
B1WD-3480-01ENZ0(00)
October 2017

Windows(64)

FUJITSU Software
NetCOBOL V12.0

COBOL File Access Subroutines
User's Guide

Preface

What are the NetCOBOL File Access Routines?

The NetCOBOL File Access Routines are Application Programming Interface (API) functions used to access COBOL files from C
language programs.

The API's provide a common interface to COBOL files. The C application developer is not required to develop low-level file handling code
or understand the intricacies of the physical file storage system.

By using the function calls outlined in this API, C applications can safely access COBOL files in a manner consistent with the COBOL
Runtime System. Additionally, the API's serve to isolate the C application from changes in the COBOL file behavior that may change with
newer versions of NetCOBOL.

Purpose of this manual

The intended audience of this manual should be familiar with the concept of COBOL file structures and I-O techniques.

This software supports the development and operation of C applications that access COBOL files. The reader is assumed to have sufficient
understanding of the C programming language.

This manual does not explain how COBOL file I-O works. For this information you can refer to the "NetCOBOL Language Reference" and
the "NetCOBOL User's Guide".

This manual explains the COBOL File Access Routines only.

Abbreviations

The following abbreviations are used in this manual:

Product Name Abbreviation

Microsoft(R) Windows Server(R) 2016 Datacenter

Microsoft(R) Windows Server(R) 2016 Standard

Microsoft(R) Windows Server(R) 2016 Essentials

Windows Server 2016

Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Microsoft(R) Windows Server(R) 2012 R2 Standard

Microsoft(R) Windows Server(R) 2012 R2 Essentials

Microsoft(R) Windows Server(R) 2012 R2 Foundation

Windows Server 2012 R2

Microsoft(R) Windows Server(R) 2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Standard

Microsoft(R) Windows Server(R) 2012 Essentials

Microsoft(R) Windows Server(R) 2012 Foundation

Windows Server 2012

Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Foundation

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server 2008 R2

Windows(R) 10 Education

Windows(R) 10 Home

Windows(R) 10 Pro

Windows(R) 10 Enterprise

Windows 10(x64)

Windows(R) 8.1

Windows(R) 8.1 Pro

Windows 8.1(x64)

- i -

Product Name Abbreviation

Windows(R) 8.1 Enterprise

Windows(R) 7 Home Premium

Windows(R) 7 Professional

Windows(R) 7 Enterprise

Windows(R) 7 Ultimate

Windows 7(x64)

Microsoft(R) Visual C++(R) development system Visual C++

In this manual, when all the following products are indicates, it is written as "Windows".

- Windows Server 2016

- Windows Server 2012 R2

- Windows Server 2012

- Windows Server 2008 R2

- Windows 10(x64)

- Windows 8.1(x64)

- Windows 7(x64)

Trademarks

- NetCOBOL is a trademark or registered trademark of Fujitsu Limited or its subsidiaries in the United States or other countries or in both.

- Microsoft, Windows, Windows Server, MSDN, and Visual Studio are either trademarks or registered trademarks of Microsoft
Corporation in the U.S.A. and/or other countries.

- Other brand and product names are trademarks or registered trademarks of their respective owners.

Export Regulation

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

The contents of this manual may be revised without prior notice. No part of this document may be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose, without the express written permission of Fujitsu Limited.

October 2017

Copyright 2010-2017 FUJITSU LIMITED

- ii -

Contents
Chapter 1 Before Using this Software.. 1

1.1 About COBOL File Access Routines.. 1
1.2 Requirements... 1
1.3 Environment Setup.. 1

Chapter 2 Usage.. 2
2.1 Making C Source Programs...2
2.2 Compilation of C Source Programs... 2
2.3 Linking Objects..2
2.4 Application Program Execution...2

Chapter 3 API Functions.. 3
3.1 cobfa_close()..3
3.2 cobfa_delcurr()...4
3.3 cobfa_delkey()... 5
3.4 cobfa_delrec().. 6
3.5 cobfa_errno()... 7
3.6 cobfa_indexinfo()...7
3.7 cobfa_open().. 9
3.8 cobfa_openW().. 13
3.9 cobfa_rdkey()...13
3.10 cobfa_rdnext()..15
3.11 cobfa_rdrec()..16
3.12 cobfa_reclen().. 18
3.13 cobfa_recnum()..18
3.14 cobfa_release()...18
3.15 cobfa_rewcurr()... 19
3.16 cobfa_rewkey().. 20
3.17 cobfa_rewrec()... 21
3.18 cobfa_stat().. 22
3.19 cobfa_stkey()... 22
3.20 cobfa_strec().. 24
3.21 cobfa_wrkey()..25
3.22 cobfa_wrnext()...26
3.23 cobfa_wrrec()...27
3.24 LOCK_cobfa()... 28
3.25 UNLOCK_cobfa()... 30
3.26 Dummy File... 30

3.26.1 How to use.. 31
3.26.2 Dummy File Operation... 31

3.27 High-speed File Processing... 32

Chapter 4 API Structures..33
4.1 Structures for API Functions... 33

4.1.1 struct fa_keydesc...33
4.1.2 struct fa_keylist ..36
4.1.3 struct fa_dictinfo... 37

Chapter 5 Error Number and I-O Status...39
5.1 Error Number...39
5.2 I-O Status... 40

Chapter 6 Example Programs.. 41
6.1 Line Sequential File INPUT.. 41
6.2 Line Sequential File INPUT and Indexed File OUTPUT..41
6.3 Indexes File Information Acquisition.. 42

- iii -

Chapter 7 Notes... 43
7.1 Limitation Items...43
7.2 Cautions... 43

Index...45

- iv -

Chapter 1 Before Using this Software

1.1 About COBOL File Access Routines
The COBOL File Access Routines are Application Programming Interface (API) functions used to access COBOL files from C language
programs.

When a COBOL file access routine is called, a file access module provided by the COBOL Runtime System is called by the COBOL file
access routine, and the file is accessed.

The COBOL file access routines enable the following operations:

- File I-O to or from the existing resources, such as reading or rewriting a file created by a COBOL application

- Creation of COBOL files of any organization type

- Sharing or exclusive use of files with COBOL applications

- Analysis of file attributes/record key list of existing indexed files

1.2 Requirements
When developing application programs, a 64-bit (x64) C compiler is required.

Install the C compiler and set up the operating environment.

1.3 Environment Setup
When NetCOBOL is installed, the COBOL file access routine support is copied to the same folder as NetCOBOL runtime system.

The NetCOBOL run time system is installed in the following folders of the drive in which Windows is installed.

[Installation folder of NetCOBOL runtime system]

\Program Files\Common Files\Fujitsu\NetCOBOL

Please confirm the installation folder of the NetCOBOL run time system is set to environment variable PATH and environment variable LIB
after NetCOBOL is installed.

Please add the installation folder of the NetCOBOL run time system to these environment variables if it is not set.

For details on environment variable setup, refer to "Setting Environment Variables" in "NetCOBOL User's Guide".

- 1 -

Chapter 2 Usage

2.1 Making C Source Programs
C programs that use this facility may be created with the development tools or with any text editor.

Put the following description in the top of C source program to explicitly include the header file:

- #include "f4agfcfa.h"

2.2 Compilation of C Source Programs
Compile the C source programs.

When compiling the C source programs, be sure to specify the following compilation options.

- Option used to search the include file from the folder

/I <folder>

Specify the folder where NetCOBOL runtime system was installed in <folder>.

 Example

/I "C:\Program Files\Common Files\Fujitsu\NetCOBOL"

2.3 Linking Objects
Link the objects to make an execution program.

- When linking the objects, be sure to link the following LIB file in the folder in which NetCOBOL runtime system has been installed:

F4AGFCFA.lib

2.4 Application Program Execution
There are no precautions at this time. I-O to or from a file is carried out under the same considerations of file sharing or exclusive use with
COBOL application programs.

- 2 -

Chapter 3 API Functions
This chapter explains the File Access functions, calling parameters and returned values. Using this application programming interface (API)
allows applications to access the features of the COBOL file system.

The File Access API consists of the following functional categories:

Category Function Description Access

File Oriented cobfa_close Close a file -

cobfa_indexinfo Get the file attributes or key structure of an indexed file -

cobfa_open Open a file -

cobfa_openW Open a file -

cobfa_reclen Get the length of the current record -

cobfa_recnum Get the relative record number of the positioned record -

cobfa_release Release all record locks -

LOCK_cobfa Set an exclusive lock -

UNLOCK_cobfa Release an exclusive lock -

File Positioning cobfa_stkey Position to the record indicated by the value of an arbitrary key SD

cobfa_strec Position to the record indicated by the relative record number SD

Record Oriented cobfa_delcurr Delete the current record after a sequential read S

cobfa_delkey Delete the record indicated by the value of the primary record
key

RD

cobfa_delrec Delete the record indicated by a relative record number RD

cobfa_rdkey Reads the record indicated by the value of an arbitrary key RD

cobfa_rdnext Reads a record sequentially S

cobfa_rdrec Read the record indicated by the relative record number RD

cobfa_rewcurr Rewrite the current record after a sequential read SD

cobfa_rewkey Rewrite the record indicated by the value of the primary key RD

cobfa_rewrec Rewrite the record indicated by a relative record number RD

cobfa_wrkey Write a record indicated by the value of the primary record key RD

cobfa_wrnext Write a record sequentially S

cobfa_wrrec Write the record indicated by the relative record number RD

Status Oriented cobfa_errno Get the last error number -

cobfa_stat Get the last I-O status -

RD: function that is usable when the open mode is random access or dynamic access

SD: function that is usable when the open mode is sequential access or dynamic access

S: function that is usable only when the open mode is sequential access

3.1 cobfa_close()
Close a file.

long cobfa_close (

 long fd /* file descriptor */

);

- 3 -

Description

Closes the file indicated by the file descriptor <fd>.

