
B1WD-3363-01ENZ0(00)
August 2015

Windows

FUJITSU Software
NetCOBOL V11.0

Web Guide

Preface
This manual contains an overview of Web applications using COBOL and the features of Web Servers.

For details regarding the specifications of NetCOBOL Web subroutines, refer to the NetCOBOL CGI Subroutines User's Guide, and
NetCOBOL ISAPI Subroutines User's Guide.

Supported Operating Systems

The NetCOBOL Web link functions provide the environment for developing and executing applications on Web Servers.

Registered Trademarks

The trademarks used in this manual are listed as follows:

- NetCOBOL is a trademark or registered trademark of Fujitsu Limited or its subsidiaries in the United States or other countries or in
both.

- Microsoft, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries.

- Other company names and product names are the trademarks and registered trademarks of the companies.

- Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Oracle Solaris might be described as Solaris, Solaris Operating System, or Solaris OS.

- Microsoft Corporation has permitted Fujitsu Limited to use the screens.

Product Names

The product names used in this manual are abbreviated as follows:

Product Name Abbreviation

Microsoft® Windows Server® 2012 R2 Datacenter

Microsoft® Windows Server® 2012 R2 Standard

Microsoft® Windows Server® 2012 R2 Essentials

Microsoft® Windows Server® 2012 R2 Foundation

Windows Server 2012 R2

Microsoft® Windows Server® 2012 Datacenter

Microsoft® Windows Server® 2012 Standard

Microsoft® Windows Server® 2012 Essentials

Microsoft® Windows Server® 2012 Foundation

Windows Server 2012

Microsoft® Windows Server® 2008 R2 Foundation

Microsoft® Windows Server® 2008 R2 Standard

Microsoft® Windows Server® 2008 R2 Enterprise

Microsoft® Windows Server® 2008 R2 Datacenter

Windows Server 2008 R2

Microsoft(R) Internet Information Services IIS

Microsoft(R) Internet Explorer IE

Export Regulation

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country
and/or US export control laws.

- i -

The contents of this manual may be revised without prior notice. No part of this document may be reproduced or transmitted in any form
or by any means, electronic or mechanical, for any purpose, without the express written permission of Fujitsu Limited.

August 2015

Copyright 2009 - 2015 FUJITSU LIMITED

- ii -

Contents
Chapter 1 Overview..1

1.1 Effectively Using the Internet/Intranet.. 1
1.1.1 Features of the Web.. 1
1.1.2 Merits of using COBOL... 1

1.2 Web Applications.. 2
1.3 How to Build Applications for the Web.. 2

Chapter 2 Applications Using Web Subroutines...4
2.1 Interface Types Available by Web Applications...4
2.2 Processing Flow of Web Applications ..4
2.3 Differences between ISAPI and CGI...5
2.4 Purpose of Using the NetCOBOL Web Subroutines...6
2.5 NetCOBOL Web Subroutines... 6

2.5.1 Use of ISAPI...6
2.5.2 Use of CGI.. 6

Chapter 3 Points of Selecting the COBOL Web Link Function...7
3.1 Features of Various Web Link Functions.. 7
3.2 Detailed Information for Each Web Link Function...8

Appendix A For Beginners Developing COBOL Web Applications.. 9
A.1 What is a Web Application?... 9
A.2 NetCOBOL Web Subroutines...9
A.3 HTTP Basics... 10
A.4 HTML Basics..12
A.5 Notes and Measures Taken regarding Problems with Execution in Web Browsers...19

Appendix B Use of Unicode..21
B.1 WWW Browsers... 21
B.2 Input Code System From WWW Browser..21
B.3 Code System Output to WWW Browser.. 22
B.4 Compile Options... 22
B.5 Unicode Supported Subroutines..22
B.6 HTML Document Code System for Web Pages Used for Invoking Applications... 23
B.7 HTML Document Code System for Web Pages Used for Processing Result Output ... 24
B.8 Code System for Log File... 24
B.9 NetCOBOL Applications with Combined Code Systems.. 24

- iii -

Chapter 1 Overview
Today's business applications are appearing more and more on the Internet.

The system configuration where these Web applications are typically executed includes host-centralized systems (Web Servers), client
systems, and network-computing system support.

The network-computing system support has a role of providing access to information as a result of the rapid increase of host computers
connected to the Internet. The network-computing environment enables businesses to be mutually linked through a network, and business
efficiency to be improved as a result of the shared information involving the Web. Web Browsers with platform-free operability are
essentially used in mutually linking various types of businesses.

For host-centralized systems and client/server systems, COBOL is commonly used as the core language in the mission critical area of
business systems.

On the basis of Internet/Intranet technologies, the demand on COBOL to support the business enterprise has been increasing.

1.1 Effectively Using the Internet/Intranet
To effectively use Internet/Intranet environments, the features of the Web and the merits of using COBOL are explained as follows.

