
J2UL-1905-02ENZ0(01)
February 2020

FUJITSU Software

FUJITSU
SSL II Extended Capabilities
User's Guide II
(Scientific Subroutine Library)

Preface

This manual describes how to use Scientific Subroutine Library II (SSL II) Extended
Capabilities II.

This manual is a second volume for SSL II Extended Capabilities. This manual provides
additional algorithms and functions that are effective for high-speed processing of large-scale
scientific computations on a supercomputer.

This manual is organized as follows:

Part I Overview

Part I describes briefly the functions provided in SSL II Extended Capabilities II and indicates
precautions to take when using them.

Part II Using Subroutines

Part II describes how to use individual subroutines. Subroutines are listed and described in
alphabetical order.

In order to support the latest techniques, SSL II Extended Capabilities II contains
improvements and additions. Existing subroutine functions are preserved within the improved
and added functions. Please note that if the new subroutines perform better than the existing
ones, the existing subroutines may be eliminated some time in the future.

For a complete description of rules, standard functions, and extended capabilities, refer to the
following manuals:

Fujitsu SSL II User’s Guide (Scientific Subroutine Library),

Fujitsu SSL II Extended Capabilities User’s Guide (Scientific Subroutine Library)

SSL II Extended Capabilities II was developed through the collaboration of the Australian
National University (ANU) and Fujitsu. Development at the ANU was led by professors
Mike Osborne and Richard Brent and coordinated by Dr. Bob Gingold, Head, ANU
Supercomputer Facility. The following ANU staff members were involved in the design and
implementation of SSL II Extended Capabilities II. Fujitsu acknowledges their cooperation.

Professor Richard Peirce Brent

Dr Andrew James Cleary

Dr Murray Leslie Dow

Dr Christopher Robert Dun

Dr Lutz Grosz

Dr David Laurence Harrar II

Dr Markus Hegland

Ms Judith Helen Jenkinson

Dr Margaret Helen Kahn

Mr Jeoffrey Keating

Dr Zbigniew Leyk

ii Fujitsu SSL II Extended Capabilities User's Guide II

Preface

Mr Gavin John Mercer

Mr David John Miron

Mr Ole Møller Nielsen

Professor Michael Robert Osborne

Dr Peter Frederick Price

Dr Stephen Gwyn Roberts

Dr David Barry Singleton

Dr David Edward Stewart

Note

The asterisks in the table of contents of this manual indicate items added or changed from the
previous version.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the
regulations of your resident country and/or US export control laws.

Fujitsu SSL II Extented Capabilities User’s Guide II iii

Preface

iv Fujitsu SSL II Extended Capabilities User's Guide II

Date of Publication and Version
Version Manual code

June 2016, 12th Version J2UL-1905-02ENZ0(00)
September 2015, 11th Version J2UL-1905-01ENZ0(01)
October 2014, 10th Version J2UL-1905-01ENZ0(00)
June 2013, 9th Versio ―
March 2011, 8th Version ―
December 2003, 7th Version ―
December 2002, 6th Version ―
September 2001, 5th Version ―
September 1999, 4th Version ―
December 1997, 3rd Version ―
June 1997, 2nd Version ―
November 1995, 1st Version ―

Copyright
Copyright FUJITSU LIMITED 1995-2020

Update History
Changes Location Version

A note related to the Neumann preconditioner is appended. VCGD, DVCGD,
VCGE, DVCGE

9th Version

Rework format Cover, Preface 10th Version
A note related to the work area W is appended. VCFM1, DVCFM1,

VCFT3, DVCFT3
11th Version

A description of ISW is modified. VCPF1, DVCPF1 12th Version

• All rights reserved.
• The information in this manual is subject to change without notice.

Rework format Cover, Preface Version 12.1

February 2020, Version 12.1 J2UL-1905-02ENZ0(01)

Preface

SSL II Extended Capabilities II Overview

Linear calculations

Subroutine name Description Page

VLSPX System of linear equations with a symmetric positive definite
matrix (blocked Cholesky decomposition method)

II-102

VSPLL LLT decomposition of a symmetric positive definite matrix
(blocked Cholesky decomposition method)

II-167

VSPLX System of linear equations with a LLT -decomposed symmetric
positive definite matrix

II-170

VLSBX System of linear equations with a symmetric positive definite
banded matrix (modified Cholesky decomposition)

II-98

VBLDL LDLT decomposition of a symmetric positive definite banded
matrix (modified Cholesky decomposition)

II-22

VBLDX System of linear equations with an LDLT decomposed
symmetric positive definite banded matrix

II-26

VLBX System of linear equations with a banded real matrix (Gaussian
elimination)

II-90

VBLU LU decomposition of a banded real matrix (Gaussian
elimination)

II-29

VBLUX System of linear equations with an LU decomposed banded
real matrix

II-34

VLDIV The inverse of a positive-definite symmetric matrix
decomposed into the factors L,D and LT

II-96

VLTQR System of linear equations with real tridiagonal matrix (QR
factorization)

II-105

VBCSD System of linear equations with an unsymmetric or indefinite
sparse real matrix (BICGSTAB(l) method, diagonal storage
format)

II-14

VBCSE System of linear equations with an unsymmetric or indefinite
sparse real matrix (BICGSTAB(l) method, ELLPACK storage
format)

II-18

VCGD System of linear equations with a symmetric positive definite
sparse matrix (preconditioned CG method, diagonal storage
format)

II-51

VCGE System of linear equations with a symmetric positive definite
sparse matrix (preconditioned CG method, ELLPACK storage
format)

II-57

VCRD System of linear equations with an unsymmetric or indefinite
sparse real matrix (MGCR method, diagonal storage format)

II-73

VCRE System of linear equations with an unsymmetric or indefinite
sparse real matrix (MGCR method, ELLPACK storage format)

II-77

Fujitsu SSL II Extented Capabilities User’s Guide II v

Preface

Subroutine name Description Page

VQMRD System of linear equations with an unsymmetric or indefinite
sparse real matrix (QMR method, diagonal storage format)

II-143

VQMRE System of linear equations with an unsymmetric or indefinite
sparse real matrix (QMR method, ELLPACK storage format)

II-147

VTFQD System of linear equations with an unsymmetric or indefinite
sparse real matrix (TFQMR method, diagonal storage format)

II-183

VTFQE System of linear equations with an unsymmetric or indefinite
sparse real matrix (TFQMR method, ELLPACK storage
format)

II-187

VMBV Multiplication of a real band matrix and a real vector II-108

VMVSD Multiplication of a real sparse matrix and a real vector
(diagonal storage format)

II-137

VMVSE Multiplication of a real sparse matrix and a real vector
(ELLPACK storage format)

II-140

Eigenvalues and eigenvectors

Subroutine name Description Page

VHEVP Eigenvalues and eigenvectors of a Hermitian matrix
(tridiagonalization, multisection method, and inverse iteration)

II-80

VLAND Eigenvalues and eigenvectors of a real symmetric sparse
matrix (Lanczos method, diagonal storage format)

II-85

VSEVP Eigenvalues and eigenvectors of a real symmetric matrix
(tridiagonalization, multisection method, and inverse iteration)

II-162

VTDEV Eigenvalues and eigenvectors of real tridiagonal matrix II-177

Transforms

Subroutine name Description Page

VCFM1 One-dimensional discrete complex Fourier transforms (Mixed
radices of 2, 3, 5 and 7)

II-43

VCFT3 One-dimensional discrete complex Fourier transforms (Radix
2, for data sequence with a constant stride)

II-47

VCPF1 One-dimensional prime factor discrete complex Fourier
transforms

II-63

VCPF3 Three-dimensional prime factor discrete complex Fourier
transform

II-67

VMCF2 Singlevariate, multiple and multivariate discrete complex
Fourier transform (complex array, mixed radix)

II-110

vi Fujitsu SSL II Extended Capabilities User's Guide II

Preface

Subroutine name Description Page

VMCFT Singlevariate, multiple and multivariate discrete complex
Fourier transform (real and imaginary array separated, mixed
radix)

II-114

VMRF2 Singlevariate, multiple and multivariate discrete real Fourier
transform (Mixed radix)

II-122

VMRFT Multiple and multivariate discrete real Fourier transform
(Mixed radices of 2, 3, and 5)

II-128

VRPF3 Three-dimensional prime factor discrete real Fourier transform II-156

VSRFT One-dimensional and multiple discrete real Fourier transform
(Mixed radices of 2, 3, and 5)

II-173

VMCST Discrete cosine transform II-119

VMSNT Discrete sine transform II-134

VCCVF Discrete convolution or correlation of complex data II-38

VRCVF Discrete convolution or correlation of real data II-151

VWFLT Wavelet filter generation II-190

V1DWT One-dimensional wavelet transform II-193

V2DWT Two-dimensional wavelet transform II-197

Random numbers

Subroutine name Description Page

DVRAN3 Generation of normal random numbers (double precision) II-1

DVRAN4 Generation of normal random numbers (double precision,
Wallace’s method)

II-5

DVRAU4 Generation of uniform random numbers [0, 1) (double
precision)

II-9

Fujitsu SSL II Extented Capabilities User’s Guide II vii

Contents

Preface ii

Part I Overview

Chapter 1 Description of SSL II Extended Capabilities II I-1

Chapter 2 General Rules for SSL II Extended Capabilities II I-3

2.1 Subroutine Precision ..I-3

2.2 Subroutine Names ..I-3

2.3 Parameters ..I-3

2.4 Condition Codes ...I-3

Chapter 3 Data Storage Methods I-5

3.1 Banded Matrices ...I-5

3.2 Sparse Matrices ..I-5

3.2.1 Storage methods for sparse matrices ... I-5

3.2.1.1 Storage method for general sparse matrices I-5
3.2.1.2 Storage methods for symmetric positive definite sparse

matrices ... I-7
3.2.1.3 Storage method selection criteria .. I-9

3.2.2 Discretization of partial differential operators and storage examples
for them .. I-9

Chapter 4 Iterative Linear Equation Solvers and Convergence I-17

4.1 Scaling ..I-17

4.2 Symmetry of Matrix and Iterative Solver ..I-18

4.3 Eigenvalues Distribution of Matrix and ConvergenceI-18

Fujitsu SSL II Extended Capabilities User's Guide II ix

Contents

x Fujitsu SSL II Extended Capabilities User's Guide II

Part II Using Subroutines

DVRAN3 .. II-1

DVRAN4 .. II-5

DVRAU4 .. II-9

VBCSD, DVBCSD ... II-14

VBCSE, DVBCSE ... II-18

VBLDL, DVBLDL ... II-22

VBLDX, DVBLDX .. II-26

VBLU, DVBLU .. II-29

VBLUX, DVBLUX .. II-34

VCCVF,DVCCVF ... II-38

VCFM1, DVCFM1 .. II-43

VCFT3, DVCFT3 .. II-47

VCGD, DVCGD ... II-51

VCGE, DVCGE ... II-57

VCPF1, DVCPF1 ... II-63

VCPF3, DVCPF3 ... II-67

VCRD, DVCRD ... II-73

VCRE, DVCRE ... II-77

VHEVP, DVHEVP .. II-80

VLAND, DVLAND .. II-85

VLBX, DVLBX .. II-90

VLDIV, DVLDIV .. II-96

VLSBX, DVLSBX ... II-98

VLSPX,DVLSPX ... II-102

VLTQR, DVLTQR .. II-105

VMBV, DVMBV .. II-108

VMCF2, DVMCF2 .. II-110

VMCFT, DVMCFT ... II-114

VMCST,DVMCST .. II-119

VMRF2, DVMRF2 .. II-122

VMRFT, DVMRFT ... II-128

VMSNT,DVMSNT .. II-134

VMVSD, DVMVSD ... II-137

Contents

VMVSE, DVMVSE ... II-140

VQMRD, DVQMRD ... II-143

VQMRE, DVQMRE ... II-147

VRCVF,DVRCVF ... II-151

VRPF3, DVRPF3 .. II-156

VSEVP, DVSEVP ... II-162

VSPLL,DVSPLL ... II-167

VSPLX,DVSPLX .. II-170

VSRFT, DVSRFT ... II-173

VTDEV, DVTDEV .. II-177

VTFQD, DVTFQD .. II-183

VTFQE, DVTFQE .. II-187

VWFLT, DVWFLT .. II-190

V1DWT, DV1DWT ... II-193

V2DWT, DV2DWT ... II-197

Appendix A References A-1

Appendix B Contributors and Their Work B-1

Index IN-1

Fujitsu SSL II Extended Capabilities User's Guide II xi

Part I
Overview

Fujitsu SSL II Extended Capabilities User's Guide II I-1

Chapter 1
Description of SSL II Extended Capabilities II

This chapter briefly describes the algorithms that are provided for use in large-scale, scientific
computations as SSL II Extended Capabilities II.

(1) Double-precision random numbers (uniform/normal)

 These algorithms provide random numbers with good statistical characteristics and long
periods of at least 1052 for large-scale simulation. For normal random numbers Polar
method and faster Wallace’s method are provided.

(2) Sparse matrix linear equations (symmetric positive definite matrix/unsymmetric or
indefinite real matrix)

 These subroutines solve sparse matrix linear equations using the iterative method. These
subroutines make it possible to solve large-scale problems at high speeds with reduced
memory usage. For data storage methods, see Chapter 3, “Data Storage Methods.”

 For symmetric positive definite matrices, the conjugate gradient (CG) method is provided.
Two types of preconditioners may be specified in CG method: first order approximation
of the Neumann series and modified incomplete Cholesky decomposition. The
preconditioner through the modified incomplete Cholesky decomposition is useful for
linear equations obtained through discretization of elliptic partial differential equations.

 For unsymmetric or indefinite real matrices, the robust and high-speed modified
generalized conjugate residuals (MGCR) method is provided.

 For unsymmetric or indefinite real matrices, the higher-speed quasi minimal residual
method (QMR method) , transpose-free quasi-minimal residual method (TFQMR
method) and Bi-Conjugate Gradient Stabilised (l) (BICGSTAB(l)) method are provided.
About the guideline of the usage of these methods, refer to Chapter 4, “Iterative Linear
Equation Solvers and Convergence”.

(3) Sparse real matrix and vector multiplication

(4) System of linear equations with real tridiagonal matrix

 This system supplies a method of solving a large-scale system of linear equations with
real tridiagonal matrix at high speed by QR factorization.

(5) Banded matrix linear equations (symmetric positive definite/real matrix)

 These subroutines use data storage methods and algorithms that optimize performance on
vector computers. Although the direct method is robust, it uses memory in proportion to
the size of the bandwidth. Therefore, the direct method is unsuitable for large banded
matrices with a sparse structure. For large banded matrices with sparse structure, please
use the previously mentioned iterative method, which uses storage methods suited to
sparse structures.

(6) Eigenvalue problem

 This system supplies the Lanczos method to obtain a few of the largest and/or smallest
eigenvalues and corresponding eivenvectors in a large-scale real symmetric sparse matrix.

 It also supplies a method of obtaining eigenvalues and eigenvectors in real tridiagonal,
real symmetric or Hermitian matrices at high speed.

Description of SSL II Extended Capabilities II

I-2 Fujitsu SSL II Extended Capabilities User's Guide II

(7) Fourier transforms

 These subroutines provide high-performance algorithms (mixed radix and complex/real),
multiple Fourier transforms and multivariate Fourier transforms on vector computers.
The functions are also high-speed for one-dimensional Fourier transforms. Three-
dimensional, prime factor Fourier transforms (complex/real) are also provided.

 For scalar computers high speed one-dimensional complex Fourier transforms, one-
dimensional prime factor complex Fourier transforms, multiple Fourier transforms and
multivariate Fourier transforms (Complex/real) and cosine transforms and sine transforms
are also provided.

(8) Convolution and correlation

 These subroutine provide discrete convolution and correlation functions that are
frequently encountered in signal processing area.

(9) Wavelet transform

 This system supplies high-performance one- and two-dimensional wavelet transform.

Fujitsu SSL II Extended Capabilities User's Guide II I-3

Chapter 2
General Rules for SSL II Extended Capabilities II

This chapter provides general rules that are common to all of the functions.

2.1 Subroutine Precision
Single- and double-precision routines are provided. However, random number routines are
double precision only.

2.2 Subroutine Names
The names of single-precision routines start with a V. The names of double-precision routines
start with a DV.

The names of slave routines start with a U (single precision) or DU (double precision).

2.3 Parameters
(1) Order of parameters

 The order of parameters is the same as the order used in SSL II standard functions. As a
rule, the order conforms to the following format:

 (Input-output-parameter-list, Input-parameter-list, Output-parameter-list, ICON)

(2) Parameter types

 Integer-type parameters start with an I, J, K, L, M or N. Complex-type parameters start
with a Z.

 Unless otherwise specified, parameters that start with any other letter are single-precision
real type in single-precision routines, and double-precision real type in double-precision
routines.

2.4 Condition Codes
The ICON parameter indicates the resultant status after execution of the subroutine.

The condition code is from 0 to 39,999. As shown in the following table, the range into which
the code falls indicates how reliable the processing results are.

General Rules for SSL II Extended Capabilities II

I-4 Fujitsu SSL II Extended Capabilities User's Guide II

Table 2.1 Results of condition codes

Code Explanation Reliability of result Result

0 Processing terminated normally. Result is guaranteed. Normal

1 to 9999 Processing terminated normally, but
additional information is included.

10000 to
19999

Due to an internal restriction imposed
during processing, processing terminated.

The result is
guaranteed subject to
restrictions.

Warning

20000 to
29999

Due to an error that occurred during
processing, processing stopped.

The result is not
guaranteed.

Error

30000 to
39999

Due to an error in the input parameter(s),
processing stopped.

Fujitsu SSL II Extended Capabilities User's Guide II I-5

Chapter 3
Data Storage Methods

SSL II Extended Capabilities provides the following storage methods for solving linear
equations of banded and sparse matrices.

3.1 Banded Matrices
Storage methods suitable for vector computers are used instead of the standard SSL II storage
methods for banded matrices. See the descriptions of the routines used with banded matrices.

3.2 Sparse Matrices
This section describes the storage methods for sparse matrices.

3.2.1 Storage methods for sparse matrices
Each function that applies to sparse matrices is provided respectively for the ELLPACK
storage format and the diagonal storage format respectively.

The ELLPACK storage format is a method of compressing and storing the non-zero elements
of each row vector in a coefficient matrix.

The diagonal storage format is a method of storing diagonals containing non-zero elements.

3.2.1.1 Storage method for general sparse matrices
a. ELLPACK storage format for general sparse matrices

 In the ELLPACK storage format for general sparse matrices, non-zero elements of row
vectors in coefficient matrix A are compressed and stored in corresponding row vectors of
array COEF. (For the ELLPACK format, see [23] and [34]). In addition, the column
number of non-zero elements that were stored in COEF are stored in corresponding
ICOL array elements. It is not necessary to left-adjust the non-zero elements of the row
vectors of coefficient matrix A when storing them in COEF.

 For storage, the COEF (1 : N, *) and ICOL (1 : N, *) parts of the two arrays, COEF (K,
IWIDT) and ICOL (K, IWIDT), are used.

 If the maximum number of non-zero elements appearing in the row vectors of matrix A is
set to nz and the order of the coefficient matrix is set to n, then IWIDT ≥ nz and K ≥ n.

 When the number of non-zero elements in row vectors of coefficient matrix A is less than
IWIDT, set the remaining elements in the row vectors of the array COEF to zero. Set the
corresponding array elements of ICOL to the values showing the row number of the row
vectors in which they are contained. (Assume COEF (i, j) = 0 and ICOL (i, j) = i.)

Data Storage Methods

I-6 Fujitsu SSL II Extended Capabilities User's Guide II

 Example:

 Storing coefficient matrix A using COEF and ICOL

D00-0010

1 0 0 2

0 3 4 0

0 0 5 0

6 0 0 0

1 2

3 4

5 0

6 0

1 4

2 3

3 3

1 4

COEF =

A =

ICOL =

b. Diagonal storage format for general sparse matrices

 In the diagonal storage format for sparse matrices, diagonals containing non-zero
elements are stored as column vectors of the array DIAG. (For the diagonal format, see
[27] and [31].

 In this manual, for the integer k, the following diagonal-direction vector is called a
diagonal. The vector consisting of diagonal elements is called the main diagonal.

(a1, 1+k, a2, 2+k, ..., an, n+k)

 if i + k < 1 or i + k > n, ai, i + k = 0.

 There is no special restriction on the order in which a diagonal is stored in the array
DIAG.

 The offset between the diagonal vector stored in DIAG (*, i) and the main diagonal vector
is stored in NOFST (i). k in the previously mentioned diagonal indicates the offset. The
offset of the diagonal consisting of the main diagonal elements is zero. The offset of
diagonal in the upper triangular matrix is a positive integer. The offset of diagonal in the
lower triangular matrix is a negative integer.

 If NOFST (m) = k, then storage is performed according to DIAG (i, m) = ai, i + k (i = 1, ...,
n).

 Two arrays, DIAG (K, NDIAG) and NOFST (NDIAG), are used. The coefficient matrix
is stored in DIAG (1 : N, NDIAG). When the number of diagonals to be stored is set to
nd and the order of the coefficient matrix is set to n, then NDIAG ≥ nd and K ≥ n.

Data Storage Methods

Fujitsu SSL II Extended Capabilities User’s Guide II I-7

 Example:

 Storing coefficient matrix A using DIAG and NOFST

D00-0020

A =

DIAG =

1 2 3 0

5 0 6 4

8 9 0 7

11 0 0 10

NOFST = (0 1 2 -1)

0 1 2 3 0

 4 5 0 6

 0 7 8 9 0

 0 0 10 11 0 0

3.2.1.2 Storage methods for symmetric positive definite sparse
matrices

In both the ELLPACK storage format and the diagonal storage format, the upper and lower
triangular matrix parts of normalized symmetric positive definite matrices are stored in the
order from the upper part then lower part.

Using a diagonal matrix that has the reciprocals of the square root of the diagonal elements of
a symmetric positive definite matrix A, the symmetric positive definite matrix A can be
normalized into symmetric matrix A* with diagonal elements of 1.

A* = D-1/2 A D-1/2

), ..., d, ddiag (d

), ..., a, adiag (a
/-

n
/-/-

/-
nn

/-/-

2121
2

21
1

2121
22

21
11

21where

=

=−D

The linear equation with order n

Ax = b

can be transformed to a linear equation with the normalized matrix A*.

(D-1/2 AD-1/2) (D1/2x) = D-1/2b

A*x* = b*

n ... j = n ...i = dxx

dbbddaa
/

ii
*
i

/
ii

*
i

/
j

/
iij

*
ij

,,1,,,1,

,
21

212121

=

== −−−

a. The ELLPACK storage format for symmetric positive definite sparse matrices

 The upper and lower triangular matrix parts without diagonal elements in a normalized
symmetric positive definite sparse matrix with unit diagonal elements are stored
respectively using the ELLPACK storage format. Then these stored matrix parts are
stored in a single array COEF. First, the upper triangular matrix part is stored. Then the
lower triangular matrix part is stored.

 The maximum number of non-zero elements in each row vector of the upper triangular
matrix part is set to NSU. The maximum number of non-zero elements in each row vector
of the lower triangular matrix part is set to NSL.

Data Storage Methods

I-8 Fujitsu SSL II Extended Capabilities User's Guide II

 When NSH = max (NSU, NSL), the non-zero elements of the upper triangular matrix part
are stored in COEF (*, 1: NSH). The non-zero elements of the lower triangular matrix
part are stored in COEF (*, NSH + 1: 2 × NSH).

 Set the remaining elements in the array COEF to zero. Set the corresponding array
elements of ICOL to the row numbers of the row vectors in which they are contained.
(Assume COEF (i, j) = 0 and ICOL (i, j) = i.)

 Example:

 Storing the upper and lower triangular part of a normalized coefficient matrix A* using
the ELLPACK storage format

D00-0030

1 5 0 3 0

5 1 6 0 4

0 6 1 7 0

3 0 7 1 8

0 4 0 8 1

5 3 0 0

6 4 5 0

7 0 6 0

8 0 7 3

0 0 8 4

2 4 1 1

3 5 1 2

4 3 2 3

5 4 3 1

5 5 4 2

A* = COEF =

ICOL =

b. The diagonal storage format for symmetric positive definite sparse matrices

 The upper and lower triangular matrix parts without diagonal elements in a normalized
symmetric positive definite matrix with unit diagonal elements are stored respectively
using the diagonal storage format. Then, the stored matrix parts are stored in a single
array DIAG. When the number of diagonals in the upper (lower) triangular matrix part
containing non-zero elements is set to NDT, the upper triangular matrix part is stored in
DIAG (1 : NDT), while the lower triangular matrix part is stored in DIAG (NDT + 1:
NW).

Data Storage Methods

Fujitsu SSL II Extended Capabilities User’s Guide II I-9

 At that time, the upper triangular matrix part must be stored in ascending order with
respect to distance (NDLT value). The lower triangular matrix part must be stored in
descending order.

 This method uses arrays the DIAG (K, NW) and NDLT (NW).

 The following equivalence applies: NW = 2 × NDT.

 Example:

 Storing the upper and lower triangular part of a normalized coefficient matrix A* using
the diagonal storage format

D00-0040

1 5 0 3 0

5 1 6 0 4

0 6 1 7 0

3 0 7 1 8

0 4 0 8 1

5 3 0 0

6 4 5 0

7 0 6 0

8 0 7 3

0 0 8 4

A* = DIAG =

NDLT = (1 3 -1 -3)

3.2.1.3 Storage method selection criteria
When the sparse matrix is structured so that its non-zero elements are concentrated in the
diagonal-direction vectors of the coefficient matrix, use the diagonal storage format.

3.2.2 Discretization of partial differential operators and
storage examples for them

This section describes the representative sparse coefficient matrices which appear when
solving problems through discretizing elliptic partial differential equations and constructing
linear equations. When solving actual problems, these coefficient matrices must be stored
using the ELLPACK storage format and diagonal storage format.

Coefficient matrices by discretization of the elliptical partial differential operators in the three-
dimensional region with Dirichlet boundary conditions is shown in the following sections. As
a result of discretization, the operators appear in the unsymmetric sparse matrix. Also shown
are subroutines that store the generated coefficient matrices according to the sparse matrix
storage methods.

Linear equations with these coefficient matrices can be solved with subroutine (D) VCRE or
(D) VCRD.

a. Discretization of elliptic partial differential operators and construction of coefficient
matrices

Data Storage Methods

I-10 Fujitsu SSL II Extended Capabilities User's Guide II

 Operator L

cuaaau-Lu 321 +
∂
∂

+
∂
∂

+
∂
∂

+Δ=
z
u

y
u

x
u

 (Δ represents Laplacian.
2

2

2

2

2

2

zyx ∂
∂

∂
∂

∂
∂Δ ++≡)

 Region Ω = [0,lx] × [0,ly] × [0,lz]

 Boundary condition Dirichlet boundary condition u = 0 on the boundary Ω

 Here, a1, a2, a3 as well as c are constants.

 When each dimension of Ω is divided into nx + 1, ny + 1, and nz + 1 in equal subintervals
respectively, the nx × ny × nz grid points exist inside Ω. When the value of variables x, y,
and z at the grid point is expressed as (xi, yj, zk),

 the value of function u at the grid point (1 ≤ i ≤ nx, 1 ≤ j ≤ny, 1 ≤ k ≤ nz)

 is expressed as ui, j, k = u (xi, yj, zk).

 Using this notation, the partial differential coefficient for variable x is approximated as
follows.

22
112

2

11

)1()2()(

)2()1)(()(

xx, j, ki-i, j, k, j, ki+kji

xx, j, ki-, j, ki+kji

l /+n +uu u,z,yx
x
u

l / +n uu,z,yx
x
u

−≈

−≈

∂
∂

∂
∂

 The partial differential coefficients for variables y and z are approximated in a similar
fashion.

 Considering function u = 0 on the boundary Ω,

 the approximation Lu ≈ Av is obtained through discretizing Lu into coefficient matrix A.

 Here, v is vector v = (v1, v2,...,vn), consisting of values at the grid point of function u,

 and there is a corresponding relationship vm = ui, j, k, m = (k - 1) nx ny + (j - 1) nx + i.

b. Subroutines that store coefficient matrices using the sparse matrix storage method

 Examples of subroutines that store discretized operators in the ELLPACK format or the
diagonal format are described in this section.

 The subroutine INIT_MAT_ELL stores coefficient matrices in the ELLPACK format.
The subroutine INIT_MAT_DIAG stores them in the diagonal format.

 The arguments nx, ny, and nz correspond to NX, NY, and NZ. lx, ly, and lz correspond to
XL, YL, and ZL. a1, a2, a3, and c correspond to VA1, VA2, VA3, and VC.

 In INIT_MAT_ELL, the coefficient matrix is stored in A_L and ICOL_L. In
INIT_MAT_DIAG, it is stored in D_L and OFFSET.

 When a subroutine is called with IWIDTH = 7, a coefficient matrix for three-dimensional
region Ω is generated.

 A subroutine is called with NDIVP = nx ny nz.

 (When using such a subroutine, the value of IWIDTH should not be greater than 7. If the
value is 7 or less (for example, 5 or 3), the number of diagonal columns decreases

Data Storage Methods

Fujitsu SSL II Extended Capabilities User’s Guide II I-11

correspondingly. If IWIDTH = 5 or IWIDTH = 3, the problem is reduced to a two- or
one-dimensional problem, respectively. It is useful to set NZ = 1 when IWIDTH = 5, and
NZ = 1, NY = 1 when IWIDTH = 3. Values of IWIDTH other than 7, 5, or 3 have no
special meaning and can be used in testing.)

 Example 1:

 Subroutine that discretizes the partial differential operators described previously and stores
them according to the ELLPACK storage format
 SUBROUTINE INIT_MAT_ELL(VA1,VA2,VA3,VC,
 & A_L,ICOL_L,NX,NY,NZ,XL,YL,ZL,IWIDTH,NDIVP,LD)
 IMPLICIT NONE
 INTEGER NX,NY,NZ,IWIDTH,NDIVP,LD
 DOUBLE PRECISION A_L(LD,IWIDTH)
 DOUBLE PRECISION VA1,VA2,VA3,VC,XL,YL,ZL
 INTEGER ICOL_L(LD,IWIDTH)

 DOUBLE PRECISION HX, HY, HZ
 INTEGER I,J,L,JS,IWIDTH_LOC
 INTEGER I0,J0,K0

 IF (IWIDTH .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_ELL:'
 WRITE (*,*) ' IWIDTH SHOULD BE GREATER THAN OR
 & EQUAL TO 1'
 RETURN
 ENDIF
 IWIDTH_LOC = IWIDTH
C IWIDTH CANNOT BE GREATER THAN 7
 IF (IWIDTH .GT. 7) IWIDTH_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

 DO 110 J = 1,IWIDTH
 DO 100 I = 1,NDIVP
 A_L(I,J) = 0.0
 ICOL_L(I,J) = I
 100 CONTINUE
 110 CONTINUE

C MAIN LOOP
 DO 200 J = 1,NDIVP
 JS = J
 L = 1

Data Storage Methods

I-12 Fujitsu SSL II Extended Capabilities User's Guide II

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NX/NY+1
 IF (K0 .GT. NZ) RETURN
 J0 = (JS-1-NX*NY*(K0-1))/NX+1
 I0 = JS - NX*NY*(K0-1) - NX*(J0-1)

 IF (IWIDTH_LOC .GE. 7) THEN
 IF (K0 .GT. 1) THEN
 A_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 ICOL_L(J,L) = JS-NX*NY
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 5) THEN
 IF (J0 .GT. 1) THEN
 A_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 ICOL_L(J,L) = JS-NX
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 3) THEN
 IF (I0 .GT. 1) THEN
 A_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 ICOL_L(J,L) = JS-1
 L = L+1
 ENDIF
 ENDIF
 A_L(J,L) = 2.0/HX**2+VC
 IF (IWIDTH_LOC .GE. 5) THEN
 A_L(J,L) = A_L(J,L) + 2.0/HY**2
 IF (IWIDTH_LOC .GE. 7) THEN
 A_L(J,L) = A_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 ICOL_L(J,L) = JS
 L = L+1
 IF (IWIDTH_LOC .GE. 2) THEN
 IF (I0 .LT. NX) THEN
 A_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 ICOL_L(J,L) = JS+1
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 4) THEN
 IF (J0 .LT. NY) THEN
 A_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 ICOL_L(J,L) = JS+NX
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) THEN
 A_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ

Data Storage Methods

Fujitsu SSL II Extended Capabilities User’s Guide II I-13

 ICOL_L(J,L) = JS+NX*NY
 ENDIF
 ENDIF

 200 CONTINUE

 RETURN
 END

Example 2:

Subroutine that discretizes the partial differential operators described previously and stores
them according to the diagonal storage format
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET,
 & NX,NY,NZ,XL,YL,ZL,NDIAG,NDIVP,LD)
 IMPLICIT NONE
 INTEGER NX,NY,NZ,NDIAG,NDIVP,LD
 DOUBLE PRECISION D_L(LD,NDIAG)
 DOUBLE PRECISION VA1,VA2,VA3,VC,XL,YL,ZL
 INTEGER OFFSET(NDIAG)

 DOUBLE PRECISION HX, HY, HZ
 INTEGER I,J,L,JS,NXY,NDIAG_LOC
 INTEGER J0,I0,K0

 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR
 & EQUAL TO 1'
 RETURN
 ENDIF
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

 DO 110 J = 1,NDIAG
 DO 100 I = 1,NDIVP
 D_L(I,J) = 0.0
 100 CONTINUE
 110 CONTINUE
C OFFSET SETTING
 L = 1
 NXY = NX*NY
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF

Data Storage Methods

I-14 Fujitsu SSL II Extended Capabilities User's Guide II

 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF

C MAIN LOOP
 DO 200 J = 1,NDIVP
 JS = J
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) RETURN
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)

 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN

Data Storage Methods

Fujitsu SSL II Extended Capabilities User’s Guide II I-15

 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 200 CONTINUE

 RETURN
 END

Fujitsu SSL II Extended Capabilities User's Guide II I-17

Chapter 4
Iterative Linear Equation Solvers and
Convergence

4.1 Scaling
It is strictly recommended to scale the equation in order to balance the matrix entries for the
efficient usage of iterative linear equation solver. This normalization of the matrix strongly
improves the numerical stability and the convergence rate of the iterative solver. The
normalized coefficient matrix Â should have non--negative entries in the main diagonal and,
for instance, the sum of absolute values in each row should be approximately equal to one.

Ax = b (1)

A normalized form of the linear system (1) can be constructed by multiplying the coefficient
matrix A by a diagonal matrix L from the left and with a diagonal matrix R from the right. By
introducing a new variable xRx 1ˆ −= the linear system(1) is written as

bxALbxLAR ˆˆˆˆ =⇔= (2)

where, LARA =ˆ , Lbb =ˆ .

Instead of A the normalized matrix Â is used in the iterative solver. Keep in mind that the
right hand side b has to be transformed by multiplication with L before the solver is called and
the returned solution approximation has to be transformed by multiplication with R.

If for all i=1,...,n the ∑
=

=
n

j
iji as

1

 value is the absolute sum of entries in the i-th row one can

set

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≠

=

=
ji

ji
s

a

L
i

ii

ij

0
if

)sgn(

 (3)

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≠

=

=
ji

ji
s

R
i

ij

0
if

1

 (4)

for all i,j=1,...,n. It is emphasized that there are other possible ways of introducing a
normalization with rather different effects on the convergence rate of the iterative solvers, see
[44] for an overview.

Itarative Linear Equation Solvers and Convergence

I-18 Fujitsu SSL II Extended Capabilities User's Guide II

Notice , that with selection (3) and (4) the normalized matrix Â is symmetric and positive
definite if and only if the original matrix is symmetric and positive definite.

4.2 Symmetry of Matrix and Iterative solvers
a. Symmetric Matrix

 If the matrix A is symmetric, ie. aij=aji for all i,j=1,...,n, and positive definite the
classical conjugate gradient method(see [21]) can be used to solve the linear system.

 If the matrix is not positive definite a break down, that means the computation
process for the iterative method can not be continued, will occur.

b. Non-symmetrical or Indefinite Matrix

 In case of a non-symmetrical or indefinite coefficient matrix a set of solvers are
available. The optimal solver for the given linear system depends on the properties of
the coefficient matrix A (or if the normalized system Â is considered). For the
different classes of matrices the following solvers are available.

 A break down may occur depending upon the iterative methods or the initial vector
for computation, which means the computation process for the iterative method can
not be continued. In this case changing the iterative methods or the initial vector is
recommended.

4.3 Eigenvalues Distribution of Matrix and
Convergence

a. MGCR method

 If the eigenvalues of the coefficient matrix are close to the positive real axis (see
Figure 4.3-1) can be used with a small number of search directions (eg. 5-10). If the
imaginary part of any eigenvalue is large more search directions must be considered
in order to get good convergence. This increases the storage requirements as well as
the amount of computation per iteration step which makes MGCR (see [25]) less
efficient.

 For a small number of search directions MGCR is a very fast but not very robust
method.

b. TFQMR method

 If the eigenvalues are in the positive half plane but there are eigenvalues with large
imaginary part (see Figure 4.3-2) TFQMR(see [12]) is the recommended method.
Also the solvers converge best if the minimal real part of any eigenvalue is as large
as possible. So, for example, the convergence will be poor if there is an eigenvalue
which has a very small nonzero real part. The convergence rate of TFQMR can be
worse than the convergence rate of MGCR with a large number of search directions.
However, every iteration step of TFQMR is much cheaper than MGCR with a large
number of search directions so that a solution is calculated within less CPU time. So
TFQMR is more robust but slower than MGCR with a small number of search
directions.

Itarative Linear Equation Solvers and Convergence

Fujitsu SSL II Extended Capabilities User’s Guide II I-19

 Imaginary part

 Real part

 Figure 4.3-2
Eigenvalues distribution for convergent
TFQMR and BICGSTAB(l)

 Imaginary part

 Real part

Figure 4.3-1
Eigenvalues distribution for convergent
MGCR

c. BICGSTAB(l) method

Similarly to TFQMR BICGSTAB(l)(see [39]) is suitable for matrices with eigenvalues
that are in the positive half plane. Also the solvers converge best if the minimal real
part of any eigenvalue is as large as possible. So, for example, the convergence will be
poor if there is an eigenvalue which has a very small nonzero real part. In some
applications where the eigenvalues of the coefficient matrix are close to the positive
real axis BICGSTAB(l) has an even faster convergence rate than MGCR with a small
number of search directions. However, every iteration step of BICGSTAB(l) is very
expensive as it requires two matrix vector multiplications. Therefore in some cases
MGCR or TFQMR are faster than BICGSTAB(l) but BICGSTAB(l) is more robust.

 If no information about the eigenvalues of the (normalized) coefficient matrix is available it
is suggested to try the methods MGCR, TFQMR and BICGSTAB(l) one after the other.
MGCR should be used with 5 and 10 search directions. The order in which the methods are
tested is important. So the fast but less robust methods should be tested before more robust
methods are used. A suitable criterion for the quality is the CPU time the solver needs to reach
the accuracy 0.1.

Part II
Using Subroutines

DVRAN3

Fujitsu SSL II Extended Capabilities User’s Guide II II-1

J11-20-0401 DVRAN3

Generation of normal random numbers (double precision)

CALL DVRAN3 (DAM, DSD, IX, DA, N, DWORK, NWORK, ICON)

(1) Function

 This subroutine generates pseudo-random numbers from a normal distribution density
function (1.1) with a given mean m and standard deviation σ.

)
2

)(
exp(

2
1)(

2

2

σπσ
mx

 =xf
−− (1.1)

(2) Parameters

DAM........... Input. Mean m of normal distribution.
Double-precision real type.

DSD............ Input. Standard deviation σ of normal distribution.
Double-precision real type.

IX................ Input. Starting value.
On the first call, set IX to a positive value. Subsequently, call the subroutine
with the return value remaining 0. A different sequence of random numbers are
generated with a different starting value on the first call.
(See item (3), “Comments on use,” b., 1).)
4-byte integer type (INTEGER*4).
Output. 0.

DA.............. Output. N pseudo-random numbers.
Double-precision real type one-dimensional array of size N.

N................. Input. The number of normally distributed pseudo-random numbers to be
returned in DA.
(See item (3), “Comments on use,” b., 2).)

DWORK...... Work area. One-dimensional array of the double-precision real type and size
NWORK.
Do not modify the contents of this subroutine between repeated calls.
DWORK contains information necessary for repeated calls to this subroutine.
(See item (3), “Comments on use,” b., 3).)

NWORK...... Input. The size of the array DWORK. NWORK ≥ 1,156.

ICON........... Output. Condition code.
See Table DVRAN3-1, “Condition codes.”

DVRAN3

II-2 Fujitsu SSL II Extended Capabilities User's Guide II

Table DVRAN3-1 Condition codes

Code Description Processing

0 No error

30001 NWORK is too small. Processing is stopped.

30002 IX<0

30003 to 30008 DWORK was modified. Or IX was set to zero
on the initial call.

(3) Comments on use

a. Subprograms used

 SSL II: DUF2G3, DUITG3, DURN3B, DURUG3, DUR2G3, DUSKG3, DUSQG3,
DUVRG3, DVRAU4, MGSSL

b. Comments

1) Starting point IX

 When a sequence of pseudo-random numbers is to be generated by a
deterministic program, there must be random input. To do this, give a starting
value IX. On the first call to this subroutine, the starting value IX must be a
positive integer. (For exceptions, see item 5).) For subsequent calls, set IX to
zero. This indicates that more pseudo-random numbers from the same sequence
are to be generated. To simplify programming, this subroutine returns zero in IX
after the initial call.

 This subroutine generates normal random numbers with the Polar method, which
uses uniform random numbers with a long period of at least 1052. A different
starting value gives a different random number sequence. That is, a random
number sequence is generated from different random number subsequences that
are created through the segmentation of a long-period random number sequence.
These subsequences are separated by a distance of at least 260 > 1018 intervals.
For details, see “DVRAU4,” item (4), “Method.”

2) Parameter N

 This subroutine returns the next N pseudo-random numbers from the infinite
sequence defined by the starting value IX. If N ≤ 0, no pseudo-random numbers
are returned.

 For efficiency, the user should make N sufficiently large (for instance, N =
100,000). This reduces the overhead of subroutine calls and allows vectorization.
N may be changed on consecutive calls to this subroutine provided that the size
of array DA is as large as the maximum value of N.

3) Work area DWORK

 DWORK is a work area to store state information for repeated calls to this
subroutine. The calling program must not change the contents of DWORK
while the subroutine is being called.

DVRAN3

Fujitsu SSL II Extended Capabilities User’s Guide II II-3

4) Parameter NWORK

 DWORK (1), ..., DWORK (NWORK) are used by this subroutine. NWORK
should remain unchanged on each call to the subroutine. NWORK should be at
least 1,156. For efficiency on vector processors, NWORK should be large (for
example, NWORK = 100,000).

5) Repeated generation of the same random number

 If DWORK (1), ..., DWORK (NWORK) is saved, the same sequence of random
numbers can be generated again (from the point where DWORK was saved) by
reusing DWORK (1), ..., DWORK (NWORK) and calling this subroutine with
argument IX = 0.

c. Example of use

 In this example, one million normal pseudo-random numbers are generated, and the
first- and second-order moments are calculated. The starting value is 12345. The
first-order moment is ∑ XiFi when the frequency of the variable Xi is Fi. The second-
order moment is ∑ Xi

2Fi when the frequency of the variable Xi is Fi.

C **EXAMPLE**
 PARAMETER (NRAN = 1000000)
 PARAMETER (NSEED = 12345)
 PARAMETER (NWMAX = 100000)
 PARAMETER (NBUF = 120000)
 REAL*8 DA(NBUF)
 REAL*8 DWORK(NWMAX)
 REAL*8 DSUM,DSUM2
 REAL*8 DMEAN,DM2
 IA = NSEED
 PRINT *, ' Seed ', IA
 N = NBUF
 NWORK = NWMAX
 DSUM = 0.0D0
 DSUM2 = 0.0D0
C NGEN counts down to 0
 NGEN = NRAN
 PRINT *, ' Generating ', NGEN,
 $ ' numbers'
C Generate NRAN numbers ,
C maximum NBUF at a time
 KRPT = (NRAN+NBUF-1)/NBUF
 PRINT *, ' with ', KRPT,
 $ ' call to dvran3'
 DO 20 J = 1, KRPT
 N = MIN0 (NBUF, NGEN)
C First two arguments are mean
C add standard deviation
 CALL DVRAN3 (0.0D0, 1.0D0, IA,
 $ DA, N, DWORK, NWORK, ICON)
 IF (ICON .NE. 0) THEN
 PRINT *, ' Error Return ', ICON
 STOP
 ENDIF
C Accumulate sum of numbers generated
 DO 10 I = 1, N
 DSUM = DSUM + DA(I)

DVRAN3

II-4 Fujitsu SSL II Extended Capabilities User's Guide II

C Accumulate sum of squares
 10 DSUM2 = DSUM2 + DA(I)*DA(I)
 20 NGEN = NGEN - N
C Compute sample mean
 DMEAN = DSUM/DFLOAT(NRAN)
 PRINT *, ' First moment ', DMEAN
C Compute sample second moment about 0
 DM2 = DSUM2/DFLOAT(NRAN)
 PRINT *, ' Second moment ', DM2
 STOP
 END

(4) Method

 To generate normally distributed pseudo-random numbers, DVRAN3 uses the Polar
method with fast elementary function evaluation. The uniform pseudo-random numbers
required in this method are generated using DVRAU4.

 The Polar method is described in item [24]. For implementation details and a comparison
with other methods, see [4].

DVRAN4

Fujitsu SSL II Extended Capabilities User’s Guide II II-5

J11-20-0501 DVRAN4

Generation of normal random numbers (double precision, Wallace’s method)

CALL DVRAN4 (DAM, DSD, IX, DA, N, DWORK, NWORK, ICON)

(1) Function
 This subroutine generates pseudo-random numbers from a normal distribution density

function (1.1) with a given mean m and standard deviation σ.

)
) - (-

(=)(
2

2

2
mx

exp
2

1xf
σπσ

 (1.1)

(2) Parameters
DAM........... Input. Mean m of normal distribution.

Double-precision real type.
DSD............ Input. Standard deviation σ of normal distribution.

Double-precision real type.
IX................ Input. Starting value.

On the first call, set IX to a positive value. Subsequently, call the subroutine
with the return value remaining 0. A different sequence of random numbers are
generated with a different starting value on the first call.
(See item (3), “Comments on use,” b., 1).)
4-byte integer type (INTEGER*4).
Output. 0.

DA.............. Output. N pseudo-random numbers.
Double-precision real type one-dimensional array of size N.

N................. Input. The number of normally distributed pseudo-random numbers to be
returned in DA.
(See item (3), “Comments on use,” b., 2).)

DWORK...... Work area. One-dimensional array of the double-precision real type and size
NWORK.
Do not modify the contents of this subroutine between repeated calls.
DWORK contains information necessary for repeated calls to this subroutine.
(See item (3), “Comments on use,” b., 3).)

NWORK...... Input. The size of the array DWORK. NWORK ≥ 1,350.
ICON........... Output. Condition code.

See Table DVRAN4-1, “Condition codes.”

DVRAN4

II-6 Fujitsu SSL II Extended Capabilities User's Guide II

Table DVRAN4-1 Condition codes

Code Description Processing

0 No error

30001 NWORK is too small. IX < 0, DSD ≤ 0 Processing is stopped.

30002 Internal check failed.

30003 to 30008 DWORK was overwritten or IX was set to zero
on the initial call.

30009 IX is too large.

40001 to 40002 DWORK was over written or IX was set to zero
on the initial call.

(3) Comments on use

a. Subprograms used

 SSL II: DUF2G3, DUITG3, DURN3B, DURUG3, DUR2G3, DUSKG3, DUSQG3,
DUVRG3, DVRAU4, MGSSL

b. Comments

1) Starting point IX

 When a sequence of pseudo-random numbers is to be generated by a
deterministic program, there must be random input. To do this, give a starting
value IX. On the first call to this subroutine, the starting value IX must be a
positive integer. (For exceptions, see item 5).) For subsequent calls, set IX to
zero. This indicates that more pseudo-random numbers from the same sequence
are to be generated. To simplify programming, this subroutine returns zero in IX
after the initial call.

2) Parameter N

 This subroutine returns the next N pseudo-random numbers from the infinite
sequence defined by the starting value IX. If N ≤ 0, no pseudo-random numbers
are returned.

 For efficiency, the user should make N sufficiently large (for instance, N =
100,000). This reduces the overhead of subroutine calls and allows vectorization.
N may be changed on consecutive calls to this subroutine provided that the size
of array DA is as large as the maximum value of N.

3) Work area DWORK

 DWORK is a work area to store state information for repeated calls to this
subroutine. The calling program must not change the contents of DWORK
while the subroutine is being called.

4) Parameter NWORK

 DWORK (1), ..., DWORK (NWORK) are used by this subroutine. NWORK
should remain unchanged on each call to the subroutine. NWORK should be at
least 1,350. For efficiency on vector processors, NWORK should be large (for
example, NWORK = 500,000).

DVRAN4

Fujitsu SSL II Extended Capabilities User’s Guide II II-7

5) Repeated generation of the same random number

 If DWORK (1), ..., DWORK (NWORK) is saved, the same sequence of random
numbers can be generated again (from the point where DWORK was saved) by
reusing DWORK (1), ..., DWORK (NWORK) and calling this subroutine with
argument IX = 0.

6) The implementation of Wallace's method in DVRAN4 is about three times faster
than the implementation of the Polar method in DVRAN3.

c. Example of use

 In this example, one million normal pseudo-random numbers are generated, and the
first- and second-order moments are calculated. The starting value is 12345. The
first-order moment is ∑ XiFi when the frequency of the variable Xi is Fi. The second-
order moment is ∑ Xi

2Fi when the frequency of the variable Xi is Fi.