Execution Conditions

File Organization Sequential file Executable

Record sequential file Executable

Relative file Executable

Indexed file Executable

Open Mode INPUT mode Executable

OUTPUT mode Executable

I-O mode Executable

EXTEND mode Executable

Access Mode Sequential Executable

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (*) FA_ENOTOPEN 42 An invalid file descriptor is specified

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.2 cobfa_delcurr()
Delete the current record after a sequentially read (sequential delete).

long cobfa_delcurr (

 long fd /* file descriptor */

);

Description

The current record is deleted from the file indicated by the file descriptor <fd>.

Execution Conditions

File Organization Sequential file -

Record sequential file -

Relative file Executable (*)

Indexed file Executable (*)

- 4 -

Open Mode INPUT mode -

OUTPUT mode -

I-O mode Executable (*)

EXTEND mode -

Access Mode Sequential Executable (*)

Random -

Dynamic -

* : The record must have been positioned by a sequential read.

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_ENOTOPEN 49 The specified file is opened in a mode other than I-O mode.
Alternatively, an invalid file descriptor is specified.

FA_EBADACC 90 The file is opened with a file organization or access mode that
does not allow this function to be executed.

FA_ELOCKED 99 The record positioned by sequential read is locked

FA_ENOCURR 43 Sequential read in the specified file had failed

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.3 cobfa_delkey()
Delete the record indicated by the value of the primary record key (random delete).

long cobfa_delkey (

 long fd, /* file descriptor */

 const char *recarea /* record area */

);

Description

In the file indicated by the file descriptor <fd>, the record indicated by the value of the primary record key retained in the record area
<recarea> is deleted.

Execution Conditions

File Organization Sequential file -

Record sequential file -

Relative file -

Indexed file Executable

Open Mode INPUT mode -

- 5 -

OUTPUT mode -

I-O mode Executable

EXTEND mode -

Access Mode Sequential -

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_ENOTOPEN 49 The specified file is opened in a mode other than I-O mode.
Alternatively, an invalid file descriptor is specified.

FA_EBADACC 90 The file is opened with a file organization or access mode that
does not allow this function to be executed.

FA_ELOCKED 99 The record specified by the value of the primary record key is
locked

FA_ENOREC 23 The record specified by the value of the primary record key
does not exist

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.4 cobfa_delrec()
Delete the record indicated by a relative record number (random delete).

long cobfa_delrec (

 long fd, /* file descriptor */

 unsigned long recnum /* relative record number */

);

Description

In the file indicated by the file descriptor <fd>, the record indicated by a relative record number <recnum> is deleted.

Execution Conditions

File Organization Sequential file -

Record sequential file -

Relative file -

Indexed file Executable

Open Mode INPUT mode -

OUTPUT mode -

I-O mode Executable

- 6 -

EXTEND mode -

Access Mode Sequential -

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_ENOTOPEN 49 The specified file is opened in a mode other than I-O
mode. Alternatively, an invalid file descriptor is
specified.

FA_EBADACC 90 The file is opened with a file organization or access mode
that does not allow this function to be executed.

FA_ELOCKED 99 The record specified by the value of the relative record
key is locked

FA_ENOREC 23 The record specified by the relative record number does
not exist

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.5 cobfa_errno()
Get the last error number.

long cobfa_errno (

 void /* no arguments */

);

Description

Returns the error number from the most recent API function call.

Execution Conditions

Always accessible.

Return Values

FA_ENOERR Most recent function call executed successfully

Other than FA_ENOERR Most recent function call failed. For details on this value, see "5.1 Error Number".

3.6 cobfa_indexinfo()
Get the file attributes or key structure of an indexed file.

- 7 -

long cobfa_indexinfo (

 long fd, /* file descriptor */

 struct fa_keydesc *buffer, /* acquisition result storage area */

 long funccode /* function code */

);

Description

Information on the indexed file indicated by the file descriptor <fd> is set in the acquisition result storage area <buffer>. The file be open
prior to execution of this function.

Select the type of information to be acquired by specifying it in the function code <funccode>.

Retrieving File Attributes

To retrieve the attributes of an indexed file, specify 0 for funccode. The struct fa_dictinfo type file attribute is stored in the acquisition
result storage area. For the struct fa_dictinfo type, see "4.1.3 struct fa_dictinfo".

Retrieving Key Structures

To retrieve the key structure of an indexed file, specify 1 or greater for funccode. Keys are numbered sequentially, starting with 1 for
the primary key. The struct fa_keydesc type is stored in the area pointed to by the acquisition result storage area.

If 1 is specified as the funccode value, the primary record key list is acquired. If 2 or greater is specified, the alternate record key list is
acquired. This list order corresponds to the order in which alternate record keys were declared when the indexed file was created. For the
struct fa_keydesc type, see "4.1.1 struct fa_keydesc".

Execution Conditions

File Organization Sequential file -

Record sequential file -

Relative file -

Indexed file Executable

Open Mode INPUT mode Executable

OUTPUT mode Executable

I-O mode Executable

EXTEND mode Executable

Access Mode Sequential Executable

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) FA_ENOTOPEN 90 An invalid file descriptor is specified

FA_EBADACC 90 The specified file is not an indexed file

- 8 -

3.7 cobfa_open()
Open a file.

long cobfa_open (

 const char *fname, /* filename */

 long openflgs, /* open attribute */

 const struct fa_keylist *keylist, /* record key list */

 long reclen /* record length */

);

Description

Opens the file indicated by filename <fname> based on the information of the open attribute <openflgs>, record length <reclen>, and record
key list <keylist>.

The following functions can be used by specifying file name <fname>.

- To open a dummy file, append the character string ",DUMMY" to the end of the file name or specify ",DUMMY" as the file name. Refer
to "3.26 Dummy File" for details.

- Record sequential files and line sequential files can be accessed faster by specifying an available range. To use High-speed File
Processing, append the character string ",BSAM" to the end of the file name. Refer to "3.27 High-speed File Processing" for details.

The values of the open attribute openflgs have the following nine categories, which are associated by a logical OR. The Open Mode category
(a) must be specified. The remaining categories (b) to (i) can be omitted (default: *).

a. Open mode (COBOL syntax)

FA_INPUT INPUT mode (OPEN INPUT)

FA_OUTPUT OUTPUT mode (OPEN OUTPUT)

FA_INOUT I-O mode (OPEN I-O)

FA_EXTEND EXTEND mode (OPEN EXTEND)

- If the file is a line sequential file (FA_LSEQFILE), I-O mode (FA_INOUT) cannot be specified as the open mode.

b. File organization (COBOL syntax)

* FA_SEQFILE Record sequential file (ORGANIZATION IS SEQUENTIAL)

FA_LSEQFILE Line sequential file (ORGANIZATION IS LINE SEQUENTIAL)

FA_RELFILE Relative file (ORGANIZATION IS RELATIVE)

FA_IDXFILE Indexed file (ORGANIZATION IS INDEXED)

c. Record format (COBOL syntax)

* FA_FIXLEN Fixed-length format (RECORD CONTAINS integer CHARACTERS)

FA_VARLEN Variable-length format (RECORD IS VARYING IN SIZE)

d. Access mode (COBOL syntax)

* FA_SEQACC Sequential access (ACCESS MODE IS SEQUENTIAL)

FA_RNDACC Random access (ACCESS MODE IS RANDOM)

FA_DYNACC Dynamic access (ACCESS MODE IS DYNAMIC)

- If the file is a line sequential file (FA_LSEQFILE) or record sequential file (FA_SEQFILE), an access mode other than sequential
access (FA_SEQACC) cannot be specified.

e. Lock mode (COBOL syntax)

- 9 -

FA_AUTOLOCK Automatic lock (LOCK MODE IS AUTOMATIC)

FA_MANULOC
K

Manual lock (LOCK MODE IS MANUAL)

FA_EXCLLOCK Exclusive lock (OPEN WITH LOCK / LOCK MODE IS EXCLUSIVE)

- If the open mode is OUTPUT mode (FA_OUTPUT), it is assumed that exclusive lock (FA_EXCLLOCK) is specified as the lock
mode.

- If the open mode is INPUT mode (FA_INPUT), automatic lock (FA_AUTOLOCK) or manual lock (FA_MANULOCK) cannot
be specified as the lock mode. The specification is ignored.

- If the open mode is INPUT mode (FA_INPUT), the file is opened in shared mode using lock mode as the default. At read, the
record lock specification is ignored.

- If the open mode is a mode other than INPUT mode (FA_INPUT), the default lock mode is exclusive lock (FA_EXCLLOCK).

- If the file is a line sequential file (FA_LSEQFILE) or record sequential file (FA_SEQFILE), manual lock (FA_MANULOCK)
cannot be specified as the lock mode.

 Information

The following describes the relationship between the execution of each API function and exclusive file control.

Exclusive control of files

- Exclusive mode

When a file is opened in exclusive mode, other users cannot access the file.

- Shared mode

A file opened in shared mode can be used by other users. However, file opening by other users will fail if the file has already
been opened in exclusive mode.

The table below shows the state of the file when opened under various combinations of Open mode and Lock mode.

Open mode

FA_INPUT FA_OUTPUT FA_INOUT FA_EXTEND

Lock mode None shared exclusive exclusive exclusive

FA_AUTOLOC
K

shared shared

FA_MANULOC
K

FA_EXCLLOCK exclusive exclusive exclusive

Exclusive control of records

If a record of a file opened with FA_INOUT in shared mode becomes exclusive via a record lock specification at read time, other
users cannot access the record.

Refer to "3.9 cobfa_rdkey()", "3.10 cobfa_rdnext()" and "3.11 cobfa_rdrec()" for record lock specifications at read time.