1.1.1 Features of the Web
Remote site

Using Web Browsers, all resources on the network can be accessed, so that client system can be easily connected to remote systems.

Cost reduction

Using Web Browsers, client machine setup/maintenance work can be simplified.

Independence from the client system

Using Web Browsers, a business system independent of the client system can be built. These systems can also be used in the mobile
computing environment.

Distribution of the load on the server

The server, if it can be connected to the network, enables various business systems to be distributed.

Security

As one of the features, the Web can be easily connected to the client system. In this case, however, there is a problem regarding security.
When building such a system, self-defense measures need be taken, for example, limiting the access to the domain to which the client
is connected via Web Servers, or setting user restrictions in the application.

1.1.2 Merits of using COBOL
Generally, when selecting the language for developing applications to execute in Web environments, the following features are considered
to enable the data input/output with Web Browsers:

- Data manipulation

- Access to files or databases

- Environment variables manipulation

COBOL satisfies the above features and can be used to develop the above type of applications efficiently, considering the following facts:

Use of accumulated knowledge or know-how for building a system

As the know-how previously accumulated while developing an application by using COBOL can be used, the development process can
be sped up.

- 1 -

Effective use of existing resources

The resources used by the business system in the conventional environment can be used effectively.

1.2 Web Applications
HTML documents can return only static information, so the updated information cannot be communicated in real-time. On the contrary,
information can be provided in real-time by using CGI and APIs peculiar to various Web Servers for the applications called from Web
Browsers. These applications can dynamically return updated information related to the information input from Web Browsers. In addition
to the information returned, the data processing procedure including the file input/output and database access, which is essential to the
business application, can be requested (or executed) from Web Browsers.

COBOL is the business processing language used mainly for data processing, and dynamic Web pages can be created interactively by
effectively using these features of COBOL.

Web applications are executed under the services of Web Servers. For the notes on creating or executing these types of applications, see
NetCOBOL User's Guide.

1.3 How to Build Applications for the Web
Use the following two methods for building a business system in COBOL for execution on the Internet/Intranet.

- 2 -

Development of the application using the COBOL Web subroutines

Using this method, applications can be generated by using COBOL knowledge only, irrespective of complicated processing. For example,
the processing and of parameters required for developing the application by using data input/output with Web Browsers, and outputting
of the processing results.

- 3 -

Chapter 2 Applications Using Web Subroutines
For development/maintenance of Web applications, knowledge regarding interfaces with Web Browsers is generally required. Using
NetCOBOL Web subroutines, data can be input/output between the COBOL programs and Web Browsers by using COBOL knowledge
only.

2.1 Interface Types Available by Web Applications
There are many different interfaces available with applications on Web Servers, as explained below:

ISAPI (Internet Server API)

ISAPI is an extended programming interface for interactive applications executing on Microsoft's Internet Information Server (stated as
IIS hereafter) Web Server, and was first proposed by Microsoft. NetCOBOL provides ISAPI and its execution codes, which are
encapsulated according to the COBOL language specification. ISAPI subroutines provide functions for more easily developing ISAPI
applications to be executed on IIS.

ISAPI resembles CGI in that CGI is a programming interface for developing interactive applications to be executed on Web Servers, but
differs from CGI in overall resource usage, including CPU and memory as well as performance. For details of the differences between
ISAPI and CGI, see "Differences between ISAPI and CGI" in this manual.

CGI (Common Gateway Interface)

CGI is the most commonly used interface for data input/output with Web Servers.

Most Web Servers support CGI.

NetCOBOL provides COBOL CGI subroutines as functions for more easily developing applications using CGI.

2.2 Processing Flow of Web Applications
The following explains Web Browsers and the process flow of Web applications, using CGI as the example.

CGI executes on the Web Server and is used for data input/output with Web Browsers. CGI is the most fundamental interface for executing
CGI programs (called CGI scripts) on Web Servers from Web Browsers (clients). A request to the Web Server from a Web Browser
provides the function of activating the CGI program and inputting/outputting the data (including the data input via environment variables).

CGI is executed in the processing flow of inputting the data (request), processing the data, and outputting the processing result (response),
and the CGI program must be cognizant of this processing flow.

The processing flow by ISAPI and other APIs is basically the same as that of processing by CGI. However, CGI inputs/outputs the data
via the standard input-output, and ISAPI or other APIs provide a special API (hidden in API) used for inputting/outputting the data. As
this difference in data inputting/outputting between CGI and ISAPI or other APIs has been absorbed by the NetCOBOL Web subroutines,
COBOL applications need not recognize this difference if the NetCOBOL Web subroutines are used.

- 4 -

2.3 Differences between ISAPI and CGI
CGI applications must have an executable module format (.EXE). Therefore, the Web Server generates a separate execution process for
each CGI application for each request from the client (Web Browser), and as a result, resources including CPU and memory in the server
are consumed in large quantities.

In contrast, ISAPI applications are generated using dynamic link library format (.DLL) and loaded into one overall process in the Web
Server. Then, the loaded DLL(s) is controlled by being loaded directly into memory, or being unloaded after a lapse of specified time.

