
J2UL-2320-01ENZ0(00)
December 2017

Linux(64)

FUJITSU Software
NetCOBOL V12.0

Getting Started

Preface
This manual provides an introduction to NetCOBOL. NetCOBOL provides a full-featured development environment for COBOL
programs. It allows you to develop COBOL programs that also easily integrate with other languages.

The sample programs shipped with NetCOBOL are intended to give an overview of the capabilities of NetCOBOL. Refer to the
"NetCOBOL User's Guide" for further details on using NetCOBOL.

Audience

Prior to using NetCOBOL, it is assumed that you have the following knowledge:

- You have some basic understanding as to how to navigate through and use the Linux product on your machine.

- You understand the COBOL language from a development perspective.

Product Names

Product Name Abbreviation

Red Hat(R) Enterprise Linux(R) 7 (for Intel64)

Red Hat(R) Enterprise Linux(R) 6 (for Intel64)

Linux

or

Linux(64)

Microsoft(R) Windows Server(R) 2016 Datacenter

Microsoft(R) Windows Server(R) 2016 Standard

Microsoft(R) Windows Server(R) 2016 Essentials

Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Microsoft(R) Windows Server(R) 2012 R2 Standard

Microsoft(R) Windows Server(R) 2012 R2 Essentials

Microsoft(R) Windows Server(R) 2012 R2 Foundation

Microsoft(R) Windows Server(R) 2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Standard

Microsoft(R) Windows Server(R) 2012 Essentials

Microsoft(R) Windows Server(R) 2012 Foundation

Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Foundation

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows(R) 10 Home

Windows(R) 10 Pro

Windows(R) 10 Enterprise

Windows(R) 10 Education

Windows(R) 8.1

Windows(R) 8.1 Pro

Windows(R) 8.1 Enterprise

Windows(R) 7 Home Premium

Windows(R) 7 Professional

Windows(R) 7 Enterprise

Windows

- i -

Product Name Abbreviation

Windows(R) 7 Ultimate

Microsoft Windows products listed in the table above are referred to in this manual as "Windows".

Trademarks

- NetCOBOL is a trademark or registered trademark of Fujitsu Limited or its subsidiaries in the United States or other countries or in both.

- Microsoft, Windows, Windows Server, Visual Basic, and Visual Studio are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

- Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Oracle Solaris is also referred as Solaris, Solaris Operating System, or Solaris OS.

- Linux is a registered trademark of Linus Torvalds.

- Red Hat, RPM and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United States
and other countries.

- Other brand and product names are trademarks or registered trademarks of their respective owners.

Export Regulation

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

The contents of this manual may be revised without prior notice. No part of this document may be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose, without the express written permission of Fujitsu Limited.

December 2017

Copyright 2010-2017 FUJITSU LIMITED

- ii -

Contents
Chapter 1 Sample Programs..1

1.1 Sample 1: Data Processing Using Standard Input-Output...1
1.2 Sample 2: Using Line Sequential and Indexed Files... 2
1.3 Sample 4: Calling Subroutines.. 4
1.4 Sample 5: Receiving a Command Line Argument.. 6
1.5 Sample 6: Environment Variable Handling...7
1.6 Sample 7: Using a Print File.. 9
1.7 Sample 8: Using a Print File (Advanced usage) ... 10
1.8 Sample 9: Using a Print File with a FORMAT clause.. 11
1.9 Sample 10: Basic Object-Oriented Programming... 13
1.10 Sample 16: Remote Database Access..14
1.11 Sample 17: Remote Database Access (Multiple row processing)... 16

Index...20

- iii -

Chapter 1 Sample Programs
The sample programs shipped with NetCOBOL are intended to give an overview of the capabilities of NetCOBOL. Refer to the
"NetCOBOL User's Guide" for further details on using NetCOBOL. The following table details the sample programs available with
NetCOBOL.

The sample programs are stored in the NetCOBOL install directory. Please copy to use the sample programs. In this chapter, it is assumed
that sample programs are copied to /home/samples.