In the following cases, the exclusive state of the record is released:

- All record locks released (cobfa_release)

- A file is closed (cobfa_close)

When the lock mode is FA_AUTOLOCK and one the following processes is executed, the exclusive state of the record is released:

- Read a record(cobfa_rdkey, cobfa_rdnext, cobfa_rdrec)

- Write a record(cobfa_wrkey, cobfa_wrnext, cobfa_wrrec)

- 10 -

- Delete a record(cobfa_delcurr, cobfa_delkey, cobfa_delrec)

- Rewrite a record(cobfa_rewcurr, cobfa_rewkey, cobfa_rewrec)

- Position to the record(cobfa_stkey, cobfa_strec)

f. Optional file (COBOL syntax)

* FA_NOTOPT Non-optional file (SELECT filename)

FA_OPTIONAL Optional file (SELECT OPTIONAL filename)

g. Character encoding type

* FA_ASCII The file records have character data encoded in ASCII.

FA_UCS2 The file records have character data encoded in UCS-2.

FA_UTF8 The file records have character data encoded in UTF-8.

FA_UCS2BE The file records have character data encoded in UCS-2(big-endian).

FA_UCS2LE The file records have character data encoded in UCS-2(little- endian).

FA_UTF32 The file records have character data encoded in UTF-32.

FA_UTF32BE The file records have character data encoded in UTF-32 (big-endian).

FA_UTF32LE The file records have character data encoded in UTF-32 (little-endian).

- The character encoding type specifies the encoding type of the character data of line sequential file records. For line sequential
files, the file structure depends on the encoding type. Therefore, the character encoding type is significant when using line
sequential files.

- The character encoding type can be specified only when the file organization is line sequential file (FA_LSEQFILE). For other
file organizations, the file structure does not depend on the encoding type. Therefore, the character encoding type cannot be
specified.

- For line sequential files to be handled by COBOL applications operating in Unicode mode, when the record data items are
national items specify FA_UCS2, FA_UCS2BE, FA_UCS2LE, FA_UTF32, FA_UTF32BE or FA_UTF32LE. When the record
data items are not national items, specify FA_UTF8.

- For line sequential files to be handled by COBOL applications operating in a mode other than Unicode, specify FA_ASCII.

h. Key part flag usage specification

FA_USEKPFLAGS Enables the specification value of the kp_flags member of struct fa_keypart

type structure.

- Specify key part flag usage to enable the specification value of member kp_flags of struct fa_keypart type structure included in
record key list keylist. See "4.1.1 struct fa_keydesc", for details about struct fa_keypart type.

- Key part flag usage can be specified only when the file organization is indexed file (FA_IDXFILE).

- Key part flag usage must be specified to use indexed files handled by COBOL applications whose operating mode is Unicode.

- If the key part flag usage specification is omitted, the specification value of member kp_flags will be ignored.

i. High-speed file processing

FA_BSAM High-speed file processing is specified.

- Specify FA_BSAM to refer to COBOL files with high-speed file processing, or to create files to be referred using high-speed file
processing. When the file processing is made high-speed, "High-speed file processing" is used. Refer to "High-speed File
Processing" for details.

- You can use FA_BSAM only when the file organization is record sequential (FA_SEQFILE) or line sequential
(FA_LSEQFILE).

- 11 -

- Specifying FA_BSAM changes maximum file size, restrictions, and notes to the same as those for high-speed file processing.
Refer to "File Processing" of the "NetCOBOL User's Guide", for details.

- When FA_BSAM specification and "High-speed file processing" are specified at the same time, "High-speed file processing"
becomes effective.

The record length <reclen> is treated as the fixed-record length when the record format is the fixed-length format (FA_FIXLEN). When
the record format is the variable-length format (FA_VARLEN), the record length is treated as the maximum record length. The record length
must not exceed FA_NRECSIZE (typically 32760).

The record key list <keylist> is significant only if the file is an indexed file (FA_IDXFILE). In this case, <keylist> is valid as the list of the
primary record key and alternate record key(s) of the file being opened. For the struct fa_keylist type, see "4.1.2 struct fa_keylist ".

If the NULL pointer is specified for <keylist> to open an indexed file, this function automatically identifies the key list structure, record
format, and record length of an existing file and opens the file. In this case, the record format and record length specified are ignored.

Execution Conditions

File Organization Sequential file Executable

Record sequential file Executable

Relative file Executable

Indexed file Executable

Open Mode INPUT mode Executable

OUTPUT mode Executable

I-O mode Executable

EXTEND mode Executable

Access Mode Sequential Executable

Random Executable

Dynamic Executable

Return Values

1 or greater Successful. Function executed successfully. A code indicating the status may have been set in

the I-O status

This return value is the value of the file descriptor of the file that has been opened successfully.
Note, however, that this file descriptor is not the value of the file handle returned by the
operating system when the file is opened.

-1 Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions.

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

FA_ENOERR 5 No optional file exists but the file is virtually opened.
Alternatively, a new file is created when the open mode is
not INPUT mode (FA_INPUT).

Failure (not all) (*) FA_EBADACC 90 The specified combination of file organization, access
mode, and open mode cannot be executed

FA_EFNAME 35 The file does not exist

FA_EFLOCKED 93 The file has been opened exclusively

- 12 -

Return value of cobfa_errno () Return value of cobfa_stat ()

FA_EFNAME 90 The filename is incorrect or file access failed

FA_EFNAME 91 The filename is not specified

FA_EBADFLAG 39 The specified attribute such as file organization or record
format is different from the organization of the existing file

FA_EBADKEY 39 Information on the specified record key is different from the
key list of the existing indexed file

FA_EBADKEY 90 Information on the specified record key is incorrect

FA_EBADLENG 39 The specified record length is different from the record
length of the existing file

FA_EBADFILE 90 The specified file is unreadable

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.8 cobfa_openW()
The file name of Unicode (UTF-16) is specified, and open a file.

long cobfa_openW (

 const short *fname, /* filename */

 long openflgs, /* open attribute */

 const struct fa_keylist *keylist, /* record key list */

 long reclen /* record length */

);

Description

The filename <fname> is specified with Unicode (UTF-16).

The function and the operation of this function are the same as cobfa_open() excluding the code of the filename. For details about the open
attribute <openflgs>, record length <reclen>, and record key list <keylist>, refer to "3.7 cobfa_open()".

3.9 cobfa_rdkey()
Reads the record indicated by the value of an arbitrary key (random read).

long cobfa_rdkey (

 long fd, /* file descriptor */

 long readflgs, /* read attribute */

 char *recarea, /* record area */

 const struct fa_keydesc *keydesc, /* Record key structure */

 long keynum /* record key number */

);

Description

In the file indicated by the file descriptor <fd>, the record indicated by the value of the arbitrary key retained in the record area <recarea>
is read. The record is stored in the record area <recarea>.

The read attribute <readflgs> includes the following two categories, which are associated by a logical OR. If omitted, default values are
assigned (default: *).

- Read mode

* FA_EQUAL Reads the record corresponding to the specified record key value.

- Record lock flag

- 13 -

FA_LOCK Reads with lock. (READ WITH LOCK)

FA_NOLOCK Reads with no lock. (READ WITH NO LOCK)

- The default of record lock flag is affected by lock mode specification when the file is opened. If the lock mode is automatic lock
(FA_AUTOLOCK), the default is READ WITH LOCK (FA_LOCK). Otherwise, the default is READ WITH NO LOCK
(FA_NOLOCK).

An arbitrary record key is specified with record key structure specification <keydesc>. For the struct fa_keydesc type, see "4.1.1 struct
fa_keydesc".

If NULL is specified for this record key structure specification, record key number specification <keynum> is valid as an arbitrary record
key. To use the primary record key, specify 1 for the record key number. To use an alternate record key, specify 2 or greater for the record
key number. This value corresponds to the list of the order in which alternate record keys were declared when the indexed file was created.
For the first alternate record key, specify 2. For the second alternate record key, specify 3. For the following alternate record keys, specify
the corresponding numbers in the same way.

Execution Conditions

File Organization Sequential file -

Record sequential file -

Relative file -

Indexed file Executable

Open Mode INPUT mode Executable

OUTPUT mode -

I-O mode Executable

EXTEND mode -

Access Mode Sequential -

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully. A code indicating the status may be set in the I-O status.

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

FA_ENOERR 2 The value of the reference key in the record that is read is
equivalent to the value of the reference key in the next record

Failure (not all) (*) FA_ENOTOPEN 47 The specified file is opened in a mode other than INPUT
mode and I-O mode. Alternatively, an invalid file descriptor
is specified

FA_EBADACC 90 The file is opened with the file organization or access mode
that does not allow this function to be executed

FA_EBADFLAG 90 The read mode not allowing execution of this function is
specified. Alternatively, another flag specification is
incorrect

- 14 -

Return value of cobfa_errno () Return value of cobfa_stat ()

FA_ENOREC 23 The record indicated by an arbitrary record key value does
not exist

FA_EBADKEY 90 The specified record key structure or record key number is
incorrect or does not exist

FA_ELOCKED 99 The record specified with the primary record key value has
been locked

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.10 cobfa_rdnext()
Reads a record sequentially (sequential read).

long cobfa_rdnext (

 long fd, /* file descriptor */

 long readflgs, /* read attribute */

 char *recarea /* record area */

);

Description

In the file indicated by the file descriptor <fd>, the record immediately after (or before) the current record is read and stored in the record
area <recarea>.

The read attribute <readflgs> includes the following two categories, which are associated by an OR. If omitted, default values are assigned
(default: *).

- Read mode (COBOL syntax)

* FA_NEXT Reads the next record. (READ NEXT RECORD)

FA_PREV Reads the previous record. (READ PREVIOUS RECORD)

- If the file is a line sequential file (FA_LSEQFILE) or record sequential file (FA_SEQFILE), previous record (FA_PREV) cannot
be specified for the read mode.

- Record lock flag (COBOL syntax)

FA_LOCK Reads with lock. (READ WITH LOCK)

FA_NOLOCK Reads with no lock. (READ WITH NO LOCK)

- The default of the record lock flag depends on the lock mode specified when the file is opened. If the lock mode is automatic lock
(FA_AUTOLOCK), the default is READ WITH LOCK (FA_LOCK). Otherwise, the default is READ WITH NO LOCK
(FA_NOLOCK).

