invariant subspace, eigenvectors corresponding to clustered 
eigenvalues are computed using orthogonal starting vectors and are 
reorthogonalized.  Of course CTOL ≥ ETOL; if this condition is not satisfied, 
CTOL is set to be equal to ETOL.  
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2) Assume r eigenvalues are requested.  Note that if the first or last requested 
eigenvalue has a multiplicity greater than 1 then more than r eigenvalues, are 
obtained.  The corresponding eigenvectors can be computed only when the 
corresponding eigenvector storage area is sufficient.   

 The maximum number of computable eigenvalues can be specified in MAXNE.  
If the total number of eigenvalues exceeds MAXNE, ICON = 20000 is returned.  
The corresponding eigenvectors cannot be computed.  In this case, the 
eigenvalues are returned, but they are not stored repeatedly according to 
multiplicities. 

 When all eigenvalues are distinct, it is sufficient to set MAXNE = NL-NF+1. 
When the total number of eigenvalues to be sought exceeds MAXNE,  the 
necessary value for MAXNE for seeking eigenvalues again is returned in 
NEV(3). 

3) This routine is faster than HEIG2. 

c. Example 

 This example calculates the specified eigenvalues and eigenvectors of a Hermitian 
matrix. 

 
C     ** EXAMPLE PROGRAM ** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (K=512,N=K,NF=1,NL=28,MAXNE=NL-NF+1) 
      PARAMETER (NVW=19*K,NIW=9*MAXNE+128) 
      REAL*8    AR(K,N),AI(K,N) 
      REAL*8    E(MAXNE), EVR(K,MAXNE), EVI(K,MAXNE) 
      INTEGER   NEV(3), M(MAXNE,2) 
      REAL*8    VW(NVW) 
      INTEGER   IW(NIW) 
      REAL*8    ETOL, CTOL 
      IVEC=1 
 
      ETOL=1.0D-14 
      CTOL=5.0D-12 
 
      WRITE (*,*)' Number of data points = ',N 
      WRITE (*,*)' Parameter k =',K 
      WRITE (*,*)' Eigenvalue calculation tolerance = ',ETOL 
      WRITE (*,*)' Cluster tolerance =',CTOL 
      WRITE (*,*)' First eigenvalue to be found is ',NF 
      WRITE (*,*)' Last eigenvalue to be found is ',NL 
 
C Set up real and imaginary parts of matrix in AR and AI 
      DO 100 J=1,N 
         DO 98 I=1,N 
            AR(I,J) = DBLE(I+J)/DBLE(N) 
            IF (I.EQ.J) THEN 
               AI(I,J) = 0.0D0 
               AR(I,J) = DBLE(J) 
             ELSE 
                AI(I,J) = DBLE(I*J)/DBLE(N*N) 
             ENDIF 
 98      CONTINUE 
 100  CONTINUE 
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      DO 99 J=1,N 
          DO 99 I=1,N 
              IF (I.GT.J) AI(I,J) = -AI(I,J) 
 99   CONTINUE 
 
C Call complex eigensolver 
 
      NNF=NF 
      NNL=NL 
      CALL DVHEVP(AR,AI,K,N,NNF,NNL,IVEC,ETOL,CTOL,NEV, 
     *             E,MAXNE,M,EVR,EVI,VW,IW,ICON) 
 
      WRITE (*,*)' **************************************' 
      WRITE (*,*)'      VHEVP OUTPUT' 
      IF(ICON.NE.0) THEN 
         WRITE (*,*)' Error parameter icon = ',ICON, 
     *              ' VHEVP failed' 
         GOTO 5000 
      ENDIF 
      WRITE (*,*)' Number of Hermitian eigenvalues' 
      WRITE (*,*) NEV(3) 
      WRITE (*,*)' Eigenvaluse of complex Hermitian matrix' 
      WRITE (*,*)(E(I),I=1,NEV(3)) 
 5000 STOP 
      END 

 

(4) Method 

 The n × n Hermitian matrix A = AR + iAI must satisfy AR = ART and AI = -AIT 

 The Householder method is used to reduce the Hermitian matrix to a Hermitian 
tridiagonal matrix.  Then, the diagonal unitary transformation is applied to further reduce 
the matrix to a real tridiagonal matrix.  For details of the Householder calculations, see 
[45] in Appendix B, “References,” or see “TRIDH” in Fujitsu SSL II User’s Guide. 

 The eigenvalues and eigenvectors of the tridiagonal matrix are calculated using 
techniques of multisectioning and inverse iteration (see “VTDEV” and [33] in Appendix 
B, “References”). 

 In the final step, the eigenvectors of the Hermitian matrix are constructed from the 
eigenvectors of the tridiagonal matrix. 
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B71-11-0101  VLAND, DVLAND 
 
Eigenvalues and eigenvectors of a real symmetric sparse matrix (Lanczos method, 
diagonal storage format) 

CALL VLAND (A, K, NDIAG, N, NOFST, IVEC, IX, EPS, NMIN, NMAX,  
                          NLMIN, NLMAX, KR, MAXC, E, INDX, NCMIN, NCMAX, EV,  
                          WV, IW, ICON) 
 
(1) Function 

 This routine computes a few of the largest and/or smallest eigenvalues and corresponding 
eigenvectors in a large-scale real symmetric sparse matrix A using the Lanczos method. 

(2) Parameters 

A................. Input.  Non-zero elements of the real symmetric sparse matrix. 
Uses the diagonal storage format for general sparse matrices to store diagonals 
of A containing non-zero elements.  
Two-dimensional array A (1:N, 1:NDIAG) 
For the diagonal storage format, see Part I, “Overview,” Section 3.2.1.1, 
“Storage Method for General Sparse Matrices,” b., “Diagonal Storage Format 
for General Sparse Matrices.” 

K................. Input.  Size of the first dimension of array A (≥ N) 

NDIAG....... Input.  The number of diagonals of coefficient matrix A including non-zero 
elements. 

N................ Input.  Order n of matrix A 

NOFST....... Input.  Stores the offset from the main diagonal of the corresponding non-zero 
diagonal stored in array A.  Superdiagonals have positive offsets.  Subdiagonals 
have negative offsets. 

IVEC.......... Input.  Control information indicating whether an initial vector is specified in 
EV (1:N,1). 
IVEC=1  The vector stored in EV (1:N,1) is used as the initial vector. 
IVEC≠1  The initial vector is generated randomly. 
(See item (3), “Comments on use,” b., 1).) 

IX............... Input.  Seed value used to generate a random number sequence when an initial 
vector is generated randomly for IVEC ≠ 1.  An integer value from 1 to 100,000. 
(See item (3), “Comments on use,” b., 1).) 

EPS............. Input.  Tolerance used to decide whether the computed eigenpair  (λi , Vi) is to 
be accepted.  If EPS is less than or equal to the default value 0, 10-6 (10-3 for 
single precision) then it is set to the default value for double precision. 
(See item (3), “Comments on use,” b., 3).) 

NMIN.......... Input.  The number of smallest eigenvalues and corresponding eigenvectors to 
be computed (≥ 0).  Smaller number.  May be 0 if NMAX ≥ 1. 

NMAX........ Input.  The number of largest eigenvalues and corresponding eigenvectors to be 
computed (≥ 0).  Smaller number.  May be 0 if NMIN ≥ 1. 

NLMIN....... Input.  The number of eigenvalues to be used in the search for the NMIN 
smallest eigenvalues.  (≥ NMIN) 
2 × NMIN in many cases. 
(See item (3), “Comments on use, “b., 5).) 
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NLMAX...... Input.  The number of eigenvalues to be used in the search for the NMAX 
largest eigenvalues.  
(≥ NMAX) 
2 × NMAX in many cases. 
(See item (3), “Comments on use, “b., 5).) 

KR.............. Input.  The maximum on the dimension of the Krylov subspace generated in the 
Lanczos method.  (≥ NLMIN + NLMAX) 
(See item (3), “Comments on use, “b., 4).) 

MAXC........ Input.  The maximum number of eigenvalues in a cluster.  For example, 10.  
(See item (3), “Comments on use, “b., 2).) 

E ................ Output.  One-dimensional array of E (NEVL).  
The largest and smallest eigenvalues are stored in ascending order using the 
indirect index list INDX. 
NEVL = NLMIN + NLMAX. 
The smallest eigenvalues are stored in E (INDX (1:NCMIN)); the largest ones 
in E (INDX (NEV - NCMAX:NEV).  NEV = NMIN + NMAX. 

INDX.......... Output.  One-dimensional array INDX (NEV).  Stores indirect indices of arrays 
E and EV.  
The eigenvector corresponding to eigenvalue E (INDX (I)) is stored in EV (1:N, 
INDX(I)). 
I = 1, ... ..., NEV, with NEV = NMIN + NMAX. 

NCMIN....... Output. The number of smallest eigenvalues and corresponding eigenvectors 
which have been computed. 

NCMAX..... Output.  The number of largest eigenvalues and corresponding eigenvectors 
which have been computed. 

EV.............. Input.  When IVEC = 1 an initial vector is stored in EV (1:N, 1) in EV. 
Output.  Computed eigenvectors are stored.  Eigenvectors can be referred using 
the indirect index list INDX as eigenvalues. 
Two-dimensional array EV (K, NEVL), NEVL = NLMIN + NLMAX.   

WV............. Work area.  One-dimensional array of the size (MAXC + MNL) × (KR + 2) + 
MD × (KR + 1) + 7 × K + 14 × (KR + 1). 
Here, MNL = MAX (NLMIN, NLMAX), MD = NLMIN + NLMAX. 

IW............... Work area.  One-dimensional array of the size 11 × (MAXC + MNL) + MD + 
128. 
Here, MNL = MAX (NLMIN, NLMAX), MD = NLMIN + NLMAX. 

ICON........... Output.  Condition code 
See Table VLAND-1, “Condition codes.” 



VLAND, DVLAND 

Fujitsu SSL II Extended Capabilities User’s Guide II II-87 

 
Table VLAND-1  Condition codes 

Code Description Processing 

0 No error - 

20000 The total number of eigenvalues in a 
cluster exceeded MAXC. 
Eigenvectors cannot be computed. 

Processing is stopped. 

30000 N<1, N>K, NDIAG<1, 
IX<1, IX>100000, 
NLMIN<NMIN, 
NLMAX<NMAX, 
NMIN<0, NMAX<0, 
NMIN=NMAX=0 

Processing is stopped. 

30004 KR<NLMIN+NLMAX  

32001 |NOFST (I)|>N-1  

39001 The initial vector is 0 or near 0.  

39006 The input matrix is not symmetric.  
 
(3) Comments on use 

a. Subprograms used 

 SSLII:  UZBBM, UZGSD, UZGUD, UZGBD, UZISE, UZLCD, UZLPD, UZMLS, 
UZSRZ, UZSTE, UZS3D, UZTDC, UZTDE, USMN1, USSPS, UIBBS, UIBFC, 
UIBFE, UIBSL, UITBS, UITFC, UITFE, UITSL, AMACH, URIPA, URMVD, 
URPER, URPRE, URPFP, URPIP, UZRDM, USSCP, URSTE, USVAD, USVCN, 
USVCP, USVSC, USVSU, USVUP, USVN1, USVN2, USVNM, MGSSL 

b. Comments 

1) The Lanczos method is not a deterministic procedure, and hence is not as robust 
as, for example, the method based on the tridiagonalization by Householder 
reduction. 

 The results obtained using the Lanczos method depends on choice of initial 
vector.  If the initial vector contains large components in the directions of the 
requested eigenvectors, then good approximations to the requested eigenvalues 
and eigenvectors will be computed.  If these components are small or absent then 
the desired eigenpairs may not be obtained; however, the returned value are good 
approximations to some eigenpairs of the matrix A.  

 In most cases, a good initial vector will not be known a priori and in these 
instances the initial vector is generated randomly. 

2) A cluster is a set of very close eigenvalues for which the distance (relative to 
eigenvalue magnitude) between adjacent eigenvalues of order machine epsilon.  

3) When the eigen pair ( iλ , Vi) satisfies iii nVAV λελ ≤− , it is accepted as an 
eigenvalue and eigenvector of matrix A.  Otherwise, this pair is rejected. 

 Here, ε  = EPS, n = KR, and KR indicate the dimension of the Krylov subspace. 

 The dependence on the value of EPS is rather mild.  However, if EPS is too large, 
the computed eigenvalues and eigenvectors may not have high accuracy.   
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4) Making KR larger enables the user to obtain better approximate eigenvalues and 
eigenvectors; however, higher memory and computational cost are entailed, KR 
should therefore be chosen as small as possible.  In some cases, it is impossible 
to choose KR smaller than N (for example, the one-dimensional discrete 
Laplacian).  KR should exceed N.  When KR is equal to N, this routines works 
correctly but may be unacceptably slow. 

 The quality of the computed eigenvalues and eigenvectors depends considerably 
on the dimension KR of the Krylov sub space and the initial vector. 

5) In the Lanczos method, - spurious eigenvalues and eigenvectors - not belonging 
to the original matrix A may be obtained.  These values are rejected.  The 
number of eigenvalues and eigenvectors used in the search, must therefore be 
increased.  These values should be determined carefully. 

 In most cases, NLMIN = NMIN, NLMAX = NMAX are insufficient NLMIN 
and NLMAX values. 

 NMLIN = 2 × NMIN, NLMAX = 2 × NMAX are generally suffice. 

c. Example of use 

 In this example, we find the three smallest and largest eigenvalues and corresponding 
eigenvectors for the matrix A resulting from the finite difference approximation of 
the following elliptic operator L. 

 Lu = -Δu + a∇u + u 

 With zero boundary conditions on a cube where  a = (a1, a2, a3) with a1, a2 and a3 
constants. 

 (The matrix A is generated with init_mat_diag and stored using the diagonal storage 
format.) 

 
C     ** EXAMPLE PROGRAM ** 
      IMPLICIT REAL*8(A-H,O-Z) 
      INTEGER REP 
      PARAMETER (REP = 2) 
      PARAMETER (NX = 20,NY = 20,NZ = 20) 
      PARAMETER (K = NX*NY*NZ, N = K) 
      PARAMETER (NMAX = 3, NMIN = 3) 
      PARAMETER (IVEC=0,IX=123) 
      PARAMETER (EPS1 = 1D-6) 
      PARAMETER (NLMIN = 2*NMIN, NLMAX = 2*NMAX) 
      PARAMETER (MD = NLMIN+NLMAX,NEVL=MD) 
      PARAMETER (MNL = NLMIN)    ! MNL = MAX(NLMIN,NLMAX) 
      PARAMETER (NEV = NMIN+NMAX) 
      PARAMETER (KR = (NX*NY*NZ)/REP) 
      PARAMETER (NDIAG = 7) 
      PARAMETER (MAXC = 10) 
      PARAMETER (NWV = (MAXC+MNL)*(KR+2)+MD*(KR+1)+ 
     &                  7*K+14*(KR+1)) 
      PARAMETER (NIW = 11*(MAXC+MNL)+MD+128) 
 
      REAL*8 A(K,NDIAG),EV(K,NEVL),E(NEVL),VW(NWV) 
      INTEGER NOFST(NDIAG),INDX(NEV),IW(NIW) 
 
C     Initialize matrix A 
      CALL MAT_DIAG(0D0,0D0,0D0,0D0,2D0,-1D0,A,NOFST, 
     &           NX,NY,NZ,NDIAG,K) 



VLAND, DVLAND 

Fujitsu SSL II Extended Capabilities User’s Guide II II-89 

 
      EPS = EPS1 
 
      CALL DVLAND(A,K,NDIAG,N,NOFST,IVEC,IX,EPS,NMIN, 
     &           NMAX,NLMIN,NLMAX,KR,MAXC,E,INDX,NCMIN, 
     &           NCMAX,EV,VW,IW,ICON) 
 
      IF (ICON.LT. 20000) THEN 
         PRINT*,' Real eigenvalues (MIN:MAX)' 
         WRITE (*,901) (E(INDX(I)),I=1,NCMIN) 
         WRITE (*,901) (E(INDX(I)),I=NEV-NCMAX+1,NEV) 
      ENDIF 
 
  901 FORMAT(D23.16) 
      STOP 
      END 
 

(4) Method 

 For the Lanczos method, see [14] and the bibliography therein, also [8].  The algorithm 
used for this routine generates a tridiagonal matrix T of size less than (or equal) to that of 
the matrix A.  Next the eigenvalues and eigenvectors of this tridiagonal matrix are 
computed using a multisection Sturm count procedure and inverse iteration, respectively.  
(See VTDEV.)  Finally the eigenvectors of the matrix A are recovered from those of T 
using the Krylov subspace basic vectors generated by the Lanczos process. 
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A53-11-0301  VLBX, DVLBX 
 
System of linear equations with a banded real matrix (Gaussian elimination) 

CALL VLBX (A, N, NH1, NH2, B, EPSZ, ISW, IS, IP, VW, ICON) 
 
(1) Function 

 This routine solves real coefficient linear equations 

 Ax = b (1.1) 

 using the Gaussian elimination method, where A is an n × n banded matrix with the lower 
bandwidth h1 and upper bandwidth h2. 

 b is an n-dimensional real constant vector.  x is an n-dimensional solution vector. 

 n > h1 ≥ 0, n > h2 ≥ 0 must be obtained. 

(2) Parameters 

A................. Input.  One-dimensional array of size (2 × h1 + h2 + 1) × n that stores the banded 
coefficient matrix A. 
For the storage method for matrix A, see Figure VLBX-1, “Storage method for 
banded matrix in array A.” 
Output.  Stores the LU decomposed L and U.  The storage method is the same 
as the input storage method. 
For the storage method for matrices L and U, see Figure VLBX-2, “Storage 
method for matrices L and U in array A.” 

N................. Input.  Order of matrix A. 

NH1............ Input.  Lower bandwidth h1 of matrix A. 

NH2............ Input.  Upper bandwidth h2 of matrix A. 

B................. Input.  Constant vector b. 
Output.  Solution vector x. 
One-dimensional array of size n. 

EPSZ........... Input.  Value of pivot judgment of relative zero (≥ 0.0).  When EPSZ = 0.0, a 
standard value is selected. 
(See item (3), “Comments on use,” b., 1).) 

ISW............ Input.  Control information. 
When solving k (k ≥ 1) equation sets with the same coefficient matrix, set ISW 
as follows. 
If ISW = 1, first-set equations are solved. 
If ISW = 2, second-set and subsequent equations are solved. 
All parameters other than B whose value is changed to the value of a new 
constant vector b, should be used unchanged. 
(See item (3), “Comments on use,” b., 2).) 

IS................ Output.  Information used to look for the determinant of matrix A. 
(See item (3), “Comments on use,” b., 3).) 

IP................ Output.  Transposition vector that shows the history of the exchange of rows 
performed through partial pivoting.  One-dimensional array of size n. 

VW............. Work area.  One-dimensional array of size n. 
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ICON.......... Output.  Condition code. 
See Table VLBX-1, “Condition codes.” 

D00-0110

......

......

......

h h h

* a .... a 011 1 h2+1

2

a* a a 021 22 2 h2+2

* a a a a 031 32 33 3 h2+3

a a ah+1 1 h1+1 h1+1 h1+1 h1+h2+1 0.......

a a an-h2 n-h2-h1 n-h2 n-h2 n-h2 n *.. ....

a a *n n-h1 n n *...

1 11

 

* (asterisk):  Undefined value 

Figure VLBX-1   Storage method for banded matrix in array A 

The i-th row vector of the coefficient matrix A is stored consecutively in A ( (2 × h1 + h2 + 1) 
× (i - 1) + 1:  (2 × h1 + h2 + 1) × i).  Diagonal elements aii are stored in A ( (2 × h1 + h2 + 1) × 
(i - 1) + h1 + 1).  Outer coefficient matrix elements of the banded part are set to zero. 
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D00-0120
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* (asterisk):  Undefined value 

Figure VLBX-2   Storage method for matrices L and U in array A 

The i-th row vector without diagonal elements of matrix L is stored in A ( (2 × h1 + 
h2 + 1) × (i - 1) + 1:  (2 × h1 + h2 + 1) × (i - 1) + h1).  The i-th row vector of matrix 
U is stored consecutively from the diagonal elements in A ( (2 × h1 + h2 + 1) × (i - 
1) + h1 + 1:  (2 × h1 + h2 + 1) × i). 
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Table VLBX-1  Condition codes 

Code Description Processing 

0 No error  

20000 All the elements of a row of matrix A are zero, or pivot is 
relative zero.  Strong possibility that matrix A is singular. 

Processing is stopped. 

30000 N ≤ NH1, N ≤ NH2, NH1 < 0, NH2 < 0 or EPSZ < 0.0. Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, VBLU, VBLUX, MGSSL 

b. Comments 

1) In this subroutine, the case of the pivot value being less than EPSZ is considered 
relative zero, and processing is stopped with ICON = 20,000. 

 The standard value of EPSZ is 16 × u where u is the round off unit. 

2) When several linear equations with the same coefficient matrix are solved 
consecutively, solve those equations with ISW = 2 on subsequent calls after the 
initial call.  Then, the computation time diminishes as the LU decomposition 
process of the coefficient matrix A is omitted.  In this case, the contents in matrix 
A are guaranteed as the result of initial call with ISW=1. 

3) Elements of matrix U are stored in array A, as shown in Figure VBLU-2.  
Therefore, the determinant is obtained by multiplying the IS value by n diagonal 
elements, that is, the multiplication of A ( (2 × h1 + h2 + 1) × (i - 1) + h1 + 1),  i = 
1, ... , n. 

4) In order to save space in the data storage area, this subroutine stores banded 
matrices by taking advantage of their characteristics.  However, depending on 
bandwidth size, a data storage area that is larger than VALU may be required.  In 
such cases, space in the data storage area can be saved by using VALU. 

 Characteristics of this subroutine can be exploited when n > 2 × h1 + h2 + 1. 

c. Example of use 

 In this example, a linear equation is solved, which takes the unsymmetric banded 
matrix with bandwidth h1 = h2 = 160, n = 160 × 160. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER(NH=80) 
      PARAMETER(NH1=NH) 
      PARAMETER(NH2=NH) 
      PARAMETER(N=NH*NH) 
      PARAMETER(ALPHA=0.5/(NH1+1),BETA=-ALPHA) 
      DIMENSION A((2*NH1+NH2+1)*2*N),B(N) 
      DIMENSION C(2*NH1+NH2+1,N),IP(N),VW(N) 
      EQUIVALENCE(A,C) 
C 
C     Zero clear 
C 
      DO 10 I=1,N*(3*NH+1) 
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      A(I)=0.0 
   10 CONTINUE 
C 
      DO 15 I=1,N 
      B(I)=0.0 
      IP(I)=0 
   15 CONTINUE 
C 
C     Coefficient Matrix is built 
C 
      DO 20 I=1,N 
      C(NH1+1,I)=4.0 
      B(I)=B(I)+4.0 
 
      IF(I.GT.NH)THEN 
      C(1,I)=-1.0+ALPHA 
      B(I)=B(I)-1.0+ALPHA 
      ENDIF 
 
      IF(I+NH.LE.N)THEN 
      C(1+NH1+NH2,I)=-1.0+BETA 
      B(I)=B(I)-1.0+BETA 
      ENDIF 
 
      IF(I.GT.1.AND.MOD(I-1,NH).NE.0)THEN 
      C(NH1,I)=-1.0+ALPHA 
      B(I)=B(I)-1.0+ALPHA 
      ENDIF 
 
      IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN 
      C(NH1+2,I)=-1.0+BETA 
      B(I)=B(I)-1.0+BETA 
      ENDIF 
 
   20 CONTINUE 
C 
C     Solve Banded linear equation 
C 
      EPSZ=0.0D0 
      ICON=0 
      ISW=1 
      CALL DVLBX(A,N,NH1,NH2,B,EPSZ,ISW,IS,IP,VW,ICON) 
      PRINT*,'ICON= ',ICON 
C 
      PRINT*,'B(1)= ',B(1) 
      PRINT*,'B(N)= ',B(N) 
      STOP 
      END 
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(4) Method 

 After LU decomposition of the outer product type (see [14]) is performed, the equation 

 Ax = b 

 is solved through forward-substitution and back-substitution. 
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A22-61-0402 VLDIV, DVLDIV 
 
The inverse of a positive-definite symmetric matrix decomposed into the factors L,D 
and LT 

CALL VLDIV (FA, N, VW, ICON) 
 
(1) Function 

 The inverse matrix A-1 of an n × n positive-definite symmetric matrix A given in 
decomposed form A = LDLT is computed. 

 A-1 = (LT)-1D-1L-1 (1.1) 

 L and D are, respectively, an n × n unit lower triangular and a diagonal matrices. 

 

(2) Parameters 

FA................ Input.  Matrices L and D-1. 
For the storage method for matrices L and D-1, see Fig. VSLDL-1 in “Fujitsu 
SSL II Extended Capabilities User’s Guide”. 
Output.  Inverse A-1.  Lower triangular part of A-1 stored by columns. 
For the storage method for a symmetric matrix, see Fig. VSLDL-1 in “Fujitsu 
SSL II Extended Capabilities User’s Guide”. 
One-dimensional array of size n(n+1)/2. 

N.................. Input.  Order n of the matrices L and D. 

VW.............. Work Area.  One-dimensional array of size n. 

ICON........... Output.  Condition code. 
See Table VLDIV-1, “Condition codes.” 

Table LDIV-1  Condition codes 

Code Meaning Processing  

0 No error - 

10000 Matrix was not a positive-definite. Continued 

30000 N<1 Bypassed 
 
(1) Comments on use 

a. Subprograms used 

 SSL II: MGSSL 

b. Comments 

1) Prior to calling this subroutine, LDLT-decomposed matrix must be obtained by 
subroutine VSLDL and must be input as the parameter FA to be used.  (Refer to 
the example).  In this routine, the diagonal elements of the array D must be given 
as D-1.  D-1 is output by the subroutine VSLDL. 