/opt/FJSVcbl64/samples

NetCOBOL Sample Programs

- Sample 1

Data Processing Using Standard Input-Output

- Sample 2

Using Line Sequential and Indexed Files

- Sample 4

Calling Subprograms

- Sample 5

Receiving a Command Line Argument

- Sample 6

Environment Variable Handling

- Sample 7

Using a Print File

- Sample 8

Using a Print File (Advanced usage)

- Sample 9

Using a Print File with a FORMAT clause

- Sample 10

Basic Object-Oriented Programming

- Sample 16

Remote Database Access

- Sample 17

Remote Database Access (Multiple row processing)

1.1 Sample 1: Data Processing Using Standard Input-Output
Sample 1 demonstrates using the ACCEPT/DISPLAY function to input and output data.

Refer to the "NetCOBOL User's Guide" for details on how to use the ACCEPT/DISPLAY statements.

Overview

Inputs an alphabetic character (lowercase character) from the console, and outputs a word to the console beginning with the input alphabetic
character.

- 1 -

Files Included in Sample 1

- sample1.cob (COBOL source program)

- Makefile

COBOL Functions Used

- ACCEPT/DISPLAY

COBOL Statements Used

- ACCEPT

- DISPLAY

- EXIT

- IF

- PERFORM

Compiling, Linking and Executing the Program

- Using the cobol command

$ cobol -M -o sample1 sample1.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

$./sample1

Input a lower alphabet character => a

apple

$

- Using the make command

$ make

$./sample1

Input a lower alphabet character => a

apple

$

1.2 Sample 2: Using Line Sequential and Indexed Files
Sample 2 demonstrates a program that reads a data file (line sequential file) created with the Editor, and then creates a master file (indexed
file).

Refer to the "NetCOBOL User's Guide" for details on how to use line sequential files and indexed files,.

Overview

Reads a data file (line sequential file) that contains product codes, product names, and unit prices, and creates an indexed file with the
product code as a primary record key and the product name as an alternate record key.

- 2 -

Figure 1.1 Creating an indexed file from a line sequential file

Files Included in Sample 2

- sample2.cob (COBOL source program)

- datafile (Data file)

- Makefile

COBOL Functions Used

- Line Sequential Files (Reference)

- Indexed Files (Creation)

COBOL Statements Used

- CLOSE

- EXIT

- GO TO

- MOVE

- OPEN

- READ

- WRITE

Compiling, Linking and Executing the Program

- Using the cobol command

$ cobol -M -o sample2 sample2.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

$ INFILE=datafile; export INFILE

$ OUTFILE=master; export OUTFILE

$./sample2

$

- 3 -

- Using the make command

$ make

$ INFILE=datafile; export INFILE

$ OUTFILE=master; export OUTFILE

$./sample2

$

 Information

When a file-identifier is specified in the COBOL source program ASSIGN clause, a file must be assigned before program execution. When
assigning a file, use a file-identifier as an environment variable name and specify the file name to be used in the environment variable. In
this sample program, environment variable INFILE is used to assign a data file (line sequential file); OUTFILE is used to assign a master
file (indexed file).

 Note

If a file named 'master' already exists, the original file contents are lost.

1.3 Sample 4: Calling Subroutines
Sample 4 demonstrates that calling a subroutine by the CALL statement from the COBOL program. For details of the calling relationship
among COBOL programs, refer to the "NetCOBOL User's Guide".

Overview

This sample converts article codes, article names, and prices stored in the master file into printable characters, places them in a work text
file "work" (created in the current directory), calls the print processing subprogram (print.cob), and prints the contents of the work text file.