Execution Conditions

File Organization Sequential file Executable (*)

Record sequential file Executable (*)

Relative file Executable (*)

Indexed file Executable (*)

Open Mode INPUT mode Executable (*)

OUTPUT mode -

I-O mode Executable (*)

- 15 -

EXTEND mode -

Access Mode Sequential Executable (*)

Random -

Dynamic Executable (*)

* : File positioning must not be optional.

Return Values

0: Successful Function executed successfully. A code indicating the status may be set in the I-O status.

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

FA_ENOERR 2 The value of the reference key in the record that is read is
equivalent to the value of the reference key in the next record

Failure (not all) (*) FA_ENOTOPEN 47 The specified file is opened in a mode other than INPUT
mode and I-O mode. Alternatively, an invalid file descriptor
is specified

FA_EBADACC 90 The file is opened with the access mode that does not allow
this function to be executed

FA_EENDFILE 10 A file ending condition occurred.

FA_EBADFLAG 90 A read mode that does not allow execution of this function is
specified. Alternatively, another flag specification is
incorrect

FA_ENOCURR 46 Positioning to the record was undefined

FA_ELOCKED 99 The record to be positioned by sequential read has been
locked

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.11 cobfa_rdrec()
Reads the record indicated by a relative record number (random read).

long cobfa_rdrec (

 long fd, /* file descriptor */

 long readflgs, /* read attribute */

 char *recarea, /* record area */

 unsigned long recnum /* relative record number */

);

Description

In the file indicated by the file descriptor <fd>, the record specified by the relative record number <recnum> is read and stored in the record
area <recarea>.

The read attribute <readflgs> includes the following two categories, which are associated by an OR. If omitted, default values are assigned
(default: *).

- 16 -

- Read mode (COBOL syntax)

* FA_EQUAL Reads the record with the specified relative record number.

- Record lock flag (COBOL syntax)

FA_LOCK Reads with lock. (READ WITH LOCK)

FA_NOLOCK Reads with no lock. (READ WITH NO LOCK)

- The record lock flag default is affected by the lock mode specified when the file is opened. If the lock mode is automatic lock
(FA_LOCK), the default is READ WITH LOCK (FA_LOCK). Otherwise, the default is READ WITH NO LOCK
(FA_NOLOCK).

Execution Conditions

File Organization Sequential file -

Record sequential file -

Relative file Executable

Indexed file -

Open Mode INPUT mode Executable

OUTPUT mode -

I-O mode Executable

EXTEND mode -

Access Mode Sequential -

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_ENOTOPEN 47 The specified file is opened in a mode other than INPUT mode
and I-O mode. Alternatively, an invalid file descriptor is
specified

FA_EBADACC 90 The file is opened with the file organization or access mode
that does not allow this function to be executed

FA_EBADFLAG 90 A read mode not allowing execution of this function is
specified. Alternatively, another flag specification is
incorrect

FA_ENOREC 23 The record indicated by the relative record number does not
exist

FA_ELOCKED 99 The record specified by the relative record number has been
locked

- 17 -

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.12 cobfa_reclen()
Returns the length of the current record.

long cobfa_reclen (

 void /* no arguments */

);

Description

When handling files with variable length records, returns the length of the record just read. Unpredictable values are returned if the read
function failed or there have been intervening function calls. This function is valid after calls to:

- 3.9 cobfa_rdkey()

- 3.10 cobfa_rdnext()

- 3.11 cobfa_rdrec()

Execution Conditions

Always accessible.

Return Values

Length (in bytes) of the current record.

3.13 cobfa_recnum()
Returns the relative record number of the current record.

unsigned long cobfa_recnum (

 void /* no arguments */

);

Description

When handling relative files, returns the record number of the current record. Unpredictable values are returned if the read function failed
or there have been intervening function calls.

This function is valid after calls to:

- 3.10 cobfa_rdnext()

- 3.11 cobfa_rdrec()

Execution Conditions

Always accessible.

Return Values

Relative record number of the record currently positioned in a relative file.

3.14 cobfa_release()
Releases all record locks of the specified file.

- 18 -

long cobfa_release (

 long fd /* file descriptor */

);

Description

In the file indicated by the file descriptor <fd>, all record locks are released.

Execution Conditions

File Organization Sequential file -

Record sequential file Executable

Relative file Executable

Indexed file Executable

Open Mode INPUT mode -

OUTPUT mode -

I-O mode Executable

EXTEND mode -

Access Mode Sequential Executable

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_ENOTOPEN 90 An invalid file descriptor that was not acquired when the file
was opened is specified

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.15 cobfa_rewcurr()
Rewrite the current record after a sequentially read (sequential rewrite).

long cobfa_rewcurr (

 long fd, /* file descriptor */

 const char *recarea, /* record area */

 long reclen /* rewritten record length */

);

Description

The current record is rewritten with the contents of the record area <recarea> in the file indicated by the file descriptor <fd>. The rewritten
record length <reclen> specified is valid only if the file is in the variable-length format. If the file is a record sequential file (FA_SEQFILE),
the original record length cannot be changed.

- 19 -

Execution Conditions

File Organization Sequential file -

Record sequential file Executable (*)

Relative file Executable (*)

Indexed file Executable (*)

Open Mode INPUT mode -

OUTPUT mode -

I-O mode Executable (*)

EXTEND mode -

Access Mode Sequential Executable (*)

Random -

Dynamic -

* : The record must have been positioned by a sequential read.

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_EDUPL 22 Although the value of the primary record key or alternate
record key of the record to be rewritten already exists in the
file, duplication of the primary record key or alternate record
key is not permitted

FA_EBADLENG 44 The specified value of the rewritten record length is out of the
permissible range

* : See "3.2 cobfa_delcurr()" for additional values.

3.16 cobfa_rewkey()
Rewrite the record indicated by the value of the primary record key (random rewrite).

long cobfa_rewkey (

 long fd, /* file descriptor */

 const char *recarea, /* record area */

 long reclen /* rewritten record length */

);

Description

The record specified by the value of the primary record key held in the record area <recarea> in the file indicated by the file descriptor <fd>
is rewritten with the contents of the record area <recarea>.

The rewritten record length <reclen> specified is valid only if the file is in the variable-length format.

- 20 -

Execution Conditions

File Organization Sequential file -

Record sequential file -

Relative file -

Indexed file Executable

Open Mode INPUT mode -

OUTPUT mode -

I-O mode Executable

EXTEND mode -

Access Mode Sequential -

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_EDUPL 22 An attempt was made to rewrite with the record
contents having an existing record key value to
the record key not permitting duplication

FA_EBADLENG 44 The specified value of the rewritten record
length is out of the permissible range

* : See "3.3 cobfa_delkey()" for additional values.

3.17 cobfa_rewrec()
Rewrite the record indicated by a relative record number (random rewrite).

long cobfa_rewrec (

 long fd, /* file descriptor */

 const char *recarea, /* record area */

 long reclen, /* rewritten record length */

 unsigned long recnum /* relative record number */

);

Description

In the file indicated by the file descriptor <fd>, the record indicated by a relative record number <recnum> is rewritten by the contents of
the record area <recarea>.

The rewritten record length <reclen> specified is valid only if the file is in the variable-length format.

Execution Conditions

- 21 -

File Organization Sequential file -

Record sequential file -

Relative file Executable

Indexed file -

Open Mode INPUT mode -

OUTPUT mode -

I-O mode Executable

EXTEND mode -

Access Mode Sequential -

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_EBADLENG 44 The specified value of the rewritten record length is out of the
permissible range

* : See "3.4 cobfa_delrec()" for additional values.

3.18 cobfa_stat()
Get the last I-O status.

long cobfa_stat (

 void /* no arguments */

);

Description

Returns the I-O status from the most recent API function call.

Execution Conditions

Always accessible.

Return Values

See "5.2 I-O Status".

3.19 cobfa_stkey()
Positions to the record indicated by the value of an arbitrary key.

- 22 -

long cobfa_stkey (

 long fd, /* file descriptor */

 long stflgs, /* positioning attribute */

 const char *recarea, /* record area */

 const struct fa_keydesc *keydesc, /* record key structure */

 /* specification */

 long keynum, /* record key number */

 /* specification */

 long keyleng /* valid key length */

);

Description

In the file indicated by the file descriptor <fd>, positions to the record matching the value of an arbitrary key held in the record area <recarea>
and the requested positioning mode <stflgs>. Successful repositioning establishes the reference key for subsequent sequential read.

The positioning mode <stflgs> includes the following two categories, which are associated by a logical OR. If omitted, default values are
assigned (default: *).

- Positioning mode (COBOL syntax)

FA_FIRST First record (START FIRST RECORD)

* FA_EQUAL Record equivalent to the record key value. (START KEY IS =)

FA_GREAT Record greater than the record key value. (START KEY IS >)

FA_GTEQ Record equivalent to or greater than the record key value. (START KEY IS
>=)

FA_LESS Record smaller than the record key value. (START KEY IS <)

FA_LTEQ Record equivalent to or smaller than the record key value. (START KEY IS
<=)

- Reversed-order read flag (COBOL syntax)

* - Reads in logically order upon sequential read.

FA_REVORD Reads in logically reversed order upon sequential read. (START WITH
REVERSED ORDER)

- The default of the reversed-order read flag is disabled.

- If the positioning mode exceeds the record key value (FA_GREAT) or is equivalent to or greater than the record key value
(FA_GTEQ), the reversed-order read flag (FA_REVORD) cannot be specified.

- The reversed-order flag specified is disabled by any random read, positioning, file close, or end of file ending condition.

An arbitrary record key is specified by using record key structure specification <keydesc>. For the struct fa_keydesc type, see "4.1.1 struct
fa_keydesc".

