PRIMECLUSTER

Reliant Monitor Services (RMS) with Wizard Tools
Configuration and Administration Guide 4.3
(Oracle Solaris /Linux)

Edition October 2015
Copyright and Trademarks

Linux is a trademark or registered trademark of Mr. Linus Torvalds in the United States and other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

EMC, PowerPath, and Symmetrix are registered trademarks of EMC Corporation.

SRDF is a trademark of EMC Corporation.

PRIMECLUSTER is a registered trademark of Fujitsu Limited.

All other hardware and software names used are trademarks of their respective companies.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or US export control laws.

Requests

- No part of this documentation may be reproduced or copied without permission of FUJITSU LIMITED.
- The contents of this documentation may be revised without prior notice.

All Rights Reserved, Copyright (C) FUJITSU LIMITED 2008-2015.
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Using the Wizard Tools interface (hvw)</td>
</tr>
<tr>
<td>Configuration example</td>
</tr>
<tr>
<td>Using the Cluster Admin GUI</td>
</tr>
<tr>
<td>Additional administrative tools</td>
</tr>
<tr>
<td>Controlling RMS operation</td>
</tr>
<tr>
<td>Appendix—Site preparation</td>
</tr>
<tr>
<td>Appendix—States</td>
</tr>
<tr>
<td>Appendix—Object types</td>
</tr>
</tbody>
</table>
Contents

Preface

1.1 About this manual ... 1
1.2 PRIMECLUSTER manuals 2
1.3 Conventions ... 3
 1.3.1 Notation ... 3
 1.3.1.1 Prompts .. 4
 1.3.1.2 Manual page section numbers 4
 1.3.1.3 The keyboard 4
 1.3.1.4 Typefaces 4
 1.3.1.5 Example 1 5
 1.3.1.6 Example 2 5
1.4 Important notes and cautions 6
1.5 Abbreviations .. 7
1.6 Revision history .. 7

Introduction

2.1 PRIMECLUSTER overview 9
2.2 How RMS provides high availability 11
 2.2.1 Applications, resources, and objects 11
 2.2.2 Relationship of RMS configurations to the real world 15
 2.2.3 Node and application failover 17
 2.2.4 Controlled applications and controller objects 17
 2.2.4.1 Follow controllers 19
 2.2.4.2 Scalable controllers 20
 2.2.4.3 Further notes about controllers 22
 2.3 How the Wizard Tools provide easy configuration ... 22
 2.4 RMS wizard products 23
 2.4.1 RMS Wizard Tools 25
 2.4.2 RMS Wizard Kit 25
 2.5 Cluster Admin administration tool 26
 2.6 RMS components 26
 2.6.1 Base monitor 26
 2.6.2 Detectors and states 27
 2.6.3 Scripts ... 28
 2.6.4 RMS CLI ... 29
 2.7 Object types .. 30
 2.8 Object attributes 32
 2.9 Environment variables 32
 2.9.1 Setting environment variables 33
 2.9.2 Script execution environment variables 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>RMS Directory structure</td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>Using the Wizard Tools interface (hwv)</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview</td>
<td>37</td>
</tr>
<tr>
<td>3.1.1</td>
<td>RMS Wizard types</td>
<td>39</td>
</tr>
<tr>
<td>3.1.1.1</td>
<td>Turnkey wizards</td>
<td>39</td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>Resource wizards</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>General configuration procedure</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Creating and editing a configuration</td>
<td>40</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Using the wizard menus</td>
<td>41</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Main configuration menu</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Main configuration menu when RMS is not active</td>
<td>42</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Main configuration menu when RMS is running</td>
<td>46</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Secondary menus</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Basic and non-basic settings</td>
<td>48</td>
</tr>
<tr>
<td>3.5</td>
<td>Configuration elements</td>
<td>50</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Scripts</td>
<td>54</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Detectors</td>
<td>55</td>
</tr>
<tr>
<td>3.5.3</td>
<td>RMS objects</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>Configuration example</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Stopping RMS</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>Creating a configuration</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>Adding hosts to the cluster</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Creating an application</td>
<td>62</td>
</tr>
<tr>
<td>4.5</td>
<td>Entering Machines+Basics settings</td>
<td>65</td>
</tr>
<tr>
<td>4.6</td>
<td>Entering non-basic settings</td>
<td>70</td>
</tr>
<tr>
<td>4.7</td>
<td>Specifying a display</td>
<td>72</td>
</tr>
<tr>
<td>4.8</td>
<td>Activating the configuration</td>
<td>75</td>
</tr>
<tr>
<td>4.9</td>
<td>Creating a second application</td>
<td>77</td>
</tr>
<tr>
<td>4.10</td>
<td>Setting up a controlling application</td>
<td>81</td>
</tr>
<tr>
<td>4.11</td>
<td>Specifying controlled applications</td>
<td>82</td>
</tr>
<tr>
<td>4.12</td>
<td>Activating the configuration a second time</td>
<td>86</td>
</tr>
<tr>
<td>4.13</td>
<td>Starting RMS</td>
<td>87</td>
</tr>
<tr>
<td>5</td>
<td>Using the Cluster Admin GUI</td>
<td>89</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview</td>
<td>89</td>
</tr>
<tr>
<td>5.2</td>
<td>Starting the Cluster Admin GUI</td>
<td>90</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Web-Based Admin View</td>
<td>90</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Login</td>
<td>91</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Main Cluster Admin window</td>
<td>94</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Cluster Admin message view</td>
<td>95</td>
</tr>
<tr>
<td>5.3</td>
<td>Monitoring RMS with Cluster Admin</td>
<td>96</td>
</tr>
</tbody>
</table>
5.3.1 RMS tree .. 98
5.3.2 Pop-up context menus 100
5.3.3 Pop-up confirmation dialogs 102
5.3.4 Displaying environment variables 102
5.3.5 Displaying object states 104
5.3.6 Configuration information or object attributes 106

6 Additional administrative tools 107
6.1 Using the RMS clusterwide table 107
6.1.1 Using context menus from the clusterwide table 110
6.2 Using RMS graphs 111
6.2.1 RMS full graph 111
6.2.2 Application graph 116
6.2.3 Subapplication graph 117
6.2.4 Composite subapplication graph 119
6.2.5 Using pop-up context menus from the graph ... 121
6.2.6 Changing the displayed detail level 122
6.3 Interpreting display changes 126
6.3.1 Display during RMS configuration changes 126
6.3.2 Display after RMS shutdown 127
6.4 Viewing RMS log messages 130
6.4.1 Common procedures for switchlog and application log 134
6.4.2 Time filter 135
6.4.3 Keyword filters 136
6.4.3.1 Resource Name 136
6.4.3.2 Severity 137
6.4.3.3 Non-zero exit code 138
6.4.3.4 Keyword 138
6.4.4 Text search 139
6.4.5 Removing filters 139

7 Controlling RMS operation 141
7.1 Managing RMS nodes 141
7.1.1 Starting RMS 141
7.1.2 Starting RMS automatically at boot time 146
7.1.3 Stopping RMS 147
7.1.4 Clearing a SysNode Wait state 152
7.2 Managing RMS applications 154
7.2.1 Overriding automatic application startup 154
7.2.2 Switching an application 156
7.2.2.1 Notes on forcibly switching an application 158
7.2.3 Starting an application 162
7.2.4 Stopping an application 163
7.2.5 Resetting an application 164
Preface

Reliant® Monitor Services (RMS) is a software monitor designed to guarantee the high availability of applications in a cluster of nodes. This manual describes how to configure RMS using the RMS Wizards and how to administer RMS using the Cluster Admin GUI.

The manual is aimed at system administrators who create and maintain RMS configurations. Familiarity with the following system functions and components is assumed:

- PRIMECLUSTER family of products
- Oracle Solaris or Linux operating system
- Non-PRIMECLUSTER products such as volume managers and storage area networks.

This document assumes that the PRIMECLUSTER software has been installed as described in the Software Release Guide PRIMECLUSTER and the PRIMECLUSTER Installation Guide for your operating system.

1.1 About this manual

This manual is structured as follows:

- The chapter “Introduction” provides an introduction to RMS terminology and describes basic principles of operation.
- The chapter “Using the Wizard Tools interface (hvw)” describes how to configure RMS using the RMS Wizard Tools.
- The chapter “Configuration example” illustrates the Wizard Tools configuration process for two simple applications on a small cluster.
- The chapter “Using the Cluster Admin GUI” describes how to start and use the Cluster Admin graphical user interface (GUI), which is the primary tool for all RMS administrative functions.
- The chapter “Additional administrative tools” describes the RMS clusterwide table, RMS graphs, and the RMS log viewer.
- The chapter “Controlling RMS operation” describes common RMS administrative functions available through the Cluster Admin GUI, including the equivalent CLI procedures.
- The chapter “Appendix—Site preparation” describes network and file settings required for RMS operation.
The chapter “Appendix—States” lists the object states that are supported by RMS.

The chapter “Appendix—Object types” lists the object types that are supplied with RMS.

The chapter “Appendix—Attributes” lists the attributes that are supported by RMS object types.

The chapter “Appendix—Environment variables” describes the RMS environment variables.

The chapter “Appendix—RMS command line interface” lists the RMS administrative CLI commands.

The chapter “Appendix—List of manual pages” lists the manual pages for PRIMECLUSTER CLI commands related to RMS.

The chapter “Appendix—Release information” lists changes in this manual.

1.2 PRIMECLUSTER manuals

The manuals listed below provide details about PRIMECLUSTER products. Please contact your sales representative for ordering information.

- "PRIMECLUSTER Concepts Guide"-Provides conceptual details on the PRIMECLUSTER family of products.

- "PRIMECLUSTER Installation and Administration Guide"-Provides instructions for installing and upgrading PRIMECLUSTER products.

- "PRIMECLUSTER Cluster Foundation (CF) Configuration and Administration Guide"-Provides instructions for configuring and administering the PRIMECLUSTER Cluster Foundation.

- "PRIMECLUSTER Reliant Monitor Services (RMS) Reference Guide"-Describes operational principles and diagnostic procedures for the RMS high availability manager, including how to view and interpret RMS log files. Provides a list of all RMS error messages with a probable cause and suggested action for each condition.

- "PRIMECLUSTER Global Disk Services Configuration and Administration Guide"- Provides information on configuring and administering Global Disk Services (GDS).
"PRIMECLUSTER Global File Services Configuration and Administration Guide"-Provides information on configuring and administering Global File Services (GFS).

"PRIMECLUSTER Global Link Services Configuration and Administration Guide (Redundant Line Control Function)"-Provides information on configuring and administering the redundant line control function for Global Link Services (GLS).

"PRIMECLUSTER Global Link Services Configuration and Administration Guide (Redundant Line Control Function for Virtual NIC Mode)"-Provides information on configuring and administering the redundant line control function for Global Link Services (GLS).

"PRIMECLUSTER Global Link Services Configuration and Administration Guide (Multipath Function)"-Provides information on configuring and administering the multipath function for Global Link Services (GLS).

"PRIMECLUSTER Web-Based Admin View Operation Guide"-Provides information on using the Web-Based Admin View management GUI.

"PRIMECLUSTER DR/PCI Hot Plug User's Guide"-Provides the operation of Dynamic Reconfiguration function and PCI Hot Plug function by using PRIMECLUSTER.

"PRIMECLUSTER Messages"-Provides how to set the environment for PRIMECLUSTER. Messages output during system operation are also provided.

"Software Release Guide" and "Installation Guide"-This document provides late-breaking information about installation, configuration, and operations for PRIMECLUSTER.

1.3 Conventions

To standardize the presentation of material, this manual uses a number of notational, typographical, and syntactical conventions.

1.3.1 Notation

This manual uses the following notational conventions.
1.3.1.1 Prompts

Command line examples that require system administrator (or root) rights to execute are preceded by the system administrator prompt, the hash sign (#). Entries that do not require system administrator rights are preceded by a dollar sign ($).

In some examples, the notation <nodename># indicates a root prompt on the specified node. For example, a command preceded by shasta1# would mean that the command was run as user root on the node named shasta1.

1.3.1.2 Manual page section numbers

References to operating system commands may sometimes be followed by their manual page section numbers in parentheses, e.g., cp(1).

1.3.1.3 The keyboard

Keystrokes that represent nonprintable characters are displayed as key icons such as [Enter] or [F1]. For example, [Enter] means press the key labeled Enter; [Ctrl-b] means hold down the key labeled Ctrl or Control and then press the [B] key.

1.3.1.4 Typefaces

The following typefaces highlight specific elements in this manual.
Conventions

<table>
<thead>
<tr>
<th>Typeface</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant Width</td>
<td>Computer output and program listings; commands, file names, and other literal programming elements in the main body of text.</td>
</tr>
<tr>
<td>Italic</td>
<td>Variables in a command line that you must replace with an actual value. May be enclosed in angle brackets to emphasize the difference from adjacent text, e.g., <code><nodename>RMS</code>. Unless directed otherwise, you should not enter the angle brackets. The name of an item in a character-based or graphical user interface. This may refer to a menu item, a radio button, a checkbox, a text input box, a panel, or a window title.</td>
</tr>
<tr>
<td>Bold</td>
<td>Items in a command line that you must type exactly as shown.</td>
</tr>
</tbody>
</table>

Typeface conventions are shown in the following examples.

1.3.1.5 Example 1

Several entries from an `/etc/passwd` file are shown below:

```plaintext
root:x:0:1:0000-Admin(0000):/:/sbin/ksh
sysadm:x:0:0:System Admin.:/usr/admin:/usr/sbin/sysadm
setup:x:0:0:System Setup:/usr/admin:/usr/sbin/setup
daemon:x:1:1:0000-Admin(0000)://
```

1.3.1.6 Example 2

To use the `cat(1)` command to display the contents of a file, enter the following command line:

```bash
$ cat file
```

1.3.2 Command line syntax

The command line syntax observes the following conventions.
Important notes and cautions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>Brackets</td>
<td>Enclose an optional item.</td>
</tr>
<tr>
<td>{ }</td>
<td>Braces</td>
<td>Enclose two or more items of which only one is used. The items are separated from each other by a vertical bar (</td>
</tr>
<tr>
<td></td>
<td>Vertical bar</td>
<td>When enclosed in braces, it separates items of which only one is used. When not enclosed in braces, it is a literal element indicating that the output of one program is piped to the input of another.</td>
</tr>
<tr>
<td>()</td>
<td>Parentheses</td>
<td>Enclose items that must be grouped together when repeated.</td>
</tr>
<tr>
<td>...</td>
<td>Ellipsis</td>
<td>Signifies an item that may be repeated. If a group of items can be repeated, the group is enclosed in parentheses.</td>
</tr>
</tbody>
</table>

1.4 Important notes and cautions

Important

- Indicates important information.

Caution

- Indicates a situation that can cause harm to data.

Note

- Indicates information that needs special attention.
1.5 Abbreviations

Oracle Solaris might be described as Solaris, Solaris Operating System, or Solaris OS.

If "Solaris X" is indicated in the reference manual name of the Oracle Solaris manual, replace "Solaris X" with "Oracle Solaris 10 (Solaris 10)" or "Oracle Solaris 11 (Solaris 11)".

1.6 Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Location</th>
<th>Manual code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deleted the attribute "OnlineTimeout."</td>
<td>11.1</td>
<td>J2UZ-5295-06ENZ0(01)</td>
</tr>
<tr>
<td>Changed the explanation of configuration files (hvenv and hvenv.local) for global variables and revised whole description.</td>
<td>2.9 2.9.1</td>
<td>J2UZ-5295-06ENZ0(02)</td>
</tr>
<tr>
<td>Changed the explanation of the Application-Edit menu of the RMS Wizards.</td>
<td>3.3.2.1</td>
<td></td>
</tr>
<tr>
<td>Added the description to "i" (Important) icon of the Configuration-Activate menu of the RMS Wizards.</td>
<td>3.3.2.1</td>
<td></td>
</tr>
<tr>
<td>Added the explanation of the behavior when exiting maintenance mode.</td>
<td>7.3.3</td>
<td></td>
</tr>
<tr>
<td>Deleted “7.3.4 Clearing faults in maintenance mode.”</td>
<td>7.3.4</td>
<td></td>
</tr>
<tr>
<td>Changed the work area from /tmp to /var/tmp.</td>
<td>8.3.1.1</td>
<td></td>
</tr>
<tr>
<td>Changed the possible values of HV_COM_PORT.</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>Changed the possible values of HV_MAXPROC.</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>Changed the explanation of HV_OFFLINE_REASON.</td>
<td>12.4</td>
<td></td>
</tr>
</tbody>
</table>
Revision history

<table>
<thead>
<tr>
<th>Revision</th>
<th>Location</th>
<th>Manual code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deleted the explanations of the following commands:</td>
<td>7.1.2</td>
<td></td>
</tr>
<tr>
<td>- hvdist</td>
<td>13.1</td>
<td></td>
</tr>
<tr>
<td>- hvgdmake</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>- hvrclev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- hvthrottle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed the explanation of the following global environment variables:</td>
<td>12.2</td>
<td>J2UZ-5295-06ENZ0(03)</td>
</tr>
<tr>
<td>- RELIANT_LOG_LIFE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- RELIANT_LOG_PATH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added the note to HV_SYSLOG_USE.</td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td>Changed the explanation of the environment variables.</td>
<td>2.9.1</td>
<td>J2UZ-5295-06ENZ0(04)</td>
</tr>
</tbody>
</table>
2 Introduction

This chapter contains general information on Reliant Monitor Services (RMS), introduces the PRIMECLUSTER family of products, details how RMS, RMS Wizard Tools, and the RMS Wizard Kit work together to produce high-availability configurations, and introduces Cluster Admin.

Chapter contents:

- “PRIMECLUSTER overview”
- “How RMS provides high availability”
- “How the Wizard Tools provide easy configuration”
- “RMS wizard products”
- “Cluster Admin administration tool”
- “RMS components”
- “RMS CLI”
- “Object types”
- “Object attributes”
- “Environment variables”
- “RMS Directory structure”

2.1 PRIMECLUSTER overview

The PRIMECLUSTER family of products is an integrated set of cluster services, including configuration and administration services, high availability, scalability, parallel application support, cluster file system, and cluster volume management. Figure 1 illustrates the relationship of PRIMECLUSTER services to each other and to the operating system environment.
This manual focuses on PRIMECLUSTER products and services that relate to high availability operation (shown with a solid gray background in the figure above). They are as follows:

- **RMS**—This high availability manager is a software monitor that provides high availability (HA) for customer applications in a cluster of nodes. Its task is to monitor systems and application resources, to identify any failures, and to provide application availability virtually without interruption in the event of any such failures.

 RMS also provides integrated services for market-specific applications. Contact field engineers for availability and details.

- **RMS Wizard Tools**—This configuration tool provides a character-based interface to create RMS configurations. It includes templates for generic applications and commonly used resources.

 The RMS Wizard Kit works with the Wizard Tools to configure popular enterprise products for operation with RMS.

- **Cluster Admin**—The Cluster Admin GUI is the primary administrative tool for RMS.

- **Cluster Foundation (CF)**—This comprehensive suite provides cluster administration and communication services for user applications and other PRIMECLUSTER services.

PRIMECLUSTER products shown with a dotted background in the figure above are described in their respective manuals. See the section “PRIMECLUSTER manuals” in the Preface.
2.2 How RMS provides high availability

RMS provides high availability of a customer’s application by controlling and monitoring the state of all resources in use by a given application. Resources include items such as network interfaces, local and remote file systems, and storage area networks.

2.2.1 Applications, resources, and objects

RMS relies on a virtual representation of the cluster called a configuration. The configuration represents each machine, application, and system resource as an object, and the objects are logically arranged in a tree structure according to their dependencies. For instance, suppose a user application depends on a network interface and a file system in order to operate properly. In the tree structure, the corresponding application object would appear as a parent and the network and file system objects would appear as its children. The tree structure is commonly known as a graph.

Each object in the graph contains the state of the corresponding item along with any other parameters that may be required. An object is typically in the online (enabled, available) state or the offline (disabled, unavailable) state, but other states are possible according to the type of object. For the complete list of states supported by RMS, see “Appendix—States”.

At runtime, the configuration is managed by the RMS base monitor, which initiates actions when an object’s state changes, or, in the case of a timeout, when an object has remained in the same state for some specified time interval even though a change was expected. This design is known as a state machine.

Nodes and heartbeats

Machines that are members of a cluster are called nodes. When RMS monitors the health of a node, its highest priority is to detect a complete failure of the node or its base monitor. Its second priority is to detect slow response times that may be caused by system overloads. RMS uses two mechanisms to detect these problems.

RMS transmits a UDP heartbeat signal at regular intervals. If the elapsed time since the last heartbeat from a node exceeds an adjustable connection timeout, RMS assumes the node has lost connectivity. RMS then begins a recovery period for the node. If the node heartbeat is detected during the recovery period, RMS assumes the node is functional and returns it to normal status. However,
How RMS provides high availability

if RMS receives no heartbeats from the node before the recovery period expires, it assumes the node is down, even if other communication with the node is possible.

Once RMS marks a node as down, it takes a series of steps to ensure application and cluster integrity. First, it is necessary to ensure that the node is truly shut down. Otherwise, the node and its applications could unexpectedly recover later, causing conflicts and data corruption. To avoid these problems, RMS directs the Shutdown Facility (described later) to eliminate the node. This is often done by rebooting the node or turning off its power, but the exact action depends on which shutdown agents have been configured for the node. Only after the node has been eliminated is it safe for RMS to restart the node’s applications elsewhere in the cluster. The process of automatically switching applications from a failed node to a healthy node is called application failover.

Application switchover impacts cluster performance, so it is important to choose a recovery timeout that avoids false detection of node outages. The optimum UDP recovery time depends on the conditions in the cluster. A short recovery period is the best choice to deal with failures of nodes or base monitors. However, a long recovery period allows time for overloaded nodes to respond, which avoids unnecessary shutdowns. If the UDP method is used by itself, these opposing requirements make it difficult to tune the recovery time in large or busy clusters.

In addition, the UDP method can be unreliable, because it has three potential points of failure: first, an outgoing request for a response may not get through to the remote node, so it has no reason to respond; second, the remote node may be so busy that it cannot respond within the recovery period, especially if the recovery timeout is set to a low value; third, a response packet may be sent from the remote node, but it may not get through to the local node. In all three cases, the local node cannot take action until the recovery period expires.

To improve cluster response, RMS uses its Enhanced Lock Manager (ELM) as the primary method to determine machine states and connectivity. ELM is not a polling method. Instead, it relies on locks that are managed at the kernel level by the Cluster Foundation. When a node joins the cluster, it creates a lock and holds it as long as its base monitor is running. The lock is released when the node or its base monitor goes down. The state of the locks is available locally on each node, because the Cluster Foundation maintains them in the background.

ELM is designed to address the high priority issue of node or base monitor failures. The UDP heartbeat can therefore be optimized to detect slow node response, with the recovery time set to a relatively large value. This provides an
Introduction

How RMS provides high availability

important complement to ELM. A node with an overloaded CPU or network interface may respond so slowly that the underlying Cluster Foundation cannot determine the state of the node’s lock. If this condition persists, the UDP heartbeat recovery period eventually expires, and RMS proceeds to shut down the node. ELM’s efficiency and reliability make this a very infrequent occurrence.

Experts can manually disable ELM for rolling upgrade or debugging operations. In this case, when RMS starts up, the expert must also manually adjust the heartbeat recovery timeout to a smaller value.

Detectors

RMS monitors each resource by using detectors, which are processes that deliver status reports to the RMS base monitor process. RMS interprets the status reports to determine the state of the corresponding virtual object. When an object’s state changes, RMS takes action according to the parameters set in the object. Each object may be associated with a detector.

Detectors are persistent: when RMS starts on a cluster node it starts the detectors for its configuration, which normally continue to run on that node until RMS is shut down. RMS has the ability to restart a detector if it terminates prematurely.

A complete list of the states that can be reported by detectors or displayed in the user interface is presented later in this chapter.

Note that RMS does not use detector processes to monitor the state of machines in the cluster. Instead, each node transmits a heartbeat signal at regular intervals, and RMS uses this to determine machine states and connectivity.

Scripts

Each object type has an associated set of scripts. A script is a command string (possibly including pipes, redirection, command interpolation, and variable substitution) that can be executed by the operating system shell—in other words, a valid shell script. Normally, each script is designed to interact with items in the operating system such as user applications or physical resources. Scripts provide the only means for RMS to directly influence items outside its virtual representation.

Some scripts are reactive: they define the actions that RMS should take in response to state changes. Other scripts are proactive: they define the actions that RMS should use to take control of individual objects. For instance, RMS
would process one script when a resource reports a transition from the online state to the offline state; however, RMS would process a different script when it must force the resource to the offline state.

Scripts are transient: after performing their programmed tasks, they exit and return a status code to the base monitor.

A complete list of the scripts that may be specified for RMS objects is presented later in this chapter.

Object types

Most high-availability applications rely on a set of physical resources such as network interfaces, file systems, or virtual disks. RMS represents these as gResource objects. Most gResource objects have scripts that allow them to be brought online or taken offline.

Internally, RMS represents an actual application that runs in the operating system environment as a userApplication object. The set of gResource objects that represent the actual application’s resource requirements are called its dependent resources. Bringing a userApplication object to the online state, along with all of its dependent resources, is called online processing. Taking a userApplication object to the offline state, along with all of its dependent resources, is called offline processing.

Machines that are members of a cluster are called nodes. Each node that may run one or more applications in the high availability configuration is represented by an RMS SysNode object. Like gResource objects and userApplication objects, SysNode objects can be brought online or taken offline, and they have an associated set of scripts. However, booting up or shutting down the corresponding physical machine requires more than simple script processing.

For the complete list of the RMS object types supported by the Wizard Tools, see “Appendix—Object types”.

Shutdown Facility

While scripts and detectors provide a direct interface between RMS and the operating system, the Shutdown Facility (SF) provides an indirect interface to the machines in the cluster. When it necessary to take a SysNode object offline, RMS works with the SF to guarantee that the corresponding node has been physically shut down, or killed. RMS waits for successful completion of the node kill before switching any userApplication from the offline SysNode to another SysNode. This prevents any user application from running on two machines at the same time, which could lead to data corruption.
For more information about the Shutdown Facility, see "PRIMECLUSTER Cluster Foundation (CF) Configuration and Administration Guide" for your operating system.

2.2.2 Relationship of RMS configurations to the real world

It is important to understand that RMS does not interact directly with “real-world” items such as machines, users’ applications, or system resources—it interacts only with the objects in its virtual representation. Figure 2 illustrates the relationship between an actual user application in the operating system environment and the corresponding `userApplication` object in an RMS configuration.

![Figure 2: Interface between RMS and the operating system](image)

Note that the interface between the RMS virtual representation and the actual operating system depends entirely on the scripts and detectors provided by the configuration tools. The script in the figure represents any of the standard scripts discussed later in this chapter: it reports whether or not it completed its
How RMS provides high availability

Introduction

tasks successfully by returning a status code, and RMS combines this with the status code from the object’s detector to determine the object’s state. RMS has no other way to determine what actually happened to the user application in the operating system environment (the part of the figure below the dashed line).

For instance, if a userApplication object’s Online script reports success, its detector reports that it is online, and all of its resources are online, then RMS considers that object to be online, regardless of the state of the actual user application. Similarly, if a resource object’s detector reports an Offline state, it does not necessarily mean that the physical resource is unavailable.

For reliable high availability operation, RMS requires scripts that properly control the corresponding real world items, and detectors that accurately reflect the items’ states.

Configuration terminology

This manual discusses configuration procedures within the RMS context (represented by the part of Figure 2 above the dashed line). Strictly speaking, our principle concern is with SysNode objects, userApplication objects, and other RMS entities, and not the real-world items they represent.

However, it is intuitive to use terms such as “node” instead of “SysNode object” and “application” instead of “userApplication object,” because the relationships are so close, and because it is always understood we are working from the RMS perspective. This also helps to simplify many of the technical discussions. Therefore, unless there is a need to distinguish between an RMS object and the actual item it represents, this manual and the configuration tools it describes use the following terms interchangeably:

- “node” and “SysNode object” and “SysNode”
- “application” and “userApplication object” and “userApplication”
- “resource” and “gResource object” and “gResource”

The descriptions of object states and attributes are abbreviated similarly. For instance, instead of “the gResource object named xyz is in the Offline state,” it is customary to say, “the xyz file system is offline.” It is also common to refer to a script by its attribute name, so “the script specified by the PreOnlineScript attribute” becomes simply “the PreOnlineScript.”
2.2.3 Node and application failover

During normal operation, one instance of RMS runs on each node in the cluster. Every instance communicates with the others to coordinate the actions configured for each userApplication. If a node crashes or loses contact with the rest of the cluster, then RMS can switch all userApplication objects from the failed node to a surviving node in the cluster. This operation is known as failover.

Failover can also operate with individual applications. Normally, a userApplication object is allowed to be online on only one node at a time. (Exceptions to this rule are shared objects like Oracle RAC vdisk.) If a fault occurs within a resource used by a userApplication object, then only that userApplication can be switched to another node in the cluster. userApplication failover involves offline processing for the object on the first node, followed by online processing for the object on a second node.

There are also situations in which RMS requires a node to be shut down, or killed. In any case, before switching applications to a new node, RMS works together with the PRIMECLUSTER Shutdown Facility to guarantee that the original node is completely shut down. This helps to protect data integrity.

RMS also has the ability to recover a resource locally; that is, a faulted resource can be brought back to the online state without switching the entire userApplication to another cluster node.

2.2.4 Controlled applications and controller objects

In some situations, it is desirable for one application to control another in a parent/child relationship. Consider a scenario in which a bank teller application depends on the local network (represented by a network resource object) and a database application. This can be represented by the graph in Figure 3.
Assume that if the network fails in some way, or if the database fails in some way, then the parent teller application cannot complete any transactions. The lines joining the objects in the figure indicate these dependencies. From the RMS perspective, then, we would like both the network resource and the database application to be configured in similar ways: they should both act as dependent resources that must be online if the teller application is to function properly.

However, RMS does not allow any application to be directly configured as the child of another application. Instead, RMS accommodates parent/child relationships between applications by providing an intermediate controller object, which is often simply called a controller. Unlike other resource objects, a controller has no scripts or detectors. Instead, it propagates online and offline requests from the parent to the child application, and it determines its status from that of the child application.

Figure 4 demonstrates how RMS would represent the banking scenario with the teller application, the controller, and the database application all running on node1. For the purposes of this example and the discussions that follow, only the applications and the controller are included in the illustration; the resource object representing the network interface is not shown.
How RMS provides high availability

Introduction

In accordance with the manual of the PRIMECLUSTER Products supported the operation mode of the controller objects, use the control of a user application resource by the controller objects.

Each controlled application requires a separate controller as a child of the parent application. Also, controllers exist only for internal RMS management purposes—there is no equivalent in the context of the real-world operating system.

If a child changes to an offline or faulted state, RMS will attempt to recover locally or switch the parent, the child, and the dependent resources to another node.

2.2.4.1 Follow controllers

RMS controllers operate in follow mode: the child application must always run on the same node as the parent. If the parent is switched to another node, the application and all its dependent resources will be switched there too. Likewise, if the child application fails in a way that requires it to be switched to another node, then the parent must be switched there as well.

Assume that the parent teller application tree is originally online on node1 as shown in Figure 4 above. If either the parent or child application needs to be switched to node2 for any reason, the rest of the tree follows. Figure 5 illustrates the result.
Note the state of the controller in Figure 5. Like the child application, it is brought online only on the same node as the parent. Follow controllers can guarantee that a group of applications and their resources remain closely coupled, so they always run together on the same machine.

When RMS switches an application from node1 to node2, no objects are moved within the corresponding graph. Instead, the objects in the part of the graph corresponding to node1 are first taken offline, and then the objects in the part of the graph corresponding to node2 are brought online. The sequence used by RMS in an actual configuration is crucial to high availability operation. For a more detailed discussion, see the “Advanced RMS concepts” chapter in the RMS Reference Guide.

2.2.4.2 Scalable controllers

Generally speaking, **scalability** is the ability of the overall system to adapt to changes in resources or workload. One of the main features of RMS scalable controllers is that they allow the parent and child applications to run on separate machines. This not only provides more flexibility but it may also prevent delays or outages when resources fail in certain combinations.

In our banking scenario, for example, the teller application depends on a network and a database application. Suppose the file system on node1 fails and the database goes offline. If the database controller is operating in follow mode, RMS will attempt to switch the teller and database to node2. However, if the network on node2 is offline or faulted, the teller can’t be brought online there.
either. This is an extreme example, but it illustrates how high loads or resource outages could severely impact a configuration that relies only on a follow controller.

Using a scalable controller can help the configuration adjust dynamically in such situations. If the network is online on node1, while the file system is online on node2, then the database can be switched independently as shown in Figure 6.

Conversely, a network outage could cause RMS to switch the teller to node2 while leaving the database online on node1, as shown in Figure 7.
How the Wizard Tools provide easy configuration

Introduction

Restriction. Note the state of the controller objects in Figure 6 and Figure 7. For each scalable child application, an instance of its controller is online on every node where that application can run.

2.2.4.3 Further notes about controllers

The follow and scalable modes are mutually exclusive: a controller for a child application can operate in either follow mode or scalable mode, but not both. The Wizard Tools ensure that each controller’s configuration is self-consistent.

A parent application can have more than one child application, but the Wizard Tools require the controller type to be the same for all children. If follow mode is used, then there will be one distinct follow controller for each child. If scalable mode is used, there will be one scalable controller with multiple children. For example, suppose the teller application in the banking scenario also has an automated teller machine (ATM) controlled application. The difference between the follow graph and the scalable graph is shown in Figure 8.

Figure 8: Controller structure with multiple children

For a more detailed discussion, see the RMS Reference Guide.

2.3 How the Wizard Tools provide easy configuration

RMS is a mature product with many features and options. Experts who develop, debug, and fine tune complete RMS configurations must know how RMS works and what RMS needs in order to function properly. For each application in the configuration, the expert must do the following:
Define the set of resources used by the application, including:
 - Disks
 - Volume managers
 - File systems
 - Processes to be monitored
 - IP addresses

Define the relationship between each resource and its dependent resources, e.g., which file system depends on which virtual or physical disk, which processes depend on which file systems, and so forth.

Define the relationship between the applications being controlled; for example, which applications must be up and running before others are allowed to start.

Provide scripts to bring each resource online and offline.

Provide a detector to determine the state of each resource.

Configuring the above set of requirements by hand can be quite time consuming and prone to errors. This is why the RMS Wizard Tools were developed.

The PRIMECLUSTER RMS Wizard Tools allow the creation of flexible and quality-tested RMS configurations while minimizing your involvement. A simple user interface prompts you for details regarding your applications and resources. Using these details, the Wizard Tools automatically select the proper scripts and detectors and combine them in a pre-defined structure to produce a complete RMS configuration.

Specialists skilled in popular applications and in RMS worked together to create the RMS wizards. The wizards are designed to easily configure RMS for certain popular applications such as Oracle and they are flexible enough to create custom RMS configurations that can control any other type of application.

2.4 RMS wizard products

The RMS wizards are divided into the following separate products:

- RMS Wizard Tools—user interface, general-purpose application wizards, and basic set of subapplication wizards. Provided as a standard component of RMS
RMS Wizard Kit

- RMS Wizard Kit—set of custom wizards designed to configure specific applications. Available as additional product.

Figure 9 depicts the relationship between RMS, the Wizard Tools, and the RMS Wizard Kit.

![Figure 9: Relationship between RMS and RMS Wizards](image)

- RMS Wizard Tools
- RMS
- Cluster Admin
- Other cluster services
2.4.1 RMS Wizard Tools

The RMS Wizard Tools provides the following for basic resource types (such as file systems and IP addresses):

- Online scripts
- Offline scripts
- Detectors

In addition to the basic resource support, the RMS Wizard Tools package contains the `hvw` command, which is the entry point to the user configuration interface. The `hvw` interface provides a simple menu-driven interface to allow a user to enter information specific to applications placed under the control of RMS. `hvw` also provides an interface through which application-specific knowledge can be dynamically added to provide turnkey solutions for those applications typically found in the data center. These application-specific modules are provided by the RMS Wizard Kit.