Files included in sample 4

- sampl4.cob (COBOL source program)

- print.cob (COBOL source program)

- s_rec.cbl (COBOL library file)

- master (master file)

- Makefile

- COBOL.CBR (Runtime initialization file)

COBOL Functions Used

- Inter-Program Communication

- Library file with the COPY statements

- ACCEPT/DISPLAY

- Print Files

- Indexed Files (Reference)

- Line sequential Files (Creation)

- Runtime parameter

- 4 -

COBOL Statements used

- CALL

- DISPLAY

- EXIT

- GO TO

- IF

- MOVE

- OPEN

- READ

- SET

- WRITE

Compiling, Linking and Executing the Program

- Using the cobol command

$ cobol -c -WC,"NOALPHAL" print.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

$ cobol -M -osample4 -WC,"NOALPHAL" sample4.cob print.o

HIGHEST SEVERITY CODE = I

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

$./sample4

$ cat work | more

0123 ruler 02.00

0456 ball-point pen 01.00

0789 protractor 00.50

0812 cutter 02.50

0823 scissors 04.50

0834 punch 05.00

0845 fluorescent pen 01.00

0856 automatic pencil 02.00

0867 eraser 01.00

0889 stamp pad 08.00

0934 gum tape 03.80

0956 tape cutter 08.50

0967 binding 01.20

0978 rubber band 03.80

0989 paste 01.50

0990 binder clip 00.30

0995 magnet 01.50

0999 clip 02.50

1012 thumbtack 02.00

1123 card case(B5) 01.50

1234 card case(A4) 02.20

1345 stapler 02.80

--More—

- Using the make command

$ make

$./sample4

$ cat work | more

0123 ruler 02.00

0456 ball-point pen 01.00

0789 protractor 00.50

0812 cutter 02.50

- 5 -

0823 scissors 04.50

0834 punch 05.00

0845 fluorescent pen 01.00

0856 automatic pencil 02.00

0867 eraser 01.00

0889 stamp pad 08.00

0934 gum tape 03.80

0956 tape cutter 08.50

0967 binding 01.20

0978 rubber band 03.80

0989 paste 01.50

0990 binder clip 00.30

0995 magnet 01.50

0999 clip 02.50

1012 thumbtack 02.00

1123 card case(B5) 01.50

1234 card case(A4) 02.20

1345 stapler 02.80

--More—

1.4 Sample 5: Receiving a Command Line Argument
Sample 5 demonstrates a program that receives an argument specified at program execution, using the command line argument handling
function (ACCEPT FROM argument-name/argument-value).

Refer to "Using ACCEPT and DISPLAY Statements" in the "NetCOBOL User's Guide" for details on how to use the command line
argument handling function.

Sample 5 also calls an internal program.

Overview

The sample program calculates the number of days from the start date to the end date. The start and end dates are specified as command
arguments in the following format:

sample5 start-date end-date

start-date, end-date:

Specify a year, month, and day between January 1, 1900 and December 31, 2172 in the YYYYMMDD format.

Files Included in Sample 5

- sample5.cob (COBOL source program)

- Makefile

COBOL Functions Used

- Fetching Command Line Arguments

- Internal Programs

COBOL Statements Used

- ACCEPT

- CALL

- COMPUTE

- COPY

- DISPLAY

- 6 -

- DIVIDE

- EXIT

- GO TO

- IF

- MOVE

- PERFORM

Compiling, Linking and Executing the Program

- Using the cobol command

$ cobol -M -o sample5 sample5.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

$./sample5 19710406 20000501

Difference between two dates is +10617 days.

$

- Using the make command

$ make

$./sample5 19710406 20000501

Difference between two dates is +10617 days.

$

1.5 Sample 6: Environment Variable Handling
Sample 7 demonstrates a program that changes the value of an environment variable during COBOL program execution, using the
environment variable handling function (ACCEPT FROM/DISPLAY UPON environment-name/environment-value).

Refer to "Using ACCEPT and DISPLAY Statements" in the "NetCOBOL User's Guide" for details on how to use the environment variable
handling function.