C ** EXAMPLE **
 PARAMETER (NRAN = 1000000)
 PARAMETER (NSEED = 12345)
 PARAMETER (NWMAX = 100000)
 PARAMETER (NBUF = 120000)
 REAL*8 DA(NBUF)
 REAL*8 DWORK(NWMAX)
 REAL*8 DSUM, DSUM2
 REAL*8 DMEAN, DM2
 IA = NSEED
 PRINT *, ' Seed ', IA
 N = NBUF
 NWORK = NWMAX
 DSUM = 0.0D0
 DSUM2 = 0.0D0
C NGEN counts down to 0
 NGEN = NRAN
 PRINT *, ' Generating ', NGEN,
 $ ' numbers'
C Generate NRAN numbers ,
C maximum NBUF at a time
 KRPT = (NRAN+NBUF-1)/NBUF
 PRINT *, ' with ', KRPT,
 $ ' call to dvran4'
 DO 20 J = 1, KRPT
 N = MIN0 (NBUF, NGEN)
C First two arguments are mean
C add standard deviation
 CALL DVRAN4 (0.0D0, 1.0D0, IA,
 $ DA, N, DWORK, NWORK, ICON)
 IF (ICON .NE. 0) THEN
 PRINT *, ' Error Return ', ICON
 STOP
 ENDIF
C Accumulate sum of numbers generated
 DO 10 I = 1, N
 DSUM = DSUM + DA(I)
C Accumulate sum of squares
 10 DSUM2 = DSUM2 + DA(I)*DA(I)

DVRAN4

II-8 Fujitsu SSL II Extended Capabilities User's Guide II

 20 NGEN = NGEN - N
C Compute sample mean
 DMEAN = DSUM/DFLOAT(NRAN)
 PRINT *, ' First moment ', DMEAN
C Compute sample second moment about 0
 DM2 = DSUM2/DFLOAT(NRAN)
 PRINT *, ' Second moment ', DM2
 STOP
 END

(4) Method

 DVRAN4 uses a variant of Wallace’s method to generate normally distributed pseudo-
random numbers. This requires uniform pseudo-random numbers, which are generated
using DVRAU4.

 Wallace's method is described in reference [43]. Implementation details and comparisons
with other methods are given in references [4] and [5]

DVRAU4

Fujitsu SSL II Extended Capabilities User’s Guide II II-9

J11-11-0301 DVRAU4

Generation of uniform [0, 1) pseudo-random numbers (double precision)

CALL DVRAU4 (IX, DA, N, DWORK, NWORK, ICON)

(1) Function

 This subroutine generates a sequence of pseudo-random numbers from a uniform
distribution on [0, 1).

(2) Parameters

IX............... Input. Starting value.
On the first call, set IX to a positive value. Subsequently, call the subroutine
with the return value remaining 0.
(See item (3), “Comments on use,” b., 1).)
A different sequence of random numbers are generated with a different IX value
on the first call.
(See item (4), “Method.”)
4-byte integer type (INTEGER*4).
Output. 0.

DA.............. Output. N pseudo-random numbers independent and uniform in [0, 1).
Double-precision real type one-dimensional array of size N.

N................. Input. The number of uniformly distributed pseudo-random numbers to be
returned in DA.
(See item (3), “Comments on use,” b., 2).)

DWORK..... Work area. One-dimensional array of double-precision real type with size of at
least NWORK.
Do not modify the contents between repeated calls to this subroutine.
DWORK contains all of the current state information necessary to call this
subroutine again from its current point.
(See item (3), “Comments on use,” b., 3).)

NWORK..... Input. The size of the array DWORK. NWORK ≥ 388.

ICON.......... Output. Condition code.
See Table DVRAU4-1, “Condition codes.”

Table DVRAU4-1 Condition codes

Code Description Processing

0 No error

30001 NWORK is too small. Processing is stopped.

30002 IX<0

30003 to 30008 DWORK was modified. Or IX was set to zero
on the initial call.

DVRAU4

II-10 Fujitsu SSL II Extended Capabilities User's Guide II

(3) Comments on use

a. Subprograms used

 SSL II: DUITG3, DURUG3, DUR2G3, DUF2G3, DUSKG3, DUSQG3, DUVRG3,
MGSSL

b. Comments

1) Starting value IX

 When a sequence of pseudo-random numbers is to be generated by a
deterministic program, there must be random input. To do this, give a starting
value IX. This starting value is often called the “seed.” On the first call to this
subroutine, the starting value IX must be a positive integer. (For exceptions, see
item 5).) On subsequent calls, set IX to zero. This indicates that subsequent
pseudo-random numbers from the same sequence are to be generated. To
simplify programming, this subroutine returns zero in IX after the initial call.

2) Parameter N

 This subroutine returns the next N pseudo-random numbers from the infinite
sequence defined by the starting value IX. If N ≤ 0, no pseudo-random numbers
are returned.

 For efficiency, make N sufficiently large (for example, N = 100,000). This
reduces the overhead of subroutine calls and allows vectorization. A sequence
of random numbers are affected by N and NWORK values on the first call. For
details, see item (4), “Method.” N may be different on successive calls to this
subroutine, provided that the size of array DA is as large as the maximum value
of N.

3) Work area DWORK

 DWORK is a work area used to store state information for repeated calls to this
subroutine. The calling program must not change the contents of DWORK
while the subroutine is being called.

4) Parameter NWORK

 DWORK (1), ..., DWORK (NWORK) are used by this subroutine. NWORK
should remain unchanged on each call to the subroutine. NWORK should be at
least 388. For efficiency on vector processors, NWORK should be large (for
example, NWORK = 45,000). A sequence of random numbers are affected by N
and NWORK values on the first call. For details, see item (4), “Method.”

5) Repeated generation of the same random number

 If DWORK (1), ..., DWORK (NWORK) is saved, the same sequence of random
numbers can be generated again (from the point where DWORK was saved).
Reusing DWORK (1), ..., DWORK (NWORK) and call this subroutine with
argument IX = 0.

c. Example of use

 In this example, one million uniform pseudo-random numbers are generated and their
mean value is calculated. The starting value is 123.

C **EXAMPLE**
 PARAMETER (NRAN = 1000000)
 PARAMETER (NSEED = 123)
 PARAMETER (NWMAX = 45000)
 PARAMETER (NBUF = 160000)

DVRAU4

Fujitsu SSL II Extended Capabilities User’s Guide II II-11

 REAL*8 DA(NBUF)
 REAL*8 DWORK(NWMAX)
 REAL*8 DSUM, DMEAN, DSIG
 IX = NSEED
 PRINT *, ' SEED ', IX
 N = NBUF
 NWORK = NWMAX
 DSUM = 0.0D0
C NGEN counts down to 0
 NGEN = NRAN
 PRINT *, ' Generating ', NGEN,
 $ ' Numbers'
C Generate NRAN numbers,
C Maximum NBUF at a time
 KRPT = (NRAN+NBUF-1)/NBUF
 PRINT *, ' with ', KRPT,
 $ ' calls to dvrau4'
 DO 20 J = 1, KRPT
 N = MIN0 (NBUF, NGEN)
 CALL DVRAU4 (IX, DA, N,
 $ DWORK, NWORK, ICON)
 IF (ICON .NE. 0) THEN
 PRINT *, ' Error return ', ICON
 STOP
 ENDIF
C Accumulate sun of numbers generated
 DO 10 I = 1, N
 10 DSUM = DSUM + DA(I)
 20 NGEN = NGEN - N
C Compute mean
 DMEAN = DSUM/DFLOAT(NRAN)
 PRINT *, ' Mean ', DMEAN
C Compute deviation from 0.5 normalized
C by expected value 1/sqrt(12*NRAN).
C This should be (approximately) normally
C distributed with mean 0, variance 1.
 DSIG = DMEAN - 0.5D0
 DSIG = DSIG*DSQRT(12.0D0*NRAN)
 PRINT *, ' Norm. deviation ', DSIG
 STOP
 END

DVRAU4

II-12 Fujitsu SSL II Extended Capabilities User's Guide II

(4) Method

 This subroutine uses the generalized Fibonacci method. If the sequence of pseudo-
random numbers is X (1), X (2), ..., then

X (J) = α*X (U - r) + β*X (J - s) (modulo 1)

 where J > r > s.

 Here, r and s are fixed positive integers (often called “lags”), and α and β are small odd
integers.

 On the first call (or any call with IX > 0), this subroutine selects a pair (r, s) defining a
primitive trinomial (mod 2) and a corresponding linear recurrence. There are 14 possible
pairs (r, s), and the one with the largest r is chosen, subject to the constraint that N and
NWORK are large enough.

 Thus, the user can choose:

- A good generator with a moderately long period, low initialization overhead, and
small storage requirements by setting NWORK = 1,000, for example

- A very good generator with an extremely long period, high initialization overhead,
and high storage requirements by setting NWORK = 133,000, for example

- An intermediate compromise, without having to know the precise details of how to
choose (r, s).

 The pairs (r, s) used by this subroutine are given in Table DVRAU4-2. For tables of
primitive trinomials, see [20].

Table DVRAU4-2 Pairs (r, s)

r s r s

127
258
521
607
1279
2281
3217

97
175
353
334
861
1252
2641

4423
9689
19937
23209
44497
110503
132049

2325
5502
10095
13470
23463
56784
79500

 This subroutine chooses the parameters (α, β) = (7, 9) if r ≤ 1,000, and (α, β) = (1, 15) if r

> 1,000. The rationale is that performance on statistical tests is likely to be improved if α
> 1. However, this improvement is only significant for smaller choices of r. For larger
choices of r, the performance on statistical tests is very good, even if α = 1. This choice
increases the speed of random number generation.

 The period of the sequence is W(2r - 1), where r is in the range 127 (for the smallest
NWORK) to 132,049 (for N ≥ 264,098 and NWORK ≥ 132,056). The factor W depends
on the wordlength. (On the Fujitsu VPP series, W = 248, and the minimum period is at
least 1052.)

 The initialization ensures that sequences of pseudo-random numbers returned for different
starting value IX are separated by a distance of at least 260 > 1018 in the full periodic
sequence. Thus, for all practical purposes, different starting values IX ensure different
sequences of pseudo-random numbers.

DVRAU4

Fujitsu SSL II Extended Capabilities User’s Guide II II-13

 The method and implementation details are described in more detail in [2] and [3]. For a
further explanation and comparison with other methods, see [1], [11], [22], and [28].

(5) Testing of uniform random numbers

 Table DVRAU4-3 shows the result of testing statistical hypotheses for the pseudo-
random numbers generated by DVRAU4 with NWORK = 44,504 (so r = 44,497 and s =
23,463).

Table DVRAU4-3 Results of χ2 testing (uniform deviation at n-dimensions unit

 hypercube)

Dimension(*1) Size(*2) resl
(*3) resv

(*4) Density(*5) 1 - 2 - 2 fχ2

1 109 5 × 107 50000000 20.00 1.21

1 0.8 × 109 1.25 × 107 12500000 64.00 -0.67

2 109 7071 49999041 10.00 -0.10

2 2 × 109 3535 12496225 80.02 -0.37

3 2 × 109 368 49836032 13.38 1.40

3 2 × 109 232 12487168 53.39 -0.96

4 2 × 109 84 49787136 10.04 0.76

4 2 × 109 59 12117361 41.26 -0.38

*1 Dimension: Dimension of the unit hypercube.

*2 Size: Number of pseudo-random numbers generated.

*3 resl: Number of equal subintervals partitioning [0, 1) in each dimension.

*4 resv: Number of equal hypercubes partitioning the unit hyper cube.

*5 Density: Average number of random points per small hypercube.

 In the table, the number of degrees of freedom ’f’ of chi-squared testing is very large

(1,000,000 level). In this case, the expression 1 - 2 - 2 2 fχ should be approximated
extremely well as a normal deviate with unit variance.

VBCSD, DVBCSD

II-14 Fujitsu SSL II Extended Capabilities User's Guide II

A72-27-0101 VBCSD, DVBCSD

System of linear equations with unsymmetric or indefinite sparse matrix
(BICGSTAB(l) method, diagonal storage format)

CALL VBCSD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS, L, X, ITER,
 VW, ICON)

(1) Function

 This routine solves linear equations with an n × n unsymmetric or indefinite sparse matrix
using the Bi-Conjugate Gradient Stabilized(l) method (BICGSTAB(l)).

 Ax = b

 The n × n coefficient is stored with the diagonal storage format. Vectors b and x are n-
dimensional vectors.

 Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A................ Input. Stores non-zero elements in a coefficient matrix.
Two-dimensional array A (K, NDIAG). Stores coefficient matrix A in
A (1:N, NDIAG) with the diagonal storage format. For the diagonal storage
format, see Part I, “Overview,” Section 3.2.1.1, “Storage Methods for General
Sparse Matrices,” b., “Diagonal Storage Format for General Sparse Matrices.”

K................ Input. Size of adjustable dimension of array A

NDIAG....... Input. The number of diagonal vectors in coefficient matrix A that contain non-
zero elements.
Size of second-dimension of array A.

N................ Input. Order n of matrix A.

NOFST.... Input. Stores the distance from the main diagonal vector corresponding to
diagonal vectors stored in array A. Superdiagonal vectors have positive values;
Subdiagonal vectors have negative values.
One-dimensional array NOFST (NDIAG).

B................. Input. One-dimensional array of size n. Stores the constant vector of the right-
hand side term of a linear equation system.

ITMAX....... Input. The upper limit of iterations in BICGSTAB(l) method (> 0).

EPS............. Input. A convergence criterion value in judgment of convergency.
If EPS is 0.0 or less, it is set to 10-6 in double-precision routines and 10-4 in
single-precision routines.
(See item (3), “Comments on use,” b., 1).)

IGUSS........ Input. Sets control information about whether to start the iterative computation
from the approximate value of the solution vector specified in array X.
IGUSS=0: Approximate value of the solution vector is not specified.
IGUSS≠0: The iterative computation starts from the approximate value of the
solution vector specified in array X.

VBCSD, DVBCSD

Fujitsu SSL II Extended Capabilities User’s Guide II II-15

L................. Input. The order of stabiliser in the BICGSTAB(l) algorithm. (1 ≤ L ≤ 8).
The value of L should usually be set to 1 or 2. (See item(3), “Comments on
use,” b., 2).)

X................. Input. One-dimensional array of size n. Can specify the approximate value of
the solution vector.
Output. The solution vector is stored.

ITER........... Output. Number of iteration performed using the BICGSTAB(l) method.

VW............. Work area. One-dimensional array K × (4+2×L) + N + NBANDL + NBANDR.
NBANDL indicates a lower bandwidth; NBANDR indicates an upper
bandwidth. If the order or the bandwidth of the matrix are not constant
parameters, it is enough to set the size of VW array to be K × (4+2×L) +3×K.

ICON.......... Output. Condition code
See Table VBCSD-1, “Condition codes.”

Table VBCSD-1 Condition codes

Code Meaning Processing

0 No error -

20000 Break-down occurred Processing is stopped.

20001 The upper limit of iteration steps was
reached.

Processing is stopped.

The approximate value obtained up to
this point in array X is output, but their
precision cannot be guaranteed.

30000 K<1, N<1, K<N, NDIAG<1, L<1, L>8,
K<NDIAG, or ITMAX≤ 0

Processing is stopped.

32001 | NOFST (I) | > N-1 Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, UBCRL, UBCSD, UBGRS, UQITB, URELT, URIPA,

 URITI, URITT, URMVD, URSTE, USVCN, USVCP, USVN2,

 MGSSL, UMGSL

b. Comments

1) Convergent criterion
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less
than the product of the initial residual Euclidean norm and EPS, it is judged as
having converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of Matrix
A and EPS.
The residual which used for convergence judgement is computed recursively and
it may differ from the true residual.

2) Parameter L
The maximum value of L is set to 8. For L=1, this algorithm coincides with
BiCGSTAB. Using smaller L usually results in faster speed, but in some

VBCSD, DVBCSD

II-16 Fujitsu SSL II Extended Capabilities User's Guide II

situations larger L brings a good convergence, although the steps of an iteration
are more expensive for larger L.

3) Notes on using the diagonal format
A diagonal vector element outside coefficient matrix A must be set to zero.
There is no restriction in the order in which diagonal vectors are stored in array
A.
The advantage of this method lies in the fact that the matrix vector multiplication
can be calculated without the use of indirect indices. The disadvantage is that
matrices without the diagonal structure cannot be stored efficiently with this
method.

4) Diagonal scaling
Scaling the equations so that the main diagonal to be 1 may results in better
convergence.

c. Example of use

 In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0,1] × [0,1] × [0,1], with the
Dirichlet boundary condition (function value zero at the boundary).

 This type of partial differential operator is described in Part I, “Overview,” Section
3.2.2 “Discretization of partial differential operators and storage examples for them.”

 For INIT_MAT_DIAG, see Part I, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.”
GET_BANDWIDTH_DIAG is a routine that estimates band width. INIT_SOL is a
routine that generates solution vectors to be sought with random numbers.

c **EXAMPLE**
 PROGRAM TEST_ITER_SOLVERS
 IMPLICIT REAL*8 (A-H,O-Z)
 INTEGER MACH
 PARAMETER (MACH = 0)
 PARAMETER (K = 10000)
 PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ)
 PARAMETER (NDIAG = 7, LEN = N+400+400)
 PARAMETER (L = 4)
 PARAMETER (NVW = (4+2*L)*K+LEN)
 DOUBLE PRECISION A(K,NDIAG),X(N),B(N),SOLEX(N)
 INTEGER NOFST(NDIAG)
 DOUBLE PRECISION VW(NVW)
C
 CALL INIT_SOL(SOLEX,N,1D0,MACH)
 PRINT*,'EXPECTED SOLUSIONS'
 PRINT*,'X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
C
 PRINT *
 PRINT *,' BiCGstab(l) METHOD'
 PRINT *,' DIAGONAL FORMAT'
C
 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0

VBCSD, DVBCSD

Fujitsu SSL II Extended Capabilities User’s Guide II II-17

 ZL = 1.0
C
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
 CALL GET_BANDWIDTH_DIAG(NOFST,NDIAG,NBANDL,NBANDR)
 DO 110 I = 1,N
 VW(I+NBANDL) = SOLEX(I)
 110 CONTINUE
 CALL DVMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON)
 PRINT*,'DVMVSD ICON= ',ICON
C
 EPS = 1D-10
 IGUSS = 0
 ITMAX = 2000
 CALL DVBCSD(A,K,NDIAG,N,NOFST,B,ITMAX
 & ,EPS,IGUSS,L,X,ITER,VW,ICON)
C
 PRINT* ,'ITER = ',ITER
 PRINT* ,'DVBCSD ICON = ',ICON
 PRINT*, 'COMPUTED VALUES'
 PRINT*, 'X(1) = ',X(1),' X(N) = ',X(N)
 STOP
 END

(4) Method

 The BICG algorithm is described in [38] in Appendix B, “References.” The
BICGSTAB(l) algorithm is a modification of the BICGSTAB method, see [42] and [16]
in Appendix B, “References.”

VBCSE, DVBCSE

II-18 Fujitsu SSL II Extended Capabilities User's Guide II

A72-28-0101 VBCSE, DVBCSE

System of linear equations with unsymmetric or indefinite sparse matrix
(BICGSTAB(l) method, ELLPACK storage format)

CALL VBCSE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS, L, X, ITER,
 VW, ICON)

(1) Function

 This routine solves linear equations with an n × n unsymmetric or indefinite sparse matrix
using the Bi-Conjugate Gradient Stabilized(l) method (BICGSTAB(l)) method.

 Ax = b

 Coefficient matrices (n × n) are stored with the ELLPACK format. Vectors b and x are n-
dimensional vectors.

 Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

 (2) Parameters

A................ Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, IWIDT).
For the ELLPACK storage format, see Part I, “Overview,” Section 3.2.1.1,
“Storage Method for General Sparse Matrices.”

K................ Input. Size of adjustable dimension (≥ n) of A and ICOL.

IWIDT...... Input. The maximum number of non-zero-elements in row vector direction on
the coefficient matrix A.
Two dimensional size of A and ICOL.

N................ Input. Order n of matrix A.

ICOL.......... Input. Store the column indices of the element stored in the array A using the
ELLPACK format, indicating which column vectors the corresponding
elements in the array A belong to.
Two-dimensional array ICOL (K, IWIDT)

B................. Input. One-dimensional array of size n. Stores a constant vector of the right-
hand-side term of a linear equation system.

ITMAX....... Input. The upper limit of iterations in BICGSTAB(l) method (> 0).

EPS............. Input. A convergence criterion value in judgment of convergency.
If EPS is 0.0 or less, it is set to 10-6 in double-precision routines and 10-4 in
single-precision routines.
(See item (3), “Comments on use,” b., 1).)

IGUSS........ Input. Control information about whether to start the iterative computation
from the approximate value of the solution vector specified in array X.
IGUSS=0: Approximate value of the solution vector is not set.
IGUSS≠0: The iterative computation starts from the approximate value of the
solution vector specified in array X.

L................. Input. The order of stablilser in the BICGSTAB(l) algorithm. (1 ≤ L ≤ 8).
The value of L should usually be set to 1 or 2. (See item(3), “Comments on
use,” b., 2).)

VBCSE, DVBCSE

Fujitsu SSL II Extended Capabilities User’s Guide II II-19

X................ Input. One-dimensional array of size n. An approximate value of a solution
vector can be specified.
Output. Stores a solution vector.

ITER.......... Output. The real number of iteration steps in BICGSTAB(l) method.

VW............. Work area. One-dimensional array K × (4+2 × L).

ICON.......... Output. Condition code
See Table VBCSE-1, “Condition codes.”

Table VBCSE-1 Condition codes

Code Meaning Processing

0 No error -

20000 Break-down occurred Processing is stopped.

20001 The upper limit of iteration steps was
reached.

Processing is stopped.

The approximate values obtained up to
this point in array X are output, but their
precision cannot be guaranteed.

30000 K<1, N<1, K<N, IWIDT<1, L<1, L>8,
K<IWIDT, or ITMAX≤ 0

Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, UBCRL, UBCSE, UBGRS, UQITB, URELT, URIPA,
 URITI, URITT, URMVE, URSTE, USVCN, USVCP, USVN2,
 MGSSL, UMGSL

 b. Comments

1) Convergent criterion
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less
than the product of the initial residual Euclidean norm and EPS, it is judged as
having converged. The difference between the precise solution and obtained
approximate solution is equal to the product of the condition number of matrix A
and EPS.
The residual which used for convergence judgement is computed recursively and
it may differ from the true residual.

2) Parameter L
The maximum value of L is set to 8. For L=1, this algorithm coincides with
BiCGSTAB. Using smaller L usually results in faster speed, but in some
situations larger L brings a convergence, although the steps of a iteration are
more expensive for larger L.

3) Diagonal scaling
Scaling the equations so that the main diagonal to be 1 may results in better
convergence.

c. Example of use

 In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0,1] × [0,1] × [0,1] with the
Dirichlet boundary condition (function value zero at the boundary). This type of

VBCSE, DVBCSE

II-20 Fujitsu SSL II Extended Capabilities User's Guide II

partial differential operator is described in Part I, “Overview,” Section 3.2.2,
“Discretization of partial differential operator and storage examples for them.”

 For INIT_MAT_ELL, see Part I, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.”

 INIT_SOL is the routine that generates the solution vectors to be sought in random
numbers.

C **EXAMPLE**
 PROGRAM TEST_ITER_SOLVERS
 IMPLICIT REAL*8 (A-H,O-Z)
 INTEGER MACH
 PARAMETER (MACH = 0)
 PARAMETER (K = 10000)
 PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ)
 PARAMETER (IWIDT = 7, L = 4)
 PARAMETER (NVW = (4+2*L)*K)
 DOUBLE PRECISION A(K,IWIDT),X(N),B(N),VW(NVW),SOLEX(N)
 INTEGER ICOL(K,IWIDT)
C
 CALL INIT_SOL(SOLEX,N,1D0,MACH)
 PRINT*,'EXPECTED SOLUTION'
 PRINT*,'X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
C
 PRINT *
 PRINT *,' BiCGstab(l) METHOD'
 PRINT *,' ELLPACK FORMAT'
C
 AVI = 3D0
 AV2 = 1D0/3D0
 AV3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
C
 CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL,
 & NX,NY,NZ,XL,YL,ZL,IWIDT,N,K)
 CALL DVMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON)
 PRINT*,'DVMVSE ICON = ',ICON
C
 EPS = 1D-10
 IGUSS = 0
 ITMAX = 2000
 CALL DVBCSE(A,K,IWIDT,N,ICOL,B,ITMAX,
 & EPS,IGUSS,L,X,ITER,VW,ICON)
C
 PRINT*,'DVBCSE ICON = ',ICON
 PRINT*,'COMPUTED VALUE'
 PRINT*,'X(1) = ',X(1),' X(N) = ',X(N)
 STOP
 END

VBCSE, DVBCSE

Fujitsu SSL II Extended Capabilities User’s Guide II II-21

(4) Method

 The BICG algorithm is described in [38] in Appendix B, “References.” The
BICGSTAB(l) algorithm is a modification of the BICGSTAB method, see [42] and [16]
in Appendix B, “References.”

VBLDL, DVBLDL

II-22 Fujitsu SSL II Extended Capabilities User's Guide II

A53-31-0102 VBLDL, DVBLDL

LDLT decomposition of symmetric positive definite banded matrix (modified
Cholesky decomposition)

CALL VBLDL (A, N, NH, EPSZ, ICON)

(1) Function

 Using modified Cholesky decomposition, this routine computes the LDLT decomposition

 A = LDLT

 of an n × n symmetric positive definite banded matrix A with an upper and lower
bandwidth h, where L is a unit lower banded matrix with the lower bandwidth h, and D is
a diagonal matrix.

 The condition n > h ≥ 0 must be met.

 In order to exploit vector computer performance, this routine adopts the method of
storage in the order of column vectors.

(2) Parameters

A................. Input. One-dimensional array of size (h + 1) × n.
Stores diagonal elements of the coefficient matrix A and the lower banded
matrix.
For the storage method for matrix A, see Figure VBLDL-1.
Output. Stores LDLT decomposed D and L.
For the storage method for matrices L and D, see Figure VBLDL-2.

N................. Input. Order n of matrix A.

NH.............. Input. Lower bandwidth h.

EPSZ........... Input. Value of pivot judgment of relative zero (≥ 0.0).
When it is 0.0, standard values are applied.
(See item (3), “Comments on use,” b., 1).)

ICON.......... Output. Condition code.
See Table VBLDL-1, “Condition codes.”

VBLDL, DVBLDL

Fujitsu SSL II Extended Capabilities User’s Guide II II-23

.

D00-0050

a

a

a

.

.

a

a

a

a

.

.

a

a

a

.

.

a

a

a

*

.

.

*

11

21

31

h+1 1

22

32

42

h+2 2

n-h n-h

n-h+1 N-h

n n-h

n-1 n-1

n n-1

a

*

.

.

.

*

n n

* (asterisk): Undefined value

Figure VBLDL-1 Storage method for matrix A in array A

i column vectors of the lower banded matrix A are stored according to

A ((h + 1) × (i - 1) + j - i + 1) = aji

where j = i, ..., i + h, i = 1, ... , n

.

D00-0060

d

l

l

.

.

l

d

l

l

d

l

*

.

.

*

d

*

.

.

*

11

21

31

h+1 1 h+2 2

n-h n-h

n-h+1 N-h

.

.

n n-h

n-1 n-1

n n-1

n n22

32

42

d

l

l

.

.

l

* (asterisk): Undefined value

Figure VBLDL-2 Storage method for matrices L and D in array A

dii is stored in A ((h + 1) × (i - 1) + 1).

lji is stored in A ((h + 1) × (i - 1) + j - i + 1).

j = i + 1, ... , i + h, i = 1, ... , n

VBLDL, DVBLDL

II-24 Fujitsu SSL II Extended Capabilities User's Guide II

Table VBLDL-1 Condition codes

Code Description Processing

0 No error

10000 A negative pivot. Matrix A is not positive definite. Processing continues.

20000 Pivot is relative zero. Strong possibility that matrix A is
singular.

Processing is stopped.

30000 NH < 0, NH ≥ N or EPSZ < 0.0 Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, MGSSL

b. Comments

1) In this subroutine, the case of the pivot value being less than EPSZ is considered
relative zero, and processing is stopped with ICON = 20,000.

 The standard value of EPSZ is 16 × u, where u is the round off unit.

2) If the pivot value becomes negative during decomposition, the coefficient matrix
is not positive definite. In such a case, this subroutine continues processing, but
with ICON = 10,000.

3) The elements of matrix L that result from the decomposition are stored in array
A, as demonstrated in Figure VBLDL-2. Thus, the determinant is obtained from
the multiplication of n diagonal elements: A ((h + 1) × (i - 1) + 1), i = 1, ..., n.

c. Example of use

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER(NH=128)
 PARAMETER(N=128*128)
 DIMENSION A((NH+1)*N),C(NH+1,N)
 EQUIVALENCE(A,C)
C
C Zero clear
C
 DO 10 I=1,N*(NH+1)
 A(I)=0.0
 10 CONTINUE
C
C Coefficient Matrix is built
C b = A*y , where y=(1,1,....,1)
C
 DO 20 I=1,N
 C(1,I)=1.0
 IF(I+NH.LE.N)THEN
 C(NH+1,I)=-0.25
 ENDIF
 IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN
 C(2,I)=-0.25
 ENDIF

VBLDL, DVBLDL

Fujitsu SSL II Extended Capabilities User’s Guide II II-25

 20 CONTINUE
C
C LDL^T decomposition
C
 EPSZ=0.0D0
 CALL DVBLDL(A,N,NH,EPSZ,ICON)
 PRINT*,'ICON=',ICON
 IF(ICON.NE.0)STOP
C
 DET=1.0D0
 DO 30 I=1,N
 DET=DET*C(1,I)
 30 CONTINUE
C
 PRINT*,'DETERMINANT=',DET
 STOP
 END

(4) Method

LDLT decomposition is performed with the modified Cholesky decomposition of the outer
product type. (See [32].)

VBLDX, DVBLDX

II-26 Fujitsu SSL II Extended Capabilities User's Guide II

A53-31-0202 VBLDX, DVBLDX

System of linear equations with an LDLT decomposed symmetric positive definite
banded matrix

CALL VBLDX (B, FA, N, NH, ICON)

(1) Function

 This routine solves the following linear equations of LDLT decomposed symmetric
positive definite banded matrix contained in the coefficient matrix:

 LDLTx = b (1.1)

 L and D are each an n × n unit lower banded matrix with the lower bandwidth h. D is a
diagonal matrix, b is an n-dimensional real constant vector, and x is an n-dimensional
solution vector.

 The condition n > h ≥ 0 must be met.

(2) Parameters

B................. Input. Constant vector b.
Output. Solution vector x.
One-dimensional array of size n.

FA............... Input. One-dimensional array of size (h + 1) × n.
See Figure VBLDX-1, “Storage method for matrices L and D in array FA,” for
the storage method of LDLT decomposed matrices L and D.

N................. Input. Order n of matrix A.

NH.............. Input. Lower bandwidth h.

ICON.......... Output. Condition code.
See Table VBLDX-1, “Condition codes.”

D00-0070

.

d

l

l

.

.

l

d

l

l

.

.

l

d

l

.

.

l

d

l

*

.

.

*

d

*

.

.

*

11

21

31

h+1 1

22

32

42

h+2 2

n-h n-h

n-h+1 N-h

n n-h

n-1 n-1

n n-1

n n

* (asterisk): Undefined value

Figure VBLDX-1 Storage method for matrices L and D in array FA

 dii is stored in FA ((h + 1) × (i - 1) + 1).

VBLDX, DVBLDX

Fujitsu SSL II Extended Capabilities User’s Guide II II-27

 lji is stored in FA ((h + 1) × (i - 1) + j - i + 1).

 j = i + 1, ..., i + h, i = 1, ... , n

Table VBLDX-1 Condition codes

Code Description Processing

0 No error

10000 Coefficient matrix A is not positive definite. Processing continues.

30000 NH < 0, NH ≥ N Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: UBLTS, UBUTS, MGSSL

b. Comments

1) Linear equations can be solved by calling this routine consecutively after the
subroutine VBLDL. However, one call to the subroutine VLSBX usually brings
the same solution.

c. Example of use

 In this example, a symmetric positive definite banded matrix, where bandwidth h =
256 and n = 256 × 256, is LDLT decomposed and Ax = b is solved.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER(NH=128)
 PARAMETER(N=128*128)
 DIMENSION A((NH+1)*N),B(N),C(NH+1,N)
 EQUIVALENCE(A,C)
C
C Zero clear
C
 DO 10 I=1,N*(NH+1)
 A(I)=0.0
 10 CONTINUE
C
 DO 15 I=1,N
 B(I)=0.0
 15 CONTINUE
C
C Coefficient Matrix is built
C b = A*y , where y=(1,1,....,1)
C
 DO 20 I=1,N
 C(1,I)=4.0
 B(I)=B(I)+4.0
C
 IF(I+NH.LE.N)THEN
 C(NH+1,I)=-1.0
 B(I+NH)=B(I+NH)-1.0
 B(I)=B(I)-1.0

VBLDX, DVBLDX

II-28 Fujitsu SSL II Extended Capabilities User's Guide II

 ENDIF
C
 IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN
 C(2,I)=-1.0
 B(I+1)=B(I+1)-1.0
 B(I)=B(I)-1.0
 ENDIF
 20 CONTINUE
C
C Solve Symmetric Positive Definite linear equation
C
 EPSZ=0.0D0
 CALL DVBLDL(A,N,NH,EPSZ,ICON)
 PRINT*,'VBLDL ICON=',ICON
 IF(ICON.NE.0)STOP
 CALL DVBLDX(B,A,N,NH,ICON)
 PRINT*,'VBLDX ICON=',ICON
 IF(ICON.NE.0)STOP
C
 PRINT*,'B(1)= ',B(1)
 PRINT*,'B(N)= ',B(N)
 STOP
 END

(4) Method

 The solution is obtained through forward-substitution and back-substitution.

VBLU, DVBLU

Fujitsu SSL II Extended Capabilities User’s Guide II II-29

A53-11-0102 VBLU, DVBLU

LU decomposition of banded real matrix (Gaussian elimination)

CALL VBLU (A, N, NH1, NH2, EPSZ, IS, IP, VW, ICON)

(1) Function

 This routine LU decomposes an n × n banded matrix with a lower bandwidth h1 and an
upper bandwidth h2 using Gaussian elimination:

 P A = L U

 where P is a permutation matrix on which the exchange of rows is performed through
partial pivoting. L is a unit lower banded matrix, and U is an upper banded matrix.

 The condition n > h1 ≥ 0, n > h2 ≥ 0 must be met.

 In order to exploit vector computer performance, this routine adopts an appropriate
banded matrix storage method.

(2) Parameters

A................. Input. One-dimensional array of size (2 × h1 + h2 + 1) × n that stores the banded
coefficient matrix A.
For the storage method for matrix A, see Figure VBLU-1, “Storage method for
banded matrix in array A.”
Output. Stores the LU decomposed L and U.
For the storage method for matrices L and U, see Figure VBLU-2, “Storage
method for matrices L and U in array A.”

N................. Input. Order of matrix A.

NH1............ Input. Lower bandwidth h1 of matrix A.

NH2............ Input. Upper bandwidth h2 of matrix A.

EPSZ........... Input. Value of pivot judgment of relative zero (≥ 0.0). If it is 0.0, the standard
value is set.

IS................ Output. Information used when seeking the determinant of matrix A.
(See item (3), “Comments on use,” b., 2).)

IP................ Output. Transposition vector that shows the history of the exchange of rows
performed through partial pivoting. One-dimensional array of size n.

VW............. Work area. One-dimensional array of size n.

ICON.......... Output. Condition code.
See Table VBLU-1, “Condition codes.”

VBLU, DVBLU

II-30 Fujitsu SSL II Extended Capabilities User's Guide II

......

......

......

D00-0080

h h h

* a a 011 1 h2+1

2

a* a a 021 22 2 h2+2

* a a a a 031 32 33 3 h2+3

a a ah1+1 1 h1+1 h1+1 h1+1 h1+h2+1 0.......

a a an-h2 n-h2-h1 n-h2 n-h2 n-h2 n *..

a a *n n-h1 n n *...

1 11

* (asterisk): Undefined value

Figure VBLU-1 Storage method for banded matrix in array A

The i-th row vector of the coefficient matrix A is stored consecutively in A ((2 × h1 + h2 + 1)
× (i - 1) + 1: (2 × h1 + h2 + 1) × i). Diagonal elements aii are stored in A ((2 × h1 + h2 + 1) × (i
- 1) + h1 + 1). The elements outside coefficient matrix of the banded part are set to zero when
being stored.

VBLU, DVBLU

Fujitsu SSL II Extended Capabilities User’s Guide II II-31

......

......

......

D00-0090

h h h1 2 11

* l

u

21

33

1 h1+h2+1....

....

u* u11

2 h1+h2+2u

* l 31 l
32

.... 3 h1+h2+3u

l u uh1+1 1 ... h1+1 h1+1 h1+1 2h1+h2+1

ln-h2 n-h2-h1.. u n-h2 n *

ln n-h1 ...

u n-h2 n-h2

u n n * *

u22

* (asterisk): Undefined value

Figure VBLU-2 Storage method for matrices L and U in array A

The i-th row vector without diagonal elements of matrix L is stored in A ((2 × h1 + h2 + 1) ×
(i - 1) + 1: (2 × h1 + h2 + 1) × (i - 1) + h1). The i-th row vector of matrix U is stored in A ((2
× h1 + h2 + 1) × (i - 1) + h1 + 1: (2 × h1 + h2 + 1) × i), consecutively from the diagonal
elements.

VBLU, DVBLU

II-32 Fujitsu SSL II Extended Capabilities User's Guide II

Table VBLU-1 Condition codes

Code Description Processing

0 No error

20000 All the elements of a row of matrix A were zero, or the
pivot is relative zero. There is a strong possibility that
matrix A is singular.

Processing is stopped.

30000 N ≤ NH1, N ≤ NH2, NH1 < 0, NH2 < 0 or EPSZ < 0.0 Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, MGSSL

b. Comments

1) In this subroutine, the case of the pivot value being less than EPSZ is considered
relative zero. Processing is stopped with ICON = 20,000.

 The standard value of EPSZ is 16 × u, where u is the round off unit.

2) Elements of matrix U are stored in array A, as demonstrated in Figure VBLU-2.
Therefore, the determinant is obtained by multiplying the IS value by n diagonal
elements, that is, the multiplication A ((2 × h1 + h2 + 1) × (i - 1) + h1 + 1), i =
1, ... , n.

3) In partial pivoting, this subroutine performs an actual exchange of the rows of
array A. If at the J-th step of decomposition (J = 1, 2, ..., n-1) the I-th row (I ≥ J)
is selected as the pivot row, the contents of the I-th and J-th row of array A are
interchanged. In order to show the history, I is then stored in IP (J).

4) In order to save space in the data storage area, this subroutine stores banded
matrices by taking advantage of their characteristics. However, depending on
bandwidth size, a data storage area that is larger than VALU may be required. In
such cases, space in the data storage area can be saved by using VALU.

 Characteristics of this subroutine can be exploited when n > 2 × h1 + h2 + 1.

c. Example of use

 In this example, the determinant of an unsymmetric banded matrix with h1 = h2 = 160,
n = 160 × 160, is computed.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER(NH=80)
 PARAMETER(NH1=NH)
 PARAMETER(NH2=NH)
 PARAMETER(N=NH*NH)
 PARAMETER(ALPHA=0.5/(NH1+1)/4,BETA=-ALPHA)
 DIMENSION A((2*NH1+NH2+1)*2*N)
 DIMENSION C(2*NH1+NH2+1,N),IP(N),VW(N)
 EQUIVALENCE(A,C)
C
C Zero clear
C
 DO 10 I=1,N*(3*NH+1)

VBLU, DVBLU

Fujitsu SSL II Extended Capabilities User’s Guide II II-33

 A(I)=0.0
 10 CONTINUE
C
C Coefficient Matrix is built
C
 DO 20 I=1,N
 C(NH1+1,I)=1.0
 IF(I.GT.NH)THEN
 C(1,I)=-0.25+ALPHA
 ENDIF
 IF(I+NH.LE.N)THEN
 C(1+NH1+NH2,I)=-0.25+BETA
 ENDIF
 IF(I.GT.1.AND.MOD(I-1,NH).NE.0)THEN
 C(NH1,I)=-0.25+ALPHA
 ENDIF
 IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN
 C(NH1+2,I)=-0.25+BETA
 ENDIF
 20 CONTINUE
C
C LU decomposition
C
 EPSZ=0.0D0
 ICON=0
 CALL DVBLU(A,N,NH1,NH2,EPSZ,IS,IP,VW,ICON)
 PRINT*,'ICON= ',ICON
 IF(ICON.NE.0)STOP
C
 DET=IS
 DO 30 I=1,N
 DET=DET*C(NH1+1,I)
 30 CONTINUE
C
 PRINT*,'DETERMINANT=',DET
 STOP
 END

(4) Method

 LU decomposition is performed through LU decomposition of the outer product type.
(See [14]).

VBLUX, DVBLUX

II-34 Fujitsu SSL II Extended Capabilities User's Guide II

A53-11-0202 VBLUX, DVBLUX

System of linear equations with an LU decomposed banded real matrix

CALL VBLUX (B, FA, N, NH1, NH2, IP, ICON)

(1) Function

 This routine solves linear equations

 Ax = b

 through forward-substitution and back-substitution, based on the result

 P A = L U

 obtained by LU decomposing an n × n banded matrix with a lower bandwidth h1 and an
upper bandwidth h2 using Gaussian elimination.

 P is a permutation matrix on which the exchange of rows is performed through partial
pivoting. L is a unit lower banded matrix, and U is an upper banded matrix.

 The condition n > h1 ≥ 0, n > h2 ≥ 0 must be met.

(2) Parameters

B................. Input. Constant vector b.
Output. Solution vector x.
One-dimensional array of size n.

FA............... Input. Stores LU decomposed L and U.
One-dimensional array of size (2 × h1 + h2 + 1) × n.
For the storage method of matrices L and U, see Figure VBLUX-1, “Storage
method for L and U in array A.”

N................. Input. Order of matrix A.

NH1............ Input. Lower bandwidth h1 of matrix A.

NH2............ Input. Upper bandwidth h2 of matrix A.

IP................ Input. Transposition vector that shows the history of the exchange of rows
performed through partial pivoting. One-dimensional array of size n.

ICON.......... Output. Condition code.

See Table VBLUX-1, “Condition codes.”

VBLUX, DVBLUX

Fujitsu SSL II Extended Capabilities User’s Guide II II-35

D00-0100

......

......

......

h h h1 2 11

* l

u

21

33

1 h1+h2+1
.... u* u11

2 h1+h2+2
u

* l31 l32 3 h1+h2+3
u

l u uh1+1 1 . h1+1 h1+1 h1+1 2h1+h2+1

ln-h2 n-h2-h1.. u n-h2 n *

ln n-h1

u n-h2 n-h2

u n n * *

u
22

* (asterisk): Undefined value

Figure VBLUX-1 Storage method for L and U in array FA

The i-th row vector without diagonal elements of matrix L is stored in FA ((2 × h1 + h2 + 1) ×
(i - 1) + 1: (2 × h1 + h2 + 1) × (i - 1) + h1). The i-th row vector of matrix U is stored
consecutively from the diagonal elements in FA ((2 × h1 + h2 + 1) × (i - 1) + h1 + 1: (2 × h1 +
h2 + 1) × i).

VBLUX, DVBLUX

II-36 Fujitsu SSL II Extended Capabilities User's Guide II

Table VBLUX-1 Condition codes

Code Description Processing

0 No error

20000 Coefficient matrix is singular. Processing is stopped.

30000 N ≤ NH1, N ≤ NH2, NH1 < 0, NH2 < 0, or error occurred
in IP.

Processing is stopped.

(3) Comments on use

a. Subprogram used

 SSL II: MGSSL

b. Comments

1) A linear equation can be solved by calling this subroutine after calling the
subroutine VBLU. At that time, set the input parameters of this subroutine (with
the exception of constant vectors) to the output parameters of VBLU.

c. Example of use

 In this example, a linear equation Ax = b, which takes the unsymmetric matrix A with
h1 = h2 = 160, n = 160 × 160 as a coefficient matrix, is solved.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER(NH=80)
 PARAMETER(NH1=NH)
 PARAMETER(NH2=NH)
 PARAMETER(N=NH*NH)
 PARAMETER(ALPHA=0.5/(NH1+1),BETA=-ALPHA)
 DIMENSION A((2*NH1+NH2+1)*2*N),B(N)
 DIMENSION C(2*NH1+NH2+1,N),IP(N),VW(N)
 EQUIVALENCE(A,C)
C
C Zero clear
C
 DO 10 I=1,N*(3*NH+1)
 A(I)=0.0
 10 CONTINUE
C
 DO 15 I=1,N
 B(I)=0.0
 IP(I)=0
 15 CONTINUE
C
C Coefficient Matrix is built
C
 DO 20 I=1,N
 C(NH1+1,I)=4.0
 B(I)=B(I)+4.0
 IF(I.GT.NH)THEN
 C(1,I)=-1.0+ALPHA
 B(I)=B(I)-1.0+ALPHA
 ENDIF

VBLUX, DVBLUX

Fujitsu SSL II Extended Capabilities User’s Guide II II-37

 IF(I+NH.LE.N)THEN
 C(1+NH1+NH2,I)=-1.0+BETA
 B(I)=B(I)-1.0+BETA
 ENDIF
 IF(I.GT.1.AND.MOD(I-1,NH).NE.0)THEN
 C(NH1,I)=-1.0+ALPHA
 B(I)=B(I)-1.0+ALPHA
 ENDIF
 IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN
 C(NH1+2,I)=-1.0+BETA
 B(I)=B(I)-1.0+BETA
 ENDIF
 20 CONTINUE
C
C Solve Banded linear equation
C
 EPSZ=0.0D0
 ICON=0
 CALL DVBLU(A,N,NH1,NH2,EPSZ,IS,IP,VW,ICON)
 PRINT*,'VBLU ICON= ',ICON
 IF(ICON.NE.0)STOP
 CALL DVBLUX(B,A,N,NH1,NH2,IP,ICON)
 PRINT*,'VBLUX ICON= ',ICON
 IF(ICON.NE.0)STOP
 PRINT*,'B(1)= ',B(1)
 PRINT*,'B(N)= ',B(N)
 STOP
 END

(4) Method

 The following expression is solved through forward-substitution and back-substitution:

 L U x = P b

VCCVF, DVCCVF

II-38 Fujitsu SSL II Extended Capabilities User's Guide II

F17-13-0101 VCCVF, DVCCVF

Discrete convolution or correlation of complex data

CALL VCCVF (ZX, K, N, M, ZY, IVR, ISW, TAB, ICON)

(1) Function

 This subroutine performs one-dimensional complex discrete convolutions or correlations
between a filter and multiple input data using discrete Fourier method.

 The convolution and correlation of a filter y with a single input data x are defined as
follows:

 a) convolution

 ∑
−

=
− −==

1

0

1,...,0,
n

i
iikk nkyxz (1.1)

 b) correlation

 ∑
−

=
+ −==

1

0

1,...,0,
n

i
iikk nkyxz (1.2)

 where, xj is a cyclic data with period n. (See item (3), “Comments on use,” b., 1).)

(2) Parameters

ZX.............. Two-dimensional complex array ZX(K, M).

 Input. The m complex data sequences {xj}, j=0,...,n−1, are stored in
ZX(1:N,1:M).

 Output. The m complex sequences {zk}, k=0,...,n−1, are stored in ZX(1:N,1:M).

K................ Input. Size of adjustable dimension of the array ZX. (K ≥ N)

N................ Input. The number of elements in one data sequence or in filter y. (See item (3),
“Comments on use,” b., 2).)

M............... Input. The number of rows in the array ZX.

ZY............. Input. Filter vector {yi}. One-dimensional complex array ZY(N).

 The values of this array will be altered after calling with ISW=0 or 2.

 (See item (3), “Comments on use, ” b., 3) and 4).)

IVR............ Input. Specify either convolution or correlation.

 When IVR = 0, convolution is calculated.

 When IVR = 1, correlation is calculated.

ISW........... Input. Control information.

 When ISW = 0, all the procedure will be done at once

 If the calculation should be divided into step-by-step procedure, specify as
follows. (See item (3), “Comments on use,” b., 3).)

 ISW = 1 to prepare the array TAB

VCCVF, DVCCVF

Fujitsu SSL II Extended Capabilities User’s Guide II II-39

 ISW = 2 to perform the Fourier transform in array ZY using the trigonometric
function table TAB.

 ISW = 3 to perform the convolution or correlation using the array ZY and TAB
which are prepared in advance.

TAB............ Work area. Trigonometric function table used for the transformation is stored.

 One-dimensional array of size 2N. (See item (3), “Comments on use,” b., 3).)

ICON.......... Output. Condition code.

See Table VCCVF-1, “Condition codes.”

Table VCCVF-1 Condition codes

Code Description Processing

0 No error -

30000 N ≤ 0, K<N, M ≤ 0, IVR ≠ 0,1 or ISW ≠ 0,1,2,3. Processing is stopped.

(3) Comments on use

a. Subprogram used

 SSLII: UZFB2, UZFB3, UZFB4, UZFB5, UZFB8, UZFB6, UZFF2, UZFF3, UZFF4,
UZFF5, UZFF8, UZFF6, UZFPB, UZFPF, UZFTB, UZFTF, UZUNI, MGSSL

b. Comments

1) To compute non-periodic convolution or correlation

 Non-periodic convolution or correlation can be calculated by this routine with
padding the value of ZX(nx+1:n, *) and ZY(ny+1:n) with zeros, where nx is the
actual length of the data sequence, ny is the actual length of the filter y and n
must be larger or equal to nx+ny−1. (See example 2 in “c. Example of use.”)

 The values of correlation zk, corresponding to k = −ny+1,..., −1 are stored in
ZX(n−ny+2:n, *) in this non-periodic case.

2) Recommended value of N

 The n can be an arbitrary number, but the calculation is fast with the sizes which
can be expressed as products of the powers of 2, 3, and 5.

3) Efficient use of the array TAB and ZY

 When this routine will calculate convolution or correlation successively for a
fixed value of n, the trigonometric function table TAB should be initialized once
at first call with ISW=0 or 1 and should be kept intact for second and subsequent
calls with ISW=2 and 3. This saves initialization procedure of array TAB.
Furthermore, if the filter vector y is also fixed, the array ZY which is
transformed with ISW=0 or 2 can be reused for second and subsequent calls with
ISW=3.

 In these cases, the array ZY must be transformed surely once.

4) To compute autocorrelation

 Autocorrelation or autoconvolution can be calculated by this routine with letting
the filter array ZY be identical to the data array ZX. In this case, specifying
ISW=2 will be ignored. (See example 3 in “c. Example of use.”)

VCCVF, DVCCVF

II-40 Fujitsu SSL II Extended Capabilities User's Guide II

5) Stack size

 This subroutine exploits work area internally as an auto allocatable array on
stack area. Therefore an abnormal termination could occur when the stack area
runs out. The necessary size for the auto allocatable array is 8 × N byte for
single precision, and twice for double precision.