2.4.2 RMS Wizard Kit

The RMS Wizard Kit provides application knowledge modules which can be used by the `hvw` command. The knowledge modules provide `hvw` with information specific to popular applications, which greatly eases the configuration task. The following are also provided for specific applications:

- Online scripts
- Offline scripts
- Detectors

For information on the availability of the RMS Wizard Kit, contact your local customer support service.
2.5 Cluster Admin administration tool

The Cluster Admin GUI is the primary administrative tool for RMS. It allows users full access to the application control functions of RMS, including the following:

- RMS startup and shutdown
- Application startup and shutdown
- Manual application reset and switchover
- Visual cues for resource and application fault isolation
- Fault clearing capability
- Graphs of application and resources
- Logs for nodes and applications
- Maintenance mode control

2.6 RMS components

The RMS product is made up of the following software components that run on each node in the cluster:

- Base monitor
- Detectors
- Scripts

2.6.1 Base monitor

The base monitor process is the decision-making segment of the RMS process group. It has the following functions:

- Stores the current configuration of resources as represented by objects, their attributes, and their interdependent relationships
- Receives user requests for specific actions from the Cluster Admin graphical user interface (GUI) or the RMS command line interface (CLI)
- Monitors the heartbeat from every node to keep track of each machine’s status and its connectivity to the rest of the cluster
Introduction

RMS components

- Receives input from detectors and monitors state changes
- Launches scripts to bring applications and their dependent resources online or offline
- Dictates the sequencing of the resource state changes to ensure resources and applications are brought online or offline in the correct order
- Initiates and controls automatic application switchover in case of a resource or node failure, or when directed by a user request
- Performs various administrative functions

2.6.2 Detectors and states

Detectors are independent processes that monitor specific sets of resources in order to determine their state. The detector does not determine whether the current state of a resource is the correct state or not (for example, if a resource is Offline but is supposed to be Online)—that is the role of the base monitor. Detectors can report the following states to the base monitor:

- **Faulted**: Error condition encountered. The error may have occurred in the resource, in one of its children, or during script processing.
- **Offline**: Disabled, not ready for use. The scripts have successfully disabled the resource.
- **Online**: Enabled, ready for use. All required children are online, and no errors were encountered while scripts were processed.
- **Standby**: Ready to be quickly brought Online when needed.

The following resource states may also be displayed in the GUI status area:

- **Deact**: Applies to userApplication objects only. Operator intervention has deactivated the application throughout the cluster (such as for maintenance purposes).
- **Inconsistent**: Applies to userApplication objects only. The object is Offline or Faulted, but one or more resource objects in its graph have their ClusterExclusive attribute set to 1 and are Online or Faulted.
- **OfflineFault**: Fault that occurred in the past has not yet been cleared.
- **Unknown**: No information is available. Reported before object initialization is completed.
- **Wait**: Temporarily in transition to a known state. An action has been initiated for the affected resource, and the system is waiting for the action to be completed.
before allocating one of the above states.

Warning Some warning threshold has been exceeded.

Maintenance Manual, temporary mode of operation in which the state of an application is decoupled from the states of its dependent resources. This allows, for example, a file system to be taken offline for backup without disturbing the state of its parent application. An application in maintenance mode is usually marked with its intended state, which is the state that would be attained if the application were immediately taken out of maintenance mode. The maintenance mode intended states are Maintenance-Online, Maintenance-Offline, and Maintenance-Standby.

The interpretation of Offline and Faulted may depend on the resource type. For instance, a mount point resource can be either Online (mounted) or Offline (not mounted); in this case, the detector would never report the Faulted state. On the other hand, a detector for a physical disk can report either Online (normal operation) or Faulted (input or output error); it would never report Offline.

Detectors for common system functions are provided by the Wizard Tools. Additional application-specific detectors are included with the Wizard Kit.

Some objects provided by RMS, such as the controller object, have no detector. Instead, RMS calculates the state of the object based on factors such as transitory processes and the states of its dependent resources.

2.6.3 Scripts

RMS uses scripts to perform actions such as moving a resource from one state to another (for example, from Offline to Online). The two types of scripts are as follows:

- Request-triggered scripts initiate a state change to a resource.

 The request-triggered scripts are as follows:

 - InitScript — Runs only once when RMS is first started
 - PreCheckScript — Determines if Online or Standby processing is needed or possible
 - PreOfflineScript — Prepares a transition to an Offline state
 - OfflineScript — Transitions a resource to an Offline state
 - PreOnlineScript — Prepares a transition to an Online state
State-triggered scripts react to specific events.

The state-triggered scripts are as follows:

- **PostOnlineScript**—Reaction to the transition to the **Online** state
- **PostOfflineScript**—Reaction to the transition to the **Offline** state
- **OfflineDoneScript**—Reaction to a userApplication reaching the **Offline** state
- **FaultScript**—Reaction to a resource transitioning to the **Faulted** state
- **WarningScript**—Reaction to a detector reporting the **Warning** state (available only for selected resources)

Scripts for common system functions are included with the subapplications provided by the Wizard Tools.

2.6.4 RMS CLI

The primary interface for configuring RMS is the RMS Wizard Tools, and the primary interface for administering RMS is the Cluster Admin GUI. Both the RMS Wizard Tools and Cluster Admin call the RMS CLI, and, under certain conditions, you may find it useful to invoke the CLI directly.

Table lists the RMS CLI commands available to administrators. For a complete description of any command’s usage, see its online man page. For a list of all commands related to RMS, see the chapter “Appendix—List of manual pages”.

With few exceptions, RMS CLI commands require root privilege. The exceptions are noted in the following table.
2.7 Object types

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>hvassert</td>
<td>Tests an RMS resource for a specified resource state. It can be used in scripts when a resource must achieve a specified state before the script can issue the next command. Does not require root privilege.</td>
</tr>
<tr>
<td>hvcm</td>
<td>Starts the base monitor and the detectors for all monitored resources. In most cases, it is not necessary to specify options to the hvcm command.</td>
</tr>
<tr>
<td></td>
<td>The base monitor is the decision-making module of RMS. It controls the configuration and access to all RMS resources. If a resource fails, the base monitor analyzes the failure and initiates the appropriate action according to the specifications for the resource in the configuration file.</td>
</tr>
<tr>
<td>hvconfig</td>
<td>Either displays the current RMS configuration or sends the current configuration to an output file.</td>
</tr>
<tr>
<td></td>
<td>The output of the hvconfig command is equivalent to the running RMS configuration file, but does not include any comments that are in the original file. Also, the order in which the resources are listed in the output might vary from the actual configuration file.</td>
</tr>
<tr>
<td>hvdisp</td>
<td>Displays information about the current configuration for RMS resources. Does not require root privilege.</td>
</tr>
<tr>
<td>hvdump</td>
<td>Gets debugging information about RMS on the local node.</td>
</tr>
<tr>
<td>hvlogclean</td>
<td>Either saves old log files into a subdirectory whose name is the time RMS was last started, or, if invoked with the -d option, deletes old log files. In either case, hvlogclean creates a clean set of log files even while RMS is running.</td>
</tr>
</tbody>
</table>

Table 1: Available CLI commands
Object types

An object type represents a group of similar resources that are monitored by the same detector (for example, all disk drives). Using the Wizard Tools, you can create configuration files that contain objects of various types, each representing resources or groups of resources to be monitored by RMS. The supported types are as follows:

- **SysNode**
- **userApplication**
- **gResource**
- **controller**
- **andOp**

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>hvsetenv</td>
<td>Provides an interface for changing the following RMS environment variables on the local node:</td>
</tr>
<tr>
<td></td>
<td>- HV_RCSTART controls the automatic startup of RMS.</td>
</tr>
<tr>
<td></td>
<td>- HV_AUTOSTARTUP controls the automatic startup of all applications.</td>
</tr>
<tr>
<td></td>
<td>Changes made by this command apply only to the command execution node.</td>
</tr>
<tr>
<td></td>
<td>For more information about these environment variables, see “Appendix—Environment variables”.</td>
</tr>
<tr>
<td>hvshut</td>
<td>Shuts down RMS on one or more nodes in the configuration. The base monitor on the local node sends a message to other online nodes indicating which node or nodes will be shut down.</td>
</tr>
<tr>
<td>hvswitch</td>
<td>Manually switches control of a user application resource from one system node to another in the RMS configuration. The resource being switched must be of type <code>userApplication</code>. The system node must be of type <code>SysNode</code>.</td>
</tr>
<tr>
<td>hvutil</td>
<td>Provides general administration interface to RMS. It performs various resource administration tasks, such as dynamically setting logging levels, sending a resource <code>Offline</code>, clearing faulted resources or hung cluster nodes in the <code>Wait</code> state, setting detector time periods, setting Maintenance Mode, and so forth.</td>
</tr>
</tbody>
</table>

Table 1: Available CLI commands
Object attributes

orOp

Refer to the chapter “Appendix—Object types” for the supported types, their required attributes, and a brief description of each object.

This information is provided for reference only. These objects are created by the Wizard Tools during the generation phase of the configuration process. The type of an object may be listed in diagnostic messages for use by RMS experts.

2.8 Object attributes

An attribute is the part of an object definition that specifies how the base monitor acts and reacts for a particular resource during normal operation. An attribute can include a device name and configuration scripts. Users can specify attributes in any order in the object definition.

Refer to the chapter “Appendix—Attributes” for the supported types, their associated values, and a description of each attribute.

This information is provided for reference only. The values are determined by the Wizard Tools during the generation phase of the configuration process. Refer to the chapter “Using the Wizard Tools interface (hvw)”.

2.9 Environment variables

RMS uses global and local environment variables:

- Global environment variables must have the same setting on all nodes in the cluster. RMS maintains global environment variables in the ENV object.

- Local environment variables can vary from node to node. RMS maintains local environment variables in the ENVL object.

RMS creates the ENV and ENVL objects dynamically from the contents of hvenv and hvenv.local when the base monitor starts up. Refer to the section “Setting environment variables” for more information.
Global variable settings (ENV) are included in the configurations checksum that is common to the cluster. The checksum is verified on each node during startup of the base monitor. RMS will fail to start if it detects a checksum difference between the values on any two nodes.

Local variable settings (ENVL) are not included in the configurations checksum that is common to the cluster.

While RMS is running, you can display the environment variables with the dvdisp command which does not require root privilege. Use dvdisp ENV for global list and dvdisp ENVL for local list.

Refer to the chapter “Appendix—Environment variables” for a complete description of each of these variables.

2.9.1 Setting environment variables

When RMS starts, it reads the values of environment variables from hvenv and hvenv.local and initializes the ENV and ENVL objects respectively. To change the values of environment variables before RMS starts up, you need to specify them in the hvenv.local file. These settings will be overridden at installation.

The /tmp directory that is nearly full may result in RMS errors, because the base monitor uses the sort(1) command to sort RMS environment variables.

If you adjust a global variable in the hvenv.local file on one node, you must make the same adjustment to hvenv.local on every other node in the cluster.

After stopping RMS on all the nodes, you will have to restart RMS for the change to take effect.

Caution

Do not explicitly set RMS environment variables in the user environment. Doing so can cause RMS to lose environment variables settings.

The values of environment variables are specified as export directives in each file. A typical export directive would appear as follows:

```
export SCRIPTS_TIME_OUT=200
```
Therefore, any changes you make to `hvenv.local` file will not take effect until the next time RMS starts up. While RMS is running, you can display the environment variables with the following commands:

- `hvdisp ENV`
- `hvdisp ENVL`

2.9.2 Script execution environment variables

When the RMS invokes a script on behalf of an object, it provides a set of variables in the script’s environment that can be used for decision processing at runtime. Since these variables exist only within the context of the script while it is carrying out its tasks, they are not usually visible in the RMS user or administrator environment. In rare cases, they could appear in a diagnostic message in the system log or on the console.

The section “Script execution environment variables” provides a complete description of each of these variables.

2.10 RMS Directory structure

RMS software consists of a number of executables, scripts, files, and commands, all located relative to the directory specified in the `RELIANT_PATH` environment variable. Table 2 illustrates the directory structure of the RMS software after it has been correctly installed.

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELIANT_PATH</td>
<td>Base directory. Default: /opt/SMAW/SMAWRrms</td>
</tr>
<tr>
<td><code><RELIANT_PATH>/bin</code></td>
<td>Executables, including detectors, commands, and scripts.</td>
</tr>
<tr>
<td><code><RELIANT_PATH>/build</code></td>
<td>Work area for configuration files.</td>
</tr>
<tr>
<td><code><RELIANT_PATH>/etc</code></td>
<td>Miscellaneous files used by RMS and the configuration tools.</td>
</tr>
</tbody>
</table>

Table 2: RMS base directory structure
Introduction

RMS Directory structure

As summarized in Table 3, RMS log files are located in the directory specified in the RELIANT_LOG_PATH environment variable.

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><RELIANT_PATH>/include</code></td>
<td>RMS include files (header files) used by detectors and configuration files.</td>
</tr>
<tr>
<td><code><RELIANT_PATH>/lib</code></td>
<td>RMS runtime libraries.</td>
</tr>
<tr>
<td><code><RELIANT_PATH>/us</code></td>
<td>RMS source files. The names of the files in this directory are reserved and should not be used to name any configuration files that the user may create.</td>
</tr>
</tbody>
</table>

Table 2: RMS base directory structure

As summarized in Table 3, RMS log files are located in the directory specified in the RELIANT_LOG_PATH environment variable.

<table>
<thead>
<tr>
<th>Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELIANT_LOG_PATH</td>
<td>Contains files that can be used for RMS analyzing and debugging, including the RMS switchlog. The base monitor and detectors create log files here. Default: /var/opt/SMAWRrms/log</td>
</tr>
<tr>
<td></td>
<td>The same directory has subdirectories that contain backup copies of the RMS log files. Each backup subdirectory has a name of the form yyyy-mm-dd_HH:MM:SS to indicate the date and time when the backup was created.</td>
</tr>
</tbody>
</table>

Table 3: Log directory structure
3 Using the Wizard Tools interface (hwv)

This chapter describes how to configure high availability for customer applications using the RMS Wizards.

- The section “Overview” gives a brief overall description of the configuration process and the RMS Wizards.
- The section “General configuration procedure” outlines the four major steps involved in every configuration procedure.
- The section “Creating and editing a configuration” describes the wizard interface and how it is used to specify a configuration.
- The section “Activating a configuration” describes how to activate a configuration after it has been created or modified.
- The section “Configuration elements” provides additional details about basic RMS elements specified in every configuration.

All the following procedures assume the Cluster Foundation (CF) software has been properly installed, configured, and started. See the Cluster Foundation (CF) Configuration and Administration Guide for details.

3.1 Overview

The chapter “Introduction” describes the components necessary for configuring applications for high availability. It is extremely important that you define applications and the resources that are used by them. Resources are entities like disks, file systems, processes, IP addresses, and so forth.

This definition also needs to include the following information:

- How the applications and their resources are related to each other
- What scripts bring resources online and offline
- Which detectors monitor the state of which resources

For example, if a node should fail to be available, the node that is to take its place must have been defined beforehand so that the applications depending on this node are able to continue operating with minimal interruption. Once the
necessary information is defined, you can then set up an RMS configuration. A configuration of this magnitude, however, requires a great deal of expert knowledge.

The RMS Wizards are tools that allow you to set up an RMS configuration in a way that is simple, flexible, and quality-tested. Furthermore, these tools conform to a well-documented, standard design. To configure RMS with the wizards, you supply information about the applications using a menu-driven interface. The wizards use this information to set up a complete RMS configuration.

The following sections describe these wizards and the way they are used to configure high availability from a general point of view.

3.1.1 RMS Wizard types

The RMS Wizards are divided into two categories:

- **RMS Wizard Tools**—This is a general-purpose package that includes the following components:
 - The hw menu-based configuration interface
 - The GENERIC application wizard, which allows you to configure a wide range of applications
 - The DEMO wizard, which provides a simple demonstration of the Wizard Tools and RMS
 - The basic set of resource-oriented wizards, which provide scripts and detectors for basic resources such as file systems, volume managers, and IP addresses. They are used by the GENERIC and DEMO wizards as well as components in the Wizard Kit.

- **RMS Wizard Kit**—These application-oriented wizards are designed to cover complete applications and perform their tasks on the basis of the turnkey concept. The R/3 and ORACLE wizards are components of the Wizard Kit.

For information on the availability of the RMS Wizard Kit, contact your local customer support service.
3.1.1.1 Turnkey wizards

Turnkey wizards provide predefined structures of resources to monitor almost every basic operating system object. This relieves the user of the tedious task of linking system resources according to their dependencies.

Many turnkey wizards are designed to configure a specific type of application. The configuration described in the chapter “Configuration example” uses the GENERIC and DEMO turnkey wizards. Other examples are the R/3 wizard and the ORACLE wizard. By convention, turnkey wizards have names with all uppercase letters.

3.1.1.2 Resource wizards

Resource wizards (sometimes called sub-application wizards) configure lower-level resources such as file systems or IP addresses. They are invoked by turnkey wizards and are not designed to interact directly with the user. Resource wizards have names that begin with one uppercase letter followed by one or more lowercase letters. The following are some of the more important resource wizards:

- **Cmdline**—Configures any generic resource type by specifying `StartScript` (to bring the resource online), `StopScript` (to send the resource offline) and `CheckScript` (to check the state of a resource).
- **Controller**—Configures applications that control other applications.
- **Fsystem**—Configures local or remote file systems.
- **Gds**—Configures disk classes administrated by Global Disk Services (GDS).
- **Gls**—Configures the IP addresses administrated by Global Link Services (GLS).
- **Ipaddress**—Configures the IP addresses that are needed for communication over a LAN interface.

3.2 General configuration procedure

RMS configuration always involves these four steps:

- **Stop RMS.**
Creating and editing a configuration Using the Wizard Tools interface (hwv)

Refer to the section “Stopping RMS”. You can use the Cluster Admin GUI or the command line interface from any node in the cluster.

► Create or edit the configuration.

The next section provides general information, and the chapter “Configuration example” walks through an example.

► Activate the configuration.

Activation includes generation and distribution. See the section “Activating a configuration”.

► Start RMS.

Refer to the section “Starting RMS”. You can use the Cluster Admin GUI or the command line interface from any node in the cluster.

To avoid network access problems, perform RMS configuration tasks as root, and ensure that CF is installed, properly configured, and running as described in the Software Release Guide PRIMECLUSTER and the PRIMECLUSTER Installation Guide for your operating system.

3.3 Creating and editing a configuration

You can bring up an existing Wizard Tools configuration that is currently activated on the host systems of a cluster. In this case, you might call up the configuration because it is to be modified using the wizards while RMS is stopped. On the other hand, you might want to use the wizards to set up a new configuration. The commands for starting the wizards are as follows:

- hwv

Runs RMS Wizard Tools using the last activated configuration stored in the `<RELIANT_PATH>/etc/CONFIG.rms` startup file. If this file does not exist or activation is being done for the first time, RMS creates the default configuration, config.

- hwv –n `configname`

Edits an existing configuration or creates a new configuration using the specified name. The configuration will be stored in the `<RELIANT_PATH>/build/configname.us` startup file.
Using the Wizard Tools interface (hvw) **Creating and editing a configuration**

The sample configuration used for demonstration purposes in this chapter shows how to set up a new configuration called *mydemo* using the DEMO turnkey wizard. This example would be called up as follows:

```
hvw -n mydemo
```

The `hvw` command is documented in the online manual pages. Refer to the chapter “Appendix—List of manual pages” for additional information.

3.3.1 Using the wizard menus

The `hvw` command produces character-driven menus that guide you in a way designed to be self-explanatory. The following are some of the most frequently used menu operations and items:

- **Selecting items**—This is normally done by typing the number of the item followed by the **Enter** or **Return** key. Within the menu, a prompting line indicates the kind of input that is required. A `>>` prompt indicates that a string of text should be entered.

- **Responding to messages**—Within the menus, several kinds of messages are displayed. One type of message might be to inform the user about the activities that the wizard has performed; for example, a consistency check that ended in a positive result. Other messages may prompt the user to continue the configuration procedure with a certain activity; for example, choosing an application name.

- **HELP**—This item provides user assistance and is available at the top of every wizard menu.

- **QUIT**—This quits the wizard menu system.

- **RETURN**—This moves one level upward in the menu system; that is, from a subordinate menu to the menu it was called from.

- **SAVE+EXIT and NOSAVE+EXIT**—These save or discard your input and then exit. **SAVE+EXIT** will be disabled in read-only mode, and it may be disabled if the configuration is inconsistent at that point.

- **NEXT and PREVIOUS**—If all items cannot be listed in a single screen due to many items to be selected, some are displayed in the next screen. Press **NEXT** to go on to the next screen, and press **PREVIOUS** to go back to the previous screen.
Creating and editing a configuration Using the Wizard Tools interface (hvw)

3.3.2 Main configuration menu

The **Main configuration menu** appears immediately after a configuration has been called up. This top-level menu shows the state of the RMS cluster by indicating either one the following:

- RMS is inactive
- The list of nodes where RMS is up and running

The **Main configuration menu** changes dynamically at run time depending on whether RMS is running in the cluster and whether the configuration being edited is the current configuration.

If RMS is running anywhere in the cluster, actions that could modify a running configuration are not available. Additionally, the menu items that are available are modified such that no changes can be made to the running configuration.

When RMS is running but the configuration being edited is not the same as the currently active one, the main menu is not restricted except that the **Configuration-Activate** menu option is not available.

3.3.2.1 Main configuration menu when RMS is not active

If RMS is not running anywhere, then the entire top level menu is presented without restrictions. Figure 10 shows the **Main configuration menu** window when RMS is inactive.

```
shasta1: Main configuration menu, current configuration: mydemo
No RMS active in the cluster
1) HELP                      10) Configuration-Remove
2) QUIT                      11) Configuration-Freeze
3) Application-Create        12) Configuration-Thaw
4) Application-Edit          13) Configuration-Edit-Global-Settings
5) Application-Remove        14) Configuration-Consistency-Report
6) Application-Clone         15) Configuration-ScriptExecution
7) Configuration-Generate     16) RMS-CreateMachine
8) Configuration-Activate    17) RMS-RemoveMachine
9) Configuration-Copy
Choose an action:
```

Figure 10: Main configuration menu when RMS is not active
Menu items

The *Main configuration menu* can perform the following activities when RMS is not running anywhere in the cluster:

- **Application-Create**—Specifies which application to configure for high availability. In addition, this operation specifies all the relevant settings for the application so that it can run in a high-availability configuration monitored by RMS. Among the most important of these settings is the name of the application and the list of nodes on which the application may run.

 The user application should be configured to run on multiple nodes for a high-availability configuration.

 The wizard assists you by supplying menus with basic and non-basic attributes, assigns values to the attributes, and prompts you if an attribute is mandatory.

 By choosing the appropriate turnkey wizard for an application, the wizard will then provide predefined elements, like scripts and detectors, for the application in question. These elements have been developed especially for the respective type of application.

 The wizard will also carry out consistency checks at certain stages of the configuration procedure in order to prevent inconsistent applications from running in a high-availability configuration.

- **Application-Edit**—Modifies an existing application.

 An existing application can be modified using this menu item. The following modes are available for editing an application:

 - Turnkey mode (highly recommended)—Turnkey mode is the default mode. This mode is highly recommended because it simplifies complicated tasks like creating linkages between application and sub-applications.

 - Non-turnkey mode —Do not use this mode for creating and editing a normal RMS configuration. Use it only when you are requested from field engineers.

- **Application-Remove**—Removes an existing application from the high-availability configuration.

- **Application-Clone**—Clones an application. This feature is provided for users who want to create a new application that differs only slightly from an existing one. To do this, clone an application and modify only the parts that are necessary to create a new one.
Creating and editing a configuration

Using the Wizard Tools interface (hwv)

- **Configuration-Generate**—Performs the following:
 - Runs consistency checks on the configuration
 - Creates the RMS graph of the configuration and stores it in the `configname.us` file. The graph is a hierarchical description of objects that represent the nodes, applications, and resources used in the configuration.

 During the *Configuration-Generate* phase, the wizard indicates the progress with a series of dots on the screen. Each dot represents an application or resource that has been successfully generated.

 Normally, you would use *Configuration-Activate* (described below) to generate and distribute the configuration in one step. *Configuration-Generate* provides a way to generate and check a configuration without distributing it to the other nodes in the cluster. This may be useful for testing or debugging (see also the description for *Configuration-ScriptExecution* later in this list).

 Configuration-Generate is always available, whether RMS is running or not.

- **Configuration-Activate**—Generates and distributes a configuration.

 Selecting this item performs both the generation and distribution phases in one step. The generation phase is described above.

 The distribution phase prepares the cluster for RMS, ensuring that all the required data is put into place. The wizard copies the configuration data to every reachable node specified in the configuration and installs all necessary files. If one or more nodes is not available during the distribution phase, you can later use *Configuration-Push* (described in the next section) to update only those nodes.

 Configuration-Activate is not available if RMS is already running on one or more nodes.

 Do not execute the *Configuration-Activate* menu simultaneously on multiple nodes which constitute the cluster.

- **Configuration-Copy**—Produces a copy of an existing configuration. This is often used to make a backup before an existing, tested configuration is enhanced.

- **Configuration-Remove**—Removes (deletes) any existing configuration.

- **Configuration-Freeze**—Prevents further changes to a configuration. This marks the configuration as read-only so it can be viewed, but not modified.
Using the Wizard Tools interface (hwv) Creating and editing a configuration

- **Configuration-Freeze** is password protected: you will be prompted to create a password before the configuration is locked.

- **Configuration-Thaw**—Releases the configuration from the frozen (read-only) state so it can be modified.

- **Configuration-Thaw** is password protected: you must enter the correct password before the configuration is unlocked.

- **Configuration-Edit-Global-Settings**—Modifies settings that affect the entire configuration. This includes settings for the detectors and the operation mode of the hwv command. This item is also used to specify the alternate interconnects (AlternateIps) for the cluster.

- **Configuration-Consistency-Report**—Provides a consistency check that verifies whether an application is running within a high-availability configuration and has actually been created using the configuration data provided by the respective wizard.

 The wizard compares the currently activated wizard checksum against the wizard database checksum. One checksum is called the **Live-Info**, the other is called the **BuildInfo**. If both checksums match for an application, it is certified that its running version conforms to what was configured by the wizard.

- **Configuration-ScriptExecution**—Allows administrators to run any script independent of RMS.

 By selecting the resources configured for the application, the user can execute the scripts that are to bring the resources online or offline. To see the online scripts being executed, you can go through the resource list, which is displayed for this purpose, in ascending order. The return code indicates the proper functioning of the respective script.

- **RMS-CreateMachine**—Defines the list of machines which constitute the cluster. During the activation phase, the RMS configuration will be distributed to all the nodes in this list.

 Applications managed by RMS must each be configured to run on one or more machines in this pool. Therefore, complete this step before creating any application.

- **RMS-RemoveMachine**—Removes machines from the list of cluster nodes.
Creating and editing a configuration Using the Wizard Tools interface (hvw)

3.3.2.2 Main configuration menu when RMS is running

Wizard Tools menus change dynamically according to whether or not RMS is running in the following locations:

- anywhere in the cluster
- on the local node

If RMS is running on any of the cluster machines, any operation which could potentially modify the currently active configuration is not allowed.

In particular, when RMS is running on the local node, the Main configuration menu changes as shown in Figure 11.

![Image of Main configuration menu when RMS is running](image)

When RMS is running, the following entries either appear or change their behavior:

- **Application-View**—Views an existing application in read-only mode.
- **Configuration-Generate**—Same functionality as when RMS is not running.
- **Configuration-Copy**—Produces a copy of an existing configuration. This is often used to make a backup before an existing, tested configuration is enhanced.

 Configuration-Copy cannot overwrite the configuration that is currently running.
Using the Wizard Tools interface (hvw) **Creating and editing a configuration**

- **Configuration-Remove**—Removes (deletes) any existing configuration except the one that is currently running.

- **Configuration-Push**—Distributes a complete copy of the currently running configuration to a specific cluster node.

 When a configuration is activated, some nodes may not be available. This menu item allows you to update individual cluster nodes that are brought up later, when RMS is already running. For example, if you changed the configuration while a node was down for maintenance, you could use **Configuration-Push** to update the node after it was restarted.

 Configuration-Push is available only after the configuration has been activated.

- **RMS-ViewMachine**—Displays the list of nodes on which RMS is currently running.

3.3.3 Secondary menus

Each of the main menu items has a number of secondary menus. The secondary menus themselves can have sub-menus.

The *Creation: Application type selection menu* (Figure 12) is an example of a secondary menu. You see this menu after selecting **Application-Create** from the main menu.

```
Creation: Application type selection menu:
  1) HELP
  2) QUIT
  3) RETURN
  4) OPTIONS
  5) DEMO
  6) GENERIC
  7) LIVECACHE
  8) R3ANY
  9) R3CI
 10) RTP
Application Type: 5
```

Figure 12: Application type selection
The list of available application types displayed in the menu depends on the packages installed on the local system. Some of the application types shown in this example may not be available in your market or for your platform.

This option allows you to select an application type to be assigned to the application in question. This is an important step in the configuration procedure since it invokes the specific application-type wizard to provide all the predefined elements (for example, scripts and detectors) that go with that application type.

The chapter “Configuration example” shows how to use some of the secondary menus. A more detailed description of these menus is given in the RMS Wizards documentation package.

3.3.4 Basic and non-basic settings

Basic and non-basic settings are designed to guide you safely through the configuration process, ensuring that all mandatory settings are configured.

Among the basic settings are the application name and the names of the nodes where it can run. For example, at the application type selection menu shown in the previous section, selecting 5) DEMO produces the menu in Figure 13.

```plaintext
Consistency check ...
Yet to do: process the basic settings using Machines+Basics
Yet to do: choose a proper application name

Settings of turnkey wizard 'DEMO'
1) HELP
2) NO-SAVE+EXIT
3) SAVE+EXIT
4) REMOVE+EXIT
5) ApplicationName=APP3
6) BeingControlled=no
7) Machines+Basics(-)
Choose the setting to process: 7
```

Figure 13: Menu leading to basic settings

If you select 7) Machines+Basics, you can configure the basic settings using the menu in Figure 14.
Using the Wizard Tools interface (hvw) Creating and editing a configuration

Consistency check ...

<table>
<thead>
<tr>
<th>Machines+Basics (appl:consistent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) HELP</td>
</tr>
<tr>
<td>2) -</td>
</tr>
<tr>
<td>3) SAVE+EXIT</td>
</tr>
<tr>
<td>4) REMOVE+EXIT</td>
</tr>
<tr>
<td>5) AdditionalMachine</td>
</tr>
<tr>
<td>6) AdditionalConsole</td>
</tr>
<tr>
<td>7) Machines[0]=shasta1RMS</td>
</tr>
<tr>
<td>8) (PreCheckScript=)</td>
</tr>
<tr>
<td>9) (PreOnlineScript=)</td>
</tr>
<tr>
<td>10) (PostOnlineScript=)</td>
</tr>
<tr>
<td>11) (PreOfflineScript=)</td>
</tr>
<tr>
<td>12) (OfflineDoneScript=)</td>
</tr>
<tr>
<td>13) (FaultScript=)</td>
</tr>
</tbody>
</table>

Choose the setting to process:

Figure 14: Menu to configure basic settings

The menu displays the application's current attribute settings, some of which may be set automatically by the wizards. Attributes enclosed in parentheses are optional.

After you complete the configuration of the basic settings, the non-basic settings menu appears (Figure 15). Non-basic settings include specifications for resources such as file systems, IP addresses, disks, and so forth.
Activating a configuration

3.4 Activating a configuration

As described in section “General configuration procedure”, activating a configuration is the third of the four fundamental steps required to set up a high-availability configuration. The activation phase comprises a number of tasks, among which are generation and distribution of a configuration.

You must stop RMS on all nodes in the cluster before you activate a configuration.

The starting point for the activation phase is the Main configuration menu (see Figure 16).
Using the Wizard Tools interface (hwv)

Activating a configuration

Figure 16: Main configuration menu

shasta1: Main configuration menu, current configuration: mydemo

No RMS active in the cluster

1) HELP
2) QUIT
3) Application-Create
4) Application-Edit
5) Application-Remove
6) Application-Clone
7) Configuration-Generate
8) Configuration-Activate
9) Configuration-Copy

10) Configuration-Remove
11) Configuration-Freeze
12) Configuration-Thaw
13) Configuration-Edit-Global-Settings
14) Configuration-Consistency-Report
15) Configuration-ScriptExecution
16) RMS-CreateMachine
17) RMS-RemoveMachine

Choose an action: 8

Figure 16: Main configuration menu

► Select the Configuration-Activate item by entering the number 8.

The activation is performed by the wizard. No further input is required at this stage.

During the activation phase, the wizard executes a series of tasks and displays the status on the screen. The completion of a task is indicated by the word done or a similar expression (see Figure 17).
Among the tasks carried out by Configuration-Activate are generation and distribution of the configuration. The wizard performs a consistency check of the graph created in the generation of the configuration before distributing the configuration to all nodes specified in the configuration.

The test to see whether RMS is up on one of the nodes in the cluster is required since activation cannot be performed if RMS is running. In this case, RMS would need to be shut down first.

The Configuration-Activate process removes persistent status information on all affected nodes.

After the configuration has been activated successfully, you can return to the Main configuration menu. From there, you can quit the configuration procedure.
Using the Wizard Tools interface (hvw)

Activating a configuration

- Press **Enter** to return to the *Main configuration menu* (see Figure 18).

![Figure 18: Quitting the Main configuration menu](image)

- Select **QUIT** by entering the number 2.

This ends the activation phase of the configuration process. Usually, the next step is to start RMS to monitor the newly-configured application.

- Start RMS with the GUI or with the following command:

  ```bash
  hvcm -a
  ```
3.5 Configuration elements

This section discusses some basic elements that are part of a high-availability configuration. Most of them have been mentioned in previous sections. Additional details are provided here to assist you in understanding how they are used by the wizards.

Users do not have to deal with any of the items listed in this section directly. RMS Wizards manage all the basic elements for a high availability configuration. This section is provided only to help users better understand the configuration elements.

3.5.1 Scripts

Scripts are used in a high-availability configuration to perform several kinds of actions. Among the most important types of actions are the following:

- Bringing a resource to an **Online** state
- Bringing a resource to an **Offline** state

As an example of a script sending a resource Offline, you might think of a file system that has to be unmounted on a node where a fault occurs. An offline script would use the `umount` command to unmount the file system. Another script might use the `mount` command to mount it on a different node.

Besides such online and offline scripts, there are also pre-online and pre-offline scripts for preparing transition into the respective states, as well as a number of other scripts.

The RMS Wizards provide a complete set of scripts for several pre-defined application types such as R/3 or Oracle. If you assign your application to one of these standard types, you automatically take advantage of the built-in scripts.

The `hvexec` command executes scripts for a high-availability configuration monitored by RMS. For more details on the command `hvexec` please refer to the `primer.htm` document.
3.5.2 Detectors

Detectors are processes that have the task of monitoring resources. If there is a change in the state of a resource (for example, of a disk group) the detector in charge notifies the RMS base monitor. The base monitor may then decide to have a script executed as a reaction to this changed state.

Like the built-in scripts described in the previous section, the RMS Wizards provide built-in detectors for pre-defined application types. If you assign your application to one of these standard types, it automatically uses the built-in detectors.

3.5.3 RMS objects

A high-availability configuration can be seen as a set or group of objects with interdependencies. Any application or resource that is part of the configuration is then represented by one of the objects. The interdependencies of objects can be displayed as a graph called the RMS graph.

These are the most important object types used in RMS configurations:

- **userApplication**—Represents an application to be configured for high-availability.
- **SysNode**—Represents a machine that is running as a node in a cluster.
- **gResource**—Represents a generic resource that is to be defined according to the needs of a customer application.
- **Controller**—Provides a dependency linkage so that a child application can act as a resource of the parent application.