Overview

The sample program divides a master file (the indexed file created in Sample 2) that contains product codes, product names, and unit prices
into two master files according to product codes. The following table shows the division method and the names of the two new master files:

Table 1.1 Division of the master files

Product Code File Name

Code beginning with 0 master-file-name.A

Code beginning with a non-zero value master-file-name.B

Files Included in Sample 6

- sample6.cob (COBOL source program)

- master (master file)

- Makefile

COBOL Functions Used

- Environment Variable Handling

- Indexed Files

- 7 -

COBOL Statements Used

- ACCEPT

- CLOSE

- DISPLAY

- EXIT

- GO TO

- IF

- MOVE

- OPEN

- READ

- STRING

- WRITE

Compiling, Linking and Executing the Program

- Using the cobol command

$ cobol -M -o sample6 sample6.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

$ INFILE=master; export INFILE

$ OUTFILE=; export OUTFILE

$./sample6

$ ls mas*

master master.a master.b

$

- Using the make command

$ make

$ INFILE=master; export INFILE

$ OUTFILE=; export OUTFILE

$./sample6

$ ls mas*

master master.a master.b

$

 Information

When a file-identifier is specified in the COBOL source program ASSIGN clause, a file must be assigned before program execution. Specify
the file name to be used in an environment variable using a file-identifier as the environment variable name. In this example, environment
variable INFILE is used to assign a master file; OUTFILE is used to assign a new file. When a new file is created, any file identifier can
be set before program execution because a file is assigned by an environment variable.

 Note

If files master.a and master.b already exist, the original file contents are lost.

- 8 -

1.6 Sample 7: Using a Print File
Sample 7 demonstrates a program that outputs data (input from the console window) to a printer using a print file. Refer to "Printing" in the
"NetCOBOL User's Guide" for details on using a print file.

Overview

The sample program inputs data of up to 40 alphanumeric characters from the console window, and outputs the data to the printer.

Files Included in Sample 7

- sample7.cob (COBOL source program)

- Makefile

- COBOL.CBR (Runtime initialization file)

COBOL Functions Used

- Print Files

- ACCEPT/DISPLAY

COBOL Statements Used

- ACCEPT

- CLOSE

- EXIT

- GO TO

- IF

- OPEN

- WRITE

Compiling, Linking and Executing the Program

- Using the cobol command

$ cobol -M -o sample7 sample7.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

$./sample7

1234567890123456789012345678901234567890

abcde

*********sample7************************

/END

$

- Using the make command

$ make

$./sample7

1234567890123456789012345678901234567890

abcde

*********sample7************************

/END

$

At program termination, data is printed to the default printer.

- 9 -

1234567890123456789012345678901234567890

abcde********sample7******************** ...(*1)

*1 : In this sample program, the first ACCEPT statement execution ends when 40 characters are entered. Accordingly, the sum of second
and third input data becomes input for the second ACCEPT statement execution in the program.

1.7 Sample 8: Using a Print File (Advanced usage)
Sample 8 demonstrates the following:

- Using a print file without a FORMAT clause

- Using the I control record to set and change page forms, in combination with Forms Control Buffers (FCBs)

- Using the CHARACTER TYPE clause to control letter size and pitch

- Using the PRINTING POSITION clause to control the layout (line / column)

Refer to "How to Print Data Line Mode Using a print File" and "How to Use a Control Record" in the "NetCOBOL User's Guide" for details
on using a print file without a FORMAT clause.

Overview

The sample program is a instance for a print file that includes control records, the CHARACTER TYPE clause, and the PRINTING
POSITION clause but not the FORMAT clause, which is used to set various specifications.

Files Included in Sample 8

- sample8.cob (COBOL source program)

- kol5/A4L6 (FORM overlay pattern)

- kol5/A4L8 (FORM overlay pattern)

- kol5/B4OV (FORM overlay pattern)

- fcbe/A4L6 (FCB)

- fcbe/A4L8 (FCB)

- fcbe/LPI6 (FCB)

- infofile/PRTINFO.PostScript (print information file)

- Makefile

- sample8.sh (shell script file for execution)

COBOL Functions Used

- Print Files

- ACCEPT/DISPLAY

COBOL Statements Used

- ADD

- CLOSE

- DISPLAY

- IF

- MOVE

- OPEN

- PERFORM

- 10 -

- STOP

- WRITE

Compiling and Linking the Program

It is assumed that the sample programs are copied to /home/samples/sample08.