 It is recommended to specify the sufficiently large stacksize with "limit" or
"ulimit" command under consideration that the stack area could be used for
another work area of fixed size and for user's program also.

c. Example of use
example 1) In this example, periodic convolution of a filter with three data vectors is

calculated with n=8.
C ** PERIODIC CONVOLUTION EXAMPLE **
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER(K=8,M=3)
 COMPLEX*16 X(K,M),Y(K)
 DIMENSION TAB(K*2)

 N=8

C --SET SAMPLE DATA--
 DO 100 J=1,M
 DO 100 I=1,N
 X(I,J)=DCMPLX(FLOAT(I+J-1),FLOAT(I-J))
 100 CONTINUE
 DO 110 I=1,N
 Y(I)=DCMPLX(FLOAT(I*I),FLOAT(10-I))
 110 CONTINUE

 WRITE(*,*)'--INPUT DATA--'
 DO 120 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 120 CONTINUE
 WRITE(*,910)(Y(I),I=1,N)

C --CALL DVCCVF--
 IVR=0
 ISW=0
 CALL DVCCVF(X,K,N,M,Y,IVR,ISW,TAB,ICON)

 WRITE(*,*)'--OUTPUT DATA--'
 DO 130 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 130 CONTINUE

 900 FORMAT('X(*,',I2,') :'/(12X,4('(',F8.2,',',F8.2,')')))
 910 FORMAT('Filter Y:'/(12X,4('(',F8.2,',',F8.2,')')))
 STOP
 END

example 2) In this example, non-periodic convolution is calculated with nx=7, ny=9
and n=16.

C ** NONPERIODIC CONVOLUTION EXAMPLE **
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER(K=16,M=3)

VCCVF, DVCCVF

Fujitsu SSL II Extended Capabilities User’s Guide II II-41

 COMPLEX*16 X(K,M),Y(K)
 DIMENSION TAB(K*2)

 NX=7
 NY=9
 N=NX+NY-1
 IF(MOD(N,2).NE.0)N=N+1

C --SET SAMPLE DATA--
 DO 100 J=1,M
 DO 110 I=1,NX
 X(I,J)=DCMPLX(FLOAT(I+J-1),FLOAT(I-J))
 110 CONTINUE
 DO 120 I=NX+1,N
 X(I,J)=(0.0D0,0.0D0)
 120 CONTINUE
 100 CONTINUE
 DO 130 I=1,NY
 Y(I)=DCMPLX(FLOAT(I*I),FLOAT(10-I))
 130 CONTINUE
 DO 140 I=NY+1,N
 Y(I)=(0.0D0,0.0D0)
 140 CONTINUE

 WRITE(*,*)'--INPUT DATA--'
 DO 150 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 150 CONTINUE
 WRITE(*,910)(Y(I),I=1,N)

C --CALL DVCCVF--
 IVR=0
 ISW=0
 CALL DVCCVF(X,K,N,M,Y,IVR,ISW,TAB,ICON)
 WRITE(*,*)'--OUTPUT DATA--'
 DO 160 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 160 CONTINUE

 900 FORMAT('X(*,',I2,') :'/(12X,4('(',F8.2,',',F8.2,')')))
 910 FORMAT('Filter Y:'/(12X,4('(',F8.2,',',F8.2,')')))
 STOP
 END

example 3) In this example, autocorrelation is calculated with nx=4.
C ** AUTOCORRELATION EXAMPLE **
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER(K=8,M=3)
 COMPLEX*16 X(K,M)
 DIMENSION TAB(K*2)

 NX=4
 N=NX*2

C --SET SAMPLE DATA--
 DO 100 J=1,M

VCCVF, DVCCVF

II-42 Fujitsu SSL II Extended Capabilities User's Guide II

 DO 110 I=1,NX
 X(I,J)=DCMPLX(FLOAT(I+J-1),FLOAT(I-J))
 110 CONTINUE
 DO 120 I=NX+1,N
 X(I,J)=(0.0D0,0.0D0)
 120 CONTINUE
 100 CONTINUE

 WRITE(*,*)'--INPUT DATA--'
 DO 130 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 130 CONTINUE

C --CALL DVCCVF--
 IVR=1
 ISW=1
 CALL DVCCVF(X,K,N,M,X,IVR,ISW,TAB,ICON)
 ISW=3
 CALL DVCCVF(X,K,N,M,X,IVR,ISW,TAB,ICON)

 WRITE(*,*)'--OUTPUT DATA--'
 DO 140 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 140 CONTINUE

 900 FORMAT('X(*,',I2,') :'/(12X,4('(',F8.2,',',F8.2,')')))
 STOP
 END

(4) Method

 This subroutine performs discrete complex convolution or correlation efficiently on a
scalar CPU.

 The convolution can be calculated efficiently using Fourier method. It is based on the
fact that the Fourier transform of the convolution of two sequences is evaluated by
pointwise multiplication of the individual Fourier transformed sequences. The correlation
is calculated similarly to take the Fourier transform of x and the conjugate of the Fourier
transform of y and apply the inverse transform of their pointwise product.

 For further information on the algorithm, refer to [26] in Appendix B, “References. ”

VCFM1, DVCFM1

Fujitsu SSL II Extended Capabilities User’s Guide II II-43

F17-11-0501 VCFM1, DVCFM1

One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7)

CALL VCFM1 (X, N, ISW, ISN, W, ICON)

(1) Function

 This subroutine VCFM1 performs a one-dimensional complex Fourier transform or its
inverse transform using a mixed radix FFT.

 The length of data transformed n is a product of the powers of 2, 3, 5 and 7.

 a. The one-dimensional Fourier transform

When {xj} is input, the transform defined by (1.1) below is calculated to obtain {nk}.

)/2exp(,

1,...,1,0,
1

0
ni

nkxn

n

n

j

jk
njk

 (1.1)

 b. The one-dimensional Fourier inverse transform

When {k} is input, the transform defined by (1.2) below is calculated to obtain {xj}.

)/2exp(,

1,...,1,0,
1

0
ni

njx

n

n

k

jk
nkj

 (1.2)

(2) Parameters

X................ Input. Complex data. The data {xj} or {k} to be transformed is stored in
X(1:N).

 Output. Complex data. Transformed data {nk}or {xj} is stored in X(1:N).

 This is a complex one-dimensional array X(N).

N................ Input. The length of the data to be transformed.

ISW............ Input. Control information.

 ISW = 1 : For the first call, to generate a trigonometric function table and
control information in W and perform Fourier transform.

 ISW 1 : For the second or consecutive call, to perform Fourier transform for
the data of the same length as in the first call. The contents in W must not be
changed as the second or consecutive call uses the values in W generated in the
first call.

 Output. When ISW is set to 1, ISW is set to zero after performing transform.
Therefore the second or consecutive transform for new data in X can be
performed easily without setting ISW.

ISN............. Input. Either the transform or the inverse transform is indicated.

 ISN = 1 for the transform

 ISN = -1 for the inverse transform

W............... Work area.

VCFM1, DVCFM1

II-44 Fujitsu SSL II Extended Capabilities User's Guide II

 When ISW is set to 1, the trigonometric function table for data length N is
generated into W.

 Otherwise the contents generated in the first call is reused.

 (See item (3), "Comments on use," b., 2).)

 This is a complex one-dimensional array W(2N+70).

ICON.......... Output. Condition code.

See Table VCFM1-1, “Condition codes.”

Table VCFM1-1 Condition codes

Code Description Processing

0 No error -

20000 The value of N in second or consecutive call is different
from that of first call.

Processing is stopped.

30000 The value of ISN is incorrect.

30008 The order of transform is not radix 2/3/5/7

(3) Comments on use

a. Subprogram used

 SSLII: UCFM1X,UFR10T,UFR10TI,UFR16,UFR16T,UFR16TI,UFR2T,UFR2TI,
UFR3T,UFR3TI,UFR4,UFR4_5,UFR4_5I,UFR4_8,UFR4_8I,UFR4_R,UFR4_RI,
UFR4_S,UFR4_SI,UFR4_U,UFR4_UI,UFR4I,UFR4T,UFR4TI,UFR5T,UFR5TI,
UFR6T,UFR6TI,UFR7_7,UFR7T,UFR7TI,UFR8,UFR8_6,UFR8_6I,UFR8_7I,
UFR8_9,UFR8_9I,UFR8I,UFR8T,UFR8TI,UFR9T,UFR9TI,UFRDX2,UFTBL,
UFTBLMX2,UFTBLX,UFTBLX8,UFTINY,UFTINYI,UPBITR,UPERM,
UPERM5,UPERM6,UPERM7,UPERM8,UPERM9,MGSSL

b. Note

1) General definition of Fourier transform

 The one-dimensional discrete complex Fourier transform and its inverse
transform is defined as in (3.1) and (3.2).

 1,...,1,0,1 1

0

 nkx
n

n

j

jk
njk (3.1)

 1,...,1,0,
1

0

njx
n

k

jk
nkj (3.2)

 where, n = exp(2i/n)

 This subroutine calculates {nk} or {xj} corresponding to the left term of (3.1) or
(3.2), respectively. Normalization of the results may be required.

2) Use of the array W

 When this routine is called successively with a fixed value of n, the
trigonometric function table in W, which is initialized at the first call with
ISW=1, is reused for the subsequent calls with ISW1.

VCFM1, DVCFM1

Fujitsu SSL II Extended Capabilities User’s Guide II II-45

 Note that the array W is also used as a read-write work area even for the
sebsequent calls.

c. Example
A one-dimensional FFT is computed.

c **example**
 implicit real*8(a-h,o-z)
 parameter(n=640)
 complex*16 x(n),w(2*n+70)
c
 do i=1,n
 x(i)=i/dble(n)
 enddo
c
c do the forward transform
c
 isw=1
 call dvcfm1(x,n,isw,1,w,icon)
 if(icon.ne.0)then
 print*,'icon = ',icon
 stop
 endif
c
c do the reverse transform
c
 call dvcfm1(x,n,isw,-1,w,icon)
 if(icon.ne.0)then
 print*,'icon = ',icon
 stop
 endif
c
 tmp=0.0d0
 do i=1,n
 tmp=max(tmp,abs(x(i)/dble(n)-i/dble(n)))
 enddo
c
 print*,'error=',tmp
 stop
 end

(4) Method

This subroutine performs one-dimensional complex Fourier transform.

The algorithm for scalar computer based on the following 4-step algorithm is used.
The data to be transform is referred on the cache in stride one access and use of a
trigonometric function table is extremely reduced.

A. Splitting the order of the transform into factors n = p q.

B. After implementing the basic factorization of the order into n = p q, the following four-step
algorithm is performed.

1

00
0101

00)1(
01 1,...,0,1,...,0

p

j
qjj

jk
pqkj pkqjxz (4.1)

VCFM1, DVCFM1

II-46 Fujitsu SSL II Extended Capabilities User's Guide II

1,...,0,1,...,0 10
)1(

01
10)2(

01 qjpkzz qkj
jk

nqkj (4.2)

1,...,0,1,...,0 10
)2(

01
)3(

10 qjpkzz qkjpjk (4.3)

1

01
10

)3(
10

11
10 1,...,0,1,...,0

q

j
pjk

jk
qpkk qkpkzy (4.4)

Step 1 and step 4 are multiple Fourier transforms of order p and q respectively.

C. Suppose the length of data is factored as N = N1N2...Nm, Fourier transform is
performed by the repeated application of 4-step algorithm.

VCFT3, DVCFT3

Fujitsu SSL II Extended Capabilities User’s Guide II II-47

F17-11-0701 VCFT3, DVCFT3

One-dimensional discrete complex Fourier transforms (Radix 2, for data sequence
with a constant stride)

CALL VCFT3 (X, N, NDIST, ISW, ISN, W, ICON)

(1) Function

 This subroutine VCFT3 performs a one-dimensional complex Fourier transform or its
inverse transform using a radix 2 FFT.

 The length of data transformed n is a power of 2.

 a. The one-dimensional Fourier transform

When {xj} is input, the transform defined by (1.1) below is calculated to obtain {nk}.

)/2exp(,

1,...,1,0,
1

0
ni

nkxn

n

n

j

jk
njk

 (1.1)

 b. The one-dimensional Fourier inverse transform

When {k} is input, the transform defined by (1.2) below is calculated to obtain {xj}.

)/2exp(,

1,...,1,0,
1

0
ni

njx

n

n

k

jk
nkj

 (1.2)

(2) Parameters

X................ Input. Complex data. The data {xj} or {k} to be transformed is stored in X(1),
X(1+ NDIST),…, X(1+ (n-1)*NDIST).

 Output. Complex data. Transformed data {nk}or {xj} is stored in X(1), X(1+
NDIST),…, X(1+ (n-1)*NDIST).

 This is a complex one-dimensional array.

N................ Input. The length of the data to be transformed.

NDIST....... Input. The stride size of data sequence in the array X . Positive integer.
NDIST1 = 1 : Data sequence is stored consecutively in the array X.

ISW............ Input. Control information.

 ISW = 1 : For the first call, to generate a trigonometric function table and
control information in W and perform Fourier transform.

 ISW 1 : For the second or consecutive call, to perform Fourier transform for
the data of the same length as in the first call. The contents in W must not be
changed as the second or consecutive call uses the values in W generated in the
first call.

 Output. When ISW is set to 1, ISW is set to zero after performing transform.
Therefore the second or consecutive transform for new data in X can be
performed easily without setting ISW.

ISN............. Input. Either the transform or the inverse transform is indicated.

VCFT3, DVCFT3

II-48 Fujitsu SSL II Extended Capabilities User's Guide II

 ISN = 1 for the transform

 ISN = -1 for the inverse transform

W............... Work area.

 When ISW is set to 1, the trigonometric function table for data length N is
generated into W.

 Otherwise the contents generated in the first call is reused.

 (See item (3), "Comments on use," b., 2).)

 This is a complex one-dimensional array W(2N+70).

ICON.......... Output. Condition code.

See Table VCFT3-1, “Condition codes.”

Table VCFT3-1 Condition codes

Code Description Processing

0 No error -

20000 The value of N in second or consecutive call is different
from that of first call.

Processing is stopped.

30000 The value of ISN is incorrect. NDIST is not a positive
integer.

30008 The length of data sequence to be transformed is not a
power of 2.

(3) Comments on use

a. Subprogram used
SSLII:UFFT16,UFFT32,UFFT16INV,UFFT32INV,UFFT64,UFFT64INV,
UFFT32_1,UFFT32INV_1,U1DFFTDST16,UFFT16DST,UFFT16INVDST,
U1DFFTDST32,UFFT32DST,UFFT32INVDST,U1DFFTDST64,UFFT64DST,
UFFT32_1DST,UFFT64INVDST,UFFT32INV_1DST,UFFT256,UFFT8TWIST2,
UFFT128,UFFT8TWIST1,UFFT8TWIST4,UFFT512,UFFT1024,UFFT4096,
UFFT8TWIST3,UFFT8TWIST43,U2DFFT512_2,U2DFFT256_2,U2DFFT128_2,
UFFT8TWIST43_16,UFFT2048,UFFT8192,UFFT256INV,UFFT8TWISTINV2,
UFFT128INV,UFFT8TWISTINV1,UFFT8TWISTINV4,UFFT512INV,
UFFT1024INV,UFFT4096INV,UFFT8TWISTINV3,UFFT8TWISTINV43,
U2DFFT512INV_2,U2DFFT256INV_2,U2DFFT128INV_2,
UFFT8TWISTINV43_16,UFFT2048INV,UFFT8192INV,UFFT16TWIST1,
UFFT16TWIST2,UFFT16TWIST4_8,UFFT16TWIST4,UFFT16TWISTINV1,
UFFT16TWISTINV2,UFFT16TWISTINV4_8,UFFT16TWISTINV4,
U1DFFTDST4096,UFFT4096DST,UFFT4096INVDST,UFFT8TWIST1DST,
UFFT8TWIST43DST,UFFT8TWISTINV1DST,UFFT8TWISTINV43DST,
U1DFFTDST512,UFFT512DST,UFFT512INVDST,UFFT8TWIST4DST,
UFFT8TWISTINV4DST,U1DFFTDST1024,UFFT1024DST,UFFT1024INVDST,
UFFT16TWIST4DST,UFFT16TWISTINV4DST,U1DFFTDST1024,
U1DFFTDST2048,UFFT16TWIST1DST,UFFT16TWISTINV1DST,
UFFT2048DST,UFFT2048INVDST,UFFT8TWIST43_16DST,
UFFT8TWISTINV43_16DST,U1DFFTDST256,UFFT16TWIST2DST,
UFFT16TWISTINV2DST,UFFT256DST,UFFT256INVDST,U1DFFTDST128,
UFFT128DST,UFFT128INVDST,UFFT8TWIST2DST,UFFT8TWISTINV2DST,

VCFT3, DVCFT3

Fujitsu SSL II Extended Capabilities User’s Guide II II-49

U1DFFTDST8192,UFFT16TWIST4_8DST,UFFT16TWISTINV4_8DST,
UFFT8192DST,UFFT8192INVDST,UCFTDIS3X,UFR16T,UFR16TI,UFR2T,
UFR2TDSTPE,UFR2TI,UFR2TIDSTPE,UFR4T,UFR4TDSTPE,UFR4TI,
UFR4TIDSTPE,UFR8T,UFR8TDSTPE,UFR8TI,UFR8TIDSTPE,UFTBL,
UFTBLMX2,UFTBLX, UFTBLX8, MGSSL

b. Note

1) General definition of Fourier transform

 The one-dimensional discrete complex Fourier transform and its inverse
transform is defined as in (3.1) and (3.2).

 1,...,1,0,1 1

0

 nkx
n

n

j

jk
njk (3.1)

 1,...,1,0,
1

0

njx
n

k

jk
nkj (3.2)

 where, n = exp(2i/n)

 This subroutine calculates {nk} or {xj} corresponding to the left term of (3.1) or
(3.2), respectively. Normalization of the results may be required.

2) Use of the array W

 When this routine is called successively with a fixed value of n, the
trigonometric function table in W, which is initialized at the first call with
ISW=1, is reused for the subsequent calls with ISW1.

 Note that the array W is also used as a read-write work area even for the
sebsequent calls.

c. Example
One-dimensional FFTs are computed for plural data sequences with a constant stride.

c **example**
 implicit real*8(a-h,o-z)
 parameter(n=1024,mult=16,npad=3,ndist=mult+npad)
 complex*16 x(ndist,n),w(2*n+70)
c
 do j=1,mult
 do i=1,n
 x(j,i)=i/dble(n)+j
 enddo
 enddo
c
c multiple forward transform
c
 isw=1
 do j=1,mult
 call dvcft3(x(j,1),n,ndist,isw,1,w,icon)
 if(icon.ne.0)then
 print*,'icon = ',icon
 endif
 enddo
c

VCFT3, DVCFT3

II-50 Fujitsu SSL II Extended Capabilities User's Guide II

c multiple reverse transform
c
 do j=1,mult
 call dvcft3(x(j,1),n,ndist,isw,-1,w,icon)
 if(icon.ne.0)then
 print*,'icon = ',icon
 endif
 enddo
c
 tmp=0.0d0
 do j=1,mult
 do i=1,n
 tmp=max(tmp,abs(x(j,i)/dble(n)-(i/dble(n)+j)))
 enddo
 enddo
c
 print*,'error = ',tmp
 stop
 end

(4) Method

This subroutine calculates the One dimensional Radix 2 complex Fourier Transform for data
sequence with a constant stride at high speed on the scalar computer.

VCGD, DVCGD

Fujitsu SSL II Extended Capabilities User’s Guide II II-51

A72-11-0101 VCGD, DVCGD

System of linear equations with a symmetric positive definite sparse matrix
(preconditioned CG method, diagonal storage format)

CALL VCGD (A, K, NW, N, NDLT, B, IPC, ITMAX, ISW, OMEGA, EPS,
 IGUSS, X, ITER, RZ, VW, IVW, ICON)

(1) Function

 This routine solves linear equations

 Ax = b

 using the preconditioned conjugate gradient (CG) method, where an n × n normalized
symmetric positive definite sparse matrix A must be used as a coefficient matrix.

 The n × n coefficient matrix is normalized in such a way that the diagonal elements are 1.
The non-zero elements other than the diagonal elements are stored using the diagonal
storage format.

 For normalization of linear equations that use symmetric positive definite sparse matrices
as coefficient matrices, and for the diagonal storage format, see Part I, “Overview,”
Section 3.2.1.2, “Storage methods for symmetric positive definite sparse matrices.” The
diagonal storage format assumes that the non-zero elements of the coefficient matrix A lie
on a limited number of diagonal vectors, parallel to the main diagonal vector.

 This structure applies to linear equations arising from discretizing partial differential
equations, particularly at lattices parallel to the defined boundaries of the region. This
storage format is particularly efficient because the column vector number for each entry
element in the coefficient array does not need to be stored. Only the distance from the
main diagonal vector needs to be stored.

(2) Parameters

A................. Input. Two-dimensional array A (K, NW). Uses diagonal format to store non-
zero elements of the coefficient matrix, which is a normalized symmetric
positive definite sparse matrix.
For information about the diagonal storage format for normalized symmetric
positive definite sparse matrices, see Part I, “Overview,” Section 3.2.1.2,
“Storage methods for symmetric positive definite sparse matrices,” b., “The
diagonal storage format for symmetric positive definite sparse matrices.”

K................. Input. Size of adjustable dimension (≥ N) of array A.

NW............. Input. The size of the second dimension of array A. The number of diagonals
that store coefficient matrix A using the diagonal storage format. Even number.

N................. Input. Order n of matrix A.

NDLT......... Input. One-dimensional array NDLT (NW) indicating the offset from the main
diagonal.

B................. Input. One-dimensional array of size n. Stores the constant vector specified in
the right-hand-side term of the linear equations.

IPC.............. Input. Preconditioner control information.
IPC = 1 No preconditioner.
IPC = 2 Neumann preconditioner.
IPC = 3 Preconditioner with incomplete Cholesky decomposition.

VCGD, DVCGD

II-52 Fujitsu SSL II Extended Capabilities User's Guide II

In this case, the user must specify OMEGA.
(See item (3), “Comments on use,” b., 3).)

ITMAX....... Input. The upper limit of iterations (> 0).

ISW............ Input. Control information.
ISW = 1 Initial call.
ISW = 2 Subsequent calls. Must not be changed because the values of A,
NDLT, VW, and IVW are used, which were set during the initial call.
(See item (3), “Comments on use,” b., 1).)

OMEGA...... Input. Modification factor for incomplete Cholesky decomposition.
0 ≤ OMEGA ≤ 1
Used for IPC = 3.
(See item (3), “Comments on use,” b., 3).)

EPS............. Input. Criterion value in judgment of convergency.
Judged as convergent when RZ < EPS.
If EPS ≤ 0, EPS is set to ε × | b |. ε = 10-6 is used in double-precision routines,
and ε = 10-4 is used in single-precision routines.
(See item (3), “Comments on use,” b., 2).)

IGUSS......... Input. Information about whether to start iterations from the approximate value
of the solution vector specified in the array X.
IGUSS = 0 Approximation of the solution vector is not set.
IGUSS ≠ 0 Iteration computation starts from the approximate value of the
solution vector specified in the array X.

X................. Input. One-dimensional array of size n. Can specify the approximate value of
the solution vector of linear equations.
Output. One-dimensional array of size n. Stores solution vector of linear
equations.

ITER........... Output. Number of actually performed iterations.

RZ............... Output. Value of the square root of residuals rz after judgment of convergency.
(See item (3), “Comments on use,” b., 2).)

VW............. Work area.

1) When IPC = 3
 One-dimensional array of size K × (NW + 6) + 2 × NBAND. NBAND is the
 size of the lower bandwidth or the upper bandwidth.
2) When IPC ≠ 3
 One-dimensional array of size K × 5 + 2 × NBAND. NBAND is the size of
 the lower bandwidth or the upper bandwidth.

IVW............ Work area. One-dimensional array of size (K + 1) × 4.

ICON.......... Output. Condition code.
See Table VCGD-1, “Condition codes.”

VCGD, DVCGD

Fujitsu SSL II Extended Capabilities User’s Guide II II-53

Table VCGD-1 Condition codes

Code Description Processing

0 No error

20001 Reached the maximum number of
iterations.

Processing is stopped. The
approximate values obtained up to
this point in array X are output, but
their precision cannot be
guaranteed.

20003 Break down occurred.

30003 ITMAX ≤ 0 Processing is stopped.

30005 K < N

30006 Could not perform incomplete LLT
decomposition.

30007 Pivot is negative.

30089 NW is not an even number.

30091 NBAND = 0

30092 NW ≤ 0, n ≤ 0

30093 K ≤ 0

30096 OMEGA < 0, OMEGA > 1

30097 IPC < 1, IPC > 3

30102 Upper triangular part is not
correctly stored.

30103 Lower triangular part is not
correctly stored.

30104 The number of super-diagonals in
the upper triangular part is not
equal to the number of sub-
diagonals in the lower triangular
part.

30105 ISW≠1, 2

30200 | NDLT (i) | > n - 1 or
NDLT (i) = 0

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, UGCRI, UGULD, UGECD, UGFCD, UGINP, UGIPD, UGITB,
UGITI, UGITN, UGITT, UGMVD, UGCGP, USSCP, USSPS, UGSD2, UGSD3,
UGSTE, UGSWD, USVAD, USVCN, USVCP, USVSC, USVSU, USVUP, USVN1,
USVN2, USVNM, UGWVD, URELT, MGSSL

VCGD, DVCGD

II-54 Fujitsu SSL II Extended Capabilities User's Guide II

b. Comments

1) When multiple sets of linear equations with the same coefficient matrix but
different constant vectors are solved for IPC = 3, the solution on the first call is
with ISW = 1, and solutions on subsequent calls are with ISW = 2. In
subsequent calls, the result of the incomplete Cholesky decomposition obtained
on the initial call is reused.

2) Judgment of convergency

 The convergence of the solution obtained in the n-th iteration is assumed when

 RZ = EPS<)(zr

 where .r is the residual vector defined by

 r = b - Axn

 M is the preconditioner matrix, and

 rz = rT M -1 r

3) Preconditioners

 Two types of preconditioners and a no-preconditioner function are provided.

 When elliptic partial differential equations are solved by discretization, it is
effective to use a preconditioner based on an incomplete Cholesky
decomposition.

 If A = I -N, the preconditioner M of the linear equation (I - N) x = b is as
follows:

 IPC = 1 No preconditioner M = I

 IPC = 2 Neumann M -1 = (I + N)

 IPC = 3 Incomplete Cholesky decomposition M = LLT

 When IPC = 2, the preconditioner also must be a positive definite matrix. For
example, diagonal dominance of the matrix (I + N) is a sufficient condition for
the positive definiteness. Additionally, note that using a preconditioner may not
improve the convergence when the preconditioner does not approximate the
inverse matrix of A in some situations such that the maximum absolute value of
the eigenvalues of the matrix N is larger than one.

 When IPC = 3, the user must specify a value for OMEGA (0 OMEGA 1).

 When OMEGA = 0, this is incomplete Cholesky decomposition. When OMEGA = 1,
this is modified incomplete Cholesky decomposition.

 For linear equations derived from discretizing partial differential equations, an
optimal OMEGA value was found empirically to be in the range of 0.92 to 1.00.

c. Example of use

 In this example, a linear equation is solved for a symmetric positive definite sparse
matrix with n = 51,200 and the distance of the diagonal vector +5, -5.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (N=51200,K=N+1)
 PARAMETER (NW=2,IWKS=4,N2=K+1)
 PARAMETER (NVW=K*(NW+6)+10)
 REAL*8 B(N),EPS,OMEGA,RZ,VW(NVW),X(N)

VCGD, DVCGD

Fujitsu SSL II Extended Capabilities User’s Guide II II-55

 INTEGER NDLT(NW)
 REAL*8 A(K,NW)
 INTEGER IVW(N2,IWKS)
C
C INITIALISE A
C
 CALL SET(A,NDLT,K,NW,N)
 ISHIFT=0
 DO 10 J=1,NW
 ISHIFT=MAX(ISHIFT,ABS(NDLT(J)))
 10 CONTINUE
C COMPUTE RHS SO AX=B SO WE KNOW SOLUTION X (X(I)=I)
 DO 30 I=1,N
 30 VW(I+ISHIFT)=I
C
C B=(A-E)*X+X
C
 CALL DVMVSD(A,K,NW,N,NDLT,ISHIFT,VW,B,ICON)
 DO 70 I=1,N
 B(I)=B(I)+VW(I+ISHIFT)
 70 CONTINUE
C
 ITMAX=8*SQRT(N+0.1)
 EPS=1D-10
 OMEGA=0D0
 ISW=1
 IGUSS=0
 DO 100 IPC=1,3
 IF(IPC.EQ.3) OMEGA=0.98
 CALL DVCGD(A,K,NW,N,NDLT,B,IPC,ITMAX,ISW,OMEGA,
 & EPS,IGUSS,X,ITER,RZ,VW,IVW,ICON)
 IF(ICON.NE.0) WRITE(6,*)'ICON=',ICON
 IF(RZ.LE.EPS) WRITE(6,41)'CONVERGED. ACCURACY=',RZ
 IF(RZ.GT.EPS) WRITE(6,41)'FAILED. ACCURACY=',RZ
 WRITE(6,*)'X'
 DO 60 I=1,MIN(N,16),4
 60 WRITE(6,42) I,(X(M),M=I,I+3)
 100 CONTINUE
 42 FORMAT(1X,I3,4(1X,F20.10))
 41 FORMAT(A,2X,E10.3)
 STOP
 END

 SUBROUTINE SET(A,NDLT,K,NW,N)
 REAL*8 A(K,NW)
 INTEGER NDLT(NW)
 DO 10 J=1,NW
 DO 10 I=1,K
 10 A(I,J)=0D0
 N3=5
 NDLT(1)=N3
 NDLT(2)=-N3
 DO 20 I=1,N
 L=I
 IF(L.LE.N-N3) THEN
 A(I,1)=-0.25D0

VCGD, DVCGD

II-56 Fujitsu SSL II Extended Capabilities User's Guide II

 ENDIF
 20 CONTINUE
 DO 30 I=1,N
 L=I
 IF(L.GE.N3+1.AND.L.LE.N) THEN
 A(I,2)=-0.25D0
 ENDIF
 30 CONTINUE
 RETURN
 END

(4) Method

 The standard conjugate gradient algorithm is used. (See [14].)

 For the preconditioner method based on the incomplete Cholesky decomposition, see [30].
For the vectorization based on wavefront ordering, see [23].

(5) Acknowledgment

 The author wishes to express thanks to the authors of ITPACK and NSPCG for
permission to use the modified incomplete Cholesky decomposition and the wavefront
ordering routine.

VCGE, DVCGE

Fujitsu SSL II Extended Capabilities User’s Guide II II-57

A72-12-0101 VCGE, DVCGE

System of linear equations with a symmetric positive definite sparse matrix
(preconditioned CG method, ELLPACK storage format)

CALL VCGE (A, K, NW, N, ICOL, B, IPC, ITMAX, ISW, OMEGA, EPS, IGUSS,
 X, ITER, RZ, VW, IVW, ICON)

(1) Function

 This routine solves linear equations

 Ax = b

 using the preconditioned conjugate gradient (CG) method, where an n × n normalized
symmetric positive definite sparse matrix A must be used as a coefficient matrix.

 The n × n coefficient matrix is normalized in such a way that the diagonal elements are 1.
The ELLPACK storage format is used to store the non-zero elements other than the
diagonal elements.

 For information about normalization of linear equations that use symmetric positive
definite sparse matrices as coefficient matrices, see Part I, “Overview,” Section 3.2.1.2,
“Storage methods for symmetric positive definite sparse matrices.”

(2) Parameters

A................. Input. Two-dimensional array A (K, NW). Stores non-zero elements of the
coefficient matrix in the A (1:N, NW) part.
The reordering of the elements in the array A is performed for IPC = 3, when
the upper triangular matrix part is not stored in A (*, 1:NW/2) and the lower
triangular matrix part is not stored in A (*, NW/2 + 1:NW).
For information about the ELLPACK storage format for normalized symmetric
positive definite sparse matrices, see Part I, “Overview,” Section 3.2.1.2,
“Storage methods for symmetric positive definite sparse matrices,” a.,
“ELLPACK storage format for symmetric positive definite sparse matrices.”
(See item (3), “Comments on use,” b., 1).)

K................. Input. Size of adjustable dimension (≥ N) of arrays A and ICOL.

NW............. Input. The size of the second dimension of array A.
When the maximum number of non-zero elements on the row vectors of the
upper triangular matrix is NSU and the maximum number of non-zero elements
on the row vectors of the lower triangular matrix is NSL,
then NW = 2 × max (NSU, NSL).
For details, see Part I, “Overview,” Section 3.2.1.2, “Storage methods for
symmetric positive definite sparse matrices,” a., “ELLPACK storage format for
symmetric positive definite sparse matrices.”

N................. Input. Order n of matrix A.

ICOL........... Input. A two-dimensional array ICOL (K, NW). The information about the
column vectors to which the non-zero elements belong is stored in ICOL (1 : N,
NW).

B................. Input. One-dimensional array of size n. Stores the constant vector specified in
the right-hand-side term of the linear equation.

IPC.............. Input. Preconditioner control information.
IPC = 1 No preconditioner.

VCGE, DVCGE

II-58 Fujitsu SSL II Extended Capabilities User's Guide II

IPC = 2 Neumann preconditioner.
IPC = 3 Preconditioner with incomplete Cholesky decomposition.
In this case, the user must specify OMEGA.
(See item (3), “Comments on use,” b., 4).)

ITMAX....... Input. The upper limit of iterations (> 0).

ISW............ Input. Control information.
ISW = 1 Initial call.
ISW = 2 Subsequent calls. Must not be changed because the values of A,
ICOL, VW and IVW, which were set during the initial call, are used.
(See item (3), “Comments on use,” b., 2).)

OMEGA...... Input. Modification factor for incomplete Cholesky decomposition.
0 ≤ OMEGA ≤ 1

EPS............. Input. Criterion value in judgment of convergency.
Judged as convergent when RZ < EPS.
If EPS ≤ 0, ε × | b | is set to EPS. ε = 10-6 is used in double-precision routines,
and
ε = 10-4 is used in single-precision routines.
(See item (3), “Comments on use,” b., 3).)

IGUSS......... Input. Sets control information about whether to start the iteration computation
from the approximate value of the solution vector specified in array X.
IGUSS = 0 Approximation of the solution vector is not set.
IGUSS ≠ 0 Iteration starts from the approximate value of the solution vector
specified in array X.

X................. Input. One-dimensional array of size n. Can specify the approximation vector
of the solution for the linear equation.
Output. Stores the solution vector for the linear equation.

ITER........... Output. Number of iterations actually performed.

RZ............... Output. Value of the square root of residuals rz after judgment of convergency.
(See item (3), “Comments on use,” b., 2).)

VW............. Work area.
1) If IPC = 3
 One-dimensional array of size K × NW + 4 × N.
2) If IPC ≠ 3
 One-dimensional array of size N × 3.

IVW............ Work area.
1) If IPC = 3
 One-dimensional array of size K × NW + N × 4.
2) If IPC ≠ 3
 One-dimensional array of size N × 4.

ICON.......... Output. Condition code.
See Table VCGE-1, “Condition codes.”

VCGE, DVCGE

Fujitsu SSL II Extended Capabilities User’s Guide II II-59

Table VCGE-1 Condition codes

Code Description Processing

0 No error.

10000 A, ICOL elements are permuted to U/L
format.

Processing continues.

20001 Reached the upper limit of iterations. Processing is stopped. The
approximate values obtained up to this
point in array X are output, but their
precision cannot be guaranteed.

20003 Break down occurred.

30003 ITMAX ≤ 0 Processing is stopped.

30005 K < N

30006 Could not perform incomplete LLT
decomposition.

30007 Pivot is negative.

30092 NW ≤ 0

30093 K ≤ 0, N ≤ 0

30096 OMEGA < 0, OMEGA > 1

30097 IPC < 1, IPC > 3

30098 ISW ≠ 1, 2

30100 NW ≠ 2 × max (NSU, NSL)

30104 Either the upper triangular part or the
lower triangular part is not stored
correctly.

negative
number

(-ICON)-th row has a non-zero
diagonal element.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, UGECP, UGEUL, UGEFA, UGEMV, UGEPD, UGECG,
UGEPM, UGEPV, UGESV, UGEWV, URELT, MGSSL

b. Comments

1) Sparse matrix is stored using the ELLPACK format storage method. (See [23]
and [34]).

 The upper triangular part is stored in A (*, 1:NW/2). The lower triangular part is
stored in A (*, NW/2 + 1:NW), where NW = 2 × max (NSU, NSL).

 If IPC ≠ 3 (when a preconditioner other than an incomplete Cholesky
decomposition preconditioner is specified), a storage method is acceptable with
conditions less stringent than those described in Part I, “Overview, “ Section
3.2.1.2, “Storage methods for symmetric positive definite sparse matrices,” a.,

VCGE, DVCGE

II-60 Fujitsu SSL II Extended Capabilities User's Guide II

“ELLPACK storage format for symmetric positive definite sparse matrices.” A
normalized symmetric positive definite sparse matrix without diagonal elements
that is stored with the general sparse matrix ELLPACK storage method is also
acceptable as input. In this case, it is not required that NW = 2 max (NSU,
NSL).

2) When multiple sets of linear equations with the same coefficient matrix but
different constant vectors are solved for IPC = 3, the solution on the first call is
with ISW = 1. Solutions on subsequent calls are with ISW = 2. In subsequent
calls, the result of the incomplete Cholesky decomposition obtained on the initial
call is reused.

3) Judgment of convergency

 The convergence of the solution obtained in the n-th iteration is assumed when

 RZ = EPS<)(zr

 where r is the residual vector defined by

 r = b - Axn

 M is the preconditioner matrix, and

 rz = rT M-1 r

4) Preconditioners

 Two types of preconditioner and the no-preconditioner functions are provided.

 If A = I - N, the preconditioner M of the linear equation (I - N) x = b is as
follows:

 IPC = 1 No preconditioner; M = I.

 IPC = 2 Neumann; M-1 = (I + N).

 IPC = 3 Incomplete Cholesky decomposition; M = LLT.

 When IPC = 2, the preconditioner also must be a positive definite matrix. For
example, diagonal dominance of the matrix (I + N) is a sufficient condition for
the positive definiteness. Additionally, note that using a preconditioner may not
improve the convergence when the preconditioner does not approximate the
inverse matrix of A in some situations such that the maximum absolute value of
the eigenvalues of the matrix N is larger than one.

 When IPC=3, the user must specify a value for OMEGA (0 OMEGA 1).

When OMEGA = 0, this is incomplete Cholesky decomposition. When
OMEGA = 1, this is modified incomplete Cholesky decomposition.

 For linear equations derived from discretizing partial differential equations, an
optimal OMEGA value was found empirically to be in the range of 0.92 to 1.00.

 For IPC = 3, in order to optimize the preconditioners, the equations are permuted
in the wavefront order.

c. Example of use

 In this example, a linear equation is solved for a symmetric positive definite
sparse matrix containing non-zero elements, where n = 51,200 and the distance
from the diagonal elements is int (sqrt (n + 0.001)).

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)

VCGE, DVCGE

Fujitsu SSL II Extended Capabilities User’s Guide II II-61

 PARAMETER (NW=2,N=51200,K=N+1)
 REAL*8 B(N),X(N),EPS,OMEGA,RZ,
 & A(K,NW),VW(K*NW+4*N)
 INTEGER ICOL(K,NW),IVW(K*NW+4*N)
 WRITE(6,*) ' EXAMPLE DVCGE '
C INITIALISE A,ICOL
 CALL SET(A,ICOL,K,NW,N)
C GENERATE RHS B
 DO 10 I=1,N
 10 VW(I)=I
C COMPUTE RHS SO AX=B SO WE KNOW SOLUTION X (X(I)=I)
C
C B = (A-E)*X + E*X
 CALL DVMVSE(A,K,NW,N,ICOL,VW,B,ICON)
 PRINT*,'ERROR CODE =',ICON
 DO 20 I=1,N
 B(I)=B(I)+VW(I)
 20 CONTINUE
C
 ITMAX=4000
 EPS=1D-10
 ISW=1
 IGUSS=0
 DO 30 IPC=1,3
 IF(IPC.EQ.3)OMEGA=0.98
 CALL DVCGE(A,K,NW,N,ICOL,B,IPC,ITMAX,ISW,OMEGA
 & ,EPS,IGUSS,X,ITER,RZ,VW,IVW,ICON)
C
 PRINT*,'ERROR CODE= ',ICON
 IF(RZ.LE.EPS) WRITE(6,41)'CONVERGED. ACCURACY=',RZ
 IF(RZ.GT.EPS) WRITE(6,41)'FAILED. ACCURACY=',RZ
 WRITE(6,*)'X'
 DO 60 I=1,MIN(N,16),4
 60 WRITE(6,42) I,(X(M),M=I,I+3)
 30 CONTINUE
 42 FORMAT(I3,4(F12.4))
 41 FORMAT(A,2X,E10.3)
 STOP
 END

 SUBROUTINE SET(A,ICOL,K,NW,N)
 INTEGER ICOL(K,NW)
 REAL*8 A(K,NW)
 N3=SQRT(N+0.001)
 DO 10 I=1,NW
 DO 10 J=1,N
 A(J,I)=0.0D0
 ICOL(J,I)=J
 10 CONTINUE
 DO 20 I=1,N-N3
 A(I,1)=-0.49D0
 ICOL(I,1)=I+N3
 20 CONTINUE
 DO 30 I=N3+1,N
 A(I,2)=-0.49D0
 ICOL(I,2)=I-N3

VCGE, DVCGE

II-62 Fujitsu SSL II Extended Capabilities User's Guide II

 30 CONTINUE
 RETURN
 END

(4) Method

 The standard conjugate gradient algorithm is used. (See [14]). For information about the
preconditioner based on the incomplete Cholesky decomposition, see [30]. For
information about vectorization based on wavefront ordering, see [23].

(5) Acknowledgment

 The author wishes to express thanks to the authors of ITPACK and NSPCG for
permission to use the modified incomplete Cholesky decomposition preconditioner and
wavefront ordering routine.

VCPF1, DVCPF1

Fujitsu SSL II Extended Capabilities User’s Guide II II-63

F17-11-0601 VCPF1, DVCPF1

One-dimensional prime factor discrete complex Fourier transforms

CALL VCPF1 (X, N, ISW, ISN, IOUT, Y, W, IW, ICON)

(1) Function

 This subroutine VCPF1 performs a one-dimensional complex Fourier transform or its
inverse transform using a mixed radix FFT.

 The length of data transformed n must satisfy the following condition.

 The size must be expressed by a product of a mutual prime factor p, selected from the
following numbers:

 factor p (p {2, 3, 4, 5, 7, 8, 9, 16, 25})

 a. The one-dimensional Fourier transform

When {xj} is input, the transform defined by (1.1) below is calculated to obtain {nk}.

)/2exp(,

1,...,1,0,
1

0
ni

nkxn

n

n

j

jk
njk

 (1.1)

 b. The one-dimensional Fourier inverse transform

When {k} is input, the transform defined by (1.2) below is calculated to obtain {xj}.

)/2exp(,

1,...,1,0,
1

0
ni

njx

n

n

k

jk
nkj

 (1.2)

(2) Parameters

X................ Input. Complex data. The data {xj} or {k} to be transformed is stored in
X(1:N).

 Output. Complex data. Transformed data {nk}or {xj} is stored in X(1:N).

 This is a complex one-dimensional array X(N).

N................ Input. The length of the data to be transformed.

ISW............ Input. Control information.

 ISW = 1 : For the first call, to generate a trigonometric function table in W and
a control information in IW and perform Fourier transform.

 ISW 1 : For the second or consecutive call, to perform Fourier transform for
the data of the same length as in the first call. In this time the contents set in W
and IW is used, therefore the values in N, ISN, W and IW must not be changed
after the first call.

 Output. When ISW is set to 1, ISW is set to zero after performing transform.
Therefore the second or consecutive transform for new data in X can be
performed easily without setting ISW.

ISN............. Input. Either the transform or the inverse transform is indicated.

 ISN = 1 for the transform

VCPF1, DVCPF1

II-64 Fujitsu SSL II Extended Capabilities User's Guide II

 ISN = -1 for the inverse transform

IOUT Output. Information about where for transformed data to be stored. The
transformed data is stored into different area due to the length of data N.

 IOUT = 1 ; Transformed data is stored into Y(1:N).

 IOUT ≠ 1 ; Transformed data is stored into X(1:N).

Y Output. When IOUT=1, the complex data transformed is stored. The area of
this array must be different from that of array X.

 This is a complex one dimensional array Y(N).

W............... Input / Output.

 When ISW is set to 1, the trigonometric function table for the transform
specified by N and ISN is stored.

 Otherwise the contents in the trigonometric function table generated in the first
call with ISW=1 is used as input.

 This is a complex one dimensional array W(N).

IW Input / Output. Control information for transform.

 When ISW=1, the control information regarding transform with data length N
and specific ISN is stored.

 Otherwise the control information set in the first call with ISW=1 is used as
input.

 This is a 4-byte integer one dimensional array IW(20).

ICON.......... Output. Condition code.

See Table VCPF1-1, “Condition codes.”

Table VCPF1-1 Condition codes

Code Description Processing

0 No error -

20000 The number N can not be factored into the product of the
mutual prime factor in {2, 3, 4, 5, 7, 8, 9, 16, 25}.

20100 The value of N or ISN in the second or consecutive call is
different from that in the first call.

Processing is stopped.

(3) Comments on use

a. Subprogram used

 SSLII: UFTPR2, UFTPR2I, UFTPR3, UFTPR3I, UFTPR5, UFTPR5I, UFTPRFNL,
UFTPRFNLI, URARNG, UTBL, MGSSL

b. Note

1) General definition of Fourier transform

 The one-dimensional discrete complex Fourier transform and its inverse
transform is defined as in (3.1) and (3.2).

VCPF1, DVCPF1

Fujitsu SSL II Extended Capabilities User’s Guide II II-65

 1,...,1,0,1 1

0

−== ∑
−

=

− nkx
n

n

j

jk
njk ωα (3.1)

 1,...,1,0,
1

0

−==∑
−

=

njx
n

k

jk
nkj ωα (3.2)

 where, ωn = exp(2πi/n)

 This subroutine calculates {nαk} or {xj} corresponding to the left term of (3.1) or
(3.2), respectively. Normalization of the results may be required.

c. Example
A one-dimensional FFT is computed.

c **example**
 implicit real*8(a-h,o-z)
 parameter(n=560)
 complex*16 x(n),y(n),w(n)
 integer iw(20)
c
 do i=1,n
 x(i)=i/dble(n)
 enddo
c
c do the forward transform
c
 isw=1
 call dvcpf1(x,n,isw,1,iout,y,w,iw,icon)
 if(icon.ne.0)then
 print*,'icon = ',icon
 stop
 endif
c
c do the reverse transform
c
 if(iout.ne.1)then
 isw=1
 call dvcpf1(x,n,isw,-1,iout,y,w,iw,icon)
 if(icon.ne.0)then
 print*,'icon = ',icon
 stop
 endif
 else
 isw=1
 call dvcpf1(y,n,isw,-1,iout,x,w,iw,icon)
 if(icon.ne.0)then
 print*,'icon = ',icon
 stop
 endif
 endif
c
 tmp=0.0d0
 do i=1,n
 tmp=max(tmp,abs(x(i)/dble(n)-i/dble(n)))
 enddo

VCPF1, DVCPF1

II-66 Fujitsu SSL II Extended Capabilities User's Guide II

c
 print*,'error=',tmp

 stop
 end

VCPF3, DVCPF3

Fujitsu SSL II Extended Capabilities User’s Guide II II-67

F16-15-0401 VCPF3, DVCPF3

Three-dimensional prime factor discrete complex Fourier transform

CALL VCPF3 (A, B, L, M, N, ISN, VW1, VW2, ICON)

(1) Function

 This subroutine performs a discrete complex Fourier transform or its inverse transform
using the prime factor fast Fourier transform (prime factor FFT). This subroutine is for
when three-dimensional (where the size of each dimension is N1, N2, N3) complex time
series data {xJ1,J2,J3} is given. The size of each dimension must satisfy the following
condition.

 The size must be expressed by a product of a mutual prime factor p, selected from the
following numbers:

 factor p (p ∈ {2, 3, 4, 5, 7, 8, 9, 16})

 Calling this subroutine with 1 entered for parameter N specifies a two-dimensional
complex prime factor fast Fourier transform. Calling this subroutine with 1 entered for
parameter N and 1 entered for parameter M specifies a one-dimensional complex prime
factor fast Fourier transform.

1) Three-dimensional complex Fourier transform

 By inputting {xJ1,J2,J3} and performing the transform defined in (1.1), a three-
dimensional Fourier transform seeks {N1 × N2 × N3 × αK1, K2, K3}.

 N1 × N2 × N3 × αK1, K2, K3

33

3
22

2
1

1= .KJ.KJ.KJ
N

J
J,J,J

N

J

N

J

−−−
−

=

−

=

−

=
∑∑∑ ωωω 1

13

03
321

12

02

11

01
x (1.1)

 , K1 = 0,1, ..., N1-1

 , K2 = 0,1, ..., N2-1

 , K3 = 0,1, ..., N3-1

 , ωj = exp(2πi/Nj), j = 1, 2, 3

2) Three-dimensional complex Fourier inverse transform

 By inputting {αK1,K2,K3} and performing the transform defined in (1.2), a three-
dimensional Fourier inverse transform seeks {xJ1,J2,J3}.

 xJ1,J2,J3

 =
K

N

K

N
K ,K ,K

K

N J .K J .K J .K

1 0

1 1

2 0

2 1
1 2 3

3 0

3 1 1

=

−

=

−

=

−
∑ ∑ ∑ α ω ω ω1

1
2

2 2
3

3 3 (1.2)

 , J1 = 0, 1, ..., N1-1

 , J2 = 0, 1, ..., N2-1

 , J3 = 0, 1, ..., N3-1

 ,ωj = exp (2πi/Nj), j = 1, 2, 3

VCPF3, DVCPF3

II-68 Fujitsu SSL II Extended Capabilities User's Guide II

(2) Parameters

A................. Input. Real part of {xJ1,J2,J3} or Fourier transformed {αK1,K2,K3}.
Output. Real part of Fourier transformed {αK1,K2,K3} or inverse transformed
{xJ1,J2,J3}.
A (L, M, N) is a three-dimensional array.
L, M, and N are the number of data items of the first, second, and third
dimensions, respectively.

B................. Input. Imaginary part of {xJ1,J2,J3} or Fourier transformed {αK1,K2,K3}.
Output. Imaginary part of Fourier transformed {αK1,K2,K3} or inverse
transformed {xJ1,J2,J3}.
B (L, M, N) is a three-dimensional array.
L, M, and N are the number of data items of the first, second, and third
dimensions, respectively.

L................. Input. Number of data items in the first dimension.
L ≤ 5,040.

M................ Input. Number of data items in the second dimension.
M ≤ 5,040.

N................. Input. Number of data items in the third dimension.
N ≤ 5,040.