In a typical configuration, one detector can be associated with all objects of the same type.
| Configuration elements | Using the Wizard Tools interface (hw) |
4 Configuration example

This chapter provides an example of the configuration process using the RMS Wizards. Two simple applications are configured for operation on a small cluster. The example includes the following steps:

● “Stopping RMS”
● “Creating a configuration”
● “Adding hosts to the cluster”
● “Creating an application”
● “Entering Machines+Basics settings”
● “Entering non-basic settings”
● “Specifying a display”
● “Activating the configuration”
● “Creating a second application”
● “Setting up a controlling application”
● “Specifying controlled applications”
● “Activating the configuration a second time”
● “Starting RMS”

An abbreviated version of this example appears in the Software Release Guide PRIMECLUSTER and the PRIMECLUSTER Installation Guide for your operating system.

To avoid network access problems, perform RMS configuration tasks as root, and ensure that CF is installed, properly configured, and running as described in the Software Release Guide PRIMECLUSTER and the PRIMECLUSTER Installation Guide for your operating system.

4.1 Stopping RMS

Before you create or edit a configuration, ensure that RMS is not active on any machine that would be affected by the changes. You can use the Cluster Admin GUI (see the section “Stopping RMS”) or you can enter the following command to stop RMS on all nodes from any machine in the cluster:
4.2 Creating a configuration

Enter the following command to generate the wizard menu for the configuration example, mydemo:

```
# hvw -n mydemo
```

This will create an RMS configuration file named `mydemo.us` in the `/opt/SMAW/SMAWRrms/build/` directory. If you choose a different name and location, the combined length of the file name and path should not exceed 80 characters.

The RMS configuration menu appears, displaying the name of the configuration at the top of the menu (Figure 19).

```
shasta1: Main configuration menu, current configuration: mydemo
No RMS active in the cluster
1) HELP
2) QUIT
3) Application-Create
4) Application-Edit
5) Application-Remove
6) Application-Clone
7) Configuration-Generate
8) Configuration-Activate
9) Configuration-Copy
10) Configuration-Remove
11) Configuration-Freeze
12) Configuration-Thaw
13) Configuration-Edit-Global-Settings
14) Configuration-Consistency-Report
15) Configuration-ScriptExecution
16) RMS-CreateMachine
17) RMS-RemoveMachine
Choose an action:
```

Figure 19: Main configuration menu
4.3 Adding hosts to the cluster

Before you configure an application, you must define the cluster so that it includes all hosts on which the application may run. The names of all possible RMS hosts should have already been added to the /etc/hosts file (see “Appendix—Site preparation”).

Select the nodes to be included in the configuration. See “Appendix—Cluster planning worksheet” in the Software Release Guide PRIMECLUSTER and the PRIMECLUSTER Installation Guide for your operating system.

Set up the following after adding hosts to the cluster of CF, Cluster Resource Management(CRM) and Shutdown Facility(SF). For more details on adding hosts to the cluster, refer to “PRIMECLUSTER Cluster Foundation (CF) Configuration and Administration Guide” for your operating system.

This example assumes /etc/hosts contains the following entries, which follow the RMS naming convention:

```
# host names for RMS
192.168.10.83  shasta1RMS
192.168.10.84  shasta2RMS
```

By default, RMS host names are of the form <hostname>RMS to follow the RMS naming convention. To override the default RMS name for a machine, edit that host’s hvenv.local file and set the RELIANT_HOSTNAME variable to the desired name. The contents of that host’s RELIANT_HOSTNAME variable must match the corresponding /etc/hosts entry on every host in the cluster. This must be done before you start the Wizard Tools (hvw). If RMS is running, you must also restart RMS.

In this step, you will add the RMS hosts to the cluster.

- At the Main configuration menu, enter the number 16. The Add hosts to a cluster menu appears (Figure 20).
Adding hosts to the cluster

Configuration example

Figure 20: Add hosts to a cluster menu

This menu displays the current set of nodes and lists the machines that can be selected. If you select 5) ALL-CF-HOSTS, the RMS Wizards add all nodes in /etc/cip.cf to this configuration. Otherwise, you can add hosts individually from the displayed list.

- Select shasta1RMS by entering the number 6. Select shasta2RMS by entering the number 7 (see Figure 20).

At this screen, you can also choose 4) FREECHOICE, which will allow you to enter host names that are not listed in the menu.

- After all host names have been added, use 3) RETURN to return to the Main configuration menu.

To remove a node, select 17) RMS-RemoveMachine from the Main configuration menu. The Remove hosts from a cluster menu appears (Figure 21).

Figure 21: Remove hosts from a cluster menu
This menu lists all nodes currently in the cluster. Machines can be removed by selecting them individually or by selecting 4) ALL from the menu. In either case, machines being used by one or more applications cannot be removed.
4.4 Creating an application

After you have defined the set of hosts that form the cluster, you can configure an application that will run on those hosts. In this step, we will first create the application using the DEMO turnkey wizard. Begin at the *Main configuration menu* (Figure 22).

![Figure 22: Main configuration menu](image)

- **Select** *Application-Create* by entering the number 3. The *Application type selection menu* appears (Figure 23).

![Figure 23: Application type selection menu](image)
Configuration example

The list of available application types displayed in the menu depends on the packages installed on the local system. Some of the application types shown in this example may not be available in your market or for your platform.

This example uses the DEMO application type, which has been designed to familiarize the user with the configuration process and is intended for demonstration purposes only: other than a few user-specified attributes, everything is preset and ready to run. To configure a real-world application, you would instead select the GENERIC application type, as described in the section “Creating a second application”.

Select the DEMO application type by entering the number 5.

You have now assigned the DEMO application type to your application. This means the DEMO turnkey wizard will provide the application with scripts and detectors that were developed for this application type.

There are, however, more parameters to specify before this application can run. One of them might be the application name; you can assign a name of your choice to any application that you configure for RMS. In this case, there is no need to specify an application name, as the DEMO wizard provides APP1 as a default here.

APP1 is a simple application, developed specifically for this example, that generates an animated graphical figure on an X-window display. It will be used demonstrate how an application can be started, stopped, or switched, and how RMS performs failover when the application process is killed on the initial node.

After performing a consistency check, the wizard informs you what to do next (see Figure 24).
Creating an application

Configuration example

Consistency check ...
Yet to do: process the basic settings using Machines+Basics
Yet to do: choose a proper application name

Settings of turnkey wizard 'DEMO'
1) HELP
2) NO-SAVE+EXIT
3) SAVE+EXIT
4) REMOVE+EXIT
5) ApplicationName=APP1
6) BeingControlled=no
7) Machines+Basics(-)
Choose the setting to process: 7

Figure 24: Prompting for further actions

At each step, the wizard checks the consistency of the application being configured. Only consistent applications are allowed to be part of the high-availability configuration.

If you want to specify a different application name, you could do it here by selecting 5) ApplicationName. However, because we are using the default of APP1, the Yet to do message will disappear after you select 7) Machine+Basics.
4.5 Entering Machines+Basics settings

- Select *Machines+Basics* by entering the number 7. The *Machines+Basics* menu appears (Figure 25).

![Consistency check and Machines+Basics menu](image)

At the top of the menu, the wizard shows you the result of the latest consistency check. The application named *APP1*, which was indicated on the previous screen, has proven to be consistent.

The *Machines[0]* menu item indicates the node where your application will first attempt to come online. In this case, it is *shasta1RMS*.

The RMS Wizards retrieve the default settings for *Machines[0]* from the local node defined in **RELIANT_HOSTNAME**.

Subsequent *Machines[*] items, if any, indicate the list of failover nodes. If the initial node fails, RMS will attempt to switch the application to a failover node, trying each one in the list according to the index order.

At this point, only the initial node appears in the menu, so configure a failover node for your application as follows:
Entering Machines+Basics settings

Configuration example

► Select *AdditionalMachine* by entering the number 5. A menu containing the current list of available nodes appears (Figure 26).

| 1) HELP |
| 2) RETURN |
| 3) shasta1RMS |
| 4) shasta2RMS |

Choose a machine for this application: 4

Figure 26: List of nodes for failover procedure

The Wizards retrieve the default list of nodes from the CIP configuration file, `/etc/cip.cf`.

Since our application is presently configured for *shasta1RMS*, we will select *shasta2RMS* as the additional node:

► Select *shasta2RMS* by entering the number 4.

In the menu that follows (Figure 27) you will see your selection confirmed. *shasta2RMS* now appears under *Machines[1]* as the additional node. If there is a failure on *shasta1RMS*, your application is configured to switch over to *shasta2RMS*.
Figure 27: Machines+Basics menu for additional nodes

At this point, the default value of No is specified for 16) AutoSwitchOver. This means that to actually switch your application over, manual action would be required.

To have the switchover procedure carried out automatically, select 16) AutoSwitchOver

The Set flags for AutoSwitchOver menu opens (Figure 28).

Figure 28: AutoSwitchOver mode
Set a flag by entering the number 6 for *HOSTFAILURE*. This means that RMS switches an application to another node automatically in the case of a node failure.

The first line of the updated menu indicates the *HOSTFAILURE* flag is now set (Figure 29).

![Set flags for AutoSwitchOver: Currently set: HOSTFAILURE (H)](Set flags for AutoSwitchOver: Currently set: HOSTFAILURE (H)

- 1) HELP
- 2) –
- 3) SAVE+RETURN
- 4) DEFAULT
- 5) NO(N)
- 6) NOT:HOSTFAILURE(H)
- 7) RESOURCEFAILURE(R)
- 8) SHUTDOWN(S)

Choose one of the flags:

Figure 29: Setting flags for AutoSwitchOver mode

Continue with the following operations from the same menu:

- Enter the number 7 for *RESOURCEFAILURE*. This means that RMS switches an application to another node automatically in the case of a resource failure.

- Enter the number 3 for *SAVE+RETURN*.
You will be returned to the *Machines+Basics* menu (Figure 30). Note that item 16 now displays the *AutoSwitchOver* flags you just set.

```
Consistency check ...

Machines+Basics (appl:consistent)
  1) HELP
  2) -
  3) SAVE+EXIT
  4) REMOVE+EXIT
  5) AdditionalMachine
  6) AdditionalConsole
  7) Machines[0]=shasta1RMS
  8) Machines[1]=shasta2RMS
  9) (PreCheckScript=)
 10) (PreOnlineScript=)
 11) (PostOnlineScript=)
 12) (PreOfflineScript=)
 13) (OfflineDoneScript=)
 14) (FaultScript=)
 15) (AutoStartUp=no)
 16) (AutoSwitchOver=HostFailure|ResourceFailure)
 17) (PreserveState=no)
 18) (PersistentFault=0)
 19) (ShutdownPriority=)
 20) (OnlinePriority=)
 21) (StandbyTransitions=)
 22) (LicenseToKill=no)
 23) (AutoBreak=yes)
 24) (HaltFlag=no)
 25) (PartialCluster=0)
 26) (ScriptTimeout=)

Choose the setting to process: 3
```

Figure 30: Saving settings

Save your settings now to complete the *Application-Create* process.

- Select *SAVE+EXIT* by entering the number 3.
4.6 Entering non-basic settings

The DEMO turnkey wizard performs another consistency check before returning you to the wizard settings menu (Figure 31).

Consistency check ...
Yet to do: process at least one of the non-basic settings

Settings of turnkey wizard 'DEMO'
1) HELP
2) −
3) SAVE+EXIT
4) −
5) ApplicationName=APP1
6) Machines+Basics(appl)
7) CommandLines(−)
8) Controllers(−)
9) DEMO(−)
10) LocalFileSystems(−)
11) RemoteFileSystems(−)
12) IpAddresses(−)
13) RawDisks(−)
14) RC-VolumeManagement(−)
15) VERITAS-VolumeManagement(−)
16) EMC-RdfManagement(−)
17) FibreCat-MirrorView(−)
18) Gds:Global-Disk-Services(−)
19) Gls:Global-Link-Services(−)

Choose the setting to process: 9

The list of available subapplications displayed in the menu depends on the packages installed on the local system. Some of the subapplications shown in this example may not be available in your market or for your platform.

The menu header indicates there is at least one more setting to specify, but it is not a basic setting.

As described earlier, this application creates an animated graphical picture on an X-window display. Therefore, a display setting for the DEMO wizard must be added to the basic settings you have already entered.

- Select DEMO by entering the number 9. The CommandLines menu appears (Figure 32).
Configuration example

Entering non-basic settings

Consistency check ...
Yet to do: set a display

CommandLines (Dem_APP1: not yet consistent)
1) HELP
2) -
3) SAVE+EXIT
4) REMOVE+EXIT
5) Display=
6) StartCommands[0]=’hvexec--F~demo--c’
7) StopCommands[0]=’hvexec--F~demo--u’
8) CheckCommands[0]=hvdet_demo
9) (Timeout=300)
10) (AutoRecover=no)
11) (MonitorOnly=no)
Choose the setting to process: 5

Figure 32: Prompting for display specification

The menu header indicates that a display still needs to be specified, and the status line tells you that APP1 is not yet consistent; that is, APP1 could not yet run with the present mydemo configuration.

Because the DEMO wizard has been customized for demonstration purposes, some of the items in the menu have been predefined. Items in the menu body indicate the scripts provided by the wizard for starting, stopping, and checking: see the lines beginning with 6) StartCommands[0]=, 7) StopCommands[0]=, and 8) CheckCommands[0]=.

For technical reasons, spaces are displayed as tildes (~) within the wizard menu commands. The actual commands do not have tildes.
4.7 Specifying a display

Specify the display within the CommandLines menu as follows:

- Select Display by entering the number 5. A list of display options appears (Figure 33).

```
1) HELP
2) RETURN
3) FREECHOICE
4) shasta3ADM
5) shasta1ADM
6) shasta2ADM
7) shastaRCA
8) shastaSCON
9) shasta1
10) shasta2
11) shasta1RMS
12) shasta2RMS
Choose a display for this application: 3
    >> 172.25.220.27
```

Figure 33: List of display options

You can choose from the list of detected hosts (all hosts in /etc/hosts), or you can select 3) FREECHOICE to specify an arbitrary host with a suitable display.

- Select FREECHOICE by entering the number 3.

At the >> prompt, enter the host name or IP address for the X-window display. In this example, we use the IP address 172.25.220.27, but you should enter an address in your LAN.

Completing the FREECHOICE step initiates another consistency check (Figure 34).
Configuration example

Specifying a display

Consistency check ...

CommandLines (Dem_APP1:consistent)
1) HELP
2) -
3) SAVE+EXIT
4) REMOVE+EXIT
5) Display=172.25.220.27
6) StartCommands[0]='hvexec~-F~demo~-c~~172.25.220.27'
7) StopCommands[0]='hvexec~-F~demo~-u~~172.25.220.27'
8) CheckCommands[0]=hvdet_demo
9) (Timeout=300)
10) (AutoRecover=no)
11) (MonitorOnly=no)
Choose the setting to process: 3

Figure 34: Successful consistency check for APP1

The consistency check is successful: you can now use RMS to run APP1 with the mydemo configuration.

Note that the wizard updated the display information for the scripts in items 6) StartCommands[0] and 7) StopCommands[0].

This completes the specification of the non-basic settings. You can now save the non-basic settings and exit this part of the configuration procedure.

► From the CommandLines menu (Figure 34), select SAVE+EXIT by entering the number 3.

This will take you back to the Settings of turnkey wizard "DEMO" menu (Figure 35).
Specifying a display

Configuration example

Consistency check ...

Settings of turnkey wizard 'DEMO'

1) HELP
2) -
3) SAVE+EXIT
4) -
5) ApplicationName=APP1
6) Machines+Basics(app1)
7) CommandLines(-)
8) Controllers(-)
9) DEMO(Dem_APP1)
10) LocalFileSystems(-)
11) RemoteFileSystems(-)
12) IpAddresses(-)
13) RawDisks(-)
14) RC-VolumeManagement(-)
15) VERITAS-VolumeManagement(-)
16) EMC-RdfManagement(-)
17) FibreCat-MirrorView(-)
18) Gds:Global-Disk-Services(-)
19) Gls:Global-Link-Services(-)

Choose the setting to process: 3

Figure 35: Turnkey wizard DEMO

By specifying the basic and non-basic settings for your application and achieving a consistent result, you have successfully finished the Application-
Create part of the configuration procedure.

- Select SAVE+EXIT by entering the number 3. This will take you back to the RMS configuration menu.
4.8 Activating the configuration

As described in the section “General configuration procedure”, activating a configuration is the third of the four fundamental steps required to set up a high-availability configuration.

You must stop RMS before activating a configuration. In this example, we stopped RMS before creating the configuration.

The starting point for the activation phase is the Main configuration menu (Figure 36).

<table>
<thead>
<tr>
<th>shastal: Main configuration menu, current configuration: mydemo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) HELP 10) Configuration-Remove</td>
</tr>
<tr>
<td>2) QUIT 11) Configuration-Freeze</td>
</tr>
<tr>
<td>3) Application-Create 12) Configuration-Thaw</td>
</tr>
<tr>
<td>4) Application-Edit 13) Configuration-Edit-Global-Settings</td>
</tr>
<tr>
<td>5) Application-Remove 14) Configuration-Consistency-Report</td>
</tr>
<tr>
<td>6) Application-Clone 15) Configuration-ScriptExecution</td>
</tr>
<tr>
<td>7) Configuration-Generate 16) RMS-CreateMachine</td>
</tr>
<tr>
<td>8) Configuration-Activate 17) RMS-RemoveMachine</td>
</tr>
<tr>
<td>9) Configuration-Copy</td>
</tr>
<tr>
<td>Choose an action: 8</td>
</tr>
</tbody>
</table>

Figure 36: Main configuration menu

Select Configuration-Activate by entering the number 8.

No further input is required at this stage. As the Wizard completes each task in the activation phase, it displays status information as described in the section “Activating a configuration”. You will be prompted to continue at the end of the process (see Figure 37).

The new configuration was distributed successfully.

About to put the new configuration in effect ... done.

The activation has finished successfully.
Hit CR to continue

Figure 37: Successful configuration activation
Activating the configuration

Press the [Enter] or [Return] key to return to the *Main configuration menu* (Figure 38).

```
shasta1: Main configuration menu, current configuration: mydemo
No RMS active in the cluster
1) HELP  10) Configuration-Remove
2) QUIT   11) Configuration-Freeze
3) Application-Create  12) Configuration-Thaw
4) Application-Edit    13) Configuration-Edit-Global-Settings
5) Application-Remove  14) Configuration-Consistency-Report
6) Application-Clone   15) Configuration-ScriptExecution
7) Configuration-Generate 16) RMS-CreateMachine
8) Configuration-Activate 17) RMS-RemoveMachine
9) Configuration-Copy
Choose an action: 2
```

Figure 38: Quitting the Main configuration menu

Select *QUIT* by entering the number 2.

This ends the activation phase of the configuration process. At this point, RMS may be started to monitor the newly-configured application.
4.9 Creating a second application

In this section, the mydemo configuration is expanded by adding a second application. This example application differs from the first because duplicate configuration procedures are skipped to simplify the example. However, in other parts of the procedure, new features add to the complexity of the mydemo configuration.

The second application differs from the first as follows:

- The application uses a new application type, GENERIC, instead of DEMO. We will use the name APP2 for the second application.
- APP2 will control the first application (APP1). Therefore, APP2 must be configured with a controller sub-application.

Resume the configuration procedure as follows:

- Stop RMS if it is running.
- Return to the Main configuration menu with the following command:

  ```
  # hvw -n mydemo
  ```

The Main configuration menu opens (see Figure 39).

You can add more machines to the cluster at this point, provided the required site preparation steps have been completed.
To add machines, select \textit{RMS-CreateMachine} by entering the number 16. Follow the procedure described earlier and then return to the \textit{Main configuration menu} when finished.

From the \textit{Main configuration menu}, select \textit{Application-Create} by entering the number 3.

The \textit{Application type selection} menu opens (see Figure 40).

<table>
<thead>
<tr>
<th>Creation: Application type selection menu:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) HELP</td>
</tr>
<tr>
<td>2) QUIT</td>
</tr>
<tr>
<td>3) RETURN</td>
</tr>
<tr>
<td>4) OPTIONS</td>
</tr>
<tr>
<td>5) DEMO</td>
</tr>
<tr>
<td>6) GENERIC</td>
</tr>
<tr>
<td>7) LIVECACHE</td>
</tr>
<tr>
<td>8) R3ANY</td>
</tr>
<tr>
<td>9) R3CI</td>
</tr>
<tr>
<td>10) RTP</td>
</tr>
<tr>
<td>Application Type: 6</td>
</tr>
</tbody>
</table>

Figure 40: Application type selection menu

This time, assign the \textit{GENERIC} application type to the application. This means that the GENERIC turnkey wizard will be in charge of the configuration procedure.

Select the \textit{GENERIC} application type by entering the number 6.

After the consistency check, you are prompted to configure the basic settings. \textit{APP2} is the default value for the application name.

If you want to change the name, select 5) \textit{ApplicationName} (see Figure 41).
Configuration example

Creating a second application

Consistency check ...
Yet to do: process the basic settings using Machines+Basics
Yet to do: choose a proper application name

Settings of turnkey wizard "GENERIC"
1) HELP
2) NO-SAVE+EXIT
3) SAVE+EXIT
4) REMOVE+EXIT
5) ApplicationName=APP2
6) BeingControlled=no
7) Machines+Basics(-)
Choose the setting to process: 7

Figure 41: Prompting for further specification

► Select Machines+Basics by entering the number 7.

The consistency of APP2 is checked, and the result is positive. When the Machines+Basics menu appears, it shows that APP2 is initially configured to run on shasta1RMS (see item 7) Machines[0] in Figure 42).

Consistency check ...

Machines+Basics (app2:consistent)
1) HELP 14) (AutoStartUp=no)
2) - 15) (AutoSwitchOver=No)
3) SAVE+EXIT 16) (PreserveState=no)
4) REMOVE+EXIT 17) (PersistentFault=0)
5) AdditionalMachine 18) (ShutdownPriority=)
6) AdditionalConsole 19) (OnlinePriority=)
7) Machines[0]=shasta1RMS 20) (StandbyTransitions=)
8) (PreCheckScript=) 21) (LicenseToKill=no)
9) (PreOnlineScript=) 22) (AutoBreak=yes)
10) (PostOnlineScript=) 23) (HaltFlag=no)
11) (PreOfflineScript=) 24) (PartialCluster=0)
12) (OfflineDoneScript=) 25) (ScriptTimeout=)
13) (FaultScript=)
Choose the setting to process: 5

Figure 42: Machines+Basics menu
Creating a second application

Configuration example

- Select AdditionalMachine by entering the number 5. A menu appears with the list of available machines (Figure 43).

![Figure 43: List of nodes for failover procedure](image)

As with the former application, the additional machine to be specified for the failover procedure is shasta2RMS.

- Select shasta2RMS by entering the number 4.

In the screen that follows you see your selection confirmed—menu item 8) Machines[1] now displays shasta2RMS as the additional machine (Figure 44).

![Figure 44: Machines+Basics menu](image)
Configuration example

Setting up a controlling application

Note that item 16 indicates `AutoSwitchOver=No`, so APP2 will not be switched automatically to `shasta2RMS` if `shasta1RMS` fails: it must be switched manually with the GUI or CLI. To enable automatic switchover, select item 16.

Save your settings and exit this part of the configuration procedure:

- Select `SAVE+EXIT` by entering the number 3. This takes you to the non-basic settings menu.

4.10 Setting up a controlling application

The basic settings have been specified. However, we still need to set up APP2 to control APP1. This will involve the following two steps, available in the non-basic settings:

- Create a controller object for APP2.
- Specify APP1 as the application to be controlled.

The previous step has taken you to the non-basic settings menu (Figure 45).

Consistency check ...
Yet to do: process at least one of the non-basic settings

Settings of turnkey wizard "GENERIC"

1) HELP
2) -
3) SAVE+EXIT
4) -
5) ApplicationName=APP2
6) Machines+Basics(app2)
7) CommandLines(-)
8) Controllers(-)
9) LocalFileSystems(-)
10) RemoteFileSystems(-)
11) IpAddresses(-)
12) RawDisks(-)
13) RC-VolumeManagement(-)
14) VERITAS-VolumeManagement(-)
15) EMC-RdfManagement(-)
16) FibreCat-MirrorView(-)
17) Gds:Global-Disk-Services(-)
18) Gls:Global-Link-Services(-)

Choose the setting to process: 8

Figure 45: Non-basic settings

- Select *Controllers* by entering the number 8.

This creates a controller object for APP2 and presents a menu that lets you specify the controller settings (Figure 46).
4.11 Specifying controlled applications

Once you specify a controller, the wizard needs to know which application to control.

When an application becomes the child of a controller, the Wizards adjust some of its attributes automatically. In the case of a Follow controller, the child's Machines[] entries are overridden by the settings of the parent.

Select AdditionalAppToControl by entering the number 6.

The menu that appears offers you a list from which to choose an application (Figure 47).

Figure 46: Assigning a controller

Note that item 5 allows you to change the controller type. This example will use the default follow controller.
The controlled application is **APP1**, while **APP2** is the controlling application. Choose the application to be controlled as follows:

- Select **APP1** by entering the number 4. The controller flags menu appears (Figure 48).

Figure 48: Menu for setting controller flags

There are a number of flags that can be set for a controlled application. In this example, the **A (AUTORECOVER)** flag has been set. The **A** flag means If the controlled application becomes offline, the controlling application tries to restart it. The **AUTORECOVER** menu item is now in the opposite state; that is, ready to be toggled to **NOT**.

The **T (TIMEOUT)** flag limits the amount of time tolerated while bringing the controlled application online. In this example, we will reduce the timeout period to 150 seconds.

- Change the timeout period by entering 7.
- In the menu that appears (Figure 49), select **FREECHOICE** by entering the number 3.

Figure 49: Changing controller timeout period

- At the >> prompt, enter 150 for the timeout period.
Specifying controlled applications

Configuration example

Press **Enter** or **Return** to return to the menu for controller flags (Figure 50).

<table>
<thead>
<tr>
<th>Set flags for (sub) application: app1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently set: AUTORECOVER, TIMEOUT (AT150)</td>
</tr>
<tr>
<td>1) HELP</td>
</tr>
<tr>
<td>2) -</td>
</tr>
<tr>
<td>3) SAVE+RETURN</td>
</tr>
<tr>
<td>4) DEFAULT</td>
</tr>
<tr>
<td>5) MONITORONLY(M)</td>
</tr>
<tr>
<td>6) NOT:AUTORECOVER(A)</td>
</tr>
<tr>
<td>7) TIMEOUT(T)</td>
</tr>
<tr>
<td>Choose one of the flags: 3</td>
</tr>
</tbody>
</table>

Figure 50: Saving flags for controller

After completing the settings, save them and return to the *Controllers* menu as follows:

► Select **SAVE+RETURN** by entering the number 3.

The *Controllers* menu shows that the controller settings are now consistent (Figure 51).

<table>
<thead>
<tr>
<th>Consistency check ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Settings of application type "Controller" (consistent)</td>
</tr>
<tr>
<td>1) HELP</td>
</tr>
<tr>
<td>2) -</td>
</tr>
<tr>
<td>3) SAVE+EXIT</td>
</tr>
<tr>
<td>4) REMOVE+EXIT</td>
</tr>
<tr>
<td>5) ControlPolicy=FOLLOW</td>
</tr>
<tr>
<td>6) AdditionalAppToControl</td>
</tr>
<tr>
<td>7) Controllers[0]=AT150:app1</td>
</tr>
<tr>
<td>8) (InParallel=)</td>
</tr>
<tr>
<td>9) (FaultScript=)</td>
</tr>
<tr>
<td>Choose the setting to process: 3</td>
</tr>
</tbody>
</table>

Figure 51: Indication of flags set for controller

Note that your settings are confirmed on item 7) *Controllers[0]*: the A and T flags have been set for APP1.
Configuration example

Select `SAVE+EXIT` by entering the number 3.

This takes you back to the `GENERIC` menu (Figure 52).

Consistency check ...

Settings of turnkey wizard "GENERIC"
1) HELP 10) RemoteFileSystems(-)
2) - 11) IpAddresses(-)
3) SAVE+EXIT 12) RawDisks(-)
4) - 13) RC-VolumeManagement(-)
5) ApplicationName=APP2 14) VERITAS-VolumeManagement(-)
6) Machines+Basics(app2) 15) EMC-RdfManagement(-)
7) CommandLines(-) 16) FibreCat-MirrorView(-)
8) Controllers(Ctl_APP2) 17) Gds:Global-Disk-Services(-)
9) LocalFileSystems(-) 18) Gls:Global-Link-Services(-)
Choose the setting to process: 3

Figure 52: Menu with settings for GENERIC turnkey wizard

In the `GENERIC` menu, item 8 Controllers now displays a controller assigned to APP2.

Select `SAVE+EXIT` by entering the number 3. This takes you back to the `Main configuration menu` (Figure 53).

shasta1: Main configuration menu, current configuration: mydemo
No RMS active in the cluster
1) HELP 10) Configuration-Remove
2) QUIT 11) Configuration-Freeze
3) Application-Create 12) Configuration-Thaw
4) Application-Edit 13) Configuration-Edit-Global-Settings
5) Application-Remove 14) Configuration-Consistency-Report
6) Application-Clone 15) Configuration-ScriptExecution
7) Configuration-Generate 16) RMS-CreateMachine
8) Configuration-Activate 17) RMS-RemoveMachine
9) Configuration-Copy
Choose an action:

Figure 53: Main configuration menu

This completes the creation of the second application.
4.12 Activating the configuration a second time

After returning to the Main configuration menu, you must activate the mydemo configuration for the second time. This has to be done because you have modified the configuration by adding another application.

RMS cannot be running while you activate a configuration. In this example, we stopped RMS before creating the second application.

To activate the configuration, begin at the Main configuration menu (Figure 54).

>> Select Configuration-Activate by entering the number 8.

No further input is required at this stage. As the Wizard completes each task in the activation phase, it displays status information as described in the section “Activating a configuration”. You will be prompted to continue at the end of the process (Figure 55).

Figure 54: Main configuration menu

<table>
<thead>
<tr>
<th>No RMS active in the cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) HELP</td>
</tr>
<tr>
<td>2) QUIT</td>
</tr>
<tr>
<td>3) Application-Create</td>
</tr>
<tr>
<td>4) Application-Edit</td>
</tr>
<tr>
<td>5) Application-Remove</td>
</tr>
<tr>
<td>6) Application-Clone</td>
</tr>
<tr>
<td>7) Configuration-Generate</td>
</tr>
<tr>
<td>8) Configuration-Activate</td>
</tr>
<tr>
<td>9) Configuration-Copy</td>
</tr>
<tr>
<td>10) Configuration-Remove</td>
</tr>
<tr>
<td>11) Configuration-Freeze</td>
</tr>
<tr>
<td>12) Configuration-Thaw</td>
</tr>
<tr>
<td>13) Configuration-Edit-Global-Settings</td>
</tr>
<tr>
<td>14) Configuration-Consistency-Report</td>
</tr>
<tr>
<td>15) Configuration-ScriptExecution</td>
</tr>
<tr>
<td>16) RMS-CreateMachine</td>
</tr>
<tr>
<td>17) RMS-RemoveMachine</td>
</tr>
</tbody>
</table>

Choose an action: 8

Figure 55: Activating the configuration for the second time

>> Press the [Enter] or [Return] key to return to the Main configuration menu (Figure 56).
4.13 Starting RMS

At this point, you are ready to start RMS on all nodes in the cluster to monitor both applications. You can use the Cluster Admin GUI (see the section “Starting RMS”) or you can enter the following command from any machine in the cluster:

```
# hvcm -a mydemo
```

Note that you do not have to specify “mydemo” on the hvcm command line if it is the configuration that was most recently activated.

This ends the configuration example.
5 Using the Cluster Admin GUI

This chapter describes PRIMECLUSTER administration using the Cluster Admin graphical user interface (GUI). In addition, some command-line interface (CLI) commands are discussed.

Chapter contents:

● “Overview”
● “Starting the Cluster Admin GUI”
● “Monitoring RMS with Cluster Admin”

5.1 Overview

RMS administration can be done by means of the Cluster Admin GUI or by the CLI. The procedures in this chapter focus on the Cluster Admin GUI.

Most of the GUI examples in this chapter show clusters with typical PRIMECLUSTER product installations. The appearance of some tabs and menus in the GUI display will change according to the products installed for your platform or market.

PRIMECLUSTER Configuration Services (PCS) is not installed when the Wizard Tools are installed.

CLI procedures

Some of the operations described in this chapter describe the equivalent CLI procedure. However, we recommend that the CLI be used only by expert system administrators, or in those cases where a browser is not available. If you decide to use a CLI procedure, please note the following:

● The commands are located in the `<RELIANT_PATH>/bin` directory.
● All RMS CLI commands accept both CF node names and RMS node names for `SysNode` objects when the RMS naming convention has been followed (that is, when the names are of the form `<CF-name>RMS`).
● RMS CLI commands accept case-insensitive application names.
The CLI procedures presented here are not intended to be a complete description of the commands that are employed. Other options may be available. For more information about any CLI command, see its online manual pages. For the complete list of online documentation related to RMS operation, see “Appendix—List of manual pages”.

CLI status codes

In general, RMS hv* commands send a request to the base monitor and then return immediately without waiting for this request to be processed. They exit with a status code of 0 (success), which indicates a request has been sent to the base monitor successfully. However, this does not guarantee that the request was processed successfully.

Important exceptions include the ‘hvshut’ and ‘hvutil -[mM]’ commands, which remove nodes and applications from RMS control. These commands may return status codes that indicate failure. This type of command also provides an option for “forced” operation, but this should be used with great care and only when absolutely necessary.

5.2 Starting the Cluster Admin GUI

The following sections discuss how to use the RMS portion of the GUI.

- **Windows desktop systems** require the Java plugin as specified in "PRIMECLUSTER Web-Based Admin View Operation Guide" for your operating system.

5.2.1 Web-Based Admin View

- Open a Java-enabled browser and enter the following URL in the Address location:

 http://<hostname>:8081/Plugin.cgi

 The hostname should be the name or IP address of the primary or secondary management server. For example, if a cluster has shasta1 and shasta2 as its primary and secondary management servers, the URL would be either one of the following:

 - http://shasta1:8081/Plugin.cgi
 - http://shasta2:8081/Plugin.cgi
The Plugin.cgi URL always attempts to contact the primary management server; after contacting the host, the browser changes the URL suffix from '.cgi' to '.html'. If you instead use the Plugin.html form, Cluster Admin will attempt to make direct contact with the server specified in the URL.

For details on the primary and secondary management servers, refer to "PRIMECLUSTER Web-Based Admin View Operation Guide" for your operating system.

5.2.2 Login

Before logging in, make sure you have a user name and password with the appropriate privilege level. Cluster Admin has the following privilege levels:

- **Root privileges**—Can perform all actions including configuration, administration, and viewing tasks.
- **Administrative privileges**—Can view and execute commands, but cannot make configuration changes.
- **Operator privileges**—Can only perform viewing tasks.

For more details on privilege levels, refer to the PRIMECLUSTER Installation and Administration Guide for your operating system.

After the Web-Based Admin View login window appears (Figure 57), log in as follows:

1. Enter the user name and password for a user with the appropriate privilege level.
2. Click the **OK** button.

![Web-Based Admin View login](image)

Figure 57: Web-Based Admin View login

After you log in, the Web-Based Admin View window appears (Figure 58).
Click the Global Cluster Services button to advance to the next view (Figure 59).

Click the Cluster Admin button.

The Choose a node for initial connection window appears (Figure 60).
The nodes are displayed in alphabetical order, and the first one is selected by default. In most cases, the node you choose is immaterial for administrative tasks.

- Select the desired node for the connection, and click **OK**.

The next window that appears depends on how you have set the trust levels for the Cluster Admin Java applets. If you have already chosen to use trusted applets for all sessions, you can skip the following description.

Trusted applets

For platform independence and security, the Cluster Admin GUI uses Java applets. When the Java applets run in trusted mode, they are allowed to use some client system resources, such as the clipboard. If you intend to copy and paste text between the Java window and other applications on your workstation, you must run the applets in trusted mode.

info PRIMECLUSTER trusted applets are signed by VeriSign, Inc.