The major difference between ISAPI and CGI is that CGI is executed in separate processes for each request, but ISAPI generates a thread
within a common address space in Web Servers and is executed in a multithreaded environment . As a result, the overhead caused by
process generation/deletion in CGI, memory allocation, and task switching can be greatly reduced, and Web applications with higher
performance can be built.

- 5 -

2.4 Purpose of Using the NetCOBOL Web Subroutines
The NetCOBOL Web subroutines provide functions for analyzing Web parameters that have been input from Web Browsers and are
required for developing Web applications. These also include functions for outputting the processing result. Using these functions, Web
applications can be generated easily by using only COBOL, without requiring specialized knowledge.

2.5 NetCOBOL Web Subroutines

2.5.1 Use of ISAPI
Using the NetCOBOL ISAPI subroutines, Web applications using ISAPI to execute on IIS can be generated.

NetCOBOL ISAPI subroutines are executed via the interface common to the NetCOBOL CGI subroutines, so the conversion from CGI
to ISAPI can be easily performed (where CGI specification is almost same as ISAPI specification, but some changes specific to ISAPI
need be added).

2.5.2 Use of CGI
Using the NetCOBOL CGI subroutines, Web applications using CGI executing on various Web Servers can be generated.

- 6 -

Chapter 3 Points of Selecting the COBOL Web Link
Function

3.1 Features of Various Web Link Functions
The following table lists the features of COBOL Web link functions.

Link function

ISAPI subroutines CGI subroutines

Features Web Server that
can be used

IIS All servers supporting CGI

Web Interface
technology

ISAPI CGI

File format
activated by Web
Server

DLL EXE

Operation model Thread Process

Loading
mechanism of
COBOL
applications
executed on Web
Servers

It is loaded at the first request to the
application, then resides in memory
for the next request.

It activates a process for each request to the
application, and discards the process after
processing ends.

Execution
performance

High-speed performance by
multithreaded operation or DLL pre-
load function.

Low-speed performance due to the overhead
caused by a separate process activated/deleted
for each request.

User/Application
Interface

- HTML

- Web subroutines

Ease of generating
a business
application

Because the interfaces with Web Servers are hidden in Web subroutines complying with
the COBOL language specification, no special knowledge regarding Web is required.

Utilization of
existing resources

The actual business logic of existing applications can be mostly used without being
modified significantly. However, interfaces with Web Servers are required, so the
description for using Web subroutines must be added and the business logic must be
organized to make use of such.

Forms printing The server can execute forms printing contained in the application. However, the
printing function of the Web Browser or the downloaded application may be used by
the client.

Merit Applications with high performance and resources
consumed in small quantities can be generated by
multithreaded operation.

Applications with high
independence can be
generated, independent of
the server.

 Note

The above table shows the outlined information for arranging the features of various Web link functions in rows.

For more detailed information, related products, and notes, refer to the manual corresponding to each Web link function.

- 7 -

3.2 Detailed Information for Each Web Link Function
If you decide that a COBOL Web link function should be used, refer to the manual in which the detailed information for each link function
and design/develop your business application as documented.

The following lists the manuals corresponding to the Web link functions.

- When COBOL ISAPI subroutines are to be used, refer to the NetCOBOL ISAPI Subroutines User's Guide for details of the COBOL
ISAPI subroutines.

- When COBOL CGI subroutines are to be used, refer to the NetCOBOL CGI Subroutines User's Guide for details of the COBOL CGI
subroutines.

- When an application developed by using NetCOBOL CGI Subroutines is to be converted to an application using COBOL ISAPI
subroutines, refer to Appendix D. CGI To ISAPI Subroutines Conversion Guide in the NetCOBOL ISAPI Subroutines User's Guide
for the conversion from CGI to ISAPI

- 8 -

Appendix A For Beginners Developing COBOL Web
Applications

This appendix explains fundamental matters for beginners who attempt to build COBOL applications using the Web, and for beginners
who wish to use the COBOL Web subroutines.

A.1 What is a Web Application?
The WWW used by the Internet/Intranet connects Web servers on networks to Web Browsers (clients) by using HTTP (Hyper Text Transfer
Protocol). Web Browsers enable access to a specific resource on a specific Web Server by specifying URL's (Uniform Resource Locators).
Web Servers send the requested resource (typically an HTML page) back to the requesting Web Browser. Normally, Web Servers send
HTML (Hyper Text Markup Language) data, so that Web Browsers can display the contents of the HTML data in an appropriate format.

In this way, the use of Web Browsers enables the information published by the connectable server to be accessed. At present, Web Browsers
enable the information to be freely accessed, and can be used as the environment for executing a business application.

When only the HTML document is put on the server, static information can be opened to the public. However, it cannot be processed to
access to the data base on an indispensable server for the business and to generate the HTML document dynamically only by static
information. The main interface of Web is shown below.