2) The subroutine VLSX should be used for solving a system of linear equations.  
Solving a system of linear equations by first obtaining the inverse matrix should 
be avoided since more steps of calculation are required.  This subroutine should 
be used only when the inverse matrix is inevitable. 
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c. Example of use 

 The inverse of a positive symmetric matrix is obtained.  n = 10. 
 
C    **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION A(55),VW(10) 
      DIMENSION VW2(20) 
      INTEGER IVW(10) 
      N=10 
      EPS=0.0D0 
      L = 1 
      DO J=1,N 
         A(l)=N*(N+1)/2-J*(J-1)/2+10.0D0 
         L=L+1 
         DO I=J+1,N 
            A(l)=N+1-I 
            L=L+1 
         ENDDO 
      ENDDO 
      WRITE(*,*) 'INPUT MATRIX' 
      DO I=1,N 
         WRITE(*,1000) (A(((2*N+1-J)*J)/2-N+I),J=1,I) 
      ENDDO 
      CALL DVSLDL(A,N,EPS,VW2,IVW,ICON) 
      IF(ICON.GE.20000)STOP 
      CALL DVLDIV(A,N,VW,ICON) 
      WRITE(*,*) 'DVLDIV ICON = ',ICON 
      WRITE(*,*) 'OUTPUT MATRIX' 
      DO I=1,N 
         WRITE(*,1000) (A(((2*N+1-J)*J)/2-N+I),J=1,I) 
      ENDDO 
 1000 FORMAT(X,10E11.3) 
      END 
 

(4) Method 

 For further information on the algorithm used consult the entry for LDIV in the Fujitsu 
SSL II User's Guide, and [29]. Note that the storage format used in LDIV is different from 
that used in this routine, but the underlying algorithm is the same. 
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A53-31-0301  VLSBX, DVLSBX 
 
System of linear equations with a symmetric positive definite banded matrix 
(modified Cholesky decomposition) 

CALL VLSBX (A, N, NH, B, EPSZ, ISW, ICON) 
 
(1) Function 

 This routine solves real coefficient linear equations 

 Ax = b (1.1) 

 using the modified Cholesky method, where A is an n × n symmetric positive definite 
banded matrix with upper and lower bandwidths h.  b is an n-dimensional real constant 
vector.  x is an n-dimensional solution vector. 

 n > h ≥ 0 must be obtained. 

 In order to exploit performance on vector computers, this subroutine uses the storage 
method in the order of column vectors. 

(2) Parameters 

A................. Input.  One-dimensional array of size (h + 1) × n. 
Stores the diagonal elements of the coefficient matrix A and the lower 
triangular part of the banded matrix. 
For storage method for matrix A, see Figure VLSBX-1, “Storage method for 
matrix A in array A.” 
Output.  Stores LDLT decomposed D and L. 
For the storage method for matrices L and D, see Figure VLSBX-2, “Storage 
method for matrices L and D in array A.” 

N................. Input.  Order n of matrix A. 

NH.............. Input.  Lower bandwidth h. 

B................. Input.  Constant vector b. 
Output.  Solution vector x. 
One-dimensional array of size n. 

EPSZ........... Input.  Value of pivot judgment of relative zero (≥ 0.0).  If EPSZ = 0.0, a 
standard value is selected. 
(See item (3), “Comments on use,” b., 1).) 

ISW............ Input.  Control information. 
When solving k (≥ 1) equation sets with the same coefficient matrix, set ISW as 
follows. 
If ISW = 1, first-set equations are solved. 
If ISW = 2, second-set and subsequent equations are solved. 
All parameters other than B whose value is changed to the value of new 
constant vector b, should be used unchanged. 
(See item (3), “Comments on use,” b., 2).) 

ICON.......... Output.  Condition code. 
See Table VLSBX-1, “Condition codes.” 



VLSBX, DVLSBX 

Fujitsu SSL II Extended Capabilities User’s Guide II II-99 
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Figure VLSBX-1   Storage method for matrix A in array A 

The i-th row vector of the lower banded matrix A is stored according to 

A ( (h + 1) × (i - 1) + j - i + 1) = aji 

where j = i, ... ,  i + h,  i = 1, ... , n. 
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* (asterisk):  Undefined value 

Figure VLSBX-2  Storage method for matrices L and D in array A 

dii is stored in  A ( (h + 1) × (i - 1) + 1). 

lji is stored in A ( (h + 1) × (i - 1) + j - i + 1) 

where j = i + 1, ... ,  i + h,  i = 1, ... , n. 
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Table VLSBX-1   Condition codes 

Code Description Processing 

0 No error  

10000 Pivot is negative.  Matrix A is not positive definite. Processing continues. 

20000 Pivot is relative zero.  Strong possibility that matrix A is 
singular. 

Processing is stopped. 

30000 NH < 0, NH ≥ N, or EPSZ < 0.0.  ISW ≠ 1, 2. Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, UBLTS, UBUTS, VBLDL, VBLDX, MGSSL 

b. Comments 

1) In this subroutine, the case of the pivot value being less than EPSZ is considered 
relative zero and processing is stopped with ICON = 20,000. 

 The standard value of EPSZ is 16 × u where u is the round off unit. 

2) When several linear equations with the same coefficient matrix are solved 
consecutively, solve those equations with ISW = 2 on the subsequent calls after 
the initial call.  Then, the computation time diminishes as the LDLT 
decomposition process of the coefficient matrix A is omitted. 

3) If the pivot becomes negative during the decomposition process, the coefficient 
matrix is not positive definite.  In this subroutine, processing continues, but 
ICON is set as 10,000. 

4) Elements of matrix L are stored in array A, as shown in Figure VLSBX-2.  
Therefore, the determinant is obtained by multiplying the n diagonal elements, 
that is, the multiplication of A ( (h + 1) × (i - 1) + 1), i = 1, ... , n. 

c.  Example of use 

 In this example, a linear equation of symmetric positive definite matrix with 
bandwidth 256 is solved. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER(NH=128) 
      PARAMETER(N=128*128) 
      DIMENSION A((NH+1)*N),B(N),C(NH+1,N) 
      EQUIVALENCE(A,C) 
C 
C     Zero clear 
C 
      DO 10 I=1,N*(NH+1) 
      A(I)=0.0 
   10 CONTINUE 
C 
      DO 15 I=1,N 
      B(I)=0.0 
   15 CONTINUE 
C 
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C     Coefficient Matrix is built 
C     b = A*y , where y=(1,1,....,1) 
C 
      DO 20 I=1,N 
      C(1,I)=4.0 
      B(I)=B(I)+4.0 
 
      IF(I+NH.LE.N)THEN 
      C(NH+1,I)=-1.0 
      B(I+NH)=B(I+NH)-1.0 
      B(I)=B(I)-1.0 
      ENDIF 
 
      IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN 
      C(2,I)=-1.0 
      B(I+1)=B(I+1)-1.0 
      B(I)=B(I)-1.0 
      ENDIF 
 
   20 CONTINUE 
C 
C     Solve Symmetric Positive Definite linear equation 
C 
      EPSZ=0.0D0 
      ISW=1 
      CALL DVLSBX(A,N,NH,B,EPSZ,ISW,ICON) 
      PRINT*,'ICON=',ICON 
      IF(ICON.NE.0)STOP 
C 
      PRINT*,'B(1)= ',B(1) 
      PRINT*,'B(N)= ',B(N) 
      STOP 
      END 
 

(4) Method 

 After LDLT decomposition of the outer product type (see [32]) is performed, the equation 
is solved through forward-substitution and back-substitution. 
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A22-72-0101  VLSPX, DVLSPX 
 
A system of linear equations with a symmetric positive definite matrix (blocked 
Cholesky decomposition method) 

CALL VLSPX (A, K,N, B,EPSZ,ISW, ICON) 
 
(1) Function 

 This subroutine decomposes the coefficient matrix A of a system of a real coefficient 
linear equation (1.1) as shown in (1.2) using the blocked Cholesky decomposition of outer 
products.  It then solves the system of equations, where A is a symmetric positive definite 
matrix (n × n), b is an n-dimensional real constant vector, x is an n-dimensional solution 
vector, L is a lower triangular matrix.  It is assumed that n ≥ 1. 

 Ax = b (1.1) 

 A = LLT (1.2) 

  

(2) Parameters 

A ............... Input.  Coefficient matrix A. 

 The lower triangular part {aij | i ≥ j} of A is stored in the lower triangular part 
{A(i,j) | i ≥ j} of A(1:N,1:N) for input. 

 Output.  Decomposed matrix. 

 After the first set of equations has been solved, the lower triangular part of 
A(i,j) contains lij (i ≥ j) of the lower triangular matrix L. 

 (See Figure VLSPX-1.) 

 This is a two-dimensional array A(K,N). 

K .............. Input.  The size of the first dimension of array A. (≥ N) 

N .............. Input.  Order n of coefficient matrix A. 

B ............... Input.  Constant vector b. 

 Output.  Solution vector x. 

 One-dimensional array of size n. 

EPSZ ........ Input.  Judgment of relative zero of the pivot (≥ 0.0). 

 When EPSZ is 0.0, the standard value is assumed. 

 (See item (3), "Comments on use," b., 1).) 

ISW .......... Input.  Control information. 

 When solving several sets of equations that have an identical coefficient matrix, 
specify as follows. 

 Specify ISW = 1 for the first set of equations. 

 Specify ISW = 2 for the second and subsequent sets of equations. 

 When specifying ISW = 2, change only the value of array B into a new constant 
vector b.  Do not change any other parameters. 
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 (See item (3), "Comments on use," b., 2).) 

ICON.......... Output.  Condition code. 
See Table VLSPX-1, “Condition codes.” 

 

Input Array A 
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NK

 

Figure VLSPX-1   Storing the data for the Cholesky decomposition method 

The diagonal elements and lower triangular part (aij) of the LLT-decomposed positive definite 
matrix are stored in array A(i,j), i = j, ... , n, j = 1, ... , n. 

After LLT decomposition, the lower triangular matrix L is stored in the lower triangular part of 
the array A. 
 

Table VLSPX-1   Condition codes 

Code Description Processing 

0 No error  

20000 The pivot became relatively zero.  The coefficient matrix 
A may be singular. 

20100 The pivot becomes negative.  The coefficient matrix is not 
positive definite. 

30000 N < 1, EPSZ < 0, K < N, or ISW ≠ 1, 2. 

Processing is 
discontinued. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  VSPLL, VSPLX 

b. Comments 

1) If a value is set for the judgment of relative zero, it has the following meaning: 
if the value of the selected pivot is positive and less than EPSZ during LLT 
decomposition by the Cholesky decomposition, the pivot is assumed to be 
relatively zero and decomposition is discontinued with ICON = 20000.  When 
unit round off is u, the standard value of EPSZ is 16 × u. 

 When the computation is to be continued even if the pivot becomes small, assign 
the minimum value to EPSZ. In this case, however the result is not assured. 
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2) When several sets of linear equations having an identical coefficient matrix are 
solved, the value of ISW should be 2 from the second time on.  This reduces the 
execution time because LLT decomposition for coefficient matrix A is bypassed. 

3) If the pivotal value becomes negative during decomposition, the coefficient 
matrix is no longer positive definite.  Processing is discontinued with ICON = 
20100. 

4) After the calculation has been completed, the determinant of the coefficient 
matrix is computed by multiplying all the n diagonal elements of the array A and 
taking the square of the result. 

 

c.  Example of use 

 A system of linear equations with a 2000 × 2000 coefficient matrix is solved. 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N=2000,K=N+1) 
      REAL*8 A(K,N),B(N) 
C 
      DO J=1,N 
      DO I=J,N 
      A(I,J)=MIN(I,J) 
      ENDDO 
      ENDDO 
C 
      DO I=1,N 
      B(I)=I*(I+1)/2+I*(N-I) 
      ENDDO 
C 
      ISW=1 
      CALL DVLSPX(A,K,N,B,1.D-13,ISW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GO TO 100 
      WRITE(6,620) (B(I),I=1,10) 
C 
  100 STOP 
  610 FORMAT(1H ,10X,5HICON=,I5) 
  620 FORMAT(11X,15HSOLUTION VECTOR 
     */(10X,3D23.16)) 
      END 
 

(4) Method 

 See [14] in Appendix A, "References," for details of the blocked Cholesky decomposition 
method of outer product type. 
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A53-41-0101  VLTQR, DVLTQR 
 
System of linear equations with a real tridiagonal matrix (QR factorization) 

CALL VLTQR (SU, D, SL, N, B, VW, ICON) 
 
(1) Function 

 This routine solves a system of linear equations with a real tridiagonal matrix using QR 
factorization. 

 Tx = b (1.1) 

 T is a n × n non-singular real tridiagonal matrix.  b is a n-dimensional real constant vector.  
X is a n-dimensional solution vector.  n must be greater than or equal to 1.  Suppose 
elements of matrix T are tij, diagonal elements are di = ti, i; lower sub-diagonal elements li 
= ti, i-1; upper sub-diagonal elements ui = ti, i+1.  However, l1 = 0 and Un  = 0 must hold. 

(2) Parameters 

SU ............. Input.  Stores an upper sub-diagonal matrix ui in a one-dimensional array of SU 
(N) in SU (1:N-1). SU (N) = 0. 

D................ Input.  Stores diagonal element di in a one-dimensional array of SU (N). 

SL............... Input.  Stores lower sub-diagonal matrix li in a one-dimensional array of SL (N) 
in SL (2:N).  SL (1) = 0. 

N................ Input.  Order n of tridiagonal matrix T. 

B................. Input.  Constant vector b. 

Output.  Solution vector x. 

VW............. Work area.  One-dimensional array of size 7 × N. 

ICON.......... Output.  Condition code. 

See Table VLTQR-1, “Condition codes.” 

 
Table VLTQR-1   Condition codes 

Code Meaning Processing 

0 No error - 

10000 The matrix is near “singular.”  

20000 The matrix is near “singular.” Processing is stopped. 

30000 N<1  
 
(3) Comments on use 

a. Subprograms used 

 SSL II:  UQBBS, UQBFC, UQBFE, UQBSL, UQTBS, UQTFC, UQTFE, UQTSL, 
AMACH, MGSSL 

b. Comments 

 None. 
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c. Example of use 

 Solve a linear equation system with the following tridiagonal matrix: 

D01-0010

 0  1

-1  0  1

   -1  0  1

       .  .  .

         -1  0  1

            -1  0

T =

 

 NOTE:  n must be even, otherwise T is singular. 

 This matrix is not diagonally dominant.  The example below determines a constant 
vector in the right-hand side so that the following value is obtained as the solution.  It 
then tests the accuracy of the solution.   

 xi = (i - 1) / n, i = 1, ... , n 

 This routine returns ICON = 20000 when the matrix is singular; therefore, the 
solution is not obtained.  When the matrix is near “singular,” this routine returns 
ICON = 10000, and the correct solution is obtained. 

 
C     ** EXAMPLE PROGRAM ** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER(MAXN=300000) 
      REAL*8 SU(MAXN),D(MAXN),SL(MAXN),B(MAXN),X(MAXN) 
      REAL*8 VW(7*MAXN) 
      REAL*8 ERR 
      INTEGER I,ICON 
 
C Data initialization 
      N = 256*1024 
      DO 9000 I=1,N 
        SU(I)=1 
        D(I)=0 
        SL(I)=-1 
        X(I) = (I-1.0)/N 
 9000 CONTINUE 
      SU(N)=0 
      SL(1)=0 
 
C Calculate the right hand side. 
      B(1)=X(1)*D(1)+X(2)*SU(1) 
      DO 9002 I=2,N-1 
        B(I)=SL(I)*X(I-1)+D(I)*X(I)+SU(I)*X(I+1) 
 9002 CONTINUE 
      B(N)=SL(N)*X(N-1)+D(N)*X(N) 
 
C Call subroutine 
      CALL DVLTQR(SU,D,SL,N,B,VW,ICON) 
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C Calculate the relative error 
      ERR=0.0D0 
      DO 9004 I=1,N 
        CONTINUE 
      IF(X(I).NE.0.AND.B(I).NE.0)THEN 
        ERR=MAX(ABS((X(I)-B(I))/X(I)),ERR) 
      ELSE 
        ERR=MAX(ABS(X(I)-B(I)),ERR) 
      ENDIF 
 9004 CONTINUE 
      WRITE(*,*)'ERROR:',ERR 
 
      END 

 

(4) Method 

 The multifrontal method is used first to reduce coefficient matrices in a system to a block 
bidiagonal form.  This reduced system is then solved using a recursive wrap-around 
partitioning algorithm.  The partitioning of the unknowns is such that there is no 
restriction on the size of the matrix in either the reduction to block-bidiagonal form, or the 
recursive elimination.    

 This method does not suffer from memory bank conflicts.  

 The underlying method is Householder’s QR factorization. 

 For details, see [14] and [18]. 
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A53-11-0101  VMBV, DVMBV 
 
Multiplication of a real band matrix and a real vector. 

CALL VMBV (A, N, NH1, NH2, X, Y, ICON) 
 
(1) Function 

 This subroutine performs multiplication of an n × n band real matrix A with lower band 
width h1 and upper band width h2 by a vector x. 

 y = Ax  

 where, x and y are both an n-dimensional vectors. 

 Also, n > h1 ≥ 0 and n > h2 ≥ 0. 

 

(2) Parameters 

A................. Input.  Matrix A. 
One-dimensional array of size (2×h1+h2+1) × n. 
The storage method for matrix A is shown in the Figure VLBX-1 for subroutine 
VLBX. 

N................. Input.  Order n of the matrix A. 
(See item (3), “Comments on use,” b.) 

NH1............. Input.  Lower band width h1. 

NH2............. Input.  Upper band width h2. 

X.................. Input.  Vector x. 
One dimensional array of size n. 

Y.................. Output.  Vector y. 
One-dimensional array of size n. 

ICON........... Output.  Condition code. 
See Table VMBV-1, “Condition codes.” 

 
Table VMBV-1  Condition codes 

Code Meaning Processing  

0 No error - 

30000 N=0,  |N| ≤ NH1,  |N| ≤ NH2, 
NH1 < 0 or NH2 < 0 

Bypassed 

 
(3) Comments on use 

a. Subprograms used 

 SSL II: MGSSL 

b. Comments on use 

This subroutine mainly consists of the computation 

 y = Ax (3.1) 
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but it can be changed to another type of computation 

 y = y’ - Ax  

by specifying N= -N and giving an arbitrary vector y’ to the parameter Y. 

In practice, this method can be used to compute a residual vector of linear equations. 

 

c. Example of use 

 This program multiplies a banded matrix A by a vector x. 
 
C    **EXAMPLE** 
      IMPLICIT  REAL*8  (A-H,O-Z) 
      PARAMETER (K=1000,KH1=100,KH2=100) 
      DIMENSION A((2*KH1+KH2+1)*K),X(K),Y(K) 
 
      DO 10 I=1,(2*KH1+KH2+1)*K 
         A(I)=0.0 
 10   CONTINUE 
      WRITE(*,*)'INPUT N,NH1,NH2' 
      READ(*,*) N,NH1,NH2 
      WRITE(*,*)'INPUT A' 
      DO 20 I=1,N 
         DO 30 J=1,NH1+NH2+1 
            IF((J-NH1+(I-1).GE.1).AND. 
     &         (J-NH1+(I-1).LE.N))THEN 
               WRITE(*,*)'A(',I,',',J-NH1+(I-1),')= ' 
               READ(*,*) A(J+(2*NH1+NH2+1)*(I-1)) 
            ENDIF 
 30      CONTINUE 
 20   CONTINUE 
      WRITE(*,*)'INPUT X' 
      READ(*,*) (X(I),I=1,N) 
 
      CALL DVMBV(A,N,NH1,NH2,X,Y,ICON) 
      PRINT*,'ICON= ',ICON 
      PRINT*,'Y(1)= ',Y(1) 
      PRINT*,'Y(2)= ',Y(2) 
      PRINT*,'...' 
      PRINT*,'Y(N)= ',Y(N) 
      END 
 

(4) Method 

 This  routine performs the multiplication y = ( yi ) of an n × n real band matrix )( ija=A  

(A with lower bandwidth 1h  and upper bandwidth 2h ) by a vector x = ( xj ) given by: 

 ∑
=

==
n

j
jiji nixay

1

,...,1,  

 However, as A is a band matrix, the actual calculation is given by: 

 ∑
+

−=

==
),min(

),1max(

2

1

,...,1,
nhi

hij
jiji nixay  
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F17-12-0101  VMCF2, DVMCF2 
 
Singlevariate, multiple and multivariate discrete complex Fourier transform (complex 
array, mixed radix) 

CALL VMCF2 (Z, N, M, ISN, ICON) 
 
(1) Function 

 This subroutine performs singlevariate, multiple and multivariate discrete complex 
Fourier transforms using complex array. 

 For each dimension, it is possible to specify whether the Fourier transform is to be 
performed, and whether it is normal or inverse. 

 The size of each dimension can be an arbitrary number, but the transform is fast when the 
size has factors 2, 3 or 5. 

a. Multivariate Fourier transform 

 By inputting m-dimensional data {xj1 j2...jm} and performing the transform defined in 
(1.1), {αk1 k2...km} is obtained. 

 α ω ω ωk k km
j

n

j

n
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n
- j k r

n
- j k r
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1 1 1

2
2 2 2

... ... . ...= ∑ ∑ ∑
− − −

= = m=
 (1.1) 

       , k1 = 0, 1, ..., n1 -1 

       , k2 = 0, 1, ..., n2 - 1 

       .... 

       , km = 0, 1, ..., nm - 1 

       , ωn1 = exp(2π i/n1) 

       , ωn2 = exp(2π i/n2) 

       .... 

       , ωnm = exp(2π i/nm), 

 where, n1, n2, ..., nm is the size of each dimension. 

 When ri = 1, the transform is normal.  When ri = -1, the transform is inverse. 

 If r = (1, 1, 1) for example, the following three-dimensional transform is obtained: 
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b. Multiple transform 

 For ri = 0, the summation j
n
i
i
=
−∑ 0

1 is omitted, and index ji of x in (1.1) is changed to ki. 

 For example, a singlevariate multiple transform has only one summation.  When 
performing the following transform with respect to only the second dimension of a 
three-dimensional data, specify r = (0, 1, 0). 
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(2) Parameters 

Z................. Input.  Complex variable {xj1 j2...jm}. 
Output.  Complex variable {αk1 k2...km}. 
M-dimensional complex array Z(n1, n2,..., nm). 

N................. Input.  One-dimensional array of size M.  N (i) is the size of i-th dimension, 
where i = 1, ..., M. 

M................ Input.  Dimension order M of the multivariate Fourier transform. 

ISN............. Input.  One-dimensional array of size M. 
ISN (i) shows the direction ri of the Fourier transform of each dimension. 
For ISN = 1, normal transform. 
For ISN = 0, no transform. 
For ISN = -1, inverse transform. 

ICON.......... Output.  Condition code. 
See Table VMCF2-1, “Condition codes.” 

 
Table VMCF2-1   Condition codes 

Code Description Processing 

0 No error  

30000 M≤0, Processing is stopped. 

30002 ISN (i) > 1 or ISN (i) < -1  

30003 N (i) < 1 was specified.  

30004 ISN (i) were all zero.  
 
(3) Comments on use 

a. Subprograms used 

 SSL II:  UZACM, UZCOM, UZFB2, UZFB3, UZFB4, UZFB5, UZFB8, 
 UZFB6, UZFBL, UZFBR, UZFBS, UZFCT, UZFF2, UZFF3, UZFF4, 
 UZFF5, UZUU8, UZFF6, UZFMR, UZFOC, UZUPB, UZFPF, UZFRC, 
 UZFRP, UZFS, UZFT, UZFT2, UZFT3, UZFT5, UZFTB, UZFTF, 
 UZFUB, UZFUF, UZFUS, UZFUW, UZSCL, UZTR2, UZTRN, UZUNI, 
 UNXRD, UFCT, MGSSL 

b. Comments 

1) General definition of Fourier transform 

 The multivariate discrete complex Fourier transform and inverse transform are 
generally defined in (3.1) and (3.2). 
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         , k1 = 0, 1, ..., n1-1 

         , k2 = 0, 1, ..., n2-1 

         ... 

         , km = 0, 1, ..., nm-1 
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         , j1 = 0, 1, ..., n1-1 

         , j2 = 0, 1, ..., n2-1 

         ... 

         , jm = 0, 1, ..., nm-1 

 where, 

         ωn1 = exp(2πi/n1) 

         , ωn2 = exp(2πi/n2) 

         ... 

         , ωnm = exp(2πi/nm) 

 The subroutine calculates {n1 n2 .. nm kmkk ...21α  } or {xj1 j2 ..jm} corresponding to 
the left-hand-side terms of (3.1) and (3.2).  The user must normalize the results, 
if necessary. 

2) Stack size 

 This subroutine exploits work area internally as an auto allocatable array on 
stack area.  Therefore an abnormal termination could be occur when the stack 
area runs out.  The necessary size for the auto allocatable array is shown below. 

 If ni can be expressed as products of powers of 2, 3, and 5, then the work area 
size is 8 × max{ni | i = 1, ..., M and ISN (i) ≠ 0.} byte for single precision, and 
twice for double precision. 

 If there are numbers among ni that cannot be expressed as products of powers of 
2, 3, and 5, then the work area size is 40 × max{ni | i = 1, ..., M and ISN (i) ≠ 0.} 
byte at most case for single precision, and twice for double precision. 