The first time you start the Cluster Admin applet, a *Java Security Warning* dialog allows you to choose the security level for the current and future sessions.
5.2.3 Main Cluster Admin window

When Cluster Admin opens, the initial view is similar to Figure 61.

The following tabs appear at the bottom of the left pane:

- **cf**
- **rms & pcs** (or simply **rms** if PCS is not installed)
- **sis**
- **msg** (message window)

Clicking a tab switches the view to the corresponding product. Initially, the CF view is selected. All views have the following common features:

- **Menu bar**—The pull-down menus contain generic administrative functions as well as items specific to the PRIMECLUSTER products. Some entries may be disabled (grayed out) according to the item selected in the current view.
Starting the Cluster Admin GUI

● **Configuration tree**—The left pane contains product-specific configuration information in a hierarchical display. Clicking on an item in the tree will display the item’s properties and, in some views, allow you to change them. Right-clicking on an item generally brings up a context menu specific to that item.

● **Input and message area**—The large pane on the right is the main work and information area. The content varies according to the product being administered and the functions selected from the menus or tree.

This chapter focuses on RMS administration. For information about operations available on the other tabs, refer to the corresponding product documentation.

⚠️ **Note**

SIS is not available in PRIMECLUSTER 4.3.

5.2.4 Cluster Admin message view

Error and debug messages related to Cluster Admin can be displayed at any time:

- Click the *msg* tab on the bottom of the RMS tree pane. (The tab label is red if a new message has been added to the text area since it was last viewed.) The *Admin Errors and Messages* view appears (Figure 62).
The message pane can be detached or re-attached using the buttons at the bottom of the display. Use the *Clear* button to delete all messages in the display.

5.3 Monitoring RMS with Cluster Admin

The procedures in this section allow you to view information about the RMS cluster as well as individual nodes, applications, and resources. These procedures are passive: they display data, but they do not change the operation of the configuration.

- To enter the RMS portion of the Cluster Admin GUI, click on the *rms&pcs* tab. A typical RMS view is shown in Figure 63.
Using the Cluster Admin GUI

Monitoring RMS with Cluster Admin

Figure 63: Main Cluster Admin window—RMS view

The main window area is split into two major areas: the left pane contains the RMS tree; the right pane displays configuration information, properties of nodes and objects, RMS logs, or other items. The information displayed depends on what has been selected RMS tree and which operation, if any, has been invoked.
5.3.1 RMS tree

The Cluster Admin RMS tree displays the configuration information for the cluster in a simple hierarchical format. The tree has the following levels:

- Root of the tree—Represents the cluster. The root is labeled with the cluster name, followed by the RMS configuration name in parentheses. The cluster name is determined by your CF configuration.
- First level—Represents the system nodes forming the cluster.
- Second level—Represents the `userApplication` objects running on each of the system nodes.
- Third level—Represents subapplications, if any. Also contains non-affiliated groups of objects (see fourth level description).
- Fourth level—Represents the resources necessary for each of the subapplications. Also contains non-affiliated objects.

Non-affiliated `and0P` and `or0P` objects are intended for use by RMS experts. These items provide logical dependencies and group connectivity between nodes, applications, and subapplications.

If an application has subapplications, the fourth level represents resources used by that subapplication. If an application does not have subapplications, then the third level represents all the resources used by the `userApplication`.

Applications always appear at the second level of the tree, even if some of them are controlled by others. Dependencies between applications are depicted in the RMS tree by the presence of controller objects. An example of an RMS tree with a controller object is shown in Figure 64.
In the example shown in the figure, the Resource attribute of the highlighted controller object in app1 contains the name of the app2 application: this indicates the dependence of app1 on app2.

A complete visual display of object dependence is available from the RMS graph. See the section “Using RMS graphs” for a description of the procedure.
5.3.2 Pop-up context menus

Each object in the Cluster Admin RMS configuration tree has a pop-up context menu that provides quick access to commonly-used operations. Invoke the context menu by right-clicking on any object. The first item on the menu displays the selected object’s name in grayed-out text. The remaining items list the available operations, which vary according to the object’s type and current state (Figure 65).

Items that affect object states, node states, or the entire RMS configuration appear toward the bottom of the menu. These actions are described in the final sections of this chapter.

- The PRIMECLUSTER Configuration Services (PCS) item on node context menus (shown at the bottom of the menu in the above figure) will not appear if the RMS Wizard Tools are installed.

- To close the context menu without performing an operation, click the grayed-out object name in the menu or press the Esc key.

The menu offers different operations for a node object compared to an application object. It also offers different options for an application object in the online state (Figure 66) compared to the offline state (Figure 67).
Using the Cluster Admin GUI

Monitoring RMS with Cluster Admin

Figure 66: Pop-up context menu for an online application

Figure 67: Pop-up context menu for an offline application
5.3.3 Pop-up confirmation dialogs

When you select an item in an object’s context menu that can cause state changes to that object, a pop-up confirmation dialog appears (Figure 68). To proceed with the action described in the warning message, click *Yes*; to cancel the action, click *No*.

![Pop-up confirmation dialog](image)

Figure 68: Pop-up confirmation dialog

5.3.4 Displaying environment variables

Display the global (clusterwide) environment variables as follows:

- Right-click on a cluster in the RMS tree window and select *View Environment* from the context menu (Figure 69).

![Displaying global environment variables](image)

Figure 69: Displaying global environment variables

The global variables will appear under a separate tab in the right pane (Figure 70).
To close a tab view, use the button in the upper-right corner of the view.

Display local environment variables as follows:

- Right-click on a node in the RMS tree window and select View Environment from the context menu (Figure 71).
Both local and global variables appear on the same tab in the right pane (Figure 72).

![Cluster Admin GUI](image.png)

Figure 72: Local environment variables view

CLI: hvdisp

Display the environment variables with the `hvdisp` command, which does not require root privilege:

```bash
hvdisp ENV
hvdisp ENVL
```

5.3.5 Displaying object states

The state of each RMS object is indicated by the color of its circular status icon, located immediately to the left of the object’s name in the configuration tree. The legend for the object states appears below the RMS tree in the left pane of the RMS view (Figure 73).
In the example above, the application app2 is online (green status icon) on node shasta1RMS, but offline (blue status icon) on node shasta2RMS.

See “Appendix—States” for a description of RMS object states.

CLI: hvdisp

The syntax for the CLI is as follows:

```
hvdisp { -a | -c } [ -o out_file ]
```

Options:

- `a` Displays the object name, the object type, the object's `SysNode` name, and the object state for each object in the configuration (automatically generated connectors are not shown)

- `c` Displays information in compact format

- `o` Sends the output to the designated file

The `hvdisp` command only works when RMS is running and does not require root privilege.
5.3.6 Configuration information or object attributes

View configuration information for individual objects by left-clicking with the mouse on the object in the tree. The properties are displayed in a tabular format on the right pane of the RMS main window (Figure 74).

Figure 74: Configuration information or object attributes
6 Additional administrative tools

The Cluster Admin GUI provides several additional tools to help you manage RMS operation.

Chapter contents:

- “Using the RMS clusterwide table”
- “Using RMS graphs”
- “Interpreting display changes”
- “Viewing RMS log messages”

6.1 Using the RMS clusterwide table

The RMS clusterwide table displays the state of each application on each of the system nodes in a concise table.

To open the clusterwide table, right-click the cluster name (the root of the RMS tree in the left pane) and then select View Cluster Wide table from the context menu (Figure 75).

![Figure 75: Opening the clusterwide table](image)

The clusterwide table appears in a separate window (Figure 76).

![Figure 76: Clusterwide table](image)
Using the RMS clusterwide table

To display the corresponding state name next to each status icon, click the Show State Names checkbox at the lower-right corner of the window (Figure 77).

You can increase or decrease the size of the clusterwide table window and the size of the columns by using the mouse. If the window is already large enough to fully display all of the table elements, then you will not be allowed to further increase its size.

A square surrounding the colored state circle indicates the primary node for the application. Figure 77 above shows that shasta1 is the primary node for all of the applications.

Normally, the clusterwide table displays applications in alphabetical order from top to bottom. However, Faulted applications are handled specially. If an application is in the Faulted state on any node in the cluster, then it is displayed at the top of the table, and the application's name is highlighted by a pink background (Figure 78). This allows the System Administrator to easily spot any Faulted applications.
The clusterwide table also makes special provisions for applications that are not online anywhere in the cluster. These applications are also displayed at the top of the table, with the application's name highlighted in light blue (Figure 79). This alerts the system administrator that some applications are not running anywhere and should probably be brought online on some node.

![Offline applications in the clusterwide table](image)

Figure 79: Offline applications in the clusterwide table

If there are both faulted applications and applications that are not online anywhere, then the faulted applications are listed first (Figure 80).

![Faulted and offline applications in the clusterwide table](image)

Figure 80: Faulted and offline applications in the clusterwide table

If there is a split-brain condition in the cluster on both the clusterwide table and the RMS tree, then colored exclamation marks will appear after the status icons (colored circles) of the nodes. A colored exclamation mark indicates that the state of that SysNode is different from what another SysNode views it as being. The color of the exclamation mark indicates the state that the other node thinks that the SysNode is in. If there are multiple nodes that see a SysNode in different states, you will see multiple exclamation marks after the colored circle. Exclamation marks are sorted according to the severity of the states.

Figure 81 shows a clusterwide table with an application of a split-brain condition. Note the yellow exclamation mark before the second node name.
Momentary split-brain conditions may be indicated while a node starts up or shuts down.

6.1.1 Using context menus from the clusterwide table

Each object in the clusterwide table has a pop-up context menu that provides quick access to commonly-used operations.

- To display a context menu, right-click on any object with a status icon, where column headers represent hosts and cells represent applications.

The first item on the menu displays the selected object’s name in grayed-out text. The remaining items list the available operations, which vary according to the object’s type and current state (Figure 82).

Items that affect object states, node states, or the entire RMS configuration appear toward the bottom of the menu. These actions are described in the final sections of this chapter.
To close the context menu without performing an operation, click the grayed-out object name in the menu or press the [Esc] key.

6.2 Using RMS graphs

Cluster Admin provides an alternate way of viewing the RMS configuration hierarchy called graphs. A graph represents the configuration in a true tree structure, where the branches indicate the dependencies that are not generally visible in the RMS configuration tree described earlier. The following types of graphs are available:

- Full graph—Displays the complete cluster configuration.
- Application graph—Shows all of the resources used by an application and can be used to look at specific resource properties.
- Subapplication graph—Lists all of the subapplications used by a given application, and it shows the connections between the subapplications.
- Composite subapplications graph—Shows all the subapplications that the application depends on directly or indirectly.

The following sections describe each type in more detail, as well as these graph-related features:

- Obtaining configuration information
- Using command context (pop-up) menus
- Displaying various levels of detail
- Interpreting display changes in the clusterwide table and graphs

6.2.1 RMS full graph

To display the RMS full graph, right-click on any system node and select View Graph from the context menu (Figure 83).
Using RMS graphs

Additional administrative tools

Figure 83: Viewing the RMS full graph on a node

The View Graph menu item is not available if a graph is already open for that node.
By default, each graph appears as a separate tab in the right pane of the Cluster Admin view (Figure 84).

To view any tab in a separate window, click the **detach** control button. The detach button is located next to the **close** control button in the upper-right corner of the view (Figure 85).

The detached view contains the same information as the tabbed view (Figure 86).
Using RMS graphs

To rejoin the detached window to the Cluster Admin view, click the **attach** control button. The attach button is located next to the view’s **close** control button in the upper-right corner, just below the standard window control buttons (Figure 87).

![Figure 87: Detail of separate window view showing attach button]

The RMS full graph displays the complete RMS configuration of the cluster and represents the following items:

- Node where each application is currently online, indicated by green lines between the node and application objects
- Object types, indicated by the object’s icon
- Current object state, indicated by the colored bar beneath each icon
- Relationships between objects
- Dependencies of objects
The RMS graph is drawn from the perspective of the selected node; that is, the state information of all other objects is displayed according to the reports received by that node. The node name in the title bar of the graph identifies the node that is supplying the state information. You can create an RMS graph from the perspective of any node in the cluster.

The background of the graph is shaded from top to bottom with progressively darker gray bands. In large, complicated graphs, this can help to locate objects and identify their dependency level.

If you position the mouse cursor over an object in the graph, the cursor changes to a crosshair and the object's name appears as a tool tip. Also, the connector lines radiating from the object are highlighted with yellow to indicate its parent and child dependencies (Figure 88).

Clicking on the object brings up a window with further details such as the object's attributes (Figure 89).
6.2.2 Application graph

- To display the graph for a single application, right-click on the application object and select View Application Graph from the context menu (Figure 90).
The application graph shares the same features as the full graph, except that it shows only the selected application and its resources (Figure 91). Like the full graph, the application graph is shown from the perspective of the selected node, and tooltips and details are available for every object.

![Typical RMS application graph](image)

Figure 91: Typical RMS application graph

6.2.3 Subapplication graph

- To display a subapplication graph, right-click on the parent application and select *View Subapplication Graph* from the context menu (Figure 92).
Using RMS graphs

Adding administrative tools

Figure 92: Viewing an RMS subapplication graph

This graph displays all the subapplications used by the selected application, showing the connections between the subapplications (Figure 93).

Figure 93: Typical RMS subapplication graph

For clarity, names of the subapplication objects are shown as labels rather than tooltips, and various abstractions such as non-affiliated objects are not included. Like other graphs, clicking on an object brings up a window that displays its attributes.
6.2.4 Composite subapplication graph

The composite subapplication graph is available only for applications with controller objects.

When the configuration includes a controller object, the full graph of the node (or of either application) shows the parent and child applications in separate branches (Figure 94).

![Figure 94: Standard view of configuration with controlled application](image)

In some cases, it is convenient to view the child application as a resource of the parent so they both appear in the same branch. This is called a **composite subapplication graph**.

- To view a composite subapplication graph, right-click on the parent application and select **View Composite Subapplication Graph** from the context menu (Figure 95).
Using RMS graphs

For every controller object in the subapplication graph, the graph of its controlled application is inserted with a dotted line connection to the parent controller. For example, note where app2 appears in the composite subapplication graph in Figure 96 below, and compare this to the standard graph shown earlier in Figure 94.

Figure 95: Viewing an RMS composite subapplication graph

Figure 96: Typical composite subapplication graph
If the controlled application has its own controller objects, then the process is recursively repeated. This gives a composite view of all the subapplications that the selected parent application depends on, whether directly or indirectly.

6.2.5 Using pop-up context menus from the graph

Each object in the RMS graph has a pop-up context menu that provides quick access to commonly-used operations.

- To display a context menu, right-click on any object in a graph.

The first item on the menu displays the selected object’s name in grayed-out text. The remaining items list the available operations, which vary according to the object’s type and current state (Figure 97).

![Figure 97: Using a pop-up context menu from the RMS graph](image)

Items that affect object states, node states, or the entire RMS configuration appear toward the bottom of the menu. These actions are described in the final sections of this chapter.

- To close the context menu without performing an operation, click the grayed-out object name in the menu or press the [Esc] key.
6.2.6 Changing the displayed detail level

By default, the RMS graph does not display the resource (object) names on the graphs. These are available as tool tips and can be seen by placing the mouse over a particular object.

- To add any combination of resource names, affiliation names, “NoDisplay” nodes to the graphs, use the checkboxes on the Preferences menu.

Figure 98 shows the preference setting and a corresponding graph that displays resource names.
Figure 99 shows the preference setting and a corresponding graph that displays affiliation names.

Figure 99: RMS graph with resource names
Figure 100 shows the preference setting and a corresponding graph that displays “NoDisplay” objects. These are typically logical AND/OR objects that are automatically generated by the configuration tool.
If two or more display options are selected, some of the object and resource names will consume more on-screen space (Figure 101). Horizontal scrollbars will appear when the graph is larger than the width of the screen, but the graph may still be difficult to read.

Figure 101: RMS graph with resource and affiliation names

In a complicated graph, it may help to sort the resource names alphabetically (Figure 102).

Figure 102: Sorting object names in the graph
6.3 Interpreting display changes

The Cluster Admin view, the graphs, and the clusterwide table all have methods to denote the state of individual nodes as well as the overall configuration.

6.3.1 Display during RMS configuration changes

When you stop and restart RMS with a different configuration, the RMS tree, the clusterwide table, and the node graphs are redrawn in the same windows.

Figure 103 illustrates a Cluster Admin view overlaid by two individual node graphs and the clusterwide table, all displaying the state of a running configuration that monitors app1 and app2.

Figure 104 shows the same windows after RMS has been restarted, this time with a different configuration that monitors appA and appB.
Additional administrative tools

Interpreting display changes

Figure 104: Cluster state after RMS restart with different configuration

The graphs and clusterwide table display the status of the same SysNode objects (shasta1 and shasta2) before and after the restart, so the windows remain open.

6.3.2 Display after RMS shutdown

After RMS is shut down, the background of RMS graph windows become dark gray on the node from which they are getting their information. In this condition, all the states are white, indicating that the states are unknown. The main view and the clusterwide table will continue to show the active application states until RMS is shut down on all nodes.

For example, suppose RMS is shut down only on one node (shasta1) of our example cluster. The graph on that node and the corresponding column of the clusterwide table will be shaded with a dark gray background (Figure 105).
Interpreting display changes

Figure 105: RMS main view, graphs, and clusterwide table after shutdown on one node

However, as long as RMS continues to run on the remaining node, shasta2, the RMS main view, the shasta2RMS graph, and the shasta2 column in the clusterwide table will indicate the online objects.

Application and subapplication graphs

When a node shuts down, any application or subapplication graph on that node would also change to the shutdown state (Figure 106).
Additional administrative tools

Interpreting display changes

The graph retains this appearance until the node restarts with the same configuration, at which point it returns to its normal display.

If the node restarts with a different configuration, the graph contents are deleted, because the object(s) no longer exist in the new configuration. However, the empty graph window remain opens until explicitly closed (Figure 107).

Figure 107: Graph window for deleted object
6.4 Viewing RMS log messages

The Cluster Admin interface provides a log viewer that lets you view and filter entries in the RMS switchlog and individual application logs on any node.

All RMS log files, which normally reside in `/var/opt/SMAWRrms/log/`, can be viewed directly using a standard UNIX editor like `vi`.

For meanings of error messages and possible corrective actions, refer to the `RMS Reference Guide`.

View the switchlog for a system node as follows:

- Right-click on the system node and select `View Switchlog` from the pop-up context menu (Figure 108). Alternatively, select a node and use `Tools → View switchlog` (Figure 109).

![Figure 108: Viewing the RMS switchlog file using a context menu](image)

![Figure 109: Viewing the RMS switchlog file using the Tools menu](image)
View an application log as follows:

- Right-click on an application on the RMS tree and choose View logfile from the pop-up context menu (Figure 110).

![Figure 110: Viewing an application log using a context menu](image.png)

You can invoke equivalent context menus for an object from the Cluster Admin view, from the clusterwide table, or from any RMS graph containing that object.
By default, each log file is displayed in a separate tab in the right pane (Figure 111).

To view any tab in a separate window, click the **detach** control button. The detach button is located between the **help** and **close** control buttons in the upper-right corner of the view (Figure 112).
The detached view contains the same information as the tabbed view (Figure 113).

To rejoin the detached window to the Cluster Admin view, click the attach control button. The attach button is located between the view's help and close control buttons in the upper-right corner, just below the standard window control buttons (Figure 114).

While in detached mode, the view's close button and the standard window close button serve the same purpose: they both close the detached window.

In attached mode, the tabbed view's close button closes only the visible tab. All other tabs remain open.
6.4.1 Common procedures for switchlog and application log

By default, the entire log is available in the scrolled area at the bottom of the window. You can restrict the entries displayed with the following filters, which are described in subsections below:

- **Time Filter**—defines the time period of interest.
- **Keyword Filter**—selects a particular resource name (for an application only), error message severity level, non-zero exit code, or keyword.

Refer to the *RMS Reference Guide* for a complete description of severity levels and exit codes.

- After you enter your filter criteria, click the *Filter* button to display the filtered log entries.

 All the selected and non-blank *Time Filter* and *Keyword Filter* controls are combined with a logical AND operation.

At any time, you can sort the displayed switchlog entries according to increasing or decreasing time by checking or unchecking the *Reverse Order* checkbox in the log viewer window.
6.4.2 Time filter

The controls in the Time Filter panel allow you to limit the entries displayed in the log pane according to their date and time (Figure 115).

- Select the Start Time and End Time using the scrolling input boxes (you can also type in the values directly) and then check the Enable checkbox.

The controls take effect the next time you click the Filter button.

- To remove the time filter, uncheck Enable and then click Filter.
6.4.3 Keyword filters

The following items are available in the *Keyword Filter* panel.

6.4.3.1 Resource Name

- The *Resource Name* control is available only for application logs.

- Select a resource name from the dropdown list (Figure 116) and then click *Filter*.

![Figure 116: Search based on resource name](image)

- To remove the resource name filter, select *No Selection* from the dropdown list and then click *Filter*.
6.4.3.2 Severity

- Select an message severity level from the dropdown list (Figure 117) and then click *Filter*.

![Figure 117: Search based on severity level](image)

Table 4 summarizes the RMS message log viewer severity levels.

<table>
<thead>
<tr>
<th>Severity level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>Systems cannot be used</td>
</tr>
<tr>
<td>Alert</td>
<td>Immediate action is necessary</td>
</tr>
<tr>
<td>Critical</td>
<td>Critical condition (fatal error)</td>
</tr>
<tr>
<td>Error</td>
<td>Error condition (non-fatal error)</td>
</tr>
<tr>
<td>Warning</td>
<td>Warning condition</td>
</tr>
<tr>
<td>Notice</td>
<td>Normal but important condition</td>
</tr>
<tr>
<td>Info</td>
<td>Miscellaneous information</td>
</tr>
<tr>
<td>Debug</td>
<td>Debug messages</td>
</tr>
</tbody>
</table>

Table 4: RMS severity level description
To remove the severity level filter, select **No Selection** from the dropdown list and then click **Filter**.

6.4.3.3 Non-zero exit code

Enter a numeric exit code in the **Non-zero exit code** input box and then click **Filter**.

6.4.3.4 Keyword

Enter a string in the **Keyword** box (Figure 118) and then click **Filter**.

Special characters and spaces are valid, but wildcards are not interpreted. This search is **not case-sensitive**.

To remove the keyword filter, clear the text in the **Keyword** box and then click **Filter**.
6.4.4 Text search

You can search the text in the application log by right-clicking on the displayed text. A pop-up dialog with a Find entry allows you to perform a case-sensitive search in the direction you specify (Figure 119).

![Find dialog in log viewer](image)

Figure 119: Using the pop-up Find dialog in log viewer

The Find search string is processed literally. You can include spaces and special characters, but wildcards are not interpreted.

6.4.5 Removing filters

To remove all filters, take the following steps:

- Uncheck the time filter Enable box.
- Set drop-down lists to No Selection
- Clear text from input boxes
- Click the Filter button

The unfiltered view will be restored.
7 Controlling RMS operation

Chapter contents:

● “Managing RMS nodes”
● “Managing RMS applications”
● “Using maintenance mode”

7.1 Managing RMS nodes

This section describes basic procedures to control the operation of RMS, including how to start and stop individual nodes or the entire cluster. Procedures in this section are active: they change the state of the RMS cluster and may have a direct effect on the disposition of data.

As stated in the overview of this chapter, the primary means of administration is through the Cluster Admin GUI. This method should be used whenever possible. However, each procedure in this section includes a CLI alternative.

7.1.1 Starting RMS

When you use the GUI, you can only start the most recently activated configuration. To start a different configuration, you must first use the Wizard Tools to activate that configuration.

By default, the GUI will start RMS on all the nodes in the cluster. Alternatively, you can start RMS only on a single node that you select.

► From the Cluster Admin rms&pcs (or rms) tab, select Tools –> Start RMS (Figure 120).

Figure 120: Starting RMS from the main menu
Managing RMS nodes

Controlling RMS operation

The RMS Start Menu window opens.

- To start RMS on all nodes, click the all available nodes radio button and then click OK (Figure 121).

![RMS Start Menu](image)

Figure 121: RMS Start Menu for all nodes

- To start RMS only on a single node, click the one node from the list radio button, and then choose the node using a checkbox in the Selection column. After making your selections, click OK (Figure 122).
Alternatively, you can start RMS on individual nodes directly from the Cluster Admin window:

1. In the left pane, click the rms&pcs tab to view the cluster tree.
2. Right-click on the node and select Start RMS from the pop-up menu (Figure 123).
Managing RMS nodes

Controlling RMS operation

CLI: hvcm

The `hvcm` command starts the base monitor and the detectors for all monitored resources. The CLI syntax for `hvcm` has two possible formats:

Format 1

`hvcm [-a | -s SysNode]

Format 2

`hvcm -c config_name [-a | -s SysNode] [-h timeout] [-l loglevels]

The options valid for both formats are:

- `-a` Start RMS on all nodes in the configuration
- `-s` Start RMS only on the specified node

If neither ‘-a’ nor ‘-s’ is specified, `hvcm` starts RMS only on the local node.

The options valid only for **Format 2** are:

- `-c` Use the specified configuration file
- `-h` Use the specified heartbeat recovery timeout
- `-l` Activate diagnostic output according to the specified level(s)

To start a configuration other than the one most recently activated, change the heartbeat recovery timeout, or set the diagnostic level, you must use the CLI. These parameters cannot be adjusted from the Cluster Admin GUI.

Notes for Format 1

When the ‘-c’ option is not present, `hvcm` reads the default `CONFIG.rms` startup file. `hvcm` looks for the default startup file in `$RELIANT_PATH/etc/CONFIG.rms`. If the default for the environment variable `RELIANT_PATH` has not been changed, this resolves to `/opt/SMAW/SMAWRrms/etc/CONFIG.rms`. Note that the search is always confined to the local node, even if you specify the ‘-a’ or ‘-s’ option to start RMS remotely.

The `CONFIG.rms` file contains either of the following:

- A simple configuration name, optionally with a ‘.us’ suffix.
- An `hvcm` command compliant with **Format 2** that starts the most recently activated configuration.

You cannot specify the ‘-h’ or ‘-l’ options in **Format 1**. You can, however, edit the `CONFIG.rms` file and insert the options to comply with **Format 2**.
Notes for Format 2

When the ‘-c’ option is present, and the configuration file is not an absolute path, \texttt{hvcm} looks for the first match in \texttt{<RELIANT_STARTUP_PATH>}. If the default for the environment variable \texttt{RELIANT_STARTUP_PATH} has not been changed, this resolves to \texttt{/opt/SMAW/SMAWRrms/build/\textless \textit{config_name}\textgreater .us} (\texttt{hvcm} adds the ‘.us’ extension if it is not specified as part of the configuration file name). If an absolute path is specified, \texttt{hvcm} attempts to read only that file. Note that the search is always confined to the local node, even if you specify the ‘-a’ or ‘-s’ option to start RMS remotely.

When \texttt{hvcm} locates the specified configuration file, it checks to see if the default \texttt{CONFIG.rms} file is also present. If it is, \texttt{hvcm} compares the configuration names defined by both files to make sure they agree. If they do not agree, \texttt{hvcm} aborts the startup processing.

The ‘-h’ option sets the UDP heartbeat recovery timeout for the cluster. See “Nodes and heartbeats”. The default timeout depends on which method RMS uses to monitor the cluster:

- By default, RMS monitors the state of each node with the Enhanced Lock Manager (ELM), which is implemented in the Cluster Foundation. ELM is not a polling method. Instead, it relies on locks that are held by each node and released when the node or its base monitor go down. When ELM is enabled, the UDP heartbeat timeout defaults to 600 seconds.

- ELM can be disabled for rolling upgrade or debugging operations by setting the \texttt{HV_USE_ELM} environment variable to zero (0). See “HV_USE_ELM”. When ELM is disabled, the UDP heartbeat defaults to 45 seconds.

Specifying a heartbeat timeout shorter than the default may cause premature node kills. No data loss will occur, because a node kill begins with a graceful shutdown. However, cluster performance may suffer due to latency as applications are switched to different nodes. Excessively short heartbeat timeouts may also interfere with CF event timeouts.

The ‘-l’ option sets the diagnostic output level at startup time. The \texttt{loglevels} specification consists of one or more individual numeric levels or hyphen-delimited ranges, each separated by a comma. For more information about this expert-level feature, see the \textit{RMS Reference Guide}.
Managing RMS nodes

Controlling RMS operation

7.1.2 Starting RMS automatically at boot time

This setting takes effect at the next system startup.

You can use the following procedure to activate or deactivate automatic RMS startup when the system boots up.

- From the Cluster Admin \texttt{rms&pcs} (or \texttt{rms}) tabbed view, select \textit{Tools > Auto Start RMS on Node Boot} (Figure 124).

![Figure 124: Controlling automatic RMS startup—step 1](image)

You can then choose to activate (or deactivate) the automatic RMS startup on all nodes, or on just one node (Figure 125).
Controlling RMS operation

Managing RMS nodes

CLI: hvsetenv

At system startup, the RMS `rc` script checks the environment variable settings: if the `HV_RCSTART` environment variable is set to 1, the `rc` script will attempt to start RMS using the `CONFIG.rms` file. You can set the `HV_RCSTART` variable with the `hvsetenv` command as follows:

```
hvsetenv HV_RCSTART [0|1]
```

The allowable values are:

- 0 Do not start RMS at boot time
- 1 Start RMS at boot time (default)

If no value is specified, the command reports the current value of the `HV_RCSTART` environment variable.

7.1.3 Stopping RMS

You can stop RMS on all nodes or on a subset that you select.

Use the *Tools* pull-down menu (Figure 126) and select *Shutdown RMS*.
Managing RMS nodes

Controlling RMS operation

To stop RMS on all nodes, click the radio button for *all available nodes* and then click *Ok* (Figure 127).

When you shut down *all available nodes*, two radio buttons allow you to choose how you want to handle the applications:

- **Stop all Apps**—Stops all user applications
- **Keep local Apps**—Leaves the applications running
Caution

Leaving the applications running after stopping RMS can lead to data inconsistencies or corruption.

To stop RMS on one specific node, select the radio button for *one node from the list*, and then click the checkbox of the node you want to shut down (Figure 128).

![RMS Shutdown](image)

Figure 128: Stopping RMS on one node from the list

Each node has a dropdown list in the *Options* column to provide additional control:

- **Stop all Apps**—Stops all user applications on the selected node
- **Keep local Apps**—Leaves the applications running on the selected node
- **Forced shutdown**—Performs a forced shutdown of RMS

Caution

- Leaving the applications running after stopping RMS or using a forced shutdown can cause data inconsistencies or corruption.
Managing RMS nodes

- Do not stop RMS while RMS is running. Heartbeats between nodes are interrupted and the node where RMS is stopped may be forcibly shut down.

- Click the *Ok* button to initiate the shutdown with your selections.

Stop all Apps is the default option for shutting down RMS on all nodes or on one node. If you select an option other than the default, you will be prompted to confirm the operation (Figure 129 and Figure 130).

![Figure 129: Stopping RMS while keeping applications—confirmation](image)

![Figure 130: Forced shutdown of RMS—confirmation](image)

You can also stop RMS on a single node by right-clicking on the node in the RMS tree and then selecting *Shutdown RMS* from the context menu (Figure 131).
Controlling RMS operation

Managing RMS nodes

Figure 131: Using the context menu to stop RMS on one node

Only one node will appear in the confirmation window (Figure 132).

CLI: hvshut

The syntax for the CLI is as follows:

```
hvshut { -a | -A | -f | -l | -L | -s SysNode }
```
Managing RMS nodes

Controlling RMS operation

Options:
- `a` Shut down RMS and applications on all nodes
- `A` Shut down RMS on all nodes without shutting down applications
- `f` Forced (emergency) shutdown of RMS on the local node
- `l` Shut down RMS and applications on the local node
- `L` Shut down RMS on the local node without shutting down applications
- `s` Shut down RMS only on the specified node

The `hvshut` command shuts down the RMS software on one or more nodes in the configuration. The base monitor on the local node sends a message to other online nodes indicating which node or nodes are to be shut down. The `hvshut` command disables all error detection and recovery routines on the nodes being shut down, but does not shut down the operating system.

If any `userApplication` objects are online when the `-A`, `-f`, or `-L` options are used, the applications remain running but are no longer monitored by RMS. Both the `-f` and `-L` options affect only the local node, but the `-f` option is for emergencies (when other `hvshut` options do not work).

When you choose to shut down RMS without shutting down the monitored applications, you will be prompted to confirm the operation.

Caution

Use the `hvshut` `-A`, `-f`, and `-L` options carefully as they could result in inconsistencies or data corruption.

7.1.4 Clearing a SysNode Wait state

A `SysNode` is put in the `Wait` state when the Shutdown Facility (SF) attempted to kill the node but could not successfully complete the shutdown within the timeout period.

You can clear a `Wait` state of `SysNode` by the following procedure:

1. Manually stop the node in the `Wait` state.
2. Check the CF state in the CF main window.
 - If the CF state is `LEFTCLUSTER`, clear `LEFTCLUSTER` in the CF main window and make sure the node state is changed from `LEFTCLUSTER` to `DOWN`.
3. If the `Wait` state of `SysNode` is not cleared after you perform step 2, right-click on the `SysNode` displayed on the RMS main window and select `Offline` from the pop-up context menu.
Caution

When you manually clear a Wait state, RMS and CF consider that the target node has been stopped. Therefore, if you clear the Wait state while the target node is not actually stopped, data corruption may occur.

If the Shutdown Facility (SF) timeout has not yet been exceeded, requests to clear a Wait state for that SysNode will be ignored.

CLI: hvutil -u

The syntax for the CLI is as follows:

hvutil -u SysNode
7.2 Managing RMS applications

This section describes basic procedures related to starting, stopping, and clearing special states of individual applications. Procedures in this section are active: they change the state of the RMS cluster and may have a direct effect on the disposition of data.

As stated in the overview of this chapter, the primary means of administration is through the Cluster Admin GUI. This method should be used whenever possible. However, each procedure in this section includes a CLI alternative.

7.2.1 Overriding automatic application startup

By default, the automatic startup of each application is controlled by its AutoStartUp attribute, which is typically set in the Wizard Tools configuration interface:

- If AutoStartUp is set to 1, the application starts automatically when RMS starts or when the application is switched to another node.
- If AutoStartUp is set to 0, the application must be started manually as described in “Starting RMS”.

Automatic application startup can cause problems during some maintenance or troubleshooting procedures. If this is the case, you can suppress the AutoStartUp attribute for all applications.

The following procedure changes the HV_AUTOSTARTUP global environment variable. Changes to HV_AUTOSTARTUP do not take effect until the next RMS startup.

From the Cluster Admin rms&pcs (or rms) tab, select Tools → UserApplications AutoStartup (Figure 133).

![Figure 133: Controlling automatic application startup—step 1](image-url)
You can then choose to override all AutoStartUp settings, or to cancel the override (Figure 134).

![Figure 134: Controlling automatic application startup—step 2](image)

CLI: hvsetenv

The action of each application's AutoStartUp attribute is controlled by the HV_AUTOSTARTUP environment variable (see the description in “Local environment variables”). You can set this variable with the `hvsetenv` command as follows:

```
hvsetenv HV_AUTOSTARTUP [0|1]
```

The allowable values are:

- 0 Prevent automatic application startup at next RMS startup
- 1 Allow automatic application startup at next RMS startup

If no value is specified, the command reports the current value of the HV_AUTOSTARTUP environment variable.
Managing RMS applications

Controlling RMS operation

7.2.2 Switching an application

When you switch an application, RMS performs the following tasks:

- If the application is already running in the cluster, RMS shuts it down.
- After the application is completely shut down, RMS starts it on the node you specified.

Switch an application to any node as follows:

- Right-click on the application object on any node and select *Switch* from the context menu. A secondary menu appears, listing the available target nodes for switchover.
- Select the target from the secondary menu to switch the application to that node (Figure 135).