ISN............. Input. Specify either transform or inverse transform.
If ISN ≥ 0 (non-negative integer), then transform.
If ISN < 0 (negative integer), then inverse transform.

VW1........... Work area. Three-dimensional array with the same size as A or B.

VW2........... Work area. Three-dimensional array with the same size as A or B.

ICON.......... Output. Condition code.
See Table VCPF3-1, “Condition codes.”

Table VCPF3-1 Condition codes

Code Description Processing

0 No error

20000 L, M, or N exceeded 5,040. Or the product of the mutual
prime factor in {2, 3, 4, 5, 7, 8, 9, 16} could not be
factored.

Processing is stopped.

30000 L, M, or N is zero or a negative value.

(3) Comments on use

a. Subprograms used

 SSL II: UTRSP, UPFT1, UPFT2, MGSSL

VCPF3, DVCPF3

Fujitsu SSL II Extended Capabilities User’s Guide II II-69

b. Comments

1) General definition of three-dimensional Fourier transform

 The three-dimensional Fourier transform and its inverse transform are generally
defined in (3.1) and (3.2).

 αK1,K2,K3

 = 1
1N N N

x
J

N

J

N
J ,J ,J

J

N J .K J .K J .K

× ×
∑ ∑ ∑
=

−

=

−

=

− − − −

2 3 1
1

2
2 2

3
3 3

1 0

1 1

2 0

2 1
1 2 3

3 0

3 1 1ω ω ω (3.1)

 x xJ J J
K

N

K

N
K ,K ,K

K

N J ,K J ,K J ,K
1, 2, 3 =

1 0

1 1

2 0

2 1
1 2 3

3 0

3 1 1

=

=

=

=

=

= − −∑ ∑ ∑ ω ω ω1
1

2
2 2

3
3 3 (3.2)

 The subroutine looks for {N1 × N2 × N3 × αK1,K2,K3} or {xJ1,J2,J3} corresponding
to the left-hand-side terms of (3.1) and (3.2), respectively. The user must
normalize the results, if necessary. If the transform and inverse transform are
executed by calling the subroutine consecutively without being normalized, each
element of the input data is multiplied by N1 × N2 × N3, and then output.

2) Number of data items in each dimension

 The number of data items is expressed as a product of a mutual prime factor p,
selected from the numbers that follow.

 The maximum number is 5 × 7 × 9 × 16 = 5,040.

 factor p (p ∈ {2, 3, 4, 5, 7, 8, 9, 16})

3) Data storage method

 The real parts of complex data {xJ1,J2,J3} and {N1 × N2 × N3 × αK1,K2,K3} are
stored in array A. The imaginary parts are stored in array B.

c. Example of use

 In this example, complex time series data {xJ1,J2,J3} of N1, N2, and N3 terms are input,
and a Fourier transform is performed. The results are used to perform a Fourier
inverse transform to look for {xJ1,J2,J3}.

 Here N1 = 12, N2 = 12, and N3 = 12.

C **EXAMPLE**
 DIMENSION A(12,12,12),B(12,12,12),NI(3)
 DIMENSION VW1(12,12,12),VW2(12,12,12)
 DATA NI/12,12,12/,L,M,N/12,12,12/
 READ(5,500) (((A(I,J,K),B(I,J,K),I=1,NI(1)),
 * J=1,NI(2)),K=1,NI(3))
 WRITE(6,600) (NI(I),I=1,3),
 * (((I,J,K,A(I,J,K),B(I,J,K),I=1,NI(1)),
 * J=1,NI(2)),K=1,NI(3))
C NORMAL TRANSFORM
 CALL VCPF3(A,B,L,M,N,1,VW1,VW2,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
C INVERSE TRANSFORM
 CALL VCPF3(A,B,L,M,N,-1,VW1,VW2,ICON)
 NT=NI(1)*NI(2)*NI(3)
 DO 10 K=1,NI(3)
 DO 10 J=1,NI(2)

VCPF3, DVCPF3

II-70 Fujitsu SSL II Extended Capabilities User's Guide II

 DO 10 I=1,NI(1)
 A(I,J,K)=A(I,J,K)/FLOAT(NT)
 B(I,J,K)=B(I,J,K)/FLOAT(NT)
 10 CONTINUE
 WRITE(6,620) (((I,J,K,A(I,J,K),B(I,J,K),I=1,NI(1)),
 * J=1,NI(2)),K=1,NI(3))
 STOP
 500 FORMAT(2E20.7)
 600 FORMAT('0',10X,'INPUT DATA',5X,
 * '(',I3,',',I3,',',I3,')'/
 * (15X,'(',I3,',',I3,',',I3,')',
 * 2E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5)
 620 FORMAT('0',10X,'OUTPUT DATA'/
 * (15X,'(',I3,',',I3,',',I3,')',
 * 2E20.7))
 END

(4) Method

 The three-dimensional real Fourier transform is performed by using the prime factor fast
Fourier transform with the factorized mutually prime factor as the radix (prime factor
FFT).

1) Three-dimensional transform

 The three-dimensional transform defined in (1.1) can be performed in the order
shown in (4.1) by simplifying common terms. The order for obtaining the sum of J1,
J2, and J3 can also be replaced.

 N1 × N2 × N3 × αK1,K2,K3

 = ω ω ω1
1 1

2 3
−

=

− −

=

−

=

− −∑ ∑ ∑J K

J

N J2 K2

J

N
J ,J ,J

J

N J .K3x. .

1 0

1 1

2 0

2 1
1 2 3

3 0

3 1 3 (4.1)

 In (4.1), ∑J3 takes N1 × N2 sets of one-dimensional transforms of N3 data. ∑J2 takes
N1 × N3 sets of one-dimensional transforms of N2 data items. ∑J1 takes N2 × N3 sets
of one-dimensional transforms of N1 data items.

 This routine applies the fast Fourier transform with the factorized mutually prime
factor as the radix to perform a one-dimensional transform for each dimension.

2) Prime factor fast Fourier transform

 The three-dimensional real Fourier transform can be calculated by performing a
multi-set of one-dimensional Fourier transforms three times. The one-dimensional
Fourier transforms are performed using the prime factor fast Fourier transform
(prime factor FFT).

 The following explains the one-dimensional prime factor fast Fourier transform.

)2exp(
1

0
i/N-xC N

JK
N

N

J
JK πωω == ∑

−

=

 K=0, ..., N - 1 (4.2)

 When N is factored into two mutually prime factors, N1 and N2, the one-dimensional
fast Fourier transform can be regarded as a two-dimensional fast Fourier transform.

VCPF3, DVCPF3

Fujitsu SSL II Extended Capabilities User’s Guide II II-71

 <>N expresses the remainder of N. (,) expresses the greatest common divisor.

 The appropriate Ki is present, and mappings (4.3) and (4.4) are determined.

 N=N1 N2

 j = <K1 j1 + K2 j2 > N (4.3)

 k = <K3 k1 + K4 k2 > N (4.4)

 j, k = 0, ..., N-1

 j1, k1 = 0, ..., N1 - 1

 j2, k2 = 0, ..., N2 - 1

 The presence of this mapping is known from the Chinese remainder theorem as
follows.

 Assuming N1, N2, ..., Nk are mutual primes, and n1, n2, ..., nk are random integers, and
the solution of the simultaneous modulus expression

 x ≡ ni (mod Ni) i = 1, ..., k (4.5)

 N = N1 × N2 × ... × Nk,

 N is present as a unique modulus as follows:

)(mod
0=

NqM iii∑≡
k

i
nx (4.6)

 Mi = N/Ni, Miqi ≡ 1 (mod Ni) i = 1, ..., k (4.7)

 By using this mapping, the one-dimensional prime factor fast Fourier transform in
(4.2) is expanded.

 Xj1j2 = xk1j1 + K2j2

 Ck1,k2 = cK3k1 + K4k2

 Ck k
j

N
j j

j

N
N
K K j k

N
K K j k

N
K K j k

N
K K j kX1 2 1 2

1 3 1 1 1 4 1 2 2 3 2 1 2 4 2 2= ∑ ∑
1=0

1-1

2=0

2-1
, ω ω ω ω (4.8)

 By selecting Ki as follows, (4.2) becomes a two-dimensional fast Fourier transform.

 <K1 K3>N = N2, <K2 K4>N = N1

 <K1 K4>N = 0, <K2 K3>N = 0

 Ck k
j

N
j j

j

N
N
j k

N
j kX1 2 1 2 1

1 1
2

2 2= ∑ ∑
1=0

1-1

2=0

2-1
, ω ω (4.9)

 In addition, by factorizing the mutual prime factors, a multi-dimensional Fourier
transform that has dimensions up to the number of factors can be obtained. The
Fourier transform performs an in-place operation for the factorized factor to obtain an
in-place algorithm.

 The following is an example of a two-dimensional transform to illustrate permutation.
This can easily be expanded into a multi-dimensional transform.

 (j1, j2) and (k1, k2) are viewed as two-dimensional indices, but the mappings (4.3) and
(4.4) transform them into one-dimensional indices.

 j -> (j1, j2): (k1, k2) -> k (4.10)

VCPF3, DVCPF3

II-72 Fujitsu SSL II Extended Capabilities User's Guide II

 The generalized Chinese remainder theorem, below, is obtained. N is factorized to a
mutual prime factor, and the following expression is obtained.

 N = N1 × N2 × ... × Nm

 ni = <ain>Ni and (ai, Ni) = 1 (4.11)

 11)/(/ −− >><=< NiNiii aNNNNK
i

 (4.12)

 Here, n can be expressed as unique, shown as follows.

 n K ni
i

i= ∑ (4.13)

 0 ≤ n ≤ N-1

 0 ≤ ni ≤ Ni-1 i = 1, ..., m

 By performing the mappings defined in (4.3) and (4.4), the actual one-dimensional
positions of the two-dimensional indices (k1, k2) are determined from the relationship
that follows:

 j = <K1 k1 + K2 k2> N

 k = <K3 k1 + K4 k2> N

 By applying the generalized Chinese remainder theorem, it becomes clear that the
two-dimensional (k1, k2) has the relationship in (4.14) because of mappings (4.3) and
(4.4). The computed results after the two-dimensional transform can be permuted.

 J = <K1<a1k>N1 + K2<a2k>N2>N

 K1 = αN2 K2 = βN1 adding the condition

 j = <<K1a1k>N + <K2a2k>N>N

 = <(K1a1 + K2a2)k>N (4.14)

 For details on permutation and fast Fourier transform using each factor as a radix, see
[6] and [46].

VCRD, DVCRD

Fujitsu SSL II Extended Capabilities User’s Guide II II-73

A72-21-0101 VCRD, DVCRD

System of linear equations with an unsymmetric or indefinite sparse matrix (MGCR
method, diagonal storage format)

CALL VCRD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS, NDIRV, X,
 ITER, VW, ICON)

(1) Function

 This routine solves linear equations

 Ax = b

 using the modified generalized conjugate residuals (MGCR) method, where an n × n
unsymmetric or indefinite sparse matrix is treated as a coefficient matrix.

 The n × n coefficient matrix is stored with the diagonal storage format, using two arrays.

 b and x are n-dimensional vectors.

 Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A................. Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, NDIAG). Stores coefficient matrix A is stored in
A (1 : N, NDIAG).
For the diagonal storage format, see Part I, “Overview,” Section 3.2.1.1,
“Storage methods for general sparse matrices,” b., “Diagonal storage format for
general sparse matrices.”

K................. Input. Size of adjustable dimension of array A.

NDIAG....... Input. The number of diagonals in the coefficient matrix A that contain non-
zero elements.
Size of second dimension of array A.

N................. Input. Order n of matrix A.

NOFST....... Input. One-dimensional array NOFST (NDIAG). Stores the offset from the
main diagonal corresponding to diagonals stored in array A. Superdiagonals
have positive values. Subdiagonals have negative values.

B................. Input. One-dimensional array of size n. Stores the constant vector specified in
the right-hand-side term of the linear equation.

ITMAX....... Input. The upper limit of iterations in the MGCR method (> 0).

EPS............. Input. Criterion value in judgment of convergency.
If EPS = 0 or less, EPS is set to 10-6 in double-precision routines. EPS is set to
10-4 in single-precision routines.
(See item (3), “Comments on use,” b., 1).)

IGUSS......... Input. Sets control information about whether to start the iteration computation
from the approximate value of the solution vector specified in the array X.
IGUSS = 0 Approximate value of the solution vector is not set.

VCRD, DVCRD

II-74 Fujitsu SSL II Extended Capabilities User's Guide II

IGUSS ≠ 0 Iterative computation starts from the approximate value of the
solution vector specified in the array X.

NDIRV....... Input. The number of search direction vectors used in the MGCR method
(≥ 1).
Generally, a small number between 10 and 100.

X................. Input. One-dimensional array of size n. Can specify the approximate value of
the solution vector.
Output. The solution vector is stored.

ITER........... Output. Number of iterations actually performed using the MGCR method.

VW............. Work area. One-dimensional array of the size N × (NDIRV + 5) + NDIRV ×
(NDIRV + 1).

ICON.......... Output. Condition code.
See Table VCRD-1, “Condition codes.”

Table VCRD-1 Condition codes

Code Description Processing

0 No error

20001 Reached the upper limit of iterations. Processing is stopped. The approximate
values obtained up to this point in array X
are output, but their precision cannot be
guaranteed.

30000 N < 1, K < 1, N > K or NDIAG < 1,
ITMAX ≤ 0.

Processing is stopped.

30004 NDIRV<1

32001 | NOFST (I) | > N-1

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, URGWD, URIPA, URITI, URITT, URMDG, URMVD, URMGD,
URRCI, URRAN, USSCP, URSTE, URSTI, USVAD, USVCN, USVCP, USVSC,
USVSU, USVUP, USVN1, USVN2, USVNM, URELT, MGSSL

b. Comments

1) In the MGCR method, if the residual Euclidean norm is equal to or less than the
product of the initial residual Euclidean norm and EPS, it is judged as having
converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of matrix
A and EPS.

2) Comments on use of the diagonal format

 The elements of diagonals out of the coefficient matrix A must be set to zero.

 There is no special restriction on the order of storing the diagonal columns in
array A.

 The advantage of this method lies in the fact that the matrix vector multiplication
can be calculated without the use of indirect indices. The disadvantage is that

VCRD, DVCRD

Fujitsu SSL II Extended Capabilities User’s Guide II II-75

matrices without the diagonal structure cannot be stored efficiently with this
method.

c. Example of use

 In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0, 1] × [0, 1] × [0, 1] with the
Dirichlet boundary condition (function value zero at the boundary). This type of
partial differential operator is described in Part I, “Overview,” Section 3.2.2
“Discretization of partial differential operators and storage examples for them.”

 For INIT_MAT_DIAG, see Part I, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.”
GET_BANDWIDTH_DIAG is a routine that estimates bandwidth. INIT_SOL is a
routine that generates solution vectors to be sought with random numbers.

C **EXAMPLE**
 PROGRAM TEST_ITER_SOLVERS
 IMPLICIT REAL*8 (A-H,O-Z)
 INTEGER MACH
 PARAMETER (MACH = 0)
 PARAMETER (K = 10000,NDIRV = 50)
 PARAMETER (NX=20,NY=20,NZ=20,N=NX*NY*NZ)
 PARAMETER (NDIAG = 7,NVW=N*(NDIRV+5)+NDIRV*(NDIRV+1))
 REAL*8 A(K,NDIAG),X(N),B(N),VW(NVW),SOLEX(N)
 INTEGER NOFST(NDIAG)
C
 CALL INIT_SOL(SOLEX,N,1D0,MACH)

 PRINT*,'EXPECTED SOLUSIONS'
 PRINT*,'X(1)= ',SOLEX(1),' X(N)=',SOLEX(N)
C
 PRINT *
 PRINT *,' MGCR METHOD'
 PRINT *,' DIAGONAL FORMAT'
C
 VA1=3D0
 VA2=1D0/3D0
 VA3=5D0
 VC=1.0
 XL=1.0
 YL=1.0
 ZL=1.0
C
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST,
 & NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
 CALL GET_BANDWIDTH_DIAG(NOFST,NDIAG,NBANDL,NBANDR)
 DO 110 I = 1,N
 VW(I+NBANDL) = SOLEX(I)
 110 CONTINUE
 CALL DVMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON)
 PRINT*,'DVMVSD ICON= ',ICON
 ITMAX=2000
 IGUSS=0
 EPS = 1D-10
 CALL DVCRD(A,K,NDIAG,N,NOFST,B,ITMAX,EPS,IGUSS,NDIRV,
 & X,ITER,VW,ICON)

VCRD, DVCRD

II-76 Fujitsu SSL II Extended Capabilities User's Guide II

C
 PRINT* ,'ITER = ',ITER
 PRINT* ,'DVCRD ICON= ',ICON
 PRINT*, 'COMPUTED VALUES'
 PRINT*, 'X(1)= ',X(1),' X(N)= ',X(N)
 STOP
 END

(4) Method

 For the MGCR method, see [25]. The algorithm is a modification of the generalized
conjugate residuals method. The algorithm is robust and is always faster than the
GMRES method. (See [35].)

VCRE, DVCRE

Fujitsu SSL II Extended Capabilities User’s Guide II II-77

A72-22-0101 VCRE, DVCRE

System of linear equations with an unsymmetric or indefinite sparse matrix (MGCR
method, ELLPACK storage format)

CALL VCRE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS, NDIRV, X, ITER,
 VW, ICON)

(1) Function

 This routine solves linear equations

 Ax = b

 using the modified generalized conjugate residuals (MGCR) method, where an n × n
asymmetrical or indefinite sparse matrix is treated as a coefficient matrix.

 The n × n coefficient matrix is stored with the ELLPACK storage format using two arrays.

 b and x are n-dimensional vectors.

 Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A................. Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, IWIDT).
For the ELLPACK storage format, see Part I, “Overview,” Section 3.2.1.1,
“Storage method for general sparse matrices.”

K................. Input. Size of adjustable dimension (≥ n) of A and ICOL.

IWIDT........ Input. The maximum number of non-zero elements in row vector direction on
the coefficient matrix A. Size of the second dimension of ICOL and A.

N................. Input. Order n of matrix A.

ICOL........... Input. Stores the column indices of the elements stored in the array A using the
ELLPACK format, indicating which column vectors the corresponding
elements in the array A belong to.
Two-dimensional array of size ICOL (K, IWIDT).

B................. Input. One-dimensional array of size n. Stores the constant vector specified in
the right-hand-side term of the linear equation in B.

ITMAX....... Input. The upper limit of iterations in the MGCR method (> 0).

EPS............. Input. Criterion value in judgment of convergency.
If EPS = 0.0 or less, EPS is set to 10-6 in double-precision routines. EPS is set
to 10-4 in single-precision routines.
(See item (3), “Comments on use,” b., “Comments,” 1).)

IGUSS......... Input. Control information about whether to start iteration computation from
the approximate value of the solution vector specified in the array X.
IGUSS = 0 Approximate value of the solution vector is not set.
IGUSS ≠ 0 Iteration computation starts from the approximate value of the
solution vector specified in the array X.

VCRE, DVCRE

II-78 Fujitsu SSL II Extended Capabilities User's Guide II

NDIRV....... Input. The number of search direction vectors used in the MGCR method
(≥ 1).
Generally, a small number between 10 and 100.

X................. Input. One-dimensional array of size n. Can specify the approximate value of
the solution vector.
Output. The solution vector is stored.

ITER........... Output. Number of iterations actually performed using the MGCR method.

VW............. Work area. One-dimensional array of the size N × (NDIRV + 5) + NDIRV ×
(NDIRV + 1).

ICON.......... Output. Condition code.
See Table VCRE-1, “Condition codes.”

Table VCRE-1 Condition codes

Code Description Processing

0 No error

20001 Reached the maximum number of
iterations.

Processing is stopped. The approximate
values obtained up to this point in array
X are output, but their precision cannot
be guaranteed.

30000 K < 1, IWIDT < 0, N < 1 or N > K,
ITMAX ≤ 0

Processing is stopped.

30004 NDIRV<1

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, URIPA, URITI, URITT, URMEG, URMVE, URMGE, URRCI,
URRAN, USSCP, URSTE, URSTI, USVAD, USVCN, USVCP, USVSC, USVSU,
USVUP, USVN1, USVN2, USVNM, URELT, MGSSL

b. Comments

1) In the MGCR method, if the residual Euclidean norm is equal to or less than the
product of the initial residual Euclidean norm and EPS, it is judged as having
converged.

 The difference between the precise solution and the obtained approximation is
roughly equal to the product of the condition number of matrix A and EPS.

c. Example of use

 In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0, 1] × [0, 1] × [0, 1] with the
Dirichlet boundary condition (function value zero at the boundary). This type of
partial differential operator is described in Part I, “Overview,” Section 3.2.2,
“Discretization of partial differential operators and storage examples for them.” For
INIT_MAT_ELL, see Part I, “Overview,” Section 3.2.2, “Discretization of partial
differential operators and storage examples for them.” INIT_SOL is the routine that
generates the solution vectors to be sought in random numbers.

VCRE, DVCRE

Fujitsu SSL II Extended Capabilities User’s Guide II II-79

C **EXAMPLE**
 PROGRAM TEST_ITER_SOLVERS
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (MACH = 0)
 PARAMETER (K = 10000,NDIRV = 50)
 PARAMETER (IWIDT = 7,NX=20,NY=20,NZ=20,N=NX*NY*NZ)
 PARAMETER (NVW=N*(NDIRV+5)+NDIRV*(NDIRV+1))
 REAL*8 A(K,IWIDT),X(N),B(N),VW(NVW),SOLEX(N)
 INTEGER ICOL(K,IWIDT)
C
 XL=1.0
 YL=1.0
 ZL=1.0
C
 CALL INIT_SOL(SOLEX,N,1D0,MACH)
 PRINT*,'EXPECTED SOLUTION'
 PRINT*,'X(1)= ',SOLEX(1),' X(N)= ',SOLEX(N)
 PRINT*,' MGCR METHOD'
 PRINT*,' ELLPACK FORMAT'
C
 VA1=3D0
 VA2=1D0/3D0
 VA3=5D0
 VC=5D0
C
 CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL,NX,NY,NZ,
 & XL,YL,ZL,IWIDT,N,K)
 CALL DVMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON)
 PRINT*,'DVMVSE ICON = ',ICON
 IGUSS =0
 EPS = 1D-10
 ITMAX=800
 CALL DVCRE(A,K,IWIDT,N,ICOL,B,ITMAX,EPS,IGUSS,NDIRV
 & ,X,ITER,VW,ICON)
C
 PRINT*,'DVCRE ICON = ',ICON
 PRINT*,'COMPUTED VALUE'
 PRINT*,'X(1)= ',X(1),' X(N)= ',X(N)
 STOP
 END

(4) Method

 For the MGCR method, see [25]. The algorithm is a modification of the generalized
conjugate residuals method. The algorithm is robust and is always faster than the
GMRES method. (See [35]).

VHEVP, DVHEVP

II-80 Fujitsu SSL II Extended Capabilities User's Guide II

B71-13-0101 VHEVP,DVHEVP

Eigenvalues and eigenvectors of a Hermitian matrix (tridiagonalization, multisection method,
and inverse iteration)

CALL VHEVP (AR, AI, K, N, NF, NL, IVEC, ETOL, CTOL, NEV, E, MAXNE,
 M, EVR, EVI, VW, IW, ICON)

(1) Function

 This subroutine calculates specified eigenvalues and, optionally, eigenvectors of an n-
dimensional Hermitian matrix.

 Ax = λx (1.1)

(2) Parameters

AR Input. The real part of Hermitian matrix A whose eigenvalues and eigenvectors
are to be calculated is stored in AR(1:N,1:N).

Two-dimensional array AR(K,N) .

AI Input. The imaginary part of Hermitian matrix A whose eigenvalues and
eigenvectors are to be calculated is stored in AI(1:N,1:N).

Two-dimensional array AI(K,N) .

K Input. Size of first-dimension of array AR or of array AI. (K ≥ N)

N Input. Order n of Hermitian matrix A

NF Input. Number assigned to the first eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

NL Input. Number assigned to the last eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

IVEC Input. Control information.

IVEC=1: Both the eigenvalues and the corresponding eigenvectors are sought.

IVEC≠1: Only the eigenvalues are sought.

ETOL Input. A criterion value required to determine whether an eigenvalue is distinct
or numerically multiple based on expression (3.1). The default value is 3.0D-16
for double precision (2.0D-7 for single precision) when this value is set to less
than.

(See 1) in b, “Notes,” in (3), “Comments on use.”)

CTOL Input. A criterion value required to determine whether adjacent eigenvalues are
approximately multiple i.e. clustered according to expression (3.1). CTOL ≥
ETOL
When CTOL is less than ETOL, CTOL = ETOL is set.
(See 1) in b, “Notes,” in (3), “Comments on use.”)

NEV Output. Number of eigenvalues calculated.

Details are given below.

VHEVP, DVHEVP

Fujitsu SSL II Extended Capabilities User’s Guide II II-81

NEV (1) indicates the number of distinct eigenvalues.
NEV (2) indicates the number of distinct clusters.
NEV (3) indicates the total number of eigenvalues including multiplicities.
One-dimensional array NEV (3).

E Output. The eigenvalues calculated are stored in E(1:NEV(3)).

One-dimensional array E(MAXNE)

MAXNE Input. Maximum number of eigenvalues that can be computed.
Size of the array E.

When NEV(3) is greater than MAXNE, eigenvectors cannot be computed.

(See 2) in b, “Notes,” in (3), “Comments on use.”)

M Output. Information about the multiplicity of the computed eigenvalues.
M (i, 1) indicates the multiplicity of the i-th eigenvalue λi. M (i, 2) indicates the
size of the i-th cluster of eigenvalues.

(See 1) in b, “Notes,” in (3), “Comments on use.”)

Two-dimensional array M(MAXNE,2).

EVR Output. When IVEC = 1, the real part of the eigenvectors corresponding to the
eigenvalues is stored in EVR.

The eigenvectors are stored in EVR(1:N,1:NEV(3)).

Two-dimensional array EVR(K,MAXNE).

EVI Output. When IVEC = 1, the imaginary part of the eigenvectors corresponding
to the eigenvalues is stored in EVI.

The eigenvectors are stored in EVI(1:N,1:NEV(3)).

Two-dimensional array EVI(K,MAXNE).

VW Work area. One-dimensional array of size 17 × K.

IW Work area. One-dimensional array of size 9 × MAXNE+128.

ICON Output. Condition code.

See Table VHEVP-1.

VHEVP, DVHEVP

II-82 Fujitsu SSL II Extended Capabilities User's Guide II

Table VHEVP-1 Condition codes

Code Meaning Processing

0 No error

20000 During calculation of clustered eigenvalues, the
total number of eigenvalues exceeded
MAXNE.

Processing is discontinued.

The eigenvectors cannot be
calculated, but the different
eigenvalues themselves are
already calculated.

(See 2) in b, “Notes,” in (3),
“Comments on use.”)

30000 NF < 1, NL > N, NL < NF, K < N, N < 1, or
MAXNE < NL - NF + 1.

Processing is discontinued.

30100 The input matrix may not be a Hermitian
matrix.

(3) Comments on use

a. Subprograms used

SSLII UHEVP, UIBBS, UIBFC, UIBFE, UIBSL, UITBS, UITFC, UITFE, UITSL,
UTDEX, UTDEY, UTMLS, UTRZB, UTRZV, UZRDM, MGSSL, UMGSL,
UMGSL2

b. Notes

1) This routine pays special attention to a clustered eigenvalue.

 With ε is equal to ETOL, suppose that the eigenvalues ,...1,, += ssjjλ , and s+k

(k ≥ 0) are such that

ε
λλ

λλ
≤

− −

),max(1 1

1

ii-

ii

+
 (3.1)

 While (3.4) is not satisfied for i = s-1 and i = s + k + 1, then eigenvalues jλ , j =
s - 1, s, ..., s + k are considered to be identical, i.e., a single multiple eigenvalue
of multiplicity k + 1.

 The default value of ETOL is 3.0D-16 for double precision (2.0D-7 for single-
precision). Using this value, eigenvalues are refined to machine precision.

 When (3.1) is not satisfied for ETOL=ε , 1−iλ and iλ are assumed to be
distinct eigenvalues.

 If (3.1) holds with ε = CTOL (but not with ε = ETOL) for eigenvalues mλ , m=t,
t+1, ..., t+k but not for 1−tλ and 1++ktλ , these eigenvalues are considered to be
approximately multiple, i.e. clustered, though distinct (not numerically multiple).
In order to obtain an invariant subspace, eigenvectors corresponding to clustered
eigenvalues are computed using orthogonal starting vectors and are
reorthogonalized. Of course CTOL ≥ ETOL; if this condition is not satisfied,
CTOL is set to be equal to ETOL.

VHEVP, DVHEVP

Fujitsu SSL II Extended Capabilities User’s Guide II II-83

2) Assume r eigenvalues are requested. Note that if the first or last requested
eigenvalue has a multiplicity greater than 1 then more than r eigenvalues, are
obtained. The corresponding eigenvectors can be computed only when the
corresponding eigenvector storage area is sufficient.

 The maximum number of computable eigenvalues can be specified in MAXNE.
If the total number of eigenvalues exceeds MAXNE, ICON = 20000 is returned.
The corresponding eigenvectors cannot be computed. In this case, the
eigenvalues are returned, but they are not stored repeatedly according to
multiplicities.

 When all eigenvalues are distinct, it is sufficient to set MAXNE = NL-NF+1.
When the total number of eigenvalues to be sought exceeds MAXNE, the
necessary value for MAXNE for seeking eigenvalues again is returned in
NEV(3).

3) This routine is faster than HEIG2.

c. Example

 This example calculates the specified eigenvalues and eigenvectors of a Hermitian
matrix.

C ** EXAMPLE PROGRAM **
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (K=512,N=K,NF=1,NL=28,MAXNE=NL-NF+1)
 PARAMETER (NVW=19*K,NIW=9*MAXNE+128)
 REAL*8 AR(K,N),AI(K,N)
 REAL*8 E(MAXNE), EVR(K,MAXNE), EVI(K,MAXNE)
 INTEGER NEV(3), M(MAXNE,2)
 REAL*8 VW(NVW)
 INTEGER IW(NIW)
 REAL*8 ETOL, CTOL
 IVEC=1

 ETOL=1.0D-14
 CTOL=5.0D-12

 WRITE (*,*)' Number of data points = ',N
 WRITE (*,*)' Parameter k =',K
 WRITE (*,*)' Eigenvalue calculation tolerance = ',ETOL
 WRITE (*,*)' Cluster tolerance =',CTOL
 WRITE (*,*)' First eigenvalue to be found is ',NF
 WRITE (*,*)' Last eigenvalue to be found is ',NL

C Set up real and imaginary parts of matrix in AR and AI
 DO 100 J=1,N
 DO 98 I=1,N
 AR(I,J) = DBLE(I+J)/DBLE(N)
 IF (I.EQ.J) THEN
 AI(I,J) = 0.0D0
 AR(I,J) = DBLE(J)
 ELSE
 AI(I,J) = DBLE(I*J)/DBLE(N*N)
 ENDIF
 98 CONTINUE
 100 CONTINUE

VHEVP, DVHEVP

II-84 Fujitsu SSL II Extended Capabilities User's Guide II

 DO 99 J=1,N
 DO 99 I=1,N
 IF (I.GT.J) AI(I,J) = -AI(I,J)
 99 CONTINUE

C Call complex eigensolver

 NNF=NF
 NNL=NL
 CALL DVHEVP(AR,AI,K,N,NNF,NNL,IVEC,ETOL,CTOL,NEV,
 * E,MAXNE,M,EVR,EVI,VW,IW,ICON)

 WRITE (*,*)' **************************************'
 WRITE (*,*)' VHEVP OUTPUT'
 IF(ICON.NE.0) THEN
 WRITE (*,*)' Error parameter icon = ',ICON,
 * ' VHEVP failed'
 GOTO 5000
 ENDIF
 WRITE (*,*)' Number of Hermitian eigenvalues'
 WRITE (*,*) NEV(3)
 WRITE (*,*)' Eigenvaluse of complex Hermitian matrix'
 WRITE (*,*)(E(I),I=1,NEV(3))
 5000 STOP
 END

(4) Method

 The n × n Hermitian matrix A = AR + iAI must satisfy AR = ART and AI = -AIT

 The Householder method is used to reduce the Hermitian matrix to a Hermitian
tridiagonal matrix. Then, the diagonal unitary transformation is applied to further reduce
the matrix to a real tridiagonal matrix. For details of the Householder calculations, see
[45] in Appendix B, “References,” or see “TRIDH” in Fujitsu SSL II User’s Guide.

 The eigenvalues and eigenvectors of the tridiagonal matrix are calculated using
techniques of multisectioning and inverse iteration (see “VTDEV” and [33] in Appendix
B, “References”).

 In the final step, the eigenvectors of the Hermitian matrix are constructed from the
eigenvectors of the tridiagonal matrix.

VLAND, DVLAND

Fujitsu SSL II Extended Capabilities User’s Guide II II-85

B71-11-0101 VLAND, DVLAND

Eigenvalues and eigenvectors of a real symmetric sparse matrix (Lanczos method,
diagonal storage format)

CALL VLAND (A, K, NDIAG, N, NOFST, IVEC, IX, EPS, NMIN, NMAX,
 NLMIN, NLMAX, KR, MAXC, E, INDX, NCMIN, NCMAX, EV,
 WV, IW, ICON)

(1) Function

 This routine computes a few of the largest and/or smallest eigenvalues and corresponding
eigenvectors in a large-scale real symmetric sparse matrix A using the Lanczos method.

(2) Parameters

A................. Input. Non-zero elements of the real symmetric sparse matrix.
Uses the diagonal storage format for general sparse matrices to store diagonals
of A containing non-zero elements.
Two-dimensional array A (1:N, 1:NDIAG)
For the diagonal storage format, see Part I, “Overview,” Section 3.2.1.1,
“Storage Method for General Sparse Matrices,” b., “Diagonal Storage Format
for General Sparse Matrices.”

K................. Input. Size of the first dimension of array A (≥ N)

NDIAG....... Input. The number of diagonals of coefficient matrix A including non-zero
elements.

N................ Input. Order n of matrix A

NOFST....... Input. Stores the offset from the main diagonal of the corresponding non-zero
diagonal stored in array A. Superdiagonals have positive offsets. Subdiagonals
have negative offsets.

IVEC.......... Input. Control information indicating whether an initial vector is specified in
EV (1:N,1).
IVEC=1 The vector stored in EV (1:N,1) is used as the initial vector.
IVEC≠1 The initial vector is generated randomly.
(See item (3), “Comments on use,” b., 1).)

IX............... Input. Seed value used to generate a random number sequence when an initial
vector is generated randomly for IVEC ≠ 1. An integer value from 1 to 100,000.
(See item (3), “Comments on use,” b., 1).)

EPS............. Input. Tolerance used to decide whether the computed eigenpair (λi , Vi) is to
be accepted. If EPS is less than or equal to the default value 0, 10-6 (10-3 for
single precision) then it is set to the default value for double precision.
(See item (3), “Comments on use,” b., 3).)

NMIN.......... Input. The number of smallest eigenvalues and corresponding eigenvectors to
be computed (≥ 0). Smaller number. May be 0 if NMAX ≥ 1.

NMAX........ Input. The number of largest eigenvalues and corresponding eigenvectors to be
computed (≥ 0). Smaller number. May be 0 if NMIN ≥ 1.

NLMIN....... Input. The number of eigenvalues to be used in the search for the NMIN
smallest eigenvalues. (≥ NMIN)
2 × NMIN in many cases.
(See item (3), “Comments on use, “b., 5).)

VLAND, DVLAND

II-86 Fujitsu SSL II Extended Capabilities User's Guide II

NLMAX...... Input. The number of eigenvalues to be used in the search for the NMAX
largest eigenvalues.
(≥ NMAX)
2 × NMAX in many cases.
(See item (3), “Comments on use, “b., 5).)

KR.............. Input. The maximum on the dimension of the Krylov subspace generated in the
Lanczos method. (≥ NLMIN + NLMAX)
(See item (3), “Comments on use, “b., 4).)

MAXC........ Input. The maximum number of eigenvalues in a cluster. For example, 10.
(See item (3), “Comments on use, “b., 2).)

E Output. One-dimensional array of E (NEVL).
The largest and smallest eigenvalues are stored in ascending order using the
indirect index list INDX.
NEVL = NLMIN + NLMAX.
The smallest eigenvalues are stored in E (INDX (1:NCMIN)); the largest ones
in E (INDX (NEV - NCMAX:NEV). NEV = NMIN + NMAX.

INDX.......... Output. One-dimensional array INDX (NEV). Stores indirect indices of arrays
E and EV.
The eigenvector corresponding to eigenvalue E (INDX (I)) is stored in EV (1:N,
INDX(I)).
I = 1,, NEV, with NEV = NMIN + NMAX.

NCMIN....... Output. The number of smallest eigenvalues and corresponding eigenvectors
which have been computed.

NCMAX..... Output. The number of largest eigenvalues and corresponding eigenvectors
which have been computed.

EV.............. Input. When IVEC = 1 an initial vector is stored in EV (1:N, 1) in EV.
Output. Computed eigenvectors are stored. Eigenvectors can be referred using
the indirect index list INDX as eigenvalues.
Two-dimensional array EV (K, NEVL), NEVL = NLMIN + NLMAX.

WV............. Work area. One-dimensional array of the size (MAXC + MNL) × (KR + 2) +
MD × (KR + 1) + 7 × K + 14 × (KR + 1).
Here, MNL = MAX (NLMIN, NLMAX), MD = NLMIN + NLMAX.

IW............... Work area. One-dimensional array of the size 11 × (MAXC + MNL) + MD +
128.
Here, MNL = MAX (NLMIN, NLMAX), MD = NLMIN + NLMAX.

ICON........... Output. Condition code
See Table VLAND-1, “Condition codes.”

VLAND, DVLAND

Fujitsu SSL II Extended Capabilities User’s Guide II II-87

Table VLAND-1 Condition codes

Code Description Processing

0 No error -

20000 The total number of eigenvalues in a
cluster exceeded MAXC.
Eigenvectors cannot be computed.

Processing is stopped.

30000 N<1, N>K, NDIAG<1,
IX<1, IX>100000,
NLMIN<NMIN,
NLMAX<NMAX,
NMIN<0, NMAX<0,
NMIN=NMAX=0

Processing is stopped.

30004 KR<NLMIN+NLMAX

32001 |NOFST (I)|>N-1

39001 The initial vector is 0 or near 0.

39006 The input matrix is not symmetric.

(3) Comments on use

a. Subprograms used

 SSLII: UZBBM, UZGSD, UZGUD, UZGBD, UZISE, UZLCD, UZLPD, UZMLS,
UZSRZ, UZSTE, UZS3D, UZTDC, UZTDE, USMN1, USSPS, UIBBS, UIBFC,
UIBFE, UIBSL, UITBS, UITFC, UITFE, UITSL, AMACH, URIPA, URMVD,
URPER, URPRE, URPFP, URPIP, UZRDM, USSCP, URSTE, USVAD, USVCN,
USVCP, USVSC, USVSU, USVUP, USVN1, USVN2, USVNM, MGSSL

b. Comments

1) The Lanczos method is not a deterministic procedure, and hence is not as robust
as, for example, the method based on the tridiagonalization by Householder
reduction.

 The results obtained using the Lanczos method depends on choice of initial
vector. If the initial vector contains large components in the directions of the
requested eigenvectors, then good approximations to the requested eigenvalues
and eigenvectors will be computed. If these components are small or absent then
the desired eigenpairs may not be obtained; however, the returned value are good
approximations to some eigenpairs of the matrix A.

 In most cases, a good initial vector will not be known a priori and in these
instances the initial vector is generated randomly.

2) A cluster is a set of very close eigenvalues for which the distance (relative to
eigenvalue magnitude) between adjacent eigenvalues of order machine epsilon.

3) When the eigen pair (iλ , Vi) satisfies iii nVAV λελ ≤− , it is accepted as an
eigenvalue and eigenvector of matrix A. Otherwise, this pair is rejected.

 Here, ε = EPS, n = KR, and KR indicate the dimension of the Krylov subspace.

 The dependence on the value of EPS is rather mild. However, if EPS is too large,
the computed eigenvalues and eigenvectors may not have high accuracy.

VLAND, DVLAND

II-88 Fujitsu SSL II Extended Capabilities User's Guide II

4) Making KR larger enables the user to obtain better approximate eigenvalues and
eigenvectors; however, higher memory and computational cost are entailed, KR
should therefore be chosen as small as possible. In some cases, it is impossible
to choose KR smaller than N (for example, the one-dimensional discrete
Laplacian). KR should exceed N. When KR is equal to N, this routines works
correctly but may be unacceptably slow.

 The quality of the computed eigenvalues and eigenvectors depends considerably
on the dimension KR of the Krylov sub space and the initial vector.

5) In the Lanczos method, - spurious eigenvalues and eigenvectors - not belonging
to the original matrix A may be obtained. These values are rejected. The
number of eigenvalues and eigenvectors used in the search, must therefore be
increased. These values should be determined carefully.

 In most cases, NLMIN = NMIN, NLMAX = NMAX are insufficient NLMIN
and NLMAX values.

 NMLIN = 2 × NMIN, NLMAX = 2 × NMAX are generally suffice.

c. Example of use

 In this example, we find the three smallest and largest eigenvalues and corresponding
eigenvectors for the matrix A resulting from the finite difference approximation of
the following elliptic operator L.

 Lu = -Δu + a∇u + u

 With zero boundary conditions on a cube where a = (a1, a2, a3) with a1, a2 and a3
constants.

 (The matrix A is generated with init_mat_diag and stored using the diagonal storage
format.)

C ** EXAMPLE PROGRAM **
 IMPLICIT REAL*8(A-H,O-Z)
 INTEGER REP
 PARAMETER (REP = 2)
 PARAMETER (NX = 20,NY = 20,NZ = 20)
 PARAMETER (K = NX*NY*NZ, N = K)
 PARAMETER (NMAX = 3, NMIN = 3)
 PARAMETER (IVEC=0,IX=123)
 PARAMETER (EPS1 = 1D-6)
 PARAMETER (NLMIN = 2*NMIN, NLMAX = 2*NMAX)
 PARAMETER (MD = NLMIN+NLMAX,NEVL=MD)
 PARAMETER (MNL = NLMIN) ! MNL = MAX(NLMIN,NLMAX)
 PARAMETER (NEV = NMIN+NMAX)
 PARAMETER (KR = (NX*NY*NZ)/REP)
 PARAMETER (NDIAG = 7)
 PARAMETER (MAXC = 10)
 PARAMETER (NWV = (MAXC+MNL)*(KR+2)+MD*(KR+1)+
 & 7*K+14*(KR+1))
 PARAMETER (NIW = 11*(MAXC+MNL)+MD+128)

 REAL*8 A(K,NDIAG),EV(K,NEVL),E(NEVL),VW(NWV)
 INTEGER NOFST(NDIAG),INDX(NEV),IW(NIW)

C Initialize matrix A
 CALL MAT_DIAG(0D0,0D0,0D0,0D0,2D0,-1D0,A,NOFST,
 & NX,NY,NZ,NDIAG,K)

VLAND, DVLAND

Fujitsu SSL II Extended Capabilities User’s Guide II II-89

 EPS = EPS1

 CALL DVLAND(A,K,NDIAG,N,NOFST,IVEC,IX,EPS,NMIN,
 & NMAX,NLMIN,NLMAX,KR,MAXC,E,INDX,NCMIN,
 & NCMAX,EV,VW,IW,ICON)

 IF (ICON.LT. 20000) THEN
 PRINT*,' Real eigenvalues (MIN:MAX)'
 WRITE (*,901) (E(INDX(I)),I=1,NCMIN)
 WRITE (*,901) (E(INDX(I)),I=NEV-NCMAX+1,NEV)
 ENDIF

 901 FORMAT(D23.16)
 STOP
 END

(4) Method

 For the Lanczos method, see [14] and the bibliography therein, also [8]. The algorithm
used for this routine generates a tridiagonal matrix T of size less than (or equal) to that of
the matrix A. Next the eigenvalues and eigenvectors of this tridiagonal matrix are
computed using a multisection Sturm count procedure and inverse iteration, respectively.
(See VTDEV.) Finally the eigenvectors of the matrix A are recovered from those of T
using the Krylov subspace basic vectors generated by the Lanczos process.

VLBX, DVLBX

II-90 Fujitsu SSL II Extended Capabilities User's Guide II

A53-11-0301 VLBX, DVLBX

System of linear equations with a banded real matrix (Gaussian elimination)

CALL VLBX (A, N, NH1, NH2, B, EPSZ, ISW, IS, IP, VW, ICON)

(1) Function

 This routine solves real coefficient linear equations

 Ax = b (1.1)

 using the Gaussian elimination method, where A is an n × n banded matrix with the lower
bandwidth h1 and upper bandwidth h2.

 b is an n-dimensional real constant vector. x is an n-dimensional solution vector.

 n > h1 ≥ 0, n > h2 ≥ 0 must be obtained.

(2) Parameters

A................. Input. One-dimensional array of size (2 × h1 + h2 + 1) × n that stores the banded
coefficient matrix A.
For the storage method for matrix A, see Figure VLBX-1, “Storage method for
banded matrix in array A.”
Output. Stores the LU decomposed L and U. The storage method is the same
as the input storage method.
For the storage method for matrices L and U, see Figure VLBX-2, “Storage
method for matrices L and U in array A.”

N................. Input. Order of matrix A.

NH1............ Input. Lower bandwidth h1 of matrix A.

NH2............ Input. Upper bandwidth h2 of matrix A.

B................. Input. Constant vector b.
Output. Solution vector x.
One-dimensional array of size n.

EPSZ........... Input. Value of pivot judgment of relative zero (≥ 0.0). When EPSZ = 0.0, a
standard value is selected.
(See item (3), “Comments on use,” b., 1).)

ISW............ Input. Control information.
When solving k (k ≥ 1) equation sets with the same coefficient matrix, set ISW
as follows.
If ISW = 1, first-set equations are solved.
If ISW = 2, second-set and subsequent equations are solved.
All parameters other than B whose value is changed to the value of a new
constant vector b, should be used unchanged.
(See item (3), “Comments on use,” b., 2).)

IS................ Output. Information used to look for the determinant of matrix A.
(See item (3), “Comments on use,” b., 3).)

IP................ Output. Transposition vector that shows the history of the exchange of rows
performed through partial pivoting. One-dimensional array of size n.

VW............. Work area. One-dimensional array of size n.

VLBX, DVLBX

Fujitsu SSL II Extended Capabilities User’s Guide II II-91

ICON.......... Output. Condition code.
See Table VLBX-1, “Condition codes.”

D00-0110

......

......

......

h h h

* a a 011 1 h2+1

2

a* a a 021 22 2 h2+2

* a a a a 031 32 33 3 h2+3

a a ah+1 1 h1+1 h1+1 h1+1 h1+h2+1 0.......

a a an-h2 n-h2-h1 n-h2 n-h2 n-h2 n *..

a a *n n-h1 n n *...

1 11

* (asterisk): Undefined value

Figure VLBX-1 Storage method for banded matrix in array A

The i-th row vector of the coefficient matrix A is stored consecutively in A ((2 × h1 + h2 + 1)
× (i - 1) + 1: (2 × h1 + h2 + 1) × i). Diagonal elements aii are stored in A ((2 × h1 + h2 + 1) ×
(i - 1) + h1 + 1). Outer coefficient matrix elements of the banded part are set to zero.

VLBX, DVLBX

II-92 Fujitsu SSL II Extended Capabilities User's Guide II

D00-0120

......

......

......

h h h1 2 11

* l

u

21

33

1 h1+h2+1.....

.....

u* u11

2 h1+h2+2u

* l31 l32 3 h1+h2+3u

l u uh1+1 1 h1+1 h1+1 h1+1 2h1+h2+1

ln-h2 n-h2-h1.. u n-h2 n *

ln n-h1

u n-h2 n-h2

u n n * *

u22

...

* (asterisk): Undefined value

Figure VLBX-2 Storage method for matrices L and U in array A

The i-th row vector without diagonal elements of matrix L is stored in A ((2 × h1 +
h2 + 1) × (i - 1) + 1: (2 × h1 + h2 + 1) × (i - 1) + h1). The i-th row vector of matrix
U is stored consecutively from the diagonal elements in A ((2 × h1 + h2 + 1) × (i -
1) + h1 + 1: (2 × h1 + h2 + 1) × i).

VLBX, DVLBX

Fujitsu SSL II Extended Capabilities User’s Guide II II-93

Table VLBX-1 Condition codes

Code Description Processing

0 No error

20000 All the elements of a row of matrix A are zero, or pivot is
relative zero. Strong possibility that matrix A is singular.

Processing is stopped.

30000 N ≤ NH1, N ≤ NH2, NH1 < 0, NH2 < 0 or EPSZ < 0.0. Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, VBLU, VBLUX, MGSSL

b. Comments

1) In this subroutine, the case of the pivot value being less than EPSZ is considered
relative zero, and processing is stopped with ICON = 20,000.

 The standard value of EPSZ is 16 × u where u is the round off unit.

2) When several linear equations with the same coefficient matrix are solved
consecutively, solve those equations with ISW = 2 on subsequent calls after the
initial call. Then, the computation time diminishes as the LU decomposition
process of the coefficient matrix A is omitted. In this case, the contents in matrix
A are guaranteed as the result of initial call with ISW=1.

3) Elements of matrix U are stored in array A, as shown in Figure VBLU-2.
Therefore, the determinant is obtained by multiplying the IS value by n diagonal
elements, that is, the multiplication of A ((2 × h1 + h2 + 1) × (i - 1) + h1 + 1), i =
1, ... , n.

4) In order to save space in the data storage area, this subroutine stores banded
matrices by taking advantage of their characteristics. However, depending on
bandwidth size, a data storage area that is larger than VALU may be required. In
such cases, space in the data storage area can be saved by using VALU.