 It is recommended to specify the sufficiently large stacksize with "limit" or 
"ulimit" command  under consideration that the stack area could be used for 
another work area of fixed size and for user's program also. 

  

c. Example of use 

 In this example, a singlevariate fast Fourier transform is computed. 
 
C     **EXAMPLE** 
      INTEGER NMAX 
      PARAMETER (NMAX=100000,NDIM=1) 
      COMPLEX*16 Z(NMAX) 
      REAL*8 ERR,PI,THETA 
      INTEGER N(NDIM),ISN(NDIM),N1,L,M,NVAL(6),IN 
      DATA NVAL/16199,16200,16201,16383,16384,16385/ 
      PI=4D0*ATAN(1D0) 
      DO 40 IN=1,6 
        N1=NVAL(IN) 
        N(1)=N1 
        L=79 
        DO 10 I=1,N1 
          Z(I)=(0D0,0D0) 
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   10   CONTINUE 
        Z(L+1)=(1D0,0D0) 
        ISN(1)=1 
        M=1 
        CALL DVMCF2 (Z,N,M,ISN,ICON) 
        IF (ICON.NE.0) WRITE (6,*) 'ICON=',ICON 
        ERR=0D0 
        DO 20 K=0,N1-1 
          THETA=2*PI*L*K/DBLE(N1) 
          ERR=MAX(ERR,ABS(Z(K+1)- 
     &        DCMPLX(COS(THETA),-SIN(THETA)))) 
   20   CONTINUE 
        WRITE (6,30) N1,ERR 
   30   FORMAT (' N=',I6,' ERROR = ',D10.3) 
   40 CONTINUE 
      STOP 
      END 
 
 

(4) Method 

 This subroutine performs either multiple transforms of complex Fourier transforms, 
or multivariate complex Fourier transforms efficiently on a scalar CPU. 

 Multivariate transforms are computed by transforming the multiple one-dimensional 
transform on each dimension in turn.  The singlevariate transform is performed with 
an appropriate method according to the value of ni.  If the value of ni is large in 
respect to the size of the cache,  a variant of two-sided splitting algorithm is used for 
blocking.  (Refer to [17] in Appendix A, "References.") 
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F17-11-0101  VMCFT, DVMCFT 
 
Singlevariate, multiple and multivariate discrete complex Fourier transform (real and 
imaginary array separated, mixed radix) 

CALL VMCFT (XR, XI, N, M, ISN, W, IW, ICON) 
 
(1) Function 

 This subroutine performs singlevariate, multiple and multivariate discrete complex 
Fourier transforms. 

 For each dimension, it is possible to specify whether the Fourier transform is to be 
performed, and whether it will be normal or inverse. 

 The size of any dimension can be an arbitrary number, but the transform is fast with 
factors 2, 3 or 5. 

a. Multivariate Fourier transform 

 By inputting {xj1 j2...jm} and performing the transform defined in (1.1), {αk1 k2...km} is 
obtained. 

 α ω ω ωk k km
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 (1.1) 

       , k1 = 0, 1, ..., n1 -1 

       , k2 = 0, 1, ..., n2 - 1 

       .... 

       , km = 0, 1, ..., nm - 1 

       , ωn1 = exp(2π i/n1) 

       , ωn2 = exp(2π i/n2) 

       .... 

       , ωnm = exp(2π i/nm) 

 When ri = 1, the transform is normal.  When ri = -1, the transform is inverse. 

 For ri = 0, the summation j
n
i
i
=
−∑ 0

1 is omitted, and ji is changed to ki.  where ji is an 
index of x in equation (1.1). 

 If r = (0, 1, 1), 

 the following equation is obtained: 
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b. Multiple transform 

 A multiple transform has only one summation.  When performing the second-
dimension transform, the following is obtained: 
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(2) Parameters 

XR.............. Input.  Real part of {xj1 j2...jm}. 
Output.  Real part of {αk1 k2...km}. 
One-dimensional array of size n1 × n2 ... × nm. 

XI............... Input.  Imaginary part of {xj1 j2...jm}. 
Output.  Imaginary part of {αk1 k2...km}. 
One-dimensional array of size n1 × n2 × ... × nm. 

N................. Input.  One-dimensional array of size M.  N (I) is the size of I-th dimension, 
where I = 1, ..., M. 

M................ Input.  Dimension order M of the multivariate Fourier transform. 

ISN............. Input.  One-dimensional array of size M. 
ISN (I) shows the direction ri of the Fourier transform of each dimension. 
For ISN = 1, normal transform. 
For ISN = 0, no transform. 
For ISN = -1, inverse transform. 

W................ Work area. 
One-dimensional array of size IW. 

IW............... Input.  Size of the work area. 
If ni can be expressed as products of powers of 2, 3, and 5, then the work area 
size is 2 × MAX {ni | i = 1, ..., M and ISN (i) ≠ 0.} 
If there are numbers among ni that cannot be expressed as products of powers of 
2, 3, and 5, then the work area size exceeds 2 × n1 × ... × nm. 
In such a case, the size of the work area can be determined by calling the 
subroutine with IW = 0. 
For the procedure to determine the size of the work area, see item “(3), 
“Comments on use,” b., 2).” 
Output.  If the size of the work area is smaller than required, returns the 
required size of the work area. 

ICON.......... Output.  Condition code. 
See Table VMCFT-1, “Condition codes.” 

 
Table VMCFT-1   Condition codes 

Code Description Processing 

0 No error  

30000 M≤0, Processing is stopped. 

30001 Insufficient work area  

30002 ISN (I) > 1 or ISN (I) < -1  

30003 N (I) < 1 was specified.  

30004 ISN (I) were all zero.  
 
(3) Comments on use 

a. Subprograms used 
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 SSL II:  UACOM, UCOMR, UFT, UFTBS, UCFS, UCF16, UCFT2, UCFT3, 
UCFT4, UCFT5, UCFT8, UCFMR, UCRU, UCTRF, URUNI, USCAL, UTRAN, 
UTRTW, UTWID, UGCD, UNXRD, UFCT, MGSSL 

b. Comments 

1) General definition of Fourier transform 

 The multivariate discrete complex Fourier transform and inverse transform are 
generally defined in (3.1) and (3.2). 
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         k1 = 0, 1, ..., n1-1 

         , k2 = 0, 1, ..., n2-1 

         ... 

         , km = 0, 1, ..., nm-1 
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         j1 = 0, 1, ..., n1-1 

         , j2 = 0, 1, ..., n2-1 

         ... 

         , jm = 0, 1, ..., nm-1 

         ωn1 = exp(2πi/n1) 

         , ωn2 = exp(2πi/n2) 

         ... 

         , ωnm = exp(2πi/nm) 

 The subroutine calculates {n1 n2 .. nm kmkk ...21α  } or {xj1 j2 ..jm} corresponding to 
the left-hand-side terms of (3.1) and (3.2).  The user must normalize the results, 
if necessary. 

2) Size of work area 

 Symbols used are defined as follows. 

 RADIX = {n:  positive integer that can be expressed as the product of powers of 
2, 3, and 5} 

 NORAD = natural number - RADIX 

 minrad (n) is the minimum natural number m, where n<m and m ∈ RADIX. 

 relfac (n) is the minimum natural number q, where n = p × q and p ∈ RADIX, q 
∈ NORAD. 

 NP = n1 × n2 × ... × nm 

 In this case, the size of the work area is determined using the following 
procedure. 

 {I | 1, ..., M} and {ISN (I) ≠ 0} 
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 )( i
Ii

SIZEMax
∈

 is the size of the work area. 

 SIZEi is determined as follows: 

 a)  When ni ∈ RADIX, SIZEi = 2 × ni 

 b)  When relfac (ni) equals ni 

       SIZEi = 2 × NP × minrad (ni)/ni + 4 × minrad (ni) 

 c)  Otherwise, 

      SIZEi = 2 × NP × minrad (relfac (ni))/relfac (ni) + max (4 × minrad (relfac  
     (ni)), 2 × ni) 
 

c. Example of use 

 In this example, a singlevariate fast Fourier transform is computed. 
 
C     **EXAMPLE** 
      INTEGER NMAX,NW 
      PARAMETER (NMAX=100000,NW=200000) 
      REAL*8 XR(NMAX),XI(NMAX),W(NW),PI 
      REAL*4 ERR 
      INTEGER N(3),ISN(3),IW,N1,L,M,NVAL(6),IN 
      DATA NVAL/16199,16200,16201,16383,16384,16385/ 
      PI=4D0*ATAN(1D0) 
      DO 40 IN=1,6 
        N1=NVAL(IN) 
        N(1)=N1 
        L=79 
        DO 10 I=1,N1 
          XR(I)=0D0 
   10     XI(I)=0D0 
        XR(L+1)=1D0 
        ISN(1)=1 
        M=1 
        IW=NW 
        CALL DVMCFT (XR,XI,N,M,ISN,W,IW,ICON) 
        IF (ICON.NE.0) WRITE (6,*) 'ICON=',ICON 
        ERR=0D0 
        DO 20 K=0,N1-1 
          ERR=MAX(ERR,XR(K+1)-COS(2*PI*L*K/DBLE(N1))) 
   20     ERR=MAX(ERR,XI(K+1)+SIN(2*PI*L*K/DBLE(N1))) 
        WRITE (6,30) N1,ERR 
   30   FORMAT (' N=',I6,' ERROR = ',E10.3) 
   40 CONTINUE 
      STOP 
      END 
 

(4) Method 

 This subroutine performs either multiple transforms of singlevariate complex Fourier 
transforms, or multivariate complex Fourier transforms. 

 A singlevariate transform is performed as follows: 

 A.  Splitting the order of the transform into factors n = p q, where the factor of p can 
be expressed as the product of powers of 2, 3, and 5, and the factor of q is a number 
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mutually prime to 2, 3, and 5.  (In the following, the set 2, 3, and 5 is referred to as 
the radix set). 

 B.  After implementing the basic factorization of the order into n = p q, the following 
four-step algorithm is performed. 

 qjj

p-

j

jk
pqkj xz

01

0

00
01

1

0

)1(
+

=
+ ∑= ω  j1 = 0, ..., q-1, k0 = 0, ..., p-1 (4.1) 

 )1()2(
01

10
01 qkj

jk
nqkj zz ++ = ω  k0 = 0, ..., p-1, j1 = 0, ..., q-1 (4.2) 

 )2()3(
0110 qkjpjk zz ++ =  k0 = 0, ..., p-1, j1 = 0, ..., q-1 (4.3) 

 )3(
1

0
10

1

11
10 pjk

q-

j

jk
qpkk zy +

=
+ ∑= ω  k0 = 0, ..., p-1, k1 = 0, ..., q-1 (4.4) 

 Step 1 and step 4 are multiple Fourier transforms of order p and q respectively.  The 
factor p is a product of powers of the radices, and step 1 is computed using a mixed 
radix fast Fourier transform. 

 For details about this algorithm, see [17] and [19].  The mixed radix algorithm 
consists of a transform of low orders, a unitary scaling operation, and a transposition. 

 Steps 2 and 3 are fairly simple and are performed in a straight forward way. 

 The factor q is mutually prime to the radix set, so step 4 is performed using a variant 
of Bluestein’s algorithm.  (See [41].) 

 Multivariate transforms are computed by transforming the previous multiple one-
dimensional transform on each dimension in turn.  During the process, the data is 
permuted to maintain long vector lengths and continuous data access, though the 
returned result is in the correct order. 
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F17-13-0101  VMCST, DVMCST 
 
Discrete cosine transforms 

CALL VMCST (X, K, N, M, ISW, TAB, ICON) 
 
(1) Function 

 This subroutine performs one-dimensional, multiple discrete cosine transforms. 

 Given one-dimensional n+1 sample data {xj} defined on both end points and internal 
points dividing a half of 2π period of even-function x(t) into n parts equally as follows: 

njj
n

xx j ,...,1,0, =⎟
⎠
⎞

⎜
⎝
⎛=
π

 
 this subroutine calculate the discrete cosine transform defined as follows in each column 

of the array: 

∑
−

=

=+−+=
1

1
0 ,...,1,0,cos2)1(

n

j
jn

k
k nkkj

n
xxxa π

 (1.1) 

  

(2) Parameters 

X................. Two-dimensional array X (K, M). 

 Input.  The m sequences of {xj}, j=0,...,n are stored in X (1:N+1, 1:M). 

 Output.  The m sequences of {ak}, k=0,...,n are stored in X (1:N+1, 1:M). 

K................ Input.  Size of adjustable dimension of the array X. (K ≥ N+1) 

N................ Input.  The number of partition of the half period.  N must be an even number. 

 (See item (3), “Comments on use,” b., 1).) 

M............... Input.  The multiplicity m of the transform. 

ISW........... Input.  Control information. (See item (3), “Comments on use,” b., 2).) 

 ISW should be set as follows. 

 ISW = 0 to generate the array TAB and perform the cosine transforms. 

 ISW = 1 to prepare the array TAB only. 

 ISW = 2 to perform the cosine transforms using the array TAB prepared before 
calling. 

TAB............ Work area.  Trigonometric function table used for the transformation is stored. 

 One-dimensional array of size 2N. (See item (3), “Comments on use,” b., 2).) 

ICON........... Output.  Condition code. 

 See Table VMCST-1, “Condition codes.” 
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Table VMCST-1   Condition codes 

Code Description Processing 

0 No error  

30000 N≤0, K< N+1, M ≤ 0, ISW ≠ 0,1,2, 
or N is not an even number. 

Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSLII: UMRF2, UZFB2, UZFB3, UZFB4, UZFB5, UZFB8, UZFB6, UZFF2, 
UZFF3, UZFF4, UZFF5, UZFF8, UZFF6, UZFPB, UZFPF, UZFTB, UZFTF, 
UZUNI, MGSSL 

b. Comments 

1) Recommended value of N 

 The n can be an arbitrary even number, but the transform is fast with the sizes 
which can be expressed as products of the powers of 2, 3, and 5. 

2) Efficient use of the array TAB 

 When this routine is called successively with a fixed value of n, the 
trigonometric function table TAB should be initialized once at first call with 
ISW=0 or 1 and should be kept intact for second and subsequent calls with 
ISW=2. This saves initialization procedure of array TAB. 

3) Normalization 

 The cosine transform defined as in (1.1) is also an inverse transform itself. 
Applying the transform twice results in the original sequences multiplied by 2N. 

 If necessary, the user must normalize the results. 

4) Stack size 

 This subroutine exploits work area internally as an auto allocatable array on 
stack area.  Therefore an abnormal termination could occur when the stack area 
runs out.  The necessary size for the auto allocatable array is 4 × N byte for 
single precision, and twice for double precision. 

 It is recommended to specify the sufficiently large stacksize with "limit" or 
"ulimit" command under consideration that the stack area could be used for 
another work area of fixed size and for user's program also. 

  

c. Example of use 

 In this example, cosine transforms are calculated with multiplicity of 5. 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER(N=1024,M=5) 
      DIMENSION X(N+1,M),TAB(N*2) 
 
      DO 100 J=1,M 
      DO 100 I=1,N+1 
      X(I,J)=FLOAT(MAX(I-1,(N-I+1)/J)) 
  100 CONTINUE 
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C     FORWARD TRANSFORM 
      ISW=0 
      CALL DVMCST(X,N+1,N,M,ISW,TAB,ICON) 
      PRINT*,'ICON=',ICON 
 
C     BACKWARD TRANSFORM 
      ISW=2 
      CALL DVMCST(X,N+1,N,M,ISW,TAB,ICON) 
      PRINT*,'ICON=',ICON 
 
      DO 200 J=1,M 
      ERROR=0.0D0 
      VNRM=0.0D0 
      DO 210 I=1,N+1 
      ERROR=ERROR+(X(I,J)/(N*2)- 
     &    FLOAT(MAX(I-1,(N-I+1)/J)))**2 
      VNRM=VNRM+(X(I,J)/(N*2))**2 
  210 CONTINUE 
      PRINT*,'ERROR=',SQRT(ERROR/VNRM) 
  200 CONTINUE 
      STOP 
      END 
 

(4) Method 

 This subroutine performs discrete cosine transforms efficiently on a scalar CPU, 
reducing the problem to real discrete Fourier transforms.  The calculation can be 
done without redundant calculations by exploiting the symmetry of the even function. 

 For further information on the algorithm, refer to [26] in Appendix B, “References.” 
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F17-12-0201  VMRF2, DVMRF2 
 
Singlevariate, multiple and multivariate discrete real Fourier transform (mixed radix) 

CALL VMRF2 (X, N, M, ISIN, ISN, ICON) 
 
(1) Function 

 This subroutine performs singlevariate, multiple and multivariate discrete real Fourier 
transforms. 

 Whether the Fourier transform is to be performed, and its direction, can be specified for 
each dimension. 

   For the 1-st dimension, "no transform"  cannot be specified, and the size of  the 1-st 
dimension must be an even number.  The sizes of all other dimension can be arbitrary 
numbers, but the transform is fast with the sizes which can be expressed as products of 
the powers of 2, 3, and 5. 

 The result of a multiple and multivariate discrete real Fourier transform has a complex 
conjugate relation.  For the 1-st dimension, the first n1 / 2 + 1 complex elements are stored. 

 a.  Multivariate Fourier transform 

1) Transform 

 Inputting m-dimensional data {xj1j2...jm} and performing the transform defined in (1.1) 
obtains { kmkk ...21α }. 
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                                , k1 = 0, 1, ... , n1 -1 

                                , k2 = 0, 1, ... , n2 -1 

                                      . . . . 

                                , km = 0, 1, ..., nm -1 

                                , )1/2exp(1 nin πω =  

                                , )2/2exp(2 nin πω =  

                                  . . . . 

                                , )/2exp( nminm πω = , 

 where, n1,n2,..., nm is the size of each dimension. 

 ri = 1 or ri = -1 can be specified for the transform direction. 

 If r = (1, 1, 1) for example, the following three-dimensional Fourier transform is 
obtained: 
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2) Inverse transform 

 Inputting { kmkk ...21α } and performing the transform defined in (1.2), obtains 
{xj1j2...jm}. 
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                                              , j1 = 0, 1, ... , n1 -1 

                                              , j2 = 0, 1, ... , n2 -1 

                                                   . . . . 

                                              , jm = 0, 1, ... , nm -1 

                                              , )1/2exp(1 nin πω =  

                                              , )2/2exp(2 nin πω =  

                                                 . . . . 

                                              , )/2exp( nminm πω = , 

 where, n1,n2,..., nm is the size of each dimension. 

 In an inverse transform, a direction that is inverse to that specified in the transform 
must be specified. 

 ri = -1 or ri = 1 

  

b. Multiple transform 

 When ri = 0 is specified, the summation
ji

ni

=

−
∑

0

1
is omitted. 

 In the case of real-to-complex transform,  index ji of x in (1.1) is changed to ki. 

 In the case of complex-to-real transform, index ki of α in (1.2) is changed to ji. 

 For example, singlevariate multiple transform has only one summation.  When 
performing the following transform with respect to only the first-dimension of a 
three-dimensional data, specify r=(1,0,0). 
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(2) Parameters 

X................. m-dimensional array X (n1+2, n2, ..., nm ).  

[ For ISN = 1 (transform from real to complex): ] 

Input.  The real data {xj1j2...jm} is stored in X (1:n1, 1:n2, ... , 1:nm). 

Output.  The real and imaginary part of { kmkk ..21α } are stored in X (1:n1+2, 
1:n2, ... , 1:nm ) by turns. 

k1 = 0, 1, ... , n1/ 2, 

k2 = 0, 1, ... , n2-1, 

  . . . 
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km = 0, 1, ..., nm, -1 

[ For ISN = -1 (transform from complex to real): ] 

Input.  The real and imaginary part of { kmkk ...21α } are stored in X (1:n1+2, 
1:n2, ... , 1:nm ) by turns. 

k1 = 0, 1, . . ., n1 / 2, 

k2 = 0, 1, . . ., n2 - 1, 

  . . . 

km = 0, 1, . . ., nm, - 1 

Output.  The real data {xj1j2...jm} is stored in X (1:n1, 1:n2, ..., 1:nm). 

N................ Input.  One-dimensional array of size M.  ni is stored in N (i) (i = 1, ..., M), 
where ni is the size of the I-th dimension. The size of the 1-st dimension must 
be an even number. 

M............... Input.  The size of dimension m of the multivariate Fourier transform. 

ISIN........... Input.  One-dimensional array of size M. 

ISIN (i) shows the direction ri of the Fourier transform of each dimension. 

ISIN (1) cannot be 0. 

For ISIN = 1,  ri = 1. 

For ISIN = 0, there is no transform. 

For ISIN = -1, ri = -1. 

ISN............ Input. 

For ISN = 1, normal transform (real to complex). 

For ISN = -1, inverse transform (complex to real). 

ICON........... Output.  Condition code. 

See Table VMRF2-1, “Condition codes.” 
 

Table VMRF2-1  Condition codes 

Code Description Processing  

0 No error - 

30001 N(i) ≤ 0 or M ≤ 0 Processing is stopped. 

30016 ISIN (i) < -1, ISIN (i) > 1, or ISIN (1) = 0 

30032 ISN ≠ 1 and ISN ≠ -1 

 

30512 The size of first dimension is odd number.  
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(3) Comments on use 

a. Subprograms used 

 SSLII:  UMRFF, UMRFB, VMCF2, UZACM, UZCOM, UZFB2, UZFB3, 
 UZFB4, UZFB5, UZFB8, UZFB6, UZFBL, UZFBR, UZFBS, UZFCT, 
 UZFF2, UZFF3, UZFF4, UZFF5, UZUU8, UZFF6, UZFMR, UZFOC, 
 UZUPB, UZFPF, UZFRC, UZFRP, UZFS, UZFT, UZFT2, UZFT3, 
 UZFT5, UZFTB, UZFTF, UZFUB, UZFUF, UZFUS, UZFUW, UZSCL, 
 UZTR2, UZTRN, UZUNI, UNXRD, UFCT, MGSSL 

b. Comments 

1) General definition of Fourier transform 

 The multivariate discrete Fourier transform and inverse transform are generally 
defined as in (3.1) and (3.2). 
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                                              , j1 = 0, 1, ..., n1 -1 

                                              , j2 = 0, 1, ..., n2 -1 

                                                      . . . . 

                                              , jm = 0, 1, ..., nm -1 

 where 

                                              )1/2exp(1 nin πω =  

                                            , )2/2exp(2 nin πω =  

                                                     . . . . 

                                            , )/2exp( nminm πω =  

 The subroutine calculates {n1 n2..nm kmkk ..21α } or {xj1j2..jm} corresponding to the 
left-hand terms of (1.1) and (1.2).  For i, where ISIN (i) = 0, ni is replaced with 1.  
If necessary, the user must normalize the results. 

2) The result of the multivariate discrete real Fourier transform has the following 
complex conjugate relation: 

                    ____________ 
αk1 k2 ... km = αn1-k1 n2-k2 ... nm-km 

                                              k1 = 0, ..., n1 /2 

                                            , k2 = 0, ..., n2 -1 

                                                   . . . . 
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                                            , km = 1, ..., nm -1 

 In the case of ki=0, ni-ki is regarded as 0. 

 For h, where ISIN (h) = 0, the h-th index in the right-hand terms is still kh.   

 The rest of terms can be calculated using this relation. 

2) Stack size 

 This subroutine exploits work area internally as an auto allocatable array on 
stack area.  Therefore an abnormal termination could be occur when the stack 
area runs out.  The necessary size for the auto allocatable array is shown below. 

 If ni can be expressed as products of powers of 2, 3, and 5, then the work area 
size is 12 × max{ni | i = 1, ..., M and ISN (i) ≠ 0.} byte for single precision, and 
twice for double precision. 

 If there are numbers among ni that cannot be expressed as products of powers of 
2, 3, and 5, then the work area size is 40 × max{ni | i = 1, ..., M and ISN (i) ≠ 0.} 
byte at most case for single precision, and twice for double precision. 

 It is recommended to specify the sufficiently large stacksize with "limit" or 
"ulimit" command  under consideration that the stack area could be used for 
another work area of fixed size and for user's program also. 

c. Example of use 

 In this example, a two-dimensional real Fourier transform is calculated. 
 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER(N1=1024,N2=1024,M=2) 
      DIMENSION X(N1+2,N2),N(M),ISIN(M) 
C 
      DO 100 I=1,N2 
      DO 100 J=1,N1 
      X(J,I)=FLOAT(J)+FLOAT(N1)*(I-1) 
  100 CONTINUE 
C 
      N(1)=N1 
      N(2)=N2 
      ISIN(1)=1 
      ISIN(2)=1 
      ISN= 1 
C 
C     REAL TO COMPLEX TRANSFORM 
C 
      CALL DVMRF2(X,N,M,ISIN,ISN,ICON) 
      PRINT*,'ICON=',ICON 
C 
      N(1)=N1 
      N(2)=N2 
      ISIN(1)=-1 
      ISIN(2)=-1 
      ISN=-1 
C 
C     COMPLEX TO REAL TRANSFORM 
C 
      CALL DVMRF2(X,N,M,ISIN,ISN,ICON) 
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      PRINT*,'ICON=',ICON 
 
      ERROR=0.0D0 
      DO 200 I=1,N2 
      DO 200 J=1,N1 
      ERROR=MAX(ABS(X(J,I)/(N1*N2)- 
     &    (FLOAT(J)+FLOAT(N1)*(I-1))),ERROR) 
  200 CONTINUE 
C 
      PRINT*,'ERROR=',ERROR 
      STOP 
      END 

 
 

(4) Method 

 This subroutine performs either real-to-complex or complex-to-real multiple 
multivariate discrete Fourier transforms efficiently on a scalar CPU. 