- CGI (Common Gateway Interface)

- ISAPI (Internet Server Application Programming Interface)

In the business application, it is necessary to make the application in Web Server by using these interfaces. The application executed on
this Web Server is called Web application.

A.2 NetCOBOL Web Subroutines
NetCOBOL Web subroutines provide the interfaces for generating Web applications using COBOL and the environment for executing
these Web applications. NetCOBOL Web subroutines consist of various interfaces including CGI and ISAPI. Being able to use these
interfaces without being conscious of the differences between CGI and ISAPI, however, allows the user to develop Web applications more
easily than using other languages such as Perl and C.

NetCOBOL Web subroutines have the following features:

- Being able to be executed by the CALL statement interface, NetCOBOL Web subroutines can be used easily by COBOL.

- 9 -

- Using the functions provided for converting parts of HTML documents and for outputting the HTML document, the program and
HTML document can be made independent, and development with high productivity and maintainability can be realized.

- The user can generate Web applications operating on various Web servers by describing a program with the interface provided by the
NetCOBOL Web subroutines.

NetCOBOL Web subroutines provide the following services:

- Receiving the request data (Web parameters) passed from a Web Server when activating the application, and converting this data into
the proper COBOL data format.

- Outputting the processing result (e.g. dynamic HTML output function)

- Automatically generating the header (e.g. Content-Type)

- System command execution function

- Obtaining request information

- Receiving/Outputting Cookie data

- Uploading files

A.3 HTTP Basics
The Web is established through the use of HTTP. The data transmission between Web Servers and Web Browsers is performed through
HTTP. The data send from a Web Browser to a Web Server is called a "request," and the data sent from a Web Server to a Web Browser
is called a "response." Generally, a response must exist for each request. A communication path is assured by the request, and released
when a response is completed. For HTTP, the request and response have the same format except the first line, which have very simple
formats as shown below.

Request Data

Method URL version

HTTP header

Message body

Response Data

Version Status code Reason

HTTP header

Message body

The following explains each of the terms used in the above tables:

Method

Indicates the contents of a request to a Web Server, which include GET, POST, and HEAD.

URL

Indicates the location of a resource to be requested.

Version

Indicates the version of HTTP to be used.

Status code

Indicates the condition of processing by the server or Web application, which is represented in 3 digits.

Reason

The reason for the status code.

- 10 -

HTTP header

Used to control Web Browser from Web Server, or to add the conditions to the Web Browser information or method.

Message body

Indicates the data to be transmitted between a Web Server and a Web Browser.

For details of these terms, refer to the specifications or books about HTTP. This appendix briefly explains the method, status code, and
HTTP header that are referred to or set up by Web applications.

The following lists the main methods:

GET

This method fetches the information specified in URL. When the information specified in URL is a Web application (an executable
file name and optional input parameters), this method resends the data output by the Web application.

There is an upper limit to the amount of data that the Web server can receive through the data input to the form that is passed to the
application.

HEAD

This method is functionally the same as GET, but different from GET in the respect that only the HTTP header is resent. This method
is used for checking the attribute of the information specified in a URL.

POST

This method is used for sending the data input from forms, to the Web application. GET functions similar to POST, but the quantity
of data transmitted by GET is upper-limited.

Table A.1 Status Codes

Status code Explanation

200 Normal end

302 The requested document was temporarily moved. For the location where it was moved, refer
to the "Location" header.

303 The requested document was moved to a different URL. For the location where it was moved,
refer to the "Location" header.

400 Syntax error

401 Authorization has failed.

403 Accessing the specified URL is inhibited.

404 There is no resource for the requested URL.

410 There is a resource inconsistent between the Web Browser and Server.

500 Internal error. For example, when no response is sent from Web applications.

502 An invalid request was returned from the Web Server.

503 Web Server cannot be accessed because of high load.

Table A.2 HTTP Headers

HTTP header Explanation

Accept Indicates the MIME type that Web Browser can received.

Accept-Charset Indicates the character code set that Web Browser can received.

Accept-Encoding Encoding format that Web Browser can received, which generally indicates the data
compression format.

Accept-Language Indicates the language type that Web Browser can received. The national language is
represented as "ja" and English is represented as "en."

- 11 -

HTTP header Explanation

Content-Encoding Indicates the encoding format of the response data.

Content-Language Indicates the language type of the response data.

Content-Type Indicates the MIME type of the response data.

Date Indicates the date when the request data or response data has been created.

Expires Indicates the term of validity for the response data.

Location Indicates the correct location where the information is stored.

Host Host name of the server where Web Server is operated.

Referer Indicates the requesting URL.

User-Agent Indicates the Web Browser information.

A.4 HTML Basics
HTML (Hyper Text Markup Language) is the language for representing hyper text, and the text style or link is represented with a specific
keyword called "tag." A tag is represented with a character string placed between "<" and ">." Also, this character string is called "tag-
name."