If NULL is specified for this record key structure specification, record key number specification <keynum> is valid as an arbitrary record
key specified. To specify the primary record key, specify 1 for the record key number. To specify the alternate record key, specify 2 or
greater for the record key number. This value corresponds to the list of the order in which alternate record keys were declared when the
indexed file was created. For the first alternate record key, specify 2. For the second alternate record key, specify 3. For the following
alternate record keys, specify the corresponding numbers in the same way.

The valid key length <keyleng> is used to shorten the length of the valid reference key. In most cases, in which the key length is not
shortened, 0 is specified for <keyleng>. The entire arbitrary record key is valid as a reference key. To shorten the valid key length, specify
1 or a greater value. This value indicates key length from the top of the key.

Execution Conditions

File Organization Sequential file -

- 23 -

Record sequential file -

Relative file -

Indexed file Executable

Open Mode INPUT mode Executable

OUTPUT mode -

I-O mode Executable

EXTEND mode -

Access Mode Sequential Executable

Random -

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_ENOTOPEN 47 The specified file is opened in a mode other than INPUT mode
and I-O mode. Alternatively, an invalid file descriptor is
specified

FA_EBADACC 90 The file is opened with the file organization or access mode
that does not allow this function to be executed

FA_EBADFLAG 90 The positioning mode not allowing execution of this function
is specified. Alternatively, another flag specification is
incorrect

FA_ENOREC 23 The record corresponding to the specified condition does not
exist

FA_EBADKEY 90 The specified record key structure or record key number does
not exist or is not correct

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.20 cobfa_strec()
Position to the record indicated by a relative record number.

long cobfa_strec (

 long fd, /* file descriptor */

 long stflgs, /* positioning attribute */

 unsigned long recnum /* relative record number */

);

Description

In the file indicated by the file descriptor <fd>, positions to the record relating to the value of the relative record number <recnum>.

The positioning attribute <stflgs> includes the following category. If omitted, default values are assigned (default: *).

- 24 -

- Positioning mode (COBOL syntax)

* FA_EQUAL Record equivalent to <recnum> (START KEY IS =)

FA_GREAT Record greater than <recnum> (START KEY IS >)

FA_GTEQ Record equivalent to or greater than <recnum> (START KEY IS >=)

FA_LESS Record smaller than <recnum> (START KEY IS <)

FA_LTEQ Record equivalent to or smaller than <recnum> (START KEY IS <=)

Execution Conditions

File Organization Sequential file -

Record sequential file -

Relative file Executable

Indexed file -

Open Mode INPUT mode Executable

OUTPUT mode -

I-O mode Executable

EXTEND mode -

Access Mode Sequential Executable

Random -

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_ENOTOPEN 47 The specified file is opened in a mode other than INPUT
mode and I-O mode. Alternatively, an invalid file descriptor
is specified

FA_EBADACC 90 The file is opened with the file organization or access mode
that does not allow this function to be executed

FA_EBADFLAG 90 A positioning mode not allowing execution of this function
is specified. Alternatively, another flag specification is
incorrect

FA_ENOREC 23 The record corresponding to the specified condition does not
exist.

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.21 cobfa_wrkey()
Write a record specified by the primary record key value (random write).

- 25 -

long cobfa_wrkey (

 long fd, /* file descriptor */

 const char *recarea, /* record area */

 long reclen /* written record length */

);

Description

In the file indicated by the file descriptor <fd>, the record indicated by the value of the primary record key held in the record area <recarea>
is written according to the contents of the record area.

The written record length <reclen> is valid only if the file is in the variable-length format.

Execution Conditions

File Organization Sequential file -

Record sequential file -

Relative file -

Indexed file Executable

Open Mode INPUT mode -

OUTPUT mode Executable

I-O mode Executable

EXTEND mode -

Access Mode Sequential -

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_EDUPL 22 Since duplication of the primary record key is not permitted,
this function cannot be executed

FA_EBADLENG 44 The specified written record length value is out of the
permissible range

FA_ENOTOPEN 48 The specified file is opened in INPUT mode. Alternatively,
an invalid file descriptor is specified

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.22 cobfa_wrnext()
Write a record sequentially (sequential write).

long cobfa_wrnext (

 long fd, /* file descriptor */

- 26 -

 const char *recarea, /* record area */

 long reclen /* written record length */

);

Description

In the file indicated by the file descriptor <fd>, a record is written sequentially according to the contents in the record area <recarea>.

The written record length <reclen> is valid only if the file is in the variable-length format.

Execution Conditions

File Organization Sequential file Executable

Record sequential file Executable

Relative file Executable

Indexed file Executable

Open Mode INPUT mode -

OUTPUT mode Executable

I-O mode -

EXTEND mode Executable

Access Mode Sequential Executable

Random -

Dynamic -

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_EDUPL 22 Since duplication of the primary record key is not permitted,
this function cannot be executed

FA_EBADLENG 44 The specified written record length value is out of the
permissible range

FA_ENOTOPEN 48 The specified file is opened in INPUT mode. Alternatively, an
invalid file descriptor is specified

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.23 cobfa_wrrec()
Write a record specified by the relative record number (random write).

long cobfa_wrrec (

 long fd, /* file descriptor */

 const char *recarea, /* record area */

 long reclen, /* written record length */

- 27 -

 unsigned long recnum /* relative record number */

);

Description

In the file indicated by the file descriptor <fd>, the record specified by a relative record number <recnum> is written according to the
contents of the record area <recarea>.

The written record length <reclen> is valid only if the file is in the variable-length format.

Execution Conditions

File Organization Sequential file -

Record sequential file -

Relative file Executable

Indexed file -

Open Mode INPUT mode -

OUTPUT mode Executable

I-O mode Executable

EXTEND mode -

Access Mode Sequential -

Random Executable

Dynamic Executable

Return Values

0: Successful Function executed successfully

-1: Failed Function failed. To get extended error information, call the cobfa_errno or cobfa_stat
functions

Generated Status

Return value of cobfa_errno () Return value of cobfa_stat ()

Successful FA_ENOERR 0 Function executed successfully

Failure (not all) (*) FA_EDUPL 22 An attempt was made to write a record by using a relative
record number that already exists

FA_EBADLENG 44 The specified written record length value is out of the
permissible range

FA_ENOTOPEN 48 The specified is opened in INPUT mode. Alternatively, an
invalid file descriptor is specified

* : Typical status values are described above. For other values, see "Chapter 5 Error Number and I-O Status".

3.24 LOCK_cobfa()
Set an exclusive lock.

long LOCK_cobfa (

 const unsigned long *timeout, /* wait time */

 unsigned long *errcode /* error code */

);

- 28 -

Description

In a multithread environment, exclusive control is required to prevent multiple threads from accessing a file simultaneously in the COBOL
runtime system.

This function sets the exclusive lock of a COBOL file accessed by the COBOL runtime system to prevent other threads from accessing the
COBOL file. When a file is accessed in a multithread environment, this function is used to prevent conflicts.

Specify the number of milliseconds to wait in <*timeout>. If the exclusive lock of a file has been set by another thread and does not open
the file before this function is called by another thread <*timeout>, execution of the called function fails. If NULL is specified for
<timeout>, the wait time is unlimited.

When the return value of this function is -1, the Windows system error code is set in error code <*errcode>. If NULL has been specified
for <errcode>, no value is returned for <*errcode>. The value is unpredictable when the return value of this function is not -1.

Execution Conditions

Always accessible.

Return Values.

Condition Return value Meaning

Successful 0 Exclusive lock of a COBOL file is successful

1 Exclusive lock of a COBOL file is successful. Since the thread exclusively locking
the file is terminated without unlocking the file, the thread may be terminated
abnormally. Proceed with caution

Failed -1 System error occurred. Windows system error code is set in <*errcode>.

-2 The wait time specified in "<*timeout>" has been exceeded. Access is not locked

How to use

Execute this function before executing an API function having an I-O function or an API function for obtaining file information. After
executing either of these API functions, execute the API function for obtaining a status report, if necessary. Then execute "3.25
UNLOCK_cobfa()" to release the exclusive lock.

While an exclusive lock is held other threads may rewrite the status value. Consequently, to ensure accuracy of the status value, "3.18
cobfa_stat()" must be executed immediately following any I-O related API function.

An example of exclusive control for each I-O is provided below.

long ret, fd, eno, stat, recnum;

ret = LOCK_cobfa (NULL, NULL); /* Set the exclusive lock of a file */

if (ret < 0) { /* Error processing */ }

fd = cobfa_open ("file.rel", FA_INPUT | FA_RELFILE | FA_FIXED, 10);

stat = cobfa_stat ();

eno = cobfa_errno ();

UNLOCK_cobfa (NULL); /* Open the exclusive lock of a file */

if (eno == FA_EFNAME) {

 printf ("errno: %d, stat: %d\n", eno, stat);

 ...

}

.... /* Perform processing not related to the input-output file */

ret = LOCK_cobfa (NULL, NULL); /* Lock file access exclusively. */

if (ret < 0) { /* Error processing */ }

cobfa_rdnext (fd, FA_NEXT, buff);

recnum = cobfa_recnum ();

UNLOCK_cobfa (NULL); /* Perform processing not related to the input/output file */

num = recnum;

- 29 -

.... /* Set the exclusive lock of the file */

ret = LOCK_cobfa (NULL, NULL); /* Lock file access exclusively */

if (ret < 0) { /* Error processing */ }

cobfa_close (fd);

UNLOCK_cobfa (NULL); /* Open the exclusive lock of the file */

A COBOL file can be controlled exclusively from the start to the end of file access. Arbitrary range extension of exclusive control is
possible.

An example of continuous exclusive control is provided below.

long ret, fd;

ret = LOCK_cobfa (NULL, NULL); /* Set the exclusive lock of a file */

if (ret < 0) { /* Error processing */ }

fd = cobfa_open ("file.seq", FA_OUTPUT | FA_SEQFILE | FA_FIXED, 10);

cobfa_wrnext (fd, buffer, 10);

.... /* Perform input-output operation for files */

cobfa_close (fd);

UNLOCK_cobfa (NULL); /* Open the exclusive lock of a file */

3.25 UNLOCK_cobfa()
Release an exclusive lock.

long UNLOCK_cobfa (

 unsigned long *errcode /* error code */

);

Description

Release the exclusive lock of the file accessed by the COBOL runtime system.