 A real Fourier transform of the first dimension can be done without redundant 
calculations by exploiting inherent properties of a complex transform.  For further 
information on the algorithm, refer to the description of RFT routine in the Fujitsu 
SSL II User's Guide.  For the transforms of the other dimensions, the multivariate 
discrete complex Fourier transform routine VMCF2 is used for complex data 
straightforward. 
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F17-11-0201  VMRFT, DVMRFT 
 
Multiple and multivariate discrete real Fourier transform (mixed radices of 2, 3, and 
5) 

CALL VMRFT (X, N, M, ISIN, ISN, W, ICON) 
 
(1) Function 

 This subroutine performs multiple and multivariate discrete real Fourier transforms. 

 Whether the Fourier transform is to be performed, and its direction, can be specified for 
each dimension.  All dimensions on which a transform is to be performed must have sizes 
which can be expressed as products of the powers of 2, 3, and 5. 

 At least one of the first m-1 dimensions must be an even number.  For the m-th dimension, 
“no transform” cannot be specified. 

 The result of a multiple and multivariate discrete real Fourier transform has a complex 
conjugate relation.  For the m-th dimension, the first nm / 2 + 1 elements are stored. 

 a.  Multivariate Fourier transform 

1) Transform 

 Inputting {xj1j2...jm} and performing the transform defined in (1.1) obtains {n1 n2...nm 
kmkk ...21α }. 
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                                , k1 = 0, 1, ... , n1 -1 
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 ri = 1 or ri = -1 can be specified for the transform direction. 

 For ri = 0, the summation
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1
is omitted, and ji is changed to ki, where ji is an index 

of x in equation (1.1). 

 ni in the left-hand term of equation (1.1) is replaced with 1. 

 For r = (0, 1, 1), the following equation is obtained: 
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2) Inverse transform 

 Inputting { kmkk ...21α } and performing the transform defined in (1.2), obtains 
{Xj1j2...jm}. 
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                                              , j1 = 0, 1, ... , n1 -1 
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                                              , jm = 0, 1, ... , nm -1 

                                              , )/2exp( 11 nin πω =  

                                              , )/2exp( 22 nin πω =  

                                                 . . . . 

                                              , )/2exp( mnm niπω =  

 In an inverse transform, a direction that is inverse to that specified in the transform 
must be specified. 

 ri = -1 or ri = 1 

 For ri = 0, the summation
ji
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1
is omitted and ki is changed to ji, where ki is an index 

of α in equation (1.2). 

b. Multiple transform 

 A multiple transform has only one summation.  With a three-dimensional transform, 
the following is obtained: 

 n xk k k k k j
j

n
n
- j k r

3 1 2 3 1 2 3
3 0

3 1 3 3 3α ω= ∑
=

−
. 3  

(2) Parameters 

X................. For ISN = 1 (transform from real to complex): 

Input.  The real data {xj1j2...jm} is stored in X (1:n1, 1:n2, ... , 1:nm). 

Output.  The real part of {n1 n2...nm kmkk ..21α } is stored in X (1:n1, 1:n2, ... , 1:nm 
/2+1).  The imaginary part of {n1 n2...nm kmkk ...21α } is stored in X (1:n1, 1:n2, ..., 
nm / 2 + 2:2 × (nm / 2+1)). 

k1 = 0, 1, ... , n1-1, 

k2 = 0, 1, ... , n2-1, 

  . . . 

km = 0, 1, ..., nm / 2, 

For ISIN (i) = 0, ni in {n1 n2...nm kmkk ...21α } is replaced with 1. 

For ISN = -1 (transform from complex to real): 
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Input.  The real part of { kmkk ...21α } is stored in X (1:n1, 1:n2, ... , 1:nm / 2+1).  
The imaginary part of { kmkk ...21α } is stored in X (1:n1, 1:n2, ..., nm / 2+2:2 ×  
(nm / 2+1)). 

k1 = 0, 1, . . ., n1 - 1, 

k2 = 0, 1, . . ., n2 - 1, 

  . . . 

km = 0, 1, . . ., nm / 2, 

Output.  The real data {xj1j2...jm} is stored in X (1:n1, 1:n2, ..., 1:nm). 

One-dimensional array of size n1 × n2 × ... × (2 × (nm / 2+1)), or m-dimensional 
array X (n1, n2, ..., (2 × (nm / 2+1))). 

N................ Input.  One-dimensional array of size M.  ni is stored in N (I) (I = 1, ..., M), 
where ni is the size of the I-th dimension.  If ISIN(I) is nonzero, N(I) must be 
able to be expressed as a product of powers of 2, 3, and 5.  At least one of the 
first M-1 elements of N must be an even number. 

M............... Input.  The size of dimension m of the multivariate Fourier transform. 

ISIN........... Input.  One-dimensional array of size M. 

ISIN (I) shows the direction ri of the Fourier transform of each dimension. 

ISIN (M) cannot be 0. 

For ISIN = 1,  ri = 1. 

For ISIN = 0, there is no transform. 

For ISIN = -1, ri = -1. 

ISN............ Input. 

For ISN = 1, normal transform (real to complex). 

For ISN = -1, inverse transform (complex to real). 

W............... Work area. 

One-dimensional array of size 2 × max (n1, n2, ..., nm) + n1 × n2 × ... × nm-1 × (2 
× (nm / 2+1)). 

ICON........... Output.  Condition code. 

See Table VMRFT-1, “Condition codes.” 
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Table VMRFT-1  Condition codes 

Code Description Processing  

0 No error - 

30001 N(I) ≤ 0 or M < 2 Processing is stopped. 

30008 For ISIN (I) ≠ 0, N (I) is not an integer 
expressed as a product of powers of 2, 3, and 5. 

 

30016 ISIN (I) < -1, ISIN (I) > 1, or ISIN (M) = 0  

30032 ISN ≠ 1 and ISN ≠ -1 Processing is stopped. 

30512 The first M-1 elements of N are odd numbers.  
 
(3) Comments on use 

a. Subprograms used 

 SSLII:  UASSM, USEPR, UJOIN, USPLT, UCTRV, UCFS, UCF16, UCFT2, 
UCFT3, UCFT4, UCFT5, UCFT8, UFMRW, UCRU, UCTRF, MGSSL 

b. Comments 

1) General definition of Fourier transform 

 The multivariate discrete Fourier transform and inverse transform are generally 
defined as in (3.1) and (3.2). 

 αk k
mn n ...n1 2

1 2

1
...km =  

 × ∑ ∑ ∑
=

−

=

−

=

− − − −

j
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j k
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2 2... . ...ω ω ω  (3.1) 

                                                k1 = 0, 1, ..., n1-1 

                                              , k2 = 0, 1, ..., n2-1 

                                                     . . . . 

                                              , km = 0, 1, ..., nm-1 
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α ω ω ω  (3.2) 

                                                j1 = 0, 1, ..., n1 -1 

                                              , j2 = 0, 1, ..., n2 -1 

                                                      . . . . 

                                              , jm = 0, 1, ..., nm -1 

 where 

                                               )/2exp( 11 nin πω =  

                                            , )/2exp( 22 nin πω =  

                                                     . . . . 
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                                            , )/2exp( mnm niπω =  

 The subroutine calculates {n1 n2..nm kmkk ..21α } or {xj1j2..jm} corresponding to the 
left-hand terms of (1.1) and (1.2).  For i, where ISIN (i) = 0, ni is replaced with 1.  
If necessary, the user must normalize the results. 

2) The result of the multivariate discrete real Fourier transform has the following 
complex conjugate relation: 

                    ____________ 
αk1 k2 ... km = αn1-k1 n2-k2 ... nm-km 

                                              k1 = 0, ..., n1 -1 

                                            , k2 = 0, ..., n2 -1 

                                                   . . . . 

                                            , km = 1, ..., nm /2 

 In the case of ki=0, ni-ki is regarded as 0. 

 For h, where ISIN (h) = 0, the h-th index in the right-hand terms is still kh.   

 The rest of terms can be calculated using this relation. 

c. Example of use 

 In this example, a two-dimensional real Fourier transform is calculated. 
 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER(N1=1024,N2=1024,M=2) 
      PARAMETER(NS=2*(N2/2+1)) 
      DIMENSION X(N1,NS),N(M),W(2*N1+N1*NS),ISIN(M) 
C 
      DO 100 I=1,N2 
      DO 100 J=1,N1 
      X(J,I)=FLOAT(J)+FLOAT(N1)*(I-1) 
  100 CONTINUE 
C 
      N(1)=N1 
      N(2)=N2 
      ISIN(1)=1 
      ISIN(2)=1 
      ISN= 1 
C 
C     REAL TO COMPLEX TRANSFORM 
C 
      CALL DVMRFT(X,N,M,ISIN,ISN,W,ICON) 
      PRINT*,'ICON=',ICON 
C 
      N(1)=N1 
      N(2)=N2 
      ISIN(1)=-1 
      ISIN(2)=-1 
      ISN=-1 
C 
C     COMPLEX TO REAL TRANSFORM 
C 
      CALL DVMRFT(X,N,M,ISIN,ISN,W,ICON) 
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      PRINT*,'ICON=',ICON 
 
      ERROR=0.0D0 
      DO 200 I=1,N2 
      DO 200 J=1,N1 
      ERROR=MAX(ABS(X(J,I)/(N1*N2)- 
     &    (FLOAT(J)+FLOAT(N1)*(I-1))),ERROR) 
  200 CONTINUE 
C 
      PRINT*,'ERROR=',ERROR 
      STOP 
      END 
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F17-13-0101  VMSNT, DVMSNT 
 
Discrete sine transforms 

CALL VMSNT (X, K, N, M, ISW, TAB, ICON) 
 
(1) Function 

 This subroutine performs one-dimensional, multiple discrete sine transforms. 

 Given one-dimensional n−1 sample data {xj} defined on the internal points except both 
end points dividing a half of 2π period of odd-function x(t) into n parts equally as follows: 

1,...,2,1, −=⎟
⎠
⎞

⎜
⎝
⎛= njj

n
xx j
π

 
 this subroutine calculate the discrete sine transform defined as follows in each column of 

the array: 

∑
−

=

−==
1

1

1,...,2,1,sin2
n

j
jk nkkj

n
xa π

 (1.1) 

  

(2) Parameters 

X................. Two-dimensional array X (K, M). 

 Input.  The m sequences of {xj}, j=1,...,n−1 are stored in X (1:N−1, 1:M). 

 Output.  The m sequences of {ak}, k=1,...,n−1 are stored in X (1:N−1, 1:M). 

K................ Input.  Size of adjustable dimension of the array X. (K ≥ N−1) 

N................ Input.  The number of partition of the half period.  N must be an even number. 

 (See item (3), “Comments on use,” b., 1).) 

M............... Input.  The multiplicity m of the transform. 

ISW........... Input.  Control information. (See item (3), “Comments on use,” b., 2).) 

 ISW should be set as follows. 

 ISW = 0 to generate the array TAB and perform the sine transforms. 

 ISW = 1 to prepare the array TAB only. 

 ISW = 2 to perform the sine transforms using the array TAB prepared before 
calling. 

TAB...........  Work area.  Trigonometric function table used for the transformation is stored. 

 One-dimensional array of size 2N. (See item (3), “Comments on use,” b., 2).) 

ICON........... Output. Condition code. 

 See Table VMSNT-1, “Condition codes.” 
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Table VMSNT-1   Condition codes 

Code Description Processing 

0 No error  

30000 N≤0, K< N−1, M ≤ 0, ISW ≠ 0,1,2, 
or N is not an even number. 

Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSLII: UMRF2, UZFB2, UZFB3, UZFB4, UZFB5, UZFB8, UZFB6, 
UZFF2, UZFF3, UZFF4, UZFF5, UZFF8, UZFF6, UZFPB, UZFPF, UZFTB, 
UZFTF, UZUNI, MGSSL 

b. Comments 

1) Recommended value of N 

 The n can be an arbitrary even number, but the transform is fast with the sizes 
which can be expressed as products of the powers of 2, 3, and 5. 

2) Efficient use of the array TAB 

 When this routine is called successively with a fixed value of n, the 
trigonometric function table TAB should be initialized once at first call with 
ISW=0 or 1 and should be kept intact for second and subsequent calls with 
ISW=2.  This saves initialization procedure of array TAB. 

3) Normalization 

 The sine transform defined as in (1.1) is also an inverse transform itself. 
Applying the transform twice results in the original sequences multiplied by 2N. 

 If necessary, the user must normalize the results. 

4) Stack size 

 This subroutine exploits work area internally as an auto allocatable array on 
stack area.  Therefore an abnormal termination could occur when the stack area 
runs out.  The necessary size for the auto allocatable array is 8 × N byte for 
single precision, and twice for double precision. 

 It is recommended to specify the sufficiently large stacksize with "limit" or 
"ulimit" command under consideration that the stack area could be used for 
another work area of fixed size and for user's program also. 

 

c. Example of use 

 In this example, sine transforms are calculated with multiplicity of 5. 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER(N=1024,M=5) 
      DIMENSION X(N-1,M),TAB(N*2) 
 
      DO 100 J=1,M 
      DO 100 I=1,N-1 
      X(I,J)=FLOAT(MIN(I,(N-I)/J)) 
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  100 CONTINUE 
 
C     FORWARD TRANSFORM 
      ISW=0 
      CALL DVMSNT(X,N-1,N,M,ISW,TAB,ICON) 
      PRINT*,'ICON=',ICON 
 
C     BACKWARD TRANSFORM 
      ISW=2 
      CALL DVMSNT(X,N-1,N,M,ISW,TAB,ICON) 
      PRINT*,'ICON=',ICON 
 
      DO 200 J=1,M 
      ERROR=0.0D0 
      VNRM=0.0D0 
      DO 210 I=1,N-1 
 
      ERROR=ERROR+(X(I,J)/(N*2)- 
     &    FLOAT(MIN(I,(N-I)/J)))**2 
      VNRM=VNRM+(X(I,J)/(N*2))**2 
  210 CONTINUE 
      PRINT*,'ERROR=',SQRT(ERROR/VNRM) 
  200 CONTINUE 
 
      STOP 
      END 
 

(4) Method 

 This subroutine performs discrete sine transforms efficiently on a scalar CPU, 
reducing the problem to real discrete Fourier transforms. The calculation can be done 
without redundant calculations by exploiting the symmetry of the odd function. 

 For further information on the algorithm, refer to [26] in Appendix B, “References.” 
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A71-01-0101  VMVSD, DVMVSD 
 
Multiplication of a real sparse matrix and a real vector (diagonal storage format) 

CALL VMVSD (A, K, NDIAG, N, NOFST, NLB, X, Y, ICON) 
 
(1) Function 

 This routine computes the product  

 y = Ax 

 of an n × n sparse matrix and a vector. 

 Sparse matrix A is stored using the diagonal storage format. 

 Vector x and y are n-dimensional vectors. 

(2) Parameters 

A................. Input.  Stores non-zero elements of the coefficient matrix. 
Real-type, two-dimensional array of size A (K, NDIAG).  Non-zero elements of 
the sparse matrix are stored in A (1 : N, NDIAG).  For the diagonal storage 
format, see Part I, “Overview,” Section 3.2.1.1, “Storage method for general 
sparse matrices, b., “Diagonal storage format for general sparse matrices.” 

K................. Input.  Adjusted dimensions (≥ n) of array A. 

NDIAG....... Input.  The number of diagonals that contain non-zero elements of the 
coefficient matrix stored in matrix A. 
The size of the second dimension of A. 

N................. Input.  Order n of matrix A. 

NOFST....... Input.  One-dimensional array NOFST(NDIAG).  Stores the offset from the 
main diagonal corresponding to diagonals stored in A.  Superdiagonals, are 
expressed as positive values.  Subdiagonals are expressed as negative values. 

NLB............ Input.  Lower bandwidth of matrix A. 

X................. Input.  Vector x is stored in X (NLB + 1 : NLB + N). 
One-dimensional array of size n + nlb + nub. 
nlb is the lower bandwidth.  nub is the upper bandwidth. 

Y................. Output.  Stores the result of the multiplication of the matrix and the vector.  
One-dimensional array of size n. 

ICON.......... Output.  Condition code. 
See Table VMVSD-1, “Condition codes.” 
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Table VMVSD-1   Condition codes 

Code Description Processing 

0 No error  

30000 K < 1, N < 1, N > K, NDIAG < 1, or NLB ≠ MAX 
(- NOFST (I)), or | NOFST (I) | > N - 1 

Processing is stopped. 

 
(3) Comments on use 

a. Subprogram used 

 SSL II:  MGSSL 

b. Comments 

1) Comments on using the diagonal format 

 The diagonal elements outside of the coefficient Matrix A must be set to zero. 

 There is no special restriction on the order in which a diagonal vector column 
should be stored in array A. 

 The advantage of this method lies in the fact that the matrix vector product can 
be calculated without the use of indirect indices.  The disadvantage is that 
matrices without the diagonal structure cannot be stored efficiently with this 
method. 

c. Example of use 

 In this example using DVCGD, Ax is sought from matrix A, which does not store 
diagonal elements that are 1.  b = (A - E) x + x.  For SET, see VCGD, DVCGD, item 
(3) “Comments on use,” c., “Example of use.” 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (N=51200,K=N+1) 
      PARAMETER (NW=2,IWKS=4,N2=K+1) 
      PARAMETER (NVW=K*(NW+6)+10) 
      REAL*8 B(N),EPS,OMEGA,RZ,VW(NVW),X(N) 
      INTEGER NDLT(NW) 
      REAL*8 A(K,NW) 
      INTEGER IVW(N2,IWKS) 
C 
C INITIALISE A 
      CALL SET(A,NDLT,K,NW,N) 
      ISHIFT=0 
      DO 10 J=1,NW 
      ISHIFT=MAX(ISHIFT,ABS(NDLT(J))) 
   10 CONTINUE 
C COMPUTE RHS SO AX=B SO WE KNOW SOLUTION X (X(I)=I) 
      DO 30 I=1,N 
   30 VW(I+ISHIFT)=I 
C 
C     B=(A-E)*X+X 
      CALL DVMVSD(A,K,NW,N,NDLT,ISHIFT,VW,B,ICON) 
      DO 70 I=1,N 
      B(I)=B(I)+VW(I+ISHIFT) 
   70 CONTINUE 
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C 
      ITMAX=8*SQRT(N+0.1) 
      EPS=1D-10 
      OMEGA=0D0 
      ISW=1 
      IGUSS=0 
      DO 100 IPC=1,3 
      IF(IPC.EQ.3) OMEGA=0.98 
      CALL DVCGD(A,K,NW,N,NDLT,B,IPC,ITMAX,ISW,OMEGA, 
     &           EPS,IGUSS,X,ITER,RZ,VW,IVW,ICON) 
      IF(ICON.NE.0) WRITE(6,*)'ICON=',ICON 
      IF(RZ.LE.EPS) WRITE(6,41)'CONVERGED. ACCURACY=',RZ 
      IF(RZ.GT.EPS) WRITE(6,41)'FAILED. ACCURACY=',RZ 
      WRITE(6,*)'X' 
      DO 60 I=1,MIN(N,16),4 
   60 WRITE(6,42) I,(X(M),M=I,I+3) 
  100 CONTINUE 
   42 FORMAT(1X,I3,4(1X,F20.10)) 
   41 FORMAT(A,2X,E10.3) 
      STOP 
      END 
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A71-02-0101  VMVSE, DVMVSE 
 
Multiplication of a real sparse matrix and a real vector (ELLPACK storage format) 

CALL VMVSE (A, K, NW, N, ICOL, X, Y, ICON) 
 
(1) Function 

 This routine computes the product  

 y = Ax 

 of an n × n sparse matrix and a vector. 

 The n × n coefficient matrix is stored using the ELLPACK storage format using two 
arrays. 

 y and x are n-dimensional vectors. 

(2) Parameters 

A................. Input.  Stores non-zero elements of the coefficient matrix. 
Two-dimensional array A (K, NW). 
For the ELLPACK storage format, see Part I, “Overview,” Section 3.2.1.1, 
“Storage methods for general sparse matrices.” 

K................. Input.  Size of adjustable dimensions (≥ n) of array A and ICOL. 

NW............. Input.  Maximum number of non-zero elements in each row vector of the matrix 
A stored in array A. 
The size of the second dimension of ICOL and A. 

N................. Input.  Order n of matrix A stored in array A. 

ICOL........... Input.  Store column indices of the elements stored in the array A using the 
ELLPACK format, indicating which column vectors the corresponding 
elements in the array A belong to. 
Two-dimensional array ICOL (K, NW). 

X................. Input.  Stores vector x.  One-dimensional array of size n. 

Y................. Output.  Stores the result of the multiplication of the matrix and the vector.  
One-dimensional array of size n. 

ICON.......... Output.  Condition code. 
See Table VMVSE-1, “Condition code.” 

 
Table VMVSE-1   Condition codes 

Code Description Processing 

0 No error  

30000 K < 1, N ≤ 0, NW < 1, or  
N > K 

Processing is stopped. 
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(3) Comments on use 

a. Subprogram used 

 SSL II:  MGSSL 

b. Comments 

1) Comments on using the ELLPACK storage format 

 Before storing data in the ELLPACK format, it is recommended to initialize 
each of the arrays A and ICOL with zero and the row number, respectively. 

c. Example of use 

 In this example, when using DVCGE, Ax is sought through b = (A - E) x + x by 
storing, in array A, elements other than the diagonal elements of matrix A, which are 
1.  For SET, see subroutine VCGE, DVCGE, (3) “Comments on use,” c., “Example 
of use.” 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (NW=2,N=51200,K=N+1) 
      REAL*8 B(N),X(N),EPS,OMEGA,RZ, 
     &      A(K,NW),VW(K*NW+4*N) 
      INTEGER ICOL(K,NW),IVW(K*NW+4*N) 
      WRITE(6,*) ' EXAMPLE DVCGE ' 
C INITIALISE A,ICOL 
      CALL SET(A,ICOL,K,NW,N) 
C GENERATE RHS B 
      DO 10 I=1,N 
   10 VW(I)=I 
C COMPUTE RHS SO AX=B SO WE KNOW SOLUTION X (X(I)=I) 
C 
C B = (A-E)*X + E*X 
      CALL DVMVSE(A,K,NW,N,ICOL,VW,B,ICON) 
      PRINT*,'ERROR CODE =',ICON 
      DO 20 I=1,N 
      B(I)=B(I)+VW(I) 
   20 CONTINUE 
C 
      ITMAX=4000 
      EPS=1D-10 
      ISW=1 
      IGUSS=0 
      DO 30 IPC=1,3 
      IF(IPC.EQ.3)OMEGA=0.98 
      CALL DVCGE(A,K,NW,N,ICOL,B,IPC,ITMAX,ISW,OMEGA 
     &           ,EPS,IGUSS,X,ITER,RZ,VW,IVW,ICON) 
C 
      PRINT*,'ERROR CODE= ',ICON 
      IF(RZ.LE.EPS) WRITE(6,41)'CONVERGED. ACCURACY=',RZ 
      IF(RZ.GT.EPS) WRITE(6,41)'FAILED. ACCURACY=',RZ 
      WRITE(6,*)'X' 
      DO 60 I=1,MIN(N,16),4 
   60 WRITE(6,42) I,(X(M),M=I,I+3) 
   30 CONTINUE 
   42 FORMAT(I3,4(F12.4)) 
   41 FORMAT(A,2X,E10.3) 
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      STOP 
      END 
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A72-23-0101  VQMRD, DVQMRD 
 
System of linear equations with unsymmetric or indefinite sparse matrix (QMR 
method, diagonal storage format) 

CALL VQMRD (A, K, NDIAG, N, NOFST, AT, NTOFST, B, ITMAX, EPS,  
                           IGUSS, X, ITER, VW, ICON) 
 
(1) Function 

 This routine solves linear equations system with an n × n unsymmetric or indefinite 
sparse coefficient matrix using the quasi-minimal residual method (QMR).   

 Ax = b 

 Use two n × n coefficient matrices A and AT.  They are stored in the diagonal format 
method.  Vectors b and x are n-dimensional vectors.   

 The iterative calculation may not be continued (break-down) because of the 
characteristics of the initial vector and coefficient matrices.  This is because zero is 
obtained as the intermediate result in the recursive calculation formula.  In this case, use 
the MGCR method that causes no break-down. 

 Regarding the convergence and the guideline on the usage of iterative methods, see 
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I. 

(2) Parameters 

A................ Input.  Stores non-zero elements of the coefficient matrix. 
Two-dimensional array A (K, NDIAG).  Stores coefficient matrix A in A (1:N, 
NDIAG) with a diagonal format. 
For the diagonal storage format, see Part I, “Overview,” Section 3.2.1.1, 
“Storage Method for General Sparse Matrices,” b., “Diagonal Storage Format 
for General Sparse Matrices.” 

K................ Input.  Size of adjustable dimension of array A. 

NDIAG....... Input.  The number of diagonal vectors in coefficient matrix A that contain non-
zero elements. 

N................ Input.  Order n of matrix A. 

NOFST....... Input.  Stores offset from the main diagonal corresponding to diagonals stored 
in A.  A superdiagonals have positive values; subdiagonals have negative values. 
One-dimensional array NOFST (NDIAG). 

AT.............. Input.  Stores non-zero elements of AT.   
Two-dimensional array AT (K, NDIAG).  Stores coefficient matrix AT in AT 
(1:N, NDIAG). 
For the diagonal storage format, see Part I, “Overview,” Section 3.2.1.1, 
“Storage Method for General Sparse Matrices,” b., “Diagonal Storage Format 
for General Sparse Matrices.” 