$ cd /home/samples/sample08

$ COBPATH=/home/samples/sample08; export COBPATH

$ make

...

Executing the Program

The following is an example from Sample Program 8.

$ cd /home/samples/sample08

$ COBPATH=/home/samples/sample08; export COBPATH

$./sample08.sh

At program termination, the sample pages described are printed to default printer.

1.8 Sample 9: Using a Print File with a FORMAT clause
Sample 9 demonstrates a program that the print a summary sheet to the printer with a print file with a FORMAT clause.

Refer to "Using Print Files with a FORM Descriptor" in the "NetCOBOL User's Guide" for details on how to use a print file with a FORMAT
clause.

To execute this sample program, PowerFORM RTS is required.

Overview

This sample program inputs the master file (master) which contains commodity codes, commodity names and prices, and the sales file
(sales) which contains dates, quantities and prices for the order. And it outputs the sales summary sheets to the printer.

FORM Descriptor used

Sales Summary Sheet (SYUUKEI.pmd)

Form Summary Sheet Form

Paper size A4

Page orientation Portrait

Line pitch 1/6 inches

Partition PH (Page Heders) Fixed Partition, Starting Position: 0 inch (1st line), Line
width: 1 inch (6 lines)

CH1 (Control Headers) Floating Partition, Line width: 0.83 inches (5 lines)

DE (Details) Floating Partition, Line width: 0.33 inches (2 lines)

CF1 (Control Footers) Floating Partition, Line width: 0.83 inches (5 lines)

CF2 (Control Footers) Floating Partition, Line width: 0.67 inches (4 lines)

PF (Page Footers) Fixed Partition, Starting Position: 10.48 inches (63rd line),
Line width: 0.49 inches (3 lines)

Programming Points

- The partition PH and PF are fixed partitions. These have information on a fixed print position. Therefore, whenever these partitions are
printed, it is printed to starting position defined in the partition.

- 11 -

- The partition CH1, DE, CF1 and CF2 are floating partition. There is no position information of the print. It does not have the starting
position information of the print. Therefore, it is possible to output it to a free position. However, it is necessary to control the print
position in the program.

- When compiling, output item defined in the partition is converted from FORM Descriptor into the record format by the COPY
statement. In this case, item name of the defined output item is interpreted as a data name.

Files Included in Sample 9

- sample9.cob (COBOL source program)

- SYUUKEI.pmd (FORM descriptor file)

- SYOHINM.cbl (COBOL library file)

- URIAGE.cbl (COBOL library file)

- mefprc (print information file)

- Makefile

- sales (indexed file)

- master (master file)

- COBOL.CBR (Runtime initialization file)

COBOL Functions Used

- Print File with a FORMAT clause

- Indexed Files (Reference)

- Library file with the COPY statements

- ACCEPT/DISPLAY

COBOL statements used

- OPEN

- READ

- WRITE

- START

- CLOSE

- PERFORM

- DISPLAY

- IF

- MOVE

- SET

- GO TO

- EXIT

- COPY

- ADD

Before executing the sample program

Modify the printer information file (mefprc) depending on your operating environment.

- 12 -

PRTNAME printer-name

MEDDIR /opt/FJSVcbl64/samples/en_US.UTF-8/sample09

PRTNAME: Printer name to print the sample form.

MEDDIR : Specify the directory name in which the form descriptor (SYUUKEI.pmd) is stored.

For details on the printer information file, refer to "PowerFORM Runtime Reference".