 Characteristics of this subroutine can be exploited when n > 2 × h1 + h2 + 1.

c. Example of use

 In this example, a linear equation is solved, which takes the unsymmetric banded
matrix with bandwidth h1 = h2 = 160, n = 160 × 160.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER(NH=80)
 PARAMETER(NH1=NH)
 PARAMETER(NH2=NH)
 PARAMETER(N=NH*NH)
 PARAMETER(ALPHA=0.5/(NH1+1),BETA=-ALPHA)
 DIMENSION A((2*NH1+NH2+1)*2*N),B(N)
 DIMENSION C(2*NH1+NH2+1,N),IP(N),VW(N)
 EQUIVALENCE(A,C)
C
C Zero clear
C
 DO 10 I=1,N*(3*NH+1)

VLBX, DVLBX

II-94 Fujitsu SSL II Extended Capabilities User's Guide II

 A(I)=0.0
 10 CONTINUE
C
 DO 15 I=1,N
 B(I)=0.0
 IP(I)=0
 15 CONTINUE
C
C Coefficient Matrix is built
C
 DO 20 I=1,N
 C(NH1+1,I)=4.0
 B(I)=B(I)+4.0

 IF(I.GT.NH)THEN
 C(1,I)=-1.0+ALPHA
 B(I)=B(I)-1.0+ALPHA
 ENDIF

 IF(I+NH.LE.N)THEN
 C(1+NH1+NH2,I)=-1.0+BETA
 B(I)=B(I)-1.0+BETA
 ENDIF

 IF(I.GT.1.AND.MOD(I-1,NH).NE.0)THEN
 C(NH1,I)=-1.0+ALPHA
 B(I)=B(I)-1.0+ALPHA
 ENDIF

 IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN
 C(NH1+2,I)=-1.0+BETA
 B(I)=B(I)-1.0+BETA
 ENDIF

 20 CONTINUE
C
C Solve Banded linear equation
C
 EPSZ=0.0D0
 ICON=0
 ISW=1
 CALL DVLBX(A,N,NH1,NH2,B,EPSZ,ISW,IS,IP,VW,ICON)
 PRINT*,'ICON= ',ICON
C
 PRINT*,'B(1)= ',B(1)
 PRINT*,'B(N)= ',B(N)
 STOP
 END

VLBX, DVLBX

Fujitsu SSL II Extended Capabilities User’s Guide II II-95

(4) Method

 After LU decomposition of the outer product type (see [14]) is performed, the equation

 Ax = b

 is solved through forward-substitution and back-substitution.

VLDIV, DVLDIV

II-96 Fujitsu SSL II Extended Capabilities User's Guide II

A22-61-0402 VLDIV, DVLDIV

The inverse of a positive-definite symmetric matrix decomposed into the factors L,D
and LT

CALL VLDIV (FA, N, VW, ICON)

(1) Function

 The inverse matrix A-1 of an n × n positive-definite symmetric matrix A given in
decomposed form A = LDLT is computed.

 A-1 = (LT)-1D-1L-1 (1.1)

 L and D are, respectively, an n × n unit lower triangular and a diagonal matrices.

(2) Parameters

FA................ Input. Matrices L and D-1.
For the storage method for matrices L and D-1, see Fig. VSLDL-1 in “Fujitsu
SSL II Extended Capabilities User’s Guide”.
Output. Inverse A-1. Lower triangular part of A-1 stored by columns.
For the storage method for a symmetric matrix, see Fig. VSLDL-1 in “Fujitsu
SSL II Extended Capabilities User’s Guide”.
One-dimensional array of size n(n+1)/2.

N.................. Input. Order n of the matrices L and D.

VW.............. Work Area. One-dimensional array of size n.

ICON........... Output. Condition code.
See Table VLDIV-1, “Condition codes.”

Table LDIV-1 Condition codes

Code Meaning Processing

0 No error -

10000 Matrix was not a positive-definite. Continued

30000 N<1 Bypassed

(1) Comments on use

a. Subprograms used

 SSL II: MGSSL

b. Comments

1) Prior to calling this subroutine, LDLT-decomposed matrix must be obtained by
subroutine VSLDL and must be input as the parameter FA to be used. (Refer to
the example). In this routine, the diagonal elements of the array D must be given
as D-1. D-1 is output by the subroutine VSLDL.

2) The subroutine VLSX should be used for solving a system of linear equations.
Solving a system of linear equations by first obtaining the inverse matrix should
be avoided since more steps of calculation are required. This subroutine should
be used only when the inverse matrix is inevitable.

VLDIV, DVLDIV

Fujitsu SSL II Extended Capabilities User’s Guide II II-97

c. Example of use

 The inverse of a positive symmetric matrix is obtained. n = 10.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION A(55),VW(10)
 DIMENSION VW2(20)
 INTEGER IVW(10)
 N=10
 EPS=0.0D0
 L = 1
 DO J=1,N
 A(l)=N*(N+1)/2-J*(J-1)/2+10.0D0
 L=L+1
 DO I=J+1,N
 A(l)=N+1-I
 L=L+1
 ENDDO
 ENDDO
 WRITE(*,*) 'INPUT MATRIX'
 DO I=1,N
 WRITE(*,1000) (A(((2*N+1-J)*J)/2-N+I),J=1,I)
 ENDDO
 CALL DVSLDL(A,N,EPS,VW2,IVW,ICON)
 IF(ICON.GE.20000)STOP
 CALL DVLDIV(A,N,VW,ICON)
 WRITE(*,*) 'DVLDIV ICON = ',ICON
 WRITE(*,*) 'OUTPUT MATRIX'
 DO I=1,N
 WRITE(*,1000) (A(((2*N+1-J)*J)/2-N+I),J=1,I)
 ENDDO
 1000 FORMAT(X,10E11.3)
 END

(4) Method

 For further information on the algorithm used consult the entry for LDIV in the Fujitsu
SSL II User's Guide, and [29]. Note that the storage format used in LDIV is different from
that used in this routine, but the underlying algorithm is the same.

VLSBX, DVLSBX

II-98 Fujitsu SSL II Extended Capabilities User's Guide II

A53-31-0301 VLSBX, DVLSBX

System of linear equations with a symmetric positive definite banded matrix
(modified Cholesky decomposition)

CALL VLSBX (A, N, NH, B, EPSZ, ISW, ICON)

(1) Function

 This routine solves real coefficient linear equations

 Ax = b (1.1)

 using the modified Cholesky method, where A is an n × n symmetric positive definite
banded matrix with upper and lower bandwidths h. b is an n-dimensional real constant
vector. x is an n-dimensional solution vector.

 n > h ≥ 0 must be obtained.

 In order to exploit performance on vector computers, this subroutine uses the storage
method in the order of column vectors.

(2) Parameters

A................. Input. One-dimensional array of size (h + 1) × n.
Stores the diagonal elements of the coefficient matrix A and the lower
triangular part of the banded matrix.
For storage method for matrix A, see Figure VLSBX-1, “Storage method for
matrix A in array A.”
Output. Stores LDLT decomposed D and L.
For the storage method for matrices L and D, see Figure VLSBX-2, “Storage
method for matrices L and D in array A.”

N................. Input. Order n of matrix A.

NH.............. Input. Lower bandwidth h.

B................. Input. Constant vector b.
Output. Solution vector x.
One-dimensional array of size n.

EPSZ........... Input. Value of pivot judgment of relative zero (≥ 0.0). If EPSZ = 0.0, a
standard value is selected.
(See item (3), “Comments on use,” b., 1).)

ISW............ Input. Control information.
When solving k (≥ 1) equation sets with the same coefficient matrix, set ISW as
follows.
If ISW = 1, first-set equations are solved.
If ISW = 2, second-set and subsequent equations are solved.
All parameters other than B whose value is changed to the value of new
constant vector b, should be used unchanged.
(See item (3), “Comments on use,” b., 2).)

ICON.......... Output. Condition code.
See Table VLSBX-1, “Condition codes.”

VLSBX, DVLSBX

Fujitsu SSL II Extended Capabilities User’s Guide II II-99

D00-0130

.

a

a

a

.

.

a

a

a

a

.

.

a

a

a

.

.

a

a

a

*

.

.

*

11

21

31

h+1 1

22

32

42

h+2 2

n-h n-h

n-h+1 N-h

n n-h

n-1 n-1

n n-1

a

*

.

.

.

*

n n

* (asterisk): Undefined value

Figure VLSBX-1 Storage method for matrix A in array A

The i-th row vector of the lower banded matrix A is stored according to

A ((h + 1) × (i - 1) + j - i + 1) = aji

where j = i, ... , i + h, i = 1, ... , n.

D00-0140

.

d

l

l

.

.

l

d

l

l

.

.

l

d

l

.

.

l

d

l

*

.

.

*

d

*

.

.

*

11

21

31

h+1 1

22

32

42

h+2 2

n-h n-h

n-h+1 N-h

n n-h

n-1 n-1

n n-1

n n

* (asterisk): Undefined value

Figure VLSBX-2 Storage method for matrices L and D in array A

dii is stored in A ((h + 1) × (i - 1) + 1).

lji is stored in A ((h + 1) × (i - 1) + j - i + 1)

where j = i + 1, ... , i + h, i = 1, ... , n.

VLSBX, DVLSBX

II-100 Fujitsu SSL II Extended Capabilities User's Guide II

Table VLSBX-1 Condition codes

Code Description Processing

0 No error

10000 Pivot is negative. Matrix A is not positive definite. Processing continues.

20000 Pivot is relative zero. Strong possibility that matrix A is
singular.

Processing is stopped.

30000 NH < 0, NH ≥ N, or EPSZ < 0.0. ISW ≠ 1, 2. Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, UBLTS, UBUTS, VBLDL, VBLDX, MGSSL

b. Comments

1) In this subroutine, the case of the pivot value being less than EPSZ is considered
relative zero and processing is stopped with ICON = 20,000.

 The standard value of EPSZ is 16 × u where u is the round off unit.

2) When several linear equations with the same coefficient matrix are solved
consecutively, solve those equations with ISW = 2 on the subsequent calls after
the initial call. Then, the computation time diminishes as the LDLT
decomposition process of the coefficient matrix A is omitted.

3) If the pivot becomes negative during the decomposition process, the coefficient
matrix is not positive definite. In this subroutine, processing continues, but
ICON is set as 10,000.

4) Elements of matrix L are stored in array A, as shown in Figure VLSBX-2.
Therefore, the determinant is obtained by multiplying the n diagonal elements,
that is, the multiplication of A ((h + 1) × (i - 1) + 1), i = 1, ... , n.

c. Example of use

 In this example, a linear equation of symmetric positive definite matrix with
bandwidth 256 is solved.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER(NH=128)
 PARAMETER(N=128*128)
 DIMENSION A((NH+1)*N),B(N),C(NH+1,N)
 EQUIVALENCE(A,C)
C
C Zero clear
C
 DO 10 I=1,N*(NH+1)
 A(I)=0.0
 10 CONTINUE
C
 DO 15 I=1,N
 B(I)=0.0
 15 CONTINUE
C

VLSBX, DVLSBX

Fujitsu SSL II Extended Capabilities User’s Guide II II-101

C Coefficient Matrix is built
C b = A*y , where y=(1,1,....,1)
C
 DO 20 I=1,N
 C(1,I)=4.0
 B(I)=B(I)+4.0

 IF(I+NH.LE.N)THEN
 C(NH+1,I)=-1.0
 B(I+NH)=B(I+NH)-1.0
 B(I)=B(I)-1.0
 ENDIF

 IF(I+1.LE.N.AND.MOD(I,NH).NE.0)THEN
 C(2,I)=-1.0
 B(I+1)=B(I+1)-1.0
 B(I)=B(I)-1.0
 ENDIF

 20 CONTINUE
C
C Solve Symmetric Positive Definite linear equation
C
 EPSZ=0.0D0
 ISW=1
 CALL DVLSBX(A,N,NH,B,EPSZ,ISW,ICON)
 PRINT*,'ICON=',ICON
 IF(ICON.NE.0)STOP
C
 PRINT*,'B(1)= ',B(1)
 PRINT*,'B(N)= ',B(N)
 STOP
 END

(4) Method

 After LDLT decomposition of the outer product type (see [32]) is performed, the equation
is solved through forward-substitution and back-substitution.

VLSPX, DVLSPX

II-102 Fujitsu SSL II Extended Capabilities User's Guide II

A22-72-0101 VLSPX, DVLSPX

A system of linear equations with a symmetric positive definite matrix (blocked
Cholesky decomposition method)

CALL VLSPX (A, K,N, B,EPSZ,ISW, ICON)

(1) Function

 This subroutine decomposes the coefficient matrix A of a system of a real coefficient
linear equation (1.1) as shown in (1.2) using the blocked Cholesky decomposition of outer
products. It then solves the system of equations, where A is a symmetric positive definite
matrix (n × n), b is an n-dimensional real constant vector, x is an n-dimensional solution
vector, L is a lower triangular matrix. It is assumed that n ≥ 1.

 Ax = b (1.1)

 A = LLT (1.2)

(2) Parameters

A Input. Coefficient matrix A.

 The lower triangular part {aij | i ≥ j} of A is stored in the lower triangular part
{A(i,j) | i ≥ j} of A(1:N,1:N) for input.

 Output. Decomposed matrix.

 After the first set of equations has been solved, the lower triangular part of
A(i,j) contains lij (i ≥ j) of the lower triangular matrix L.

 (See Figure VLSPX-1.)

 This is a two-dimensional array A(K,N).

K Input. The size of the first dimension of array A. (≥ N)

N Input. Order n of coefficient matrix A.

B Input. Constant vector b.

 Output. Solution vector x.

 One-dimensional array of size n.

EPSZ Input. Judgment of relative zero of the pivot (≥ 0.0).

 When EPSZ is 0.0, the standard value is assumed.

 (See item (3), "Comments on use," b., 1).)

ISW Input. Control information.

 When solving several sets of equations that have an identical coefficient matrix,
specify as follows.

 Specify ISW = 1 for the first set of equations.

 Specify ISW = 2 for the second and subsequent sets of equations.

 When specifying ISW = 2, change only the value of array B into a new constant
vector b. Do not change any other parameters.

VLSPX, DVLSPX

Fujitsu SSL II Extended Capabilities User’s Guide II II-103

 (See item (3), "Comments on use," b., 2).)

ICON.......... Output. Condition code.
See Table VLSPX-1, “Condition codes.”

Input Array A

Unnecessary a11

a21 a22

an1 an2 ann

N

NK

Output Array A

Altered l11

l21 l22

ln1 ln2 lnn

N

NK

Figure VLSPX-1 Storing the data for the Cholesky decomposition method

The diagonal elements and lower triangular part (aij) of the LLT-decomposed positive definite
matrix are stored in array A(i,j), i = j, ... , n, j = 1, ... , n.

After LLT decomposition, the lower triangular matrix L is stored in the lower triangular part of
the array A.

Table VLSPX-1 Condition codes

Code Description Processing

0 No error

20000 The pivot became relatively zero. The coefficient matrix
A may be singular.

20100 The pivot becomes negative. The coefficient matrix is not
positive definite.

30000 N < 1, EPSZ < 0, K < N, or ISW ≠ 1, 2.

Processing is
discontinued.

(3) Comments on use

a. Subprograms used

 SSL II: VSPLL, VSPLX

b. Comments

1) If a value is set for the judgment of relative zero, it has the following meaning:
if the value of the selected pivot is positive and less than EPSZ during LLT
decomposition by the Cholesky decomposition, the pivot is assumed to be
relatively zero and decomposition is discontinued with ICON = 20000. When
unit round off is u, the standard value of EPSZ is 16 × u.

 When the computation is to be continued even if the pivot becomes small, assign
the minimum value to EPSZ. In this case, however the result is not assured.

VLSPX, DVLSPX

II-104 Fujitsu SSL II Extended Capabilities User's Guide II

2) When several sets of linear equations having an identical coefficient matrix are
solved, the value of ISW should be 2 from the second time on. This reduces the
execution time because LLT decomposition for coefficient matrix A is bypassed.

3) If the pivotal value becomes negative during decomposition, the coefficient
matrix is no longer positive definite. Processing is discontinued with ICON =
20100.

4) After the calculation has been completed, the determinant of the coefficient
matrix is computed by multiplying all the n diagonal elements of the array A and
taking the square of the result.

c. Example of use

 A system of linear equations with a 2000 × 2000 coefficient matrix is solved.
C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N=2000,K=N+1)
 REAL*8 A(K,N),B(N)
C
 DO J=1,N
 DO I=J,N
 A(I,J)=MIN(I,J)
 ENDDO
 ENDDO
C
 DO I=1,N
 B(I)=I*(I+1)/2+I*(N-I)
 ENDDO
C
 ISW=1
 CALL DVLSPX(A,K,N,B,1.D-13,ISW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) GO TO 100
 WRITE(6,620) (B(I),I=1,10)
C
 100 STOP
 610 FORMAT(1H ,10X,5HICON=,I5)
 620 FORMAT(11X,15HSOLUTION VECTOR
 */(10X,3D23.16))
 END

(4) Method

 See [14] in Appendix A, "References," for details of the blocked Cholesky decomposition
method of outer product type.

VLTQR, DVLTQR

Fujitsu SSL II Extended Capabilities User’s Guide II II-105

A53-41-0101 VLTQR, DVLTQR

System of linear equations with a real tridiagonal matrix (QR factorization)

CALL VLTQR (SU, D, SL, N, B, VW, ICON)

(1) Function

 This routine solves a system of linear equations with a real tridiagonal matrix using QR
factorization.

 Tx = b (1.1)

 T is a n × n non-singular real tridiagonal matrix. b is a n-dimensional real constant vector.
X is a n-dimensional solution vector. n must be greater than or equal to 1. Suppose
elements of matrix T are tij, diagonal elements are di = ti, i; lower sub-diagonal elements li
= ti, i-1; upper sub-diagonal elements ui = ti, i+1. However, l1 = 0 and Un = 0 must hold.

(2) Parameters

SU Input. Stores an upper sub-diagonal matrix ui in a one-dimensional array of SU
(N) in SU (1:N-1). SU (N) = 0.

D................ Input. Stores diagonal element di in a one-dimensional array of SU (N).

SL............... Input. Stores lower sub-diagonal matrix li in a one-dimensional array of SL (N)
in SL (2:N). SL (1) = 0.

N................ Input. Order n of tridiagonal matrix T.

B................. Input. Constant vector b.

Output. Solution vector x.

VW............. Work area. One-dimensional array of size 7 × N.

ICON.......... Output. Condition code.

See Table VLTQR-1, “Condition codes.”

Table VLTQR-1 Condition codes

Code Meaning Processing

0 No error -

10000 The matrix is near “singular.”

20000 The matrix is near “singular.” Processing is stopped.

30000 N<1

(3) Comments on use

a. Subprograms used

 SSL II: UQBBS, UQBFC, UQBFE, UQBSL, UQTBS, UQTFC, UQTFE, UQTSL,
AMACH, MGSSL

b. Comments

 None.

VLTQR, DVLTQR

II-106 Fujitsu SSL II Extended Capabilities User's Guide II

c. Example of use

 Solve a linear equation system with the following tridiagonal matrix:

D01-0010

 0 1

-1 0 1

 -1 0 1

 . . .

 -1 0 1

 -1 0

T =

 NOTE: n must be even, otherwise T is singular.

 This matrix is not diagonally dominant. The example below determines a constant
vector in the right-hand side so that the following value is obtained as the solution. It
then tests the accuracy of the solution.

 xi = (i - 1) / n, i = 1, ... , n

 This routine returns ICON = 20000 when the matrix is singular; therefore, the
solution is not obtained. When the matrix is near “singular,” this routine returns
ICON = 10000, and the correct solution is obtained.

C ** EXAMPLE PROGRAM **
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER(MAXN=300000)
 REAL*8 SU(MAXN),D(MAXN),SL(MAXN),B(MAXN),X(MAXN)
 REAL*8 VW(7*MAXN)
 REAL*8 ERR
 INTEGER I,ICON

C Data initialization
 N = 256*1024
 DO 9000 I=1,N
 SU(I)=1
 D(I)=0
 SL(I)=-1
 X(I) = (I-1.0)/N
 9000 CONTINUE
 SU(N)=0
 SL(1)=0

C Calculate the right hand side.
 B(1)=X(1)*D(1)+X(2)*SU(1)
 DO 9002 I=2,N-1
 B(I)=SL(I)*X(I-1)+D(I)*X(I)+SU(I)*X(I+1)
 9002 CONTINUE
 B(N)=SL(N)*X(N-1)+D(N)*X(N)

C Call subroutine
 CALL DVLTQR(SU,D,SL,N,B,VW,ICON)

VLTQR, DVLTQR

Fujitsu SSL II Extended Capabilities User’s Guide II II-107

C Calculate the relative error
 ERR=0.0D0
 DO 9004 I=1,N
 CONTINUE
 IF(X(I).NE.0.AND.B(I).NE.0)THEN
 ERR=MAX(ABS((X(I)-B(I))/X(I)),ERR)
 ELSE
 ERR=MAX(ABS(X(I)-B(I)),ERR)
 ENDIF
 9004 CONTINUE
 WRITE(*,*)'ERROR:',ERR

 END

(4) Method

 The multifrontal method is used first to reduce coefficient matrices in a system to a block
bidiagonal form. This reduced system is then solved using a recursive wrap-around
partitioning algorithm. The partitioning of the unknowns is such that there is no
restriction on the size of the matrix in either the reduction to block-bidiagonal form, or the
recursive elimination.

 This method does not suffer from memory bank conflicts.

 The underlying method is Householder’s QR factorization.

 For details, see [14] and [18].

VMBV, DVMBV

II-108 Fujitsu SSL II Extended Capabilities User's Guide II

A53-11-0101 VMBV, DVMBV

Multiplication of a real band matrix and a real vector.

CALL VMBV (A, N, NH1, NH2, X, Y, ICON)

(1) Function

 This subroutine performs multiplication of an n × n band real matrix A with lower band
width h1 and upper band width h2 by a vector x.

 y = Ax

 where, x and y are both an n-dimensional vectors.

 Also, n > h1 ≥ 0 and n > h2 ≥ 0.

(2) Parameters

A................. Input. Matrix A.
One-dimensional array of size (2×h1+h2+1) × n.
The storage method for matrix A is shown in the Figure VLBX-1 for subroutine
VLBX.

N................. Input. Order n of the matrix A.
(See item (3), “Comments on use,” b.)

NH1............. Input. Lower band width h1.

NH2............. Input. Upper band width h2.

X.................. Input. Vector x.
One dimensional array of size n.

Y.................. Output. Vector y.
One-dimensional array of size n.

ICON........... Output. Condition code.
See Table VMBV-1, “Condition codes.”

Table VMBV-1 Condition codes

Code Meaning Processing

0 No error -

30000 N=0, |N| ≤ NH1, |N| ≤ NH2,
NH1 < 0 or NH2 < 0

Bypassed

(3) Comments on use

a. Subprograms used

 SSL II: MGSSL

b. Comments on use

This subroutine mainly consists of the computation

 y = Ax (3.1)

VMBV, DVMBV

Fujitsu SSL II Extended Capabilities User’s Guide II II-109

but it can be changed to another type of computation

 y = y’ - Ax

by specifying N= -N and giving an arbitrary vector y’ to the parameter Y.

In practice, this method can be used to compute a residual vector of linear equations.

c. Example of use

 This program multiplies a banded matrix A by a vector x.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (K=1000,KH1=100,KH2=100)
 DIMENSION A((2*KH1+KH2+1)*K),X(K),Y(K)

 DO 10 I=1,(2*KH1+KH2+1)*K
 A(I)=0.0
 10 CONTINUE
 WRITE(*,*)'INPUT N,NH1,NH2'
 READ(*,*) N,NH1,NH2
 WRITE(*,*)'INPUT A'
 DO 20 I=1,N
 DO 30 J=1,NH1+NH2+1
 IF((J-NH1+(I-1).GE.1).AND.
 & (J-NH1+(I-1).LE.N))THEN
 WRITE(*,*)'A(',I,',',J-NH1+(I-1),')= '
 READ(*,*) A(J+(2*NH1+NH2+1)*(I-1))
 ENDIF
 30 CONTINUE
 20 CONTINUE
 WRITE(*,*)'INPUT X'
 READ(*,*) (X(I),I=1,N)

 CALL DVMBV(A,N,NH1,NH2,X,Y,ICON)
 PRINT*,'ICON= ',ICON
 PRINT*,'Y(1)= ',Y(1)
 PRINT*,'Y(2)= ',Y(2)
 PRINT*,'...'
 PRINT*,'Y(N)= ',Y(N)
 END

(4) Method

 This routine performs the multiplication y = (yi) of an n × n real band matrix)(ija=A

(A with lower bandwidth 1h and upper bandwidth 2h) by a vector x = (xj) given by:

 ∑
=

==
n

j
jiji nixay

1

,...,1,

 However, as A is a band matrix, the actual calculation is given by:

 ∑
+

−=

==
),min(

),1max(

2

1

,...,1,
nhi

hij
jiji nixay

VMCF2, DVMCF2

II-110 Fujitsu SSL II Extended Capabilities User's Guide II

F17-12-0101 VMCF2, DVMCF2

Singlevariate, multiple and multivariate discrete complex Fourier transform (complex
array, mixed radix)

CALL VMCF2 (Z, N, M, ISN, ICON)

(1) Function

 This subroutine performs singlevariate, multiple and multivariate discrete complex
Fourier transforms using complex array.

 For each dimension, it is possible to specify whether the Fourier transform is to be
performed, and whether it is normal or inverse.

 The size of each dimension can be an arbitrary number, but the transform is fast when the
size has factors 2, 3 or 5.

a. Multivariate Fourier transform

 By inputting m-dimensional data {xj1 j2...jm} and performing the transform defined in
(1.1), {αk1 k2...km} is obtained.

 α ω ω ωk k km
j

n

j

n
j j ... jm

j

nm
n
- j k r

n
- j k r

nm
- jmkmrmx1 2

1 0

1 1

2 0

2 1
1 2

0

1

1
1 1 1

2
2 2 2

...= ∑ ∑ ∑
− − −

= = m=
 (1.1)

 , k1 = 0, 1, ..., n1 -1

 , k2 = 0, 1, ..., n2 - 1

 , km = 0, 1, ..., nm - 1

 , ωn1 = exp(2π i/n1)

 , ωn2 = exp(2π i/n2)

 , ωnm = exp(2π i/nm),

 where, n1, n2, ..., nm is the size of each dimension.

 When ri = 1, the transform is normal. When ri = -1, the transform is inverse.

 If r = (1, 1, 1) for example, the following three-dimensional transform is obtained:

 33
3

22
2

11
1

13

03
321

12

02

11

01
321 . kj

n
kj

n
kj

n

n

j
jjj

n

j
kkk x −−−

−

=

−

=

−

=
∑∑∑= ωωωα

n

j

b. Multiple transform

 For ri = 0, the summation j
n
i
i
=
−∑ 0

1 is omitted, and index ji of x in (1.1) is changed to ki.

 For example, a singlevariate multiple transform has only one summation. When
performing the following transform with respect to only the second dimension of a
three-dimensional data, specify r = (0, 1, 0).

 22
2

12

02
321321 . kj

n

n

j
kjkkkk x −

−

=
∑= ωα

VMCF2, DVMCF2

Fujitsu SSL II Extended Capabilities User’s Guide II II-111

(2) Parameters

Z................. Input. Complex variable {xj1 j2...jm}.
Output. Complex variable {αk1 k2...km}.
M-dimensional complex array Z(n1, n2,..., nm).

N................. Input. One-dimensional array of size M. N (i) is the size of i-th dimension,
where i = 1, ..., M.

M................ Input. Dimension order M of the multivariate Fourier transform.

ISN............. Input. One-dimensional array of size M.
ISN (i) shows the direction ri of the Fourier transform of each dimension.
For ISN = 1, normal transform.
For ISN = 0, no transform.
For ISN = -1, inverse transform.

ICON.......... Output. Condition code.
See Table VMCF2-1, “Condition codes.”

Table VMCF2-1 Condition codes

Code Description Processing

0 No error

30000 M≤0, Processing is stopped.

30002 ISN (i) > 1 or ISN (i) < -1

30003 N (i) < 1 was specified.

30004 ISN (i) were all zero.

(3) Comments on use

a. Subprograms used

 SSL II: UZACM, UZCOM, UZFB2, UZFB3, UZFB4, UZFB5, UZFB8,
 UZFB6, UZFBL, UZFBR, UZFBS, UZFCT, UZFF2, UZFF3, UZFF4,
 UZFF5, UZUU8, UZFF6, UZFMR, UZFOC, UZUPB, UZFPF, UZFRC,
 UZFRP, UZFS, UZFT, UZFT2, UZFT3, UZFT5, UZFTB, UZFTF,
 UZFUB, UZFUF, UZFUS, UZFUW, UZSCL, UZTR2, UZTRN, UZUNI,
 UNXRD, UFCT, MGSSL

b. Comments

1) General definition of Fourier transform

 The multivariate discrete complex Fourier transform and inverse transform are
generally defined in (3.1) and (3.2).

 jmkm
nm

kj
n

kj
n

nm

jm
jmjj

n

j

n

j
k...kmkk x...

nmnn
−−−

−

=

−

=

−

=
∑∑∑×= ωωωα

..21
1 22

2
11

1

1

0
...21

12

02

11

01
21 (3.1)

 , k1 = 0, 1, ..., n1-1

 , k2 = 0, 1, ..., n2-1

 ...

 , km = 0, 1, ..., nm-1

VMCF2, DVMCF2

II-112 Fujitsu SSL II Extended Capabilities User's Guide II

 x ...j j ... jm
k

n

k

n
k k km

km

nm

n
j k

n
j k

nm
jmkm

1 2
1 0

1 1

2 0

2 1
1 2

0

1

1
1 1

2
2 2= ∑ ∑ ∑

=

−

=

−

=

− −α ω ω ω... (3.2)

 , j1 = 0, 1, ..., n1-1

 , j2 = 0, 1, ..., n2-1

 ...

 , jm = 0, 1, ..., nm-1

 where,

 ωn1 = exp(2πi/n1)

 , ωn2 = exp(2πi/n2)

 ...

 , ωnm = exp(2πi/nm)

 The subroutine calculates {n1 n2 .. nm kmkk ...21α } or {xj1 j2 ..jm} corresponding to
the left-hand-side terms of (3.1) and (3.2). The user must normalize the results,
if necessary.

2) Stack size

 This subroutine exploits work area internally as an auto allocatable array on
stack area. Therefore an abnormal termination could be occur when the stack
area runs out. The necessary size for the auto allocatable array is shown below.

 If ni can be expressed as products of powers of 2, 3, and 5, then the work area
size is 8 × max{ni | i = 1, ..., M and ISN (i) ≠ 0.} byte for single precision, and
twice for double precision.

 If there are numbers among ni that cannot be expressed as products of powers of
2, 3, and 5, then the work area size is 40 × max{ni | i = 1, ..., M and ISN (i) ≠ 0.}
byte at most case for single precision, and twice for double precision.

 It is recommended to specify the sufficiently large stacksize with "limit" or
"ulimit" command under consideration that the stack area could be used for
another work area of fixed size and for user's program also.

c. Example of use

 In this example, a singlevariate fast Fourier transform is computed.

C **EXAMPLE**
 INTEGER NMAX
 PARAMETER (NMAX=100000,NDIM=1)
 COMPLEX*16 Z(NMAX)
 REAL*8 ERR,PI,THETA
 INTEGER N(NDIM),ISN(NDIM),N1,L,M,NVAL(6),IN
 DATA NVAL/16199,16200,16201,16383,16384,16385/
 PI=4D0*ATAN(1D0)
 DO 40 IN=1,6
 N1=NVAL(IN)
 N(1)=N1
 L=79
 DO 10 I=1,N1
 Z(I)=(0D0,0D0)

VMCF2, DVMCF2

Fujitsu SSL II Extended Capabilities User’s Guide II II-113

 10 CONTINUE
 Z(L+1)=(1D0,0D0)
 ISN(1)=1
 M=1
 CALL DVMCF2 (Z,N,M,ISN,ICON)
 IF (ICON.NE.0) WRITE (6,*) 'ICON=',ICON
 ERR=0D0
 DO 20 K=0,N1-1
 THETA=2*PI*L*K/DBLE(N1)
 ERR=MAX(ERR,ABS(Z(K+1)-
 & DCMPLX(COS(THETA),-SIN(THETA))))
 20 CONTINUE
 WRITE (6,30) N1,ERR
 30 FORMAT (' N=',I6,' ERROR = ',D10.3)
 40 CONTINUE
 STOP
 END

(4) Method

 This subroutine performs either multiple transforms of complex Fourier transforms,
or multivariate complex Fourier transforms efficiently on a scalar CPU.

 Multivariate transforms are computed by transforming the multiple one-dimensional
transform on each dimension in turn. The singlevariate transform is performed with
an appropriate method according to the value of ni. If the value of ni is large in
respect to the size of the cache, a variant of two-sided splitting algorithm is used for
blocking. (Refer to [17] in Appendix A, "References.")

VMCFT, DVMCFT

II-114 Fujitsu SSL II Extended Capabilities User's Guide II

F17-11-0101 VMCFT, DVMCFT

Singlevariate, multiple and multivariate discrete complex Fourier transform (real and
imaginary array separated, mixed radix)

CALL VMCFT (XR, XI, N, M, ISN, W, IW, ICON)

(1) Function

 This subroutine performs singlevariate, multiple and multivariate discrete complex
Fourier transforms.

 For each dimension, it is possible to specify whether the Fourier transform is to be
performed, and whether it will be normal or inverse.

 The size of any dimension can be an arbitrary number, but the transform is fast with
factors 2, 3 or 5.

a. Multivariate Fourier transform

 By inputting {xj1 j2...jm} and performing the transform defined in (1.1), {αk1 k2...km} is
obtained.

 α ω ω ωk k km
j

n

j

n
j j ... jm

j

nm
n
- j k r

n
- j k r

nm
- jmkmrmx1 2

1 0

1 1

2 0

2 1
1 2

0

1

1
1 1 1

2
2 2 2

...= ∑ ∑ ∑
− − −

= = m=
 (1.1)

 , k1 = 0, 1, ..., n1 -1

 , k2 = 0, 1, ..., n2 - 1

 , km = 0, 1, ..., nm - 1

 , ωn1 = exp(2π i/n1)

 , ωn2 = exp(2π i/n2)

 , ωnm = exp(2π i/nm)

 When ri = 1, the transform is normal. When ri = -1, the transform is inverse.

 For ri = 0, the summation j
n
i
i
=
−∑ 0

1 is omitted, and ji is changed to ki. where ji is an
index of x in equation (1.1).

 If r = (0, 1, 1),

 the following equation is obtained:

 α ω ωk k k
j

n
k j j

j

n
n

j k
n

j kx1 2 3
2 0

2 1
1 2 3

3 0

3 1

2
2 2

3
3 3= ∑ ∑

=

−

=

− − −.

b. Multiple transform

 A multiple transform has only one summation. When performing the second-
dimension transform, the following is obtained:

 α ωk k k k j k
j

n
n

j kx1 2 3 1 2 3
2 0

2 1

2
2 2= ∑

=

− −.

VMCFT, DVMCFT

Fujitsu SSL II Extended Capabilities User’s Guide II II-115

(2) Parameters

XR.............. Input. Real part of {xj1 j2...jm}.
Output. Real part of {αk1 k2...km}.
One-dimensional array of size n1 × n2 ... × nm.

XI............... Input. Imaginary part of {xj1 j2...jm}.
Output. Imaginary part of {αk1 k2...km}.
One-dimensional array of size n1 × n2 × ... × nm.

N................. Input. One-dimensional array of size M. N (I) is the size of I-th dimension,
where I = 1, ..., M.

M................ Input. Dimension order M of the multivariate Fourier transform.

ISN............. Input. One-dimensional array of size M.
ISN (I) shows the direction ri of the Fourier transform of each dimension.
For ISN = 1, normal transform.
For ISN = 0, no transform.
For ISN = -1, inverse transform.

W................ Work area.
One-dimensional array of size IW.

IW............... Input. Size of the work area.
If ni can be expressed as products of powers of 2, 3, and 5, then the work area
size is 2 × MAX {ni | i = 1, ..., M and ISN (i) ≠ 0.}
If there are numbers among ni that cannot be expressed as products of powers of
2, 3, and 5, then the work area size exceeds 2 × n1 × ... × nm.
In such a case, the size of the work area can be determined by calling the
subroutine with IW = 0.
For the procedure to determine the size of the work area, see item “(3),
“Comments on use,” b., 2).”
Output. If the size of the work area is smaller than required, returns the
required size of the work area.

ICON.......... Output. Condition code.
See Table VMCFT-1, “Condition codes.”

Table VMCFT-1 Condition codes

Code Description Processing

0 No error

30000 M≤0, Processing is stopped.

30001 Insufficient work area

30002 ISN (I) > 1 or ISN (I) < -1

30003 N (I) < 1 was specified.

30004 ISN (I) were all zero.

(3) Comments on use

a. Subprograms used

VMCFT, DVMCFT

II-116 Fujitsu SSL II Extended Capabilities User's Guide II

 SSL II: UACOM, UCOMR, UFT, UFTBS, UCFS, UCF16, UCFT2, UCFT3,
UCFT4, UCFT5, UCFT8, UCFMR, UCRU, UCTRF, URUNI, USCAL, UTRAN,
UTRTW, UTWID, UGCD, UNXRD, UFCT, MGSSL

b. Comments

1) General definition of Fourier transform

 The multivariate discrete complex Fourier transform and inverse transform are
generally defined in (3.1) and (3.2).

 α ω ω ωk k k...km
m j

n

j

n
j j jm

jm

nm
n

j k
n

j k
nm

jmkm

n n n
... x1 2

1 2 1 0

1 1

2 0

2 1
1 2

0

1

1
1 1

2
2 21

= × ∑ ∑ ∑
=

−

=

−

=

− − − −

..
. (3.1)

 k1 = 0, 1, ..., n1-1

 , k2 = 0, 1, ..., n2-1

 ...

 , km = 0, 1, ..., nm-1

 x ...j j ... jm
k

n

k

n
k k km

km

nm

n
j k

n
j k

nm
jmkm

1 2
1 0

1 1

2 0

2 1
1 2

0

1

1
1 1

2
2 2= ∑ ∑ ∑

=

−

=

−

=

− −α ω ω ω... (3.2)

 j1 = 0, 1, ..., n1-1

 , j2 = 0, 1, ..., n2-1

 ...

 , jm = 0, 1, ..., nm-1

 ωn1 = exp(2πi/n1)

 , ωn2 = exp(2πi/n2)

 ...

 , ωnm = exp(2πi/nm)

 The subroutine calculates {n1 n2 .. nm kmkk ...21α } or {xj1 j2 ..jm} corresponding to
the left-hand-side terms of (3.1) and (3.2). The user must normalize the results,
if necessary.

2) Size of work area

 Symbols used are defined as follows.

 RADIX = {n: positive integer that can be expressed as the product of powers of
2, 3, and 5}

 NORAD = natural number - RADIX

 minrad (n) is the minimum natural number m, where n<m and m ∈ RADIX.

 relfac (n) is the minimum natural number q, where n = p × q and p ∈ RADIX, q
∈ NORAD.

 NP = n1 × n2 × ... × nm

 In this case, the size of the work area is determined using the following
procedure.

 {I | 1, ..., M} and {ISN (I) ≠ 0}

VMCFT, DVMCFT

Fujitsu SSL II Extended Capabilities User’s Guide II II-117

)(i
Ii

SIZEMax
∈

 is the size of the work area.

 SIZEi is determined as follows:

 a) When ni ∈ RADIX, SIZEi = 2 × ni

 b) When relfac (ni) equals ni

 SIZEi = 2 × NP × minrad (ni)/ni + 4 × minrad (ni)

 c) Otherwise,

 SIZEi = 2 × NP × minrad (relfac (ni))/relfac (ni) + max (4 × minrad (relfac
 (ni)), 2 × ni)

c. Example of use

 In this example, a singlevariate fast Fourier transform is computed.

C **EXAMPLE**
 INTEGER NMAX,NW
 PARAMETER (NMAX=100000,NW=200000)
 REAL*8 XR(NMAX),XI(NMAX),W(NW),PI
 REAL*4 ERR
 INTEGER N(3),ISN(3),IW,N1,L,M,NVAL(6),IN
 DATA NVAL/16199,16200,16201,16383,16384,16385/
 PI=4D0*ATAN(1D0)
 DO 40 IN=1,6
 N1=NVAL(IN)
 N(1)=N1
 L=79
 DO 10 I=1,N1
 XR(I)=0D0
 10 XI(I)=0D0
 XR(L+1)=1D0
 ISN(1)=1
 M=1
 IW=NW
 CALL DVMCFT (XR,XI,N,M,ISN,W,IW,ICON)
 IF (ICON.NE.0) WRITE (6,*) 'ICON=',ICON
 ERR=0D0
 DO 20 K=0,N1-1
 ERR=MAX(ERR,XR(K+1)-COS(2*PI*L*K/DBLE(N1)))
 20 ERR=MAX(ERR,XI(K+1)+SIN(2*PI*L*K/DBLE(N1)))
 WRITE (6,30) N1,ERR
 30 FORMAT (' N=',I6,' ERROR = ',E10.3)
 40 CONTINUE
 STOP
 END

(4) Method

 This subroutine performs either multiple transforms of singlevariate complex Fourier
transforms, or multivariate complex Fourier transforms.

 A singlevariate transform is performed as follows:

 A. Splitting the order of the transform into factors n = p q, where the factor of p can
be expressed as the product of powers of 2, 3, and 5, and the factor of q is a number

VMCFT, DVMCFT

II-118 Fujitsu SSL II Extended Capabilities User's Guide II

mutually prime to 2, 3, and 5. (In the following, the set 2, 3, and 5 is referred to as
the radix set).

 B. After implementing the basic factorization of the order into n = p q, the following
four-step algorithm is performed.

 qjj

p-

j

jk
pqkj xz

01

0

00
01

1

0

)1(
+

=
+ ∑= ω j1 = 0, ..., q-1, k0 = 0, ..., p-1 (4.1)

)1()2(
01

10
01 qkj

jk
nqkj zz ++ = ω k0 = 0, ..., p-1, j1 = 0, ..., q-1 (4.2)

)2()3(
0110 qkjpjk zz ++ = k0 = 0, ..., p-1, j1 = 0, ..., q-1 (4.3)

)3(
1

0
10

1

11
10 pjk

q-

j

jk
qpkk zy +

=
+ ∑= ω k0 = 0, ..., p-1, k1 = 0, ..., q-1 (4.4)

 Step 1 and step 4 are multiple Fourier transforms of order p and q respectively. The
factor p is a product of powers of the radices, and step 1 is computed using a mixed
radix fast Fourier transform.

 For details about this algorithm, see [17] and [19]. The mixed radix algorithm
consists of a transform of low orders, a unitary scaling operation, and a transposition.

 Steps 2 and 3 are fairly simple and are performed in a straight forward way.

 The factor q is mutually prime to the radix set, so step 4 is performed using a variant
of Bluestein’s algorithm. (See [41].)

 Multivariate transforms are computed by transforming the previous multiple one-
dimensional transform on each dimension in turn. During the process, the data is
permuted to maintain long vector lengths and continuous data access, though the
returned result is in the correct order.

VMCST, DVMCST

Fujitsu SSL II Extended Capabilities User’s Guide II II-119

F17-13-0101 VMCST, DVMCST

Discrete cosine transforms

CALL VMCST (X, K, N, M, ISW, TAB, ICON)

(1) Function

 This subroutine performs one-dimensional, multiple discrete cosine transforms.

 Given one-dimensional n+1 sample data {xj} defined on both end points and internal
points dividing a half of 2π period of even-function x(t) into n parts equally as follows:

njj
n

xx j ,...,1,0, =⎟
⎠
⎞

⎜
⎝
⎛=
π

 this subroutine calculate the discrete cosine transform defined as follows in each column

of the array:

∑
−

=

=+−+=
1

1
0 ,...,1,0,cos2)1(

n

j
jn

k
k nkkj

n
xxxa π

 (1.1)

(2) Parameters

X................. Two-dimensional array X (K, M).

 Input. The m sequences of {xj}, j=0,...,n are stored in X (1:N+1, 1:M).

 Output. The m sequences of {ak}, k=0,...,n are stored in X (1:N+1, 1:M).

K................ Input. Size of adjustable dimension of the array X. (K ≥ N+1)

N................ Input. The number of partition of the half period. N must be an even number.

 (See item (3), “Comments on use,” b., 1).)

M............... Input. The multiplicity m of the transform.

ISW........... Input. Control information. (See item (3), “Comments on use,” b., 2).)

 ISW should be set as follows.

 ISW = 0 to generate the array TAB and perform the cosine transforms.

 ISW = 1 to prepare the array TAB only.

 ISW = 2 to perform the cosine transforms using the array TAB prepared before
calling.

TAB............ Work area. Trigonometric function table used for the transformation is stored.

 One-dimensional array of size 2N. (See item (3), “Comments on use,” b., 2).)

ICON........... Output. Condition code.

 See Table VMCST-1, “Condition codes.”

VMCST, DVMCST

II-120 Fujitsu SSL II Extended Capabilities User's Guide II

Table VMCST-1 Condition codes

Code Description Processing

0 No error

30000 N≤0, K< N+1, M ≤ 0, ISW ≠ 0,1,2,
or N is not an even number.

Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSLII: UMRF2, UZFB2, UZFB3, UZFB4, UZFB5, UZFB8, UZFB6, UZFF2,
UZFF3, UZFF4, UZFF5, UZFF8, UZFF6, UZFPB, UZFPF, UZFTB, UZFTF,
UZUNI, MGSSL

b. Comments

1) Recommended value of N

 The n can be an arbitrary even number, but the transform is fast with the sizes
which can be expressed as products of the powers of 2, 3, and 5.

2) Efficient use of the array TAB

 When this routine is called successively with a fixed value of n, the
trigonometric function table TAB should be initialized once at first call with
ISW=0 or 1 and should be kept intact for second and subsequent calls with
ISW=2. This saves initialization procedure of array TAB.

3) Normalization

 The cosine transform defined as in (1.1) is also an inverse transform itself.
Applying the transform twice results in the original sequences multiplied by 2N.

 If necessary, the user must normalize the results.

4) Stack size

 This subroutine exploits work area internally as an auto allocatable array on
stack area. Therefore an abnormal termination could occur when the stack area
runs out. The necessary size for the auto allocatable array is 4 × N byte for
single precision, and twice for double precision.

 It is recommended to specify the sufficiently large stacksize with "limit" or
"ulimit" command under consideration that the stack area could be used for
another work area of fixed size and for user's program also.

c. Example of use

 In this example, cosine transforms are calculated with multiplicity of 5.
C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER(N=1024,M=5)
 DIMENSION X(N+1,M),TAB(N*2)

 DO 100 J=1,M
 DO 100 I=1,N+1
 X(I,J)=FLOAT(MAX(I-1,(N-I+1)/J))
 100 CONTINUE

VMCST, DVMCST

Fujitsu SSL II Extended Capabilities User’s Guide II II-121

C FORWARD TRANSFORM
 ISW=0
 CALL DVMCST(X,N+1,N,M,ISW,TAB,ICON)
 PRINT*,'ICON=',ICON

C BACKWARD TRANSFORM
 ISW=2
 CALL DVMCST(X,N+1,N,M,ISW,TAB,ICON)
 PRINT*,'ICON=',ICON

 DO 200 J=1,M
 ERROR=0.0D0
 VNRM=0.0D0
 DO 210 I=1,N+1
 ERROR=ERROR+(X(I,J)/(N*2)-
 & FLOAT(MAX(I-1,(N-I+1)/J)))**2
 VNRM=VNRM+(X(I,J)/(N*2))**2
 210 CONTINUE
 PRINT*,'ERROR=',SQRT(ERROR/VNRM)
 200 CONTINUE
 STOP
 END

(4) Method

 This subroutine performs discrete cosine transforms efficiently on a scalar CPU,
reducing the problem to real discrete Fourier transforms. The calculation can be
done without redundant calculations by exploiting the symmetry of the even function.

 For further information on the algorithm, refer to [26] in Appendix B, “References.”

VMRF2, DVMRF2

II-122 Fujitsu SSL II Extended Capabilities User's Guide II

F17-12-0201 VMRF2, DVMRF2

Singlevariate, multiple and multivariate discrete real Fourier transform (mixed radix)

CALL VMRF2 (X, N, M, ISIN, ISN, ICON)

(1) Function

 This subroutine performs singlevariate, multiple and multivariate discrete real Fourier
transforms.

 Whether the Fourier transform is to be performed, and its direction, can be specified for
each dimension.

 For the 1-st dimension, "no transform" cannot be specified, and the size of the 1-st
dimension must be an even number. The sizes of all other dimension can be arbitrary
numbers, but the transform is fast with the sizes which can be expressed as products of
the powers of 2, 3, and 5.

 The result of a multiple and multivariate discrete real Fourier transform has a complex
conjugate relation. For the 1-st dimension, the first n1 / 2 + 1 complex elements are stored.

 a. Multivariate Fourier transform

1) Transform

 Inputting m-dimensional data {xj1j2...jm} and performing the transform defined in (1.1)
obtains { kmkk ...21α }.

 kmkk ...21α =
j

n

j

n
j j ... jm

j

nm

n
- j k r

n
- j k r

n
- j k r... x

1 0

1 1

2 0

2 1
1 2

0

1

1
1 1 1

2
2 2 2

=

−

=

−

=

−
∑ ∑ ∑

m
m
m m m. ...ω ω ω (1.1)

 , k1 = 0, 1, ... , n1 -1

 , k2 = 0, 1, ... , n2 -1

 , km = 0, 1, ..., nm -1

 ,)1/2exp(1 nin πω =

 ,)2/2exp(2 nin πω =

 ,)/2exp(nminm πω = ,

 where, n1,n2,..., nm is the size of each dimension.

 ri = 1 or ri = -1 can be specified for the transform direction.

 If r = (1, 1, 1) for example, the following three-dimensional Fourier transform is
obtained:

 33
3

22
2

11
1

13

03
321

12

02

11

01
321 . kj-

n
kj-

n
kj-

n

n

j
jjj

n

j
kkk x ωωωα ∑∑∑

−

=

−

=

−

=

=
n

j

VMRF2, DVMRF2

Fujitsu SSL II Extended Capabilities User’s Guide II II-123

2) Inverse transform

 Inputting { kmkk ...21α } and performing the transform defined in (1.2), obtains
{xj1j2...jm}.

 x ...j j ... jm
k

n

k

n
k k ...km

k

nm

n
- j k r

n
- j k r

n
- j k r

1 2
1 0

1 1

2 0

2 1
1 2

0

1

1
1 1 1

2
2 2 2= ∑ ∑ ∑

=

−

=

−

=

−
α ω ω ω

m
m
m m m. ... (1.2)

 , j1 = 0, 1, ... , n1 -1

 , j2 = 0, 1, ... , n2 -1

 , jm = 0, 1, ... , nm -1

 ,)1/2exp(1 nin πω =

 ,)2/2exp(2 nin πω =

 ,)/2exp(nminm πω = ,

 where, n1,n2,..., nm is the size of each dimension.

 In an inverse transform, a direction that is inverse to that specified in the transform
must be specified.

 ri = -1 or ri = 1

b. Multiple transform

 When ri = 0 is specified, the summation
ji

ni

=

−
∑

0

1
is omitted.

 In the case of real-to-complex transform, index ji of x in (1.1) is changed to ki.

 In the case of complex-to-real transform, index ki of α in (1.2) is changed to ji.

 For example, singlevariate multiple transform has only one summation. When
performing the following transform with respect to only the first-dimension of a
three-dimensional data, specify r=(1,0,0).