You will be prompted to confirm the action before RMS begins the operation.

A *Priority switch* switches the application to the target node according to the order of nodes in the application's *PriorityList* attribute.
If stopping the application fails, RMS does not start the application. This is because two competing instances of the same application could cause data corruption. In this event, you can start the application by using the *Forced switch* operation.

Caution

Use the *Forced switch* mode only if an application cannot be switched normally. A forced application switch overrides all safety checks and could therefore result in data corruption or other inconsistencies. In PRIMECLUSTER for Solaris, RMS may kill the node on which RMS is not running before starting the application to reduce the risk of data corruption when the *Forced switch* request of an application is issued.

If the application is busy, the pop-up context menu will not offer the choices to switch the application. Instead, the menu will offer view-only operations, and the last menu item will indicate that the application is in a *Wait* state (Figure 136).

![Figure 136: Switching a busy application](image)

CLI: hvswitch

The syntax for the CLI is as follows:

```
hvswitch [-f] userApplication [SysNode]
```

The `hvswitch` command manually switches control of a `userApplication` resource from one system node to another in the RMS configuration. The resource being switched must be of type `userApplication`. The system node must be of type `SysNode`. If no `SysNode` is specified, the application is switched to the local node. The `-f` option is a forced-switch option.
Caution

Use the `hvswitch -f` operation carefully. A forced application switch overrides all safety checks and could therefore result in data corruption or other inconsistencies.

In PRIMECLUSTER for Solaris, RMS may kill the node on which RMS is not running before starting the application to reduce the risk of data corruption when the Forced switch request of an application is issued.

7.2.2.1 Notes on forcibly switching an application

When Forced switch request (forced startup) of an application is issued, RMS overrides all safety checks and starts the application. So if shared resources which require exclusive control between nodes become Online on the multiple nodes simultaneously, it could result in data corruption or other inconsistencies.

Caution

In PRIMECLUSTER for Solaris, RMS may kill the node on which RMS is not running before starting the application to reduce the risk of data corruption when the Forced switch request of an application is issued.

To perform forced startup of an application safely, check whether RMS is running on all nodes in the cluster before starting forced startup according to the following procedure, and if there are the nodes on which RMS is not running, then shut down the nodes.

- Check the node state by one of the following methods:
 - Execute the `cftool -n` command on all nodes.

```
shasta1# cftool -n
Node Number State Os   Cpu
shasta1 1 UP    Linux Pentium
shasta2 2 UP    Linux Pentium
```
● Check the CF tree of the Cluster Admin.

Figure 137: Main Cluster Admin window—CF view

► Check the following contents for the node states, and take corrective actions if necessary:

● Check the node states are all UP.

● If a LEFTCLUSTER node exists, recover CF from the LEFTCLUSTER state.
 For details, see "PRIMECLUSTER Cluster Foundation (CF) Configuration and Administration Guide."

● If a node with DOWN or UNKNOWN exists, or if a node for which the state is not displayed exists, check whether the operating system of the node has stopped. If the operating system is running, shut down the operating system or restart the system in single-user mode.
Managing RMS applications

Controlling RMS operation

- Check whether there are no nodes on which RMS is not running among the nodes on which cluster applications will be forcibly started by one of the following methods:

 - Execute the `hvdisp -a` command on nodes where cluster applications will be started and check that the state of objects whose Type is `SysNode` is Online.

```
shasta1# hvdisp -a
Local System:    shasta1RMS
Configuration:   /opt/SMAW/SMAWRrms/build/config.us
Resource           Type     HostName     State    StateDetails
------------------------------------------------------------------
shasta2RMS          SysNode   Online
shasta1RMS          SysNode   Online
app2                userApp   Offline
Machine001_app2     andOp    shasta2RMS Offline
Machine000_app2     andOp    shasta1RMS Offline
ManageProgram000_Cmd_APP2 gRes      Offline
app1                userApp   Offline
Machine001_app1     andOp    shasta2RMS Offline
Machine000_app1     andOp    shasta1RMS Offline
ManageProgram000_Cmd_APP1 gRes      Offline
```
• Check that the state of all SysNode displayed in the RMS tree of the Cluster Admin is Online.

![Main Cluster Admin window—RMS view](image)

If nodes which satisfy the following conditions exist, shut down the operating system of the nodes, or restart the system in single-user mode.

• The node state is UP, and
• The state of SysNode is not Online.

Execute the **Forced switch** (hvswitch -f) to forcibly start the application.
7.2.3 Starting an application

If the application is already offline everywhere in the cluster, you can start it (bring it online) on a single node as follows:

- Right-click on the application object and select *Online* from the pop-up context menu (Figure 139).

![Figure 139: Starting an application](image)

You will be prompted to confirm the action before RMS begins the operation.

CLI: hvswitch

Starting an application on the local node, like switching an application to another node, employs the `hvswitch` command. Refer to “CLI: hvswitch” for the syntax.
7.2.4 Stopping an application

Stop an online application (take it offline) as follows:

- Right-click on the online application object and select *Offline* from the pop-up context menu (Figure 140).

![Figure 140: Shutting down an application](image)

You will be prompted to confirm the action before RMS begins the operation.

CLI: hvutil -f

The syntax for the CLI is as follows:

```
hvutil -f userApplication
```

Note that this is a **normal offline request**. There is no “forced” offline request for a *userApplication*.

- Use the command `hvutil -s userApplication` to bring an offline *userApplication* to a Standby state.
7.2.5 Resetting an application

This operation completely re-initializes the target application and all objects in its resource tree (i.e., the entire application graph) based on the actual detector reports. It will interrupt any ongoing RMS processing for the application, and any running scripts will be terminated.

Caution

Resetting an application will cause information about previous failures or any other history to be lost. It will most likely result in an Inconsistent state for the application.

This operation is intended for use by an experienced administrator during a test phase. It should never been invoked in a production environment.

Reset (reinitialize) an online application as follows:

- Right-click on the online application object and select Reset from the pop-up context menu (Figure 141).

![Figure 141: Resetting an application](image)

You will be prompted to enter the reset timeout before RMS begins the operation (Figure 142).
Controlling RMS operation

Managing RMS applications

Figure 142: Choosing the reset timeout for the application

If RMS fails to re-initialize the entire application graph during this amount of time, it terminates with an error message. Default: 10 seconds

- Adjust the timeout value if desired, and then click Yes to reset the application.

CLI: hvreset -t

The syntax for the CLI is as follows:

```
   hvreset -t timeout userApplication
```

hvreset displays a message that warns of the consequences and then prompts you to confirm the action before proceeding.

When the userApplication is not performing online, offline, or fault processing, **hvreset** **returns immediately and displays a message stating there is nothing to do. This case is considered to be successful command execution and returns exit code 0.**
7.2.6 Changing AutoSwitchOver setting for an application

An application’s AutoSwitchOver attribute specifies whether or not it should be automatically switched to another node in the event of a resource failure, a node failure, or a node shutdown. This attribute is set for each application at configuration time, but you can change it at runtime with the following procedure:

- Right-click on the application object on any node and select AutoSwitchOver in the context menu (Figure 143).

- Select the desired settings from the secondary pop-up window (Figure 144).
Controlling RMS operation

Managing RMS applications

Figure 144: Changing an application’s AutoSwitchOver settings—step 2

If you choose Automatic recovery, you can select or deselect one or more of the indicated conditions by clicking the appropriate checkboxes.

- Click Ok to confirm the AutoSwitchOver change on all nodes.

As soon as you click Ok, RMS starts updating the application’s AutoSwitchOver setting throughout the cluster. The operation typically requires only a few seconds to update each node, but it may take longer in some unusual cases. There is no notification at either the beginning or the end of the process.

If some nodes are unreachable, RMS does not issue a warning. Instead, if one of the unreachable nodes becomes available at a later time, RMS automatically updates the application’s AutoSwitchOver setting on that node as soon as the base monitor starts up. This guarantees that the AutoSwitchOver setting is consistent on every running node in the application’s priority list.

CLI: hvattr

The syntax for the CLI is as follows:

```
hvattr <userApplication>:AutoSwitchOver:<value> ...
```

The hvattr command is designed as a general-purpose command to perform clusterwide modifications of attributes at the application level. Each argument on the command line specifies a colon-separated triad of the application name, the attribute to modify, and the new value to be applied. You can supply multiple arguments on one command line, where each argument specifies a unique combination of application and attribute names.
Currently, only the `AutoSwitchOver` attribute is available to the user. For its allowable values, see “AutoSwitchOver”.

When specifying an attribute value that contains the pipe character, the attribute value must be surrounded in quotes to prevent the shell from interpreting the pipe character itself.

You should avoid issuing multiple `hvattr` commands simultaneously. Normally, concurrent calls to `hvattr` will be gracefully rejected. In rare circumstances, `hvattr` may not complete until timeout occurs, in which case you must wait until the running command exits before issuing another `hvattr` command.

7.2.7 Clearing a fault

For an application that is in the **Faulted** state, clear the fault as follows:

- Right-click on the application object and select *Clear Fault* from the pop-up context menu (Figure 145).

![Figure 145: Clearing an application fault](image1)

Before the command proceeds, you will be informed of the action to be taken and prompted to confirm the operation (Figure 146).

![Figure 146: Clearing an application fault—confirmation dialog](image2)
Controlling RMS operation

Using maintenance mode

CLI: hvutil -c

The syntax for the CLI is as follows:

```
hvutil -c userApplication
```

Information: If the `userApplication` is in the online state, then clearing the fault will cause RMS to attempt to bring the faulted resource to the online state. If the `userApplication` is in the offline or faulted state, then clearing the fault will attempt to bring the resource to the offline state. You will be informed of the action that is to be taken and prompted to confirm the operation before the command proceeds.

7.2.8 Activating an application

Activating an application takes it from the **Deact** state to the **Offline** state. It does not bring it **Online**. Also, activating a `userApplication` with the Cluster Admin GUI or the CLI has nothing to do with activating an RMS configuration in the Wizard Tools—the two operations are completely independent. Activate a deactivated application as follows:

- Right-click on the application object and select the *Activate* option from the pop-up menu.

CLI: hvutil -a

The syntax for the CLI is as follows:

```
hvutil -a userApplication
```

Information: You will not need to activate an application unless someone explicitly deactivated it with the command `hvutil -d userApplication`.

7.3 Using maintenance mode

Maintenance mode is a special mode of operation that allows an application to be temporarily decoupled from its dependent resources. This allows, for example, a file system to be taken offline for backup purposes without disrupting the online state of its parent application.
7.3.1 Entering maintenance mode

You can enter maintenance mode for all applications on all nodes as follows:

- Right-click on the cluster at the top of the RMS tree and select *Enter Maintenance Mode* from the popup menu (Figure 147).

![Figure 147: Starting maintenance mode for all applications](image)

Enter maintenance mode for only one application as follows:

- Right-click on an application instance in the RMS tree and select *Enter Maintenance Mode* from the popup menu (Figure 148).

![Figure 148: Starting maintenance mode for a single application](image)

In either case, you will be prompted to confirm the operation (Figure 149 and Figure 150).
Maintenance mode is clusterwide: if an application is in maintenance mode on one node, it is also in maintenance mode on any other node where it can run.

The application is allowed to start in the following states.

- Online state
- Standby state
- Offline state
- Warning state
- Inconsistent state (If an application state just before it becomes inconsistent is Faulted state, it is excluded.)

The maintenance mode is rejected if there is any request of dynamic reconfiguration of RMS graph.

Figure 151 shows the Cluster Admin window after one application is put into maintenance mode.
Using maintenance mode

Controlling RMS operation

Figure 151: Typical cluster in maintenance mode

Note how the right half of the application status icons indicate the intended state (the state that would be attained if the application were taken out of maintenance mode). The intended state is also indicated by the application’s StateDetails attribute, which is the first item in the Attributes table in the right pane.

7.3.2 Maintenance mode operating notes

When an application enters maintenance mode (MM), it affects all other applications that share the same graph. For example, if two applications are linked by a controller, then putting one in maintenance mode will cause the other to go into maintenance mode as well; which one is the parent and which one is the child does not matter in this case.

Conversely, if two applications do not share the same graph, i.e., they are not linked by one or more controllers, then one can be put into MM while the other operates under normal RMS control.

For instance, in the example presented earlier, app1 and app2 are independent. While app1 is in MM, app2 continues to operate normally and can be switched from one node to the other, as illustrated in Figure 152 below.
Controlling RMS operation

7.3.2.1 Overall cluster restrictions in maintenance mode

Even though some applications may continue to operate under normal RMS control, MM still places restrictions on the overall cluster operation. In particular, note the following:

- You must exit MM for an application before you can switch that application offline or to another node.
- You must exit MM everywhere in the cluster before you can shut down RMS.

7.3.3 Exiting maintenance mode

To exit maintenance mode, use the following procedure:

- Right-click on the cluster or an application and select *Exit Maintenance Mode* from the popup menu (Figure 153 and Figure 154).
Using maintenance mode

Controlling RMS operation

Figure 154: Normal maintenance mode exit for a single application

In either case, you will be prompted to confirm your action before the operation proceeds.

You can exit maintenance mode for a single application even if you entered maintenance mode for the entire cluster.

To exit maintenance mode, the following conditions must be met:

- If you start maintenance mode when the application status is either Online, Offline, Standby, or Warning, statuses of the application and each resource must be the same as those before maintenance mode is started in order to exit maintenance mode. If the status is different, you cannot exit maintenance mode.

- If you start maintenance mode when the application status is Inconsistent, remove causes which put the application into the Inconsistent state. You cannot exit maintenance mode until causes are removed.

For example, in the above example, there is a file system resource Res1 in the application app1, and Res1 is in the online state on fuji2RMS when starting the maintenance mode in app1. In this case, Res1 must be in the online state on fuji2RMS to exit the maintenance mode of app1.

If you forcibly exit the maintenance mode by using [Force Exit Maintenance Mode] in a different state from when starting the maintenance mode, the application enters the Inconsistent state. Therefore, we do not recommend using [Force Exit Maintenance Mode].

Note that both the cluster and application popup menus shown above contain a Force Exit Maintenance Mode item. If you choose this command, it will force RMS to exit maintenance mode even if some resources are not in the appropriate state. The prompt to confirm the operation for one application is shown in Figure 155; the prompt for all applications is similar.
Controlling RMS operation

Using maintenance mode

Controlling RMS operation

Using maintenance mode

Figure 155: Forced maintenance mode confirmation for all applications

When you exit maintenance mode, the processing corresponding to the userApplication status is executed (the Online processing is for the Online state and the Offline processing is for the Offline state).

In these operations, if resource statuses under userApplication are the same as those before maintenance mode is started, the Online/Offline script is not executed and the resource statuses are not changed.

However, if the Online processing is executed for Cmdline resource to which the NULLDETECTOR attribute is set, the Online script is definitely executed despite the actual resource statuses.

7.3.4 Maintenance mode CLI: hvutil -m and -M

Control maintenance mode (MM) with the hvutil command:

```
hvutil -M { on | off | forceoff }
hvutil -m { on | off | forceoff } userApplication
```

Options:

- **-M**: Applies the MM operation to all applications on all nodes
- **-m**: Applies the MM operation to the specified application on all nodes

Operations:

- **on**: Starts maintenance mode
- **off**: Stops MM if all resources are in the appropriate state
- **forceoff**: Forces MM to stop even if all resources are not in the appropriate state
The `hvutil` maintenance mode commands operate synchronously, so they do not return until the final state has been reached or until an error occurs. In the particular case where `--m off` returns a failure because one or more resources were in an inappropriate state, an error message is displayed that lists the problem resources.
8 Appendix—Site preparation

The Software Release Guide PRIMECLUSTER and the PRIMECLUSTER Installation Guide for your operating system describes how to prepare your cluster to operate RMS. Some of the procedures require you to modify system files so that RMS can identify the hosts, file systems, and network interfaces used in a configuration. You should have completed these procedures when RMS was installed.

In some cases, you will be creating or modifying your RMS configuration because changes have been made to your site. Certain site changes may require you to review and update your system files first. These changes include, but are not limited to, the following:

- IP addresses were changed.
- Redundant interconnects were added to the cluster.
- Hosts were added, removed, or renamed.
- Two or more clusters were merged into one.
- File systems or SANs were added or removed.

For convenience, the site preparation descriptions for hosts, file systems, and networks are duplicated here. If any of these specifications have changed since your initial RMS installation, you should review this material and make the necessary adjustments before proceeding with your RMS configuration.

The modifications generally involve adding RMS-specific entries to standard system files; pre-existing entries required for proper operation of your hosts and network are not affected. Resources for market-specific applications may require similar customization.
8.1 Network database files

8.1.1 /etc/hosts

The /etc/hosts file must contain the IP addresses and RMS names of all the host systems that are part of the cluster.

RMS uses its own internal set of host names to manage the machines in the cluster. When you configure the cluster, you will use the RMS host names and not the standard host names. These names must be entered in /etc/hosts on each system in the cluster to avoid problems should access to the DNS fail. If you used Cluster Admin to configure CIP for RMS, then /etc/hosts will already contain the correct RMS node names described below.

By default, the names follow the conventions in Table 5.

<table>
<thead>
<tr>
<th>Entry type</th>
<th>RMS naming pattern</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS host name</td>
<td><hostname>RMS</td>
<td>shasta1RMS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>shasta2RMS</td>
</tr>
</tbody>
</table>

Table 5: RMS host name conventions in /etc/hosts

The RMS host name for a machine must match the contents of the RELIANT_HOSTNAME variable in that machine’s hvenv.local configuration file, if that file exists.

RMS does not support IPV6 addresses.

Example

The following entries in /etc/hosts are for a cluster with nodes shasta1 and shasta2. The interface names are assigned as follows:

- Standard host names on the public network 172.25.220
- RMS node names on the private network 192.168.10

```
172.25.220.83    shasta1
172.25.220.84    shasta2
# node names for RMS
192.168.10.83    shasta1RMS
192.168.10.84    shasta2RMS
```
Appendix—Site preparation

Network database files

8.1.1.1 Network interface names in /etc/hosts

If you plan to configure one or more network interfaces for switchover with the *Ip Address* subapplication, you must first enter the interface name(s) in the *etc/hosts* file on every node where that interface can exist. Each entry consists of the interface IP address and its name in the normal format; no special comments are required.

Example

An example is shown below.

- If you switch the interface *shastavip* with IPv4 address 172.25.222.223:
 172.25.222.223 shastavip

- If you switch the interface *shastavip6* with IPv6 address fd00:1::219:99ff:fe18:1b4e:
 fd00:1::219:99ff:fe18:1b4e shastavip6

- When you configure the *Ip Address* subapplication, you specify the interface name as it appears in *etc/hosts*, and not the IP address.
- IPv6 link local addresses are not available.
- When defining the interface name in the *etc/hosts* file, do not assign the same interface name to the IPv4 and IPv6 addresses.

8.1.2 /root/.rhosts (Linux) and /.rhosts (Solaris)

Contains entries to control trusted login from remote hosts.

The Wizard Tools require automatic login or authentication as *root* on every machine in the cluster. One method is to include the names of trusted hosts in the *.rhosts* file, which must be modified appropriately on each node. See the *rhosts* manual page for a complete description of the format.

Example

If the cluster consists of hosts *shastal* and *shasta2*, then every machine’s *.rhosts* file should contain the following lines:

shastal root
shasta2 root
The Cluster Foundation (CF) provides the equivalent of `.rhosts` functionality for all RMS configuration, administration, and operation tasks.
8.2 Configuration resource definitions

8.2.1 /opt/SMAW/SMAWRrms/etc/hvipalias

This file contains entries for all of the network interfaces that are to be used as resources in the configuration. Typically, each entry associates a logical interface name, or IP alias, with a physical interface on a specified node. The IP alias always presents the same IP address, even though it is switched from node to node, and even if the underlying physical interface has different characteristics on each node.

Each IP alias with its IP address must be entered in the /etc/hosts file. The IP address does not appear in the hvipalias file.

Each entry in hvipalias must contain the following fields:

\(<Unname>\ <IfName>\ <IfDevice>\ <Netmask/Prefix>\)

The fields are defined as follows:

- **Unname**—Name of the machine to host the logical interface. This is usually the value returned by the ‘ uname -n ’ command.

 Alternatively, you can use the Cluster Foundation (CF) node name, which is returned by the ‘ cftool -ql ’ command. This can be used to differentiate two machines which are configured with the same ‘ uname -n ’ setting, provided they were assigned different names when CF was configured.

- **IfName**—Logical interface name, or IP alias. This name must appear with its associated IP address in the node’s /etc/hosts file, and the associated IP address must be the same on every node.

- **IfDevice**—Physical device name to be associated with the logical interface when it is switched to the specified machine.

- **Netmask/Prefix**—The netmask (IPv4) or the prefix length (IPv6) to use with the IP address associated with the interface name. The netmask (IPv4) must be set as the 8-digit hexadecimal number string. The prefix length (IPv6) must be set as the decimal number string between 0 to 128.

To avoid network conflicts, a network hostname or address monitored by the IpAddress subapplication can be active on only one node in the cluster at any time.
When a configuration is activated, the local `hvipalias` file is copied to every other node in the configuration; the file with same name and path on the remote node will be overwritten with the new content. Therefore, the file must contain one line for every combination of interface and host where that interface can be switched.

For instance, if the interface named `dbhost` can be switched between two nodes, then `hvipalias` on each node should contain lines for both the local and remote interfaces:

Example (Linux)

```
#Uname   IfName   IfDevice Netmask
shasta1  dbhost  eth1    0xffffff00
shasta2  dbhost  eth1    0xffffff00
```

Example (Solaris)

```
#Uname   IfName   IfDevice Netmask
fuji2    dbhost  hme0    0xffffff00
fuji3    dbhost  hme0    0xffffff00
```

8.2.2 /opt/SMAW/SMAWRrms/etc/hvconsoles

Controls customized handling of fault messages, usually to remote consoles or special devices such as pagers. This does not affect the standard messages written to the RMS or system log files.

Each entry specifies a program to be executed when an RMS resource object encounters a fault.

If the file does not exist, you will receive no customized fault information. A complete description of the format is available in the comments in the `hvconsoles.template` file.
8.3 Linux file systems

To manage Linux file systems with RMS, you must create entries in the /etc/fstab.pcl and /etc/exports.pcl configuration files as described in the following sections. These configuration files share the following features:

- Leading whitespace and empty lines are ignored.
- A line beginning with the string ‘#RMS#’ or ‘#RMS:<appname>#’ is a file system specification for RMS. The entire specification must be on the same line—continuation to additional lines is not allowed.
- Any other line beginning with a pound sign (#), or any line beginning with an asterisk (*), is treated as a comment.
- All other lines are presently ignored. However, they may be processed by future versions of RMS.

8.3.1 /etc/fstab.pcl

This file contains entries for all of the local and remote file systems that are to be used as resources in the configuration. RMS is responsible for mounting and unmounting each of these file systems in order to bring them online or offline, respectively, according to the requirements of the running configuration.

For each file system to be managed by RMS, create a line in /etc/fstab.pcl with the standard fstab fields, and then insert the string #RMS# at the beginning of the line. For more information, see the fstab manual page.

Note the following restrictions when you create /etc/fstab.pcl:

- Do not specify the same file system in both a standard /etc/fstab entry and an RMS /etc/fstab.pcl entry. The standard entry will mount the file system at system startup, and this will create a conflict when RMS starts up and attempts to mount the same file system.
- If a remote file system is specified in the form <server_name>:<server_path>, then <server_name> must be a host name that appears in the /etc/hosts file. It cannot be an IP address, and you should not rely on DNS to resolve the name.
Examples

```bash
#RMS#/dev/sdb2 /fs2  ext2  defaults 1 2
#RMS#/dev/sda1 /mnt/data1 auto noauto,user 0 0
#RMS#/dev/sda2 /mnt/data2 auto noauto,user 0 0
#RMS#boat:/opt/SUNWspro /opt/SUNWspro nfs \
       defaults,nfsvers=2,rsize=8192,wsize=8192
```

8.3.1.1 Configuring file systems for particular applications

If the RMS comment is of the form `#RMS:<appname>`, the file system entry applies only to the specified application. From an RMS perspective, file systems assigned to a given application are independent of those assigned to other applications. A file system can be assigned to two or more applications, provided only one of the applications is online at any time.

Examples

```bash
#RMS:app1#/dev/sdb2 /data3 auto noauto,user 0 0
#RMS:app2#/dev/sdb6 /data4 auto noauto,user 0 0
#RMS:app1#boat:/var/tmp/test0 /var/tmp/nfs_app1 nfs \
       defaults,nfsvers=2,rsize=8192,wsize=8192
#RMS:app2#boat:/var/tmp/test1 /var/tmp/nfs_app2 nfs \
       defaults,nfsvers=2,rsize=8192,wsize=8192
```

8.3.1.2 Clusterwide configuration issues

In general, if you create an `/etc/fstab.pcl` control entry for a remote file system or a shared filer on one node, then you should duplicate that entry on every other node in the cluster, even if some nodes will not mount that file system. This helps to ensure that the configuration behaves consistently throughout the cluster.

Use a similar procedure for entries that specify local file systems and mount points. If all nodes have the same architecture, you may be able to simply copy the entire `/etc/fstab.pcl` control file. However, if the local physical disk device differs from node to node, you must individually adjust the entries for the same mount point. For example, the respective entries for `/mnt1` on `node1` and `node2` might be as follows:

node1:

```bash
#RMS#/dev/sda3 /mnt1 ...
```
node2:

#RMS#/dev/sdb5 /mnt1 ...

In all cases, for each mount point that appears in /etc/fstab.pcl, be sure to create the directory on every node in the cluster.

A shared NFS file system managed by RMS must have the same major device number and the same minor device number on every host that will mount that file system. This is necessary to ensure the file system is remounted transparently in the event of an application failover.

8.3.2 /etc/exports.pcl

This file contains entries for all file systems that may be made highly available for mounting on other hosts. RMS is responsible for sharing and unsharing each of these file systems according to the requirements of the running configuration.

For each file system to be managed by RMS, create a line in /etc/exports.pcl with the standard exports fields, and then insert the string #RMS# at the beginning of the line. For more information, see the exports manual page.

Example

#RMS#/usr shasta*(rw)

RMS cannot export a subdirectory of a file system that is mounted from a remote server. It can only export the root of the remote file system.
8.4 Solaris file systems

- /etc/vfstab.pcl

Contains entries for all of the local file systems that are to be used as resources in the configuration. In other words, this file describes the file systems that should be mounted locally.

For each file system to be managed by RMS, create a line with the standard vfstab fields, and then insert the string #RMS# at the beginning of the line. RMS entries appear as comments and will be ignored by all processes other than PRIMECLUSTER components. For more information, see the vfstab manual page.

Example

```
#RMS#/dev/dsk/c0t0d0s0 /dev/rdk/c0t0d0s0 /testfs1 ufs 1 yes -
```

- /etc/dfs/dfstab.pcl

Contains entries for all of the shared remote resources in the high-availability configuration. In other words, this file describes the file systems that can be mounted on a remote node.

For each file system to be managed by RMS, create a line with the standard dfstab fields, and then insert the string #RMS# at the beginning of the line. RMS entries appear as comments and will be ignored by all processes other than PRIMECLUSTER components. Therefore, to ensure that the NFS daemons start at boot time, there must be at least one non-comment, non-RMS entry in this file.

The non-RMS entry might be a dummy entry configured for a local file system and shared only to the local node. This would mean that no real sharing to a remote node is done, but it would still cause the NFS daemons to be started. For more information, see the dfstab manual page.

Example

The following contains both a non-RMS entry and an RMS entry:

```
share -F nfs -o ro=localhost /var/opt/example
#RMS# share -F nfs -o rw, root=
shasta1RMS:shasta1:045nfs045dia1:045msg:shasta1RMS: /sapmnt/045
```
8.4.1 NFS Lock Failover

The NFS Lock Failover feature is available for local file systems. If you configure NFS Lock Failover for a file system and the file system subsequently fails, then both the file system and its NFS locks will failover to the same node.

This feature requires the following site preparation steps:

- You must have a shared disk accessible to all nodes in the cluster.
- You must dedicate a directory to NFS Lock Failover on that shared disk. If you specify a directory that already exists, no other applications will be allowed to use it after it is configured.
- You must reserve one IP address for each application that uses NFS Lock Failover. You will specify this IP address when you configure the local file system for NFS Lock Failover. You will also configure this address in an Ip Address subapplication so it switches with the application that contains the file system.

Only one file system per userApplication object can be selected for NFS Lock Failover.
8.5 NFS servers

In a high availability environment such as RMS, an exported file system must be able to failover transparently when its server node is taken out of service: clients that mounted the file system before the failover should experience no access problems after the failover. NFS file systems require special preparation to achieve this result.

When a client mounts a remote NFS file system, it creates an internal `file handle` that it uses for future operations with the file system. To comply with NFS architecture, the client file handle includes the server’s major and minor device numbers for the file system. This design can create access problems in the RMS environment. If the file system goes offline on the original server, and then comes back online on a second server that assigns different major and minor device numbers, the file handle will no longer be valid. This condition is called a `stale file handle`. The solution is to assign the same major and minor device numbers to the file system on every NFS server that may advertise that file system.

The above discussion refers to file systems in general, but in a high availability environment, the file system will actually be a shared disk volume that is accessible from any node that will export it. Preparing a shared disk volume with the same major and minor device number may require changes in the hardware or software configuration. If the shared disk volume is built on top of volume management software, additional steps may be necessary when the volume manager is installed.

This section provides some tips for preparing volume managers for use as NFS servers in the RMS environment.

8.6 Log files

8.6.1 `/var/log/messages` (Linux) or `/var/adm/messages` (Solaris)

By default, all RMS messages go to both the system log, `messages`, and the RMS `switchlog` file (located by default in `/var/opt/SMAWRrms/log`). If you do not want to send messages to the system log, then set `HV_SYSLOG_USE = 0` in the `hvenv.local` file. By default, `HV_SYSLOG_USE = 1`.
8.7 Other system services and databases

RMS requires the following system services or databases to be configured according to the instructions in the *Software Release Guide PRIMECLUSTER* and the *PRIMECLUSTER Installation Guide* for your operating system:

- PRIMECLUSTER Cluster Foundation (CF), including CIP
- `/etc/nsswitch.conf` system service lookup order database
- `echo service`—Linux only
Appendix—States

9.1 Basic states

Table 6 lists the states that detectors may report to the base monitor:

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faulted</td>
<td>Error condition encountered. The error may have occurred in the resource, in one of its children, or during script processing.</td>
</tr>
<tr>
<td>Offline</td>
<td>Disabled, not ready for use. The scripts have successfully disabled the resource.</td>
</tr>
<tr>
<td>Online</td>
<td>Enabled, ready for use. All required children are online, and no errors were encountered while scripts were processed.</td>
</tr>
<tr>
<td>Standby</td>
<td>Ready to be quickly brought Online when needed.</td>
</tr>
</tbody>
</table>

Table 6: States reported by detectors for RMS objects

Table 7 lists additional resource states that may be displayed in the Cluster Admin GUI or by `hvdisp`:

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deact</td>
<td>Applies to userApplication objects only. Operator intervention has deactivated the application throughout the cluster (such as for maintenance purposes).</td>
</tr>
<tr>
<td>Inconsistent</td>
<td>Applies to userApplication objects only. The object is Offline or Faulted, but one or more resource objects in its graph have their <code>ClusterExclusive</code> attribute set to 1 and are Online or Faulted.</td>
</tr>
<tr>
<td>OfflineFault</td>
<td>Fault that occurred in the past has not yet been cleared.</td>
</tr>
<tr>
<td>Unknown</td>
<td>No information is available. Reported before object initialization is completed.</td>
</tr>
</tbody>
</table>

Table 7: Additional states that may be displayed for RMS objects
The interpretation of Offline and Faulted may depend on the resource type. For instance, a mount point resource can be either Online (mounted) or Offline (not mounted); in this case, the detector would never report the Faulted state. On the other hand, a detector for a physical disk can report either Online (normal operation) or Faulted (input or output error); it would never report Offline.
9.2 State details

Besides the basic states listed above, RMS may report additional state details in the following locations:

- In the Cluster Admin GUI, the properties view of an object includes the *State Details* item at the top of the list. Unlike most other attributes, which are determined at configuration time by the Wizard Tools, this information-only field is dynamically set by RMS at runtime.

- In the output of the `hvdisp` utility, the *StateDetails* column appears at the end of each line.

In most cases, the *StateDetails* field is empty. RMS typically provides this extra information when an application is in maintenance mode, or when an object is in a transitional, inconsistent, or standby state. Table 8 lists all possible *StateDetails* values for RMS objects.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed Over</td>
<td>Offline processing successful and failover initiated</td>
</tr>
<tr>
<td>Faulted</td>
<td>Received Faulted report</td>
</tr>
<tr>
<td>Inconsistent on remote</td>
<td>userApplication is Online on multiple hosts, but is not Online on the local host</td>
</tr>
<tr>
<td>Initial Fault</td>
<td>userApplication already faulted when RMS started</td>
</tr>
<tr>
<td>Joined</td>
<td>SysNode is in Offline state because it has joined the cluster</td>
</tr>
<tr>
<td>Killed</td>
<td>SysNode is in Faulted state because of a successful kill</td>
</tr>
<tr>
<td>Not Joined</td>
<td>SysNode is in Offline state because it has not yet joined the cluster</td>
</tr>
<tr>
<td>Offline</td>
<td>Received Offline report</td>
</tr>
<tr>
<td>Offline Failed</td>
<td>Offline processing failed</td>
</tr>
<tr>
<td>Offline Success</td>
<td>Offline processing successful</td>
</tr>
<tr>
<td>Offline intended</td>
<td>Intended state is Offline</td>
</tr>
<tr>
<td>Online</td>
<td>Received Online report</td>
</tr>
<tr>
<td>Online intended</td>
<td>userApplication is Online on multiple hosts</td>
</tr>
</tbody>
</table>

Table 8: StateDetails values for RMS objects
For example, if an application was online on a particular node before it was put into maintenance mode, it will generally return to the online state on the same node when it leaves maintenance mode. RMS indicates this by reporting *Online intended* in the state details field on that node. On other nodes where the application was previously offline, RMS will report *Offline intended* in the state details field.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online !!</td>
<td>Intended state is Online, but some resources have conflicting states</td>
</tr>
<tr>
<td>Online intended</td>
<td>Intended state is Online</td>
</tr>
<tr>
<td>PreCheckScriptFailed</td>
<td>PreCheckScript failed</td>
</tr>
<tr>
<td>Preserved</td>
<td>PreserveState set, no Offline processing initiated</td>
</tr>
<tr>
<td>Shutdown</td>
<td>SysNode is in Faulted state because it has been shutdown</td>
</tr>
<tr>
<td>Standby</td>
<td>Received Standby report</td>
</tr>
<tr>
<td>Standby !!</td>
<td>Intended state is Standby, but some resources have conflicting states</td>
</tr>
<tr>
<td>Standby intended</td>
<td>Intended state is Standby</td>
</tr>
</tbody>
</table>

Table 8: StateDetails values for RMS objects
10 Appendix—Object types

The following alphabetical list describes all object types that are supplied with RMS and configured by the Wizard Tools.

andOp

Required attributes:

- HostName *(for direct children of a userApplication object)*

Object associated with its children by a logical **AND** operator. This object type is online if all children are online, and offline if all children are offline.

controller

Required attributes:

- Resource

Object that allows a parent **userApplication** to control one or more child **userApplication** objects.

ENV

Required attributes:

- (none required)

Object containing clusterwide (global) environment variables.

ENVL

Required attributes:

- (none required)

Object containing node-specific (local) environment variables.

gResource

Required attributes:

- rKind
- rName

Custom (generic) object. Usually represents system resources such as file systems, network interfaces, or system processes.

orOp

Required attributes:

- (none required)

Object associated with its children by a logical **OR** operator. This object type is online if at least one child is online.
SysNode

Required attributes:

(none required)

Represents nodes in the cluster; at least one required. Only `userApplication` objects are allowed as its children.

userApplication

Required attributes:

(none required)

Represents an application to be monitored; at least one required. Must have one or more `SysNode` objects as its parents. For each `SysNode` parent, it must have one child `andOp` with its `HostName` attribute set to the name of the corresponding `SysNode`.
11 Appendix—Attributes

Some object types require specific attributes for RMS to monitor that object type. Some attributes can be modified through the user interface, while others are managed internally by the Wizard Tools. The following sections describe the possible values of all attributes. The default value varies depending on each resource.