NTOFST..... Input.  Stores a offset from the main diagonal corresponding to a diagonal 
stored in array AT.  Superdiagonals have positive values; subdiagonals have 
negative values. 
One-dimensional array NOFST (NDIAG). 

B................. Input.  One-dimensional array of size n.  Stores a constant vector of the right-
hand side term of a linear equation system. 
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ITMAX....... Input. The upper limit of iteration steps in QMR method (> 0). 

EPS............. Input.  A criterion value used for convergence criterion. 
If EPS is 0.0 or less, it is set to 10-6 in double-precision routines and 10-4 in 
single-precision routines. 
(See item (3), “Comments on use,” b., 1).) 

IGUSS........ Input.  Set control information about whether to start the iterative computation 
from the approximate value of the solution vector specified in array X. 
IGUSS=1:  An approximate value of the solution vector is not specified. 
IGUSS≠1:  The iterative computation starts from the approximate value of the 
solution vector specified in array X. 

X................ Input.  One-dimensional array of size n.  Can specify the approximate value of a 
solution vector. 
Output.  The solution vector is stored. 

ITER.......... Output.  The real number of iteration steps in QMR method. 

VW............. Work area.  One-dimensional array of size K × 9 + N + NBANDL + NBANDR. 
NBANDL indicates a lower bandwidth; NBANDR indicates an upper 
bandwidth. 

ICON.......... Output.  Condition code 
See Table VQMRD-1, “Condition codes.” 

 
Table VQMRD-1   Condition codes 

Code Meaning Processing contents 

0 No error - 

20000 Break-down occurred. Processing is stopped. 

20001 The upper limit of iteration steps 
was reached. 

Processing is stopped. 

The approximate value obtained up to this 
point in array X is output, but their 
precision cannot be guaranteed. 

30000 N<1, K<1, K<N, NDIAG<1, 
K<NDIAG, 
or 
ITMAX ≤ 0 

Processing is stopped. 

32001 | NOFST (I) | > N-1,  
| NTOFST (I) | > N-1 

Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, URGWD, URIPA, URITI, URITT, URMVD, USSCP, URSTE, 
USVCN, UXVCP, USVSC, USVSU, USVUP, USVN2, URELT, MGSSL, UQMRR, 
UQMRD, UQBBM, UQITB 
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b. Comments 

1) In the QMR method, if the residual Euclidean norm is equal to or less than the 
product of the initial residual Euclidean norm and EPS, it is judged as having 
converged.  The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of matrix 
A and EPS. 

2) Notes on using the diagonal format 

 A diagonal vector element outside coefficient matrix A must be set to zero. 

 There is no restriction in the order in which diagonal vectors are stored in array 
A.   

 The advantage of this method lies in the fact the matrix vector multiplication can 
be calculated without the use of an indirect index.  The disadvantage is that 
matrices without the diagonal structure cannot be stored efficiently with this 
method. 

c. Example of use 

 In this example, linear equations of coefficient matrices obtained by discretizing 
partial differential operators are solved in the region [0, 1] × [0, 1] × [0, 1] with the 
Dirichlet boundary condition (function value zero at the boundary).  This type of 
partial differential operator is described in Part I, “Overview,” Section 3.2.2, 
“Discretization of partial differential operators and storage examples for them.” 

 For INIT_MAT_ELL, see Part I, “Overview,” Section 3.2.2, “Discretization of 
partial differential operators and storage examples for them.”  INIT_SOL is the 
routine that generates the solution vectors to be sought in random numbers. 

 
C     **EXAMPLE** 
      PROGRAM TEST_ITER_SOLVERS 
      IMPLICIT REAL*8 (A-H,O-Z) 
      INTEGER MACH 
      PARAMETER (MACH = 0) 
      PARAMETER (K = 10000) 
      PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ) 
      PARAMETER (NDIAG = 7,NVW = 9*K+N+400+400) 
      REAL*8 A(K,NDIAG),AT(K,NDIAG),X(N),B(N),SOLEX(N) 
     &       ,VW(NVW) 
      INTEGER NOFST(NDIAG),NTOFST(NDIAG) 
C 
      CALL INIT_SOL(SOLEX,N,1D0,MACH) 
      PRINT*,'EXPECTED SOLUSIONS' 
      PRINT*,'X(1) = ',SOLEX(1),'X(N) = ',SOLEX(N) 
C 
      PRINT * 
      PRINT *,'    QMR METHOD' 
      PRINT *,'    DIAGONAL FORMAT' 
C 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
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      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
      CALL INIT_MAT_TR_DIAG(VA1,VA2,VA3,VC,AT,NTOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
      CALL GET_BANDWIDTH_DIAG(NOFST,NDIAG,NBANDL,NBANDR) 
         DO 110 I = 1,N 
            VW(I+NBANDL) = SOLEX(I) 
 110     CONTINUE 
      CALL DVMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON) 
      PRINT*,'DVMVSD ICON = ',ICON 
C 
      EPS = 1D-10 
      IGUSS = 0 
      ITMAX = 2000 
      CALL DVQMRD(A,K,NDIAG,N,NOFST,AT,NTOFST,B,ITMAX 
     &            ,EPS,IGUSS,X,ITER,VW,ICON) 
C 
      PRINT* ,'ITER = ',ITER 
      PRINT* ,'DVQMRD ICON = ',ICON 
      PRINT*, 'COMPUTED VALUES' 
      PRINT*, 'X(1) = ',X(1),'X(N) = ',X(N) 
      STOP 
      END 

 

(4) Method 

 For the QMR method, see [13]. 
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A72-24-0101  VQMRE, DVQMRE 
 
System of linear equations with unsymmetric or indefinite sparse matrix (QMR 
method, ELLPACK storage format) 

CALL VQMRE (A, K, IWIDT, N, ICOL, AT, IWIDTT, ICOLT, B, ITMAX, EPS,  
                           IGUSS, X, ITER, VW, ICON) 
 
(1) Function 

 This routine solves linear equations with an n × n unsymmetric or indefinite sparse 
coefficient matrix using the quasi-minimal residual method (QMR).   

 Ax = b 

 Use two n × n coefficient matrices A and AT.  They are stored in the ELLPACK format 
method.  Vectors b and x are n-dimensional vectors.   

 The iterative calculation may not be continued (break-down) because of the 
characteristics of the initial vector and coefficient matrices.  This is because zero is really 
obtained as the intermediate result although non-zero is desired in the recursive 
calculation formula.  In this case, use the MGCR method that causes no break-down. 

 Regarding the convergence and the guideline on the usage of iterative methods, see 
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I. 

(2) Parameters 

A................ Input.  Stores non-zero elements of the coefficient matrix. 
Two-dimensional array A (K, IWIDT).   
For details on the ELLPACK storage format, see Part I, “Overview,” Section 
3.2.1.1, “Storage Method for General Sparse Matrices,” b., “Diagonal Storage 
Format for General Sparse Matrices.” 

K................ Input.  Size of adjustable dimension of A and ICOL. (≥ n) 

IWIDT........ Input.  The maximum number of non-zero elements in row vector direction of 
the coefficient matrix A. 
Two-dimensional size of A and ICOL. 

N................ Input.  Order n of matrix A. 

ICOL.......... Input.   Stores the column indices of the elements stored in the array A using the 
ELLPACK format, indicating which column vectors the corresponding 
elements in the array A belong to. 
Two-dimensional array ICOL (K, IWIDT) 

AT.............. Input.  Stores non-zero elements of a transposed coefficient matrix AT in AT 
(1:N:IWIDTT).   
Two-dimensional array AT (K, IWIDTT).    
For details on the ELLPACK storage format, see Part I, “Overview,” Section 
3.2.1.1, “Storage Method for General Sparse Matrices,” b., “Ellpack Storage 
Format for General Sparse Matrices.” 

IWIDTT..... Input.  The maximum number of non-zero elements in row vector direction of 
the transposed coefficient matrix AT. 

ICOLT........ Input.  Store the column indices of the element stored in the array AT using the 
ELLPACK format,  indicating which, column vectors the corresponding 



VQMRE, DVQMRE 

II-148 Fujitsu SSL II Extended Capabilities User's Guide II 

elements in the array AT belong to. 
Two-dimensional array ICOLT (K, IWIDTT) 

B................. Input.  One-dimensional array of size n.  Stores a constant vector specified in 
the right-hand side term of a linear equation system in B. 

ITMAX....... Input.  The upper limit of iterations in QMR method (> 0). 

EPS............. Input.  A criterion value used for convergence criterion. 
If EPS is 0.0 or less, it is set to 10-6 for double-precision routines and 10-4 for 
single-precision routines. 
(See item (3), “Comments on Use,” b., 1).) 

IGUSS........ Input.  Control information about whether to start the iterative computation 
from the approximate value of the solution vector specified in array X.  
IGUSS=0:  An approximate value of the solution vector is not specified. 
IGUSS≠0:  The iterative computation starts from the approximate value of the 
solution vector specified in array X. 

X................ Input.  One-dimensional array of size n.  Can specified the approximate value of 
a solution vector. 
Output.  The solution vector is stored. 

ITER........... Output.  The real number of iteration steps in QMR method. 

VW............. Work area.  One-dimensional array of the size K × 12. 

ICON.......... Output.  Condition code 
See Table VQMRE-1, “Condition codes.” 

 
Table VQMRE-1   Condition codes 

Code Meaning Processing 

0 No error - 

20000 Break-down occurred. Processing is stopped. 

20001 The upper limit of iteration steps 
was reached. 

Processing is stopped. 

The approximate values obtained up to this 
point in array X are output, but their 
precision cannot be guaranteed.  

30000 K<1, N<1, K<N, IWIDT<1, 
IWIDTT<1, K<IWIDT, 
K<IWIDTT, 
or 
ITMAX ≤ 0 

Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, URIPA, URITI, URITT, URMVE, USSCP, URSTE, USVCN, 
USVCP, USVSC, USVSU, USVUP, USVN2, URELT, MGSSL, UQMRR, UQMRE, 
UQBBM, UQITB 
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b. Comments 

1) In the QMR method, if the residual Euclidean norm is equal to or less than the 
product of initial residual Euclidean norm and EPS, it is judged as having 
converged.  

 The difference between the precise solution and the obtained approximation is 
roughly equal to the product of the condition number of matrix A and EPS. 

c. Example of use 

 In this example, linear equations of coefficient matrices obtained by discretizing 
partial differential operators are solved in the region [0,1] × [0,1] × [0,1] with the 
Dirichlet boundary condition (function value zero at the boundary).  This type of 
partial differential operator is described in Part I, “Overview,” Section 3.2.2, 
“Discretization of partial differential operators and storage examples for them.” 
For INIT_MAT_ELL, see Part I, “Overview,” Section 3.2.2, “Discretization of 
partial differential operators and storage examples for them.”  INIT_SOL is the 
routine that generates the solution vectors to be sought in random numbers. 

 
C     **EXAMPLE** 
      PROGRAM TEST_ITER_SOLVERS 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (MACH = 0) 
      PARAMETER (K = 10000) 
      PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ) 
      PARAMETER (IWIDT = 7,IWIDTT = IWIDT,NVW = K*12) 
      REAL*8 A(K,IWIDT),AT(K,IWIDTT),X(N),B(N),SOLEX(N) 
     &       ,VW(NVW) 
      INTEGER ICOL(K,IWIDT),ICOLT(K,IWIDTT) 
C 
      CALL INIT_SOL(SOLEX,N,1D0,MACH) 
      PRINT*,'EAPECTED SOLUTION' 
      PRINT*,'X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
C 
      PRINT * 
      PRINT *,'    QMR METHOD' 
      PRINT *,'    ELLPACK FORMAT' 
C 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 5D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
C 
      CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL 
     &         ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K) 
      CALL INIT_MAT_TR_ELL(VA1,VA2,VA3,VC,AT,ICOLT 
     &         ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K) 
      CALL DVMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON) 
      PRINT*,'DVMVSE ICON = ',ICON 
C 
      EPS = 1D-10 
      IGUSS = 0 
      ITMAX = 800 
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      CALL DVQMRE(A,K,IWIDT,N,ICOL,AT,IWIDTT,ICOLT,B,ITMAX 
     &           ,EPS,IGUSS,X,ITER,VW,ICON) 
C 
      PRINT*,'DVQMRE ICON = ',ICON 
      PRINT*,'COMPUTED VALUE' 
      PRINT*,'X(1) = ',X(1),' X(N) = ',X(N) 
      STOP 
      END 

 

(4) Method 

 For QMR method, see [13]. 
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F17-13-0101  VRCVF, DVRCVF 
 
Discrete convolution or correlation of real data 

CALL VRCVF (X, K, N, M, Y, IVR, ISW, TAB, ICON) 
 
(1) Function 

 This subroutine performs one-dimensional discrete convolutions or correlations between a 
filter and multiple input data using discrete Fourier method. 

 The convolution and correlation of a filter y with a single input data x are defined as 
follows: 

 a) convolution 

 ∑
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 b) correlation 
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 where, xj is a cyclic data with period n. (See item (3), “Comments on use,” b., 1).) 

  

(2) Parameters 

X.............. Two-dimensional array X (K, M). 

 Input.  The m data sequences {xj}, j=0,...,n−1, are stored in X(1:N,1:M). 

 Output.  The m sequences {zk}, k=0,...,n−1, are stored in X(1:N,1:M). 

K................ Input.  Size of adjustable dimension of array X. (K ≥ N) 

N................ Input.  The number of elements in one data sequence or in filter y.  N must be 
an even number. (See item (3), “Comments on use,” b., 2).) 

M............... Input.  The number of rows in the array X. 

Y............. Input.  Filter vector {yi}.  One-dimensional array Y(N). 

 The values of this array will be altered after calling with ISW=0 or 2. 

 (See item (3), “Comments on use,” b., 2) and 3).) 

IVR............ Input.  Specify either convolution or correlation. 

 When IVR = 0, convolution is calculated. 

 When IVR = 1, correlation is calculated. 

ISW........... Input.  Control information. 

 When ISW = 0, all the procedure will be done at once. 

 If the calculation should be divided into step-by-step procedure, specify as 
follows. (See item (3), “Comments on use,” b., 3).) 

 ISW = 1 to prepare the array TAB. 
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 ISW = 2 to perform the Fourier transform in array Y using the trigonometric 
function table TAB. 

 ISW = 3 to perform the convolution or correlation using the array Y and TAB 
which are prepared in advance. 

TAB............ Work area.  Trigonometric function table used for the transformation is stored. 

 One-dimensional array of size 2N. (See item (3), “Comments on use,” b., 3).) 

ICON........... Output.  Condition code. 

 See Table VRCVF-1, “Condition codes.” 
 

Table VRCVF-1   Condition codes 

Code Description Processing 

0 No error - 

30000 N ≤ 0, K<N, M ≤ 0, IVR ≠ 0,1 or ISW ≠ 0,1,2,3 or N is 
not an even number. 

Processing is stopped. 

 
(3) Comments on use 

a. Subprogram used 

 SSLII: UZFB2, UZFB3, UZFB4, UZFB5, UZFB8, UZFB6, UZFF2, UZFF3, UZFF4, 
UZFF5, UZFF8, UZFF6, UZFPB, UZFPF, UZFTB, UZFTF, UZUNI, MGSSL 

b. Comments 

1) To compute non-periodic convolution or correlation 

 Non-periodic convolution or correlation can be calculated by this routine with 
padding the value of X(nx+1:n, *) and Y(ny+1:n) with zeros, where nx is the 
actual length of the data sequence, ny is the actual length of the filter y and n 
must be larger or equal to nx+ny−1. (See example 2 in “c. examples.”) 

 The values of correlation zk, corresponding to k = −ny+1,..., −1 are stored in 
X(n−ny+2:n, *) in this non-periodic case. 

2) Recommended value of N 

 The n can be an arbitrary even number, but the calculation is fast with the sizes 
which can be expressed as products of the powers of 2, 3, and 5. 

3) Efficient use of the array TAB and Y 

 When this routine will calculate convolution or correlation successively for a 
fixed value of n, the trigonometric function table TAB should be initialized once 
at first call with ISW=0 or 1 and should be kept intact for second and subsequent 
calls with ISW=2 and 3.  This saves initialization procedure of array TAB. 
Furthermore, if the filter vector y is also fixed, the array Y which is transformed 
with ISW=0 or 2 can be reused for second and subsequent calls with ISW=3. 

 In these cases, the array Y must be transformed surely once. 

4) To compute autocorrelation 

 Autocorrelation or autoconvolution can be calculated by this routine with letting 
the filter array Y be identical to the data array X.  In this case, specifying ISW=2 
will be ignored. (See example 3 in “c. examples.”) 
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5) Stack size 

 This subroutine exploits work area internally as an auto allocatable array on 
stack area.  Therefore an abnormal termination could occur when the stack area 
runs out.  The necessary size for the auto allocatable array is 4 × N byte for 
single precision, and twice for double precision. 

 It is recommended to specify the sufficiently large stacksize with "limit" or 
"ulimit" command under consideration that the stack area could be used for 
another work area of fixed size and for user's program also. 

c. Example of use 
example 1) In this example, periodic convolution of a filter with three data vectors is 

calculated with n=8. 
C     ** PERIODIC CONVOLUTION EXAMPLE ** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER(K=8,M=3) 
      DIMENSION X(K,M),Y(K),TAB(K*2) 
 
      N=8 
 
C     --SET SAMPLE DATA-- 
      DO 100 J=1,M 
      DO 100 I=1,N 
      X(I,J)=FLOAT(I+J-1) 
  100 CONTINUE 
      DO 110 I=1,N 
      Y(I)=FLOAT(I+10) 
  110 CONTINUE 
 
      WRITE(*,*)'--INPUT DATA--' 
      DO 120 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  120 CONTINUE 
      WRITE(*,910)(Y(I),I=1,N) 
 
C     --CALL DVRCVF-- 
      IVR=0 
      ISW=0 
      CALL DVRCVF(X,K,N,M,Y,IVR,ISW,TAB,ICON) 
 
      WRITE(*,*)'--OUTPUT DATA--' 
      DO 130 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  130 CONTINUE 
 
  900 FORMAT('X(*,',I2,') :',3X,8F8.2) 
  910 FORMAT('Filter Y:',3X,8F8.2) 
      STOP 
      END 
 

example 2) In this example, non-periodic convolution is calculated with nx=7, ny=9 
and n=16. 

C     ** NONPERIODIC CONVOLUTION EXAMPLE ** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER(K=16,M=3) 
      DIMENSION X(K,M),Y(K),TAB(K*2) 
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      NX=7 
      NY=9 
      N=NX+NY-1 
      IF(MOD(N,2).NE.0)N=N+1 
 
C     --SET SAMPLE DATA-- 
      DO 100 J=1,M 
      DO 110 I=1,NX 
      X(I,J)=FLOAT(I+J-1) 
  110 CONTINUE 
      DO 120 I=NX+1,N 
      X(I,J)=0.0D0 
  120 CONTINUE 
  100 CONTINUE 
      DO 130 I=1,NY 
      Y(I)=FLOAT(I+10) 
  130 CONTINUE 
      DO 140 I=NY+1,N 
      Y(I)=0.0D0 
  140 CONTINUE 
 
      WRITE(*,*)'--INPUT DATA--' 
      DO 150 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  150 CONTINUE 
      WRITE(*,910)(Y(I),I=1,N) 
 
C     --CALL DVRCVF-- 
      IVR=0 
      ISW=0 
      CALL DVRCVF(X,K,N,M,Y,IVR,ISW,TAB,ICON) 
 
      WRITE(*,*)'--OUTPUT DATA--' 
      DO 160 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  160 CONTINUE 
 
  900 FORMAT('X(*,',I2,') :'/(12X,8F8.2)) 
  910 FORMAT('Filter Y:'/(12X,8F8.2)) 
      STOP 
      END 
 

example 3) In this example, autocorrelation is calculated with nx=4. 
C     ** AUTOCORRELATION EXAMPLE ** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER(K=8,M=3) 
      DIMENSION X(K,M),TAB(K*2) 
 
      NX=4 
      N=NX*2 
 
C     --SET SAMPLE DATA-- 
      DO 100 J=1,M 
      DO 110 I=1,NX 
      X(I,J)=FLOAT(I+J-1) 



VRCVF, DVRCVF 

Fujitsu SSL II Extended Capabilities User’s Guide II II-155 

  110 CONTINUE 
      DO 120 I=NX+1,N 
      X(I,J)=0.0D0 
  120 CONTINUE 
  100 CONTINUE 
 
      WRITE(*,*)'--INPUT DATA--' 
      DO 130 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  130 CONTINUE 
 
C     --CALL DVRCVF-- 
      IVR=1 
      ISW=1 
      CALL DVRCVF(X,K,N,M,X,IVR,ISW,TAB,ICON) 
      ISW=3 
      CALL DVRCVF(X,K,N,M,X,IVR,ISW,TAB,ICON) 
 
      WRITE(*,*)'--OUTPUT DATA--' 
      DO 140 J=1,M 
      WRITE(*,900)J,(X(I,J),I=1,N) 
  140 CONTINUE 
 
  900 FORMAT('X(*,',I2,') :',3X,8F8.2) 
      STOP 
      END 
 

(4) Method 

 This subroutine performs discrete convolution or correlation of real data efficiently on a 
scalar CPU. 

 The convolution can be calculated efficiently using Fourier method. It is based on the fact 
that the Fourier transform of the convolution of two sequences is evaluated by pointwise 
multiplication of the individual Fourier transformed sequences. The correlation is 
calculated similarly to take the Fourier transform of x and the conjugate of the Fourier 
transform of y and apply the inverse transform of their pointwise product. 

 For further information on the algorithm, refer to [26] in Appendix B, “References. ” 
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F15-31-0401  VRPF3, DVRPF3 
 
Three-dimensional prime factor discrete real Fourier transform 

CALL VRPF 3 (A, L, M, N, ISN, VW, ICON) 
 
(1) Function 

 When three-dimensional (where the size of each dimension is N1, N2, N3) real time series 
data {xJ1,J2,J3} is given, this subroutine performs a discrete real Fourier transform or its 
inverse transform by using the prime factor Fourier transform (prime factor FFT).  The 
size of each dimension must satisfy the following conditions: 

- The size must be expressed as a product of mutual prime factor p, selected from the 
following numbers: 

 factor p (p ∈ {2, 3, 4, 5, 7, 8, 9, 16}) 

- The size of the first dimension must be an even number (2 × I), where I satisfies the 
previous condition. 

 Calling this subroutine with N = 1 sets a two-dimensional real prime factor fast Fourier 
transform.  Calling this subroutine with N = 1 and M = 1 sets a one-dimensional real 
prime factor fast Fourier transform. 

1) Three-dimensional real Fourier transform 

 By inputting {xJ1,J2,J3} and performing the transform defined in (1.1), the three-
dimensional Fourier transform looks for {N1 × N2 × N3 × αK1,K2, K3}. 
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         , K1 = 0, 1, ..., N1-1 

         , K2 = 0, 1, ..., N2-1 

         , K3 = 0, 1, ..., N3-1 

         , ωj = exp(2πi/Nj), j = 1, 2, 3 

 For a three-dimensional real Fourier transform, approximately half of the 
computation is performed because {xJ1,J2,J3} is a real number.  That is, for one-
dimensional transforms, K1 is computed from 0 to N1/2. 

2) Three-dimensional real Fourier inverse transform 

 By inputting {αK1,K2,K3} and performing the transform defined in (1.2), a three-
dimensional Fourier inverse transform looks for {xJ1,J2,J3}. 
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         , J1 = 0, 1, ..., N1-1 

         , J2 = 0, 1, ..., N2-1 

         , J3 = 0, 1, ..., N3-1 

         , ωj = exp(2πi/Nj), j = 1, 2, 3 
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 For a three-dimensional real Fourier inverse transform, {αK1,K2,K3} looks for only K1 
= 0, 1, ..., N1/2.  Compute the two-dimensional and three-dimensional ∑ first.  Then, 
use the conjugate relation for the elements of the first dimension to compute (1.2). 

(2) Parameters 

A................. Input.  Real number {xJ1,J2,J3} or Fourier transformed complex number 
{αK1,K2,K3}. 
Output:  Fourier transformed complex number {αK1,K2,K3} or inverse 
transformed real number {xJ1,J2,J3}. 
Three-dimensional array A (L, M, N). 
For a real number (transform input and inverse transform output), data is stored 
in A (L, M, N). 

L - 2 is the number of data items of the first dimension, where L - 2 is an even 
number. 
M is the number of data items of the second dimension.  N is the number of data 
items of the third dimension. 
For a complex number (transform output and inverse transform input), the real 
part is stored in the first half and the imaginary part is stored in the second half 
of the same array. 

      PARAMETER (L =, M =, N =, LH = L/2) 

      DIMENSION A (L, M, N), B (LH, M, N, 2) 

      EQUIVALENCE (A, B) 

      Real part B (L/2, M, N, 1) and Imaginary part B (L/2, M, N, 2) are stored  
      separately in the contiguous area.  (See item (3), “Comments on use,” b.,  
      3).) 

L................. Input.  Number of data items + 2 of the first dimension.  The number of data 
items of the first dimension must be an even number. 
(L - 2)/2 ≤ 5,040 

M................ Input.  Number of data items of the second dimension. 
M ≤ 5,040 

N................. Input.  Number of data items of the third dimension. 
N ≤ 5,040 

ISN............. Input.  Specifies either transform or inverse transform. 
Transform if ISN ≥ 0 (non-negative integer). 
Inverse transform if ISN < 0 (negative integer). 

VW............. Work area.  Three-dimensional array with the same size as A. 

ICON.......... Output.  Condition code. 
See Table VRPF3-1, “Condition codes.” 