When the return value of this function is -1, the Windows system error code is set in error code <*errcode>. If NULL has been specified
for <errcode>, no value is returned for <*errcode>. The value is unpredictable when the return value of this function is not -1.

Execution Conditions

Always accessible.

Return Values

0: Successful Exclusive unlock of a COBOL file is successful

-1: Failed System error occurred. Windows system error code is set in <*errcode>.

3.26 Dummy File
When a dummy file is specified in an API function, a physical file is not actually created. A dummy file is useful when an output file is not
needed, or when no input file is available during development. For example, a dummy file can be created in place of a physical log file when
an error occurs. And when a program is being developed and no input file is available, a dummy file can be used for testing purposes.

Dummy file is convenient to use in the following cases:

- 30 -

- When the output file is not required

The log file is only required when an error occurs. During normal operation, using the log file as dummy file, you can suppress the output
of the file. When an error occurs, remove the specification of the dummy file to output the log file.

- During development, when there is no input files

You can test using an empty file. By using the input file as dummy files, you can test it without using an empty file.

3.26.1 How to use
",DUMMY" is appended to the file name specified for "3.7 cobfa_open()" or "3.8 cobfa_openW()", or the file name is omitted and only
",DUMMY" is specified.

fname = "[file-name],DUMMY";

 Note

- Place a comma (,) in front of the character string "DUMMY", otherwise the character string "DUMMY" will be interpreted as a file
name.

- Dummy file operation is the same regardless of whether the file name is specified. Even if the specified file exists, any operation is not
done to the file.

3.26.2 Dummy File Operation
The operation of the dummy file for each function is as follows:

Function Return Value Condition Error Number I-O status

cobfa_open() 1 or greater Successful FA_ENOERR 0

cobfa_openW()

cobfa_close() 0 Successful FA_ENOERR 0

cobfa_release()

cobfa_stkey()

cobfa_strec()

cobfa_wrkey()

cobfa_wrnext()

cobfa_wrrec()

cobfa_rdnext() -1 Failed FA_EENDFILE 10

cobfa_rdkey() -1 Failed FA_ENOREC 23

cobfa_rdrec()

cobfa_delcurr() -1 Failed FA_ENOCURR 43

cobfa_rewcurr()

cobfa_delkey() -1 Failed FA_ENOREC 23

cobfa_delrec()

cobfa_rewkey()

cobfa_rewrec()

- 31 -

 Note

In file access routines, the specification of the record key can be omitted by opening the index file. In this case, it opens recognizing the index
composition, the record format, and the record length of the existing file.

When the dummy file function is specified, the specification of the record key can be similarly omitted. However, the cobfa_indexinfo()
to acquire the file information fails. The error number goes to FA_EUNDEFKEY, and the I/O status becomes 90.

3.27 High-speed File Processing
Record sequential files and line sequential files can be accessed faster by specifying an available range. This function is effective in the
following API functions:

- cobfa_wrnext()

- cobfa_rdnext()

How to use

Append ",BSAM" to the file name specified for the cobfa_open() function.

fname = "file-name,BSAM";

 Note

This is effective when the file organization is record sequential (FA_SEQFILE) or line sequential (FA_LSEQFILE). For file organizations
other than these, an error occurs during execution of cobfa_open().

Records cannot be updated. If I-O mode (FA_INOUT) was specified as the open mode, an error occurs during the execution of
cobfa_open().

If files are shared and you want to permit file sharing among different processes, all files must be in shared mode and opened with INPUT
specified. Operation is not guaranteed if a file is opened without specifying INPUT. File sharing is not permitted in the same process.
Operation is not guaranteed if a file is shared within the same process.

If a record read from a line sequential file includes a tab, the tab code is not replaced by a blank. If control characters 0x0C (page feed), 0x0D
(return), or 0x1A (data end symbol) are included, the control characters are not handled as a record delimiter and a file terminator.

- 32 -

Chapter 4 API Structures
This chapter explains the data structures used by the API functions.

4.1 Structures for API Functions

4.1.1 struct fa_keydesc
For the cobfa_rdkey() function and cobfa_stkey() function, arbitrary record key selection can be specified by using the struct fa_keydesc
type. With the cobfa_indexinfo() function, the arbitrary record key in the indexed file that has been opened can be determined.

The values to set for the struct fa_keydesc type members that provide the record key are explained below.

#define FA_NPARTS 254u /* max number of key parts */

struct fa_keydesc {

 long k_flags; /* flags (duplicatable or not) */

 long k_nparts; /* number of parts in key */

 struct fa_keypart k_part [FA_NPARTS]; /* each key part */

};

- Set either value for <k_flags> indicating the record key attribute:

- FA_DUPS: This record key can be duplicated.

- FA_NODUPS: This record key does not permit duplication.

- Set the number of parts (key parts) in the record key for <k_nparts>. The minimum value is 1 and the maximum value is FA_NPARTS
(254).

- <k_part> provides information on each key part is declared as the struct fa_keypart type. Explanation follows:

#define FA_NRECSIZE 32760u /* max number of bytes in a record */

#define FA_NKEYSIZE 254u /* max number of bytes in a key */

struct fa_keypart {

 short kp_start; /* starting byte of key part */

 short kp_leng; /* length in bytes */

 long kp_flags; /* flags (UCS-2 key part or not) */

};

- Set the 0-based byte displacement from the record start <kp_start>. The maximum value of this displacement is FA_NRECSIZE
- 1 (typically 32759).

- Set the key part length for <kp_leng>. The minimum value is 1 and the upper limit is FA_NKEYSIZE (typically 254). The sum of
displacement and length must not exceed FA_NRECSIZE (typically 32760).

- Set the information of one of the following categories for <kp_flags>. The value set for this member is valid only when key part
flag usage (FA_USEKPFLAGS) has been specified for the open attribute argument of file open (cobfa_open() and cobfa_openW()
function).

Key part code system type

- FA_UCS2KPCODE: The key part code system type is UCS-2(little-endian).

- FA_UTF32KPCODE: The key part code system type is UTF-32(little-endian).

- FA_ANYKPCODE: The key part code system type is other than UCS-2(little-endian).

For indexed files handled by COBOL applications whose operating mode is Unicode, specify FA_UCS2KPCODE if the key part is a
national item of UCS-2(little-endian) or specify FA_UTF32KPCODE if the key part is a national item of UTF-32(little-endian). If the key
part is not a national item of UCS-2(little-endian)/UTF-32(little-endian) or the operating mode is not Unicode, specify FA_ANYKPCODE.

To reference kp_flags when obtaining the record key organization (cobfa_indexinfo() function), use the mask value FA_KPCODEMASK
to fetch the code system type of the key part.

- 33 -

 Example

FA_KPCODEMASK use example

#include "f4agfcfa.h"

#define GET_PRIM_KEY 1

struct fa_keydesc keydesc1;

 :

ret = cobfa_indexinfo (fd, &keydesc1, GET_PRIM_KEY);

for (i = 0; i < keydesc1.k_nparts; i ++) {

 :

 switch (keydesc1.k_part[i].kp_flags & FA_KPCODEMASK) {

 case FA_UCS2KPCODE:

 :

 break;

 case FA_ANYKPCODE:

 :

 break;

 }

 :

}

Practical examples

 Example

Example 1

- The primary record key can be duplicated. The number of key parts is 2.

- The first part is at the fifth byte counted from the first byte and its length is 3.

- The second part is at the eleventh byte counted from the first byte and its length is 5.

Byte: | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Offset:|0--|1--|2--|3--|4--|5--|6--|7--|8--|9--|10-|11-|12-|13-|14-|15-|

 |==....

 |---+---+---| |---+---+---+---+---|

 first part second part

COBOL program

001000 environment division.

001100 configuration section.

001200 input-output section.

001300 file-control.

001400 select FILENAME-1 assign to SYS006

001500 organization is indexed

001600 record key is part-1 part-2 with duplicates.

 :

002000 data division.

002100 file section.

002200 fd FILENAME-1.

002300 01 record-1.

002400 02 filler pic x(4).

002500 02 part-1 pic x(3).

002400 02 filler pic x(3).

002500 02 part-2 pic x(5).

002600 02 filler pix x(...

C program

- 34 -

#include "f4agfcfa.h"

struct fa_keydesc keydesc1;

keydesc1.k_flags = FA_DUPS;

keydesc1.k_nparts = 2; /* number of key parts: 2 */

keydesc1.k_part[0].kp_start = 4; /* part_1: 5 - 1 == 4 */

keydesc1.k_part[0].kp_leng = 3;

keydesc1.k_part[0].kp_flags = FA_ANYKPCODE;

keydesc1.k_part[1].kp_start = 10; /* part_2: 11 - 1 == 10 */

keydesc1.k_part[1].kp_leng = 5;

keydesc1.k_part[1].kp_flags = FA_ANYKPCODE;

Example 2

- The primary record key does not permit duplication. The number of key parts is~3.

- The first part is at the first byte and its length is 3.

- The second part is at the ninth byte counted from the first byte and its length is~2.

- The third part is at the fifth byte counted from the first byte and its length is 4.

Byte: | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Offset:|0--|1--|2--|3--|4--|5--|6--|7--|8--|9--|10-|11-|12-|13-|14-|15-|

 |==....

 |---+---+---| |---+---+---+---|---+---|

 first part third part second part

COBOL program

001000 environment division.

001100 configuration section.

001200 input-output section.

001300 file-control.

001400 select FILENAME-1 assign to SYS006

001500 organization is indexed

001600 record key is part-1 part-2 part-3.

 :

002000 data division.