 11
1

11

01
321321 . kj-

n

n

j
kkjkkk x ωα ∑

−

=

=

(2) Parameters

X................. m-dimensional array X (n1+2, n2, ..., nm).

[For ISN = 1 (transform from real to complex):]

Input. The real data {xj1j2...jm} is stored in X (1:n1, 1:n2, ... , 1:nm).

Output. The real and imaginary part of { kmkk ..21α } are stored in X (1:n1+2,
1:n2, ... , 1:nm) by turns.

k1 = 0, 1, ... , n1/ 2,

k2 = 0, 1, ... , n2-1,

 . . .

VMRF2, DVMRF2

II-124 Fujitsu SSL II Extended Capabilities User's Guide II

km = 0, 1, ..., nm, -1

[For ISN = -1 (transform from complex to real):]

Input. The real and imaginary part of { kmkk ...21α } are stored in X (1:n1+2,
1:n2, ... , 1:nm) by turns.

k1 = 0, 1, . . ., n1 / 2,

k2 = 0, 1, . . ., n2 - 1,

 . . .

km = 0, 1, . . ., nm, - 1

Output. The real data {xj1j2...jm} is stored in X (1:n1, 1:n2, ..., 1:nm).

N................ Input. One-dimensional array of size M. ni is stored in N (i) (i = 1, ..., M),
where ni is the size of the I-th dimension. The size of the 1-st dimension must
be an even number.

M............... Input. The size of dimension m of the multivariate Fourier transform.

ISIN........... Input. One-dimensional array of size M.

ISIN (i) shows the direction ri of the Fourier transform of each dimension.

ISIN (1) cannot be 0.

For ISIN = 1, ri = 1.

For ISIN = 0, there is no transform.

For ISIN = -1, ri = -1.

ISN............ Input.

For ISN = 1, normal transform (real to complex).

For ISN = -1, inverse transform (complex to real).

ICON........... Output. Condition code.

See Table VMRF2-1, “Condition codes.”

Table VMRF2-1 Condition codes

Code Description Processing

0 No error -

30001 N(i) ≤ 0 or M ≤ 0 Processing is stopped.

30016 ISIN (i) < -1, ISIN (i) > 1, or ISIN (1) = 0

30032 ISN ≠ 1 and ISN ≠ -1

30512 The size of first dimension is odd number.

VMRF2, DVMRF2

Fujitsu SSL II Extended Capabilities User’s Guide II II-125

(3) Comments on use

a. Subprograms used

 SSLII: UMRFF, UMRFB, VMCF2, UZACM, UZCOM, UZFB2, UZFB3,
 UZFB4, UZFB5, UZFB8, UZFB6, UZFBL, UZFBR, UZFBS, UZFCT,
 UZFF2, UZFF3, UZFF4, UZFF5, UZUU8, UZFF6, UZFMR, UZFOC,
 UZUPB, UZFPF, UZFRC, UZFRP, UZFS, UZFT, UZFT2, UZFT3,
 UZFT5, UZFTB, UZFTF, UZFUB, UZFUF, UZFUS, UZFUW, UZSCL,
 UZTR2, UZTRN, UZUNI, UNXRD, UFCT, MGSSL

b. Comments

1) General definition of Fourier transform

 The multivariate discrete Fourier transform and inverse transform are generally
defined as in (3.1) and (3.2).

...nmnnkk 21

1
21 =...kmα × ∑ ∑ ∑

=

−

=

−

=

− − − −

j

n

j

n
j j ... jm

jm

nm

n
j k

n
j k

nm
jmkmx

1 0

1 1

2 0

2 1
1 2

0

1

1
1 1

2
2 2...ω ω ω (3.1)

 , k1 = 0, 1, ..., n1-1

 , k2 = 0, 1, ..., n2-1

 , km = 0, 1, ..., nm-1

 x j j jm
k

n

k

n

km

nm
k k ...km n

j k
n
j k

nm
jmkm

1 2
1 0

1 1

2 0

2 1

0

1
1 2 1

1 1
2
2 2

...= ∑ ∑ ∑
=

−

=

−

=

−
α ω ω ω (3.2)

 , j1 = 0, 1, ..., n1 -1

 , j2 = 0, 1, ..., n2 -1

 , jm = 0, 1, ..., nm -1

 where

)1/2exp(1 nin πω =

 ,)2/2exp(2 nin πω =

 ,)/2exp(nminm πω =

 The subroutine calculates {n1 n2..nm kmkk ..21α } or {xj1j2..jm} corresponding to the
left-hand terms of (1.1) and (1.2). For i, where ISIN (i) = 0, ni is replaced with 1.
If necessary, the user must normalize the results.

2) The result of the multivariate discrete real Fourier transform has the following
complex conjugate relation:

αk1 k2 ... km = αn1-k1 n2-k2 ... nm-km

 k1 = 0, ..., n1 /2

 , k2 = 0, ..., n2 -1

VMRF2, DVMRF2

II-126 Fujitsu SSL II Extended Capabilities User's Guide II

 , km = 1, ..., nm -1

 In the case of ki=0, ni-ki is regarded as 0.

 For h, where ISIN (h) = 0, the h-th index in the right-hand terms is still kh.

 The rest of terms can be calculated using this relation.

2) Stack size

 This subroutine exploits work area internally as an auto allocatable array on
stack area. Therefore an abnormal termination could be occur when the stack
area runs out. The necessary size for the auto allocatable array is shown below.

 If ni can be expressed as products of powers of 2, 3, and 5, then the work area
size is 12 × max{ni | i = 1, ..., M and ISN (i) ≠ 0.} byte for single precision, and
twice for double precision.

 If there are numbers among ni that cannot be expressed as products of powers of
2, 3, and 5, then the work area size is 40 × max{ni | i = 1, ..., M and ISN (i) ≠ 0.}
byte at most case for single precision, and twice for double precision.

 It is recommended to specify the sufficiently large stacksize with "limit" or
"ulimit" command under consideration that the stack area could be used for
another work area of fixed size and for user's program also.

c. Example of use

 In this example, a two-dimensional real Fourier transform is calculated.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER(N1=1024,N2=1024,M=2)
 DIMENSION X(N1+2,N2),N(M),ISIN(M)
C
 DO 100 I=1,N2
 DO 100 J=1,N1
 X(J,I)=FLOAT(J)+FLOAT(N1)*(I-1)
 100 CONTINUE
C
 N(1)=N1
 N(2)=N2
 ISIN(1)=1
 ISIN(2)=1
 ISN= 1
C
C REAL TO COMPLEX TRANSFORM
C
 CALL DVMRF2(X,N,M,ISIN,ISN,ICON)
 PRINT*,'ICON=',ICON
C
 N(1)=N1
 N(2)=N2
 ISIN(1)=-1
 ISIN(2)=-1
 ISN=-1
C
C COMPLEX TO REAL TRANSFORM
C
 CALL DVMRF2(X,N,M,ISIN,ISN,ICON)

VMRF2, DVMRF2

Fujitsu SSL II Extended Capabilities User’s Guide II II-127

 PRINT*,'ICON=',ICON

 ERROR=0.0D0
 DO 200 I=1,N2
 DO 200 J=1,N1
 ERROR=MAX(ABS(X(J,I)/(N1*N2)-
 & (FLOAT(J)+FLOAT(N1)*(I-1))),ERROR)
 200 CONTINUE
C
 PRINT*,'ERROR=',ERROR
 STOP
 END

(4) Method

 This subroutine performs either real-to-complex or complex-to-real multiple
multivariate discrete Fourier transforms efficiently on a scalar CPU.

 A real Fourier transform of the first dimension can be done without redundant
calculations by exploiting inherent properties of a complex transform. For further
information on the algorithm, refer to the description of RFT routine in the Fujitsu
SSL II User's Guide. For the transforms of the other dimensions, the multivariate
discrete complex Fourier transform routine VMCF2 is used for complex data
straightforward.

VMRFT, DVMRFT

II-128 Fujitsu SSL II Extended Capabilities User's Guide II

F17-11-0201 VMRFT, DVMRFT

Multiple and multivariate discrete real Fourier transform (mixed radices of 2, 3, and
5)

CALL VMRFT (X, N, M, ISIN, ISN, W, ICON)

(1) Function

 This subroutine performs multiple and multivariate discrete real Fourier transforms.

 Whether the Fourier transform is to be performed, and its direction, can be specified for
each dimension. All dimensions on which a transform is to be performed must have sizes
which can be expressed as products of the powers of 2, 3, and 5.

 At least one of the first m-1 dimensions must be an even number. For the m-th dimension,
“no transform” cannot be specified.

 The result of a multiple and multivariate discrete real Fourier transform has a complex
conjugate relation. For the m-th dimension, the first nm / 2 + 1 elements are stored.

 a. Multivariate Fourier transform

1) Transform

 Inputting {xj1j2...jm} and performing the transform defined in (1.1) obtains {n1 n2...nm
kmkk ...21α }.

 n1 n2 ... nm kmkk ...21α =

j

n

j

n
j j ... jm

j

nm

n
- j k r

n
- j k r

n
- j k r... x

1 0

1 1

2 0

2 1
1 2

0

1

1
1 1 1

2
2 2 2

=

−

=

−

=

−
∑ ∑ ∑

m
m
m m m. ...ω ω ω (1.1)

 , k1 = 0, 1, ... , n1 -1

 , k2 = 0, 1, ... , n2 -1

 , km = 0, 1, ..., nm -1

 ,)/2exp(11 nin πω =

 ,)/2exp(22 nin πω =

 ,)/2exp(mnm niπω =

 ri = 1 or ri = -1 can be specified for the transform direction.

 For ri = 0, the summation
ji

ni

=

−
∑

0

1
is omitted, and ji is changed to ki, where ji is an index

of x in equation (1.1).

 ni in the left-hand term of equation (1.1) is replaced with 1.

 For r = (0, 1, 1), the following equation is obtained:

 n n xk k k
j

n
k j j

j

n
n
- j k

n
- j k

2 3 1 2 3
2 0

2 1
1 2 3

3 0

3 1 2 2 3 3α ω ω= ∑ ∑
=

−

=

−
. 2 3

VMRFT, DVMRFT

Fujitsu SSL II Extended Capabilities User’s Guide II II-129

2) Inverse transform

 Inputting { kmkk ...21α } and performing the transform defined in (1.2), obtains
{Xj1j2...jm}.

 x ...j j ... jm
k

n

k

n
k k ...km

k

nm

n
- j k r

n
- j k r

n
- j k r

1 2
1 0

1 1

2 0

2 1
1 2

0

1

1
1 1 1

2
2 2 2= ∑ ∑ ∑

=

−

=

−

=

−
α ω ω ω

m
m
m m m. ... (1.2)

 , j1 = 0, 1, ... , n1 -1

 , j2 = 0, 1, ... , n2 -1

 , jm = 0, 1, ... , nm -1

 ,)/2exp(11 nin πω =

 ,)/2exp(22 nin πω =

 ,)/2exp(mnm niπω =

 In an inverse transform, a direction that is inverse to that specified in the transform
must be specified.

 ri = -1 or ri = 1

 For ri = 0, the summation
ji

ni

=

−
∑

0

1
is omitted and ki is changed to ji, where ki is an index

of α in equation (1.2).

b. Multiple transform

 A multiple transform has only one summation. With a three-dimensional transform,
the following is obtained:

 n xk k k k k j
j

n
n
- j k r

3 1 2 3 1 2 3
3 0

3 1 3 3 3α ω= ∑
=

−
. 3

(2) Parameters

X................. For ISN = 1 (transform from real to complex):

Input. The real data {xj1j2...jm} is stored in X (1:n1, 1:n2, ... , 1:nm).

Output. The real part of {n1 n2...nm kmkk ..21α } is stored in X (1:n1, 1:n2, ... , 1:nm
/2+1). The imaginary part of {n1 n2...nm kmkk ...21α } is stored in X (1:n1, 1:n2, ...,
nm / 2 + 2:2 × (nm / 2+1)).

k1 = 0, 1, ... , n1-1,

k2 = 0, 1, ... , n2-1,

 . . .

km = 0, 1, ..., nm / 2,

For ISIN (i) = 0, ni in {n1 n2...nm kmkk ...21α } is replaced with 1.

For ISN = -1 (transform from complex to real):

VMRFT, DVMRFT

II-130 Fujitsu SSL II Extended Capabilities User's Guide II

Input. The real part of { kmkk ...21α } is stored in X (1:n1, 1:n2, ... , 1:nm / 2+1).
The imaginary part of { kmkk ...21α } is stored in X (1:n1, 1:n2, ..., nm / 2+2:2 ×
(nm / 2+1)).

k1 = 0, 1, . . ., n1 - 1,

k2 = 0, 1, . . ., n2 - 1,

 . . .

km = 0, 1, . . ., nm / 2,

Output. The real data {xj1j2...jm} is stored in X (1:n1, 1:n2, ..., 1:nm).

One-dimensional array of size n1 × n2 × ... × (2 × (nm / 2+1)), or m-dimensional
array X (n1, n2, ..., (2 × (nm / 2+1))).

N................ Input. One-dimensional array of size M. ni is stored in N (I) (I = 1, ..., M),
where ni is the size of the I-th dimension. If ISIN(I) is nonzero, N(I) must be
able to be expressed as a product of powers of 2, 3, and 5. At least one of the
first M-1 elements of N must be an even number.

M............... Input. The size of dimension m of the multivariate Fourier transform.

ISIN........... Input. One-dimensional array of size M.

ISIN (I) shows the direction ri of the Fourier transform of each dimension.

ISIN (M) cannot be 0.

For ISIN = 1, ri = 1.

For ISIN = 0, there is no transform.

For ISIN = -1, ri = -1.

ISN............ Input.

For ISN = 1, normal transform (real to complex).

For ISN = -1, inverse transform (complex to real).

W............... Work area.

One-dimensional array of size 2 × max (n1, n2, ..., nm) + n1 × n2 × ... × nm-1 × (2
× (nm / 2+1)).

ICON........... Output. Condition code.

See Table VMRFT-1, “Condition codes.”

VMRFT, DVMRFT

Fujitsu SSL II Extended Capabilities User’s Guide II II-131

Table VMRFT-1 Condition codes

Code Description Processing

0 No error -

30001 N(I) ≤ 0 or M < 2 Processing is stopped.

30008 For ISIN (I) ≠ 0, N (I) is not an integer
expressed as a product of powers of 2, 3, and 5.

30016 ISIN (I) < -1, ISIN (I) > 1, or ISIN (M) = 0

30032 ISN ≠ 1 and ISN ≠ -1 Processing is stopped.

30512 The first M-1 elements of N are odd numbers.

(3) Comments on use

a. Subprograms used

 SSLII: UASSM, USEPR, UJOIN, USPLT, UCTRV, UCFS, UCF16, UCFT2,
UCFT3, UCFT4, UCFT5, UCFT8, UFMRW, UCRU, UCTRF, MGSSL

b. Comments

1) General definition of Fourier transform

 The multivariate discrete Fourier transform and inverse transform are generally
defined as in (3.1) and (3.2).

 αk k
mn n ...n1 2

1 2

1
...km =

 × ∑ ∑ ∑
=

−

=

−

=

− − − −

j

n

j

n
j j ... jm

jm

nm

n
j k

n
j k

nm
jmkmx

1 0

1 1

2 0

2 1
1 2

0

1

1
1 1

2
2 2...ω ω ω (3.1)

 k1 = 0, 1, ..., n1-1

 , k2 = 0, 1, ..., n2-1

 , km = 0, 1, ..., nm-1

 x j j jm
k

n

k

n

km

nm
k k ...km n

j k
n
j k

nm
jmkm

1 2
1 0

1 1

2 0

2 1

0

1
1 2 1

1 1
2
2 2

...= ∑ ∑ ∑
=

−

=

−

=

−
α ω ω ω (3.2)

 j1 = 0, 1, ..., n1 -1

 , j2 = 0, 1, ..., n2 -1

 , jm = 0, 1, ..., nm -1

 where

)/2exp(11 nin πω =

 ,)/2exp(22 nin πω =

VMRFT, DVMRFT

II-132 Fujitsu SSL II Extended Capabilities User's Guide II

 ,)/2exp(mnm niπω =

 The subroutine calculates {n1 n2..nm kmkk ..21α } or {xj1j2..jm} corresponding to the
left-hand terms of (1.1) and (1.2). For i, where ISIN (i) = 0, ni is replaced with 1.
If necessary, the user must normalize the results.

2) The result of the multivariate discrete real Fourier transform has the following
complex conjugate relation:

αk1 k2 ... km = αn1-k1 n2-k2 ... nm-km

 k1 = 0, ..., n1 -1

 , k2 = 0, ..., n2 -1

 , km = 1, ..., nm /2

 In the case of ki=0, ni-ki is regarded as 0.

 For h, where ISIN (h) = 0, the h-th index in the right-hand terms is still kh.

 The rest of terms can be calculated using this relation.

c. Example of use

 In this example, a two-dimensional real Fourier transform is calculated.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER(N1=1024,N2=1024,M=2)
 PARAMETER(NS=2*(N2/2+1))
 DIMENSION X(N1,NS),N(M),W(2*N1+N1*NS),ISIN(M)
C
 DO 100 I=1,N2
 DO 100 J=1,N1
 X(J,I)=FLOAT(J)+FLOAT(N1)*(I-1)
 100 CONTINUE
C
 N(1)=N1
 N(2)=N2
 ISIN(1)=1
 ISIN(2)=1
 ISN= 1
C
C REAL TO COMPLEX TRANSFORM
C
 CALL DVMRFT(X,N,M,ISIN,ISN,W,ICON)
 PRINT*,'ICON=',ICON
C
 N(1)=N1
 N(2)=N2
 ISIN(1)=-1
 ISIN(2)=-1
 ISN=-1
C
C COMPLEX TO REAL TRANSFORM
C
 CALL DVMRFT(X,N,M,ISIN,ISN,W,ICON)

VMRFT, DVMRFT

Fujitsu SSL II Extended Capabilities User’s Guide II II-133

 PRINT*,'ICON=',ICON

 ERROR=0.0D0
 DO 200 I=1,N2
 DO 200 J=1,N1
 ERROR=MAX(ABS(X(J,I)/(N1*N2)-
 & (FLOAT(J)+FLOAT(N1)*(I-1))),ERROR)
 200 CONTINUE
C
 PRINT*,'ERROR=',ERROR
 STOP
 END

VMSNT, DVMSNT

II-134 Fujitsu SSL II Extended Capabilities User's Guide II

F17-13-0101 VMSNT, DVMSNT

Discrete sine transforms

CALL VMSNT (X, K, N, M, ISW, TAB, ICON)

(1) Function

 This subroutine performs one-dimensional, multiple discrete sine transforms.

 Given one-dimensional n−1 sample data {xj} defined on the internal points except both
end points dividing a half of 2π period of odd-function x(t) into n parts equally as follows:

1,...,2,1, −=⎟
⎠
⎞

⎜
⎝
⎛= njj

n
xx j
π

 this subroutine calculate the discrete sine transform defined as follows in each column of

the array:

∑
−

=

−==
1

1

1,...,2,1,sin2
n

j
jk nkkj

n
xa π

 (1.1)

(2) Parameters

X................. Two-dimensional array X (K, M).

 Input. The m sequences of {xj}, j=1,...,n−1 are stored in X (1:N−1, 1:M).

 Output. The m sequences of {ak}, k=1,...,n−1 are stored in X (1:N−1, 1:M).

K................ Input. Size of adjustable dimension of the array X. (K ≥ N−1)

N................ Input. The number of partition of the half period. N must be an even number.

 (See item (3), “Comments on use,” b., 1).)

M............... Input. The multiplicity m of the transform.

ISW........... Input. Control information. (See item (3), “Comments on use,” b., 2).)

 ISW should be set as follows.

 ISW = 0 to generate the array TAB and perform the sine transforms.

 ISW = 1 to prepare the array TAB only.

 ISW = 2 to perform the sine transforms using the array TAB prepared before
calling.

TAB........... Work area. Trigonometric function table used for the transformation is stored.

 One-dimensional array of size 2N. (See item (3), “Comments on use,” b., 2).)

ICON........... Output. Condition code.

 See Table VMSNT-1, “Condition codes.”

VMSNT, DVMSNT

Fujitsu SSL II Extended Capabilities User’s Guide II II-135

Table VMSNT-1 Condition codes

Code Description Processing

0 No error

30000 N≤0, K< N−1, M ≤ 0, ISW ≠ 0,1,2,
or N is not an even number.

Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSLII: UMRF2, UZFB2, UZFB3, UZFB4, UZFB5, UZFB8, UZFB6,
UZFF2, UZFF3, UZFF4, UZFF5, UZFF8, UZFF6, UZFPB, UZFPF, UZFTB,
UZFTF, UZUNI, MGSSL

b. Comments

1) Recommended value of N

 The n can be an arbitrary even number, but the transform is fast with the sizes
which can be expressed as products of the powers of 2, 3, and 5.

2) Efficient use of the array TAB

 When this routine is called successively with a fixed value of n, the
trigonometric function table TAB should be initialized once at first call with
ISW=0 or 1 and should be kept intact for second and subsequent calls with
ISW=2. This saves initialization procedure of array TAB.

3) Normalization

 The sine transform defined as in (1.1) is also an inverse transform itself.
Applying the transform twice results in the original sequences multiplied by 2N.

 If necessary, the user must normalize the results.

4) Stack size

 This subroutine exploits work area internally as an auto allocatable array on
stack area. Therefore an abnormal termination could occur when the stack area
runs out. The necessary size for the auto allocatable array is 8 × N byte for
single precision, and twice for double precision.

 It is recommended to specify the sufficiently large stacksize with "limit" or
"ulimit" command under consideration that the stack area could be used for
another work area of fixed size and for user's program also.

c. Example of use

 In this example, sine transforms are calculated with multiplicity of 5.
C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER(N=1024,M=5)
 DIMENSION X(N-1,M),TAB(N*2)

 DO 100 J=1,M
 DO 100 I=1,N-1
 X(I,J)=FLOAT(MIN(I,(N-I)/J))

VMSNT, DVMSNT

II-136 Fujitsu SSL II Extended Capabilities User's Guide II

 100 CONTINUE

C FORWARD TRANSFORM
 ISW=0
 CALL DVMSNT(X,N-1,N,M,ISW,TAB,ICON)
 PRINT*,'ICON=',ICON

C BACKWARD TRANSFORM
 ISW=2
 CALL DVMSNT(X,N-1,N,M,ISW,TAB,ICON)
 PRINT*,'ICON=',ICON

 DO 200 J=1,M
 ERROR=0.0D0
 VNRM=0.0D0
 DO 210 I=1,N-1

 ERROR=ERROR+(X(I,J)/(N*2)-
 & FLOAT(MIN(I,(N-I)/J)))**2
 VNRM=VNRM+(X(I,J)/(N*2))**2
 210 CONTINUE
 PRINT*,'ERROR=',SQRT(ERROR/VNRM)
 200 CONTINUE

 STOP
 END

(4) Method

 This subroutine performs discrete sine transforms efficiently on a scalar CPU,
reducing the problem to real discrete Fourier transforms. The calculation can be done
without redundant calculations by exploiting the symmetry of the odd function.

 For further information on the algorithm, refer to [26] in Appendix B, “References.”

VMVSD, DVMVSD

Fujitsu SSL II Extended Capabilities User’s Guide II II-137

A71-01-0101 VMVSD, DVMVSD

Multiplication of a real sparse matrix and a real vector (diagonal storage format)

CALL VMVSD (A, K, NDIAG, N, NOFST, NLB, X, Y, ICON)

(1) Function

 This routine computes the product

 y = Ax

 of an n × n sparse matrix and a vector.

 Sparse matrix A is stored using the diagonal storage format.

 Vector x and y are n-dimensional vectors.

(2) Parameters

A................. Input. Stores non-zero elements of the coefficient matrix.
Real-type, two-dimensional array of size A (K, NDIAG). Non-zero elements of
the sparse matrix are stored in A (1 : N, NDIAG). For the diagonal storage
format, see Part I, “Overview,” Section 3.2.1.1, “Storage method for general
sparse matrices, b., “Diagonal storage format for general sparse matrices.”

K................. Input. Adjusted dimensions (≥ n) of array A.

NDIAG....... Input. The number of diagonals that contain non-zero elements of the
coefficient matrix stored in matrix A.
The size of the second dimension of A.

N................. Input. Order n of matrix A.

NOFST....... Input. One-dimensional array NOFST(NDIAG). Stores the offset from the
main diagonal corresponding to diagonals stored in A. Superdiagonals, are
expressed as positive values. Subdiagonals are expressed as negative values.

NLB............ Input. Lower bandwidth of matrix A.

X................. Input. Vector x is stored in X (NLB + 1 : NLB + N).
One-dimensional array of size n + nlb + nub.
nlb is the lower bandwidth. nub is the upper bandwidth.

Y................. Output. Stores the result of the multiplication of the matrix and the vector.
One-dimensional array of size n.

ICON.......... Output. Condition code.
See Table VMVSD-1, “Condition codes.”

VMVSD, DVMVSD

II-138 Fujitsu SSL II Extended Capabilities User's Guide II

Table VMVSD-1 Condition codes

Code Description Processing

0 No error

30000 K < 1, N < 1, N > K, NDIAG < 1, or NLB ≠ MAX
(- NOFST (I)), or | NOFST (I) | > N - 1

Processing is stopped.

(3) Comments on use

a. Subprogram used

 SSL II: MGSSL

b. Comments

1) Comments on using the diagonal format

 The diagonal elements outside of the coefficient Matrix A must be set to zero.

 There is no special restriction on the order in which a diagonal vector column
should be stored in array A.

 The advantage of this method lies in the fact that the matrix vector product can
be calculated without the use of indirect indices. The disadvantage is that
matrices without the diagonal structure cannot be stored efficiently with this
method.

c. Example of use

 In this example using DVCGD, Ax is sought from matrix A, which does not store
diagonal elements that are 1. b = (A - E) x + x. For SET, see VCGD, DVCGD, item
(3) “Comments on use,” c., “Example of use.”

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (N=51200,K=N+1)
 PARAMETER (NW=2,IWKS=4,N2=K+1)
 PARAMETER (NVW=K*(NW+6)+10)
 REAL*8 B(N),EPS,OMEGA,RZ,VW(NVW),X(N)
 INTEGER NDLT(NW)
 REAL*8 A(K,NW)
 INTEGER IVW(N2,IWKS)
C
C INITIALISE A
 CALL SET(A,NDLT,K,NW,N)
 ISHIFT=0
 DO 10 J=1,NW
 ISHIFT=MAX(ISHIFT,ABS(NDLT(J)))
 10 CONTINUE
C COMPUTE RHS SO AX=B SO WE KNOW SOLUTION X (X(I)=I)
 DO 30 I=1,N
 30 VW(I+ISHIFT)=I
C
C B=(A-E)*X+X
 CALL DVMVSD(A,K,NW,N,NDLT,ISHIFT,VW,B,ICON)
 DO 70 I=1,N
 B(I)=B(I)+VW(I+ISHIFT)
 70 CONTINUE

VMVSD, DVMVSD

Fujitsu SSL II Extended Capabilities User’s Guide II II-139

C
 ITMAX=8*SQRT(N+0.1)
 EPS=1D-10
 OMEGA=0D0
 ISW=1
 IGUSS=0
 DO 100 IPC=1,3
 IF(IPC.EQ.3) OMEGA=0.98
 CALL DVCGD(A,K,NW,N,NDLT,B,IPC,ITMAX,ISW,OMEGA,
 & EPS,IGUSS,X,ITER,RZ,VW,IVW,ICON)
 IF(ICON.NE.0) WRITE(6,*)'ICON=',ICON
 IF(RZ.LE.EPS) WRITE(6,41)'CONVERGED. ACCURACY=',RZ
 IF(RZ.GT.EPS) WRITE(6,41)'FAILED. ACCURACY=',RZ
 WRITE(6,*)'X'
 DO 60 I=1,MIN(N,16),4
 60 WRITE(6,42) I,(X(M),M=I,I+3)
 100 CONTINUE
 42 FORMAT(1X,I3,4(1X,F20.10))
 41 FORMAT(A,2X,E10.3)
 STOP
 END

VMVSE, DVMVSE

II-140 Fujitsu SSL II Extended Capabilities User's Guide II

A71-02-0101 VMVSE, DVMVSE

Multiplication of a real sparse matrix and a real vector (ELLPACK storage format)

CALL VMVSE (A, K, NW, N, ICOL, X, Y, ICON)

(1) Function

 This routine computes the product

 y = Ax

 of an n × n sparse matrix and a vector.

 The n × n coefficient matrix is stored using the ELLPACK storage format using two
arrays.

 y and x are n-dimensional vectors.

(2) Parameters

A................. Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, NW).
For the ELLPACK storage format, see Part I, “Overview,” Section 3.2.1.1,
“Storage methods for general sparse matrices.”

K................. Input. Size of adjustable dimensions (≥ n) of array A and ICOL.

NW............. Input. Maximum number of non-zero elements in each row vector of the matrix
A stored in array A.
The size of the second dimension of ICOL and A.

N................. Input. Order n of matrix A stored in array A.

ICOL........... Input. Store column indices of the elements stored in the array A using the
ELLPACK format, indicating which column vectors the corresponding
elements in the array A belong to.
Two-dimensional array ICOL (K, NW).

X................. Input. Stores vector x. One-dimensional array of size n.

Y................. Output. Stores the result of the multiplication of the matrix and the vector.
One-dimensional array of size n.

ICON.......... Output. Condition code.
See Table VMVSE-1, “Condition code.”

Table VMVSE-1 Condition codes

Code Description Processing

0 No error

30000 K < 1, N ≤ 0, NW < 1, or
N > K

Processing is stopped.

VMVSE, DVMVSE

Fujitsu SSL II Extended Capabilities User’s Guide II II-141

(3) Comments on use

a. Subprogram used

 SSL II: MGSSL

b. Comments

1) Comments on using the ELLPACK storage format

 Before storing data in the ELLPACK format, it is recommended to initialize
each of the arrays A and ICOL with zero and the row number, respectively.

c. Example of use

 In this example, when using DVCGE, Ax is sought through b = (A - E) x + x by
storing, in array A, elements other than the diagonal elements of matrix A, which are
1. For SET, see subroutine VCGE, DVCGE, (3) “Comments on use,” c., “Example
of use.”

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NW=2,N=51200,K=N+1)
 REAL*8 B(N),X(N),EPS,OMEGA,RZ,
 & A(K,NW),VW(K*NW+4*N)
 INTEGER ICOL(K,NW),IVW(K*NW+4*N)
 WRITE(6,*) ' EXAMPLE DVCGE '
C INITIALISE A,ICOL
 CALL SET(A,ICOL,K,NW,N)
C GENERATE RHS B
 DO 10 I=1,N
 10 VW(I)=I
C COMPUTE RHS SO AX=B SO WE KNOW SOLUTION X (X(I)=I)
C
C B = (A-E)*X + E*X
 CALL DVMVSE(A,K,NW,N,ICOL,VW,B,ICON)
 PRINT*,'ERROR CODE =',ICON
 DO 20 I=1,N
 B(I)=B(I)+VW(I)
 20 CONTINUE
C
 ITMAX=4000
 EPS=1D-10
 ISW=1
 IGUSS=0
 DO 30 IPC=1,3
 IF(IPC.EQ.3)OMEGA=0.98
 CALL DVCGE(A,K,NW,N,ICOL,B,IPC,ITMAX,ISW,OMEGA
 & ,EPS,IGUSS,X,ITER,RZ,VW,IVW,ICON)
C
 PRINT*,'ERROR CODE= ',ICON
 IF(RZ.LE.EPS) WRITE(6,41)'CONVERGED. ACCURACY=',RZ
 IF(RZ.GT.EPS) WRITE(6,41)'FAILED. ACCURACY=',RZ
 WRITE(6,*)'X'
 DO 60 I=1,MIN(N,16),4
 60 WRITE(6,42) I,(X(M),M=I,I+3)
 30 CONTINUE
 42 FORMAT(I3,4(F12.4))
 41 FORMAT(A,2X,E10.3)

VMVSE, DVMVSE

II-142 Fujitsu SSL II Extended Capabilities User's Guide II

 STOP
 END

VQMRD, DVQMRD

Fujitsu SSL II Extended Capabilities User’s Guide II II-143

A72-23-0101 VQMRD, DVQMRD

System of linear equations with unsymmetric or indefinite sparse matrix (QMR
method, diagonal storage format)

CALL VQMRD (A, K, NDIAG, N, NOFST, AT, NTOFST, B, ITMAX, EPS,
 IGUSS, X, ITER, VW, ICON)

(1) Function

 This routine solves linear equations system with an n × n unsymmetric or indefinite
sparse coefficient matrix using the quasi-minimal residual method (QMR).

 Ax = b

 Use two n × n coefficient matrices A and AT. They are stored in the diagonal format
method. Vectors b and x are n-dimensional vectors.

 The iterative calculation may not be continued (break-down) because of the
characteristics of the initial vector and coefficient matrices. This is because zero is
obtained as the intermediate result in the recursive calculation formula. In this case, use
the MGCR method that causes no break-down.

 Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A................ Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, NDIAG). Stores coefficient matrix A in A (1:N,
NDIAG) with a diagonal format.
For the diagonal storage format, see Part I, “Overview,” Section 3.2.1.1,
“Storage Method for General Sparse Matrices,” b., “Diagonal Storage Format
for General Sparse Matrices.”

K................ Input. Size of adjustable dimension of array A.

NDIAG....... Input. The number of diagonal vectors in coefficient matrix A that contain non-
zero elements.

N................ Input. Order n of matrix A.

NOFST....... Input. Stores offset from the main diagonal corresponding to diagonals stored
in A. A superdiagonals have positive values; subdiagonals have negative values.
One-dimensional array NOFST (NDIAG).

AT.............. Input. Stores non-zero elements of AT.
Two-dimensional array AT (K, NDIAG). Stores coefficient matrix AT in AT
(1:N, NDIAG).
For the diagonal storage format, see Part I, “Overview,” Section 3.2.1.1,
“Storage Method for General Sparse Matrices,” b., “Diagonal Storage Format
for General Sparse Matrices.”

NTOFST..... Input. Stores a offset from the main diagonal corresponding to a diagonal
stored in array AT. Superdiagonals have positive values; subdiagonals have
negative values.
One-dimensional array NOFST (NDIAG).

B................. Input. One-dimensional array of size n. Stores a constant vector of the right-
hand side term of a linear equation system.

VQMRD, DVQMRD

II-144 Fujitsu SSL II Extended Capabilities User's Guide II

ITMAX....... Input. The upper limit of iteration steps in QMR method (> 0).

EPS............. Input. A criterion value used for convergence criterion.
If EPS is 0.0 or less, it is set to 10-6 in double-precision routines and 10-4 in
single-precision routines.
(See item (3), “Comments on use,” b., 1).)

IGUSS........ Input. Set control information about whether to start the iterative computation
from the approximate value of the solution vector specified in array X.
IGUSS=1: An approximate value of the solution vector is not specified.
IGUSS≠1: The iterative computation starts from the approximate value of the
solution vector specified in array X.

X................ Input. One-dimensional array of size n. Can specify the approximate value of a
solution vector.
Output. The solution vector is stored.

ITER.......... Output. The real number of iteration steps in QMR method.

VW............. Work area. One-dimensional array of size K × 9 + N + NBANDL + NBANDR.
NBANDL indicates a lower bandwidth; NBANDR indicates an upper
bandwidth.

ICON.......... Output. Condition code
See Table VQMRD-1, “Condition codes.”

Table VQMRD-1 Condition codes

Code Meaning Processing contents

0 No error -

20000 Break-down occurred. Processing is stopped.

20001 The upper limit of iteration steps
was reached.

Processing is stopped.

The approximate value obtained up to this
point in array X is output, but their
precision cannot be guaranteed.

30000 N<1, K<1, K<N, NDIAG<1,
K<NDIAG,
or
ITMAX ≤ 0

Processing is stopped.

32001 | NOFST (I) | > N-1,
| NTOFST (I) | > N-1

Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, URGWD, URIPA, URITI, URITT, URMVD, USSCP, URSTE,
USVCN, UXVCP, USVSC, USVSU, USVUP, USVN2, URELT, MGSSL, UQMRR,
UQMRD, UQBBM, UQITB

VQMRD, DVQMRD

Fujitsu SSL II Extended Capabilities User’s Guide II II-145

b. Comments

1) In the QMR method, if the residual Euclidean norm is equal to or less than the
product of the initial residual Euclidean norm and EPS, it is judged as having
converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of matrix
A and EPS.

2) Notes on using the diagonal format

 A diagonal vector element outside coefficient matrix A must be set to zero.

 There is no restriction in the order in which diagonal vectors are stored in array
A.

 The advantage of this method lies in the fact the matrix vector multiplication can
be calculated without the use of an indirect index. The disadvantage is that
matrices without the diagonal structure cannot be stored efficiently with this
method.

c. Example of use

 In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0, 1] × [0, 1] × [0, 1] with the
Dirichlet boundary condition (function value zero at the boundary). This type of
partial differential operator is described in Part I, “Overview,” Section 3.2.2,
“Discretization of partial differential operators and storage examples for them.”

 For INIT_MAT_ELL, see Part I, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.” INIT_SOL is the
routine that generates the solution vectors to be sought in random numbers.

C **EXAMPLE**
 PROGRAM TEST_ITER_SOLVERS
 IMPLICIT REAL*8 (A-H,O-Z)
 INTEGER MACH
 PARAMETER (MACH = 0)
 PARAMETER (K = 10000)
 PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ)
 PARAMETER (NDIAG = 7,NVW = 9*K+N+400+400)
 REAL*8 A(K,NDIAG),AT(K,NDIAG),X(N),B(N),SOLEX(N)
 & ,VW(NVW)
 INTEGER NOFST(NDIAG),NTOFST(NDIAG)
C
 CALL INIT_SOL(SOLEX,N,1D0,MACH)
 PRINT*,'EXPECTED SOLUSIONS'
 PRINT*,'X(1) = ',SOLEX(1),'X(N) = ',SOLEX(N)
C
 PRINT *
 PRINT *,' QMR METHOD'
 PRINT *,' DIAGONAL FORMAT'
C
 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0
 ZL = 1.0

VQMRD, DVQMRD

II-146 Fujitsu SSL II Extended Capabilities User's Guide II

 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
 CALL INIT_MAT_TR_DIAG(VA1,VA2,VA3,VC,AT,NTOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
 CALL GET_BANDWIDTH_DIAG(NOFST,NDIAG,NBANDL,NBANDR)
 DO 110 I = 1,N
 VW(I+NBANDL) = SOLEX(I)
 110 CONTINUE
 CALL DVMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON)
 PRINT*,'DVMVSD ICON = ',ICON
C
 EPS = 1D-10
 IGUSS = 0
 ITMAX = 2000
 CALL DVQMRD(A,K,NDIAG,N,NOFST,AT,NTOFST,B,ITMAX
 & ,EPS,IGUSS,X,ITER,VW,ICON)
C
 PRINT* ,'ITER = ',ITER
 PRINT* ,'DVQMRD ICON = ',ICON
 PRINT*, 'COMPUTED VALUES'
 PRINT*, 'X(1) = ',X(1),'X(N) = ',X(N)
 STOP
 END

(4) Method

 For the QMR method, see [13].

VQMRE, DVQMRE

Fujitsu SSL II Extended Capabilities User’s Guide II II-147

A72-24-0101 VQMRE, DVQMRE

System of linear equations with unsymmetric or indefinite sparse matrix (QMR
method, ELLPACK storage format)

CALL VQMRE (A, K, IWIDT, N, ICOL, AT, IWIDTT, ICOLT, B, ITMAX, EPS,
 IGUSS, X, ITER, VW, ICON)

(1) Function

 This routine solves linear equations with an n × n unsymmetric or indefinite sparse
coefficient matrix using the quasi-minimal residual method (QMR).

 Ax = b

 Use two n × n coefficient matrices A and AT. They are stored in the ELLPACK format
method. Vectors b and x are n-dimensional vectors.

 The iterative calculation may not be continued (break-down) because of the
characteristics of the initial vector and coefficient matrices. This is because zero is really
obtained as the intermediate result although non-zero is desired in the recursive
calculation formula. In this case, use the MGCR method that causes no break-down.

 Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A................ Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, IWIDT).
For details on the ELLPACK storage format, see Part I, “Overview,” Section
3.2.1.1, “Storage Method for General Sparse Matrices,” b., “Diagonal Storage
Format for General Sparse Matrices.”

K................ Input. Size of adjustable dimension of A and ICOL. (≥ n)

IWIDT........ Input. The maximum number of non-zero elements in row vector direction of
the coefficient matrix A.
Two-dimensional size of A and ICOL.

N................ Input. Order n of matrix A.

ICOL.......... Input. Stores the column indices of the elements stored in the array A using the
ELLPACK format, indicating which column vectors the corresponding
elements in the array A belong to.
Two-dimensional array ICOL (K, IWIDT)

AT.............. Input. Stores non-zero elements of a transposed coefficient matrix AT in AT
(1:N:IWIDTT).
Two-dimensional array AT (K, IWIDTT).
For details on the ELLPACK storage format, see Part I, “Overview,” Section
3.2.1.1, “Storage Method for General Sparse Matrices,” b., “Ellpack Storage
Format for General Sparse Matrices.”

IWIDTT..... Input. The maximum number of non-zero elements in row vector direction of
the transposed coefficient matrix AT.

ICOLT........ Input. Store the column indices of the element stored in the array AT using the
ELLPACK format, indicating which, column vectors the corresponding

VQMRE, DVQMRE

II-148 Fujitsu SSL II Extended Capabilities User's Guide II

elements in the array AT belong to.
Two-dimensional array ICOLT (K, IWIDTT)

B................. Input. One-dimensional array of size n. Stores a constant vector specified in
the right-hand side term of a linear equation system in B.

ITMAX....... Input. The upper limit of iterations in QMR method (> 0).

EPS............. Input. A criterion value used for convergence criterion.
If EPS is 0.0 or less, it is set to 10-6 for double-precision routines and 10-4 for
single-precision routines.
(See item (3), “Comments on Use,” b., 1).)

IGUSS........ Input. Control information about whether to start the iterative computation
from the approximate value of the solution vector specified in array X.
IGUSS=0: An approximate value of the solution vector is not specified.
IGUSS≠0: The iterative computation starts from the approximate value of the
solution vector specified in array X.

X................ Input. One-dimensional array of size n. Can specified the approximate value of
a solution vector.
Output. The solution vector is stored.

ITER........... Output. The real number of iteration steps in QMR method.

VW............. Work area. One-dimensional array of the size K × 12.

ICON.......... Output. Condition code
See Table VQMRE-1, “Condition codes.”

Table VQMRE-1 Condition codes

Code Meaning Processing

0 No error -

20000 Break-down occurred. Processing is stopped.

20001 The upper limit of iteration steps
was reached.

Processing is stopped.

The approximate values obtained up to this
point in array X are output, but their
precision cannot be guaranteed.

30000 K<1, N<1, K<N, IWIDT<1,
IWIDTT<1, K<IWIDT,
K<IWIDTT,
or
ITMAX ≤ 0

Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, URIPA, URITI, URITT, URMVE, USSCP, URSTE, USVCN,
USVCP, USVSC, USVSU, USVUP, USVN2, URELT, MGSSL, UQMRR, UQMRE,
UQBBM, UQITB

VQMRE, DVQMRE

Fujitsu SSL II Extended Capabilities User’s Guide II II-149

b. Comments

1) In the QMR method, if the residual Euclidean norm is equal to or less than the
product of initial residual Euclidean norm and EPS, it is judged as having
converged.

 The difference between the precise solution and the obtained approximation is
roughly equal to the product of the condition number of matrix A and EPS.

c. Example of use

 In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0,1] × [0,1] × [0,1] with the
Dirichlet boundary condition (function value zero at the boundary). This type of
partial differential operator is described in Part I, “Overview,” Section 3.2.2,
“Discretization of partial differential operators and storage examples for them.”
For INIT_MAT_ELL, see Part I, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.” INIT_SOL is the
routine that generates the solution vectors to be sought in random numbers.

C **EXAMPLE**
 PROGRAM TEST_ITER_SOLVERS
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (MACH = 0)
 PARAMETER (K = 10000)
 PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ)
 PARAMETER (IWIDT = 7,IWIDTT = IWIDT,NVW = K*12)
 REAL*8 A(K,IWIDT),AT(K,IWIDTT),X(N),B(N),SOLEX(N)
 & ,VW(NVW)
 INTEGER ICOL(K,IWIDT),ICOLT(K,IWIDTT)
C
 CALL INIT_SOL(SOLEX,N,1D0,MACH)
 PRINT*,'EAPECTED SOLUTION'
 PRINT*,'X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
C
 PRINT *
 PRINT *,' QMR METHOD'
 PRINT *,' ELLPACK FORMAT'
C
 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 5D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
C
 CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL
 & ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K)
 CALL INIT_MAT_TR_ELL(VA1,VA2,VA3,VC,AT,ICOLT
 & ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K)
 CALL DVMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON)
 PRINT*,'DVMVSE ICON = ',ICON
C
 EPS = 1D-10
 IGUSS = 0
 ITMAX = 800

VQMRE, DVQMRE

II-150 Fujitsu SSL II Extended Capabilities User's Guide II

 CALL DVQMRE(A,K,IWIDT,N,ICOL,AT,IWIDTT,ICOLT,B,ITMAX
 & ,EPS,IGUSS,X,ITER,VW,ICON)
C
 PRINT*,'DVQMRE ICON = ',ICON
 PRINT*,'COMPUTED VALUE'
 PRINT*,'X(1) = ',X(1),' X(N) = ',X(N)
 STOP
 END

(4) Method

 For QMR method, see [13].

VRCVF, DVRCVF

Fujitsu SSL II Extended Capabilities User’s Guide II II-151

F17-13-0101 VRCVF, DVRCVF

Discrete convolution or correlation of real data

CALL VRCVF (X, K, N, M, Y, IVR, ISW, TAB, ICON)

(1) Function

 This subroutine performs one-dimensional discrete convolutions or correlations between a
filter and multiple input data using discrete Fourier method.

 The convolution and correlation of a filter y with a single input data x are defined as
follows:

 a) convolution

 ∑
−

=
− −==

1

0

1,...,0,
n

i
iikk nkyxz (1.1)

 b) correlation

 ∑
−

=
+ −==

1

0

1,...,0,
n

i
iikk nkyxz (1.2)

 where, xj is a cyclic data with period n. (See item (3), “Comments on use,” b., 1).)

(2) Parameters

X.............. Two-dimensional array X (K, M).

 Input. The m data sequences {xj}, j=0,...,n−1, are stored in X(1:N,1:M).

 Output. The m sequences {zk}, k=0,...,n−1, are stored in X(1:N,1:M).

K................ Input. Size of adjustable dimension of array X. (K ≥ N)

N................ Input. The number of elements in one data sequence or in filter y. N must be
an even number. (See item (3), “Comments on use,” b., 2).)

M............... Input. The number of rows in the array X.

Y............. Input. Filter vector {yi}. One-dimensional array Y(N).

 The values of this array will be altered after calling with ISW=0 or 2.

 (See item (3), “Comments on use,” b., 2) and 3).)

IVR............ Input. Specify either convolution or correlation.

 When IVR = 0, convolution is calculated.

 When IVR = 1, correlation is calculated.

ISW........... Input. Control information.

 When ISW = 0, all the procedure will be done at once.

 If the calculation should be divided into step-by-step procedure, specify as
follows. (See item (3), “Comments on use,” b., 3).)

 ISW = 1 to prepare the array TAB.

VRCVF, DVRCVF

II-152 Fujitsu SSL II Extended Capabilities User's Guide II

 ISW = 2 to perform the Fourier transform in array Y using the trigonometric
function table TAB.

 ISW = 3 to perform the convolution or correlation using the array Y and TAB
which are prepared in advance.

TAB............ Work area. Trigonometric function table used for the transformation is stored.

 One-dimensional array of size 2N. (See item (3), “Comments on use,” b., 3).)

ICON........... Output. Condition code.

 See Table VRCVF-1, “Condition codes.”

Table VRCVF-1 Condition codes

Code Description Processing

0 No error -

30000 N ≤ 0, K<N, M ≤ 0, IVR ≠ 0,1 or ISW ≠ 0,1,2,3 or N is
not an even number.

Processing is stopped.

(3) Comments on use

a. Subprogram used

 SSLII: UZFB2, UZFB3, UZFB4, UZFB5, UZFB8, UZFB6, UZFF2, UZFF3, UZFF4,
UZFF5, UZFF8, UZFF6, UZFPB, UZFPF, UZFTB, UZFTF, UZUNI, MGSSL

b. Comments

1) To compute non-periodic convolution or correlation

 Non-periodic convolution or correlation can be calculated by this routine with
padding the value of X(nx+1:n, *) and Y(ny+1:n) with zeros, where nx is the
actual length of the data sequence, ny is the actual length of the filter y and n
must be larger or equal to nx+ny−1. (See example 2 in “c. examples.”)

 The values of correlation zk, corresponding to k = −ny+1,..., −1 are stored in
X(n−ny+2:n, *) in this non-periodic case.

2) Recommended value of N

 The n can be an arbitrary even number, but the calculation is fast with the sizes
which can be expressed as products of the powers of 2, 3, and 5.

3) Efficient use of the array TAB and Y

 When this routine will calculate convolution or correlation successively for a
fixed value of n, the trigonometric function table TAB should be initialized once
at first call with ISW=0 or 1 and should be kept intact for second and subsequent
calls with ISW=2 and 3. This saves initialization procedure of array TAB.
Furthermore, if the filter vector y is also fixed, the array Y which is transformed
with ISW=0 or 2 can be reused for second and subsequent calls with ISW=3.

 In these cases, the array Y must be transformed surely once.

4) To compute autocorrelation

 Autocorrelation or autoconvolution can be calculated by this routine with letting
the filter array Y be identical to the data array X. In this case, specifying ISW=2
will be ignored. (See example 3 in “c. examples.”)

VRCVF, DVRCVF

Fujitsu SSL II Extended Capabilities User’s Guide II II-153

5) Stack size

 This subroutine exploits work area internally as an auto allocatable array on
stack area. Therefore an abnormal termination could occur when the stack area
runs out. The necessary size for the auto allocatable array is 4 × N byte for
single precision, and twice for double precision.