11.1 Attributes available to the user

Attributes in this section can be changed using the Wizard Tools user interface. The following default value is for Cmdline resource. Other resources have a default value individually.

AlternateIp

Possible Values: Any interconnect name

Valid for SysNode objects. Space-separated list that RMS uses as additional cluster interconnects if the interconnect assigned to the SysNode name becomes unavailable. All these interconnects must be found in the /etc/hosts database. By default, the configuration wizards assume the alternate interconnects to node `<nodename>` have names of the form `<nodename>rmsAI<nn>`, where `<nn>` is a two-digit, zero-filled number. This setting is restricted to very specific configurations and must never be used in a cluster with CF as interconnect.

AutoRecover

Possible Values: 0, 1

Valid for resource objects. If set to 1, executes the online script for an object if the object becomes faulted while in an Online state. If the object is able to return to the Online state, the fault is recovered.

This attribute must be 0 for controller objects: RMS handles switchover of child applications automatically.

AutoRecoverCleanup

Possible Values: 0, 1

Valid for controller objects. If set to 1, and AutoRecover is 1, then a faulted child application is requested to go Offline before recovering. If set to 0 and AutoRecover is 1, then a faulted child application recovers without going Offline.
Attributes available to the user

Appendix—Attributes

AutoStartUp

Possible Values: 0, 1

Valid for userApplication objects. If set to 1, automatically brings the application Online on its highest priority SysNode (the first node in its PriorityList attribute) when RMS is started. Note that the application will not start automatically if the highest priority SysNode is unavailable, regardless of the state of the other nodes.

You can override the AutoStartUp attribute for all userApplication objects by setting the HV_AUTOSTARTUP variable. See the description of HV_AUTOSTARTUP in the section “Local environment variables”.

AutoSwitchOver

Possible Values: Valid string containing one or more of the following: No, HostFailure, ResourceFailure, ShutDown

Valid for userApplication objects. Configures an application for automatic switchover if it becomes faulted. The values can be combined using the vertical bar ("|") character. The No value inhibits automatic switchover and cannot be combined with any other value.

For backward compatibility, the numeric values 0 and 1 are accepted: 0 is equivalent to No, and 1 is equivalent to HostFailure | ResourceFailure | ShutDown.

ClusterExclusive

Possible Values: 0, 1

Valid for resource objects. If set to 1, guarantees that the resource is online on only one node in the cluster at any time. If set to 0, allows a resource to be online on more than one node at a time. Note that “online” in this context refers to any phase of online processing. For instance, if a resource is in the Online state on one node while its PreOnlineScript is executing on another node, then both resource objects would be considered as online for the purposes of this test.

The user can modify this attribute for cmdline subapplications only. The configuration tools control this attribute for all other subapplications.

ControlledSwitch

Possible Values: 0, 1

Valid for controlled userApplication objects. If set to 0, RMS allows a manual switch request from the CLI or the GUI. If set to 1, only the parent controller can issue switch requests to this userApplication.
FaultScript

Possible Values: Valid script (character)

Valid for all object types. Specifies a script to be run if the associated resource enters the *Faulted* state.

Halt

Possible Values: 0, 1

Valid for *userApplication* objects. Controls local node elimination in the event of a double fault. A double fault occurs when a second fault is generated during the initial fault processing of an application.

If Halt is set to 1, and another node is available to run the application, a double fault will trigger the following sequence of events:

1. First, RMS on the local node will exit immediately.
2. Next, RMS on another node will invoke the Shutdown Facility to eliminate the local node.
3. Finally, all applications that were online on the local node, and that have their *AutoSwitchOver* parameter set to include *HostFailure*, will be switched over to the available node.

Note: Even if all the conditions for the Halt attribute are met for an application (*AutoSwitchOver* setting, additional hosts available), other applications running on the same host may block the Halt operation. For instance, another application may have no other available hosts, or it may not have the appropriate *AutoSwitchOver* setting. In either case, RMS will continue to run on the local node. To prevent this, allocate additional hosts for the other applications and adjust their priority lists to minimize node conflicts with the application that has its Halt attribute set.

I_List

Possible Values: Space-separated list of *SysNode* names

Valid for all *SysNode* objects. List of additional cluster interconnects that should be monitored by RMS. These interconnects are used only by customer applications and not by any PRIMECLUSTER products. All monitored interconnects must be found in the `/etc/hosts` database. In addition, all *SysNode* objects must have the same number of additional interconnects.

LieOffline

Possible Values: 0, 1
Attributes available to the user

Valid for all resource objects. If set to 1, allows the resource to remain Online during Offline processing.

MonitorOnly

Possible Values: 0, 1

Valid for resource objects. If set to 1, a faulted state of the object is ignored by the parent when calculating the parent’s state. A parent must have at least one child for which MonitorOnly is not set.

OfflineScript

Possible Values: Valid script (character)

Valid for all object types except SysNode objects. Specifies the script to be run to bring the associated resource to the Offline state.

OnlinePriority

Possible Values: 0, 1

Valid for userApplication objects. Allows RMS to start the application on the node where it was last online when the entire cluster was brought down and then restarted. If set to 0 or not set (the default), the application comes online on the node with the highest priority in the attribute PriorityList. If set to 1, the application comes online on the node where it was last online. In case of AutoStartUp or a priority switch, this last-online node has the highest priority, regardless of its position in the priority list.

RMS keeps track of where the application was last online by means of timestamps. The node which has the latest timestamp for an application is the node on which the application will go online. Different cluster nodes should be in time-synchronization with each other, but this is not always the case. Since RMS does not provide a mechanism for ensuring time-synchronization between the nodes in the cluster, this responsibility is left to the system administrator. If RMS detects a severe time-discrepancy between the nodes in the cluster, an ERROR message is printed to the switchlog.

The ntp time service should be used to establish consistent time across the nodes in the cluster. Refer to the manual page for ntpd or xntpd for more information.

The OnlinePriority persistent state information will be cleared if RMS is restarted with the last online node removed from the configuration.
Appendix—Attributes

Attributes available to the user

OnlineScript
Possible Values: Valid script (character)

Valid for all objects except `SysNode` objects. Specifies the script to bring the associated resource to the Online or Standby state.

PartialCluster
Possible Values: 0, 1

Valid for `userApplication` objects. Specifies whether an application can negotiate online requests.

If set to 0, then the application can negotiate its online request only when all nodes where it can possibly run are online.

If set to 1, then the application can negotiate its online request within the current set of online nodes, even if some other nodes (including the application’s primary node) are offline or faulted.

Note that a `userApplication` that has its PartialCluster attribute set will not be affected by startup timeouts from remote nodes: the application can still go online on the local node. See the description of `HV_AUTOSTART_WAIT` in the section “Global environment variables”.

PersistentFault
Possible Values: 0, 1

Valid for `userApplication` objects. If set to 1, the application maintains a Faulted state across an RMS shutdown and restart. The application returns to the Faulted state if it was Faulted before, unless the fault is explicitly cleared by either `hvutil –c` or `hvswitch –f`, or if RMS is restarted with the Faulted SysNode removed from the configuration.

PostOfflineScript
Possible Values: Valid script (character)

Valid for all objects except `SysNode` objects. Specifies the script to be run after the state of the associated resource changes to Offline.

PostOnlineScript
Possible Values: Valid script (character)

Valid for all objects except `SysNode` objects. Specifies the script to be run after the state of the associated resource changes to Online or Standby.

PreOfflineScript
Possible Values: Valid script (character)
Attributes available to the user

Valid for all objects except SysNode objects. Specifies the script to run before the object is taken to the Offline state.

PreOnlineScript

Possible Values: Valid script (character)

Valid for all objects except SysNode objects. Specifies the script to be run before the associated resource is taken to the Online or Standby state.

PreserveState

Possible Values: 0, 1

Valid for userApplication objects. If set to 1, the resources are not to be taken Offline after a fault. Ignored if ResourceFailure is set to AutoSwitchOver.

PriorityList

Possible Values: Valid list of SysNode names (character)

Valid for userApplication objects. Contains a list of SysNode objects where the application can come Online. The order in the list determines the next node to which the application is switched during a priority switchover, ordering a switchover after a Fault. The list is processed circularly.

The user specifies this attribute indirectly when selecting the nodes for an application. RMS uses the order in which the nodes were selected and creates PriorityList automatically. The user can change the PriorityList by adding individual nodes from the list in the desired order, rather than automatically selecting the entire list.

For applications controlled by or a controller object, the order of nodes in PriorityList is ignored. However, each child application must be able to run on the nodes specified for the parent application.

Resource

Possible Values: Valid name (character)

Valid for controller objects. Contains the name of the child (controlled) userApplication.
Appendix—Attributes

Attributes available to the user

ScriptTimeout

Possible Values: 0–MAXINT (in seconds) or valid string of the form "timeout_value[:offline_value][:online_value]"

Valid for all object types. Specifies the timeout value for all scripts associated with that object in the configuration file. RMS sends a kill signal to the script if the timeout expires.

Use the string format to specify individual timeout values of offline_value for OfflineScript and online_value for OnlineScript.

ShutdownPriority

Possible Values: 0–MAXINT

Valid for userApplication objects. ShutdownPriority assigns a weight factor to the application for use by the Shutdown Facility.

When interconnect failures and the resulting concurrent node elimination requests occur, SF calculates the shutdown priority of each subcluster as the sum of the subcluster's SF node weights plus the RMS ShutdownPriority of all online application objects in the subcluster. The optimal subcluster is defined as the fully connected subcluster with the highest weight.

StandbyCapable

Possible Values: 0, 1

Valid for resource objects. If set to 1, the object performs standby processing on all nodes where the parent application is supposed to be Offline.

The user can modify this attribute for a cmdline subapplication only. The configuration tools control this attribute for all other subapplications.

StandbyTransitions

Possible Values: StartUp, SwitchRequest, ClearFaultRequest or any combination joined by vertical bars (|)

Valid for userApplication objects. The value specifies when standby processing is initiated for the application object:

- StartUp—at startup. This setting is ignored if the real-world application is already online, or if the application object is forced to go online because the AutoStartUp attribute is set.

- SwitchRequest—after application switchover, if the application was online before the switchover.
Attributes managed by configuration wizards

- **ClearFaultRequest**—after a faulted state is cleared with ‘hvutil -c’.

WarningScript

Possible Values: Valid script (character)

Valid for GDS resource objects. Specifies the script to be run after the posted state of the associated resource changes to Warning.

11.2 Attributes managed by configuration wizards

Attributes in this section are managed internally by the configuration wizards or by RMS at runtime.

Affiliation

Possible Values: Any string

Valid for resource objects. Used for display purposes in the user interface—no functional meaning within RMS.

Class

Possible Values: any string

Valid for all objects except SysNode. Describes the class of the resource object. Used by other programs for various purposes (for example, SNMP agents). This value is supplied by the configuration wizards.

Comment

Possible Values: any string

Valid for all objects. Used for documentation in the configuration file—no functional meaning within RMS.

DetectorStartScript

Possible Values: Any valid detector start script

Valid for resource object with detector. Specify the detector start command directly in the `<configname>.us` file.

Note that a controller object has no detector because RMS determines its state internally.
Appendix—Attributes

Attributes managed by configuration wizards

HostName

Possible Values: Any SysNode name

Must be set only in the first-level andOp children of a userApplication object. Each of these andOp objects associates its parent application with the SysNode specified in its HostName attribute; the child andOp objects also determine the priority of the application’s nodes.

LastDetectorReport

Possible Values: Online, Offline, Faulted, Standby

Valid for resource objects with detector. This attribute contains the most recent detector report for the object. The value may be displayed in the Cluster Admin GUI; the possible values depend on the type of resource the object represents.

MaxControllers

Possible Values: 0–512

Valid for userApplication objects. Upper limit of parent userApplication objects for the specified child application.

NoDisplay

Possible Values: 0, 1

Valid for all object types. If set to 1, specifies that the resource should not be displayed when hvdisp is active. Can be overridden with ‘hvdisp -S <resource_name>’.

NullDetector

Possible Values: on, off

Valid for resource objects with detector. Used to disable a detector at runtime by setting NullDetector to on. This attribute is for use with dynamic reconfiguration only. NullDetector must never be set hard-coded to on in the RMS configuration file.

OfflineDoneScript

Possible Values: Valid script (character)

Valid for userApplication objects. The last script run after the application has completed offline processing.

PreCheckScript

Possible Values: Valid script (character)
Valid for userApplication objects. Specifies the script to be forked as the first action during Online or Standby processing. If the script returns with a zero exit code, processing proceeds. If the script returns with an exit code other than zero, processing is not performed and an appropriate warning is logged to the switchlog file.

rKind
Possible Values: 0–2047

Valid for gResource objects. Specifies the kind of detector for the object.

rName
Possible Values: Valid string (character)

Valid for gResource objects. Specifies a string to be forwarded to the generic detector.

SplitRequest
Possible Values: 0, 1

Valid for controller objects. If set to 1, then PreOffline and PreOnline requests will be propagated to child applications separately from the Offline and Online requests. If 0, then separate PreOffline or PreOnline requests will not be issued for the child applications.

StateDetails
Possible Values: Any string

Valid for all objects. Displays additional state details in the Cluster Admin GUI or the hvdisp CLI user interface. In most cases, the state details field is empty. RMS typically provides this extra information when an application is in maintenance mode, or when an object is in a transitional, inconsistent, or standby state.
12 Appendix—Environment variables

This appendix provides a complete list of the environment variables used by RMS, grouped into the following types:

- “Global environment variables”
- “Local environment variables”
- “Script execution environment variables”

The discussion in the section “Environment variables” describes how RMS manages environment variables.

12.1 Setting environment variables

Caution

Do not explicitly set RMS environment variables in the user environment. Doing so can cause RMS to lose environment variables settings.

Do not change the hvenv configuration file. Changes to your configuration’s environment variables should be confined to the `<RELIANT_PATH>hvenv.local` file.

The values of environment variables are specified as export directives in the `hvenv.local` file. To adjust a variable’s setting, you would open `hvenv.local` with a text editor of your choice and modify (or add) the appropriate line.

A typical export directive would appear as follows:

```bash
export SCRIPTS_TIME_OUT=200
```

When RMS starts, it reads the values of environment variables from `hvenv` and `hvenv.local` and initializes the `ENV` and `ENVL` objects respectively. No further reference is made to these two configuration files while RMS is running. Therefore, any changes you make to `hvenv.local` will not take effect until the next time RMS starts up.

Values in the `ENVL` (local) object override values in the `ENV` (global) object. If a global variable setting appears in the `hvenv.local` file, it will override the corresponding setting in the `hvenv` file. However, if you adjust a global variable in the
Global environment variables

hvenv.local file on one node, you must make the same adjustment to hvenv.local on every other node in the cluster. Global variable settings must agree clusterwide.

While RMS is running, you can display the environment variables with the hvdisp command, which does not require root privilege:

- hvdisp ENV
- hvdisp ENVL

12.2 Global environment variables

Global variable settings (ENV) are included in the configurations checksum that is common to the cluster. The checksum is verified on each node during startup of the base monitor. RMS will fail to start if it detects a checksum difference between the values on any two nodes.

The default values of the environment variables are found in <RELIANT_PATH>/bin/hvenv. They can be redefined in the hvenv.local configuration file.

The following list describes the global environment variables for RMS:

HV_AUTOSTARTUP_IGNORE

Possible values: List of RMS cluster nodes. The list of RMS cluster nodes must be the names of the SysNodes as found in the RMS configuration file. The list of nodes cannot include the CF name.

Default: “” (empty)

List of cluster nodes that RMS ignores when it starts. This environment variable is not set by default. A user application will begin its automatic startup processing if the AutoStartUp attribute is set and when all cluster nodes defined in the user application have reported Online. If a cluster node appears in this list, automatic startup processing will begin even if this node has not yet reported the Online state.

Use this environment variable if one or more cluster nodes need to be taken out of the cluster for an extended period and RMS will continue to use the configuration file that specifies the removed cluster nodes. In this case, specifying the unavailable cluster nodes in this environment variable ensures that all user applications are automatically brought online even if the unavailable cluster nodes do not report Online.
Appendix—Environment variables

Global environment variables

Caution

If the `HV_AUTOSTARTUP_IGNORE` environment variable is used, ensure that it is correctly defined on all cluster nodes and that it is always kept up-to-date. When a node is brought back into the cluster, remove it from this environment variable. If this does not occur, data loss could occur because RMS will ignore this node during the startup procedure and will not check whether the application is already running on the nodes specified in this list. It is the system administrator’s responsibility to keep this list up-to-date if it is used.

`HV_AUTOSTART_WAIT`

Possible values: 0–MAXINT
Default: 60 (seconds)

Defines the period (in seconds) that RMS waits for cluster nodes to report `Online` when RMS is started. If this period expires and not all cluster nodes are online, a switchlog message indicates the cluster nodes that have not reported `Online` and why the user application(s) cannot be started automatically.

Note that `HV_AUTOSTART_WAIT` timeouts from remote nodes will not affect a local `userApplication` that has its `PartialCluster` attribute set: the application can still go online on the local node. See the description of the `PartialCluster` attribute in the .

This attribute generates a warning message only. `AutoStartUp` will proceed even if the specified period has expired.

`HV_CHECKSUM_INTERVAL`

Possible values: 0–MAXINT
Default: 120 (seconds)

Interval in seconds for which the RMS base monitor waits for each `Online` node to verify that its checksum is the same as the local checksum.

If checksums are confirmed within this interval, then RMS on the local node continues its operations as usual. However, if a checksum from a remote node is not confirmed, or if it is confirmed to be different, then the local monitor shuts down if it has been started less than `HV_CHECKSUM_INTERVAL` seconds before.
Global environment variables

Also, if a checksum from a remote node is not confirmed, or if the checksum is confirmed to be different, then the local monitor considers the remote node as Offline if that local monitor has been started more than \texttt{HV_CHECKSUM_INTERVAL} seconds before.

\textbf{HV_COM_PORT}

\textit{Possible values:} 0–65535
\textit{Default:} 8000
The communication port used by the RMS base monitor on all nodes in the cluster.

\textbf{HV_LOG_ACTION_THRESHOLD}

\textit{Possible values:} 0–100
\textit{Default:} 98
Determines conditions under which \texttt{hvlogcontrol} cleans up RMS log files. If the percentage of used space on the file system containing \texttt{RELIANT_LOG_PATH} is greater than or equal to this threshold, all subdirectories below \texttt{RELIANT_LOG_PATH} will be removed. Furthermore, if \texttt{HV_LOG_ACTION} is set to \texttt{on} and all subdirectories have already been removed, the current log files will be removed too. See “\texttt{HV_LOG_ACTION}” for more information.

\textbf{HV_LOG_WARN_THRESHOLD}

\textit{Possible values:} 0–100
\textit{Default:} 95
Defines when \texttt{hvlogcontrol} warns the user about the volume of RMS log files. If the percentage of used space on the file system containing \texttt{RELIANT_LOG_PATH} is greater than or equal to this threshold value, \texttt{hvlogcontrol} issues a warning to the user. See also \texttt{HV_LOG_ACTION_THRESHOLD} above.

\textbf{HV_LOH_INTERVAL}

\textit{Possible values:} 0–MAXINT
\textit{Default:} 30
Specifies the minimum difference in seconds when comparing timestamps to determine the last online host (LOH) for \texttt{userApplication}. It is determined if the \texttt{OnlinePriority} attribute is set to 1.
Appendix—Environment variables

If the difference between the LOH timestamp entries logged in the userApplication on two cluster nodes is less than the time specified by this attribute, RMS does not perform AutoStartUp and does not allow priority switches. Instead, it sends a message to the console and waits for operator intervention.

When adjusting this variable, the quality of the time synchronization in the cluster must be taken into account. The value must be larger than any possible random time difference between the cluster hosts.

HV_USE_ELM

Possible values: 0, 1
 Default: 1

Specifies the heartbeat monitoring mode used by the RMS base monitor:

0—remote node and base monitor states are detected by periodically sending UDP heartbeat packets across the network. If no heartbeats are received from a remote node during an interval defined by HV_CONNECT_TIMEOUT, RMS marks the node as down and waits for a recovery period before taking further action.

1—combines the Enhanced Lock Manager (ELM) method and the UDP heartbeat method. This setting is valid only when CF is installed and configured. The ELM lock is taken and held by the local node until ELM reports a remote node down or remote base monitor down. In either of these cases, the remote node is immediately killed. Until ELM reports a change in a remote node’s state, RMS also monitors the UDP heartbeat of each remote node as described above, but with a much longer recovery timeout.

Whether or not ELM is enabled, a remote node is killed if its UDP heartbeat is not received before its heartbeat recovery timeout expires. When CF is not present, ELM is disabled automatically, and the heartbeat recovery timeout defaults to 45 seconds. When CF is present, ELM is enabled by default, and the heartbeat recovery timeout defaults to 600 seconds; this avoids premature node kills when the remote node is slow to respond.

Only experts should disable ELM manually. When CF is present but ELM is disabled, the default 600 second heartbeat recovery timeout is too long for efficient detection of remote RMS or node outages. In this case, the recovery timeout on the local node must also be adjusted manually by starting RMS with the ‘hvcm -h <timeout> -c <config_file>’ command.
Note that the recovery timeout should be set to the same value on every node in the cluster. When ELM is disabled, the recommended global value is 45 seconds.

RELIANT_LOG_LIFE

Possible values: Any number of days
Default: 7 (days)

Specifies the number of days that RMS logging information is retained. Every time RMS starts, the system creates a directory that is named on the basis of when RMS was last started, and which contains all constituent log files. All RMS log files are preserved in this manner. All sub directories under **RELIANT_LOG_PATH** whose update time (ctime) is older than the number of days specified in this variable are deleted by a cron job.

RELIANT_LOG_PATH

Possible values: Any valid path
Default: /var/opt/SMAWRrms/log

Specifies the directory where all RMS, PCS, and Wizard Tools log files are stored. The location to store the internal log will not be changed even if the value of this variable is changed.

RELIANT_PATH

Possible values: Any valid path
Default: /opt/SMAW/SMAWRrms

Specifies the root directory of the RMS directory hierarchy. Users do not normally need to change the default setting.

RELIANT_SHUT_MIN_WAIT

Possible values: 0–MAXINT
Default
- Solaris: MAXINT (seconds)
- Linux: 900 (seconds)

Defines the period (in seconds) until the hvshut command times out.

If the hvshut command is executed with any of the -l, -s, and -a options, RMS performs shutdown processing after it performs offline processing of the active applications.

Set the total time of the following items for **RELIANT_SHUT_MIN_WAIT**:

1. Maximum time required to complete offline processing of applications
2. Maximum time required to shut down RMS (30 seconds)
Use the total value of the script timeout of all resources included in an application for the value of 1.

To check the script timeout value of each resource, execute the `hvdisp` command by using the resource name as the argument and see the setting value (in seconds) of the `ScriptTimeout` attribute of the resource with which the `OfflineScript` attribute is not blank.

If there are two or more applications, use the largest value of the total values of the script timeout for each application.

By increasing the value of `RELIANT_SHUT_MIN_WAIT`, the following effects occur if delay or hang-up in offline processing of applications occurs.

- It may take longer time than the setting value of `RELIANT_SHUT_MIN_WAIT` to shut down RMS or the operating system.
- It may take longer time than the setting value of `RELIANT_SHUT_MIN_WAIT` to automatically switch applications by shutting down RMS or the operating system.

If the value of `RELIANT_SHUT_MIN_WAIT` is too large, use the processing time in the case that it is expected to take the longest time until timeout of the assumed cases where offline processing of an application times out for the value of the item 1 above.

Note that if the value of `RELIANT_SHUT_MIN_WAIT` is too small, timeout of the `hvshut` command may frequently occur before offline processing of applications completes. Tune `RELIANT_SHUT_MIN_WAIT` carefully.

Caution

Resources may remain active without stopping because RMS terminates abnormally when the `hvshut` command times out. Under this situation, if you start RMS on a different node and forcibly activate the application, the resources may become active on several nodes at the same time, and data may be corrupted when a shared disk is controlled by the resources. For this reason, if the `hvshut` command times out, shut down the operating system of the node where RMS has terminated abnormally, or forcibly shut down the node to ensure that resources stop. Then, start RMS and applications.
12.3 Local environment variables

Local environment variable settings can vary from node to node. The following list describes the local environment variables for RMS:

HV_AUTOSTARTUP

Possible values: 0, 1
Default: 1 (normal processing of AutoStartUp attribute)

Controls the action of the AutoStartUp attribute for all userApplication objects on the local node. If set to 1 (the default value) the automatic startup of each userApplication is determined by its AutoStartUp attribute (see the section “Attributes available to the user”). If set to 0, the AutoStartUp attribute is ignored and no automatic startup occurs. HV_AUTOSTARTUP can be set in the Cluster Admin Tools menu or by using the hvsetenv command; in either case, the change does not take effect until the next RMS startup.

HV_CONNECT_TIMEOUT

Possible values: 5–MAXINT
Default: 30 (seconds). Users do not normally need to change the default setting.

The maximum time (in seconds) that the heartbeat from a node is not received before the base monitor assumes the connection to that node has been lost and starts the UDP heartbeat recovery timer.

Input values less than 5 are converted internally to 5.

HV_LOG_ACTION

Possible values: on, off
Default: off

Determines whether the current log files in the RELIANT_LOG_PATH directory will be deleted when the percentage of used space on the file system containing RELIANT_LOG_PATH is greater than or equal to HV_LOG_ACTION_THRESHOLD. See “HV_LOG_ACTION_THRESHOLD” for more information.

HV_MAX_HVDISP_FILE_SIZE

Possible values: 0–MAXINT
Default: 20,000,000 (bytes)
Prevents the unlimited growth of the temporary file that RMS uses to supply `hvdisp` with configuration data and subsequent configuration and state changes. The value of this variable is the maximum size in bytes of the temporary file `<RELIANT_PATH>/locks/.rms.<process id of the hvdisp process>`.

HV_MAXPROC

Possible values: 0–99
Default: 30

Defines the maximum number of scripts RMS can have forked at any time. The default (30) is sufficient in most cases.

HV_MLOCKALL

Possible values: 0, 1
Default: 0

If set to 1, the base monitor process and any memory it allocates will be locked in memory. If set to 0 (the default), the base monitor may be swapped out.

HV_RCSTART

Possible values: 0, 1
Default: 1 (start RMS in the `rc` script)

Determines if RMS is started in the `rc` script. If set to 1 (the default value), RMS is started automatically at system boot time. If set to 0, RMS must be started manually. `HV_RCSTART` can be set in the Cluster Admin Tools menu or by using the `hvsetenv` command. (Prerequisite for `rc start`: `CONFIG.rms` exists and contains a valid entry.)

HV_REALTIME_PRIORITY

Possible values: 1–99
Default: 50

Defines the real time priority for the RMS base monitor and its detectors. Caution should be used when adjusting this variable. High settings can prevent other OS real-time processes from getting their processor time slice. Low settings can prevent the RMS base monitor from reacting to detector reports and from performing requests from command line utilities.

This variable is processed only on Solaris platforms. It has no effect on Linux platforms.
Local environment variables

HV_SCRIPTS_DEBUG

Possible values: 0, 1
Default: 0

Controls debugging output from RMS scripts. If this variable is set to 1, it overrides the setting for scripts that are generated and managed by the Wizard Tools, causing them to write detailed runtime information about the commands that are executed to the RMS switchlog file. The type of information logged may vary according to the script. This setting applies only to those scripts provided with PRIMECLUSTER products. To disable script debug message logging, delete the HV_SCRIPTS_DEBUG entry or set `HV_SCRIPTS_DEBUG=0` in `hvenv.local`.

Note: when this variable appears in `hvenv.local`, RMS adds it to the script environment but otherwise makes no attempt to process it. Therefore, it is not reported in the Cluster Admin GUI or in `hvdisp ENVL` output.

HV_SYSLOG_USE

Possible values: 0, 1
Default: 1 (in `hvenv`)

Controls output to the system log from the RMS base monitor. RMS always records RMS ERROR, FATAL ERROR, WARNING, and NOTICE messages in the RMS switchlog file. By default, these messages are duplicated in the system log file `/var/adm/messages` (Solaris) or `/var/log/messages` (Linux). To disable RMS messages in the system log, set `HV_SYSLOG_USE=0` in `hvenv.local`.

Note

It is recommended for Linux to change this variable to 0. If this variable is set to 1 on Linux, under a high load on the system, the system log output will hang due to the performance limit of the system log processing by OS. In this case, RMS may not respond to any heartbeat from other node.

RELIANT_HOSTNAME

Possible values: valid name
Default: <nodename>RMS

The name of the local node in the RMS cluster. The default value of this variable is the node name with an RMS suffix (for example: `shasta1RMS`), as generated by the following command:

```
export RELIANT_HOSTNAME=`cftool -l 2>/dev/null | \
```
Local environment variables

tail -1 | cut -f1 -d" " RMS

If this preset value is not suitable, it must be modified accordingly on all nodes in the cluster.

The specified cluster node name must correspond to the `SysNode` name in the `<configname>.us` configuration file. The node name determines the IP address that RMS uses for establishing contact with this node.

RELIANT_INITSCRIPT

Possible values: any executable

Default: `<RELIANT_PATH>/bin/InitScript`

Specifies an initialization script to be run by RMS when the system is started. This script is run before any other processes are activated. It is a global script that is run once on every cluster node on which it is defined.

RELIANT_STARTUP_PATH

Possible values: any valid path

Default: `<RELIANT_PATH>/build`

Defines where RMS searches at start time for the configuration files.

SCRIPTS_TIME_OUT

Possible values: 0–MAXINT

Default: 300 (seconds)

Specifies the global period (in seconds) within which all RMS scripts must be terminated. If a specific script cannot be terminated within the defined period, it is assumed to have failed and RMS begins appropriate processing for a script failure.

If this value is too low, error conditions will be produced unnecessarily, and it may not be possible for the applications to go online or offline. An excessively high value is unsuitable because RMS will wait for this period to expire before assuming that the script has failed.

In case the global setting is not appropriate for all objects monitored by RMS, this global value can be overridden by an object-specific setting of the `ScriptTimeout` attribute.
12.4 Script execution environment variables

The variables in this section are set by the RMS base monitor when it executes an object’s script. These exist only in the script’s environment and only for the duration of the script execution. Since these variables are explicitly set, they have no default values.

HV_APPLICATION

Possible values: any userApplication name

Name of the userApplication object at the top of the sub-tree that contains the current object.

HV_AUTORECOVER

Possible values: 0, 1

If set to 1, the script was initiated due to an AutoRecover attempt.

HV_FORCED_REQUEST

Possible values: 0, 1

If set to 1, the script is currently processing a forced request.

HV_LAST_DET_REPORT

Possible values: one of Online, Offline, Faulted, NoReport

Last detector report for the current object.

HV_OFFLINE_REASON

Possible values: one of DEACT, SWITCH, FAULT, STOP, SHUT

Reason for a resource to become Offline is set:

- **SWITCH**: switch request from userApplication (hvswitch)
- **STOP**: stop request from userApplication (hvutil -f, hvutil -c)
- **FAULT**: resource failure
- **DEACT**: deact request from userApplication (hvutil -d)
- **SHUT**: stop request from RMS (hvshut)

HV_NODENAME

Possible values: any object name

Name of current object.

HV_REQUESTING_CONTROLLER

Possible values: controller name and node name

If non-empty, contains the name of the controller and node that initiated the request for the current script execution.
Appendix—Environment variables

Script execution environment variables

HV_SCALABLE_CONTROLLER

Possible values: scalable controller name
The name of the scalable controller that controls this application.

HV_SCALABLE_INFO

Possible values: scalable applications list
Contains the list of all scalable applications everywhere in the cluster.

HV_SCRIPT_TYPE

Possible values: one of PreCheckScript, PreOnlineScript, OnlineScript, PostOnlineScript, PreOfflineScript, OfflineScript, PostOfflineScript, OfflineDoneScript, FaultScript
Script type.

NODE_SCRIPTS_TIME_OUT

Possible values: 0–MAXINT
Timeout value for the current object and script type.

> **HV_REQUESTING_CONTROLLER**, **HV_SCALABLE_CONTROLLER** and **HV_SCALABLE_INFO** can be used only by the Online/Offline processing of the application controlled with the controller object.
13 Appendix—RMS command line interface

The primary interface for configuring RMS is the RMS Wizard Tools, and the primary interface for administering RMS is the Cluster Admin GUI. These user interfaces call the RMS command line interface (CLI), and, under certain conditions, you may find it useful to invoke the CLI directly.

The following section lists the RMS CLI commands available to administrators. Specific procedures using some of these commands are described in the chapter “Controlling RMS operation”. For a complete description of any command’s usage, see its online man page. For a list of all PRIMECLUSTER commands related to RMS, see the chapter “Appendix—List of manual pages”.

With few exceptions, RMS CLI commands require root privilege. The exceptions are noted in the following list.

RMS CLI commands accept case-insensitive application names.

13.1 Available RMS CLI commands

hvassert
Tests an RMS resource for a specified resource state. It can be used in scripts when a resource must achieve a specified state before the script can issue the next command. Does not require root privilege.

hvattr
Provides an interface for changing the AutoSwitchOver attribute at runtime. The change can be made from a single node in the cluster and will be applied clusterwide for one or more userApplication objects in the currently running configuration. The values HostFailure, ResourceFailure, ShutDown, or No may be specified. For more information, see the description of the AutoSwitchOver attribute in “Appendix—Attributes”.

hvcm
Starts the base monitor and the detectors for all monitored resources. In most cases, it is not necessary to specify options to the hvcm command.
The base monitor is the decision-making module of RMS. It controls the configuration and access to all RMS resources. If a resource fails, the base monitor analyzes the failure and initiates the appropriate action according to the specifications for the resource in the configuration file.

`hvconfig`

Either displays the current RMS configuration or sends the current configuration to an output file.

The output of the `hvconfig` command is equivalent to the running RMS configuration file, but does not include any comments that are in the original file. Also, the order in which the resources are listed in the output might vary from the actual configuration file.

`hvdisp`

Displays information about the current configuration for RMS resources. Does not require root privilege.

`hvdump`

Gets debugging information about RMS on the local node.

`hvlogclean`

Either saves old log files into a subdirectory whose name is the time RMS was last started, or, if invoked with the `-d` option, deletes old log files. In either case, `hvlogclean` creates a clean set of log files even while RMS is running.

`hvreset`

Reinitializes the graph of an RMS user application on one or more nodes in the configuration. Running scripts will be terminated, ongoing requests and contracts will be cleaned up, and information about previous failures will be purged. If the process is successful, the entire graph will be brought back into a consistent initial state, but an inconsistent state is also a possible result. Therefore, use this command for test purposes only, and never invoke it on a production cluster.

Caution

This command is intended for use by experts only.

`hvsetenv`

Provides an interface for changing the following RMS environment variables on the local node:

- `_HV_RCSTART_` controls the automatic startup of RMS.
- `_HV_AUTOSTARTUP_` controls the automatic startup of all applications.
Appendix—RMS command line interface

Available RMS CLI commands

For more information about these environment variables, see “Appendix—Environment variables”.

hvshut
Shuts down RMS on one or more nodes in the configuration. The base monitor on the local node sends a message to other online nodes indicating which node or nodes will be shut down.

hvswitch
Manually switches control of a user application resource from one system node to another in the RMS configuration. The resource being switched must be of type `userApplication`. The system node must be of type `SysNode`.

hvutil
Provides general administration interface to RMS. It performs various resource administration tasks, such as dynamically setting logging levels, sending a resource `Offline`, clearing faulted resources or hung cluster nodes in the `Wait` state, setting detector time periods, setting Maintenance Mode, and so forth.