002100 file section.

002200 fd FILENAME-1.

002300 01 record-1.

002400 02 part-1 pic x(3).

002500 02 filler pic x(1).

002400 02 part-3 pic x(4).

002500 02 part-2 pic x(2).

002600 02 filler pix x(...

C program

#include "f4agfcfa.h"

struct fa_keydesc keydesc2;

keydesc2.k_flags = FA_NODUPS;

keydesc2.k_nparts = 3; /* number of key parts: 3 */

keydesc2.k_part[0].kp_start = 0; /* part_1: 1 - 1 == 0 */

keydesc2.k_part[0].kp_leng = 3;

keydesc2.k_part[0].kp_flags = FA_ANYKPCODE;

keydesc2.k_part[1].kp_start = 8; /* part_2: 9 - 1 == 8 */

keydesc2.k_part[1].kp_leng = 2;

keydesc2.k_part[1].kp_flags = FA_ANYKPCODE;

keydesc2.k_part[2].kp_start = 4; /* part_3: 5 - 1 == 4 */

- 35 -

keydesc2.k_part[2].kp_leng = 4;

keydesc2.k_part[2].kp_flags = FA_ANYKPCODE;

4.1.2 struct fa_keylist
Specification for the list of all record keys.

For the cobfa_open() and cobfa_openW() function, the list of all record keys in the indexed file to be opened is specified with the struct
fa_keylist type.

Values to be set for the struct fa_keylist type members that give the overall organization of record keys are explained below.

#define FA_NKEYS 126u /* max number of keys */

struct fa_keylist {

 long kl_nkeys; /* number of keydesc */

 struct fa_keydesc *kl_key [FA_NKEYS]; /* keydesc address of each key */

};

- Set the total number of record keys for <kl_nkeys>.

Since an indexed file always contains the primary record key, the total number of record keys is always 1 or greater. The maximum value
for this total number is FA_NKEYS (typically 126).

- <kl_key> maintains information on each record key and is declared by the struct fa_keydesc type pointer. For the struct fa_keydesc
type, see "4.1.1 struct fa_keydesc".

The sum of key parts retained by the record keys must not exceed FA_NALLPARTS (typically 255).

The sum of lengths of key parts retained by the record keys must not exceed FA_NALLKEYSIZE (typically 255).

Practical examples

 Example

- The list of record keys in an indexed file is one primary record key and one alternate record key (2 keys).

- The primary record key has two key parts and does not permit duplication.

- The first key part is at the first byte and its length is 4, the second key part is at the seventh byte counted from the first byte and its length
is 2.

- The alternate record key has one key part can be duplicated.

- The key part is at the twelfth byte counted from the first byte and its length is 3.

Byte: | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Offset:|0--|1--|2--|3--|4--|5--|6--|7--|8--|9--|10-|11-|12-|13-|14-|15-|

 |==....

 |---+---+---+---| |---+---| |---+---+---|

 first part of the second part of the alternate record key

 primary record key primary record key

COBOL program

001000 environment division.

001100 configuration section.

001200 input-output section.

001300 file-control.

001400 select FILENAME-1 assign to SYS006

001500 organization is indexed

001600 record key is part-1 part-2

001700 alternate record key is subpart with duplicates.

- 36 -

 :

002000 data division.

002100 file section.

002200 fd FILENAME-1.

002300 01 record-1.

002400 02 part-1 pic x(4).

002500 02 filler pic x(2).

002400 02 part-2 pic x(2).

002500 02 filler pic x(3).

002600 02 subpart pic x(3).

002700 02 filler pix x(...

C program

#include "f4agfcfa.h"

struct fa_keylist keylist; /* for all keys structure */

struct fa_keydesc keydesc1; /* for prime record key */

struct fa_keydesc keydesc2; /* for alternate record key */

keylist.kl_nkeys = 2; /* number of keys: 2 (prim & alt) */

keylist.kl_key[0] = &keydesc1; /* prime key address */

keylist.kl_key[1] = &keydesc2; /* alternate key address */

keydesc1.k_flags = FA_NODUPS;

keydesc1.k_nparts = 2; /* number of key parts: 2 */

keydesc1.k_part[0].kp_start = 0; /* 1 - 1 == 0 */

keydesc1.k_part[0].kp_leng = 4;

keydesc1.k_part[0].kp_flags = FA_ANYKPCODE;

keydesc1.k_part[1].kp_start = 6; /* 7 - 1 == 6 */

keydesc1.k_part[1].kp_leng = 2;

keydesc1.k_part[1].kp_flags = FA_ANYKPCODE;

keydesc2.k_flags = FA_DUPS;

keydesc2.k_nparts = 1; /* number of key parts: 1 */

keydesc2.k_part[0].kp_start = 11; /* 12 - 1 == 11 */

keydesc2.k_part[0].kp_leng = 3;

keydesc2.k_part[0].kp_flags = FA_ANYKPCODE;

4.1.3 struct fa_dictinfo
Information about an opened indexed file.

For the cobfa_indexinfo() function, information on the opened indexed file can be returned with the struct fa_dictinfo type. For details, see
"3.6 cobfa_indexinfo()".

Values to be set for the struct fa_dictinfo type members used to acquire indexed file information are explained below.

struct fa_dictinfo {

 long di_nkeys; /* number of keys defined */

 long di_recsize; /* max or fixed data record size */

 long di_idxsize; /* size of indexes */

 long di_flags; /* other flags (fixed or variable) */

};

- The total number of record keys in the indexed file is set for <di_nkeys>.

- The fixed record length or maximum record length is set for <di_recsize> indicating the record length of the file. With this access
routine, the minimum record length cannot be acquired.

- The total length of record keys is set for <di_idxsize> indicating the sum of lengths of all record keys.

- 37 -

- <di_flags> indicating the file attribute has information on the following category:

- Record format

- FA_FIXLEN: Fixed-length record format

- FA_VARLEN: Variable-length record format

Individual attribute values can be determined by application of a logical AND to the <di_flags> value.

 Example

#include "f4agfcfa.h"

struct fa_dictinfo di;

long fd, ret;

 :

ret = cobfa_indexinfo (fd,&di,0); /* get indexed file info */

if (di.di_flags & FA_FIXLEN)

{

 /* process for fixed length record type */

 :

}

- 38 -

Chapter 5 Error Number and I-O Status
Errors encountered by the API functions are available from the cobfa_errno() and cobfa_stat() functions. In both cases, the value represents
the error condition from the most recent API call.

Values returned by cobfa_stat () are comparable to the FILE-STATUS values available at runtime. Cobfa_errno() provides a more
comprehensive range of error conditions, including errors caused by passing incorrect parameters to the API functions.

5.1 Error Number
Error numbers and their meanings are explained below.

Table 5.1 Error number and meanings

Error Number Meanings

FA_ENOERR Execution of the I-O feature or file information acquisition is successful.

FA_ENOSPC Insufficient disk space.

FA_EDUPL Key duplication error. The status is one of the following:

- The value of the record key not permitting duplication is duplicated.

- The value of a relative record number is duplicated.

FA_ENOTOPEN File open error. The status is one of the following:

- The file is not opened yet.

- The file is opened in a mode other than the open mode that allows execution of this feature.

FA_EBADARG Argument error. The status is one of the following:

- The record area address is the NULL pointer.

- For a function for file information acquisition, the function number is out of the range.

- For a function for file information acquisition, the structure pointer is NULL.

FA_EBADKEY Indexed file record key specification error. The status is one of the following:

- The record key list is improperly constructed.

- The record key list provided does not match the file key list.

- The record key number is out of range.

FA_ETOOMANY An attempt was made to open the number of files that exceeded the limit given by the OS or this
access routine.

FA_EBADFILE File structure error. The status is one of the following:

- The file internal information is incorrect or has been destroyed.

- The correct file organization has not been specified.

- The character encoding type does not match the encoding forms (ShiftJIS, UCS-2, UTF-8) of
the line sequential file.

FA_ELOCKED The record is locked.

FA_EENDFILE An end of file condition occurred.

FA_ENOREC The specified record does not exist.

FA_ENOCURR Positioning to the record is undefined.

FA_EFLOCKED The file is already opened exclusively.

FA_EFNAME Error on the filename given when the file was opened. The status is one of the following:

- The file does not exist.

- 39 -

Error Number Meanings

- The file cannot be accessed.

- The filename is a NULL pointer or void string.

- Filename organization is incorrect.

- An attempt was made to open a file with the read-only attribute in a mode other than INPUT
mode.

FA_EBADMEM Acquisition of the necessary memory for executing the feature failed.

FA_EKEYSEQ Key sequence error or key change error. The status is one of the following:

- The primary record key value is not in ascending order in sequential write.

- The primary record key value was changed with sequential rewrite.

FA_EBADACC The combination of parameters is invalid. The status is one of the following:

- Execution of a feature violating the access mode is requested.

- The feature cannot be executed with this file organization.

- The flag combination provided when the file is opened is incorrect.

FA_EBADFLAG The value specified for the flag is incorrect. The status is one of the following:

- An unusable mode is specified for the open mode, read mode, or positioning mode.

- An unacceptable value is specified for the flag.

FA_EBADLENG Length error. The status is one of the following:

- The record length exceeds the permissible range.

- The valid key length for positioning exceeds the permissible value.

FA_EUNDEFKEY When a file is opened specifying the dummy file function and the record key specification is
omitted, index file information cannot be acquired. See "3.26 Dummy File" for details.

FA_EOTHER An error other than the above occurred. Obtain the return value of the cobfa_stat () function and
check the status. For the cobfa_stat() function, see "3.18 cobfa_stat()".

5.2 I-O Status
The I-O status can be acquired by calling the cobfa_stat () function. For details, see "3.18 cobfa_stat()".

Refer to "Appendix B I-O Status List" in the "NetCOBOL User's Guide" for the complete list if I-O status values.