In most cases, the tag has a start and end tag, which are represented as "<tag-name>" and "</tag-name>," respectively. The character string
placed between the start and end tag is significant for Web Browsers. There is a tag called "single tag," which is significant by merely
representing as "<tag-name>." In addition, the tag may have one or more attributes. An attribute is mostly represented in the format of
"attribute-name=attribute-value," but it may be represented in the format of only "attribute-name." A tag with attributes is represented in
the format of "<tag-name attribute-name-1=attriute-value attribute-name-2>."

This appendix introduces the common tags required for describing basic HTML, and tags required for calling Web applications. For details
of these tags and others, refer to books or Web pages providing an explanation of HTML.

Web Browsers being commonly used are IE (Microsoft's Internet Explorer) which defines its own tags. Therefore, all tags cannot be used
for both of these Web Browsers. By the way, even the most common tags may be each interpreted differently by these browsers. In addition,
the tag support range or operation depends on the actual version of the Web Browser. For details, refer to related books or Web pages.

The following explains main tags, and attributes available by the tags.

<HTML>~</HTML>

This tag indicates that that the data being sent comprises an HTML document.

<HEAD>~</HEAD>

This tag indicates the header of the HTML document. <TITLE> must be described in the header. <BASE>, <SCRIPT>, <STYLE>,
<META>, <LINK>, <OBJECT>, <NEXTID>, and <ISINDEX> can be also described in the header.

<TITLE>~</TITLE>

This tag indicates the title of the HTML document. Generally, the title is not displayed on the page.<BODY>~</BODY>

This tag indicates the body of HTML text. In the body, the text style must be arranged with various tags.

Attribute name Explanation

BGCOLOR="Color" Specifies the background color.

BACKGROUND="URL" Specifies the background image.

TEXT="Color" Specifies the text color. TEXT indicates the general text, LINK does the
link text, VLINK does the cached link text, and ALINK does the link
text during mouse clicking.

LINK="Color"

VLINK="Color"

ALINK="Color"

- 12 -

<Hn>~</Hn>

This tag specifies headers such as the title of each chapter. "n" is the header level that can be specified in the range of 1 to 6, with one
being the largest and boldest text.

Attribute name Explanation

ALIGN=Position Specifies the position where the text is to be displayed. "left,"
"center," or "right" can be specified as a position.

Example of use

<H1> Introduction to HTML </H1>

<H2 ALIGN=right> About HTML </H2>

Displayed result

<P>~</P>

This tag indicates a new paragraph. </P> can be omitted, but is required when specifying any optional attributes.

Attribute name Explanation

ALIGN=Position Specifies the displayed position. "left," "center," or "right" can be specified
as a position

Example of use

<P> First paragraph

The Line feed character is not significant for HTML text.

<P> Second paragraph

When the paragraph is specified, the Line feed character is inserted, or one line is placed.

Then, the next sentence is described.

<P ALIGN=right> Third paragraph

When specifying the attribute, describe the end tag. </P>

Displayed result

<HR>

This tag draws a horizontal line.

- 13 -

Attribute name Explanation

ALIGN=Position Specifies the displayed position. "left," "center," or "right" can be specified as
a position

SIZE=Height Specifies the horizontal line height in the unit of pixels.

WIDTH=Width Specifies the horizontal line width in the unit of pixels. For this specification,
the rate (%) of the horizontal line width for the Web Browser-displayed width
can be used specified.

NOSHADE Specifies the horizontal line without three-dimensional shading.

Example of use

First horizontal line

<HR>

Second horizontal line

<HR SIZE=5 WIDTH=50% NOSHADE>

Third horizontal line

<HR ALIGN=left SIZE=8 WIDTH=20%>

Displayed result

<FORM>~</FORM>

This tag indicates an input form. Using the <INPUT> or <SELECT> tag in the form enables the input component to be allocated.
When executing the action, the data input to the <INPUT> or <SELECT> tag can be passed, which can be used for executing Web
applications.

Attribute name Explanation

ACTION="Action-name" Specifies the action to be executed when pressing the Submit button.
Generally, it specifies a Web application to be executed.

METHOD=Method-name Specifies the method for passing the data input on the form to the Web
application. When the method name is GET, this value is passed to
the environment value, or when it is POST, this value is passed to the
standard input.

ENCTYPE="Encode type" Specifies the encode type for data that is input or output to the script.
When the file uploading function is used though it is usually an
omitted attribute, "Multipart/form-data" is specified as an attribute.

TARGET=Target-name Specifies the window (frame) where the action execution result is
displayed.

NAME=Form-name Add the name to the form. It is selected and used from the script.

onSubmit="Script" Specifies the script to be executed when pressing the Submit button.

onReset="Script" Specifies the script to be executed when pressing the Reset button.