Caution
Setting high logging levels in `hvutil` can cause disk overflow if enabled for too long. See the online man pages for more information.
14 Appendix—List of manual pages

This appendix lists the online manual pages for CCBR, CF, CIP, PAS, Resource Database, RMS, SF, Monitoring Agent, Web-Based Admin View, RMS Wizards, and miscellaneous utilities. To display a manual page, enter the following command:

$ man man_page_name

This is not an exhaustive list. Some PRIMECLUSTER utilities are intended only for internal use, so their manual pages are not listed here.

14.1 CCBR

System administration

cfbackup
 save the cluster configuration information for a PRIMECLUSTER node

cfrestore
 restore saved cluster configuration formation on a PRIMECLUSTER node

14.2 CF

System administration

cfconfig
 configure or unconfigure a node for a PRIMECLUSTER cluster

cfset
 apply or modify /etc/default/cluster.config entries into the CF module

cfrecon
 dynamically reconfigure the cluster interconnects used by a node

cftool
 print node communications status for a node or the cluster
rcqconfig
 configure or report cluster quorum settings

rcqquery
 acquire the state of consistency (quorum) of the cluster

14.3 CIP

System administration

cipconfig
 start or stop CIP 2.0

ciptool
 retrieve CIP information about local and remote nodes in the cluster

File format

cip.cf

14.4 PAS

System administration

mipcstat
 MIPC statistics

clmstat
 CLM statistics

14.5 Resource Database

To display a Resource Database manual page, add
/etc/opt/FJSVcluster/man to the MANPATH environment variable.

System administration

clautoconfig
 execute of the automatic resource registration
Appendix—List of manual pages

Resource Database

c1backuprdb
 save the resource database

clexec
 execute the remote command

c1deldevice
 delete resource registered by automatic resource registration

c1initreset
 reset the resource database

c1initscript
 report the connection confirmation results for shared disk units

c1restorerdb
 restore the resource database

c1setacfparam
 check the connections of shared disk units and set up the operation for automatic resource registration

c1setparam
 display and change the resource database operational environment

c1setup
 set up the resource database

c1spconfig
 set up the operation of patrol diagnosis

c1spctl
 execute patrol diagnosis

c1startrsc
 activate resource (only GDS)

c1stoprsc
 deactivate resource (only GDS)

c1syncfile
 distribute a file between cluster nodes

User command

c1gettree
 display the tree information of the resource database
14.6 RMS

System administration

`hvassert`
assert (test for) an RMS resource state

`hvattr`
make clusterwide attribute changes at runtime from a single node
(installed with the Wizard Tools)

`hvcm`
start the RMS configuration monitor

`hvconfig`
display or save the RMS configuration file

`hvdisp`
display RMS resource information

`hvdump`
collect debugging information about RMS

`hvlogclean`
clean RMS log files

`hvlogcontrol`
control the volume of log disks

`hvreset`
reinitialize the graph of an RMS user application (for use by experts in
test conditions only—not for use on production clusters)

`hvsetenv`
control automatic startup of RMS or all user applications on the local host

`hvshut`
shut down RMS

`hvswitch`
switch control of an RMS user application resource to another node

`hvutil`
manipulate availability of an RMS resource
Appendix—List of manual pages

File formats

`config.us`
RMS configuration file

`hvenv.local`
RMS local environment variables file

`hvgdstartup`
RMS generic detector startup file

14.7 SF

System administration

`rcsd`
shutdown daemon for the Shutdown Facility

`sdtool`
interface tool for the shutdown daemon

`sfcipher`
tool for encrypting passwords

File formats

`rcsd.cfg`
configuration file for the shutdown daemon

`SA_blade.cfg`
configuration file for FTS server blade shutdown agent

`SA_ipmi.cfg`
configuration file for the BMC (Board Management Controller) shutdown agent on IPMI (Intelligent Platform Management Interface) compliant platforms

`SA_pprci.cfg`
configuration file for RCI shutdown agent

`SA_rccu.cfg`
configuration file for RCCU shutdown agent

`SA_SATxscf.cfg`
configuration file for Solaris midrange server XSCF board shutdown agent
SA_SATxscf2.cfg
 configuration file for Solaris APL server XSCF board shutdown agent

SA_scon.cfg
 configuration file for SCON shutdown agent

SA_sspint.cfg
 configuration file for Sun E10000 shutdown agent

SA_sunF.cfg
 configuration file for sunF system controller shutdown agent

SA_wtinps.cfg
 configuration file for WTI NPS shutdown agent

SA_icmp.cfg
 configuration file for ICMP shutdown agent

SA_vmSPgp.cfg
 configuration file for shutdown agent (for panic) of Virtual Machine Service Provider (vmSP)

SA_vmSPgr.cfg
 configuration file for shutdown agent (for reset) of Virtual Machine Service Provider (vmSP)

SA_vmchkhost.cfg
 configuration file for shutdown agent of vmchkhost (Host OS check)

To see the system administration man pages for any of the above shutdown agents, omit the ‘.cfg’ suffix.

CIP configuration file format

14.8 Monitoring Agent

System administration

c1devparam
 change and display the tunable operation environment for asynchronous monitoring
Appendix—List of manual pages

clmmbmonctl
start, stop, restart, and display the operating system of the MMB asynchronous monitoring daemon

clmmbsetup
register, change, delete, and display MMB information

crccimonctl
start, stop or restart of the RCI monitoring agent daemon, and display of daemon presence

clrccumonctl
start, stop or restart of the console monitoring agent daemon, and display of daemon presence

clrccussetup
register, change, delete, or display console information

14.9 Web-Based Admin View

System administration

fjsvwvbs
stop Web-Based Admin View

fjsvwvcnf
start, stop, or restart the web server for Web-Based Admin View

wvconf
configure Web-Based Admin View for a cluster

wvCntl
start, stop, or get debugging information for Web-Based Admin View

wvGetparam
display Web-Based Admin View's environment variable

wvSetparam
set Web-Based Admin View environment variable

wvstat
display the operating status of Web-Based Admin View
14.10 RMS Wizards

RMS Wizard Tools and RMS Wizard Kit
RMS Wizards are documented as HTML pages in the `SMAWRhv-do` package on the CD-ROM. After installing this package, the documentation is available in the following directory:

\(<\text{RELIANT_PATH}>/htdocs.solaris/wizards.en\) (Solaris)
\(<\text{RELIANT_PATH}>/htdocs.linux/wizards.en\) (Linux)

The default value of \(<\text{RELIANT_PATH}>\) is `/opt/SMAW/SMAWRrms/`.

System administration

`clrwzconfig`
set up the linking function between the PRIMECLUSTER resource manager and the middleware products after the RMS configuration definitions are activated

14.11 Miscellaneous utilities

`cluster_uninstall`
uninstall PRIMECLUSTER software (man page available only for Solaris)

`sshconf`
configure `ssh` access between two or more nodes
15 Appendix—Release information

This appendix provides information about the changed sections in this manual.

<table>
<thead>
<tr>
<th>No</th>
<th>VL</th>
<th>Edition</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.3A10</td>
<td>June 2011</td>
<td>The “Global environment variables”</td>
<td>Changed the explanations of the following global environment variables:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- HV_LOG_ACTION_THRESHOLD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- HV_LOH_INTERVAL</td>
</tr>
<tr>
<td>2</td>
<td>4.3A10</td>
<td>June 2011</td>
<td>The “SF”</td>
<td>Changed file formats.</td>
</tr>
<tr>
<td>3</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “Abbreviations”</td>
<td>Deleted Solaris 9 and added Solaris 11 for the supported OSes.</td>
</tr>
<tr>
<td>4</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “Using the Wizard Tools interface (hwv)”</td>
<td>Deleted "3.6 Further reading."</td>
</tr>
<tr>
<td>5</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “Stopping RMS”</td>
<td>Added an item to Caution when stopping RMS on a node selected in the list.</td>
</tr>
<tr>
<td>6</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “Stopping RMS”</td>
<td>Added the explanation to Caution that RMS should not be stopped while RMS is running.</td>
</tr>
<tr>
<td>7</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “Switching an application”</td>
<td>Changed the explanation of Priority switch and Caution.</td>
</tr>
<tr>
<td>8</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “Entering maintenance mode”</td>
<td>Added application statues for which maintenance mode can be started.</td>
</tr>
<tr>
<td>9</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “Exiting maintenance mode”</td>
<td>Added explanations for exiting maintenance mode.</td>
</tr>
<tr>
<td>10</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>8.2.1.1 Optional fields</td>
<td>Deleted the description of MAC address.</td>
</tr>
<tr>
<td>No</td>
<td>VL</td>
<td>Edition</td>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>-------------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “Global environment variables”</td>
<td>Changed the description of RELIANT_SHUT_MIN_WAIT.</td>
</tr>
<tr>
<td>12</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “Local environment variables”</td>
<td>Changed the default value of HV_CONNECT_TIMEOUT.</td>
</tr>
<tr>
<td>13</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “SF”</td>
<td>Deleted "PRIMEPOWER" from the explanation of SA_pprci.cfg.</td>
</tr>
<tr>
<td>14</td>
<td>4.3A10</td>
<td>February 2012</td>
<td>The “Glossary”</td>
<td>Added explanations.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- automatic power control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- mixed model cluster</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- switching mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- synchronized power control</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.3A20</td>
<td>December 2012</td>
<td>The “Main Cluster Admin window”</td>
<td>Added Note that SIS is not available in PRIME-CLUSTER 4.3.</td>
</tr>
<tr>
<td>16</td>
<td>4.3A20</td>
<td>December 2012</td>
<td>The “Network interface names in”</td>
<td>Added the explanation of IPv6 address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>/etc/hosts” “/opt/SMAW/SMAW Rrms/etc/hvipalias”</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4.3A20</td>
<td>December 2012</td>
<td>The “/opt/SMAW/SMAW Rrms/etc/hvipalias”</td>
<td>Changed the explanation of IfDevice field.</td>
</tr>
<tr>
<td>18</td>
<td>4.3A20</td>
<td>December 2012</td>
<td>8.2.1.1 Optional fields</td>
<td>Deleted the entire section.</td>
</tr>
<tr>
<td>19</td>
<td>4.3A20</td>
<td>December 2012</td>
<td>All</td>
<td>Deleted the explanation of SIS.</td>
</tr>
<tr>
<td>20</td>
<td>4.3A20</td>
<td>February 2013</td>
<td>The “Login”</td>
<td>Changed GUlIs.</td>
</tr>
</tbody>
</table>
Appendix—Release information

<table>
<thead>
<tr>
<th>No</th>
<th>VL</th>
<th>Edition</th>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>4.3A20</td>
<td>February 2013</td>
<td>The “Clearing a SysNode Wait state”</td>
<td>Changed the explanation to clear the Wait state of SysNode.</td>
</tr>
</tbody>
</table>
Glossary

Items in this glossary that apply to specific PRIMECLUSTER components are indicated with the following notation:

- (CF)—Cluster Foundation
- (PCS)—PRIMECLUSTER Configuration Services
- (RMS)—Reliant Monitor Services
- (SIS)—Scalable Internet Services

Some of these products may not be installed on your cluster. See your PRIMECLUSTER sales representative for more information.

AC
See Access Client.

Access Client
GFS kernel module on each node that communicates with the Meta Data Server and provides simultaneous access to a shared file system.

administrative LAN
An optional private local area network (LAN) used for administrative commands to the nodes in the cluster. To provide an extra level of security, normal users do not have access to the administrative LAN. In PRIMECLUSTER configurations, the System Console and Cluster Console reside on the administrative LAN if one is present.

See also public LAN.

API
See Application Program Interface.

application (RMS)
In the RMS context, an application object is a special resource used to group other resources into a logical collection. Typically, it is used to represent a real-world application or application suite in a high-availability configuration.

Application Program Interface
A shared boundary between a service provider and the application that uses that service.
application template (RMS)
A predefined group of object definition value choices used by PCS, the Wizard Tools, or the PCS Wizard Kit to create object definitions for a specific type of application.

attribute (RMS)
The part of an object definition that specifies how the base monitor acts and reacts for a particular object type during normal operations.

automatic power control
This function is provided by the Enhanced Support Facility (ESF), and it automatically switches the server power on and off.

automatic switchover (RMS)
The procedure by which RMS automatically switches control of a userApplication over to another node after specified conditions are detected.

See also directed switchover (RMS), failover (RMS, SIS), switchover (RMS), symmetrical switchover (RMS).

availability
Availability describes the need of most enterprises to operate applications via the Internet 24 hours a day, 7 days a week. The relationship of the actual to the planned usage time determines the availability of a system.

base cluster foundation (CF)
This PRIMECLUSTER module resides on top of the basic OS and provides internal interfaces for the CF (Cluster Foundation) functions that the PRIMECLUSTER services use in the layer above.

See also Cluster Foundation (CF).

base monitor (RMS)
The RMS module that maintains the availability of resources. The base monitor is supported by daemons and detectors. Each node being monitored has its own copy of the base monitor.

Cache Fusion
The improved interprocess communication interface in Oracle 9i that allows logical disk blocks (buffers) to be cached in the local memory of each node. Thus, instead of having to flush a block to disk when an update is required, the block can be copied to another node by passing a message on the interconnect, thereby removing the physical I/O overhead.
CCBR
See Cluster Configuration Backup and Restore.

CF
See Cluster Foundation (CF).

CF node name (CF)
The CF cluster node name, which is configured when a CF cluster is created.

child (RMS)
A resource defined in the configuration file that has at least one parent. A child can have multiple parents, and can either have children itself (making it also a parent) or no children (making it a leaf object).

See also resource (RMS), object (RMS), parent (RMS).

cluster
A set of computers that work together as a single computing source. Specifically, a cluster performs a distributed form of parallel computing.

See also RMS configuration (RMS).

Cluster Admin
A Java-based, OS-independent management tool for PRIMECLUSTER products such as CF, SIS, RMS and PCS. Cluster Admin is available from the Web-Based Admin View interface.

See also Cluster Foundation (CF), Scalable Internet Services (SIS), Reliant Monitor Services (RMS), PRIMECLUSTER Configuration Services (PCS), Web-Based Admin View.

Cluster Configuration Backup and Restore
CCBR provides a simple method to save the current PRIMECLUSTER configuration information of a cluster node. It also provides a method to restore the configuration information.

Cluster Foundation (CF)
The set of PRIMECLUSTER modules that provides basic clustering communication services.

See also base cluster foundation (CF).

cluster interconnect (CF)
The set of private network connections used exclusively for PRIMECLUSTER communications.
Glossary

Cluster Join Services (CF)
This PRIMECLUSTER module handles the forming of a new cluster and the addition of nodes.

Configuration Definition Language (PCS)
The syntax for PCS configuration templates.

See also PRIMECLUSTER Configuration Services (PCS).

configuration file (RMS)
In the RMS context, the single file that defines the monitored resources and establishes the interdependencies between them. The default name of this file is config.us.

console
See single console.

custom detector (RMS)
See detector (RMS).

custom type (RMS)
See generic type (RMS).

daemon
A continuous process that performs a specific function repeatedly.

database node (SIS)
Nodes that maintain the configuration, dynamic data, and statistics in a SIS configuration.

See also gateway node (SIS), service node (SIS), Scalable Internet Services (SIS).

detector (RMS)
A process that monitors the state of a specific object type and reports a change in the resource state to the RMS base monitor.

DHCP
Dynamic Host Control Protocol. A standard method of delivering information to a host at boot time. This is most often used to dynamically assign the host's IP address and netmask, but many other parameters are possible, including domain names, DNS servers, and time servers.

directed switchover (RMS)
The RMS procedure by which an administrator switches control of a user Application over to another node.
See also automatic switchover (RMS), failover (RMS, SIS), switchover (RMS), symmetrical switchover (RMS).

DOWN (CF)
A node state that indicates that the node is unavailable (marked as down). A LEFTCLUSTER node must be marked as DOWN before it can rejoin a cluster.

See also UP (CF), LEFTCLUSTER (CF), node state (CF).

Enhanced Lock Manager (ELM) (CF)
A light weight, high performance, highly responsive lock manager, specifically designed for providing a high reliability heartbeat messaging mechanism for PRIMECLUSTER modules.

ENS (CF)
See Event Notification Services (CF).

environment variables
Variables or parameters that are defined globally.

error detection (RMS)
The process of detecting an error. For RMS, this includes initiating a log entry, sending a message to a log file, or making an appropriate recovery response.

Event Notification Services (CF)
This PRIMECLUSTER module provides an atomic-broadcast facility for events.

failover (RMS, SIS)
With SIS, this process switches a failed node to a backup node. With RMS, this process is known as switchover.

See also automatic switchover (RMS), directed switchover (RMS), switchover (RMS), symmetrical switchover (RMS).

gateway node (SIS)
Gateway nodes have an external network interface. All incoming packets are received by this node and forwarded to the selected service node, depending on the scheduling algorithm for the service.

See also service node (SIS), database node (SIS), Scalable Internet Services (SIS).

GDS
See Global Disk Services.
Glossary

generic type *(RMS)*
An object type which has generic properties. A generic type is used to customize RMS for monitoring resources that cannot be assigned to one of the supplied object types.

See also object type *(RMS)*.

GFS
See Global File Services.

Global Disk Services
This optional product provides volume management that improves the availability and manageability of information stored on the disk unit of the Storage Area Network *(SAN)*.

Global File Services
This optional product provides direct, simultaneous accessing of the file system on the shared storage unit from two or more nodes within a cluster.

Global Link Services
This PRIMECLUSTER optional module provides network high availability solutions by multiplying a network route.

GLS
See Global Link Services.

generic type *(RMS)*
An object type which has generic properties. A generic type is used to customize RMS for monitoring resources that cannot be assigned to one of the supplied object types.

See also object type *(RMS)*.

graph *(RMS)*
See system graph *(RMS)*.

graphical user interface
A computer interface with windows, icons, toolbars, and pull-down menus that is designed to be simpler to use than the command-line interface.

GUI
See graphical user interface.
Glossary

high availability
A system design philosophy in which redundant resources are employed to avoid single points of failure.

See also Reliant Monitor Services (RMS).

Intelligent Platform Management Interface
A firmware and hardware specification that provides common interfaces for monitoring and managing computers. IPMI operates through an onboard Baseboard Management Controller (BMC) on the target machine to provide OS-independent remote management functions, whether or not the target machine is powered on.

interconnect (CF)
See cluster interconnect (CF).

Internet Protocol address
A numeric address that can be assigned to computers or applications.

See also *IP aliasing*.

Internode Communications facility
This module is the network transport layer for all PRIMECLUSTER internode communications. It interfaces by means of OS-dependent code to the network I/O subsystem and guarantees delivery of messages queued for transmission to the destination node in the same sequential order unless the destination node fails.

IP address
See *Internet Protocol address*.

IP aliasing
This enables several IP addresses (aliases) to be allocated to one physical network interface. With IP aliasing, the user can continue communicating with the same IP address, even though the application is now running on another node.

See also *Internet Protocol address*.

IPMI
See *Intelligent Platform Management Interface*.

JOIN (CF)
See *Cluster Join Services (CF)*.
Glossary

keyword
A word that has special meaning in a programming language. For example, in an RMS configuration file, the keyword object identifies the kind of definition that follows.

leaf object (RMS)
A bottom object in a system graph. In the configuration file, this object definition is at the beginning of the file. A leaf object does not have children.

LEFTCLUSTER (CF)
A node state that indicates that the node cannot communicate with other nodes in the cluster. That is, the node has left the cluster. The reason for the intermediate LEFTCLUSTER state is to avoid the network partition problem.

See also **UP (CF)**, **DOWN (CF)**, **network partition (CF)**, **node state (CF)**.

link (RMS)
Designates a child or parent relationship between specific resources.

local area network
See **public LAN**.

local node
The node from which a command or process is initiated.

See also **remote node**, **node**.

log file
The file that contains a record of significant system events or messages. The ASCC control and satellite daemons maintain log files on every node on which they run. The Wizard Tools, PCS, the RMS base monitor, and RMS detectors each maintain their own log files as well.

Management Information Base
A hierarchical database of information about the local network device. The database is maintained by network management software such as an SNMP agent.

See also **Simple Network Management Protocol**.

MDS
See **Meta Data Server**.

message
A set of data transmitted from one software process to another process, device, or file.
message queue
A designated memory area which acts as a holding place for messages so they can be processed in the same order they were received.

Meta Data Server
GFS daemon that centrally manages the control information, or meta-data, of a file system.

MIB
See Management Information Base.

MMB
Abbreviation for Management Board, which is one of the hardware units installed in PRIMEQUEST.

mixed model cluster
A cluster system that is built from different SPARC Enterprise models. For example, one node is SPARC Enterprise M3000, and another node is SPARC Enterprise M4000. The models are divided into the following groups: SPARC T3-1/T3-2/T3-4, SPARC Enterprise T1000/T2000, SPARC Enterprise T5120/T5220/T5140/T5240/T5440, and SPARC Enterprise M3000/M4000/M5000/M8000/M9000.

mount point
The point in the directory tree where a file system is attached.

multihosting
Multiple controllers simultaneously accessing a set of disk drives.

native operating system
The part of an operating system that is always active and translates system calls into activities.

network partition (CF)
This condition exists when two or more nodes in a cluster cannot communicate over the interconnect; however, with applications still running, the nodes can continue to read and write to a shared device, compromising data integrity.

node
A host that is a member of a cluster.
node state (CF)
Every node in a cluster maintains a local state for every other node in that cluster. The node state of every node in the cluster must be either UP, DOWN, or LEFTCLUSTER.

See also UP (CF), DOWN (CF), LEFTCLUSTER (CF).

object (RMS)
A representation of a physical or virtual resource in the RMS configuration file or in a system graph.

See also leaf object (RMS), object definition (RMS), object type (RMS).

object definition (RMS)
An entry in the configuration file that identifies a resource to be monitored by RMS. Attributes included in the definition specify properties of the corresponding resource.

See also attribute (RMS), object type (RMS).

object type (RMS)
A category of similar resources monitored as a group, such as disk drives. Each object type has specific properties, or attributes, which limit or define what monitoring or action can occur. When a resource is associated with a particular object type, attributes associated with that object type are applied to the resource.

See also generic type (RMS).

online maintenance
The capability of adding, removing, replacing, or recovering devices without shutting or powering off the node.

operating system dependent (CF)
This module provides an interface between the native operating system and the abstract, OS-independent interface that all PRIMECLUSTER modules depend upon.

Oracle Real Application Clusters (RAC)
Oracle RAC allows access to all data in a database to users and applications in a clustered or MPP (massively parallel processing) platform. Formerly known as Oracle Parallel Server (OPS).

OSD (CF)
See operating system dependent (CF).
parent (RMS)
An object in the RMS configuration file or system graph that has at least one child.
See also child (RMS), configuration file (RMS), leaf object (RMS), system graph (RMS).

PCS
See PRIMECLUSTER Configuration Services (PCS).

PCS Wizard Kit (PCS)
RMS configuration products that have been designed for specific applications. Each component of the PCS Wizard Kit includes customized default settings, subapplications, detectors, and scripts. These application wizards also tailor the PCS interface to provide controls for the additional features.
See also PCS, Reliant Monitor Services (RMS).

primary node (RMS)
The default node on which a user application comes online when RMS is started. This is always the node name of the first child listed in the userApplication object definition.

PRIMECLUSTER Configuration Services (PCS)
The graphical configuration interface for PRIMECLUSTER products. PCS uses standard templates written in Configuration Definition Language (CDL) to provide a user-friendly configuration environment for products such as RMS. The standard templates can be modified or replaced to provide a customized interface for specific applications or installations.

PRIMECLUSTER services (CF)
Service modules that provide services and internal interfaces for clustered applications.

private network addresses
Private network addresses are a reserved range of IP addresses specified by the Internet Corporation for Assigned Names and Numbers (ICANN). Modern switches and routers prevent these addresses from being routed to the Internet, allowing two or more organizations to assign the same private addresses for internal use without causing conflicts or security risks.
Glossary

private resource (RMS)
A resource accessible only by a single node and not accessible to other RMS nodes.

See also resource (RMS), shared resource.

public LAN
The local area network (LAN) by which normal users access a machine.

See also administrative LAN.

queue
See message queue.

redundancy
The capability of one component to assume the resource load of another physically similar component in case the original component fails or is shut down. Common examples include RAID hardware and/or RAID software to replicate data stored on secondary storage devices, multiple network connections to provide alternate data paths, and multiple nodes that can be dynamically reprovisioned to maintain critical services in a cluster.

Reliant Monitor Services (RMS)
The package that maintains high availability of user-specified resources by providing monitoring and switchover capabilities on Linux and Solaris platforms.

remote node
A node that is accessed through a LAN or telecommunications line.

See also local node, node.

reporting message (RMS)
A message that a detector uses to report the state of a particular resource to the base monitor.

resource (RMS)
A hardware or software element (private or shared) that provides a function such as a mirrored disk, mirrored disk pieces, or a database server. A local resource is monitored only by the local node.

See also private resource (RMS), shared resource.

resource definition (RMS)
See object definition (RMS).
resource label (RMS)
The name of the resource as displayed in a system graph.

resource state (RMS)
Current state of a resource.

RMS
See Reliant Monitor Services (RMS).

RMS commands (RMS)
Commands that enable RMS resources to be administered from the command line.

RMS configuration (RMS)
A configuration made up of two or more nodes connected to shared resources. Each node has its own copy of operating system and RMS software, as well as its own applications.

RMS Wizard Kit (RMS)
RMS configuration products that have been designed for specific applications. Each component of the Wizard Kit includes customized default settings, subapplications, detectors, and scripts. These application wizards also tailor the RMS Wizard Tools interface to provide controls for the additional features.

See also RMS Wizard Tools (RMS), Reliant Monitor Services (RMS).

RMS Wizard Tools (RMS)
A software package composed of various configuration and administration tools used to create and manage applications in an RMS configuration.

See also RMS Wizard Kit (RMS), Reliant Monitor Services (RMS).

SAN
See Storage Area Network.

scalability
The ability of a computing system to efficiently handle any dynamic change in work load. Scalability is especially important for Internet-based applications where growth caused by Internet usage presents a scalable challenge.

Scalable Internet Services (SIS)
The package that dynamically balances network traffic loads across cluster nodes while maintaining normal client/server sessions for each connection.
Glossary

SCON
See *single console*.

script (RMS)
A shell program executed by the base monitor in response to a state transition in a resource. The script may cause the state of a resource to change.

service node (SIS)
Service nodes provide one or more TCP services (such as FTP, Telnet, and HTTP) and receive client requests forwarded by the gateway nodes.

See also *database node (SIS), gateway node (SIS), Scalable Internet Services (SIS)*.

SF
See *Shutdown Facility*.

shared resource
A resource, such as a disk drive, that is accessible to more than one node.

See also *private resource (RMS), resource (RMS)*.

Shutdown Facility
The PRIMECLUSTER interface that manages the shutdown of cluster nodes. The SF is automatically invoked during failover operations. It also notifies other PRIMECLUSTER products of the successful completion of node shutdown so that recovery operations can begin.

Simple Network Management Protocol
A set of protocols that facilitates the exchange of information between managed network devices. The protocols are implemented by software agents residing in the devices. Each agent can read and write data in the local Management Information Base (MIB) in response to SNMP requests from other devices on the network.

See also *Management Information Base*.

single console
The workstation that acts as the single point of administration for nodes being monitored by RMS. The single console software, SCON, is run from the single console.

SIS
See *Scalable Internet Services (SIS)*.
Glossary

SNMP

state
See resource state (RMS).

Storage Area Network
The high-speed network that connects multiple, external storage units and storage units with multiple computers. The connections are generally fiber channels.

subapplication (RMS)
A part of the configuration template that is designed to configure one resource type for high availability. The RMS configuration may include multiple instances of each resource type. The Generic template contains subapplications for commands, application controllers, IP addresses, virtual network interfaces, local and remote file systems, volume managers, and storage managers.

switching mode
LAN duplexing mode presented by GLS. There is a total of five switching mode types: fast switching mode, NIC switching mode, GS/SURE linkage mode, multipath mode, and multilink Ethernet mode.

switchover (RMS)
The process by which RMS switches control of a userApplication over from one monitored node to another.

See also automatic switchover (RMS), directed switchover (RMS), failover (RMS, SIS), symmetrical switchover (RMS).

symmetrical switchover (RMS)
This means that every RMS node is able to take on resources from any other RMS node.

See also automatic switchover (RMS), directed switchover (RMS), failover (RMS, SIS), switchover (RMS).

synchronized power control
When the power of one node is turned in the cluster system, this function turns on all other powered-off nodes and disk array unit that are connected to nodes through RCI cables.

system disk (GDS)
Glossary

Disk on which the active operating system is installed. System disk refers to the entire disk that contains the slices that are currently operating as one of the following file systems (or the swap area):

For Solaris: /, /usr, /var, or swap area
For Linux: /, /usr, /var, /boot, /boot/efi, or swap area

system graph (RMS)
A visual representation (a map) of monitored resources used to develop or interpret the RMS configuration file.

See also configuration file (RMS).

template
See application template (RMS).

type
See object type (RMS).

UP (CF)
A node state that indicates that the node can communicate with other nodes in the cluster.

See also DOWN (CF), LEFTCLUSTER (CF), node state (CF).

virtual disk
A pseudo-device that allows a portion or a combination of physical disks to be treated as a single logical disk. The virtual disk driver is inserted between the highest level of the OS logical input/output (I/O) system and the physical device driver(s), allowing all logical I/O requests to be mapped to the appropriate area on the physical disk(s).

See also subapplication (RMS).

Web-Based Admin View
A Java-based, OS-independent interface to PRIMECLUSTER management components.

See also Cluster Admin.

wizard (RMS)
An interactive software tool that creates a specific type of application using pretested object definitions.

Wizard Kit (RMS)
See PCS Wizard Kit (PCS), RMS Wizard Kit (RMS).

Wizard Tools (RMS)
See RMS Wizard Tools (RMS).
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Access Client</td>
</tr>
<tr>
<td>API</td>
<td>application program interface</td>
</tr>
<tr>
<td>AS</td>
<td>Adaptive Services</td>
</tr>
<tr>
<td>bm</td>
<td>base monitor</td>
</tr>
<tr>
<td>CCBR</td>
<td>Cluster Configuration Backup/Restore</td>
</tr>
<tr>
<td>CDL</td>
<td>Configuration Definition Language</td>
</tr>
<tr>
<td>CF</td>
<td>Cluster Foundation or Cluster Framework</td>
</tr>
<tr>
<td>CIM</td>
<td>Cluster Integrity Monitor</td>
</tr>
<tr>
<td>CIP</td>
<td>Cluster Interconnect Protocol</td>
</tr>
<tr>
<td>CLI</td>
<td>command line interface</td>
</tr>
<tr>
<td>CLM</td>
<td>Cluster Manager</td>
</tr>
<tr>
<td>CRM</td>
<td>Cluster Resource Management</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Control Protocol</td>
</tr>
<tr>
<td>DLPI</td>
<td>Data Link Provider Interface</td>
</tr>
<tr>
<td>ELM</td>
<td>Enhanced Lock Manager</td>
</tr>
</tbody>
</table>
Abbreviations

ENS Event Notification Services
GDS Global Disk Services
GFS Global File Services
GLS Global Link Services
GUI graphical user interface
HA high availability
ICF Internode Communication Facility
I/O input/output
IPMI Intelligent Platform Management Interface
JOIN cluster join services module
LAN local area network
MDS Meta Data Server
MIB Management Information Base
MIPC Mesh Interprocessor Communication
MMB Management Board (on PRIMEQUEST systems)
NIC network interface card
Abbreviations

NSM
Node State Monitor

OSD
operating system dependent

PAS
Parallel Application Services

PCS
PRIMECLUSTER Configuration Services

RCCU
Remote Console Control Unit

RCI
Remote Cabinet Interface

RMS
Reliant Monitor Services

SA
Shutdown Agent

SAN
Storage Area Network

SCON
single console software

SD
Shutdown Daemon

SF
Shutdown Facility

SIS
Scalable Internet Services

SNMP
Simple Network Management Protocol

VIP
Virtual Interface Provider

XSCF
eXtended System Control Facility
Abbreviations
Figures

Figure 1: Overview of PRIMECLUSTER products 10
Figure 2: Interface between RMS and the operating system 15
Figure 3: Parent application with two dependencies 18
Figure 4: RMS representation of controlled application 19
Figure 5: Result of follow-mode switchover 20
Figure 6: Scalable mode child (controlled) application switchover 21
Figure 7: Scalable mode parent (controlling) application switchover 21
Figure 8: Controller structure with multiple children 22
Figure 9: Relationship between RMS and RMS Wizards 24
Figure 10: Main configuration menu when RMS is not active 42
Figure 11: Main configuration menu when RMS is running 46
Figure 12: Application type selection 47
Figure 13: Menu leading to basic settings 48
Figure 14: Menu to configure basic settings 49
Figure 15: Menu to configure non-basic settings 50
Figure 16: Main configuration menu 51
Figure 17: Activating a configuration 52
Figure 18: Quitting the Main configuration menu 53
Figure 19: Main configuration menu 58
Figure 20: Add hosts to a cluster menu 60
Figure 21: Remove hosts from a cluster menu 60
Figure 22: Main configuration menu 62
Figure 23: Application type selection menu 62
Figure 24: Prompting for further actions 64
Figures

Figure 25: Consistency check and Machines+Basics menu 65
Figure 26: List of nodes for failover procedure 66
Figure 27: Machines+Basics menu for additional nodes 67
Figure 28: AutoSwitchOver mode 67
Figure 29: Setting flags for AutoSwitchOver mode 68
Figure 30: Saving settings 69
Figure 31: Non-basic settings 70
Figure 32: Prompting for display specification 71
Figure 33: List of display options 72
Figure 34: Successful consistency check for APP1 73
Figure 35: Turnkey wizard DEMO 74
Figure 36: Main configuration menu 75
Figure 37: Successful configuration activation 75
Figure 38: Quitting the Main configuration menu 76
Figure 39: Starting again with the Main configuration menu 77
Figure 40: Application type selection menu 78
Figure 41: Prompting for further specification 79
Figure 42: Machines+Basics menu 79
Figure 43: List of nodes for failover procedure 80
Figure 44: Machines+Basics menu 80
Figure 45: Non-basic settings 81
Figure 46: Assigning a controller 82
Figure 47: List of applications to be chosen as controlled applications 82
Figure 48: Menu for setting controller flags 83
Figure 49: Changing controller timeout period 83
Figure 50: Saving flags for controller 84
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 51:</td>
<td>Indication of flags set for controller</td>
<td>84</td>
</tr>
<tr>
<td>Figure 52:</td>
<td>Menu with settings for GENERIC turnkey wizard</td>
<td>85</td>
</tr>
<tr>
<td>Figure 53:</td>
<td>Main configuration menu</td>
<td>85</td>
</tr>
<tr>
<td>Figure 54:</td>
<td>Main configuration menu</td>
<td>86</td>
</tr>
<tr>
<td>Figure 55:</td>
<td>Activating the configuration for the second time</td>
<td>86</td>
</tr>
<tr>
<td>Figure 56:</td>
<td>Return to Main configuration menu</td>
<td>87</td>
</tr>
<tr>
<td>Figure 57:</td>
<td>Web-Based Admin View login</td>
<td>91</td>
</tr>
<tr>
<td>Figure 58:</td>
<td>Invoking the Cluster Services GUI</td>
<td>92</td>
</tr>
<tr>
<td>Figure 59:</td>
<td>Invoking Cluster Admin</td>
<td>92</td>
</tr>
<tr>
<td>Figure 60:</td>
<td>Cluster Admin initial connection menu</td>
<td>93</td>
</tr>
<tr>
<td>Figure 61:</td>
<td>Main Cluster Admin window—Initial view</td>
<td>94</td>
</tr>
<tr>
<td>Figure 62:</td>
<td>Main Cluster Admin window—message view</td>
<td>96</td>
</tr>
<tr>
<td>Figure 63:</td>
<td>Main Cluster Admin window—RMS view</td>
<td>97</td>
</tr>
<tr>
<td>Figure 64:</td>
<td>RMS tree with a controller object</td>
<td>99</td>
</tr>
<tr>
<td>Figure 65:</td>
<td>Pop-up context menu for a node</td>
<td>100</td>
</tr>
<tr>
<td>Figure 66:</td>
<td>Pop-up context menu for an online application</td>
<td>101</td>
</tr>
<tr>
<td>Figure 67:</td>
<td>Pop-up context menu for an offline application</td>
<td>101</td>
</tr>
<tr>
<td>Figure 68:</td>
<td>Pop-up confirmation dialog</td>
<td>102</td>
</tr>
<tr>
<td>Figure 69:</td>
<td>Displaying global environment variables</td>
<td>102</td>
</tr>
<tr>
<td>Figure 70:</td>
<td>Global environment variable view</td>
<td>103</td>
</tr>
<tr>
<td>Figure 71:</td>
<td>Displaying local environment variables</td>
<td>103</td>
</tr>
<tr>
<td>Figure 72:</td>
<td>Local environment variables view</td>
<td>104</td>
</tr>
<tr>
<td>Figure 73:</td>
<td>Displaying application and object states</td>
<td>105</td>
</tr>
<tr>
<td>Figure 74:</td>
<td>Configuration information or object attributes</td>
<td>106</td>
</tr>
<tr>
<td>Figure 75:</td>
<td>Opening the clusterwide table</td>
<td>107</td>
</tr>
<tr>
<td>Figure 76:</td>
<td>Clusterwide table</td>
<td>107</td>
</tr>
</tbody>
</table>
Figures