VRPF3, DVRPF3 

II-158 Fujitsu SSL II Extended Capabilities User's Guide II 

Table VRPF3-1   Condition codes 

Code Description Processing 

0 No error  

20000 (L - 2)/2, M or N exceeded 5,040.  Or this could not be 
factored into the multiplication of the mutually prime factor 
in {2, 3, 4, 5, 7, 8, 9, 16}. 

Processing stopped. 

30000 L - 2 was not an even number.  Or L, M, or N is zero or a 
negative value. 

 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  UINI1, UINI2, UTER1, UTER2, UTRSP, UPFT1, UPFT2, UTRR1, UTRR2, 
MGSSL 

b. Comments 

1) General definition of three-dimensional Fourier transform 

 The three-dimensional Fourier transform and its inverse transform are generally 
defined in (3.1) and (3.2). 
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 The subroutine looks for {N1 × N2 × N3 × αK1,K2,K3} or {xJ1,J2,J3} corresponding 
to the left-hand-side terms of (3.1) and (3.2), respectively.  The user must 
normalize the results, if necessary.  If the transform and inverse transform is 
executed by calling this subroutine consecutively without being normalized, 
each element of the input data is multiplied by N1, N2, or N3, respectively, and 
then output. 

2) Number of terms 

 The number of terms is expressed as a product of a mutually prime factor p, 
selected from the numbers listed as follows. 

 The maximum number is 5 × 7 × 9 × 16 = 5,040. 

 factor p (p ∈ {2, 3, 4, 5, 7, 8, 9, 16}) 

 The number of terms of the first dimension can be a value up to a multiple of the 
mutually prime numbers listed previously. 

3) Data storage method 

 The real data {xJ1,J2,J3} are stored in a three-dimensional array A.  The number of 
terms N1 of the first dimension is equivalent to L - 2.  The terms are stored from 
1 up to L - 2. 

 The real and imaginary parts of the complex data {αK1,K2,K3} are stored as an 
array divided into two contiguous regions by splitting array A.  The number of 
indices of K1 of the first dimension is N1/2 + 1 (L/2), from zero up to N1/2. 
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 The real part is stored in B (LH, M, N, 1), and the imaginary part is stored in B 
(LH, M, N, 2) where: 

 LH = L/2 

 and 

 PARAMETER (L =, M =, N =, LH = L/2) 

 DIMENSION A (L, M, N), B (LH, M, N, 2) 

 EQUIVALENCE (A, B) 

c. Example of use 

 In this example, real time series data {xJ1,J2,J3} of terms N1, N2 and N3 are input, and 
a Fourier transform is performed.  The results are used to perform a Fourier inverse 
transform to look for {xJ1,J2,J3}. 

 Here N1 = 12, N2 = 12, and N3 = 12. 
 
C     **EXAMPLE** 
      DIMENSION A(12+2,12,12),B(6+1,12,12,2),NI(3) 
      DIMENSION VW(12+2,12,12) 
      DATA      NI/12,12,12/,L,M,N/14,12,12/ 
      EQUIVALENCE (A,B) 
      READ(5,500) (((A(I,J,K),I=1,NI(1)), 
     *             J=1,NI(2)),K=1,NI(3)) 
      WRITE(6,600) (NI(I),I=1,3), 
     *            (((I,J,K,A(I,J,K),I=1,NI(1)), 
     *             J=1,NI(2)),K=1,NI(3)) 
C     NORMAL TRANSFORM 
      CALL VRPF3(A,L,M,N,1,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.NE.0) STOP 
C     INVERSE TRANSFORM 
      CALL VRPF3(A,L,M,N,-1,VW,ICON) 
      NT=NI(1)*NI(2)*NI(3) 
      DO 10 K=1,NI(3) 
      DO 10 J=1,NI(2) 
      DO 10 I=1,NI(1) 
      A(I,J,K)=A(I,J,K)/FLOAT(NT) 
   10 CONTINUE 
      WRITE(6,620) (((I,J,K,A(I,J,K),I=1,NI(1)), 
     *              J=1,NI(2)),K=1,NI(3)) 
      STOP 
  500 FORMAT(E20.7) 
  600 FORMAT('0',10X,'INPUT DATA',5X, 
     *       '(',I3,',',I3,',',I3,')'/ 
     *      (15X,'(',I3,',',I3,',',I3,')', 
     *       E20.7)) 
  610 FORMAT('0',10X,'RESULT ICON=',I5) 
  620 FORMAT('0',10X,'OUTPUT DATA'/ 
     *      (15X,'(',I3,',',I3,',',I3,')', 
     *       E20.7)) 
      END 
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(4) Method 

 The three-dimensional real Fourier transform is performed by using the fast Fourier 
transform with the factored mutual prime factor as the radix (prime factor FFT). 

1) Three-dimensional transform 

 The three-dimensional transform defined in (1.1) can be performed in the order 
shown in (4.1) by simplifying common terms.  The order for obtaining the sum of J1, 
J2, and J3 can also be replaced. 
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 In (4.1), ∑J3 takes N1 × N2 sets of one-dimensional transforms of data item N3. ∑J2 
takes N1 × N3 sets of one-dimensional transforms of data item N2. ∑J1 takes N2 × N3 
sets of one-dimensional transforms of data item N1. 

 In order to perform a one-dimensional transform for each dimension, this subroutine 
applies the fast Fourier transform with the mutually prime factor as the radix. 

2) Real transform 

 Because the number of data items is even for the real Fourier transform of the first 
dimension, complex Fourier transform is computed from zero up to N1/2 for K1.  The 
remaining Fourier transform computation need not be performed due to the complex 
conjugate relation. 

 Assume a one-dimensional discrete real Fourier transform of N data items. 
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 K = 0, ..., N-1 

 *
KKN αα =−  (4.3) 

 Even if the sequence for obtaining ∑ in (4.1) is computed from the first dimension, 
the results are the same.  Therefore, the computation in (4.2) of the one-dimensional 
transform with fixed terms of second and third dimensions can be performed for K = 
0, 1, ..., N1/2. 

 For a real transform with an even number of data items, a complex transform can be 
used in the computation of the one-dimensional transform in (4.2).  For details, refer 
to FUJITSU SSL II User’s Guide (Scientific Subroutine Library) under the “Method” 
section in RFT. 

 In addition, the relationship that follows applies to a three-dimensional real Fourier 
transform.  This can be used for looking for other coefficients. 

 *
KNKNKNKKK 33,22,113,2,1 −−−=αα  (4.4) 
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3) Prime factor fast Fourier transform 

 The three-dimensional real Fourier transform can be calculated by performing a 
multiple set of one-dimensional Fourier transforms three times.  The one-dimensional 
Fourier transforms are performed by using the prime factor fast Fourier transform 
(prime factor FFT).  For an explanation of prime factor fast Fourier transform, see 
item 2), “Prime factor fast Fourier transform,” under the Method section in VCPF3.  
For more information, see [6] and [46]. 
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B71-14-0101 VSEVP,DVSEVP 
 
Eigenvalues and eigenvectors of a real symmetric matrix (tridiagonalization, multisection 
method, and inverse iteration) 

CALL VSEVP (A, K, N, NF, NL, IVEC, ETOL, CTOL, NEV, E, MAXNE, M, EV, 
                                   VW, IW, ICON) 
 
(1) Function 

 This subroutine calculates specified eigenvalues and, optionally, eigenvectors of n-
dimensional real symmetric matrix A. 

 First, the matrix is reduced to tridiagonal form using the Householder reductions.  Then, 
the specified eigenvalues are obtained by the multisection method.  The eigenvectors are 
obtained by the inverse iteration. 

 Ax = λx (1.1) 

 where, A is an n × n real symmetric matrix. 

(2) Parameters 

A ............... Input.  Real symmetric matrix A is stored in A(1:N,1:N). 
After calculation, the value of A is not assured. 
Two-dimensional array A(K,N). 

K ................ Input.  Size of first-dimension of array A.  (K ≥ N). 

N ............... Input.  Order n of real symmetric matrix A 

NF ............. Input.  Number assigned to the first eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

NL ............. Input.  Number assigned to the last eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

IVEC ......... Input.  Control information. 

IVEC=1:  Both the eigenvalues and corresponding eigenvectors are 
                 sought. 
IVEC≠1:  Only the eigenvalues are sought. 

ETOL ........ Input.  A criterion value required to determine whether an eigenvalue is distinct 
or numerically multiple based on expression (3.4).  The default value is 3.0D-16 
for double precision (2.0D-7 for single precision) when this value is set to less 
than.  

CTOL ........ Input.  A criterion value required to determine whether adjacent eigenvalues are 
approximately multiple i.e. clustered according to expression (3.1).  CTOL ≥ 
ETOL 
When CTOL is less than ETOL, CTOL = ETOL is set. 
(See 1) in b, “Notes,” in (3), “Comments on use.”) 

NEV ......... Output.  Number of eigenvalues calculated. 

The detail information is as follows: 
NEV (1) indicates the number of distinct eigenvalues. 
NEV (2) indicates the number of distinct clusters. 



VSEVP, DVSEVP 

Fujitsu SSL II Extended Capabilities User’s Guide II II-163 

NEV (3) indicates the total number of eigenvalues including multiplicities. 
One-dimensional array NEV (3). 

E ............... Output.  Eigenvalues are stored in E. 
The eigenvalues are stored in E(1:NEV(3)). 

One-dimensional array E(MAXNE). 

MAXNE .... Input.  The maximum number of eigenvalues that can be computed. 
Dimension of array E. 

When NEV (3) is greater than MAXNE, eigenvectors cannot be computed. 
(See 2) in b, “Notes,” in (3), “Comments on use.”) 

M .............. Output.  Information about the multiplicity of the computed eigenvalues. 
M (i, 1) indicates the multiplicity of the i-th eigenvalue λi.  M (i, 2) indicates the 
size of the i-th cluster of eigenvalues. 
 (See 1) in b, “Notes,” in (3), “Comments on use.”) 

Two-dimensional array M(MAXNE,2). 

EV ............. Output.  When IVEC = 1, the eigenvectors corresponding to the computed 
eigenvalues are returned in EV (1:N, 1:NEV(3)). 
Two-dimensional array EV (K, MAXNE). 

VW ............ Work area.  One-dimensional array of size 17 × K 

IW ............. Work area.  One-dimensional array of size 9 × MAXNE+128 

ICON ......... Output.  Condition code. 

See Table VSEVP-1. 
Table VSEVP-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 During calculation of clustered eigenvalues, 
the total number of eigenvalues exceeded 
the value of MAXNE. 

Processing is discontinued. 

The eigenvectors cannot be 
calculated, but the different 
eigenvalues themselves are 
already calculated. 

(See 2) in b, “Notes,” in (3), 
“Comments on use.”) 

30000 NF < 1, NL > N, NL < NF, N < 1, K < N, or 
MAXNE < NL - NF + 1. 

30100 The input matrix may not be a symmetric 
matrix. 

Processing is discontinued. 

 
(3) Comments on use 

a. Subprograms used 

SSLII ........ UIBBS, UIBFC, UIBFE, UIBSL, UITBS, UITFC, UITFE, UITSL, USEVP, 
UTDEX, UTDEY, UTMLS, UTRBK, UTRVM, UZRDM, MGSSL, UMGSL, 
UMGSL2 
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b. Notes 

1) This routine pays special attention to a clustered eigenvalue.   

 With ε is equal to ETOL, suppose that the eigenvalues ,...1,, += ssjjλ , and s+k 

(k ≥ 0) are such that 

ε
λλ

λλ
≤

− −

)max(1 1

1

ii-

ii

,+
 (3.1) 

 While (3.4) is not satisfied for i = s-1 and i = s + k + 1, then eigenvalues jλ , j = 
s - 1, s, ..., s + k are considered to be identical, i.e., a single multiple eigenvalue 
of multiplicity k + 1. 

 The default value of ETOL is 3.0D-16 for double precision (2.0D-7 for single-
precision).  Using this value, eigenvalues are refined to machine precision.  

 When (3.1) is not satisfied for ETOL=ε , 1−iλ  and iλ  are assumed to be 
distinct eigenvalues. 

 If (3.1) holds with ε = CTOL (but not with ε = ETOL) for eigenvalues mλ , m=t, 
t+1, ..., t+k but not for 1−tλ  and 1++ktλ , these eigenvalues are considered to be 
approximately multiple, i.e. clustered, though distinct (not numerically multiple).  
In order to obtain an invariant subspace, eigenvectors corresponding to clustered 
eigenvalues are computed using orthogonal starting vectors and are 
reorthogonalized.  Of course CTOL ≥ ETOL; if this condition is not satisfied, 
CTOL is set to be equal to ETOL.  

2) Assume r eigenvalues are requested.  Note that if the first or last requested 
eigenvalue has a multiplicity greater than 1 then more than r eigenvalues, are 
obtained.  The corresponding eigenvectors can be computed only when the 
corresponding eigenvector storage area is sufficient.   

 The maximum number of computable eigenvalues can be specified in MAXNE.  
If the total number of eigenvalues exceeds MAXNE, ICON = 20000 is returned.  
The corresponding eigenvectors cannot be computed.  In this case, the 
eigenvalues are returned, but they are not stored repeatedly according to 
multiplicities. 

 When all eigenvalues are distinct, it is sufficient to set MAXNE = NL-NF+1. 
When the total number of eigenvalues to be sought exceeds MAXNE,  the 
necessary value for MAXNE for seeking eigenvalues again is returned in 
NEV(3). 

3) This routine is faster than SEIG1, SEIG2 and VSEG2. 

c. Example 

 This example calculates the specified eigenvalues and eigenvectors of a real 
symmetric matrix whose eigenvalues and eigenvectors are already obtained. 

 
C     ** EXAMPLE PROGRAM ** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (K=500,N=K,NF=1,NL=100,MAXNE=NL-NF+1) 
      PARAMETER (NVW=15*K,NIW=9*MAXNE+128) 
      REAL*8    A(K,N),AB(K,N) 
      REAL*8    E(K),EV(K,MAXNE),VW(NIW) 
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      REAL*8    VV(K,N) 
      INTEGER   IW(NVW),M(MAXNE,2),NEV(3) 
C 
      ETOL=3.0D-16 
      CTOL=5.0D-12 
      NNF=NF 
      NNL=NL 
      IVEC=1 
C Generate real symmetric matrix with known eigenvalues 
C Initialization 
      PI = 4.0D0*DATAN(1.0D0) 
      DO 1 J=1,N 
             DO 11 I=1,N 
             VV(I,J)=DSQRT(2.0D0/DBLE(N+1))*SIN(DBLE(I)*PI 
     +                   *DBLE(J)/ DBLE(N+1)) 
               A(I,J)=0.0D0 
 11          CONTINUE 
  1   CONTINUE 
      DO 22 J=1,N 
         A(J,J) = DBLE(-N/2+J) 
 22   CONTINUE 
      WRITE (6,*)' Input matrix size is ',N 
      WRITE (6,*)' Matrix calculations use k =',K 
      WRITE (6,*)' Desired eigenvalues are nf to nl ',NF,NL 
      WRITE (6,*)' That is, request ',NL-NF+1, 
     +           ' eigenvalues.' 
      WRITE (6,*)' True eigenvalues are as follows' 
      WRITE (6,*)(A(J,J),J=NF,NL) 
      CALL DVMGGM(A,K,VV,K,AB,K,N,N,N,ICON) 
      CALL DVMGGM(VV,K,AB,K,A,K,N,N,N,ICON) 
C Calculate the eigendecomposition of A 
      CALL DVSEVP(A,K,N,NNF,NNL,IVEC,ETOL,CTOL,NEV, 
     +                  E,MAXNE,M,EV,VW,IW,ICON) 
      IF (ICON.GT.0) THEN 
          WRITE (*,*)' VSEVP failed with parameter ', 
     +               'icon=',ICON 
          STOP 
      ENDIF 
      WRITE (*,*)' Number of eigenvalues ', 
     +                  NEV(3) 
      WRITE (*,*)' Number of distinct eigenvalues ', 
     +                  NEV(1) 
      WRITE (*,*)' Solution to eigenvalues ' 
      WRITE (*,*)' E  ',(E(I),I=1,NEV(3)) 
 299  CONTINUE 
      STOP 
      END 

 

(4) Method 

 This routine solves an eigenvalue problem of a tridiagonal matrix created from a real 
symmetric matrix.  The reduction to a tridiagonal form is the Householder reduction. 

 The eigenvalue problem of a tridiagonal matrix is calculated using multisectioning to find 
the eigenvalues and inverse iteration for the eigenvectors.  For details, see “VTDEV” and 
see [33] in Appendix B, “References.” 
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 The eigenvectors of the original matrix are found by multiplying the matrix of 
eigenvectors of the tridiagonal matrix by the matrix of transformations carried out in the 
reduction to the tridiagonal. 
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A22-72-0202  VSPLL, DVSPLL 
 
LLT decomposition of a symmetric positive definite matrix (blocked Cholesky 
decomposition method) 

CALL VSPLL (A,K,N,EPSZ,ICON) 
 
(1) Function 

 This subroutine executes LLT decomposition for an n × n positive definite matrix A using 
the blocked Cholesky decomposition method of outer product type, so that 

 A = LLT 

 where, L is a lower triangular matrix. 

 

(2) Parameters 

A .............. Input.  The coefficient matrix A. 

 Output.  Matrix L. 

 For input, the lower triangular part of A {aij | i ≥ j} is stored in the lower 
triangular part {A(i, j) | i ≥ j} of A(1:N,1:N). 

 For output, the lower triangular part of A(i,j) contains lij (i ≥ j) of the lower 
triangular matrix L. 

 (See Figure VSPLL-1.) 

 This is a two-dimensional array A(K,N). 

K .............. Input.  The adjustable dimension of array A (≥ N). 

N .............. Input.  Order n of coefficient matrix A. 

EPSZ ........ Input.  Judgment of relative zero of the pivot (≥ 0.0). 

 When EPSZ is 0.0, the standard value is assumed. 

 (See note 1) in (3), “Comments on use.”) 

ICON ........ Output.  Condition code. 
See Table VSPLL-1, “Condition codes.” 
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Figure VSPLL-1   Storing data by Cholesky decomposition 

The diagonal elements and lower triangular part aij of the positive definite matrix for which 
LLT decomposition is performed is stored in array A(i, j), i = j,...,n, j =1,...,n. 

After LLT decomposition, the lower triangular matrix L is stored in the lower triangular part. 
 

Table VSPLL-1   Condition codes 

Code Description Processing 

0 No error  

20000 The pivot became relatively zero.  The coefficient matrix 
A may be singular. 

20100 The pivot becomes negative.  The coefficient matrix is not 
positive definite. 

30000 N < 1, EPSZ < 0, K < N. 

Processing is 
discontinued. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II: AMACH, UBLL, UBLL2, UBLLX, UBLLX2, UBLLX3 

b. Comments 

1) If a value is set for EPSZ, the value has the following meaning:  if the value of 
the selected pivot is positive and less than the value for EPSZ during LLT 

decomposition by the Cholesky decomposition, the value of the pivot is assumed 
to be relatively zero and processing is discontinued with ICON = 20000.  When 
unit round off is u, the standard value of EPSZ is 16 × u. 

 When the computation is to be continued even if the value of the pivot becomes 
small, assign the minimum value to EPSZ.  In this case, however the result is not 
assured. 

2) If the pivotal value becomes negative during decomposition, the coefficient 
matrix is no longer positive definite.  Processing discontinues with ICON = 
20100. 
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3) After the calculation has been completed, the determinant of the coefficient 
matrix is computed by multiplying all the n diagonal elements of the array A and 
taking the square of the result. 

 

c.  Example of use 

 LLT decomposition is executed for a 2000 × 2000 matrix. 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N=2000,K=N+1) 
      REAL*8    A(K,N) 
C 
      DO J=1,N 
      DO I=J,N 
      A(I,J)=MIN(I,J) 
      ENDDO 
      ENDDO 
C 
      CALL DVSPLL(A,K,N,0.0d0,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GO TO 10 
C 
      S=1.D0 
      DO I=1,N 
      S=S*A(I,I) 
      ENDDO 
C 
      DET=S*S 
      WRITE(6,620) DET 
      WRITE(6,640) 
      DO J=1,5 
      WRITE(6,600) J,(A(I,J),I=J,5) 
      ENDDO 
  600 FORMAT(/10X,I5/(10X,3D23.16)) 
  610 FORMAT(/10X,5HICON=,I5) 
  620 FORMAT(/10X 
     *,22HDETERMINANT OF MATRIX=,D23.16) 
  640 FORMAT(/10X,17HDECOMPOSED MATRIX) 
   10 STOP 
      END 
 

(4) Method 

 See [14] in Appendix A, "References," for details of the blocked Cholesky decomposition 
method of outer product type. 
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A22-72-0302  VSPLX, DVSPLX 
 
A system of linear equations with LLT-decomposed positive definite matrix 

CALL VSPLX (B,FA,KFA,N,ICON) 
 
(1) Function 

 This subroutine solves a system of linear equations with LLT- decomposed symmetric 
positive definite coefficient matrix. 

 LLTx = b (1.1) 

 where, L is a lower triangular matrix, b is an n-dimensional real constant vector, x is an n-
dimensional solution vector, and n ≥ 1. 

 This subroutine receives the LLT-decomposed matrix from subroutine VSPLL and 
calculates the solution of a system of linear equations. 

(2) Parameters 

B .............. Input.  Constant vector b. 

 Output.  Solution vector x. 

 One-dimensional array of size n. 

FA ............ Input.  The LLT-decomposed matrix L is stored. 

 The lower triangular matrix L {lij | i ≥ j} is stored in the lower triangular part 
{FA(i, j) | i ≥ j)} of FA(1:N,1:N). See Figure VSPLX-1. 

 This is a two-dimensional array FA(KFA,N). 

KFA ......... Input.  The size of the first dimension of array FA. (≥ N) 

N .............. Input.  Order n of matrix L. 

ICON ........ Output.  Condition code. 
See Table VSPLX-1, “Condition codes.” 
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Figure VSPLX-1   Storing matrices L, D-1 into array FA 

After LLT decomposition, the lower triangular matrix L is stored in the lower triangular part of 
the array. 
 

Table VSPLX-1   Condition codes 

Code Description Processing 

0 No error  

20000 The coefficient matrix is singular. Processing is 
continued. 

30000 N < 1 or KFA < N. Processing is 
discontinued. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  none 

b. Comments 

1) A system of linear equations with a positive definite coefficient matrix can be 
solved by calling this subroutine after calling subroutine VSPLL.  However, 
subroutine VLSPX should be usually used to solve a system of linear equations 
in one step. 

 

c.  Example of use 

 A 2000 × 2000 coefficient matrix is decomposed into LLT-decomposed matrix, then 
the system of linear equations is solved. 

C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N=2000,KFA=N+1) 
      REAL*8 A(KFA,N) 
      REAL*8 B(N) 
C 
      DO J=1,N 
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      DO I=J,N 
      A(I,J)=MIN(I,J) 
      ENDDO 
      ENDDO 
 
      DO I=1,N 
      B(I)=I*(I+1)/2+I*(N-I) 
      ENDDO 
C 
      CALL DVSPLL(A,KFA,N,0.0D0,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GO TO 10 
 
      CALL DVSPLX(B,A,KFA,N,ICON) 
      WRITE(6,630) (B(I),I=1,10) 
 
      S=1.0D0 
      DO I=1,N 
      S=S*A(I,I) 
      ENDDO 
 
      DET=S*S 
      WRITE(6,620) DET 
      GO TO 10 
  610 FORMAT(/10X,5HICON=,I5) 
  620 FORMAT(/10X 
     *,34HDETERMINANT OF COEFFICIENT MATRIX= 
     *,D23.16) 
  630 FORMAT(/10X,15HSOLUTION VECTOR 
     *//(10X,3D23.16)) 
   10 STOP 
      END 
 

(4) Method 

 The system of linear equations with a LLT-decomposed coefficient matrix is solved by 
forward and back-substitution.  (See [14] in Appendix A, "References.") 
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F17-11-0301  VSRFT, DVSRFT 
 
One-dimensional and multiple discrete real Fourier transform (mixed radices of 2, 3, 
and 5) 

CALL VSRFT (X, M, N, ISIN, ISN, W, ICON) 
 
(1) Function 

 This subroutine performs one-dimensional discrete real Fourier transforms (for m 
multiplicity). 

 n must be a number expressed as a product of powers of 2, 3, and 5, where n is the size of 
the data to be transformed. 

1) Transform 

 Inputting {xk1j2} and performing the transform defined in (1.1), obtains {n αk1k2}. 
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 ωn = exp(2πi/n) 

 r = 1 or r = -1 can be specified for the transform direction. 

                          k1 = 0, 1, ..., m-1, 

                          k2 = 0, 1, ..., n-1 

2) Inverse transform 

 Inputting {αk1k2} and performing the transform defined in (2.1) obtains {xk1j2}. 
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 ωn = exp(2πi/n) 

 In the inverse transform, the direction inverse to that specified in the transform must 
be specified. 

 r = -1 or r = 1 

                          k1 = 0, 1, ..., m-1, 

                          j2 = 0, 1, ..., n-1 

 The result of the real Fourier transform has a complex conjugate relation.  The first 
n/2 + 1 elements of k2 in {n αk1k2} are stored.  Either m or n must be an even number. 

(2) Parameters 

X................ For ISN = 1 (transform from real to complex): 

Input.  Real data {xk1j2} is stored in X (1:m, 1:n). 

Output.  The real part of {n αk1k2} is stored in X (1:m, 1:n/2 + 1).  The 
imaginary part of {n αk1k2} is stored in X (1:m, n/2 + 2:2 × (n/2 + 1)). 

k1 = 0, 1, ..., m-1, 

k2 = 0, 1, ..., n/2 
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For ISN = -1 (transform from complex to real): 

Input.  The real part of {αk1k2} is stored in X (1:m, 1:n/2 + 1).  The imaginary 
part of {αk1k2} is stored in X (1:m, n/2 + 2:2 × (n/2 + 1)). 

k1 = 0, 1, ..., m-1, 

k2 = 0, 1, ..., n/2 

Output.  The real data {xk1j2} is stored in X (1:m, 1:n). 