Example of use

<FORM METHOD=POST ACTON="sample/action.script">

Name:<INPUT TYPE=TEXT NAME="FULLNAME1" VALUE="Your name" SIZE=30>

- 14 -

Password:<INPUT TYPE=PASSWORD NAME="PASSWORD1" SIZE=30>

<HR>

<P>

Hobby:

<INPUT TYPE=CHECKBOX NAME="CHECK1" VALUE="Listening to music" CHECKED>Listening to music

<INPUT TYPE=CHECKBOX NAME="CHECK1" VALUE="Reading">Reading

<INPUT TYPE=CHECKBOX NAME="CHECK1" VALUE="Sports"> Sports

<P>

Sex:

<INPUT TYPE=radio NAME="RADIO1" VALUE="Male" CHECKED>Male

<INPUT TYPE=radio NAME="RADIO1" VALUE="Female">Female

<P>

Age:

<SELECT NAME="DRDLIST1">

<OPTION VALUE="10s">10 to 19 years

<OPTION VALUE="20s" SELECTED>20 to 29 years

<OPTION VALUE="30s">30 to 39 years

<OPTION VALUE="40s or later">40 years or later

</SELECT>

<P>

Occupation:

<SELECT NAME="LIST1" SIZE=3>

<OPTION VALUE="Free">Temporary worker

<OPTION VALUE="Office worker" SELECTED>Office worker

<OPTION VALUE="Public service">Public service

<OPTION VALUE="Self-employed">Self-employed

</SELECT>

<P>

Comment:

<TEXTAREA NAME="TEXTAREA1" COLS=25 ROWS=4></TEXTAREA>

<P>

<INPUT TYPE=submit VALUE="Submit">

<INPUT TYPE=reset VALUE="Reset">

</FORM>

</BODY>

</HTML>

- 15 -

Displayed result

<INPUT>

This tag displays various form components on the input form. The displayed component depends on the TYPE attribute.

Attribute name Explanation

TYPE=Type-name The displayed content depends on the type name.

TEXT: Text

PASSWORD: Password

CHECKBOX: Checkbox

RADIO: Radio button

HIDDEN: Hidden area

BUTTON: Button

SUBMIT: Submit button

RESET: Reset button

FILE: File upload

NAME=Name Specifies the form component name.

<INPUT TYPE-TEXT>

This tag is the form component for inputting the text.

- 16 -

Attribute name Explanation

SIZE=Width Specifies the input area width.

MAXLENGTH=Length Specifies the maximum number of input characters.

onChange=Script Specifies the script to be called when the input area is changed.

onSelect=Script Specifies the script to be called when the character string in the input area
is selected.

onFocus=Script Specifies the script to be called when the focus is moved to the input area.

onBlur=Script Specifies the script to be called when the focus moves out of the input area.

<INPUT TYPE=PASSWORD>

This tag is the form component for inputting the password, which is same as TYPE=TEXT except that the input characters are displayed
as asterisks (*).

<INPUT TYPE=CHECKBOX>

This tag is the form component for specifying a checkbox.

Attribute name Explanation

VALUE="Character-string" Specifies the value to be sent when this item is checked.

CHECKED Sets the initial state of this item to the checked state.

onClick=Script Specifies the script to be called when this item is checked.

<INPUT TYPE=RADIO>

This tag is the form component for a radio button (also called option button in graphical programming).

Attribute name Explanation

VALUE="Character-string" Specifies the value to be sent when this item is checked.

CHECKED Sets the initial state of this item to the checked state.

onClick=Script Specifies the script to be called when this item is checked.

<INPUT TYPE=HIDDEN>

This tag is for a hidden field and is not displayed on the Web Browser. For example, this field is used for Web applications to inherit
the data through Web Browsers.

Attribute name Explanation

VALUE="Character-string" Specifies the field value.

<INPUT TYPE=SUBMIT>

This tag executes the action specified by the ACTION attribute in the FORM tag.

Attribute name Explanation

VALUE="Character-string" Specifies the character string to be displayed on the button.

onClick=Script Specifies the script to be called when this item is checked.

<INPUT TYPE=RESET>

This tag resets all input items in FORM to initial values.

Attribute name Explanation

VALUE="Character-string" Specifies the character string to be displayed on the button.

- 17 -

Attribute name Explanation

onClick=Script Specifies the script to be called when this item is checked.

<INPUT TYPE=BUTTON >

This tag is used for JavaScript, so it is not displayed by Web Browsers that cannot use JavaScript (or JScript).

Attribute name Explanation

VALUE="Character-string" Specifies the character string to be displayed on the button.

onClick=Script Specifies the script to be called when this item is checked.

<INPUT TYPE=FILE>

This tag is the form component to specify a file upload from the client side to the Web server side.

Example of use

<FORM METHOD=POST ACTON="sample/action.script"

 ENCTYPE="multipart/form-data">

<P>

Send file 1<INPUT TYPE="file" NAME="FILE1">

Send file 2<INPUT TYPE="file" NAME="FILE2">

<P>

<INPUT TYPE=submit VALUE="Send">

<INPUT TYPE=reset VALUE="Reset">

</FORM>

Displayed result

<TEXTAREA>~</TEXTAREA>

This tag displays the multiple-line-input field on the input form. The text between <TEXTAREA> and </TEXTAREA> is displayed
in the field.