- 40 -

Chapter 6 Example Programs
Three example programs are provided. These "makefiles" (FCFA0n.MAK) explicitly describes the folder name, so modify the contents
depending on your environment.

6.1 Line Sequential File INPUT

Overview

This example program opens the specified file in INPUT mode as a line sequential file and displays the contents of the record that is read.

Compilation procedure

Provide the folder name in the "makefile" according to your environment as follows:

CDIR

The installation folder of the C compiler is set.

COBDIR

The installation folder of the NetCOBOL runtime system is set.

Then, enter the following command:

> nmake -f FCFA01.MAK

Execution procedure

Run the program by using a proper text file as the argument. For example, enter the source program of FCFA01 itself.

> FCFA01 FCFA01.C

Folder

C:\netcobol\samples\FCFA01

6.2 Line Sequential File INPUT and Indexed File OUTPUT

Overview

This example program opens a particular line sequential file (FCFA02.INP) in INPUT mode and writes the record contents as the record
of the indexed file (FCFA02.IDX). Finally, this example program opens the indexed file in INPUT mode and displays it on the screen in
the primary record key order.

Compilation procedure

Provide the folder name in the "makefile" according to your environment as follows:

CDIR

The installation folder of the C compiler is set.

COBDIR

The installation folder of the NetCOBOL runtime system is set.

Then, enter the following command:

> nmake -f FCFA02.MAK

- 41 -

Execution procedure

Execute this program without using any argument.

> FCFA02

Folder

c:\netcobol\samples\FCFA02

6.3 Indexes File Information Acquisition

Overview

This example program opens the specified file in INPUT mode as the indexed file and displays the attributes of the file itself and each
structure of the record keys.

Compilation procedure

Provide the folder name in the "makefile" according to your environment as follows:

CDIR

The installation folder of the C compiler is set.

COBDIR

The installation folder of the NetCOBOL runtime system is set.

Then, enter the following command:

> nmake -f FCFA03.MAK

Execution procedure

Execute the program by using a proper indexed file as the argument. For example, specify the indexed file created by executing the sample
program FCFA02.

> FCFA03 ..\FCFA02\FCFA02.IDX

Folder

c:\netcobol\samples\FCFA03

- 42 -

Chapter 7 Notes

7.1 Limitation Items
Known limitation items are enumerated below.

Indexed file

- For the file opened according to the dynamic access method (FA_DYNACC), there is no way to sequentially rewrite or delete the record
that has been positioned as a result of sequential read, under the following condition:

- FA_REVORD is specified by the cobfa_stkey() function, or

- Attribute of the primary record key allows duplicated (FA_DUPS).

7.2 Cautions

General file features

- Be sure to close all of the files that have been opened by the application program before exiting the application program. Without this
operation, file corruptions and /or system resource leaks may arise.

- A double open error (I-O status: 41) does not occur even though the same file is opened in a process. In this case, a different file
descriptor is assigned. The maximum number of file descriptors that can be opened in the same process is 1024.

- If two or more errors occur when the API function is executed, an I-O status different from those of the COBOL application may be
returned.

- For the I-O statements in COBOL that do not need explicit description of the access method, the sequential access/random access API
functions must be explicitly described to use the API. Be sure to describe the file organization and access method.

- The current status functions (cobfa_errno(), cobfa_stat(), cobfa_reclen(), and cobfa_recnum()) are shared values and do not retain
values for each file descriptor. These values are replaced or destroyed by the next call to an API function. Therefore, these values should
be saved in local variables before calling the next I-O function.

- To read, write, rewrite, or position a record, an area that is equivalent to or larger than the maximum/fixed record length used to open
the file should be reserved in advance as the area for passing the data. For functions using other pointers, be sure to reserve the necessary
area in advance as well.

- Note that errors can be detected only when API functions are executed although errors can be detected during compilation in COBOL.
Practically, these errors are inconsistent bit-wise flags, incorrect index key specification, etc.

- For quantitative restrictions of files, refer to "Functional differences between file systems" in the "NetCOBOL User's Guide" and
"Sequential File", "Relative File", in Appendix B of the "NetCOBOL Language Reference".

- For correspondence between the COBOL data types and C language data types, refer to "Correspondence of COBOL and C Data Types"
in the "NetCOBOL User's Guide". Note that the internal format of COMP-5 is different from the internal format of binary.

- Please note the code of the specified filename when you open the file. When the code is mistaken, operation is not guaranteed.

- cobfa_open() : Shift-JIS

- cobfa_openW() : Unicode(UTF-16)

- Enclose the file name with double quotes (") when you specify a file that contains commas (,) in the file name.

Line sequential file

- A 0-byte record cannot be written.

- In this product, when 0x0D 0x0A (line feed and line break) is treated as a line-feed character, and it begins to write records, it adds.

- 43 -

- A control character contained in a record to be read is treated as follows:

- 0x0C (page feed): Treated as a record delimiter

- 0x0D (return): Treated as a record delimiter

- 0x1A (data end symbol): Treated as a file terminator

- If a record read from a line sequential file includes a tab, the tab code is replaced by a blank. Refer to "Processing Line Sequential Files",
in "File Processing" of NetCOBOL User's Guide for details.

Record sequential file

- The print file cannot be handled, therefore the following limitations:

- No support for LINAGE clause in the COBOL syntax.

- No support for the line feed control /page control for the WRITE statement in the COBOL syntax.

Relative file

- The relative record number must be explicitly specified by using an argument in random delete (cobfa_delrec()), random write
(cobfa_wrrec()), random rewrite (cobfa_rewrec()), and random read (cobfa_rdrec()).

- The relative record number of the record accessed in sequential read (cobfa_rdnext()) and sequential write (cobfa_wrnext()) can be
acquired by using the cobfa_recnum() function.

Indexed file

- When opening an existing file, you can open it without specifying the record key list. In this case, the file is opened based on the record
key list in the existing file.

- The cobfa_indexinfo() function can be used to retrieve the indexed file attributes (record length and record format) or record key list
after the file is open.

MultiThreading

- The multithread function is specific to server operation environment products.

- The following functions must be used for exclusive control (setting and opening exclusive lock) when accessing COBOL files. For
details, see the description of each API function.

- LOCK_cobfa()

- UNLOCK_cobfa()

- In a multithread environment, exclusive control is required before calling API function with input-output function and API function in
which the file information is acquired. If the access is not exclusively controlled, the following problems may occur:

- Incorrect execution of input-output files

- Abnormal termination of the thread

- File corruption

For the timing of the lock/unlock of exclusive control, refer to "3.25 UNLOCK_cobfa()."

Unicode

Note the following points regarding handling of Unicode:

- Set the number of bytes for key part length kp_leng of indexed files to be handled by COBOL applications operating in Unicode mode.

- Set the number of bytes for the record length of line sequential files to be handled by COBOL applications operating in Unicode mode.

- 44 -

Index
[C]

C compiler.. 1
cobfa_close... 3
cobfa_delcurr.. 4
cobfa_delkey...5
cobfa_delrec..6
cobfa_errno..7,39
cobfa_indexinfo... 7,33,37,44
cobfa_open..9
cobfa_openW..13
cobfa_rdkey... 13,33
cobfa_rdnext... 15
cobfa_rdrec... 16
cobfa_reclen..18
cobfa_recnum... 18
cobfa_release.. 18
cobfa_rewcurr...19
cobfa_rewkey..20
cobfa_rewrec.. 21
cobfa_stat...22,39
cobfa_stkey..22,33
cobfa_strec..24
cobfa_wrkey... 25
cobfa_wrnext.. 26
cobfa_wrrec.. 27

[D]
Dummy File..30

[F]
File Access functions..3

[H]
header file... 2
High-speed File Processing.. 32

[K]
key structure... 8

[L]
LOCK_cobfa.. 28

[M]
MultiThreading...44

[S]
struct fa_dictinfo...37
struct fa_keydesc.. 33
struct fa_keylist...36

[U]
UNLOCK_cobfa...30

- 45 -

	Title Page
	Preface
	Contents
	Chapter 1 Before Using this Software
	1.1 About COBOL File Access Routines
	1.2 Requirements
	1.3 Environment Setup

	Chapter 2 Usage
	2.1 Making C Source Programs
	2.2 Compilation of C Source Programs
	2.3 Linking Objects
	2.4 Application Program Execution

	Chapter 3 API Functions
	3.1 cobfa_close()
	3.2 cobfa_delcurr()
	3.3 cobfa_delkey()
	3.4 cobfa_delrec()
	3.5 cobfa_errno()
	3.6 cobfa_indexinfo()
	3.7 cobfa_open()
	3.8 cobfa_openW()
	3.9 cobfa_rdkey()
	3.10 cobfa_rdnext()
	3.11 cobfa_rdrec()
	3.12 cobfa_reclen()
	3.13 cobfa_recnum()
	3.14 cobfa_release()
	3.15 cobfa_rewcurr()
	3.16 cobfa_rewkey()
	3.17 cobfa_rewrec()
	3.18 cobfa_stat()
	3.19 cobfa_stkey()
	3.20 cobfa_strec()
	3.21 cobfa_wrkey()
	3.22 cobfa_wrnext()
	3.23 cobfa_wrrec()
	3.24 LOCK_cobfa()
	3.25 UNLOCK_cobfa()
	3.26 Dummy File
	3.26.1 How to use
	3.26.2 Dummy File Operation

	3.27 High-speed File Processing

	Chapter 4 API Structures
	4.1 Structures for API Functions
	4.1.1 struct fa_keydesc
	4.1.2 struct fa_keylist
	4.1.3 struct fa_dictinfo

	Chapter 5 Error Number and I-O Status
	5.1 Error Number
	5.2 I-O Status

	Chapter 6 Example Programs
	6.1 Line Sequential File INPUT
	6.2 Line Sequential File INPUT and Indexed File OUTPUT
	6.3 Indexes File Information Acquisition

	Chapter 7 Notes
	7.1 Limitation Items
	7.2 Cautions

	Index