Two-dimensional array X (m, (n + 4 × int ( n / 2 ))). 

X (m, 2 × (n/2 + 1) + 1:n + 4 × int ( n / 2 )) is used internally.  The operation 
result is not guaranteed. 

M................ Input.  m of the multiplicity (number of data items) for which one-dimensional 
discrete real Fourier transform is performed.  Either m or n must be an even 
number. 

N................ Input.  n of the size of data on which the one-dimensional discrete real Fourier 
transform is performed.  n is a number expressed as a product of powers of 2, 3, 
and 5.  Either m or n must be an even number. 

ISIN............ Input.  Fourier transform direction r. 

For ISIN = 1, r = 1. 

For ISIN = -1, r = -1. 

ISN............. Input. 

For ISN = 1, normal transform (real to complex). 

For ISN = -1, inverse transform (complex to real). 

W............... Work area. 

One-dimensional array of size 2 × n + m × (n +4 × int ( n / 2 )). 

ICON.......... Output.  Condition code. 

See Table VSRFT-1, “Condition codes.” 
 

Table VSRFT-1  Condition codes 

Code Description Processing  

0 No error - 

30001 M ≤ 0 or N ≤ 0 Processing is stopped. 

30008 N is not an integer expressed as a product of powers of 2, 
3, and 5. 

 

30016 ISIN ≠ 1 and ISIN ≠ -1  

30032 ISN ≠ 1 and ISN ≠ -1  

30512 Both M and N are odd numbers. Processing is stopped. 
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(3) Comments on use 

a. Subprograms used 

 SSLII:  UASSM, UCTSV, USEPR, UFIX, UJOIN, USPLT, UUFIX, USTUP, UCFS, 
UCF16, UCFT2, UCFT3, UCFT4, UCFT5, UCFT8, UFMRW, UCRU, UCTRF, 
MGSSL 

b. Comments 

1) General definition of Fourier transform 

 The multiple discrete Fourier transform and inverse transform are generally 
defined as in (3.1) and (3.2). 
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                                               k1 = 0, 1, ..., m-1 

                                             , k2 = 0, 1, ..., n-1 
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                                               j1 = 0, 1, ..., m-1 

                                             , j2 = 0, 1, ..., n-1 

 where 

                                             )/2exp( niπω =  

 The subroutine calculates n 21kkα  or xj1j2 corresponding to the left-hand terms of 
(1.1) and (1.2).  If necessary, the user must normalize the results. 

2) The result of the multiple discrete real Fourier transform has the following 
complex conjugate relation: 

              ______ 
2121 knkkk −= αα  

                     k1 = 0, ..., m-1 

                   , k2 = 1, ..., n/2 

 The rest of terms can be calculated using this relation. 

3) Two methods are used, one for when n is an even number and one for when m is 
an even number.  The method for when n is even has the vector length is about 

nm .  The method for when m is even has vector length m/2, but performs less 
data movement. 

 The routine performs transforms at maximum speed when m is a large even 
number. 

c. Example of use 

 In this example, a one-dimensional real FFT of multiplicity m = 500 is calculated. 
 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
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      PARAMETER(M=500,N=2**10) 
      PARAMETER(N2=N+4*22) 
      DIMENSION X(M,N2),W(2*N+M*N2) 
C 
      DO 100 J=1,M 
      DO 100 I=1,N 
      X(J,I)=FLOAT(I)+FLOAT(N)*(J-1) 
  100 CONTINUE 
C 
      ISIN=1 
      ISN= 1 
C 
C     REAL TO COMPLEX TRANSFORM 
C 
      CALL DVSRFT(X,M,N,ISIN,ISN,W,ICON) 
      PRINT*,'ICON=',ICON 
C 
      ISIN=-1 
      ISN=-1 
C 
C     COMPLEX TO REAL TRANSFORM 
C 
      CALL DVSRFT(X,M,N,ISIN,ISN,W,ICON) 
      PRINT*,'ICON=',ICON 
C 
      ERROR=0.0D0 
      DO 200 J=1,M 
      DO 200 I=1,N 
      ERROR=MAX(ABS(X(J,I)/N- 
     &      (FLOAT(I)+FLOAT(N)*(J-1))),ERROR) 
  200 CONTINUE 
C 
      PRINT*,'ERROR=',ERROR 
      STOP 
      END 
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B71-12-0101  VTDEV, DVTDEV 
 
Eigenvalues and eigenvectors of real tridiagonal matrix 

CALL VTDEV (D, SL, SU, N, NF, IVEC, ETOL, CTOL, NEV, E, MAXNE, EV,  
                          K, M, VW, IVW, ICON) 
 
(1) Function 

 This routine computes the eigenvalues and, optionally, the corresponding eigenvectors of 
a real tridiagonal matrix. 

 Tx = λx (1.1) 

 The subdiagonal and superdiagonal elements of the tridiagonal matrix T of dimension n 
must satisfy the following conditions: 

 li ui-1 > 0, i = 2, ... , n (1.2) 

 Where l1 is equal to un = 0 and 

 (Tv)i = li vi-1 + di vi + ui vi+1, i = 1, 2, ... , n (1.3) 

(2) Parameters 

D................ Input.  One-dimensional array D (N) containing the diagonal elements of T. 

SL............... Input.  One-dimensional array SL (N) containing the subdiagonal elements of T 
in SL (2:N).  SL (1) = 0. 

SU.............. Input.  One-dimensional array SU (N) containing superdiagonal elements of T 
in SU (1:N-1).  SU (N) = 0. 

N................ Input. Order n of tridiagonal matrix. 

NF.............. Input.  The index of the first eigenvalue sought, where eigenvalues are 
numbered in ascending order.  Eigenvalues with indices in the range NF to NF 
+ NEV (1) - 1 are computed. 
Output.  The index of the first eigenvalue obtained, taking into account the case 
in which the first obtained eigenvalue is multiple and/or part of a cluster. 

IVEC.......... Input.  Control information. 
1:  Both the eigenvalues and eigenvectors are sought. 
Other than 1:  Only the eigenvalues is sought. 

ETOL......... Input.  A criterion value required to determine whether an eigenvalue is distinct 
or numerically multiple based on expression (3.4).  The default value is 3.0D-16 
for double precision (2.0D-7 for single precision) when this value is set to less 
than. 
(See item (3), “Comments on use,” b., 2).) 

CTOL......... Input.  A criterion value required to determine whether adjacent eigenvalues are 
approximately multiple i.e. clustered according to expression (3.4).  CTOL ≥ 
ETOL 
When CTOL is less than ETOL, CTOL = ETOL is set. 
(See item (3), “Comments on use,” b., 2).) 

NEV........... Input.  NEV (1) indicates the number eigenvalues to be computed. 
Output.  NEV (1) indicates the number of distinct eigenvalues. 
NEV (2) indicates the number of distinct clusters. 
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NEV (3) indicates the total number of eigenvalues including multiplicities. 
One-dimensional array NEV (3). 

E................. Output.  
The eigenvalues computed are stored in E(1:NEV(3)). 
One-dimensional array E (MAXNE). 

MAXNE...... Input.  The maximum number of eigenvalues that can be computed. 
Dimension of array E. 
When NEV (3) is greater than MAXNE, eigenvectors cannot be computed. 
(See item (3), “Comments on use,” b., 3).)  

EV.............. Output.  When IVEC = 1, the eigenvectors corresponding to the computed 
eigenvalues are returned in EV (1:N, 1:NEV(3)). 
Two-dimensional array EV (K, MAXNE). 

K................ Input.  Leading dimension of array EV (≥ N). 

M................ Output.  Information about the multiplicity of the computed eigenvalues. 
M (i, 1) indicates the multiplicity of the i-th eigenvalue λi.  M (i, 2) indicates the 
size of the i-th cluster of eigenvalues. 
(See item (3), “Comments on use,” b., 3).)  
Two-dimensional array M (MAXNE, 2). 

VW............. Work area.  One-dimensional array of size 12 × N. 

IVW........... Work area.  One-dimensional array of size 9 × MAXNE + 128. 

ICON.......... Output.  Condition code. 
See Table VTDEV-1, “Condition codes.” 

 
Table VTDEV-1   Condition codes 

Code Meaning Processing  

0 No error - 

20000 The total number of eigenvalues 
exceeded MAXNE during computation 
of multiple eigenvalues and/or 
clustered. 

Processing is stopped.  The eigenvectors 
cannot be computed.  Eigenvalues are 
returned but are not stored taking into 
account multiplicities. 

(See item (3), “Comments on use,” b., 
3).) 

30000 N<1, K<1, NF<1, NEV(1)<1, 
NF+NEV (1)>N, N>K 

Processing is stopped. 

30100 SL (i) × SU (i-1) ≤ 0, 
The matrix cannot be symmetrized. 

Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  UTMLS, UZRDM, UTDEY, UTDEX, UIBBS, UIBFC, UIBFE, UIBSL, 
UITBS, UITFC, UITFE, UITSL, AMACH, MGSSL 

b. Comments 

1) Problem solved using this routine 
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 This routine requires only that li ui-1 > 0.  Therefore, this routine can also used to 
solve the generalized eigenvalue problem in (3.1) by the following replacement: 

 T ← TD-1 

 DvTv λ=  (3.1) 

 Where, the diagonal matrix must satisfy D > 0. 

 The eigenvalue problem for T can be reduced to a symmetric generalized 
eigenvalue problem. 

 0)( =− vDDT λ  (3.2) 

 Where, D1 = 1 and Di = ui-1 Di-1 / li i = 2, ... , n.  

 If Di can cause a scaling problem, it is preferable to consider the symmetric 
problem. 

 0)( 2/12/1 =− wITDD λ  (3.3) 

 Where w = D1/2 v. 

2) This routine pays special attention to a clustered eigenvalue.   

 With ε is equal to ETOL, suppose that the eigenvalues ,...1,, += ssjjλ , and s+k 

(k ≥ 0) are such that 

ε
λλ

λλ
≤

+

−

−

−

),max(1 1

1

ii

ii  (3.4) 

 While (3.4) is not satisfied for i = s-1 and i = s + k + 1, then eigenvalues jλ , j = 
s - 1, s, ..., s + k are considered to be identical, i.e., a single multiple eigenvalue 
of multiplicity k + 1. 

 The default value of ETOL is 3.0D-16 for double precision (2.0D-7 for single-
precision).  Using this value, eigenvalues are refined to machine precision.  

 When (3.4) is not satisfied for ETOL=ε , 1−iλ  and iλ  are assumed to be 
distinct eigenvalues. 

 If (3.4) holds with ε = CTOL (but not with ε = ETOL) for eigenvalues mλ , m=t, 
t+1, ..., t+k but not for 1−tλ  and 1++ktλ , these eigenvalues are considered to be 
approximately multiple, i.e. clustered, though distinct (not numerically multiple).  
In order to obtain an invariant subspace, eigenvectors corresponding to clustered 
eigenvalues are computed using orthogonal starting vectors and are 
reorthogonalized.  Of course CTOL ≥ ETOL; if this condition is not satisfied, 
CTOL is set to be equal to ETOL.  

3) Assume r eigenvalues are requested.  Note that if the first or last requested 
eigenvalue has a multiplicity greater than 1 then more than r eigenvalues, are 
obtained.  The corresponding eigenvectors can be computed only when the 
corresponding eigenvector storage area is sufficient.   

 The maximum number of computable eigenvalues can be specified in MAXNE.  
If the total number of eigenvalues exceeds MAXNE, ICON = 20000 is returned.  
The corresponding eigenvectors cannot be computed.  In this case, the 
eigenvalues are returned, but they are not stored repeatedly according to 
multiplicities. 
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 When all eigenvalues are distinct, it is sufficient to set MAXNE = NEV (1). 

c. Example of use 

 Here, we give a simple calculation to find ne eigenvalues and corresponding 
eigenvectors for a model problem based on a modification of one due to Wilkinson 
[45] which is known to have numerically multiple eigenvalues. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      INTEGER K,P1,Q1,N,N0,N1,MAX_CLUS,NE,MAXNE,NVW,NIVW 
      REAL*8 ETOL,CTOL 
C 
      PARAMETER (K=1000) 
      PARAMETER (P1=350,Q1=2,N=P1*Q1,N0=584,N1=686, 
     &           NE=N1-N0+1) 
      PARAMETER (MAX_CLUS=2*Q1,MAXNE=NE+MAX_CLUS) 
      PARAMETER (NVW=12*N,NIVW=9*MAXNE+128) 
C 
      REAL*8 SL(N),D(N),SU(N),E(MAXNE),EV(K,MAXNE),VW(NVW) 
      INTEGER M(MAXNE,2),NEV(3),IVW(NIVW),NF,ICON,NEVAL,I 
     &        ,J,KK,IVEC 
      LOGICAL EVAL_OUTPUT,DBG_OUTPUT 
C 
      ETOL=3.D-16 
      CTOL=5.D-12 
      IVEC=1 
C 
C     Blocked W ^+_n (Wilkinson):  Pathologically close 
C     eigenvalues in each p1 x p1 (p1 odd, small) block, 
C     with q1 blocks so that multiplicity of largest  
C     eigenvalues is 2*q1.  If maxnev <2*q1 then error 
C     condition 20000 is obtained. 
C 
      J = ( P1 + 1 ) / 2 
      D(J) = 0.D0 
      DO 10 I=1,J-1                    ! first block 
         SL(I+1)  = 1.D0 
         SU(I)    = 1.D0 
         SL(J+I)  = 1.D0 
         SU(J+I-1) = 1.D0 
         D(I)     = FLOAT(J-I) 
         D(2*J-I) = D(I) 
   10 CONTINUE 
      SL(1)  = 0.D0 
      SU(P1) = 0.D0 
      DO 20 KK=2,Q1                    ! subsequent blocks 
         II = (KK-1) * P1 
         DO 20 I=1,P1 
            SL(II+I) = SL(I) 
            SU(II+I) = SU(I) 
            D(II+I) = D(I) 
   20 CONTINUE 
      SL(1) = 0.D0 
      SU(N) = 0.D0 
      NF     = N0 
      NEV(1) = NE 
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      ICON = 0 
C 
      CALL DVTDEV(D,SL,SU,N,NF,IVEC,ETOL,CTOL,NEV,E,MAXNE 
     &            ,EV,K,M,VW,IVW,ICON) 
C 
      DBG_OUTPUT = .FALSE. 
      IF( ICON .EQ. 20000 ) DBG_OUTPUT = .TRUE. 
      EVAL_OUTPUT = .TRUE. 
      IF ( ICON .EQ. 30000 .OR. ICON .EQ. 30100 ) 
     &   EVAL_OUTPUT = .FALSE. 
      IF ( EVAL_OUTPUT ) THEN 
         NEVAL = NF 
         WRITE(*,*)' ICON = ',ICON 
         II=1 
         DO 30 J=1,NEV(1) 
               WRITE(*,900) NEVAL,E(II),M(J,1) 
            IF ( DBG_OUTPUT ) THEN 
               II = II + 1 
            ELSE 
               II = II + M(J,1) 
            ENDIF 
            NEVAL = NEVAL + M(J,1) 
   30    CONTINUE 
      ENDIF 
C 
  900 FORMAT(' EIGENVALUE(',I5,')=',E25.18,2X, 
     &       ' WITH MULTIPLICITY=',I5) 
C 
      STOP 
      END 
 

(4) Method 

 In the version of the Sturm count-based algorithm used here at least three subintervals are 
required in the refinement of each interval over which a sign change is detected [37].  
Therefore at least 4 × MAXNE points are required.  Since this number determines the 
vector length used in the computation and the minimum vector register length on the VPP 
series is 64, this routine sets the number of points to be some multiple of 64 which is 
larger than 4 × MAXNE. 

 A composite data structure is used:  An array structure which facilitates vectorization is 
combined with an LIFO (last in, first out) list structure to keep track of both eigenvalue 
ordering and multisectioning; this is discussed in [33].  The computation is carried out 
until the limit of refinement as determined by ETOL is reached. (See [45].)  When the 
default value is selected, the accuracy of the eigenvalue estimate relative to the scale of 
the matrix should approach machine precision. 

 The prescription for evaluating the Sturm count, follows [10]; it has the property that the 
sign count is a monotonic function of the eigenvalue parameter in IEEE floating-point 
arithmetic.   

 Eigenvectors are computed by inverse iteration.  The initial vector is chosen using the 
sign structure of the Sturm sequence except when numerically multiple (or approximately 
multiple) eigenvalues have been detected.  In this case additional initial vectors are 
generated randomly and orthogonalized with respect to the other vectors of the cluster.  
Usually one step of inverse iteration suffices.  Eigenvectors corresponding to clustered 
eigenvalues are also reorthogonalized after inverse iteration.  
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A72-25-0101  VTFQD, DVTFQD 
 
System of linear equations with unsymmetric or indefinite sparse matrix (TFQMR 
method, diagonal storage format) 

CALL VTFQD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS, X, ITER,  
                          VW, ICON) 
 
(1) Function 

 This routine solves linear equations with an n × n unsymmetric or indefinite sparse matrix 
using the transpose-free quasi-minimal residual method (TFQMR).   

 Ax = b 

 The n × n coefficient is stored with the diagonal format method.  Vectors b and x are n-
dimensional vectors.   

 The iterative calculation may not be continued (break-down) because of the 
characteristics of the initial vector and coefficient matrices.  This is because zero is 
obtained as the intermediate result in the recursive calculation formula.  In this case, use 
the MGCR method that causes no break-down. 

 Regarding the convergence and the guideline on the usage of iterative methods, see 
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I. 

  

(2) Parameters 

A................ Input.  Stores non-zero elements in a coefficient matrix. 
Two-dimensional array A (K, NDIAG).  Stores coefficient matrix A in A (1:N, 
NDIAG) with the diagonal storage format. For the diagonal storage format, see 
Part I, “Overview,” Section 3.2.1.1, “Storage Methods for General Sparse 
Matrices,” b., “Diagonal Storage Format for General Sparse Matrices.” 

K................ Input.  Size of adjustable dimension of array A  

NDIAG....... Input.  The number of diagonal vectors in coefficient matrix A that contain non-
zero elements. 
Size of second-dimension of array A. 

N................ Input.  Order n of matrix A. 

NOFST.... Input.  Stores the distance from the main diagonal vector corresponding to 
diagonal vectors stored in array A.  Superdiagonal vectors have positive values; 
a subdiagonal vector have negative values. 
One-dimensional array NOFST (NDIAG). 

B................. Input.  One-dimensional array of size n.  Stores the constant vector of the right-
hand side term of a linear equation system. 

ITMAX....... Input. The upper limit of iterations in TFQMR method (> 0). 

EPS............. Input.  A convergence criterion value in judgment of convergency. 
If EPS is 0.0 or less, it is set to 10-6 in double-precision routines and 10-4 in 
single-precision routines.   
(See item (3), “Comments on use,” b., 1).) 
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IGUSS........ Input.  Sets control information about whether to start the iterative computation 
from the approximate value of the solution vector specified in array X.   
IGUSS=0:  Approximate value of the solution vector is not specified. 
IGUSS≠0:  The iterative computation starts from the approximate value of the 
solution vector specified in array X. 

X................. Input.  One-dimensional array of size n.  Can specify the approximate value of 
the solution vector. 
Output.  The solution vector is stored. 

ITER........... Output. Number of iteration performed using the QMR method. 

VW............. Work area.  One-dimensional array K × 10 + N + NBANDL + NBANDR. 
NBANDL indicates a lower bandwidth; NBANDR indicates an upper 
bandwidth. 

ICON.......... Output.  Condition code 
See Table VTFQD-1, “Condition codes.” 

 
Table VTFQD-1   Condition codes 

Code Meaning Processing  

0 No error - 

20000 Break-down occurred Processing is stopped. 

0001 The upper limit of iteration steps was 
reached. 

Processing is stopped. 

The approximate value obtained up to 
this point in array X is output, but their 
precision cannot be guaranteed. 

30000 K<1, N<1, K<N, NDIAG<1, 
K<NDIAG, or ITMAX ≤ 0 

Processing is stopped. 

32001 | NOFST (I) | > N-1 Processing is stopped. 
 
(1) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, URGWD, URIPA, URITI, URITT, URMVD, USSCP, URSTE, 
USVCN, USVCP, USVSU, USVUP, USVN2, URELT, MGSSL, UTFQD, UTFQR, 
UQBBM 

b. Comments 

1) In the QMR method, if the residual Euclidean norm is equal to or less than the 
product of the initial residual Euclidean norm and EPS, it is judged as having 
converged.  The difference between the precise solution and the obtained 
approximation is roughly equal to the product of the condition number of Matrix 
A and EPS. 

2) Notes on using the diagonal format 

 A diagonal vector element outside coefficient matrix A must be set to zero. 
There is no restriction in the order in which diagonal vectors are stored in array 
A.   

 The advantage of this method lies in the fact that the matrix vector multiplication 
can be calculated without the use of indirect indices.  The disadvantage is that 
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matrices without the diagonal structure cannot be stored efficiently with this 
method. 

c. Example of use 

 In this example, linear equations of coefficient matrices obtained by discretizing 
partial differential operators are solved in the region [0,1] × [0,1] × [0,1], with the 
Dirichlet boundary condition (function value zero at the boundary). 

 This type of partial differential operator is described in Part I, “Overview,” Section 
3.2.2 “Discretization of partial differential operators and storage examples for them.” 

 For INIT_MAT_DIAG, see Part I, “Overview,” Section 3.2.2, “Discretization of 
partial differential operators and storage examples for them.”  
GET_BANDWIDTH_DIAG is a routine that estimates band width.  INIT_SOL is a 
routine that generates solution vectors to be sought with random numbers. 

 
C     **EXAMPLE** 
      PROGRAM TEST_ITER_SOLVERS 
      IMPLICIT REAL*8 (A-H,O-Z) 
      INTEGER MACH 
      PARAMETER (MACH = 0) 
      PARAMETER (K = 10000) 
      PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ) 
      PARAMETER (NDIAG = 7,NVW = 10*K+N+400+400) 
      REAL*8 A(K,NDIAG),X(N),B(N),SOLEX(N),VW(NVW) 
      INTEGER NOFST(NDIAG) 
C 
      CALL INIT_SOL(SOLEX,N,1D0,MACH) 
      PRINT*,'EXPECTED SOLUSIONS' 
      PRINT*,'X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
C 
      PRINT * 
      PRINT *,'    TFQMR METHOD' 
      PRINT *,'    DIAGONAL FORMAT' 
C 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
      CALL GET_BANDWIDTH_DIAG(NOFST,NDIAG,NBANDL,NBANDR) 
         DO 110 I = 1,N 
            VW(I+NBANDL) = SOLEX(I) 
 110     CONTINUE 
      CALL DVMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON) 
      PRINT*,'DVMVSD ICON=',ICON 
C 
      EPS = 1D-10 
      IGUSS = 0 
      ITMAX = 2000 
      CALL DVTFQD(A,K,NDIAG,N,NOFST,B,ITMAX 
     &            ,EPS,IGUSS,X,ITER,VW,ICON) 
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C 
      PRINT* ,'ITER = ',ITER 
      PRINT* ,'DVTFQD ICON = ',ICON 
      PRINT*, 'COMPUTED VALUES' 
      PRINT*, 'X(1) = ',X(1),' X(N) = ',X(N) 
      STOP 
      END 
 

(4) Method 

 For the TFQMR method, see [12]. 
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A72-26-0101  VTFQE, DVTFQE 
 
System of linear equations with unsymmetric or indefinite sparse matrix (TFQMR 
method, ELLPACK storage format) 

CALL VTFQE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS, X, ITER, VW,  
                         ICON) 
 
(1) Function 

 This routine solves linear equations with an n × n unsymmetric or indefinite sparse matrix 
using the transpose-free quasi-minimal residual method. 

 Ax = b 

 Coefficient matrices (n × n) are stored with the ELLPACK format  method.  Vectors b 
and x are n-dimensional vectors.   

 The iterative calculation may not be continued (break-down) because of the 
characteristics of the initial vector and coefficient matrices.  This is because zero is 
obtained as the intermediate result in the recursive calculation formula.  In this case, use 
the MGCR method that causes no break-down. 

 Regarding the convergence and the guideline on the usage of iterative methods, see 
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I. 

  

(2) Parameters 

A................ Input.  Stores non-zero elements of the coefficient matrix. 
Two-dimensional array A (K, IWIDT).   
For the ELLPACK storage format, see Part I, “Overview,” Section 3.2.1.1, 
“Storage Method for General Sparse Matrices.” 

K................ Input.  Size of adjustable dimension (≥ n) of A and ICOL. 

IWIDT...... Input.  The maximum number of non-zero-elements in row vector direction on  
the coefficient matrix A. 
Two dimensional size of A and ICOL. 

N................ Input.  Order n of matrix A. 

ICOL.......... Input.  Store the column indices of the element stored in the array A using the 
ELLPACK format, indicating which column vectors the corresponding 
elements in the array A belong to. 
Two-dimensional array ICOL (K, IWIDT) 

B................. Input.  One-dimensional array of size n.  Stores a constant vector of the right-
hand-side term of a linear equation system. 

ITMAX....... Input.  The upper limit of iterations in TFQMR method (> 0). 

EPS............. Input.  A convergence criterion value in judgment of convergency. 
If EPS is 0.0 or less, it is set to 10-6 in double-precision routines and 10-4 in 
single-precision routines.   
(See item (3), “Comments on use,” b., 1).) 