 It is recommended to specify the sufficiently large stacksize with "limit" or
"ulimit" command under consideration that the stack area could be used for
another work area of fixed size and for user's program also.

c. Example of use
example 1) In this example, periodic convolution of a filter with three data vectors is

calculated with n=8.
C ** PERIODIC CONVOLUTION EXAMPLE **
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER(K=8,M=3)
 DIMENSION X(K,M),Y(K),TAB(K*2)

 N=8

C --SET SAMPLE DATA--
 DO 100 J=1,M
 DO 100 I=1,N
 X(I,J)=FLOAT(I+J-1)
 100 CONTINUE
 DO 110 I=1,N
 Y(I)=FLOAT(I+10)
 110 CONTINUE

 WRITE(*,*)'--INPUT DATA--'
 DO 120 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 120 CONTINUE
 WRITE(*,910)(Y(I),I=1,N)

C --CALL DVRCVF--
 IVR=0
 ISW=0
 CALL DVRCVF(X,K,N,M,Y,IVR,ISW,TAB,ICON)

 WRITE(*,*)'--OUTPUT DATA--'
 DO 130 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 130 CONTINUE

 900 FORMAT('X(*,',I2,') :',3X,8F8.2)
 910 FORMAT('Filter Y:',3X,8F8.2)
 STOP
 END

example 2) In this example, non-periodic convolution is calculated with nx=7, ny=9
and n=16.

C ** NONPERIODIC CONVOLUTION EXAMPLE **
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER(K=16,M=3)
 DIMENSION X(K,M),Y(K),TAB(K*2)

VRCVF, DVRCVF

II-154 Fujitsu SSL II Extended Capabilities User's Guide II

 NX=7
 NY=9
 N=NX+NY-1
 IF(MOD(N,2).NE.0)N=N+1

C --SET SAMPLE DATA--
 DO 100 J=1,M
 DO 110 I=1,NX
 X(I,J)=FLOAT(I+J-1)
 110 CONTINUE
 DO 120 I=NX+1,N
 X(I,J)=0.0D0
 120 CONTINUE
 100 CONTINUE
 DO 130 I=1,NY
 Y(I)=FLOAT(I+10)
 130 CONTINUE
 DO 140 I=NY+1,N
 Y(I)=0.0D0
 140 CONTINUE

 WRITE(*,*)'--INPUT DATA--'
 DO 150 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 150 CONTINUE
 WRITE(*,910)(Y(I),I=1,N)

C --CALL DVRCVF--
 IVR=0
 ISW=0
 CALL DVRCVF(X,K,N,M,Y,IVR,ISW,TAB,ICON)

 WRITE(*,*)'--OUTPUT DATA--'
 DO 160 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 160 CONTINUE

 900 FORMAT('X(*,',I2,') :'/(12X,8F8.2))
 910 FORMAT('Filter Y:'/(12X,8F8.2))
 STOP
 END

example 3) In this example, autocorrelation is calculated with nx=4.
C ** AUTOCORRELATION EXAMPLE **
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER(K=8,M=3)
 DIMENSION X(K,M),TAB(K*2)

 NX=4
 N=NX*2

C --SET SAMPLE DATA--
 DO 100 J=1,M
 DO 110 I=1,NX
 X(I,J)=FLOAT(I+J-1)

VRCVF, DVRCVF

Fujitsu SSL II Extended Capabilities User’s Guide II II-155

 110 CONTINUE
 DO 120 I=NX+1,N
 X(I,J)=0.0D0
 120 CONTINUE
 100 CONTINUE

 WRITE(*,*)'--INPUT DATA--'
 DO 130 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 130 CONTINUE

C --CALL DVRCVF--
 IVR=1
 ISW=1
 CALL DVRCVF(X,K,N,M,X,IVR,ISW,TAB,ICON)
 ISW=3
 CALL DVRCVF(X,K,N,M,X,IVR,ISW,TAB,ICON)

 WRITE(*,*)'--OUTPUT DATA--'
 DO 140 J=1,M
 WRITE(*,900)J,(X(I,J),I=1,N)
 140 CONTINUE

 900 FORMAT('X(*,',I2,') :',3X,8F8.2)
 STOP
 END

(4) Method

 This subroutine performs discrete convolution or correlation of real data efficiently on a
scalar CPU.

 The convolution can be calculated efficiently using Fourier method. It is based on the fact
that the Fourier transform of the convolution of two sequences is evaluated by pointwise
multiplication of the individual Fourier transformed sequences. The correlation is
calculated similarly to take the Fourier transform of x and the conjugate of the Fourier
transform of y and apply the inverse transform of their pointwise product.

 For further information on the algorithm, refer to [26] in Appendix B, “References. ”

VRPF3, DVRPF3

II-156 Fujitsu SSL II Extended Capabilities User's Guide II

F15-31-0401 VRPF3, DVRPF3

Three-dimensional prime factor discrete real Fourier transform

CALL VRPF 3 (A, L, M, N, ISN, VW, ICON)

(1) Function

 When three-dimensional (where the size of each dimension is N1, N2, N3) real time series
data {xJ1,J2,J3} is given, this subroutine performs a discrete real Fourier transform or its
inverse transform by using the prime factor Fourier transform (prime factor FFT). The
size of each dimension must satisfy the following conditions:

- The size must be expressed as a product of mutual prime factor p, selected from the
following numbers:

 factor p (p ∈ {2, 3, 4, 5, 7, 8, 9, 16})

- The size of the first dimension must be an even number (2 × I), where I satisfies the
previous condition.

 Calling this subroutine with N = 1 sets a two-dimensional real prime factor fast Fourier
transform. Calling this subroutine with N = 1 and M = 1 sets a one-dimensional real
prime factor fast Fourier transform.

1) Three-dimensional real Fourier transform

 By inputting {xJ1,J2,J3} and performing the transform defined in (1.1), the three-
dimensional Fourier transform looks for {N1 × N2 × N3 × αK1,K2, K3}.

 33
3

2.2
2

1.1
1

13

03
32,1

12

02

11

01
321 = 321 .KJ-KJ-KJ-

N

J
J,JJ

N

JJ

x... ωωωα ∑∑∑
−

=

−

=

−

=

×××
N

,K,KKNNN (1.1)

 , K1 = 0, 1, ..., N1-1

 , K2 = 0, 1, ..., N2-1

 , K3 = 0, 1, ..., N3-1

 , ωj = exp(2πi/Nj), j = 1, 2, 3

 For a three-dimensional real Fourier transform, approximately half of the
computation is performed because {xJ1,J2,J3} is a real number. That is, for one-
dimensional transforms, K1 is computed from 0 to N1/2.

2) Three-dimensional real Fourier inverse transform

 By inputting {αK1,K2,K3} and performing the transform defined in (1.2), a three-
dimensional Fourier inverse transform looks for {xJ1,J2,J3}.

 33
3

2.2
2

1.1
1

13

03
32,1

12

02

11

01
321 = .KJKJKJ

N

K
K,KK

N

KK

...x ωωωα∑∑∑
−

=

−

=

−

=

N

,J,JJ (1.2)

 , J1 = 0, 1, ..., N1-1

 , J2 = 0, 1, ..., N2-1

 , J3 = 0, 1, ..., N3-1

 , ωj = exp(2πi/Nj), j = 1, 2, 3

VRPF3, DVRPF3

Fujitsu SSL II Extended Capabilities User’s Guide II II-157

 For a three-dimensional real Fourier inverse transform, {αK1,K2,K3} looks for only K1
= 0, 1, ..., N1/2. Compute the two-dimensional and three-dimensional ∑ first. Then,
use the conjugate relation for the elements of the first dimension to compute (1.2).

(2) Parameters

A................. Input. Real number {xJ1,J2,J3} or Fourier transformed complex number
{αK1,K2,K3}.
Output: Fourier transformed complex number {αK1,K2,K3} or inverse
transformed real number {xJ1,J2,J3}.
Three-dimensional array A (L, M, N).
For a real number (transform input and inverse transform output), data is stored
in A (L, M, N).

L - 2 is the number of data items of the first dimension, where L - 2 is an even
number.
M is the number of data items of the second dimension. N is the number of data
items of the third dimension.
For a complex number (transform output and inverse transform input), the real
part is stored in the first half and the imaginary part is stored in the second half
of the same array.

 PARAMETER (L =, M =, N =, LH = L/2)

 DIMENSION A (L, M, N), B (LH, M, N, 2)

 EQUIVALENCE (A, B)

 Real part B (L/2, M, N, 1) and Imaginary part B (L/2, M, N, 2) are stored
 separately in the contiguous area. (See item (3), “Comments on use,” b.,
 3).)

L................. Input. Number of data items + 2 of the first dimension. The number of data
items of the first dimension must be an even number.
(L - 2)/2 ≤ 5,040

M................ Input. Number of data items of the second dimension.
M ≤ 5,040

N................. Input. Number of data items of the third dimension.
N ≤ 5,040

ISN............. Input. Specifies either transform or inverse transform.
Transform if ISN ≥ 0 (non-negative integer).
Inverse transform if ISN < 0 (negative integer).

VW............. Work area. Three-dimensional array with the same size as A.

ICON.......... Output. Condition code.
See Table VRPF3-1, “Condition codes.”

VRPF3, DVRPF3

II-158 Fujitsu SSL II Extended Capabilities User's Guide II

Table VRPF3-1 Condition codes

Code Description Processing

0 No error

20000 (L - 2)/2, M or N exceeded 5,040. Or this could not be
factored into the multiplication of the mutually prime factor
in {2, 3, 4, 5, 7, 8, 9, 16}.

Processing stopped.

30000 L - 2 was not an even number. Or L, M, or N is zero or a
negative value.

(3) Comments on use

a. Subprograms used

 SSL II: UINI1, UINI2, UTER1, UTER2, UTRSP, UPFT1, UPFT2, UTRR1, UTRR2,
MGSSL

b. Comments

1) General definition of three-dimensional Fourier transform

 The three-dimensional Fourier transform and its inverse transform are generally
defined in (3.1) and (3.2).

 33
3

2.2
2

1.1
1

13

03
32,1

12

02

11

01
321 321

1= .KJ-KJ-KJ-
N

J
J,JJ

N

J

N

J

x...
NNN

ωωωα ∑∑∑
−

=

−

=

−

=××,K,KK (3.1)

 33
3

2.2
2

1.1
1

13

03
32,1

12

02

11

01
321 = .KJKJKJ

N

K
K,KK

N

K

N

K

...x ωωωα∑∑∑
−

=

−

=

−

=
,J,JJ (3.2)

 The subroutine looks for {N1 × N2 × N3 × αK1,K2,K3} or {xJ1,J2,J3} corresponding
to the left-hand-side terms of (3.1) and (3.2), respectively. The user must
normalize the results, if necessary. If the transform and inverse transform is
executed by calling this subroutine consecutively without being normalized,
each element of the input data is multiplied by N1, N2, or N3, respectively, and
then output.

2) Number of terms

 The number of terms is expressed as a product of a mutually prime factor p,
selected from the numbers listed as follows.

 The maximum number is 5 × 7 × 9 × 16 = 5,040.

 factor p (p ∈ {2, 3, 4, 5, 7, 8, 9, 16})

 The number of terms of the first dimension can be a value up to a multiple of the
mutually prime numbers listed previously.

3) Data storage method

 The real data {xJ1,J2,J3} are stored in a three-dimensional array A. The number of
terms N1 of the first dimension is equivalent to L - 2. The terms are stored from
1 up to L - 2.

 The real and imaginary parts of the complex data {αK1,K2,K3} are stored as an
array divided into two contiguous regions by splitting array A. The number of
indices of K1 of the first dimension is N1/2 + 1 (L/2), from zero up to N1/2.

VRPF3, DVRPF3

Fujitsu SSL II Extended Capabilities User’s Guide II II-159

 The real part is stored in B (LH, M, N, 1), and the imaginary part is stored in B
(LH, M, N, 2) where:

 LH = L/2

 and

 PARAMETER (L =, M =, N =, LH = L/2)

 DIMENSION A (L, M, N), B (LH, M, N, 2)

 EQUIVALENCE (A, B)

c. Example of use

 In this example, real time series data {xJ1,J2,J3} of terms N1, N2 and N3 are input, and
a Fourier transform is performed. The results are used to perform a Fourier inverse
transform to look for {xJ1,J2,J3}.

 Here N1 = 12, N2 = 12, and N3 = 12.

C **EXAMPLE**
 DIMENSION A(12+2,12,12),B(6+1,12,12,2),NI(3)
 DIMENSION VW(12+2,12,12)
 DATA NI/12,12,12/,L,M,N/14,12,12/
 EQUIVALENCE (A,B)
 READ(5,500) (((A(I,J,K),I=1,NI(1)),
 * J=1,NI(2)),K=1,NI(3))
 WRITE(6,600) (NI(I),I=1,3),
 * (((I,J,K,A(I,J,K),I=1,NI(1)),
 * J=1,NI(2)),K=1,NI(3))
C NORMAL TRANSFORM
 CALL VRPF3(A,L,M,N,1,VW,ICON)
 WRITE(6,610) ICON
 IF(ICON.NE.0) STOP
C INVERSE TRANSFORM
 CALL VRPF3(A,L,M,N,-1,VW,ICON)
 NT=NI(1)*NI(2)*NI(3)
 DO 10 K=1,NI(3)
 DO 10 J=1,NI(2)
 DO 10 I=1,NI(1)
 A(I,J,K)=A(I,J,K)/FLOAT(NT)
 10 CONTINUE
 WRITE(6,620) (((I,J,K,A(I,J,K),I=1,NI(1)),
 * J=1,NI(2)),K=1,NI(3))
 STOP
 500 FORMAT(E20.7)
 600 FORMAT('0',10X,'INPUT DATA',5X,
 * '(',I3,',',I3,',',I3,')'/
 * (15X,'(',I3,',',I3,',',I3,')',
 * E20.7))
 610 FORMAT('0',10X,'RESULT ICON=',I5)
 620 FORMAT('0',10X,'OUTPUT DATA'/
 * (15X,'(',I3,',',I3,',',I3,')',
 * E20.7))
 END

VRPF3, DVRPF3

II-160 Fujitsu SSL II Extended Capabilities User's Guide II

(4) Method

 The three-dimensional real Fourier transform is performed by using the fast Fourier
transform with the factored mutual prime factor as the radix (prime factor FFT).

1) Three-dimensional transform

 The three-dimensional transform defined in (1.1) can be performed in the order
shown in (4.1) by simplifying common terms. The order for obtaining the sum of J1,
J2, and J3 can also be replaced.

 33
3

13

03
32,1

12

02

2.2
2

11

01

1.1
1321 = 321 .KJ-

N

J
J,JJ

N

J

KJ-
N

J

KJ- x ωωωα ∑∑∑
−

=

−

=

−

=

×××× ,K,KKNNN (4.1)

 In (4.1), ∑J3 takes N1 × N2 sets of one-dimensional transforms of data item N3. ∑J2
takes N1 × N3 sets of one-dimensional transforms of data item N2. ∑J1 takes N2 × N3
sets of one-dimensional transforms of data item N1.

 In order to perform a one-dimensional transform for each dimension, this subroutine
applies the fast Fourier transform with the mutually prime factor as the radix.

2) Real transform

 Because the number of data items is even for the real Fourier transform of the first
dimension, complex Fourier transform is computed from zero up to N1/2 for K1. The
remaining Fourier transform computation need not be performed due to the complex
conjugate relation.

 Assume a one-dimensional discrete real Fourier transform of N data items.

 ∑
−

=

−=
1

0

)/2(
N

J
JK NKJexpx iπα (4.2)

 K = 0, ..., N-1

 *
KKN αα =− (4.3)

 Even if the sequence for obtaining ∑ in (4.1) is computed from the first dimension,
the results are the same. Therefore, the computation in (4.2) of the one-dimensional
transform with fixed terms of second and third dimensions can be performed for K =
0, 1, ..., N1/2.

 For a real transform with an even number of data items, a complex transform can be
used in the computation of the one-dimensional transform in (4.2). For details, refer
to FUJITSU SSL II User’s Guide (Scientific Subroutine Library) under the “Method”
section in RFT.

 In addition, the relationship that follows applies to a three-dimensional real Fourier
transform. This can be used for looking for other coefficients.

 *
KNKNKNKKK 33,22,113,2,1 −−−=αα (4.4)

VRPF3, DVRPF3

Fujitsu SSL II Extended Capabilities User’s Guide II II-161

3) Prime factor fast Fourier transform

 The three-dimensional real Fourier transform can be calculated by performing a
multiple set of one-dimensional Fourier transforms three times. The one-dimensional
Fourier transforms are performed by using the prime factor fast Fourier transform
(prime factor FFT). For an explanation of prime factor fast Fourier transform, see
item 2), “Prime factor fast Fourier transform,” under the Method section in VCPF3.
For more information, see [6] and [46].

VSEVP, DVSEVP

II-162 Fujitsu SSL II Extended Capabilities User's Guide II

B71-14-0101 VSEVP,DVSEVP

Eigenvalues and eigenvectors of a real symmetric matrix (tridiagonalization, multisection
method, and inverse iteration)

CALL VSEVP (A, K, N, NF, NL, IVEC, ETOL, CTOL, NEV, E, MAXNE, M, EV,
 VW, IW, ICON)

(1) Function

 This subroutine calculates specified eigenvalues and, optionally, eigenvectors of n-
dimensional real symmetric matrix A.

 First, the matrix is reduced to tridiagonal form using the Householder reductions. Then,
the specified eigenvalues are obtained by the multisection method. The eigenvectors are
obtained by the inverse iteration.

 Ax = λx (1.1)

 where, A is an n × n real symmetric matrix.

(2) Parameters

A Input. Real symmetric matrix A is stored in A(1:N,1:N).
After calculation, the value of A is not assured.
Two-dimensional array A(K,N).

K Input. Size of first-dimension of array A. (K ≥ N).

N Input. Order n of real symmetric matrix A

NF Input. Number assigned to the first eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

NL Input. Number assigned to the last eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

IVEC Input. Control information.

IVEC=1: Both the eigenvalues and corresponding eigenvectors are
 sought.
IVEC≠1: Only the eigenvalues are sought.

ETOL Input. A criterion value required to determine whether an eigenvalue is distinct
or numerically multiple based on expression (3.4). The default value is 3.0D-16
for double precision (2.0D-7 for single precision) when this value is set to less
than.

CTOL Input. A criterion value required to determine whether adjacent eigenvalues are
approximately multiple i.e. clustered according to expression (3.1). CTOL ≥
ETOL
When CTOL is less than ETOL, CTOL = ETOL is set.
(See 1) in b, “Notes,” in (3), “Comments on use.”)

NEV Output. Number of eigenvalues calculated.

The detail information is as follows:
NEV (1) indicates the number of distinct eigenvalues.
NEV (2) indicates the number of distinct clusters.

VSEVP, DVSEVP

Fujitsu SSL II Extended Capabilities User’s Guide II II-163

NEV (3) indicates the total number of eigenvalues including multiplicities.
One-dimensional array NEV (3).

E Output. Eigenvalues are stored in E.
The eigenvalues are stored in E(1:NEV(3)).

One-dimensional array E(MAXNE).

MAXNE Input. The maximum number of eigenvalues that can be computed.
Dimension of array E.

When NEV (3) is greater than MAXNE, eigenvectors cannot be computed.
(See 2) in b, “Notes,” in (3), “Comments on use.”)

M Output. Information about the multiplicity of the computed eigenvalues.
M (i, 1) indicates the multiplicity of the i-th eigenvalue λi. M (i, 2) indicates the
size of the i-th cluster of eigenvalues.
 (See 1) in b, “Notes,” in (3), “Comments on use.”)

Two-dimensional array M(MAXNE,2).

EV Output. When IVEC = 1, the eigenvectors corresponding to the computed
eigenvalues are returned in EV (1:N, 1:NEV(3)).
Two-dimensional array EV (K, MAXNE).

VW Work area. One-dimensional array of size 17 × K

IW Work area. One-dimensional array of size 9 × MAXNE+128

ICON Output. Condition code.

See Table VSEVP-1.
Table VSEVP-1 Condition codes

Code Meaning Processing

0 No error

20000 During calculation of clustered eigenvalues,
the total number of eigenvalues exceeded
the value of MAXNE.

Processing is discontinued.

The eigenvectors cannot be
calculated, but the different
eigenvalues themselves are
already calculated.

(See 2) in b, “Notes,” in (3),
“Comments on use.”)

30000 NF < 1, NL > N, NL < NF, N < 1, K < N, or
MAXNE < NL - NF + 1.

30100 The input matrix may not be a symmetric
matrix.

Processing is discontinued.

(3) Comments on use

a. Subprograms used

SSLII UIBBS, UIBFC, UIBFE, UIBSL, UITBS, UITFC, UITFE, UITSL, USEVP,
UTDEX, UTDEY, UTMLS, UTRBK, UTRVM, UZRDM, MGSSL, UMGSL,
UMGSL2

VSEVP, DVSEVP

II-164 Fujitsu SSL II Extended Capabilities User's Guide II

b. Notes

1) This routine pays special attention to a clustered eigenvalue.

 With ε is equal to ETOL, suppose that the eigenvalues ,...1,, += ssjjλ , and s+k

(k ≥ 0) are such that

ε
λλ

λλ
≤

− −

)max(1 1

1

ii-

ii

,+
 (3.1)

 While (3.4) is not satisfied for i = s-1 and i = s + k + 1, then eigenvalues jλ , j =
s - 1, s, ..., s + k are considered to be identical, i.e., a single multiple eigenvalue
of multiplicity k + 1.

 The default value of ETOL is 3.0D-16 for double precision (2.0D-7 for single-
precision). Using this value, eigenvalues are refined to machine precision.

 When (3.1) is not satisfied for ETOL=ε , 1−iλ and iλ are assumed to be
distinct eigenvalues.

 If (3.1) holds with ε = CTOL (but not with ε = ETOL) for eigenvalues mλ , m=t,
t+1, ..., t+k but not for 1−tλ and 1++ktλ , these eigenvalues are considered to be
approximately multiple, i.e. clustered, though distinct (not numerically multiple).
In order to obtain an invariant subspace, eigenvectors corresponding to clustered
eigenvalues are computed using orthogonal starting vectors and are
reorthogonalized. Of course CTOL ≥ ETOL; if this condition is not satisfied,
CTOL is set to be equal to ETOL.

2) Assume r eigenvalues are requested. Note that if the first or last requested
eigenvalue has a multiplicity greater than 1 then more than r eigenvalues, are
obtained. The corresponding eigenvectors can be computed only when the
corresponding eigenvector storage area is sufficient.

 The maximum number of computable eigenvalues can be specified in MAXNE.
If the total number of eigenvalues exceeds MAXNE, ICON = 20000 is returned.
The corresponding eigenvectors cannot be computed. In this case, the
eigenvalues are returned, but they are not stored repeatedly according to
multiplicities.

 When all eigenvalues are distinct, it is sufficient to set MAXNE = NL-NF+1.
When the total number of eigenvalues to be sought exceeds MAXNE, the
necessary value for MAXNE for seeking eigenvalues again is returned in
NEV(3).

3) This routine is faster than SEIG1, SEIG2 and VSEG2.

c. Example

 This example calculates the specified eigenvalues and eigenvectors of a real
symmetric matrix whose eigenvalues and eigenvectors are already obtained.

C ** EXAMPLE PROGRAM **
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (K=500,N=K,NF=1,NL=100,MAXNE=NL-NF+1)
 PARAMETER (NVW=15*K,NIW=9*MAXNE+128)
 REAL*8 A(K,N),AB(K,N)
 REAL*8 E(K),EV(K,MAXNE),VW(NIW)

VSEVP, DVSEVP

Fujitsu SSL II Extended Capabilities User’s Guide II II-165

 REAL*8 VV(K,N)
 INTEGER IW(NVW),M(MAXNE,2),NEV(3)
C
 ETOL=3.0D-16
 CTOL=5.0D-12
 NNF=NF
 NNL=NL
 IVEC=1
C Generate real symmetric matrix with known eigenvalues
C Initialization
 PI = 4.0D0*DATAN(1.0D0)
 DO 1 J=1,N
 DO 11 I=1,N
 VV(I,J)=DSQRT(2.0D0/DBLE(N+1))*SIN(DBLE(I)*PI
 + *DBLE(J)/ DBLE(N+1))
 A(I,J)=0.0D0
 11 CONTINUE
 1 CONTINUE
 DO 22 J=1,N
 A(J,J) = DBLE(-N/2+J)
 22 CONTINUE
 WRITE (6,*)' Input matrix size is ',N
 WRITE (6,*)' Matrix calculations use k =',K
 WRITE (6,*)' Desired eigenvalues are nf to nl ',NF,NL
 WRITE (6,*)' That is, request ',NL-NF+1,
 + ' eigenvalues.'
 WRITE (6,*)' True eigenvalues are as follows'
 WRITE (6,*)(A(J,J),J=NF,NL)
 CALL DVMGGM(A,K,VV,K,AB,K,N,N,N,ICON)
 CALL DVMGGM(VV,K,AB,K,A,K,N,N,N,ICON)
C Calculate the eigendecomposition of A
 CALL DVSEVP(A,K,N,NNF,NNL,IVEC,ETOL,CTOL,NEV,
 + E,MAXNE,M,EV,VW,IW,ICON)
 IF (ICON.GT.0) THEN
 WRITE (*,*)' VSEVP failed with parameter ',
 + 'icon=',ICON
 STOP
 ENDIF
 WRITE (*,*)' Number of eigenvalues ',
 + NEV(3)
 WRITE (*,*)' Number of distinct eigenvalues ',
 + NEV(1)
 WRITE (*,*)' Solution to eigenvalues '
 WRITE (*,*)' E ',(E(I),I=1,NEV(3))
 299 CONTINUE
 STOP
 END

(4) Method

 This routine solves an eigenvalue problem of a tridiagonal matrix created from a real
symmetric matrix. The reduction to a tridiagonal form is the Householder reduction.

 The eigenvalue problem of a tridiagonal matrix is calculated using multisectioning to find
the eigenvalues and inverse iteration for the eigenvectors. For details, see “VTDEV” and
see [33] in Appendix B, “References.”

VSEVP, DVSEVP

II-166 Fujitsu SSL II Extended Capabilities User's Guide II

 The eigenvectors of the original matrix are found by multiplying the matrix of
eigenvectors of the tridiagonal matrix by the matrix of transformations carried out in the
reduction to the tridiagonal.

VSPLL, DVSPLL

Fujitsu SSL II Extended Capabilities User’s Guide II II-167

A22-72-0202 VSPLL, DVSPLL

LLT decomposition of a symmetric positive definite matrix (blocked Cholesky
decomposition method)

CALL VSPLL (A,K,N,EPSZ,ICON)

(1) Function

 This subroutine executes LLT decomposition for an n × n positive definite matrix A using
the blocked Cholesky decomposition method of outer product type, so that

 A = LLT

 where, L is a lower triangular matrix.

(2) Parameters

A Input. The coefficient matrix A.

 Output. Matrix L.

 For input, the lower triangular part of A {aij | i ≥ j} is stored in the lower
triangular part {A(i, j) | i ≥ j} of A(1:N,1:N).

 For output, the lower triangular part of A(i,j) contains lij (i ≥ j) of the lower
triangular matrix L.

 (See Figure VSPLL-1.)

 This is a two-dimensional array A(K,N).

K Input. The adjustable dimension of array A (≥ N).

N Input. Order n of coefficient matrix A.

EPSZ Input. Judgment of relative zero of the pivot (≥ 0.0).

 When EPSZ is 0.0, the standard value is assumed.

 (See note 1) in (3), “Comments on use.”)

ICON Output. Condition code.
See Table VSPLL-1, “Condition codes.”

VSPLL, DVSPLL

II-168 Fujitsu SSL II Extended Capabilities User's Guide II

Input Array A

Unnecessary a11

a21 a22

an1 an2 ann

N

N K

Output Array A

Altered l11

l21 l22

ln1 ln2 lnn

N

NK

Figure VSPLL-1 Storing data by Cholesky decomposition

The diagonal elements and lower triangular part aij of the positive definite matrix for which
LLT decomposition is performed is stored in array A(i, j), i = j,...,n, j =1,...,n.

After LLT decomposition, the lower triangular matrix L is stored in the lower triangular part.

Table VSPLL-1 Condition codes

Code Description Processing

0 No error

20000 The pivot became relatively zero. The coefficient matrix
A may be singular.

20100 The pivot becomes negative. The coefficient matrix is not
positive definite.

30000 N < 1, EPSZ < 0, K < N.

Processing is
discontinued.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, UBLL, UBLL2, UBLLX, UBLLX2, UBLLX3

b. Comments

1) If a value is set for EPSZ, the value has the following meaning: if the value of
the selected pivot is positive and less than the value for EPSZ during LLT

decomposition by the Cholesky decomposition, the value of the pivot is assumed
to be relatively zero and processing is discontinued with ICON = 20000. When
unit round off is u, the standard value of EPSZ is 16 × u.

 When the computation is to be continued even if the value of the pivot becomes
small, assign the minimum value to EPSZ. In this case, however the result is not
assured.

2) If the pivotal value becomes negative during decomposition, the coefficient
matrix is no longer positive definite. Processing discontinues with ICON =
20100.

VSPLL, DVSPLL

Fujitsu SSL II Extended Capabilities User’s Guide II II-169

3) After the calculation has been completed, the determinant of the coefficient
matrix is computed by multiplying all the n diagonal elements of the array A and
taking the square of the result.

c. Example of use

 LLT decomposition is executed for a 2000 × 2000 matrix.
C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N=2000,K=N+1)
 REAL*8 A(K,N)
C
 DO J=1,N
 DO I=J,N
 A(I,J)=MIN(I,J)
 ENDDO
 ENDDO
C
 CALL DVSPLL(A,K,N,0.0d0,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) GO TO 10
C
 S=1.D0
 DO I=1,N
 S=S*A(I,I)
 ENDDO
C
 DET=S*S
 WRITE(6,620) DET
 WRITE(6,640)
 DO J=1,5
 WRITE(6,600) J,(A(I,J),I=J,5)
 ENDDO
 600 FORMAT(/10X,I5/(10X,3D23.16))
 610 FORMAT(/10X,5HICON=,I5)
 620 FORMAT(/10X
 *,22HDETERMINANT OF MATRIX=,D23.16)
 640 FORMAT(/10X,17HDECOMPOSED MATRIX)
 10 STOP
 END

(4) Method

 See [14] in Appendix A, "References," for details of the blocked Cholesky decomposition
method of outer product type.

VSPLX, DVSPLX

II-170 Fujitsu SSL II Extended Capabilities User's Guide II

A22-72-0302 VSPLX, DVSPLX

A system of linear equations with LLT-decomposed positive definite matrix

CALL VSPLX (B,FA,KFA,N,ICON)

(1) Function

 This subroutine solves a system of linear equations with LLT- decomposed symmetric
positive definite coefficient matrix.

 LLTx = b (1.1)

 where, L is a lower triangular matrix, b is an n-dimensional real constant vector, x is an n-
dimensional solution vector, and n ≥ 1.

 This subroutine receives the LLT-decomposed matrix from subroutine VSPLL and
calculates the solution of a system of linear equations.

(2) Parameters

B Input. Constant vector b.

 Output. Solution vector x.

 One-dimensional array of size n.

FA Input. The LLT-decomposed matrix L is stored.

 The lower triangular matrix L {lij | i ≥ j} is stored in the lower triangular part
{FA(i, j) | i ≥ j)} of FA(1:N,1:N). See Figure VSPLX-1.

 This is a two-dimensional array FA(KFA,N).

KFA Input. The size of the first dimension of array FA. (≥ N)

N Input. Order n of matrix L.

ICON Output. Condition code.
See Table VSPLX-1, “Condition codes.”

VSPLX, DVSPLX

Fujitsu SSL II Extended Capabilities User’s Guide II II-171

Array FA

Altered l11

l21 l22

ln1 ln2 lnn

N

N

KFA

Figure VSPLX-1 Storing matrices L, D-1 into array FA

After LLT decomposition, the lower triangular matrix L is stored in the lower triangular part of
the array.

Table VSPLX-1 Condition codes

Code Description Processing

0 No error

20000 The coefficient matrix is singular. Processing is
continued.

30000 N < 1 or KFA < N. Processing is
discontinued.

(3) Comments on use

a. Subprograms used

 SSL II: none

b. Comments

1) A system of linear equations with a positive definite coefficient matrix can be
solved by calling this subroutine after calling subroutine VSPLL. However,
subroutine VLSPX should be usually used to solve a system of linear equations
in one step.

c. Example of use

 A 2000 × 2000 coefficient matrix is decomposed into LLT-decomposed matrix, then
the system of linear equations is solved.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N=2000,KFA=N+1)
 REAL*8 A(KFA,N)
 REAL*8 B(N)
C
 DO J=1,N

VSPLX, DVSPLX

II-172 Fujitsu SSL II Extended Capabilities User's Guide II

 DO I=J,N
 A(I,J)=MIN(I,J)
 ENDDO
 ENDDO

 DO I=1,N
 B(I)=I*(I+1)/2+I*(N-I)
 ENDDO
C
 CALL DVSPLL(A,KFA,N,0.0D0,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) GO TO 10

 CALL DVSPLX(B,A,KFA,N,ICON)
 WRITE(6,630) (B(I),I=1,10)

 S=1.0D0
 DO I=1,N
 S=S*A(I,I)
 ENDDO

 DET=S*S
 WRITE(6,620) DET
 GO TO 10
 610 FORMAT(/10X,5HICON=,I5)
 620 FORMAT(/10X
 *,34HDETERMINANT OF COEFFICIENT MATRIX=
 *,D23.16)
 630 FORMAT(/10X,15HSOLUTION VECTOR
 *//(10X,3D23.16))
 10 STOP
 END

(4) Method

 The system of linear equations with a LLT-decomposed coefficient matrix is solved by
forward and back-substitution. (See [14] in Appendix A, "References.")

VSRFT, DVSRFT

Fujitsu SSL II Extended Capabilities User’s Guide II II-173

F17-11-0301 VSRFT, DVSRFT

One-dimensional and multiple discrete real Fourier transform (mixed radices of 2, 3,
and 5)

CALL VSRFT (X, M, N, ISIN, ISN, W, ICON)

(1) Function

 This subroutine performs one-dimensional discrete real Fourier transforms (for m
multiplicity).

 n must be a number expressed as a product of powers of 2, 3, and 5, where n is the size of
the data to be transformed.

1) Transform

 Inputting {xk1j2} and performing the transform defined in (1.1), obtains {n αk1k2}.

 rkj
njk

n

j
kk xn 22

21

1

02
21 . −

−

=
∑= ωα (1.1)

 ωn = exp(2πi/n)

 r = 1 or r = -1 can be specified for the transform direction.

 k1 = 0, 1, ..., m-1,

 k2 = 0, 1, ..., n-1

2) Inverse transform

 Inputting {αk1k2} and performing the transform defined in (2.1) obtains {xk1j2}.

 xk j
k

n
k k n

j k r
1 2

2 0

1
1 2

2 2= ∑
=

−
α ω. (1.2)

 ωn = exp(2πi/n)

 In the inverse transform, the direction inverse to that specified in the transform must
be specified.

 r = -1 or r = 1

 k1 = 0, 1, ..., m-1,

 j2 = 0, 1, ..., n-1

 The result of the real Fourier transform has a complex conjugate relation. The first
n/2 + 1 elements of k2 in {n αk1k2} are stored. Either m or n must be an even number.

(2) Parameters

X................ For ISN = 1 (transform from real to complex):

Input. Real data {xk1j2} is stored in X (1:m, 1:n).

Output. The real part of {n αk1k2} is stored in X (1:m, 1:n/2 + 1). The
imaginary part of {n αk1k2} is stored in X (1:m, n/2 + 2:2 × (n/2 + 1)).

k1 = 0, 1, ..., m-1,

k2 = 0, 1, ..., n/2

VSRFT, DVSRFT

II-174 Fujitsu SSL II Extended Capabilities User's Guide II

For ISN = -1 (transform from complex to real):

Input. The real part of {αk1k2} is stored in X (1:m, 1:n/2 + 1). The imaginary
part of {αk1k2} is stored in X (1:m, n/2 + 2:2 × (n/2 + 1)).

k1 = 0, 1, ..., m-1,

k2 = 0, 1, ..., n/2

Output. The real data {xk1j2} is stored in X (1:m, 1:n).

Two-dimensional array X (m, (n + 4 × int (n / 2))).

X (m, 2 × (n/2 + 1) + 1:n + 4 × int (n / 2)) is used internally. The operation
result is not guaranteed.

M................ Input. m of the multiplicity (number of data items) for which one-dimensional
discrete real Fourier transform is performed. Either m or n must be an even
number.

N................ Input. n of the size of data on which the one-dimensional discrete real Fourier
transform is performed. n is a number expressed as a product of powers of 2, 3,
and 5. Either m or n must be an even number.

ISIN............ Input. Fourier transform direction r.

For ISIN = 1, r = 1.

For ISIN = -1, r = -1.

ISN............. Input.

For ISN = 1, normal transform (real to complex).

For ISN = -1, inverse transform (complex to real).

W............... Work area.

One-dimensional array of size 2 × n + m × (n +4 × int (n / 2)).

ICON.......... Output. Condition code.

See Table VSRFT-1, “Condition codes.”

Table VSRFT-1 Condition codes

Code Description Processing

0 No error -

30001 M ≤ 0 or N ≤ 0 Processing is stopped.

30008 N is not an integer expressed as a product of powers of 2,
3, and 5.

30016 ISIN ≠ 1 and ISIN ≠ -1

30032 ISN ≠ 1 and ISN ≠ -1

30512 Both M and N are odd numbers. Processing is stopped.

VSRFT, DVSRFT

Fujitsu SSL II Extended Capabilities User’s Guide II II-175

(3) Comments on use

a. Subprograms used

 SSLII: UASSM, UCTSV, USEPR, UFIX, UJOIN, USPLT, UUFIX, USTUP, UCFS,
UCF16, UCFT2, UCFT3, UCFT4, UCFT5, UCFT8, UFMRW, UCRU, UCTRF,
MGSSL

b. Comments

1) General definition of Fourier transform

 The multiple discrete Fourier transform and inverse transform are generally
defined as in (3.1) and (3.2).

 22
1

02
2121

1 kj
n

j
jkkk x

n
−

−

=
∑= nωα (3.1)

 k1 = 0, 1, ..., m-1

 , k2 = 0, 1, ..., n-1

 22
1

02
2121

kj
n

k
kjjjx nωα∑

−

=

= (3.2)

 j1 = 0, 1, ..., m-1

 , j2 = 0, 1, ..., n-1

 where

)/2exp(niπω =

 The subroutine calculates n 21kkα or xj1j2 corresponding to the left-hand terms of
(1.1) and (1.2). If necessary, the user must normalize the results.

2) The result of the multiple discrete real Fourier transform has the following
complex conjugate relation:

2121 knkkk −= αα

 k1 = 0, ..., m-1

 , k2 = 1, ..., n/2

 The rest of terms can be calculated using this relation.

3) Two methods are used, one for when n is an even number and one for when m is
an even number. The method for when n is even has the vector length is about

nm . The method for when m is even has vector length m/2, but performs less
data movement.

 The routine performs transforms at maximum speed when m is a large even
number.

c. Example of use

 In this example, a one-dimensional real FFT of multiplicity m = 500 is calculated.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)

VSRFT, DVSRFT

II-176 Fujitsu SSL II Extended Capabilities User's Guide II

 PARAMETER(M=500,N=2**10)
 PARAMETER(N2=N+4*22)
 DIMENSION X(M,N2),W(2*N+M*N2)
C
 DO 100 J=1,M
 DO 100 I=1,N
 X(J,I)=FLOAT(I)+FLOAT(N)*(J-1)
 100 CONTINUE
C
 ISIN=1
 ISN= 1
C
C REAL TO COMPLEX TRANSFORM
C
 CALL DVSRFT(X,M,N,ISIN,ISN,W,ICON)
 PRINT*,'ICON=',ICON
C
 ISIN=-1
 ISN=-1
C
C COMPLEX TO REAL TRANSFORM
C
 CALL DVSRFT(X,M,N,ISIN,ISN,W,ICON)
 PRINT*,'ICON=',ICON
C
 ERROR=0.0D0
 DO 200 J=1,M
 DO 200 I=1,N
 ERROR=MAX(ABS(X(J,I)/N-
 & (FLOAT(I)+FLOAT(N)*(J-1))),ERROR)
 200 CONTINUE
C
 PRINT*,'ERROR=',ERROR
 STOP
 END

VTDEV, DVTDEV

Fujitsu SSL II Extended Capabilities User’s Guide II II-177

B71-12-0101 VTDEV, DVTDEV

Eigenvalues and eigenvectors of real tridiagonal matrix

CALL VTDEV (D, SL, SU, N, NF, IVEC, ETOL, CTOL, NEV, E, MAXNE, EV,
 K, M, VW, IVW, ICON)

(1) Function

 This routine computes the eigenvalues and, optionally, the corresponding eigenvectors of
a real tridiagonal matrix.

 Tx = λx (1.1)

 The subdiagonal and superdiagonal elements of the tridiagonal matrix T of dimension n
must satisfy the following conditions:

 li ui-1 > 0, i = 2, ... , n (1.2)

 Where l1 is equal to un = 0 and

 (Tv)i = li vi-1 + di vi + ui vi+1, i = 1, 2, ... , n (1.3)

(2) Parameters

D................ Input. One-dimensional array D (N) containing the diagonal elements of T.

SL............... Input. One-dimensional array SL (N) containing the subdiagonal elements of T
in SL (2:N). SL (1) = 0.

SU.............. Input. One-dimensional array SU (N) containing superdiagonal elements of T
in SU (1:N-1). SU (N) = 0.

N................ Input. Order n of tridiagonal matrix.

NF.............. Input. The index of the first eigenvalue sought, where eigenvalues are
numbered in ascending order. Eigenvalues with indices in the range NF to NF
+ NEV (1) - 1 are computed.
Output. The index of the first eigenvalue obtained, taking into account the case
in which the first obtained eigenvalue is multiple and/or part of a cluster.

IVEC.......... Input. Control information.
1: Both the eigenvalues and eigenvectors are sought.
Other than 1: Only the eigenvalues is sought.

ETOL......... Input. A criterion value required to determine whether an eigenvalue is distinct
or numerically multiple based on expression (3.4). The default value is 3.0D-16
for double precision (2.0D-7 for single precision) when this value is set to less
than.
(See item (3), “Comments on use,” b., 2).)

CTOL......... Input. A criterion value required to determine whether adjacent eigenvalues are
approximately multiple i.e. clustered according to expression (3.4). CTOL ≥
ETOL
When CTOL is less than ETOL, CTOL = ETOL is set.
(See item (3), “Comments on use,” b., 2).)

NEV........... Input. NEV (1) indicates the number eigenvalues to be computed.
Output. NEV (1) indicates the number of distinct eigenvalues.
NEV (2) indicates the number of distinct clusters.

VTDEV, DVTDEV

II-178 Fujitsu SSL II Extended Capabilities User's Guide II

NEV (3) indicates the total number of eigenvalues including multiplicities.
One-dimensional array NEV (3).

E................. Output.
The eigenvalues computed are stored in E(1:NEV(3)).
One-dimensional array E (MAXNE).

MAXNE...... Input. The maximum number of eigenvalues that can be computed.
Dimension of array E.
When NEV (3) is greater than MAXNE, eigenvectors cannot be computed.
(See item (3), “Comments on use,” b., 3).)

EV.............. Output. When IVEC = 1, the eigenvectors corresponding to the computed
eigenvalues are returned in EV (1:N, 1:NEV(3)).
Two-dimensional array EV (K, MAXNE).

K................ Input. Leading dimension of array EV (≥ N).

M................ Output. Information about the multiplicity of the computed eigenvalues.
M (i, 1) indicates the multiplicity of the i-th eigenvalue λi. M (i, 2) indicates the
size of the i-th cluster of eigenvalues.
(See item (3), “Comments on use,” b., 3).)
Two-dimensional array M (MAXNE, 2).

VW............. Work area. One-dimensional array of size 12 × N.

IVW........... Work area. One-dimensional array of size 9 × MAXNE + 128.

ICON.......... Output. Condition code.
See Table VTDEV-1, “Condition codes.”

Table VTDEV-1 Condition codes

Code Meaning Processing

0 No error -

20000 The total number of eigenvalues
exceeded MAXNE during computation
of multiple eigenvalues and/or
clustered.

Processing is stopped. The eigenvectors
cannot be computed. Eigenvalues are
returned but are not stored taking into
account multiplicities.

(See item (3), “Comments on use,” b.,
3).)

30000 N<1, K<1, NF<1, NEV(1)<1,
NF+NEV (1)>N, N>K

Processing is stopped.

30100 SL (i) × SU (i-1) ≤ 0,
The matrix cannot be symmetrized.

Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: UTMLS, UZRDM, UTDEY, UTDEX, UIBBS, UIBFC, UIBFE, UIBSL,
UITBS, UITFC, UITFE, UITSL, AMACH, MGSSL

b. Comments

1) Problem solved using this routine

VTDEV, DVTDEV

Fujitsu SSL II Extended Capabilities User’s Guide II II-179

 This routine requires only that li ui-1 > 0. Therefore, this routine can also used to
solve the generalized eigenvalue problem in (3.1) by the following replacement:

 T ← TD-1

 DvTv λ= (3.1)

 Where, the diagonal matrix must satisfy D > 0.

 The eigenvalue problem for T can be reduced to a symmetric generalized
eigenvalue problem.

 0)(=− vDDT λ (3.2)

 Where, D1 = 1 and Di = ui-1 Di-1 / li i = 2, ... , n.

 If Di can cause a scaling problem, it is preferable to consider the symmetric
problem.

 0)(2/12/1 =− wITDD λ (3.3)

 Where w = D1/2 v.

2) This routine pays special attention to a clustered eigenvalue.

 With ε is equal to ETOL, suppose that the eigenvalues ,...1,, += ssjjλ , and s+k

(k ≥ 0) are such that

ε
λλ

λλ
≤

+

−

−

−

),max(1 1

1

ii

ii (3.4)

 While (3.4) is not satisfied for i = s-1 and i = s + k + 1, then eigenvalues jλ , j =
s - 1, s, ..., s + k are considered to be identical, i.e., a single multiple eigenvalue
of multiplicity k + 1.

 The default value of ETOL is 3.0D-16 for double precision (2.0D-7 for single-
precision). Using this value, eigenvalues are refined to machine precision.

 When (3.4) is not satisfied for ETOL=ε , 1−iλ and iλ are assumed to be
distinct eigenvalues.

 If (3.4) holds with ε = CTOL (but not with ε = ETOL) for eigenvalues mλ , m=t,
t+1, ..., t+k but not for 1−tλ and 1++ktλ , these eigenvalues are considered to be
approximately multiple, i.e. clustered, though distinct (not numerically multiple).
In order to obtain an invariant subspace, eigenvectors corresponding to clustered
eigenvalues are computed using orthogonal starting vectors and are
reorthogonalized. Of course CTOL ≥ ETOL; if this condition is not satisfied,
CTOL is set to be equal to ETOL.

3) Assume r eigenvalues are requested. Note that if the first or last requested
eigenvalue has a multiplicity greater than 1 then more than r eigenvalues, are
obtained. The corresponding eigenvectors can be computed only when the
corresponding eigenvector storage area is sufficient.

 The maximum number of computable eigenvalues can be specified in MAXNE.
If the total number of eigenvalues exceeds MAXNE, ICON = 20000 is returned.
The corresponding eigenvectors cannot be computed. In this case, the
eigenvalues are returned, but they are not stored repeatedly according to
multiplicities.

VTDEV, DVTDEV

II-180 Fujitsu SSL II Extended Capabilities User's Guide II

 When all eigenvalues are distinct, it is sufficient to set MAXNE = NEV (1).

c. Example of use

 Here, we give a simple calculation to find ne eigenvalues and corresponding
eigenvectors for a model problem based on a modification of one due to Wilkinson
[45] which is known to have numerically multiple eigenvalues.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 INTEGER K,P1,Q1,N,N0,N1,MAX_CLUS,NE,MAXNE,NVW,NIVW
 REAL*8 ETOL,CTOL
C
 PARAMETER (K=1000)
 PARAMETER (P1=350,Q1=2,N=P1*Q1,N0=584,N1=686,
 & NE=N1-N0+1)
 PARAMETER (MAX_CLUS=2*Q1,MAXNE=NE+MAX_CLUS)
 PARAMETER (NVW=12*N,NIVW=9*MAXNE+128)
C
 REAL*8 SL(N),D(N),SU(N),E(MAXNE),EV(K,MAXNE),VW(NVW)
 INTEGER M(MAXNE,2),NEV(3),IVW(NIVW),NF,ICON,NEVAL,I
 & ,J,KK,IVEC
 LOGICAL EVAL_OUTPUT,DBG_OUTPUT
C
 ETOL=3.D-16
 CTOL=5.D-12
 IVEC=1
C
C Blocked W ^+_n (Wilkinson): Pathologically close
C eigenvalues in each p1 x p1 (p1 odd, small) block,
C with q1 blocks so that multiplicity of largest
C eigenvalues is 2*q1. If maxnev <2*q1 then error
C condition 20000 is obtained.
C
 J = (P1 + 1) / 2
 D(J) = 0.D0
 DO 10 I=1,J-1 ! first block
 SL(I+1) = 1.D0
 SU(I) = 1.D0
 SL(J+I) = 1.D0
 SU(J+I-1) = 1.D0
 D(I) = FLOAT(J-I)
 D(2*J-I) = D(I)
 10 CONTINUE
 SL(1) = 0.D0
 SU(P1) = 0.D0
 DO 20 KK=2,Q1 ! subsequent blocks
 II = (KK-1) * P1
 DO 20 I=1,P1
 SL(II+I) = SL(I)
 SU(II+I) = SU(I)
 D(II+I) = D(I)
 20 CONTINUE
 SL(1) = 0.D0
 SU(N) = 0.D0
 NF = N0
 NEV(1) = NE

VTDEV, DVTDEV

Fujitsu SSL II Extended Capabilities User’s Guide II II-181

 ICON = 0
C
 CALL DVTDEV(D,SL,SU,N,NF,IVEC,ETOL,CTOL,NEV,E,MAXNE
 & ,EV,K,M,VW,IVW,ICON)
C
 DBG_OUTPUT = .FALSE.
 IF(ICON .EQ. 20000) DBG_OUTPUT = .TRUE.
 EVAL_OUTPUT = .TRUE.
 IF (ICON .EQ. 30000 .OR. ICON .EQ. 30100)
 & EVAL_OUTPUT = .FALSE.
 IF (EVAL_OUTPUT) THEN
 NEVAL = NF
 WRITE(*,*)' ICON = ',ICON
 II=1
 DO 30 J=1,NEV(1)
 WRITE(*,900) NEVAL,E(II),M(J,1)
 IF (DBG_OUTPUT) THEN
 II = II + 1
 ELSE
 II = II + M(J,1)
 ENDIF
 NEVAL = NEVAL + M(J,1)
 30 CONTINUE
 ENDIF
C
 900 FORMAT(' EIGENVALUE(',I5,')=',E25.18,2X,
 & ' WITH MULTIPLICITY=',I5)
C
 STOP
 END

(4) Method

 In the version of the Sturm count-based algorithm used here at least three subintervals are
required in the refinement of each interval over which a sign change is detected [37].
Therefore at least 4 × MAXNE points are required. Since this number determines the
vector length used in the computation and the minimum vector register length on the VPP
series is 64, this routine sets the number of points to be some multiple of 64 which is
larger than 4 × MAXNE.