Attribute name Explanation

NAME="Character-string" Add the name to the field.

ROWS=n Specifies the number of lines in the text area.

COLS=n Specifies the number of columns in the text area.

onChange=Script Specifies the script to be called when the input area is changed.

onSelect=Script Specifies the script to be called when the character string in the input
area is selected.

onFocus=Script Specifies the script to be called when the focus is moved to the input
area.

onBlur=Script Specifies the script to be called when the focus moves out of the input
area.

- 18 -

<SELECT>~</SELECT>

This tag displays the select form component on the input form.

Attribute name Explanation

NAME="Character-string" Add the name to the field.

SIZE=n Specifies the number of displayed lines on the selective field.

MULTIPLE Can select multiple options.

onChange=Script Specifies the script to be called when the input area is changed.

onFocus=Script Specifies the script to be called when the focus is moved to the input
area.

onBlur=Script Specifies the script to be called when the focus moves out of the input
area.

<OPTION>~</OPTION>

This tag displays the select item on the SELECT tag. </OPTION> can be omitted.

Attribute name Explanation

SELECTED Selects the select state as the initial state.

VALUE="Character-string" Specifies the value to be sent when this item is checked.

A.5 Notes and Measures Taken regarding Problems with
Execution in Web Browsers

For client/server systems, users cannot freely change the control of the application on the client side. For Internet/Intranet applications
using Web Browsers, however, the user can easily change the Web Browser's condition, so it may depend on this operation as to whether
the consistency of the Web application on the server functions properly.

Generally, problems may be caused by the following operations:

- When the Refresh button of the Web Browser is used.

This button can re-execute the processing that has already executed, so a conflict may occur in an application, such as during registering
or updating.

- When the Submit button (with "SUBMIT" specified in the INPUT tag INPUT attribute) is pressed twice or more times by the user,
sending the same transactional request to the Web Server.

Pressing this button twice or more times causes the same processing to be executed again and again, so a conflict may occur in the
application, such as during registering or updating.

- When processing is started in the middle of an application by directly inputting the bookmark or URL.

An application can be executed without authorization, so a problem regarding security may be caused. In addition, the application is
not executed in the correct sequence, so a logic problem may occur.

- When a cached page is referred to.

Using the cache function of a Web Browser, the requested Web page can be referred to without accessing the server (it is held in cache
on the client machine), so the user may refer to secret information contained along with the Web page in the cache, for example: the
sales data and personal information.

The following illustrates examples of measures to take against the above noted potential problems, which can be taken by Web Browsers
or Web applications on the server.

- 19 -

User's operation Examples of measures

Web Browsers Web applications

Use the Refresh button of the
Web Browser.

Using JavaScript, open the
window without the Return
button.

Keep track of the application
execution sequence, and confirm
that the application is correctly
executed.

Press the Submit button twice or
more times.

Using JavaScript, determine
whether the application is half-
processed. If the application is
half-processed, disable the
Submit button.

Design Web applications not to
cause a problem even when the
same processing is executed twice
or more times.

Start the processing in the
middle of a business by directly
inputting the bookmark or
URL.

Using JavaScript, open the
window without a bookmark.

Keep track of the application
execution sequence, and confirm
that the application is correctly
executed.

Refer to the cached page. Invalidate the cache of the Web
Browser.

Keep track of the application
execution sequence, and confirm
that the application is correctly
executed.

Generally, the measures to take depend on the content of an application. For example, the cache may not need to be invalidated for
applications with low security requirements. If another operational problem is caused by the content of the application, take the measures
against the problem from its own aspect.

- 20 -

Appendix B Use of Unicode
All COBOL Web subroutines in NetCOBOL support Unicode. Web applications that operate using Unicode improve the expressional
performance as the number of characters increases. However, these Unicode Web applications differ from conventional Web applications
that use native code. Note the following when creating and executing Web applications that support Unicode.

The following table indicates the differences to consider when creating and executing Web applications using native code and Web
applications using Unicode.

No. Item Native code Unicode

1 WWW browsers WWW browser that displays
native code. Any of the latest
WWW browsers can be used

WWW browser that supports UTF-8 or UCS-2
and transmits Web parameters on UTF-8.

2 Input code system from
WWW browser

Native code UTF-8 (*1)

3 Output code system to
WWW browser

Native code UTF-8 or UCS-2

4 Compile options Not required Required

5 Unicode supported
subroutines

Partial limitations Partial limitations

6 HTML document code
system for Web pages used
for invoking applications

Native code UTF-8, or UCS-2

7 HTML document code
system for Web pages used
for processing output result
(prototype file)

Native code UTF-8, UCS-2, or native code

8 Log file code system Native code UCS-2 or native code

9 Coexistence of NetCOBOL
applications with different
code systems

Basically, code systems cannot be mixed. However, it is possible under certain
conditions depending on the subroutines and WWW servers.