IGUSS........ Input.  Control information about whether to start the iterative computation 
from the approximate value of the solution vector specified in array X.  
IGUSS=0:  Approximate value of the solution vector is not set. 
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IGUSS≠0:  The iterative computation starts from the approximate value of the 
solution vector specified in array X. 

X................ Input.  One-dimensional array of size n.  An approximate value of a solution 
vector can be specified. 
Output.  Stores a solution vector. 

ITER.......... Output.  The real number of iteration steps in TFQMR method. 

VW............. Work area.  One-dimensional array K × 13. 

ICON.......... Output.  Condition code 
See Table VTFQE-1, “Condition codes.” 

 
Table VTFQE-1   Condition codes 

Code Meaning Processing  

0 No error - 

20000 Break-down occurred Processing is stopped. 

20001 The upper limit of iteration steps was 
reached. 

Processing is stopped. 

The approximate values obtained up to 
this point in array X are output, but their 
precision cannot be guaranteed. 

30000 K<1, N<1, K<N, IWIDT<1, K<IWIDT, 
or 
ITMAX ≤ 0 

Processing is stopped. 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  AMACH, URIPA, URITI, URITT, URMVE, USSCP, URSTE, USVCN,  
             USVCP, USVSU, USVUP, USVN2, URELT, MGSSL, UTFQE, UTFQR,  
             UQBBM 

 b. Comments 

1) In the TFQMR method, if the residual Euclidean norm is equal to or less than the 
product of the initial residual Euclidean norm and EPS, it is judged as having 
converged.  The difference between the precise solution and obtained 
approximate solution is equal to the product of the condition number of matrix A 
and EPS. 

c. Example of use 

 In this example, linear equations of coefficient matrices obtained by discretizing 
partial differential operators are solved in the region [0,1] × [0,1] × [0,1] with the 
Dirichlet boundary condition (function value zero at the boundary).  This type of 
partial differential operator is described in Part I, “Overview,” Section 3.2.2, 
“Discretization of partial differential operator and storage examples for them.” 

 For INIT_MAT_ELL, see Part I, “Overview,” Section 3.2.2, “Discretization of 
partial differential operators and storage examples for them.” 

 INIT_SOL is the routine that generates the solution vectors to be sought in random 
numbers. 
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C     **EXAMPLE** 
      PROGRAM TEST_ITER_SOLVERS 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (MACH = 0) 
      PARAMETER (K = 10000) 
      PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ) 
      PARAMETER (IWIDT = 7,NVW = K*13) 
      REAL*8 A(K,IWIDT),X(N),B(N),SOLEX(N),VW(NVW) 
      INTEGER ICOL(K,IWIDT) 
C 
      CALL INIT_SOL(SOLEX,N,1D0,MACH) 
      PRINT*,'EXPECTED SOLUTION' 
      PRINT*,'X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT* 
      PRINT*,'     TFQMR METHOD' 
      PRINT*,'     ELLPACK FORMAT' 
C 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 5D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
C 
      CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL 
     &          ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K) 
      CALL DVMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON) 
      PRINT*,'DVMVSE ICON = ',ICON 
C 
      EPS = 1D-10 
      IGUSS = 0 
      ITMAX = 800 
      CALL DVTFQE(A,K,IWIDT,N,ICOL,B,ITMAX 
     &            ,EPS,IGUSS,X,ITER,VW,ICON) 
C 
      PRINT*,'DVTFQE ICON = ',ICON 
      PRINT*,'COMPUTED VALUE' 
      PRINT*,'X(1) = ',X(1),' X(N) = ',X(N) 
      STOP 
      END 
 

(4) Method 

 For the TFQMR method, see [12]. 
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F18-11-0101  VWFLT, DVWFLT 
 
Wavelet filter generation 

CALL VWFLT (F, N, ICON) 
 
(1) Function 

 This routine generates a filter corresponding to the Daubechies wavelet (order n) having a 
compact support.  The filters of order 2, 4, 6, 12, and 20 can be generated. 

(2) Parameters 

F................. Output.  One-dimensional array of size 2 × N.  Stores a wavelet filter used for 
transform. 
(See item (3), “Comments on use,” b., 1).) 

N................. Input.  The number of wavelet filter coefficients. (2, 4, 6, 12, or 20) 

ICON.......... Output.  Condition code.   
See Table VWFLT-1, “Condition codes.” 

 
Table VWFLT-1   Condition codes 

Code Meaning Processing  

0 No error - 

30000 N is not 2, 4, 6, 12, or 20. Processing is stopped. 
 
(3) Comments on use 

a. Subprograms used 

 None. 

b. Comments 

1) Filter conditions 

 The orthogonal filter used for this function is described by a vector of size 2 × N.  
F(1) ,..., F(N) defines a low-pass filter; F(N+1), ..., F(2×N) defines a high-pass 
filter.  These coefficients satisfy the following relationships: 

 F( )   F(2N +1- ) = (-1)   F2i i i ii

i
= =∑

=
1 1

1
, ( ), ,...,

N
N  

 For details, see [7] and [9]. 

c. Example of use 

 This example shows a one-dimensional wavelet transform and inverse transform for 
data of size n = 1024. 
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C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
 
C     -------- Constants ------------ 
      INTEGER MaxK, MaxSize 
      PARAMETER (MaxK = 20,MaxSize = 1024) 
 
C     -------- Variables and formats ------------ 
      INTEGER N,K,i,ISN,ICON,LS 
      REAL*8 X(1:MaxSize),T(1:MaxSize),Y(1:MaxSize), 
     &       F(1:2*MaxK), 
     &       ireal,Emax,diff,temp,Xmax,Erel 
 
C     -------- Generate input ------------ 
      N  = 1024 
      K  = 6 
      LS = 3 
 
      DO 100 i= 1,N 
        ireal = i 
        temp = 0.5 - abs(ireal/N - 0.5) 
        X(i) = temp                     ! Input vector 
        T(i) = temp                     ! Reference vector 
 100  CONTINUE 
 
C     ---------------  Initialize filter ------ 
      CALL DVWFLT(F,K,ICON) 
 
C     ---------------- Transform Data ---------------- 
 
      ISN=1 
      CALL DV1DWT(X,N,Y,ISN,F,K,LS,ICON) 
      IF (ICON .NE. 0) THEN 
        PRINT*,'ERROR IN 1D Wavelet Transform,ICON = ',ICON 
        STOP 
      ENDIF 
 
C     ---------------- Transform back --------------- 
 
      ISN=-1 
      CALL DV1DWT(X,N,Y,ISN,F,K,LS,ICON) 
      IF (ICON .NE. 0) THEN 
        PRINT*,'ERROR IN Inverse of 1D Wavelet Transform,' 
     &        ,'ICON = ',ICON 
        STOP 
      ENDIF 
 
C     ------ Verify result ------ 
 
      Emax = 0.0 
      Xmax = 0.0 
      DO 200 i=1,N 
        diff = abs(X(i)-T(i)) 
        IF (diff .GT. Emax) Emax = diff 
        IF (abs(X(i)) .GT. Xmax) Xmax = abs(X(i)) 
 200  CONTINUE 
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      Erel = Emax/Xmax 
      IF (Erel .GT. 1.0e-4) THEN 
        PRINT*,'Relative Max error (FWT):',Erel 
        STOP 
      END IF 
      PRINT*,'1D Wavelet Transform OK' 
 
      STOP 
      END 
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F18-12-0101  V1DWT, DV1DWT 
 
One-dimensional wavelet transform 

CALL V1DWT (X, N, Y, ISN, F, K, LS, ICON) 
 
(1) Function 

 This routine performs a one-dimensional wavelet transform or its inverse.  The transform 
is defined by its high- and low- pass filter coefficients. 

(2) Parameters 

X............... Input or output.  One-dimensional array X(N).  Stores vector data to be 
transformed as input in the case of wavelet transform (ISN = 1); 
the transformed vector data is stored as output in the case of the inverse 
transform (ISN = -1). 

N................ Input.  Length of the transformed data.  Must be a power of two. 
(See item (3), “Comments on use,” b., 1).) 

Y................. Output or input.  One-dimensional array Y(N).  The transformed vector data is 
stored as output in the case of the wavelet transform (ISN = 1); store vector data 
to be transformed as input in the case of the inverse transform (ISN = -1). 
(See item (3), “Comments on use,” b., 2).) 

ISN............. Input.  Specify transform or inverse transform. 
Transform:  ISN = 1 
Inverse transform:  ISN = -1 

F................. Input.  One-dimensional array of size 2 × K.  Stores the wavelet filter used for 
transform.  The user can supply either the filter coefficients F, or call VWFLT 
before this routine to specify a filter coefficient used for the one-dimensional 
wavelet transform. 
(See item (3), “Comments on use,” b., 3).) 

K................. Input.  A positive even number to indicate the number of the wavelet filter 
coefficients. 

LS............... Input.  A positive integer that indicates the depth of transform for vector data.  
N ≥ 2LS.  When N = 2LS, a full wavelet transform is performed. 

ICON.......... Output.  Condition code. 
See Table V1DWT-1, “Condition codes.”   

 
Table  V1DWT-1   Condition codes 

Code Meaning Processing  

0 No error - 

30000 ISN ≠ 1 and ISN ≠ -1 Processing is stopped. 

30002 N<2  

30004 N is not a power of 2.  

30008 K is not an even number, or LS < 0, LS 
> log2N 

Processing is stopped. 
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(3) Comments on use 

a. Subprograms used 

 SSL II:  UWFT1, UWFI1, UWPT1, UWVI1, UWPI1, UWVT1, MGSSL 

b. Comments 

1) When the size of the data to be transformed is not a power of two, the wavelet 
transform can be done storing the data with the remaining data padded with 
zeros in a larger array with size N of a power of two. 

2) Storing the transform result 

 For vector vj in one-dimensional input data, the result of the high-pass filter in 
each partial wavelet transform is stored in vj (N×2-i+1:N×2-i+1), i=1, ..., LS.  The 
output result of the high-pass filter for partial wavelet transform in the first stage 
is stored in Y(N/2 + 1:N, M/2 + 1: M). 

3) Filter conditions 

 The orthogonal filter used for this function generally has a vector of size 2 × K.  
F(1), ..., F(K) defines the low-pass filter coefficients; F(K+1), ..., F(2×K) defines 
the high-pass filter coefficients.  These coefficients have the following 
relationships: 

KF
K

...,,1),(  (-1)=)-1+F(2K  ,1)F( 
1

2∑
=

==
i

i iiii  

 For details, see [7] and [9]. 

c. Example of use 

 For data of size n = 1024, perform the one-dimensional wavelet transform and 
inverse transform. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
 
C     -------- Constants ------------ 
      INTEGER MaxK, MaxSize 
      PARAMETER (MaxK = 20, 
     &           MaxSize = 1024) 
 
C     -------- Variables and formats ------------ 
      INTEGER N,K,i,ISN,ICON,LS 
      REAL*8 X(1:MaxSize),T(1:MaxSize),Y(1:MaxSize), 
     &       F(1:2*MaxK), 
     &       ireal,Emax,diff,temp,Xmax,Erel 
C     -------- Generate input ------------ 
      N  = 1024 
      K  = 6 
      LS = 3 
 
      DO 100 i= 1,N 
        ireal = i 
 
        temp = 0.5 - abs(ireal/N - 0.5) 
        X(i) = temp                     ! Input vector 



V1DWT, DV1DWT 

Fujitsu SSL II Extended Capabilities User’s Guide II II-195 

        T(i) = temp                     ! Reference vector 
 100  CONTINUE 
 
C     ---------------  Initialize filter ------ 
      CALL DVWFLT(F,K,ICON) 
 
C     ---------------- Transform Data ---------------- 
 
      ISN=1 
      CALL DV1DWT(X,N,Y,ISN,F,K,LS,ICON) 
      IF (ICON .NE. 0) THEN 
        PRINT*,'ERROR IN 1D Wavelet Transform,ICON = ',ICON 
        STOP 
      ENDIF 
 
C     ---------------- Transform back --------------- 
 
      ISN=-1 
      CALL DV1DWT(X,N,Y,ISN,F,K,LS,ICON) 
      IF (ICON .NE. 0) THEN 
        PRINT*,'ERROR IN Inverse of 1D Wavelet Transform,' 
     &        ,'ICON = ',ICON 
        STOP 
      ENDIF 
 
C     ------ Verify result ------ 
 
      Emax = 0.0 
      Xmax = 0.0 
      DO 200 i=1,N 
        diff = abs(X(i)-T(i)) 
        IF (diff .GT. Emax) Emax = diff 
        IF (abs(X(i)) .GT. Xmax) Xmax = abs(X(i)) 
 200  CONTINUE 
        Erel = Emax/Xmax 
        IF (Erel .GT. 1.0e-4) THEN 
          PRINT*,'Relative Max error (FWT):',Erel 
          STOP 
        END IF 
        PRINT*,'1D Wavelet Transform OK' 
 
        STOP 
        END 
 

(4) Method 

 A partial wavelet transform of a vector s (usually a signal) of length N is obtained by 
applying a low-pass and a high-pass filters.  The subvector w1, ..., wn/2 is obtained by 
applying the low-pass filter to s.  The subvector wn/2+1, ..., wn is obtained by applying the 
high-press filter to s. 

 A wavelet transform is the recursive application of a partial wavelet transform to the 
subvector containing the low-pass filtered components, up to log2 (n) times.  Each 
application involves only half the data of the previous application.   
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 As the first step dominates the amount of computational work, the complexity transform 
is O (K × N), where K is the order of the wavelet in question and N is the length of the 
vector being transformed. 

 The implemented transform treats only periodic data.  If applied to non-periodic data 
artificial discontinuities appear at the endpoints and have an effect on the transform.  To 
minimize this similar techniques as used for Fourier transforms (interpolation, padding 
with mirrored data) may also be applied. 

 Introductory material on wavelet transforms can be found in [15][40], and further 
applications are described in [36].  An in-depth treatment of the subject is given in [7][9]. 



V2DWT, DV2DWT 

Fujitsu SSL II Extended Capabilities User’s Guide II II-197 

F18-13-0101  V2DWT, DV2DWT 
 
Two-dimensional wavelet transform 

CALL V2DWT (X, M, N, Y, ISN, F, K, LSX, LSY, ICON) 
 
(1) Function 

 This routine performs a two-dimensional wavelet transform or its inverse.  The transform 
is defined by its high- and low-pass filter coefficients. 

(2) Parameters 

X................ Input or output.  Two-dimensional array of X(M, N).  Stores the two-
dimensional data to be transformed as input in the case of transform (ISN = 1); 
the two-dimensional data transformed is stored as output in the case of inverse 
transform (ISN = -1). 

M................ Input.  The number of rows containing the data to be transformed.  A positive 
integer indicated by a power of two. 
(See item (3), “Comments on use,” b., 1).) 

N................ Input.  The number of columns containing the data to be transformed.  A 
positive integer indicated by a power of two. 
(See item (3), “Comments on use,” b., 1).) 

Y................. Output or input. Two-dimensional array Y(N, M).  The transformed data as 
output in the case of transform (ISN = 1) store the data to be transformed as 
input in the case of inverse transform (ISN = -1). 
(See item (3), “Comments on use,” b., 2).) 

ISN............ Input.  Specify transform or inverse transform. 
Transform:  ISN = 1 
Inverse transform:  ISN = -1 

F................. Input.  One-dimensional array of size 2 × K.  Stores the wavelet filter 
coefficients used for transform.  The user can supply either the filter 
coefficients themselves or call VWFLT before this routine to specify filter 
coefficients used for two-dimensional wavelet transform. 
(See item (3), “Comments on use,” b., 3).) 

K................. Input.  The number of wavelet filter coefficients. 

LSX............ Input.  A positive integer that indicates the depth of transform for each column.  
M ≥ 2LSX.  When M = 2LSX, a full wavelet transform is performed. 

LSY........... Input.  A positive integer that indicates the depth of transform for each row.  N  
≥ 2LSY.  When N = 2LSY, a full wavelet transform is performed. 

ICON.......... Output.  Condition code. 
See Table V2DWT-1, “Condition codes.”   
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Table V2DWT-1   Condition codes 

Code Meaning Processing  

0 No error - 

30000 ISN ≠ 1 and ISN ≠ -1 Processing is stopped. 

30002 M<2 or N<2  

30004 Either M or N is not a power of two.  

30008 K is not an even number,  
or LSX < 0, LSX > log2M, 
 LSY < 0, LSY > log2N 

 

 
(3) Comments on use 

a. Subprograms used 

 SSL II:  UWFT2, UWFI2, UWPT2, UWVI2, UWPI2, UWTRP, UWVT2, MGSSL 

b. Comments 

1) When the size of the data to be transformed is not a power of two, the wavelet 
transform can be done storing the data with the remaining data padded with 
zeros in a larger array with size (M, N) of a power of two. 

2) Storing the transform result 

 For column vector cj and row vector rj in two-dimensional input data, the result 
of the high-pass filter in each wavelet transform row are respectively stored in cj 
(M×2-i+1:M×2-i+1), i=1, ..., LSX and rj (N×2-i+1:N×2-i+1), i=1, ..., LSY.  The 
result of the two-dimensional wavelet transform is transposed and stored in array 
Y.   

 The output result of the high-pass filter for partial wavelet transform in the first 
stage is stored in Y(N/2 + 1:N, M/2 + 1:M). 

3) Filter conditions 

 The orthogonal filter used for this function generally has a vector of size 2 × K.  
F(1), ..., F(K) defines the low-pass filter coefficients; F(K+1), ..., F(2×K) defines 
the high-pass filter coefficients.  These coefficients have the following 
relationships: 

KF
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 For details, see [7] and [9]. 

c. Example of use 

 For two-dimensional data (1024 × 512), perform the two-dimensional wavelet 
transform and inverse transform. 
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C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
 
C     -------- Constants ------------ 
      INTEGER MaxK,MaxSize 
      PARAMETER (MaxK = 20,MaxSize = 512*1024) 
 
C     -------- Variables and formats ------------ 
      INTEGER M,N,K,i,row,index2D,ISN,ICON,LSX,LSY 
      REAL*8 X(1:MaxSize),T(1:MaxSize),Y(1:MaxSize), 
     &       F(1:2*MaxK), 
     &       ireal,Emax,diff,temp,Xmax,Erel 
 
C     -------- Generate input ------------ 
      M   = 1024 
      N   = 512 
      K   = 6 
      LSX = 3 
      LSY = 4 
 
      DO 99 row = 1,M 
        DO 100 i= 1,N 
          ireal = i 
          temp = 0.5 - abs(ireal/N - 0.5) 
          ireal = row 
          temp = temp + 0.5 - abs(ireal/M - 0.5) 
          index2D = row + (i-1)*M 
          X(index2D) = temp              ! Input vector 
          T(index2D) = temp              ! Reference vector 
 100    CONTINUE 
 99   CONTINUE 
 
C     ---------------  Initialize filter ------ 
      CALL DVWFLT(F,K,ICON) 
 
C     ---------------- Transform Data ---------------- 
 
      ISN=1 
      CALL DV2DWT(X,M,N,Y,ISN,F,K,LSX,LSY,ICON) 
      IF (ICON .NE. 0) THEN 
        PRINT*,'ERROR IN 2D Wavelet Transform,ICON = ',ICON 
        STOP 
      ENDIF 
 
C     ---------------- Transform back --------------- 
 
      ISN=-1 
      CALL DV2DWT(X,M,N,Y,ISN,F,K,LSX,LSY,ICON) 
      IF (ICON .NE. 0) THEN 
        PRINT*,'ERROR IN Inverse of 2D Wavelet Transform,' 
     &        ,'ICON = ',ICON 
        STOP 
      ENDIF 
 
C     ------ Verify result ------ 
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      Emax = 0.0 
      Xmax = 0.0 
      DO 199 row =1,M 
        DO 200 i=1,N 
          index2D = row + (i-1)*M 
          diff = abs(X(index2D)-T(index2D)) 
          IF (diff .GT. Emax) Emax = diff 
          IF (abs(X(index2D)) .GT. Xmax) 
     &       Xmax = abs(X(index2D)) 
 200    CONTINUE 
 199  CONTINUE 
 
      Erel = Emax/Xmax 
      IF (Erel .GT. 1.0e-4) THEN 
        PRINT*,'Relative Max error (FWT):',Erel 
        STOP 
      END IF 
      PRINT*,'2D Wavelet Transform OK' 
 
      STOP 
      END 
 

(4) Method 

 A partial wavelet transform of a vector s (usually a signal) of length n is obtained by 
applying a low-pass and a high-pass filters.  The subvector w1, ..., wn/2 is obtained by 
applying the low-pass filter to s.  The subvector wn/2+1, ..., wn is obtained by applying the 
high-press filter to s. 

 A wavelet transform is the recursive application of a partial wavelet transform to the 
subvector containing the low-pass filtered components, up to log2 (n) times.  Each 
application involves only half the data of the previous application.   

 As the first step dominates the amount of computational work, the complexity of each 1D 
transform is O(K × N), where K is the order of the wavelet in question and N is the length 
of the vector being transformed. 

 In the two-dimensional case, a wavelet transform is applied to each column of the matrix 
with depth LSX and then to each row of the resultant matrix with depth LSY. 

 The implemented transform treats only periodic data.  If applied to non-periodic data 
artificial discontinuities appear at the endpoints and have an effect on the transform.  To 
minimize this similar techniques as used for Fourier transforms (interpolation, padding 
with mirrored data) may also be applied. 

 Introductory material on wavelet transforms can be found in [15][40], and two-
dimensional transforms are described in [36].  An in-depth treatment of the subject is 
given in [7][9]. 
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Appendix B  
Contributors and Their Work 

 
Contributor Subroutine name Function 

DVRAN3 Generation of normal random numbers 
(double precision) 

Richard Peirce Brent 

DVRAN4 Generation of normal random numbers 
(double precision, Wallace’s method) 

Richard Peirce Brent 
Peter Frederick Price 

DVRAU4 Generation of uniform random numbers 
[0, 1) (double precision) 

Andrew James Cleary VBLDL LDLT decomposition for a symmetric 
positive definite banded matrix (modified 
Cholesky decomposition) 

 VBLDX System of linear equations with a LDLT 
decomposed symmetric positive definite 
banded matrix 

 VBLU System of linear equations for a banded 
real matrix (Gaussian elimination) 

 VLSBX System of linear equations with a 
symmetric positive definite banded matrix 
(modified Cholesky decomposition) 

VBCSD System of linear equations with 
unsymmetric or indefinite sparse matrix 
(BICGSTAB(l) method, diagonal storage 
format) 

VBCSE System of linear equations with 
unsymmetric or indefinite sparse matrix 
(BICGSTAB(l) method, ELLPACK 
storage format) 

Murray Leslie Dow 

VCGD System of linear equations with a 
symmetric positive definite sparse matrix 
(preconditioned CG method, diagonal 
storage format) 

 VCGE System of linear equations with a 
symmetric positive definite sparse matrix 
(preconditioned CG method, ELLPACK 
storage format) 

Markus Hegland 
Judith Helen Jenkinson 
Murray Leslie Dow 

VMCFT Singlevariate, multiple and multivariate 
discrete complex Fourier transform (mixed 
radix) 

Markus Hegland 
Christopher Robert Dun 

VLTQR System of linear equations with real 
tridiagonal matrix (QR factorization) 
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Contributor Subroutine name Function 

VHEVP Eigenvalues and eigenvectors of Hermitian 
matrices (tridiagonalization, multisection 
method, and inverse iteration) 

Margaret Helen Kahn 

VSEVP Eigenvalues and eigenvectors of real 
symmetric matrices (tridiagonalization, 
multisection method, and inverse iteration)

Jeoffrey Keating VMRFT Multiple and multivariate discrete real 
Fourier transform (mixed radices of 2, 3, 
and 5) 

 VSRFT One-dimensional and multiple discrete real 
Fourier transform (mixed radices of 2, 3, 
and 5) 

Zbigniew Leyk VCRD System of linear equations with an 
unsymmetric or indefinite sparse real 
matrix (MGCR method, diagonal storage 
format) 

 VCRE System of linear equations with an 
unsymmetric or indefinite sparse real 
matrix (MGCR method, ELLPACK 
storage format) 

 VMVSD Multiplication of a real sparse matrix and a 
real vector (diagonal storage format) 

 VMVSE Multiplication of a real sparse matrix and a 
real vector (ELLPACK storage format) 

Zbigniew Leyk 
Murray Leslie Dow 

VQMRD System of linear equations with an 
unsymmetric or indefinite sparse real 
matrix (QMR method, diagonal storage 
format) 

 VQMRE System of linear equations with an 
unsymmetric or indefinite sparse real 
matrix (QMR method, ELLPACK storage 
format) 

 VTFQD System of linear equations with an 
unsymmetric or indefinite sparse real 
matrix (TFQMR method, diagonal storage 
format) 

 VTFQE System of linear equations with an 
unsymmetric or indefinite sparse real 
matrix (TFQMR method, ELLPACK 
storage format) 

Zbigniew Leyk 
David Lawrence Harrar II 

VLAND Eigenvalues and eigenvectors of a real 
symmetric sparse matrix 
(Lanczos method, diagonal storage format)

Ole Møller Nielsen VWFLT Wavelet filter generation 
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Contributor Subroutine name Function 

Ole Møller Nielsen 
Markus Hegland 
Gavin John Mercer 

V1DWT One-dimensional wavelet transform 

Ole Møller Nielsen 
Markus Hegland 

V2DWT Two-dimensional wavelet transform 

Michael Robert Osborne 
David Lawrence Harrar II

VTDEV Eigenvalues and eigenvectors of real 
tridiagonal matrix 
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