Figure 77: Clusterwide table with state names 108
Figure 78: Faulted applications in the clusterwide table 108
Figure 79: Offline applications in the clusterwide table 109
Figure 80: Faulted and offline applications in the clusterwide table . 109
Figure 81: Split-brain conditions in the clusterwide table 110
Figure 82: Using context menus in the clusterwide table 110
Figure 83: Viewing the RMS full graph on a node 112
Figure 84: RMS full graph on a node—tab view 113
Figure 85: Detail of tab view showing detach button 113
Figure 86: RMS full graph on a node—separate window view 114
Figure 87: Detail of separate window view showing attach button ... 114
Figure 88: RMS full graph—object tooltip 115
Figure 89: RMS full graph—object details 116
Figure 90: Viewing an RMS application graph 116
Figure 91: Typical RMS application graph 117
Figure 92: Viewing an RMS subapplication graph 118
Figure 93: Typical RMS subapplication graph 118
Figure 94: Standard view of configuration with controlled application 119
Figure 95: Viewing an RMS composite subapplication graph 120
Figure 96: Typical composite subapplication graph 120
Figure 97: Using a pop-up context menu from the RMS graph 121
Figure 98: Displaying an RMS graph with affiliation names 122
Figure 99: RMS graph with resource names 123
Figure 100: RMS graph with resource names 124
Figure 101: RMS graph with resource and affiliation names 125
Figure 102: Sorting object names in the graph 125
Figures

Figure 103: Cluster state before RMS is shut down 126
Figure 104: Cluster state after RMS restart with different configuration 127
Figure 105: RMS main view, graphs, and clusterwide table after shutdown on one node .. 128
Figure 106: Application graph on shutdown node 128
Figure 107: Graph window for deleted object 129
Figure 108: Viewing the RMS switchlog file using a context menu . 130
Figure 109: Viewing the RMS switchlog file using the Tools menu . 130
Figure 110: Viewing an application log using a context menu 131
Figure 111: RMS switchlog in tab view 132
Figure 112: Detail of tab view showing detach button 132
Figure 113: RMS switchlog in detached view 133
Figure 114: Detail of detached window view showing attach button . 133
Figure 115: Search based on date and time range 135
Figure 116: Search based on resource name 136
Figure 117: Search based on severity level 137
Figure 118: Search based on keyword 138
Figure 119: Using the pop-up Find dialog in log viewer 139
Figure 120: Starting RMS from the main menu 141
Figure 121: RMS Start Menu for all nodes 142
Figure 122: RMS Start Menu for individual nodes 143
Figure 123: Starting RMS on individual nodes 143
Figure 124: Controlling automatic RMS startup—step 1 146
Figure 125: Controlling automatic RMS startup—step 2 147
Figure 126: Using the Tools menu to stop RMS 148
Figure 127: Stopping RMS on all available nodes 148
Figures

Figure 128: Stopping RMS on one node from the list 149
Figure 129: Stopping RMS while keeping applications—confirmation 150
Figure 130: Forced shutdown of RMS—confirmation 150
Figure 131: Using the context menu to stop RMS on one node 151
Figure 132: Stopping RMS on one node 151
Figure 133: Controlling automatic application startup—step 1 154
Figure 134: Controlling automatic application startup—step 2 155
Figure 135: Switching an application 156
Figure 136: Switching a busy application 157
Figure 137: Main Cluster Admin window—CF view 159
Figure 138: Main Cluster Admin window—RMS view 161
Figure 139: Starting an application 162
Figure 140: Shutting down an application 163
Figure 141: Resetting an application 164
Figure 142: Choosing the reset timeout for the application 165
Figure 143: Changing an application’s AutoSwitchOver settings—step 1 166
Figure 144: Changing an application’s AutoSwitchOver settings—step 2 167
Figure 145: Clearing an application fault 168
Figure 146: Clearing an application fault—confirmation dialog 168
Figure 147: Starting maintenance mode for all applications 170
Figure 148: Starting maintenance mode for a single application 170
Figure 149: Maintenance mode confirmation for all applications 171
Figure 150: Maintenance mode confirmation for one application 171
Figure 151: Typical cluster in maintenance mode 172
Figure 152: Normal operation of independent application 173
Figure 153: Normal maintenance mode exit for all applications 173
Figures

Figure 154: Normal maintenance mode exit for a single application . . 174
Figure 155: Forced maintenance mode confirmation for all applications 175
Tables

Table 1: Available CLI commands 30
Table 2: RMS base directory structure 34
Table 3: Log directory structure 35
Table 4: RMS severity level description 137
Table 5: RMS host name conventions in /etc/hosts 178
Table 6: States reported by detectors for RMS objects 191
Table 7: Additional states that may be displayed for RMS objects ... 191
Table 8: StateDetails values for RMS objects 193
Index

Symbols
#RMS# entries
 /etc/exports.pcl 185
 /etc/fstab.pcl 183
>> input prompt 41
~ as spaces 71

A
activating
 and hvipalias file 182
 applications 169
 configuration 44, 50, 75
 configuration second time 86
 configurations 141
administrative privileges
 Web-Based Admin View login 91
administrator prerequisites 1
Affiliation attribute 204
alerts
 log viewer 137
AlternateIp attribute 197
andOp objects
 defined 195
applets
 Java, trusted 93
application logs
 searching text 139
 viewing 131
applications
 activating 169
 as objects 14
 autostartup, overriding 154
 AutoSwitchOver, changing at runtime 166
 clearing faults 168
 deactivating 169
 dependencies 98
 displaying states 104
 failover 17
 maintenance mode, clusterwide 171
 objects, overview 55
 offline 163
 online 162
 overriding AutoStartUp 214
 resetting, GUI 164
 resetting, hvreset command 165
 starting, GUI 162
 starting, hvswitch command 162
 stopping, GUI 163
 stopping, hvshut command 151
 switching to Standby state 163
 switching to SysNode 31, 223
 switching, GUI 156
 switching, hvswitch command 157
 viewing attributes 106
 viewing graph 116
 viewing log files 130
 viewing logs 131
attach button
 graph window 114, 133
attributes
 defined 32
 Affiliation 204
 AlternateIp 197
 AutoRecover 197
 AutoRecoverCleanup 197
 AutoStartUp 198
 AutoSwitchOver 198
 Class 204
 ClusterExclusive 198
 Comment 204
 ControlledSwitch 198
 DetectorStartScript 204
 ENV object 195
 FaultScript 199
 for andOp objects 195
 for gController objects 195
 for gResource objects 195
 for orOp objects 195
 for SysNode objects 196
Index

for userApplication objects 196
Halt 199
HostName 205
I_List 199
LastDetectorReport 205
LieOffline 199
MaxControllers 205
MonitorOnly 200
NoDisplay 205
NullDetector 205
OfflineDoneScript 205
OfflineScript 200
OnlinePriority 200
OnlineScript 201
PartialCluster 201
PersistentFault 201
PostOfflineScript 201
PostOnlineScript 201
PreCheckScript 205
PreOfflineScript 201
PreOnlineScript 202
PreserveState 202
PriorityList 202
Resource 202
rName 206
ScriptTimeout 203
ShutdownPriority 203
SplitRequest 206
StandbyCapable 203
StateDetails 206
viewing, for objects 106
WarningScript 204
AutoSwitchOver setting
 updating unreachable nodes 167

B
base monitor
 defined 26
cluster monitoring 211
communication port 210
detectors 55
high availability 13
locking process in memory 215
object states 191
basic settings
 Wizard Tools 48
bin
 RMS directory 34
browser
 starting Cluster Admin 90
build
 RMS directory 34
buttons
 attach, graph window 114, 133
detach, graph tab view 113, 132
Filter, log viewer 134

C
case-insensitive
 searching logs 138
case-sensitive
 searching logs 139
Caution
 defined 6
Do not explicitly set RMS
 environment variables in the
 user environment 33, 207

If the
 HV_AUTOSTARTUP_IGNORE
 environment variable is used,
 ensure that it is correctly
 defined on all cluster nodes
 and that it is always kept up-to-
date 209
Leaving applications running after stopping RMS can lead to data corruption 149
Leaving applications running after stopping RMS or using forced shutdown can cause data corruption 149
Use care when clearing a SysNode Wait state manually 153
Use hvshut -A, -f, and -L options carefully as they could result in inconsistencies or data corruption 152
Use the forced switch mode only if an application cannot be switched normally 157
Use the hvswitch -f option carefully as it could result in inconsistencies or data corruption 158
CCBR commands
cfbackup 225
cforestore 225

CF
defined 10
Cluster Admin view 94
configuration 98
Enhanced Lock Manager for RMS 12
node names 89, 181
required for ELM 211
tabbed view, Cluster Admin 94
trusted login 180

CF commands
cfconfig 225
cfrecon 225
cfset 225
cftool 225
rcqconfig 226
rcquery 226
cftool command 181
changing configurations, and clusterwide table 126
detail level in graphs 122
environment variables 33, 207
HV_AUTOSTARTUP 155
HV_RCSTART 147
CIP
RMS node names 178
CIP commands
cipconfig 226
ciptool 226
cip.cf file 226
Class attribute 204
clautoconfig command 226
clbackuprdb command 227
cldeldevice command 227
clearing
faulted resources 31
faults, GUI 168
faults, hvutil command 169
hung nodes 31, 223
resource faults 223
SysNode Wait state, GUI 152
clexec command 227
cgettree command 227
CLI see RMS commands
CLI see RMS commands
clintreset command 227
climitscript 227
closely coupled applications 20
clresterdb command 227
clrwzconfig command 232
clsetacparam command 227
clsetparam command 227
clsetup command 227
clsconf command 227
clspltl command 227
clstartrsc command 227
clstoprsc command 227
clsynccfile command 227
cluster 1
high availability 10
monitoring by RMS 211
services 9
Cluster Admin 26
administrative privileges 91
Index

application graph 116
clusterwide table 107
context menus 100
graph 119
GUI 89
initial view 94
logging in 91
management server 90
object attributes 106
operator privileges 91
overview 10
pop-up menus 100
RMS graphs 111
RMS tree 98
root privileges 91
searching log text 139
starting 90
switchlog 130
SysNode selection 100
userApplication selection 100
using 90
viewing log files 130
cluster file system 9
Cluster Foundation see CF
cluster nodes see nodes
cluster volume management 9
cluster_uninstall command 232
ClusterExclusive attribute
 defined 198
clusterwide states
 and maintenance mode 171
clusterwide table
 defined 107
context menus 110
displaying state names 108
opening 107
special display order 109
Cmdline, resource wizard 39
command menus see context menus
commands see RMS commands
commands see RMS commands
Comment attribute 204
communication port
 base monitor 210
composite subapplication graph 119
CONFIG.rms
 default RMS startup file 144, 147, 215
configuration tree
 RMS, in Cluster Admin 98
configurations
 defined 11
 activating 141
displaying 30, 222
displaying information 95, 97
general procedure 39
graph 111
 viewing information 106
configuring
 applications 37, 39
 file systems 39
 IP addresses 39
 resources 39
 ssh access between nodes 232
 Web-Based Admin View 231
confirming
 object actions 102
context menus
 closing 100, 111, 121
 Cluster Admin 100
 clusterwide table 110
environment variables 102
equivalence 131
from Cluster Admin 95
graph 121
RMS graph 121
RMS tree 100
stopping RMS 150
switching applications 156
viewing application graph 116
viewing clusterwide table 107
viewing RMS graph 111
viewing subapplication graph 117
viewing switchlog 130
controlled applications
 description 17
 failover 19
ControlledSwitch attribute 198
Controller objects
(resource wizard 39
Scalable mode 20
controller objects
see also controllers
defined 195
dependencies 98
description 17
follow mode 19
graph 120
overview 55
controlling
RMS operation 141
creating
application 58
second application 77
critical errors
log viewer 137

D
Deact state 191
deactivating
applications 169
debug messages
log viewer 137
defining
shutdown timeout 212
deleting
Cluster Admin messages 96
log files 222
log files by age 212
log files by size 214
DEMO turnkey wizard 39, 41, 62, 63
dependencies
applications 98
dependent resources
for application 14
detach button
graph tab view 113, 132
details
changing level of, in graphs 122
detectors
defined 13
provided by RMS 27

RMS Wizard Kit 25
RMS Wizard Tools 25
starting 144
DetectorStartScript attribute 204
device numbers
shared NFS file systems 185, 188
dialogs
confirmation 102
find, log viewer 139
directories
RMS 34
RMS, specifying root 212
disk classes
as RMS resources 23
displaying
see also viewing 96
application states 104, 105
current RMS configuration 30, 222
environment variables 102, 104
HV_AUTOSTARTUP 155
HV_RCSTART 147
manual pages 225
object states 104, 105
state names, clusterwide table 108
DNS
and cluster host names 178
and /etc/fstab pcl entries 183
documentation
online 225
related 2
double faults
defined 199
and Halt attribute 199

E
echo service 189
ELM
defined 12
enabling and disabling 211
emergency
log viewer 137
Enhanced Lock Manager see ELM
ENV object 32, 195
environment variables
 categories 32
displaying 102, 104
HV_APPLICATION 218
HV_AUTORECOVERY 218
HV_AUTOSTART_WAIT 209
HV_AUTOSTARTUP 214
HV_AUTOSTARTUP_IGNORE 208
HV_CHECKSUM_INTERVAL 209
HV_COM_PORT 210
HV_CONNECT_TIMEOUT 214
HV_FORCED_REQUEST 218
HV_LAST_DET_REPORT 218
HV_LOG_ACTION 214
HV_LOG_ACTION_THRESHOLD 210
HV_LOG_WARN_THRESHOLD 210
HV_MAXPROC 215
HV_MLOCKALL 215
HV_OFFLINE_REASON 218
HV_RCSTART, changing 147
HV_RCSTART, defined 215
HV_REALTIME_PRIORITY 215
HV_REQUESTING_CONTROLLE
 R script forced request flag 218
HV_SCALABLE_CONTROLLER, scalable controller script 219
HV_SCALABLE_INFO, scalable controller script 219
HV_SCRIPT_TYPE 219
HV_SCRIPTS_DEBUG 216
HV_SYSLOG_USE 216
HV_USE_ELM 211
NODE_SCRIPTS_TIME_OUT 219
RELIANT_HOSTNAME 216
RELIANT_INITSCRIPT 217
RELIANT_LOG_LIFE 212
RELIANT_LOG_PATH 212
RELIANT_PATH 212
RELIANT_SHUT_MIN_WAIT 212
RELIANT_STARTUP_PATH 217
SCRIPTS_TIME_OUT 217
ENVL object 32, 195
error levels
 log viewer 137
etc
 RMS directory 34
/etc/cip.cf 66
/etc/dfs/dfstab.pcl 186
/etc/exports.pcl
 format 185
/etc/fstab.pcl
 format 183
 conflicts in /etc/fstab 183
/etc/hosts 59
 and /etc/fstab.pcl entries 183
 and network interface names 181
 entries for RMS 178
/etc/nsswitch.conf 189
/etc/vfstab.pcl 186
exit codes
 RMS CLI 90
 RMS scripts 14
expert operations
 disabling ELM 211
exports file see /etc/exports.pcl

F
failover
 defined 12
 applications 17
 controlled applications 19
directed by RMS 17
NFS file systems 188
NFS Lock Failover 187
nodes 17
fatal errors
 log viewer 137
Faulted state
 defined 191
 clearing 168
FaultScript 29
faults
 clearing 168
 display in clusterwide table 109
 failover 65
 messages, custom handling 182
FaultScript attribute 29, 199
features, market-specific 89
file handle
 NFS file systems 188
file systems
 as application resources 37
 as RMS resources 23
 Fsystem 39
 NFS failover 188
 NFS, and device numbers 185
 resource type 25
 site preparation 177
 warning threshold 210
Filter button
 log viewer 134
filters
 log viewer 134
fjsvvwvs command 231
fjsvvvcnf command 231
follow controllers
described 19
forcing
 offline operations, and status code 90
 RMS shutdown, GUI 149
 RMS shutdown, hvshut command 152
fstab file see /etc/fstab.pcl
Fsystem, resource wizard 39
G
Gds, resource wizard 39
GDS subapplication
 WarningScript 204
Gds, resource wizard 39
GENERICTurnkey wizard 39, 63, 78
Global Disk Services 39
global environment variables 32
Global Link Services 39
Gls, resource wizard 39
graphs
defined 11
 appearance after shut down 127
 application 116
 application, resetting 164
 changing detail level 122
 composite subapplication 119
 context menus 121
 detaching view 114, 133
 internal, created by generate
 phase 44
 maintenance mode scope 172
 reinitializing 222
 subapplications 117
 tabbed view 113, 132
 tabbed view, Cluster Admin 94
 types 111
 viewing application 116
 viewing object details 115
gResource objects
defined 195
 overview 55
 representing physical resources 14
GUI, Cluster Admin
 configuration tree 95
 input and message area 95
 menu bar 94
 messages 95
 starting RMS 96
H
Halt attribute
defined 199
heartbeats
 base monitor 26
 described 11
 mode 211
 recovery timeout 11, 144
 UDP, and ELM 211
high availability 1
 provided by RMS 9
 specifying applications 43
Index

HostName attribute
 defined 205
 andOp objects 195
hosts
 preparing for RMS 177
hosts file see /etc/hosts
HTML documentation 232
HV_APPLICATION 218
HV_AUTORECOVER 218
HV_AUTOSTART_WAIT 209
HV_AUTOSTARTUP
 defined 214
 AutoStartUp attribute 198
 changing at runtime 154
HV_AUTOSTARTUP_IGNORE 208
HV_AUTOSTARTUP_WAIT
 and PartialCluster attribute 201
HV_CHECKSUM_INTERVAL 209
HV_COM_PORT 210
HV_CONNECT_TIMEOUT 214
HV_FORCED_REQUEST 218
HV_LAST_DET_REPORT 218
HV_LOG_ACTION 214
HV_LOG_ACTION_THRESHOLD 210
HV_LOG_WARN_THRESHOLD 210
HV_MAX_HVDISP_FILE_SIZE 214
HV_MAXPROC 215
HV_MLOCKALL 215
HV_NODENAME 218
HV_OFFLINE_REASON 218
HV_RCSTART
 defined 215
 changing 147
HV_REALTIME_PRIORITY 215
HV_REQUESTING_CONTROLLER 218
HV_SCALABLE_CONTROLLER 219
HV_SCALABLE_INFO 219
HV_SCRIPT_TYPE 219
HV_SCRIPTS_DEBUG 216
HV_SYSLOG_USE 216
HV_USE_ELM 216
hvassert command 30
 defined 221
hvatract command
 defined 221
 changing AutoSwitchOver 167
hvcm command 30
 defined 221
 -h option 211
 starting RMS 144
hvconfig command 30
 defined 222
hvconsoles file 182
hvdisp command
 -a option 105
 displaying environment variables 104, 208
 displaying object states 105
 ENV and ENVL 104
 file size 215
 no display 205
hvdump command 30
 defined 222
hvexec command 54
hvalias file
 format 181
 activation 182
hvlogclean command 30
 defined 222
hvlogcontrol command
 log file cleanup 210
hvreset command
 defined 222
 resetting applications 165
 -t option 165
hvsetenv command 31
 defined 222
 HV_AUTOSTARTUP 155, 214
 HV_RCSTART 147, 215
hvshut command 31
 defined 223
 defining timeout 212
 stopping RMS 151
hvswitch command 31
 defined 223
Index

starting application 162
switching application 157
hvutil command
 defined 223
 -a option 169
 activating applications 169
 -c option 169
 clearing faults 169
 clearing Wait state 153
 -d option 169
 deactivating applications 169
 defined 31
 -f option 163
 -m and -M options 175
 maintenance mode 175
 -o option 153
 -s option 163
 Standby state 163
 stopping applications 163
hvw command
 defined 40
 operation mode 45
 provided by RMS Wizard Tools 25
 resuming configuration 77

I
 l_List attribute 199
 icons, Cluster Admin
 application status 172
 legend 104
 maintenance mode 172
 object status 104, 109
 icons, clusterwide table
 object status 108, 109, 110
 icons, RMS graph
 object type 114
 include
 RMS directory 35
 Inconsistent state
 defined 191
 informational messages
 log viewer 137
 initialization
 script, specifying 217
 InitScript 28
 intended state
 maintenance mode 172, 192
 IP addresses
 as RMS resources 23
 not allowed in /etc/fstab.pcl 183
 resource wizard 39
 IP alias, logical interface name 181
 Ip Address subapplication
 and /etc/hosts 179
 hvipalias file 181
 Ipaddress, resource wizard 39
 IPv6 addresses
 RMS support 178

J
 Java
 client required for Windows 90
 trusted applets 93

K
 kernel
 ELM locks 12
 killing a node 14, 17

L
 LastDetectorReport attribute 205
 left pane, Cluster Admin
 context menu 107
 object states 104
 RMS tree 95, 97
 tabs 94
 legend
 Cluster Admin icons 104
 lib
 RMS directory 35
 LieOffline attribute 199
 local controllers
 maintenance mode 172
 local environment variables 32
 locking
 base monitor in memory 215
 locks, managed by ELM 12
 log files
Index

custom fault messages 182
location 35
searching 139
specify directory 212
switchlog 188
system 188
time of preservation 212
viewing 130, 131
log viewer
described 130
error levels 137
filters 134
logical interface name, IP alias 181
login
 Cluster Admin 91
 trusted, required by Wizard Tools 179

M
MA commands
clddevparam 230
clmmmbmonctl 231
clmmmbsetup 231
clrccumonctl 231
clrcccsetup 231
clrcimonctl 231
main menu
 Wizard Tools 42
maintenance mode
defined 169
CLI operations 175
entering 170
exiting 173
intended state 172
local controllers 172
Maintenance state 192
operating notes 172
setting 31, 223
starting 170
status code when entering 90
stopping 173
man page, for RMS commands 29
management server, Web-Based
 Admin View 90
manual pages
displaying 225
RMS commands 221
market-specific
 applications 10
 features 89
MaxControllers attribute 205
messages
 fault, custom handling 182
MonitorOnly attribute
defined 200
N
naming conventions
 RMS 59, 178
netmask
 in hvipalias file 181
network interfaces
 in /etc/hosts 179
 in hvipalias file 181
 site preparation 177
NFS file systems
 device numbers 185
 failover 188
 Lock Failover 187
node
 Cluster Admin connection 92
 Web-Based Admin View
 connection 90
node names
 CF 89
 in configuration files 178
 RMS 178
NODE_SCRIPTS_TIME_OUT 219
nodes
defined 11
 detector timeout for remote 214
 failover 17
 ignore at startup 208
 killing 14, 17
 objects, overview 55
 primary 108
 unreachable, and hvattr 167
 viewing attributes 106
wait to report online 209
NoDisplay attribute 205
non-basic settings, Wizard Tools 48
non-fatal errors
 log viewer 137
notices
 log viewer 137
NullDetector attribute 205

object states
 RMS graph 114
 timeouts, tracking by base monitor 11
object types
 andOp 195
 ENV 195
 ENVL 195
 gController 195
 gResource 195
 orOp 195
 SysNode 196
 userApplication 196
objects
 activating applications 169
 and scripts 13
 attributes 32
 clearing a fault 168
 confirming actions 102
 context menus 100, 110, 121
 controller 17, 18, 98, 120
 controller, overview 55
 dependencies 114
 displaying states 104
 environment variables 32
 graph 121
 graph customization 122
 gResource 14
 gResource, overview 55
 relationships 114
 resetting applications 164
 resource types 31
 RMS full graph 114
 RMS tree 100, 110
 selecting 100
 starting applications 162
 switching applications 156
 SysNode 14, 100
 SysNode, overview 55
 taking applications offline 163
 userApplication 14, 100, 152
 userApplication, changing
 AutoSwitchOver 166
 userApplication, overview 55
 viewing attributes 106
 viewing details in graphs 115
offline processing
 defined 14
 scripts 25
Offline state
 defined 191
 general description 11
 OfflineDoneScript 29
 OfflineScript 28
 PostOfflineScript 29
 OfflineDoneScript attribute 29, 205
 OfflineFault state 191
 OfflineScript attribute 28, 200
 online manual pages 225
 online processing 14
 online scripts
 provided by Wizard Tools 25
Online state
 defined 191
 general description 11
 OnlineScript 29
 PostOnlineScript 29
 PreCheckScript 28
 PreOnlineScript 28
 OnlinePriority attribute 200
 OnlineScript attribute 29, 201
operating system
 administrator prerequisites 1
 operator privileges
 Web-Based Admin View login 91
 /opt/SMAW/SMAWRrms/ 34
 /opt/SMAW/SMAWRrms/build/ 58
 /opt/SMAW/SMAWRrms/etc/ 144,
Index

145
/opt/SMAW/SMAWRms/etc/ CONFIG.rms 144
overriding
 automatic application startup 154

P
parallel application support 9
PartialCluster attribute
 defined 201
 and HV_AUTOSTART_WAIT 209
PAS commands
clmstat 226
mpcstat 226
PCS
tabbed view, Cluster Admin 94
PersistentFault attribute 201
physical interfaces
 IP aliases 181
pop-up menus see context menus
PostOfflineScript attribute 29, 201
PostOnlineScript attribute 29, 201
PreCheckScript attribute 28, 205
PreOfflineScript attribute 201
PreOnlineScript attribute 28, 202
PreserveState attribute
 defined 202
primary management server, Web-Based Admin View 90
PRIMECLUSTER 9
PRIMECLUSTER product family
 administrator prerequisites 1
 overview 9
PriorityList attribute
 defined 202
privileges
 Web-Based Admin View login 91
proactive scripts 13
processes
 as RMS resources 23

R
rcsd command 229
rcsd.cfg file 229
reactive scripts 13
recovery timeout
 UDP heartbeats 11, 211
related documentation 2
Reliant Monitor Services
 see RMS
RELIANT_HOSTNAME 65, 216
RELIANT_INITSCRIPT 217
RELIANT_LOG_LIFE 212
RELIANT_LOG_PATH 35, 212
RELIANT_PATH 34, 212
RELIANT_SHUT_MIN_WAIT 212
RELIANT_STARTUP_PATH 145, 217
request-triggered scripts
 InitScript 28
 OfflineScript 28
 OnlineScript 29
 PreCheckScript 28
 PreOnlineScript 28
resetting
 applications, GUI 164
 applications, hvreset command 165
Resource attribute
 /defined 202
controller objects 195
resource wizards
 Cmdline 39
 Controller 39
 Fsystem 39
 Gds 39
 Gls 39
 Ipaddress 39
 Vxvm 39
resources
 clearing faulted 31, 223
 configuring 39
 defining 23
 executing scripts 45
 file system entries 183, 186
 monitoring 55
 network interfaces 181
 non-basic settings 49
Index

object types 31
objects, overview 55
scripts 27
shared file systems 185
shared remote entries 186
states 11
./rhosts 179
right pane
 Cluster Admin 95
 log messages 132
right-click, mouse
 Cluster Admin view 100
 clusterwide table 110
 graph 121
rKind attribute
 gResource objects 195, 206
RMS
 base monitor 11
 clusterwide table 107
 components 26
 configuration tree, Cluster Admin 98
 controlling operation 141
 default directory 34
 directory structure 34
 executing commands at startup 28
 full graph 111
 graphs 44, 111
 high availability 11
 naming conventions 59, 178
 node names 89, 178
 overview 10
 severity levels 137
 shutdown, and graph appearance 127
 starting 141
 starting, and HV_AUTOSTARTUP 154
 stopping 147
 tabbed view, Cluster Admin 94
 tree, Cluster Admin 98
RMS commands 29
 see also individual commands
 basic list 221
 administration procedures 89
 config.us 229
 hvassert 30, 221, 228
 hvattr 167, 221, 228
 hvcm 30, 144, 221, 228
 hvconfig 30, 222, 228
 hvdisp 30, 104, 105, 222, 228
 hvdump 30, 222, 228
 hvenv.local 229
 hvexec 54
 hvgdstartup 229
 hvlogclean 30, 222, 228
 hvlogcontrol 228
 hvreset 165, 222, 228
 hvsetenv 31, 147, 155, 222, 228
 hvshut 31, 151, 152, 223, 228
 hvswitch 31, 157, 162, 223, 228
 hvutil 31, 153, 163, 169, 175, 223,
 228
 options 90
 status codes 90
RMS Reference Guide 20, 130, 134, 145
RMS Wizard Kit
 defined 10
 components 24, 25
 detectors 25
 hvw command 25
 scripts 25
RMS Wizard Tools
 defined 10
 and RMS Wizard Kit 23
 configuring 23
 detectors 25
 hvw command 25
 resource types 25
 scripts 25
rName attribute
 gResource objects 195, 206
rolling upgrades
 disabling ELM 13
root privileges
 Web-Based Admin View 91
Index

/root/.rhosts 179

S
SA_blade.cfg file 229
SA_icmp.cfg file 230
SA_ipmi.cfg file 229
SA_pprci.cfg file 229
SA_rccu.cfg file 229
SA_SATxscf2.cfg file 230
SA_SATxscf.cfg file 229
SA_scon.cfg file 230
SA_sspint.cfg file 230
SA_sunF.cfg file 230
SA_vmchkhost.cfg file 230
SA_vmsPgp.cfg file 230
SA_vmsPgr.cfg file 230
SA_wtinps.cfg file 230
scalability 9, 20
scalable controllers 20
Scalable Internet Services see SIS
scripts
 defined 28
 and objects 13
offline processing 25
online processing 25
proactive 13
reactive 13
resources 27
RMS Wizard Kit 25
timeout 217
top-of-tree 218
SCRIPTS_TIME_OUT 217
ScriptTimeout attribute
 defined 203
sdtool command 229
searching logs
 in log viewer 139
secondary management server, Web-Based Admin View 90
secondary menus, Wizard Tools 47
severity levels see error levels
sfcipher command 229
shutdown
 RMS 147
status code 90
Shutdown Facility
 ensuring node shutdown 17
 with RMS 14
ShutdownPriority attribute
 defined 203
SIS
 tabbed view, Cluster Admin 94
site preparation 177
site preparation overview 177
software monitor
 function 1
 RMS 10
split-brain condition
 display in clusterwide table 109
SplitRequest attribute 206
sshconf command 232
stale file handle
 NFS 188
Standby state
 defined 191
 switching to 163
StandbyCapable attribute 203
starting
 applications, automatically 154
 applications, GUI 162
 applications, hvswitch command 157
 maintenance mode 170
 RMS, and heartbeat recovery
 timeout 13, 145
 RMS, automatically 146, 147
 RMS, GUI 141
 RMS, hvcm command 144
startup file
 RMS default 144
state machine, RMS base monitor 11
StateDetails attribute
 defined 206
 displaying 193
states
 definitions 191
 and available operations 110
 applications, controlling 154
calculated 28
changes, and initiating actions 11
changes, and scripts 13, 28
changes, confirmation of 102
controlling 141
Deact 191
details, displaying 193
determined by detectors 27
display, comparing 126
displayed in Cluster Admin GUI 104
displayed in clusterwide table 107
displayed in context menus 100, 121
displayed in RMS graph 11
displaying with CLI 105
Faulted 168, 191
Faulted, clearing 168
Inconsistent, defined 191
Inconsistent, in clusterwide table 109
intended, maintenance mode 172
Maintenance 192
names in clusterwide table 108
nodes, detected by ELM 12, 145
nodes, detecting in RMS 11
objects, reported by detectors 13
Offline 191
OfflineFault 191
Online 191
online and offline processing 14
parent object, maintenance mode 169
reported by detectors 23
resources, monitored by RMS 11
RMS, and real world 16
Standby 163, 191
Unknown 191
Wait 152, 192
Wait, clearing 152
Warning 192
state-triggered scripts
FaultScript 29
OfflineDoneScript 29
PostOfflineScript 29
PostOnlineScript 29
WarningScript 29
status
codes, CLI see exit codes
communication, CF 225
icons see icons
Web-Based Admin View 231
stopping
applications, GUI 163
applications, hvutil command 163
maintenance mode 173
RMS, GUI 147
RMS, hvshut command 151
storage managers
administrator prerequisites 1
subapplications
graph 117
in Cluster Admin RMS tree 98
sub-menus, Wizard Tools 47
summary, clusterwide table 107
switching
applications 31, 223
applications, GUI 156
applications, hvswitch command 157
switchlog
duplicate entries in system log 188
location 35
viewing 130
SysNode
switching application to 31
SysNode objects
defined 196
overview 55
representing nodes 14
selecting 100
switching application to 223
Wait state, clearing 152
system files, preparing for RMS 177
system log
RMS messages 188
Index

T

tabbed view
 Cluster Admin left pane 94
 Cluster Admin msg 95
 Cluster Admin rms&pcs 96
 graphs 113, 132
 log viewer 132

tables
 clusterwide 107

timeouts
 heartbeat recovery 11, 144

trusted
 Java applets 93
 login, required by Wizard Tools 179

turnkey wizards
 creating applications 43
 DEMO 41, 62
 GENERIC 78
 ORACLE 39
 overview 39
 R/3 39
 resetting, GUI 164
 resetting, hvreset command 165
 RMS tree 98
 state information 107
 stopping, hvshut command 152
 taking offline 163

V

/ var/adm/messages 188

variables
 RMS environment 32
/ var/log/messages 188
/ var/opt/SMAWRrms/log/ 35, 130

VeriSign
 and trusted Java applets 93

view
 Cluster Admin initial 94
 Cluster Admin message 95

viewing
 see also displaying
 application logs 131
 composite subapplication graph 119
 graphs, attaching and detaching 113, 114, 132, 133
 GUI message 95
 log viewer 132
 object attributes 106
 subapplication graphs 117
 virtual representation
 RMS configuration 11

volume managers
 administrator prerequisites 1
 as RMS resources 23

W

Wait state
 defined 192
 clearing faulted resources 31, 223
 clearing hung nodes 31, 223
 clearing, SysNode 152

Warning state
 defined 192
 WarningScript 29, 204
warnings
 log viewer 137
WarningScript
 defined 29
 GDS subapplication 204
WarningScript attribute 29, 204
Web-Based Admin View
 login 91
 management server 90
Wizard Kit
 configuration 38
 RMS 24, 25
Wizard Tools
 basic settings 48
 configuring 38
 DEMO turnkey 41
 frequently used items 41
 general description 38
 GENERIC turnkey 78
 hvexec command 54
 main menu 42
 non-basic settings 48
 ORACLE wizard 39
 overview 38
 R/3 wizard 39
 resource wizards 39
 secondary menus 47
 sub-menus 47
 turnkey 39, 43
wizards see Wizard Tools
wvCntl command 231
wvconf command 231
wvGetparam command 231
wvSetparam command 231
wvstat command 231