Compiling, Linking and Executing the Program

- Using the cobol command

$ cobol -M -o sample9 sample9.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

$./sample9

$

- Using the make command

$ make

$./sample9

$

1.9 Sample 10: Basic Object-Oriented Programming
This program illustrates basic object-oriented programming functions including encapsulation, object generation and method invocation.

Overview

In the sample program, three employee objects are generated. After an object has been generated using the "NEW" method, the "Data-Set"
method is invoked to set the data.

Although all of the employee objects have the same form, they have different data (employee numbers, names, departments and sections,
and address information). Address information containing postal codes and addresses also belongs to an object.

Upon input of an employee number on the screen, the appropriate "Data-Display" method in the employee object is invoked, and the
employee information in the object is displayed.

The employee object invokes the "Data-Get" method of the associated address object to acquire the address information.

The employee object consists of three pieces of data and an object reference to an address object. The structure of the object is transparent
to the main program user. However, the user must understand the "Data-Set" and "Data-Display" methods.

The encapsulation of data completely masks the information in the object.

Files Included in Sample 10

- main.cob (COBOL source program)

- member.cob (COBOL source program)

- address.cob (COBOL source program)

- Makefile

COBOL Functions used

- Object-oriented programming function

- Class definition (Encapsulation)

- Object generation

- Method invocation

- 13 -

Object-Oriented Syntax used

- INVOKE and SET statements

- REPOSITORY paragraph

- Class, object and method definitions

Compiling, Linking and Executing the Program

$ make

cobol -c -WC,"CREATE(REP)" -dr. address.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

cobol -c -WC,"CREATE(REP)" -dr. member.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

cobol -dr. -M -c main.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

cobol -dr. -c address.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

cobol -dr. -c member.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

cobol -o sample10 main.o address.o member.o

$./sample10

Enter an employee number (1, 2, or 3)

1

NO.---NAME--------------BELONGING---------POST----ADDR--------------------------

0001 Todd A.Yancey Language group 411-0007 3055 Orchard Drive San Jose,CA

Do you want to quit? (Y/N)

Y

$

1.10 Sample 16: Remote Database Access
Sample 16 extracts data from a database and assigns it to a host variable using the SQL database function.

A database is present in a server and is accessed from a client.

A database is accessed via the ODBC driver. For details of database access using the ODBC driver, refer to "Database (SQL)" in the
"NetCOBOL User's Guide."

To use this program, the following products are necessary.

Client

- ODBC driver manager

- ODBC driver

- Products needed for the ODBC driver

On the server

- Database

- Products needed for accessing the database via ODBC

Sample Program 16 uses the following COBOL statements:

- DISPLAY

- GO TO

- ACCEPT

- 14 -

- IF

Sample Program 16 uses the following embedded SQL statements:

- Embedded exception declarations

- CONNECT

- DECLARE CURSOR

- OPEN

- FETCH

- CLOSE

- ROLLBACK

- DISCONNECT

The sample program accesses the database on the server and outputs all data stored in the database table "STOCK" to the client console.
When all data has been referenced, the link to the database is disconnected.

Before Executing the Program

In order to execute this sample, the DBMS product which can be connected via ODBC is installed in server side and make the table named
STOCK for the database connected by server name of SERVERNAME1.

Column name Column attribute

GNO Binary integer, 4 digits

GOODS Fixed-length character, 10 bytes

QOH Binary integer, 9 digits

WHNO Binary integer, 4 digits

Store the data items shown following in the STOCK table.

GNO GOODS QOH WHNO

110

111

123

124

137

138

140

141

200

201

212

215

226

227

240

243

TELEVISION

TELEVISION

REFRIGERATOR

REFRIGERATOR

RADIO

RADIO

CASSETTE DECK

CASSETTE DECK

AIR CONDITIONER

AIR CONDITIONER

TELEVISION

VIDEO

REFRIGERATOR

REFRIGERATOR

CASSETTE DECK

CASSETTE DECK

85

90

60

75

150

200

120

80

4

15

0

5

8

15

25

14

2

2

1

1

2

2

2

2

1

1

2

2

1

1

2

2

- 15 -

GNO GOODS QOH WHNO

351

380

390

CASSETTE TAPE

SHAVER

DRIER

2500

870

540

2

3

3

Create the ODBC information file by using the ODBC information template (/opt/FJSVcbl64/config/template/C/odbcinf). It is assumed
DBMSACS.INF here.