 A composite data structure is used: An array structure which facilitates vectorization is
combined with an LIFO (last in, first out) list structure to keep track of both eigenvalue
ordering and multisectioning; this is discussed in [33]. The computation is carried out
until the limit of refinement as determined by ETOL is reached. (See [45].) When the
default value is selected, the accuracy of the eigenvalue estimate relative to the scale of
the matrix should approach machine precision.

 The prescription for evaluating the Sturm count, follows [10]; it has the property that the
sign count is a monotonic function of the eigenvalue parameter in IEEE floating-point
arithmetic.

 Eigenvectors are computed by inverse iteration. The initial vector is chosen using the
sign structure of the Sturm sequence except when numerically multiple (or approximately
multiple) eigenvalues have been detected. In this case additional initial vectors are
generated randomly and orthogonalized with respect to the other vectors of the cluster.
Usually one step of inverse iteration suffices. Eigenvectors corresponding to clustered
eigenvalues are also reorthogonalized after inverse iteration.

VTDEV, DVTDEV

II-182 Fujitsu SSL II Extended Capabilities User's Guide II

VTFQD, DVTFQD

Fujitsu SSL II Extended Capabilities User’s Guide II II-183

A72-25-0101 VTFQD, DVTFQD

System of linear equations with unsymmetric or indefinite sparse matrix (TFQMR
method, diagonal storage format)

CALL VTFQD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS, X, ITER,
 VW, ICON)

(1) Function

 This routine solves linear equations with an n × n unsymmetric or indefinite sparse matrix
using the transpose-free quasi-minimal residual method (TFQMR).

 Ax = b

 The n × n coefficient is stored with the diagonal format method. Vectors b and x are n-
dimensional vectors.

 The iterative calculation may not be continued (break-down) because of the
characteristics of the initial vector and coefficient matrices. This is because zero is
obtained as the intermediate result in the recursive calculation formula. In this case, use
the MGCR method that causes no break-down.

 Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A................ Input. Stores non-zero elements in a coefficient matrix.
Two-dimensional array A (K, NDIAG). Stores coefficient matrix A in A (1:N,
NDIAG) with the diagonal storage format. For the diagonal storage format, see
Part I, “Overview,” Section 3.2.1.1, “Storage Methods for General Sparse
Matrices,” b., “Diagonal Storage Format for General Sparse Matrices.”

K................ Input. Size of adjustable dimension of array A

NDIAG....... Input. The number of diagonal vectors in coefficient matrix A that contain non-
zero elements.
Size of second-dimension of array A.

N................ Input. Order n of matrix A.

NOFST.... Input. Stores the distance from the main diagonal vector corresponding to
diagonal vectors stored in array A. Superdiagonal vectors have positive values;
a subdiagonal vector have negative values.
One-dimensional array NOFST (NDIAG).

B................. Input. One-dimensional array of size n. Stores the constant vector of the right-
hand side term of a linear equation system.

ITMAX....... Input. The upper limit of iterations in TFQMR method (> 0).

EPS............. Input. A convergence criterion value in judgment of convergency.
If EPS is 0.0 or less, it is set to 10-6 in double-precision routines and 10-4 in
single-precision routines.
(See item (3), “Comments on use,” b., 1).)

VTFQD, DVTFQD

II-184 Fujitsu SSL II Extended Capabilities User's Guide II

IGUSS........ Input. Sets control information about whether to start the iterative computation
from the approximate value of the solution vector specified in array X.
IGUSS=0: Approximate value of the solution vector is not specified.
IGUSS≠0: The iterative computation starts from the approximate value of the
solution vector specified in array X.

X................. Input. One-dimensional array of size n. Can specify the approximate value of
the solution vector.
Output. The solution vector is stored.

ITER........... Output. Number of iteration performed using the QMR method.

VW............. Work area. One-dimensional array K × 10 + N + NBANDL + NBANDR.
NBANDL indicates a lower bandwidth; NBANDR indicates an upper
bandwidth.

ICON.......... Output. Condition code
See Table VTFQD-1, “Condition codes.”

Table VTFQD-1 Condition codes

Code Meaning Processing

0 No error -

20000 Break-down occurred Processing is stopped.

0001 The upper limit of iteration steps was
reached.

Processing is stopped.

The approximate value obtained up to
this point in array X is output, but their
precision cannot be guaranteed.

30000 K<1, N<1, K<N, NDIAG<1,
K<NDIAG, or ITMAX ≤ 0

Processing is stopped.

32001 | NOFST (I) | > N-1 Processing is stopped.

(1) Comments on use

a. Subprograms used

 SSL II: AMACH, URGWD, URIPA, URITI, URITT, URMVD, USSCP, URSTE,
USVCN, USVCP, USVSU, USVUP, USVN2, URELT, MGSSL, UTFQD, UTFQR,
UQBBM

b. Comments

1) In the QMR method, if the residual Euclidean norm is equal to or less than the
product of the initial residual Euclidean norm and EPS, it is judged as having
converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of Matrix
A and EPS.

2) Notes on using the diagonal format

 A diagonal vector element outside coefficient matrix A must be set to zero.
There is no restriction in the order in which diagonal vectors are stored in array
A.

 The advantage of this method lies in the fact that the matrix vector multiplication
can be calculated without the use of indirect indices. The disadvantage is that

VTFQD, DVTFQD

Fujitsu SSL II Extended Capabilities User’s Guide II II-185

matrices without the diagonal structure cannot be stored efficiently with this
method.

c. Example of use

 In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0,1] × [0,1] × [0,1], with the
Dirichlet boundary condition (function value zero at the boundary).

 This type of partial differential operator is described in Part I, “Overview,” Section
3.2.2 “Discretization of partial differential operators and storage examples for them.”

 For INIT_MAT_DIAG, see Part I, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.”
GET_BANDWIDTH_DIAG is a routine that estimates band width. INIT_SOL is a
routine that generates solution vectors to be sought with random numbers.

C **EXAMPLE**
 PROGRAM TEST_ITER_SOLVERS
 IMPLICIT REAL*8 (A-H,O-Z)
 INTEGER MACH
 PARAMETER (MACH = 0)
 PARAMETER (K = 10000)
 PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ)
 PARAMETER (NDIAG = 7,NVW = 10*K+N+400+400)
 REAL*8 A(K,NDIAG),X(N),B(N),SOLEX(N),VW(NVW)
 INTEGER NOFST(NDIAG)
C
 CALL INIT_SOL(SOLEX,N,1D0,MACH)
 PRINT*,'EXPECTED SOLUSIONS'
 PRINT*,'X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
C
 PRINT *
 PRINT *,' TFQMR METHOD'
 PRINT *,' DIAGONAL FORMAT'
C
 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0
 ZL = 1.0

 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
 CALL GET_BANDWIDTH_DIAG(NOFST,NDIAG,NBANDL,NBANDR)
 DO 110 I = 1,N
 VW(I+NBANDL) = SOLEX(I)
 110 CONTINUE
 CALL DVMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON)
 PRINT*,'DVMVSD ICON=',ICON
C
 EPS = 1D-10
 IGUSS = 0
 ITMAX = 2000
 CALL DVTFQD(A,K,NDIAG,N,NOFST,B,ITMAX
 & ,EPS,IGUSS,X,ITER,VW,ICON)

VTFQD, DVTFQD

II-186 Fujitsu SSL II Extended Capabilities User's Guide II

C
 PRINT* ,'ITER = ',ITER
 PRINT* ,'DVTFQD ICON = ',ICON
 PRINT*, 'COMPUTED VALUES'
 PRINT*, 'X(1) = ',X(1),' X(N) = ',X(N)
 STOP
 END

(4) Method

 For the TFQMR method, see [12].

VTFQE, DVTFQE

Fujitsu SSL II Extended Capabilities User’s Guide II II-187

A72-26-0101 VTFQE, DVTFQE

System of linear equations with unsymmetric or indefinite sparse matrix (TFQMR
method, ELLPACK storage format)

CALL VTFQE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS, X, ITER, VW,
 ICON)

(1) Function

 This routine solves linear equations with an n × n unsymmetric or indefinite sparse matrix
using the transpose-free quasi-minimal residual method.

 Ax = b

 Coefficient matrices (n × n) are stored with the ELLPACK format method. Vectors b
and x are n-dimensional vectors.

 The iterative calculation may not be continued (break-down) because of the
characteristics of the initial vector and coefficient matrices. This is because zero is
obtained as the intermediate result in the recursive calculation formula. In this case, use
the MGCR method that causes no break-down.

 Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A................ Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, IWIDT).
For the ELLPACK storage format, see Part I, “Overview,” Section 3.2.1.1,
“Storage Method for General Sparse Matrices.”

K................ Input. Size of adjustable dimension (≥ n) of A and ICOL.

IWIDT...... Input. The maximum number of non-zero-elements in row vector direction on
the coefficient matrix A.
Two dimensional size of A and ICOL.

N................ Input. Order n of matrix A.

ICOL.......... Input. Store the column indices of the element stored in the array A using the
ELLPACK format, indicating which column vectors the corresponding
elements in the array A belong to.
Two-dimensional array ICOL (K, IWIDT)

B................. Input. One-dimensional array of size n. Stores a constant vector of the right-
hand-side term of a linear equation system.

ITMAX....... Input. The upper limit of iterations in TFQMR method (> 0).

EPS............. Input. A convergence criterion value in judgment of convergency.
If EPS is 0.0 or less, it is set to 10-6 in double-precision routines and 10-4 in
single-precision routines.
(See item (3), “Comments on use,” b., 1).)

IGUSS........ Input. Control information about whether to start the iterative computation
from the approximate value of the solution vector specified in array X.
IGUSS=0: Approximate value of the solution vector is not set.

VTFQE, DVTFQE

II-188 Fujitsu SSL II Extended Capabilities User's Guide II

IGUSS≠0: The iterative computation starts from the approximate value of the
solution vector specified in array X.

X................ Input. One-dimensional array of size n. An approximate value of a solution
vector can be specified.
Output. Stores a solution vector.

ITER.......... Output. The real number of iteration steps in TFQMR method.

VW............. Work area. One-dimensional array K × 13.

ICON.......... Output. Condition code
See Table VTFQE-1, “Condition codes.”

Table VTFQE-1 Condition codes

Code Meaning Processing

0 No error -

20000 Break-down occurred Processing is stopped.

20001 The upper limit of iteration steps was
reached.

Processing is stopped.

The approximate values obtained up to
this point in array X are output, but their
precision cannot be guaranteed.

30000 K<1, N<1, K<N, IWIDT<1, K<IWIDT,
or
ITMAX ≤ 0

Processing is stopped.

(3) Comments on use

a. Subprograms used

 SSL II: AMACH, URIPA, URITI, URITT, URMVE, USSCP, URSTE, USVCN,
 USVCP, USVSU, USVUP, USVN2, URELT, MGSSL, UTFQE, UTFQR,
 UQBBM

 b. Comments

1) In the TFQMR method, if the residual Euclidean norm is equal to or less than the
product of the initial residual Euclidean norm and EPS, it is judged as having
converged. The difference between the precise solution and obtained
approximate solution is equal to the product of the condition number of matrix A
and EPS.

c. Example of use

 In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0,1] × [0,1] × [0,1] with the
Dirichlet boundary condition (function value zero at the boundary). This type of
partial differential operator is described in Part I, “Overview,” Section 3.2.2,
“Discretization of partial differential operator and storage examples for them.”

 For INIT_MAT_ELL, see Part I, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.”

 INIT_SOL is the routine that generates the solution vectors to be sought in random
numbers.

VTFQE, DVTFQE

Fujitsu SSL II Extended Capabilities User’s Guide II II-189

C **EXAMPLE**
 PROGRAM TEST_ITER_SOLVERS
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (MACH = 0)
 PARAMETER (K = 10000)
 PARAMETER (NX = 20,NY = 20,NZ = 20,N = NX*NY*NZ)
 PARAMETER (IWIDT = 7,NVW = K*13)
 REAL*8 A(K,IWIDT),X(N),B(N),SOLEX(N),VW(NVW)
 INTEGER ICOL(K,IWIDT)
C
 CALL INIT_SOL(SOLEX,N,1D0,MACH)
 PRINT*,'EXPECTED SOLUTION'
 PRINT*,'X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT*
 PRINT*,' TFQMR METHOD'
 PRINT*,' ELLPACK FORMAT'
C
 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 5D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
C
 CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL
 & ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K)
 CALL DVMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON)
 PRINT*,'DVMVSE ICON = ',ICON
C
 EPS = 1D-10
 IGUSS = 0
 ITMAX = 800
 CALL DVTFQE(A,K,IWIDT,N,ICOL,B,ITMAX
 & ,EPS,IGUSS,X,ITER,VW,ICON)
C
 PRINT*,'DVTFQE ICON = ',ICON
 PRINT*,'COMPUTED VALUE'
 PRINT*,'X(1) = ',X(1),' X(N) = ',X(N)
 STOP
 END

(4) Method

 For the TFQMR method, see [12].

VWFLT, DVWFLT

II-190 Fujitsu SSL II Extended Capabilities User's Guide II

F18-11-0101 VWFLT, DVWFLT

Wavelet filter generation

CALL VWFLT (F, N, ICON)

(1) Function

 This routine generates a filter corresponding to the Daubechies wavelet (order n) having a
compact support. The filters of order 2, 4, 6, 12, and 20 can be generated.

(2) Parameters

F................. Output. One-dimensional array of size 2 × N. Stores a wavelet filter used for
transform.
(See item (3), “Comments on use,” b., 1).)

N................. Input. The number of wavelet filter coefficients. (2, 4, 6, 12, or 20)

ICON.......... Output. Condition code.
See Table VWFLT-1, “Condition codes.”

Table VWFLT-1 Condition codes

Code Meaning Processing

0 No error -

30000 N is not 2, 4, 6, 12, or 20. Processing is stopped.

(3) Comments on use

a. Subprograms used

 None.

b. Comments

1) Filter conditions

 The orthogonal filter used for this function is described by a vector of size 2 × N.
F(1) ,..., F(N) defines a low-pass filter; F(N+1), ..., F(2×N) defines a high-pass
filter. These coefficients satisfy the following relationships:

 F() F(2N +1-) = (-1) F2i i i ii

i
= =∑

=
1 1

1
, (), ,...,

N
N

 For details, see [7] and [9].

c. Example of use

 This example shows a one-dimensional wavelet transform and inverse transform for
data of size n = 1024.

VWFLT, DVWFLT

Fujitsu SSL II Extended Capabilities User’s Guide II II-191

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)

C -------- Constants ------------
 INTEGER MaxK, MaxSize
 PARAMETER (MaxK = 20,MaxSize = 1024)

C -------- Variables and formats ------------
 INTEGER N,K,i,ISN,ICON,LS
 REAL*8 X(1:MaxSize),T(1:MaxSize),Y(1:MaxSize),
 & F(1:2*MaxK),
 & ireal,Emax,diff,temp,Xmax,Erel

C -------- Generate input ------------
 N = 1024
 K = 6
 LS = 3

 DO 100 i= 1,N
 ireal = i
 temp = 0.5 - abs(ireal/N - 0.5)
 X(i) = temp ! Input vector
 T(i) = temp ! Reference vector
 100 CONTINUE

C --------------- Initialize filter ------
 CALL DVWFLT(F,K,ICON)

C ---------------- Transform Data ----------------

 ISN=1
 CALL DV1DWT(X,N,Y,ISN,F,K,LS,ICON)
 IF (ICON .NE. 0) THEN
 PRINT*,'ERROR IN 1D Wavelet Transform,ICON = ',ICON
 STOP
 ENDIF

C ---------------- Transform back ---------------

 ISN=-1
 CALL DV1DWT(X,N,Y,ISN,F,K,LS,ICON)
 IF (ICON .NE. 0) THEN
 PRINT*,'ERROR IN Inverse of 1D Wavelet Transform,'
 & ,'ICON = ',ICON
 STOP
 ENDIF

C ------ Verify result ------

 Emax = 0.0
 Xmax = 0.0
 DO 200 i=1,N
 diff = abs(X(i)-T(i))
 IF (diff .GT. Emax) Emax = diff
 IF (abs(X(i)) .GT. Xmax) Xmax = abs(X(i))
 200 CONTINUE

VWFLT, DVWFLT

II-192 Fujitsu SSL II Extended Capabilities User's Guide II

 Erel = Emax/Xmax
 IF (Erel .GT. 1.0e-4) THEN
 PRINT*,'Relative Max error (FWT):',Erel
 STOP
 END IF
 PRINT*,'1D Wavelet Transform OK'

 STOP
 END

V1DWT, DV1DWT

Fujitsu SSL II Extended Capabilities User’s Guide II II-193

F18-12-0101 V1DWT, DV1DWT

One-dimensional wavelet transform

CALL V1DWT (X, N, Y, ISN, F, K, LS, ICON)

(1) Function

 This routine performs a one-dimensional wavelet transform or its inverse. The transform
is defined by its high- and low- pass filter coefficients.

(2) Parameters

X............... Input or output. One-dimensional array X(N). Stores vector data to be
transformed as input in the case of wavelet transform (ISN = 1);
the transformed vector data is stored as output in the case of the inverse
transform (ISN = -1).

N................ Input. Length of the transformed data. Must be a power of two.
(See item (3), “Comments on use,” b., 1).)

Y................. Output or input. One-dimensional array Y(N). The transformed vector data is
stored as output in the case of the wavelet transform (ISN = 1); store vector data
to be transformed as input in the case of the inverse transform (ISN = -1).
(See item (3), “Comments on use,” b., 2).)

ISN............. Input. Specify transform or inverse transform.
Transform: ISN = 1
Inverse transform: ISN = -1

F................. Input. One-dimensional array of size 2 × K. Stores the wavelet filter used for
transform. The user can supply either the filter coefficients F, or call VWFLT
before this routine to specify a filter coefficient used for the one-dimensional
wavelet transform.
(See item (3), “Comments on use,” b., 3).)

K................. Input. A positive even number to indicate the number of the wavelet filter
coefficients.

LS............... Input. A positive integer that indicates the depth of transform for vector data.
N ≥ 2LS. When N = 2LS, a full wavelet transform is performed.

ICON.......... Output. Condition code.
See Table V1DWT-1, “Condition codes.”

Table V1DWT-1 Condition codes

Code Meaning Processing

0 No error -

30000 ISN ≠ 1 and ISN ≠ -1 Processing is stopped.

30002 N<2

30004 N is not a power of 2.

30008 K is not an even number, or LS < 0, LS
> log2N

Processing is stopped.

V1DWT, DV1DWT

II-194 Fujitsu SSL II Extended Capabilities User's Guide II

(3) Comments on use

a. Subprograms used

 SSL II: UWFT1, UWFI1, UWPT1, UWVI1, UWPI1, UWVT1, MGSSL

b. Comments

1) When the size of the data to be transformed is not a power of two, the wavelet
transform can be done storing the data with the remaining data padded with
zeros in a larger array with size N of a power of two.

2) Storing the transform result

 For vector vj in one-dimensional input data, the result of the high-pass filter in
each partial wavelet transform is stored in vj (N×2-i+1:N×2-i+1), i=1, ..., LS. The
output result of the high-pass filter for partial wavelet transform in the first stage
is stored in Y(N/2 + 1:N, M/2 + 1: M).

3) Filter conditions

 The orthogonal filter used for this function generally has a vector of size 2 × K.
F(1), ..., F(K) defines the low-pass filter coefficients; F(K+1), ..., F(2×K) defines
the high-pass filter coefficients. These coefficients have the following
relationships:

KF
K

...,,1),((-1)=)-1+F(2K ,1)F(
1

2∑
=

==
i

i iiii

 For details, see [7] and [9].

c. Example of use

 For data of size n = 1024, perform the one-dimensional wavelet transform and
inverse transform.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)

C -------- Constants ------------
 INTEGER MaxK, MaxSize
 PARAMETER (MaxK = 20,
 & MaxSize = 1024)

C -------- Variables and formats ------------
 INTEGER N,K,i,ISN,ICON,LS
 REAL*8 X(1:MaxSize),T(1:MaxSize),Y(1:MaxSize),
 & F(1:2*MaxK),
 & ireal,Emax,diff,temp,Xmax,Erel
C -------- Generate input ------------
 N = 1024
 K = 6
 LS = 3

 DO 100 i= 1,N
 ireal = i

 temp = 0.5 - abs(ireal/N - 0.5)
 X(i) = temp ! Input vector

V1DWT, DV1DWT

Fujitsu SSL II Extended Capabilities User’s Guide II II-195

 T(i) = temp ! Reference vector
 100 CONTINUE

C --------------- Initialize filter ------
 CALL DVWFLT(F,K,ICON)

C ---------------- Transform Data ----------------

 ISN=1
 CALL DV1DWT(X,N,Y,ISN,F,K,LS,ICON)
 IF (ICON .NE. 0) THEN
 PRINT*,'ERROR IN 1D Wavelet Transform,ICON = ',ICON
 STOP
 ENDIF

C ---------------- Transform back ---------------

 ISN=-1
 CALL DV1DWT(X,N,Y,ISN,F,K,LS,ICON)
 IF (ICON .NE. 0) THEN
 PRINT*,'ERROR IN Inverse of 1D Wavelet Transform,'
 & ,'ICON = ',ICON
 STOP
 ENDIF

C ------ Verify result ------

 Emax = 0.0
 Xmax = 0.0
 DO 200 i=1,N
 diff = abs(X(i)-T(i))
 IF (diff .GT. Emax) Emax = diff
 IF (abs(X(i)) .GT. Xmax) Xmax = abs(X(i))
 200 CONTINUE
 Erel = Emax/Xmax
 IF (Erel .GT. 1.0e-4) THEN
 PRINT*,'Relative Max error (FWT):',Erel
 STOP
 END IF
 PRINT*,'1D Wavelet Transform OK'

 STOP
 END

(4) Method

 A partial wavelet transform of a vector s (usually a signal) of length N is obtained by
applying a low-pass and a high-pass filters. The subvector w1, ..., wn/2 is obtained by
applying the low-pass filter to s. The subvector wn/2+1, ..., wn is obtained by applying the
high-press filter to s.

 A wavelet transform is the recursive application of a partial wavelet transform to the
subvector containing the low-pass filtered components, up to log2 (n) times. Each
application involves only half the data of the previous application.

V1DWT, DV1DWT

II-196 Fujitsu SSL II Extended Capabilities User's Guide II

 As the first step dominates the amount of computational work, the complexity transform
is O (K × N), where K is the order of the wavelet in question and N is the length of the
vector being transformed.

 The implemented transform treats only periodic data. If applied to non-periodic data
artificial discontinuities appear at the endpoints and have an effect on the transform. To
minimize this similar techniques as used for Fourier transforms (interpolation, padding
with mirrored data) may also be applied.

 Introductory material on wavelet transforms can be found in [15][40], and further
applications are described in [36]. An in-depth treatment of the subject is given in [7][9].

V2DWT, DV2DWT

Fujitsu SSL II Extended Capabilities User’s Guide II II-197

F18-13-0101 V2DWT, DV2DWT

Two-dimensional wavelet transform

CALL V2DWT (X, M, N, Y, ISN, F, K, LSX, LSY, ICON)

(1) Function

 This routine performs a two-dimensional wavelet transform or its inverse. The transform
is defined by its high- and low-pass filter coefficients.

(2) Parameters

X................ Input or output. Two-dimensional array of X(M, N). Stores the two-
dimensional data to be transformed as input in the case of transform (ISN = 1);
the two-dimensional data transformed is stored as output in the case of inverse
transform (ISN = -1).

M................ Input. The number of rows containing the data to be transformed. A positive
integer indicated by a power of two.
(See item (3), “Comments on use,” b., 1).)

N................ Input. The number of columns containing the data to be transformed. A
positive integer indicated by a power of two.
(See item (3), “Comments on use,” b., 1).)

Y................. Output or input. Two-dimensional array Y(N, M). The transformed data as
output in the case of transform (ISN = 1) store the data to be transformed as
input in the case of inverse transform (ISN = -1).
(See item (3), “Comments on use,” b., 2).)

ISN............ Input. Specify transform or inverse transform.
Transform: ISN = 1
Inverse transform: ISN = -1

F................. Input. One-dimensional array of size 2 × K. Stores the wavelet filter
coefficients used for transform. The user can supply either the filter
coefficients themselves or call VWFLT before this routine to specify filter
coefficients used for two-dimensional wavelet transform.
(See item (3), “Comments on use,” b., 3).)

K................. Input. The number of wavelet filter coefficients.

LSX............ Input. A positive integer that indicates the depth of transform for each column.
M ≥ 2LSX. When M = 2LSX, a full wavelet transform is performed.

LSY........... Input. A positive integer that indicates the depth of transform for each row. N
≥ 2LSY. When N = 2LSY, a full wavelet transform is performed.

ICON.......... Output. Condition code.
See Table V2DWT-1, “Condition codes.”

V2DWT, DV2DWT

II-198 Fujitsu SSL II Extended Capabilities User's Guide II

Table V2DWT-1 Condition codes

Code Meaning Processing

0 No error -

30000 ISN ≠ 1 and ISN ≠ -1 Processing is stopped.

30002 M<2 or N<2

30004 Either M or N is not a power of two.

30008 K is not an even number,
or LSX < 0, LSX > log2M,
 LSY < 0, LSY > log2N

(3) Comments on use

a. Subprograms used

 SSL II: UWFT2, UWFI2, UWPT2, UWVI2, UWPI2, UWTRP, UWVT2, MGSSL

b. Comments

1) When the size of the data to be transformed is not a power of two, the wavelet
transform can be done storing the data with the remaining data padded with
zeros in a larger array with size (M, N) of a power of two.

2) Storing the transform result

 For column vector cj and row vector rj in two-dimensional input data, the result
of the high-pass filter in each wavelet transform row are respectively stored in cj
(M×2-i+1:M×2-i+1), i=1, ..., LSX and rj (N×2-i+1:N×2-i+1), i=1, ..., LSY. The
result of the two-dimensional wavelet transform is transposed and stored in array
Y.

 The output result of the high-pass filter for partial wavelet transform in the first
stage is stored in Y(N/2 + 1:N, M/2 + 1:M).

3) Filter conditions

 The orthogonal filter used for this function generally has a vector of size 2 × K.
F(1), ..., F(K) defines the low-pass filter coefficients; F(K+1), ..., F(2×K) defines
the high-pass filter coefficients. These coefficients have the following
relationships:

KF
K

...,,1),((-1)=)-1+F(2K ,1)F(
1

2∑
=

==
i

i iiii

 For details, see [7] and [9].

c. Example of use

 For two-dimensional data (1024 × 512), perform the two-dimensional wavelet
transform and inverse transform.

V2DWT, DV2DWT

Fujitsu SSL II Extended Capabilities User’s Guide II II-199

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)

C -------- Constants ------------
 INTEGER MaxK,MaxSize
 PARAMETER (MaxK = 20,MaxSize = 512*1024)

C -------- Variables and formats ------------
 INTEGER M,N,K,i,row,index2D,ISN,ICON,LSX,LSY
 REAL*8 X(1:MaxSize),T(1:MaxSize),Y(1:MaxSize),
 & F(1:2*MaxK),
 & ireal,Emax,diff,temp,Xmax,Erel

C -------- Generate input ------------
 M = 1024
 N = 512
 K = 6
 LSX = 3
 LSY = 4

 DO 99 row = 1,M
 DO 100 i= 1,N
 ireal = i
 temp = 0.5 - abs(ireal/N - 0.5)
 ireal = row
 temp = temp + 0.5 - abs(ireal/M - 0.5)
 index2D = row + (i-1)*M
 X(index2D) = temp ! Input vector
 T(index2D) = temp ! Reference vector
 100 CONTINUE
 99 CONTINUE

C --------------- Initialize filter ------
 CALL DVWFLT(F,K,ICON)

C ---------------- Transform Data ----------------

 ISN=1
 CALL DV2DWT(X,M,N,Y,ISN,F,K,LSX,LSY,ICON)
 IF (ICON .NE. 0) THEN
 PRINT*,'ERROR IN 2D Wavelet Transform,ICON = ',ICON
 STOP
 ENDIF

C ---------------- Transform back ---------------

 ISN=-1
 CALL DV2DWT(X,M,N,Y,ISN,F,K,LSX,LSY,ICON)
 IF (ICON .NE. 0) THEN
 PRINT*,'ERROR IN Inverse of 2D Wavelet Transform,'
 & ,'ICON = ',ICON
 STOP
 ENDIF

C ------ Verify result ------

V2DWT, DV2DWT

II-200 Fujitsu SSL II Extended Capabilities User's Guide II

 Emax = 0.0
 Xmax = 0.0
 DO 199 row =1,M
 DO 200 i=1,N
 index2D = row + (i-1)*M
 diff = abs(X(index2D)-T(index2D))
 IF (diff .GT. Emax) Emax = diff
 IF (abs(X(index2D)) .GT. Xmax)
 & Xmax = abs(X(index2D))
 200 CONTINUE
 199 CONTINUE

 Erel = Emax/Xmax
 IF (Erel .GT. 1.0e-4) THEN
 PRINT*,'Relative Max error (FWT):',Erel
 STOP
 END IF
 PRINT*,'2D Wavelet Transform OK'

 STOP
 END

(4) Method

 A partial wavelet transform of a vector s (usually a signal) of length n is obtained by
applying a low-pass and a high-pass filters. The subvector w1, ..., wn/2 is obtained by
applying the low-pass filter to s. The subvector wn/2+1, ..., wn is obtained by applying the
high-press filter to s.

 A wavelet transform is the recursive application of a partial wavelet transform to the
subvector containing the low-pass filtered components, up to log2 (n) times. Each
application involves only half the data of the previous application.

 As the first step dominates the amount of computational work, the complexity of each 1D
transform is O(K × N), where K is the order of the wavelet in question and N is the length
of the vector being transformed.

 In the two-dimensional case, a wavelet transform is applied to each column of the matrix
with depth LSX and then to each row of the resultant matrix with depth LSY.

 The implemented transform treats only periodic data. If applied to non-periodic data
artificial discontinuities appear at the endpoints and have an effect on the transform. To
minimize this similar techniques as used for Fourier transforms (interpolation, padding
with mirrored data) may also be applied.

 Introductory material on wavelet transforms can be found in [15][40], and two-
dimensional transforms are described in [36]. An in-depth treatment of the subject is
given in [7][9].

Fujitsu SSL II Extended Capabilities User's Guide II A-1

Appendix A
References

[1] S.L.Anderson
Random number generators on vector supercomputers and other advanced architectures,
SIAM Rev, 32 (1990), 221-251.

[2] R.P.Brent
Uniform random number generators for supercomputers, Proc. Fifth Australian
Supercomputer Conference, Melbourne, Dec. 1992, 95-104.

[3] R.P.Brent
Uniform random number generators for vector and parallel computers, Report TR-CS-92-
02, Computer Sciences Laboratory, Australian National University, Canberra, March
1992.

[4] R.P.Brent
Fast normal random number generators on vector processors, Technical Report TR-CS-
93-04, Computer Sciences Laboratory, Australian National University, Canberra, March
1993.

[5] R.P.Brent
A Fast Vectorised Implementation of Wallace's Normal Random Number Generator,
Technical Report, Computer Sciences Laboratory, Australian National University, to
appear.

[6] C.Sidney Burrus, Fellow, IEEE, and Peter W. Eschenbacher
“An In Place, In-Order Prime Fact or FFT Algorithm”, IEEE Trans. on Acoust., Speech,
Signal Processing, vol. ASSP-29, No.4, pp. 806-817, August 1981.

[7] C.K.Chui
Adv. in Numer. Analysis, vol.II, ch. Wavelets and Splines, Oxford Sci. Publ., 1992.

[8] J.K.Cullum and R.A.Willoughby
“Lanczos algorithm for large symmetric eigenvalue computations”, Birkhauser, 1985.

[9] I.Daubechies
Ten lectures on wavelets, SIAM, 1992.

[10] J.Demmel and W.kahan
Accurate singular values of bidiagonal matrices, SISSC 11, 873--912, 1990.

[11] A.M.Ferrenberg, D.P.Landau and Y.J.Wong,
Monte Carlo simulations: Hidden errors from “good” random number generators, Phys.
Rev. Lett. 69 (1992), 3382-3384.

[12] R.Freund
“A transpose-free quasi-minimal residual algorithm for nonhermitian linear systems”,
SIAM J.Sci.Comput. 14, 1993, pp. 470-482.

[13] R.Freund and N.Nachtigal
“QMR: a quasi minimal residual method for non-Hermitian linear systems”, Numer.
Math. 60, 1991, pp. 315-339.

[14] G.Golub and C.Van Loan
Matrix computations, The Johns Hopkins University Press, Baltimore, 1989.

References

A-2 Fujitsu SSL II Extended Capabilities User's Guide II

[15] A.Graps
An introduction to wavelets, IEEE Computational Science and Engineering 9, 1995, no.2.

[16] M.H.Gutknecht
Variants of BiCGStab for matrices with complex spectrum,IPS Research report No. 91-14,
1991.

[17] Markus Hegland
A self-sorting in-place fast Fourier transform algorithm suitable for vector and parallel
processing, accepted for publication in Numerische Mathematik, 1994

[18] M.Hegland
On the parallel solution of tridiagonal systems by wrap-around partitioning and
incomplete LU factorization, Numerische Mathematik 59, 1991, no.5, 453-472.

[19] Markus Hegland
An Implementation of Multiple and Multivariate Fourier Transforms on Vector
Processors” appears in SIAM J. Sci. Comput., Vol. 16, No. 2, pp. 271-288, March 1995

[20] J.R.Heringa, H.W.J.Blöte and A.Compagner.
New primitive trinomials of Mersenne-exponent degrees for random-number generation,
International J. of Modern Physics C 3 (1992), 561-564.

[21] M.R. Hestenes and E.Stiefel
Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Standards,
49: 409-435, 1952.

[22] F.James
A review of pseudo-random number generators, Computer Physics Communication 60
(1990), 329-344.

[23] D.Kincaid, T.Oppe
ITPACK on supercomputers, Numerical methods, Lecture Notes in Mathematics 1005
(1982).

[24] D.E.Knuth
The Art of Computer programming, Volume 2: Seminumerical Algorithms (second
edition). Addison-Wesley, Menlo Park, 1981, Sec. 3.4.1, Algorithm P.

[25] Z.Leyk
“Modified generalized conjugate residuals for nonsymmetric systems of linear equations”
in “Proceedings of the 6th Biennial Conference on Computational Techniques and
Applications: CTAC93”, D.Stewart, H.Gardner and D.Singleton, eds., World Scientific,
1994, pp. 338-344. Also published as CMA Research Report CMA-MR33-93, Australian
National University, 1993.

[26] C. Van Loan
Computational Frameworks for the Fast Fourier Transform, SIAM, 1992

[27] N.K.Madsen, G.H.Rodrigue, and J.I.Karush
“Matrix multiplication by diagonals on a vector/parallel processor”, Information
Processing Letters, vol. 5, 1976, pp. 41-45

[28] G.Marsaglia
A current view of random number generators, Computer Science and Statistics: The
Interface (edited by L.Billard), Elsevier Science Publishers B.V. (North-Holland), 1985,
3-10.

[29] R.S.Martin, G.Peters and J.H.Wilkinson,
Symmetric Decomposition of A Positive Definite Matrix, Linear Algebra, Handbook for
Automatic Computation, Vol.2, pp.9-30, Springer-Verlag, Berlin-Heidelberg-New York,
1971

References

Fujitsu SSL II Extended Capabilities User's Guide II A-3

[30] T.Oppe, W.Joubert and D Kincaid
An overview of NSPCG: a nonsymmetric preconditioned conjugate gradient package,
Computer physics communications 53 p283 (1989).

[31] T.C.Oppe and D.R.Kincaid
“Are there interactive BLAS?”, Int.J.Sci.Comput. Modeling (to appear).

[32] J.Ortega
Introduction to parallel and vector solution of linear systems, Plenum Press, 1988

[33] M.R.Osborne
Computing the eigenvalues of tridiagonal matrices on parallel vector processors,
Mathematics Research Report No. MRR 044-94, Australian National University, 1994.

[34] J.R.Rice and R.F.Boisvert
Solving Elliptic Problems Using ELLPACK, Springer-Verlang, New York, 1985.

[35] Y.Saad and M.H.Schultz
“GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear
systems”, SIAM J.Sci.Stat. Comput. 7, 1986, p.856-869.

[36] D.H.Salesin, E.J.Stollnitz, T.D.DeRose
Wavelets for computer graphics: A primer, part 1 and 2, IEEE Computer Graphics and
Applications 15 (1995).

[37] H.D.Simon
Bisection is not optimal on vector processors, SISSC 10, 205-209, 1989.

[38] G.Sleijpen, D.Fokkema
BICG_STAB(L) for linear equations involving unsymmetric matrices with complex
spectrum, Electronic Transactions on Numerical Analysis, Vol 1, p11-32, 1993.

[39] G.L.G Sleijpen, H.A.van der Vorst, and D.R.Fokkema.
BiCGSTAB(l) and other hybrid Bi-CG methods. Numerical Algorithms, 7:75-109, 1994.

[40] G.Strang, T.Nguyen
Wavelets and filter banks, Wellesley-Cambridge Press, 1996

[41] Paul N. Swarztrauber
Bluestein’s FFTs for arbitrary N on the hypercube, Parallel Comput. 17 (1991), 607-617.

[42] H.A.Van Der Vorst
“BCG: A fast and smoothly converging variant of BI-CG for the solution of non-
symmetric linear systems”, SIAM J. Sci. Statist. Comput., 13 p631 1992

[43] C.S.Wallace
“Fast Pseudo-Random Generators for Normal and Exponential Variates”, ACM Trans. on
Mathematical Software 22 (1996), 119-127.

[44] R.Weiss
Parameter-Free Itarative Linear Solvers. Mathematical Research, vol.97. Akademie
Verlag, Berlin, 1996.

[45] J.H.Wilkinson
The Algebraic Eigenvalue Problem, O.U.P., 1965.

[46] S.Winograd
“On computing the discrete Fourier transform”, Math. Computation., Vol.32, pp.175-199,
Jan. 1978.

Fujitsu SSL II Extended Capabilities User's Guide II B-1

Appendix B
Contributors and Their Work

Contributor Subroutine name Function

DVRAN3 Generation of normal random numbers
(double precision)

Richard Peirce Brent

DVRAN4 Generation of normal random numbers
(double precision, Wallace’s method)

Richard Peirce Brent
Peter Frederick Price

DVRAU4 Generation of uniform random numbers
[0, 1) (double precision)

Andrew James Cleary VBLDL LDLT decomposition for a symmetric
positive definite banded matrix (modified
Cholesky decomposition)

 VBLDX System of linear equations with a LDLT
decomposed symmetric positive definite
banded matrix

 VBLU System of linear equations for a banded
real matrix (Gaussian elimination)

 VLSBX System of linear equations with a
symmetric positive definite banded matrix
(modified Cholesky decomposition)

VBCSD System of linear equations with
unsymmetric or indefinite sparse matrix
(BICGSTAB(l) method, diagonal storage
format)

VBCSE System of linear equations with
unsymmetric or indefinite sparse matrix
(BICGSTAB(l) method, ELLPACK
storage format)

Murray Leslie Dow

VCGD System of linear equations with a
symmetric positive definite sparse matrix
(preconditioned CG method, diagonal
storage format)

 VCGE System of linear equations with a
symmetric positive definite sparse matrix
(preconditioned CG method, ELLPACK
storage format)

Markus Hegland
Judith Helen Jenkinson
Murray Leslie Dow

VMCFT Singlevariate, multiple and multivariate
discrete complex Fourier transform (mixed
radix)

Markus Hegland
Christopher Robert Dun

VLTQR System of linear equations with real
tridiagonal matrix (QR factorization)

Contributors and Their Work

B-2 Fujitsu SSL II Extended Capabilities User's Guide II

Contributor Subroutine name Function

VHEVP Eigenvalues and eigenvectors of Hermitian
matrices (tridiagonalization, multisection
method, and inverse iteration)

Margaret Helen Kahn

VSEVP Eigenvalues and eigenvectors of real
symmetric matrices (tridiagonalization,
multisection method, and inverse iteration)

Jeoffrey Keating VMRFT Multiple and multivariate discrete real
Fourier transform (mixed radices of 2, 3,
and 5)

 VSRFT One-dimensional and multiple discrete real
Fourier transform (mixed radices of 2, 3,
and 5)

Zbigniew Leyk VCRD System of linear equations with an
unsymmetric or indefinite sparse real
matrix (MGCR method, diagonal storage
format)

 VCRE System of linear equations with an
unsymmetric or indefinite sparse real
matrix (MGCR method, ELLPACK
storage format)

 VMVSD Multiplication of a real sparse matrix and a
real vector (diagonal storage format)

 VMVSE Multiplication of a real sparse matrix and a
real vector (ELLPACK storage format)

Zbigniew Leyk
Murray Leslie Dow

VQMRD System of linear equations with an
unsymmetric or indefinite sparse real
matrix (QMR method, diagonal storage
format)

 VQMRE System of linear equations with an
unsymmetric or indefinite sparse real
matrix (QMR method, ELLPACK storage
format)

 VTFQD System of linear equations with an
unsymmetric or indefinite sparse real
matrix (TFQMR method, diagonal storage
format)

 VTFQE System of linear equations with an
unsymmetric or indefinite sparse real
matrix (TFQMR method, ELLPACK
storage format)

Zbigniew Leyk
David Lawrence Harrar II

VLAND Eigenvalues and eigenvectors of a real
symmetric sparse matrix
(Lanczos method, diagonal storage format)

Ole Møller Nielsen VWFLT Wavelet filter generation

Contributors and Their Work

Fujitsu SSL II Extended Capabilities User's Guide II B-3

Contributor Subroutine name Function

Ole Møller Nielsen
Markus Hegland
Gavin John Mercer

V1DWT One-dimensional wavelet transform

Ole Møller Nielsen
Markus Hegland

V2DWT Two-dimensional wavelet transform

Michael Robert Osborne
David Lawrence Harrar II

VTDEV Eigenvalues and eigenvectors of real
tridiagonal matrix

Fujitsu SSL II Extended Capabilities User's Guide II IN-1

Index

A
approximately multiple......................II-82, II-164, II-179
autocorrelation...II-39, II-152

B
Banded matrix linear equation......................................I-1
banded real matrixII-29, II-34, II-90
BICG algorithm.. II-17, II-21
BICGSTAB method II-17, II-21
BICGSTAB(l) algorithm II-17, II-21
BICGSTAB(l) method..................... I-1, I-19, II-14, II-18
Bi-Conjugate Gradient Stabilized(l) method .. II-14, II-18
blocked Cholesky decomposition method ...II-102, II-167
Bluestein’s algorithm.. II-118

C
CG method ...I-1
Chinese remainder theorem...................................... II-71
clustered eigenvalueII-82, II-164, II-179
condition number.. II-15, II-19
conjugate gradient algorithm.......................... II-56, II-62
conjugate gradient method..I-18
convergence..I-17
convergence criterionII-14, II-18, II-144, II-148,
II-183, II-187
convolution... I-2, II-38, II-151
correlation... I-2, II-38, II-151

D
determinant of matrixII-24, II-29, II-32, II-90
diagonal storage formatII-14, II-51, II-73, II-85,
II-143, II-183

for general sparse matrices.......................................I-6
for symmetric positive definite sparse matricesI-8

diagonal-direction vector..I-6
discrete complex Fourier transformsII-43, II-47, II-63,
II-110, II-114
discrete cosine transforms II-119
discrete Fourier method.................................II-38, II-151
discrete real Fourier transformsII-122, II-128, II-173
discrete sine transforms .. II-134
discretization of partial differential

operators and storage examples for themI-9
Double-precision random numbers...............................I-1

E
eigenvalue problem ..I-1

eigenvalues and eigenvectors
of a real symmetric sparse matrix......................... II-85
of Hermite matrix...I-1, II-80
of real symmetric matrix II-162
of real tridiagonal matrix..............................I-1, II-177

eigenvalues distribution of matrix and convergence...I-18
elliptic partial differential equation.....................I-9, II-54
ELLPACK storage format I-5, II-18, II-57, II-77,
 II-140, II-147, II-187

for symmetric positive definete sparse matrices.......I-7

F
factor... II-67, II-156
first-order moment.. II-7
Fourier transforms ..I-2
four-step algorithm II-45, II-118

G
Gaussian elimination .. II-29
generalized Chinese remainder theorem................... II-72
generalized Fibonacci method II-12
GMRES method ... II-76, II-79

H
Householder method... II-84
Householder reduction.. II-162

I
incomplete Cholesky decompositionII-51, II-54, II-58,
 II-60
in-place ... II-71
inverse iterationII-80, II-162, II-181
inverse of a positive-definite symmetric matrix........ II-96
iterative method..I-1

J
judgment of convergencyII-52, II-54, II-58, II-60,
II-73, II-77

L
Lanczos method.....................................II-85, II-86, II-88
LDLT decompositionII-22, II-26, II-96, II-100
linear equations with real tridiagonal matrixI-1, II-105
linear recurrence ... II-12
LLT decomposition ... II-167
LU decomposition .. II-29, II-34

Index

IN-2 Fujitsu SSL II Extended Capabilities User's Guide II

M
main diagonal vector .. I-6
MGCR method.................................I-1, I-18, II-73, II-77
mixed radices

...................II-43, II-110, II-114, II-122, II-128, II-173
modified Cholesky decomposition.................. II-22, II-98
modified generalized conjugate residuals II-73, II-77
modified incomplete Cholesky decomposition I-1
multifrontal method...II-107
multiple II-38, II-110, II-114, II-122, II-128
multiple and multivariate discrete real Fourier transform

.. II-122, II-128
multiple eigenvalue II-82, II-164, II-179
multiple transform....................................... II-110, II-114
multiplication of a real band matrix and a real vector

..II-108
multiplication of a real sparse matrix II-137, II-140
multiplicity..II-173
multivariate II-110, II-114, II-122, II-128
multivariate fourier transform II-122, II-128
mutual prime factor........................... II-67, II-156, II-160

N
Neumann

preconditioner... II-51, II-58
series.. I-1

non-periodic convolution or correlation........ II-39, II-152
normal random numbers I-1, II-1, II-5
normalizationI-17, II-51, II-57, II-112, II-116,
 II-120, II-125, II-132, II-135, II-158, II-175
normalized symmetric positive definite sparse matrices

... I-7

O
one-dimension...II-173
one-dimensional wavelet transformII-193

P
partial differential coefficient..................................... I-10
partial pivoting II-29, II-32, II-34
period .. II-2, II-12
pivot ...II-22, II-24, II-29, II-32, II-90, II-93, II-98, II-100
preconditioned CG method II-51, II-57
preconditionerI-1, II-51, II-54, II-57, II-60
prime factor

fast Fourier transform II-67, II-70, II-161
Fourier transform..II-156

primitive trinomial ..II-12

Q
QMR method .. II-143, II-147
QR factorization..II-105
quasi-minimal residual method II-143, II-147

R
radix of 2 ...II-47
random number subsequences.....................................II-2
real vector multiplication ... I-1

S
Scaling.. I-17
second-order moment..II-7
second-order moments ..II-3
singlevariate ..II-110, II-114

fast Fourier transformII-112, II-117
sparse matrices ... I-5
Sparse matrix linear equations I-1
statistical test ...II-12
storage method(s)

for general sparse matrices....................................... I-5
for sparse matrices ... I-5
for symmetric positive definite sparse matrices I-7
selection criteria... I-9

storing diagonals, method of .. I-5
Sturm count ...II-181
symmetric positive definite

banded matrix II-22, II-26, II-98
sparse matrix...II-51, II-57

symmetric positive definite matrix................... I-1, II-167
system of linear equations with a symmetric positive

definite matrix...II-102
system of linear equations with LLT-decomposed

positive definite matrixII-170

T
testing statistical hypothesesII-13
TFQMR method...........................I-1, I-18, II-183, II-187
transpose-free quasi-minimal residual method

..II-183, II-187
two-dimensional wavelet transformII-197

U
uniform random numbersII-2, II-13
unsymmetric or indefinite .. I-1
unsymmetric or indefinite sparse matrixII-14, II-18,

II-73, II-77, II-143, II-147, II-183, II-187

W
Wallace’s method..II-5, II-8
wavefront ordering ..II-56, II-62
wavelet

filter generation...II-190
transform.. I-2, II-193, II-197

X
χ2 testing...II-13

	Title Page
	Preface
	SSL II Extended Capabilities II Overview
	Linear calculations
	Eigenvalues and eigenvectors
	Transforms
	Random numbers

	Contents
	Part I Overview
	Chapter 1 Description of SSL II Extended Capabilities II
	Chapter 2 General Rules for SSL II Extended Capabilities II
	Chapter 3 Data Storage Methods
	Chapter 4 Iterative Linear Equation Solvers andConvergence

	Part II Using Subroutines
	DVRAN3
	DVRAN4
	DVRAU4
	VBCSD, DVBCSD
	VBCSE, DVBCSE
	VBLDL, DVBLDL
	VBLDX, DVBLDX
	VBLU, DVBLU
	VBLUX, DVBLUX
	VCCVF, DVCCVF
	VCFM1, DVCFM1
	VCFT3, DVCFT3
	VCGD, DVCGD
	VCGE, DVCGE
	VCPF1, DVCPF1
	VCPF3, DVCPF3
	VCRD, DVCRD
	VCRE, DVCRE
	VHEVP,DVHEVP
	VLAND, DVLAND
	VLBX, DVLBX
	VLDIV, DVLDIV
	VLSBX, DVLSBX
	VLSPX, DVLSPX
	VLTQR, DVLTQR
	VMBV, DVMBV
	VMCF2, DVMCF2
	VMCFT, DVMCFT
	VMCST, DVMCST
	VMRF2, DVMRF2
	VMRFT, DVMRFT
	VMSNT, DVMSNT
	VMVSD, DVMVSD
	VMVSE, DVMVSE
	VQMRD, DVQMRD
	VQMRE, DVQMRE
	VRCVF, DVRCVF
	VRPF3, DVRPF3
	VSEVP,DVSEVP
	VSPLL, DVSPLL
	VSPLX, DVSPLX
	VSRFT, DVSRFT
	VTDEV, DVTDEV
	VTFQD, DVTFQD
	VTFQE, DVTFQE
	VWFLT, DVWFLT
	V1DWT, DV1DWT
	V2DWT, DV2DWT

	Appendix AReferences
	Appendix BContributors and Their Work
	Index