Building/Rebuilding the Program and Executing the Program

The following is an example from Sample Program 16.

$ cobol -M -osample16 sample16.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

$ ODBC_INF=DBMSACS.INF; export ODBC_INF

$ sample16

The following demands are done by the ACCEPT sentence.

Please type user-ID and password(userID/password):

Against the demand, please input of a user-ID and password,separated by a slash(/).Input the blank to become 65 bytes when the input
characters are 65 bytes or less.

Execution Result

Contents of the STOCK table are displayed in the format shown below.

 : --- Omission ---

PRODUCT-NO = +0243

PRODUCT-NAME = CASSETTE DECK

STOCK-COUNT = +000000014

WAREHOUSE-NO = +0002

PRODUCT-NO = +0351

PRODUCT-NAME = CASSETTE TAPE

STOCK-COUNT = +000002500

WAREHOUSE-NO = +0002

PRODUCT-NO = +0380

PRODUCT-NAME = SHAVER

STOCK-COUNT = +000000870

WAREHOUSE-NO = +0003

PRODUCT-NO = +0390

PRODUCT-NAME = DRIER

STOCK-COUNT = +000000540

WAREHOUSE-NO = +0003

END OF SESSION

$

1.11 Sample 17: Remote Database Access (Multiple row
processing)

Sample 17 shows an example where two or more lines in a database are operated with one SQL statement as an example of advanced usage
of the database (SQL) function. A database is present in a server and is accessed from a client. A database is accessed via the ODBC driver.
For details of database access using the ODBC driver, refer to "Database (SQL)" in the "NetCOBOL User's Guide."

To use this program, the following products are necessary.

- 16 -

Client

- ODBC driver manager

- ODBC driver

- Products needed for the ODBC driver

On the server

- Database

- Products needed for accessing the database via ODBC

Sample Program 16 uses the following COBOL statements:

- CALL

- DISPLAY

- GO TO

- ACCEPT

- IF

- PERFORM

Sample Program 16 uses the following embedded SQL statements:

- Embedded exception declarations

- CONNECT

- DECLARE CURSOR

- OPEN

- FETCH

- SELECT

- DELETE

- UPDATE

- CLOSE

- COMMIT

- ROLLBACK

- DISCONNECT

- Host variable with multiple rows specified

- Host variable with a table specified

Sample 17 accesses the same database as sample 16.

Sample 17 accesses and disconnects it after the following operation:

- Display of all data items in the database

- Fetch of the GNO value on a row with GOODS value "TELEVISION"

- QOH update on a row with the fetched GNO

- Deletion of lines with GOODS values "RADIO", "SHAVER", and "DRIER"

- Redisplay of all data items in the database

- 17 -

Before Executing the Program

In order to execute this sample, the DBMS product which can be connected via ODBC is installed in server side and make the table named
STOCK for the database connected by server name of SERVERNAME1.

Create the STOCK table in the form of the following.

Column name Column attribute

GNO Binary integer, 4 digits

GOODS Fixed-length character, 10 bytes

QOH Binary integer, 9 digits

WHNO Binary integer, 4 digits

Store the data items shown following in the STOCK table.

GNO GOODS QOH WHNO

110

111

123

124

137

138

140

141

200

201

212

215

226

227

240

243

351

380

390

TELEVISION

TELEVISION

REFRIGERATOR

REFRIGERATOR

RADIO

RADIO

CASSETTE DECK

CASSETTE DECK

AIR CONDITIONER

AIR CONDITIONER

TELEVISION

VIDEO

REFRIGERATOR

REFRIGERATOR

CASSETTE DECK

CASSETTE DECK

CASSETTE TAPE

SHAVER

DRIER

85

90

60

75

150

200

120

80

4

15

0

5

8

15

25

14

2500

870

540

2

2

1

1

2

2

2

2

1

1

2

2

1

1

2

2

2

3

3

Create the ODBC information file by using the ODBC information:

template(/opt/FJSVcbl64/config/template/C/odbcinf)

It is assumed DBMSACS.INF here.

Building/Rebuilding the Program and Executing the Program

The following is an example from Sample Program 17.

$ cobol -M -osample17 sample17.cob

STATISTICS: HIGHEST SEVERITY CODE=I, PROGRAM UNIT=1

$ ODBC_INF=DBMSACS.INF; export ODBC_INF

$ sample17

- 18 -

The following demands are done by the ACCEPT sentence.

Please type user-ID and password(userID/password):

Against the demand, please input of a user-ID and password, separated by a slash(/). Please input the blank to become 65 bytes when the
input characters are 65 bytes or less.

Execution Result

Contents of the STOCK table are displayed in the format shown below.

SUCCESSFUL CONNECTION WITH DATABASE.

Contents before processing

no.01:

 Product number = +0110

 Product name = TELEVISION

 Stock quantity = +000000085

 Warehouse number = +0002

 : --- Omission ---

no.19:

 Product number = +0390

 Product name = DRIER

 Stock quantity = +000000540

 Warehouse number = +0003

There are 19 data in total

RECEIVE THE PRODUCT NUMBER WHOSE PRODUCT NAME IS 'TELEVISION'

SET STOCKS OF THE FOLLOWING PRODUCTS DECREASING 10

 TELEVISION -> +0110

 TELEVISION -> +0111

 TELEVISION -> +0212

DELETE THE ROW WHICH HAS PRODUCT NAME IS 'RADIO', 'SHAVER' OR 'DRIER'.

Contents after processing

no.01:

 Product number = +0110

 Product name = TELEVISION

 Stock quantity = +000000075

 Warehouse number = +0002

 : --- Omission ---

no.15:

 Product number = +0351

 Product name = CASSETTE TAPE

 Stock quantity = +000002500

 Warehouse number = +0002

There are 15 data in total

PROGRAM END

$

- 19 -

Index
[A]

ACCEPT...2
ACCEPT FROM argument-name.. 6
ACCEPT FROM environment-name... 7
argument .. 6

[C]
CALL..5
CHARACTER TYPE... 10
CLOSE..3
command line argument... 6
COMPUTE... 6

[D]
DISPLAY... 2
DISPLAY UPON environment-name.. 7
DIVIDE.. 7

[E]
encapsulation.. 13
environment variables...7

[F]
FCB...10
Forms Control Buffers..10

[I]
I control record... 10
indexed files..2
INVOKE...14

[L]
line sequential files... 2

[M]
methods ..13

[O]
object-oriented programming... 13
objects generation... 13
OO COBOL ...13
OPEN..3

[P]
parameter ... 6
printing...9,10
PRINTING POSITION.. 10

[R]
READ... 3
REPOSITORY..14

[S]
SET... 14
STRING..8

[W]
WRITE..3

- 20 -

	Title Page
	Preface
	Contents
	Chapter 1 Sample Programs
	1.1 Sample 1: Data Processing Using Standard Input-Output
	1.2 Sample 2: Using Line Sequential and Indexed Files
	1.3 Sample 4: Calling Subroutines
	1.4 Sample 5: Receiving a Command Line Argument
	1.5 Sample 6: Environment Variable Handling
	1.6 Sample 7: Using a Print File
	1.7 Sample 8: Using a Print File (Advanced usage)
	1.8 Sample 9: Using a Print File with a FORMAT clause
	1.9 Sample 10: Basic Object-Oriented Programming
	1.10 Sample 16: Remote Database Access
	1.11 Sample 17: Remote Database Access (Multiple row processing)

	Index