*1 : Any input code system can be used in a COBOL application because the NetCOBOL Web subroutines execute conversion processing
according to the COBOL application code system. Each case is described in the following topics.

B.1 WWW Browsers
Native code Web applications can be used with any WWW browser. However, Unicode Web applications can only be used with a WWW
browser that supports Unicode. Note that old WWW browsers in particular do not typically support Unicode. Also, the latest WWW
browsers support Unicode at various levels. When Unicode is used in a NetCOBOL Web subroutine, the WWW browser must be able to
do the following:

- Display the UTF-8 or UCS-2 HTML document correctly, and

- Transmit the Web parameter that is transmitted from a WWW browser using UTF-8.

B.2 Input Code System From WWW Browser
Native code Web applications automatically identify whether the input code system from the WWW browser is native code. Therefore,
the HTML document code system used for Web pages for invoking an application could be native code. However, a Unicode Web
application could only identify UTF-8. This is because Unicode Web applications cannot identify UTF-8 and other code systems
automatically and because in general WWW browsers transmit Web parameter code systems as UTF-8 when Unicode HTML documents
are used. Therefore, a Web page for invoking an application that activates a Unicode Web application must be in Unicode.

- 21 -

B.3 Code System Output to WWW Browser
In a conventional native code Web application, the code system output to the WWW browser is native code. However, in a Unicode Web
application, the code system can be UTF-8 or UCS-2. UTF-8 is selected to decrease the data amount when many ASCII characters are
used throughout the system, and UCS-2 is selected to decrease the data amount when many national characters are used. The code system
output to the WWW browser is selected in the following environment variable information:

@CBR_WEB_OUT_CODE

Specifies the code system output to the WWW browser.

Value Meaning

UTF8 Specifies UTF-8 as the code system output to the WWW browser.

UCS2 Specifies UCS-2 little-endian as the code system output to the WWW browser.

 Note

- The output code system of a native code Web application is fixed to native code. Therefore, no value can be specified in this
environment variable.

- When this environment variable information is set by the Web application itself, the results are undefined.

B.4 Compile Options
A native code Web application does not require any special compile options. However, a Unicode Web application requires RCS (UCS2)
to be specified as a compile option.

B.5 Unicode Supported Subroutines
The Web subroutines listed in the table below cannot be used by Web applications with Unicode. The alternative subroutines listed must
be used with Unicode.

Subroutine name Alternative subroutine

COBW3_GET_VALUE COBW3_GET_VALUE_XX

COBW3_GET_VALUE_NX

COBW3_GET_VALUE_XN

COBW3_GET_VALUE_NN

COBW3_CHECK_VALUE COBW3_CHECK_VALUE_X

COBW3_CHECK_VALUE_N

COBW3_SET_CNV COBW3_SET_CNV_XX

COBW3_SET_CNV_NX

COBW3_SET_CNV_XN

COBW3_SET_CNV_NN

COBW3_DEL_CNV COBW3_DEL_CNV_X

COBW3_DEL_CNV_N

COBW3_SET_REPEAT COBW3_SET_REPEAT_XX

COBW3_SET_REPEAT_NX

COBW3_SET_REPEAT_XN

- 22 -

Subroutine name Alternative subroutine

COBW3_SET_REPEAT_NN

COBW3_DEL_REPEAT COBW3_DEL_REPEAT_X

COBW3_DEL_REPEAT_N

COBW3_SET_COOKIE COBW3_SET_COOKIE_XX

COBW3_SET_COOKIE_NX

COBW3_SET_COOKIE_XN

COBW3_SET_COOKIE_NN

COBW3_DEL_COOKIE COBW3_DEL_COOKIE_X

COBW3_DEL_COOKIE_N

COBW3_GET_COOKIE COBW3_GET_COOKIE_XX

COBW3_GET_COOKIE_NX

COBW3_GET_COOKIE_XN

COBW3_GET_COOKIE_NN

Table B.1 The conventional subroutines

Subroutine name Alternative subroutine

COBW3_NAME COBW3_GET_VALUE_XX

COBW3_GET_VALUE_NX

COBW3_GET_VALUE_XN

COBW3_GET_VALUE_NN

COBW3_VALUE COBW3_CHECK_VALUE_X

COBW3_CHECK_VALUE_N

COBW3_CNV_SET COBW3_SET_CNV_XX

COBW3_SET_CNV_NX

COBW3_SET_CNV_XN

COBW3_SET_CNV_NN

COBW3_CNV_DEL COBW3_DEL_CNV_X

COBW3_DEL_CNV_N

COBW3_CNV_INIT COBW3_INIT_CNV

Refer to the associated Subroutines User's Guide for the for details.

B.6 HTML Document Code System for Web Pages Used for
Invoking Applications

In a native code Web application, the document code systems used for a Web page that invokes an application are native code. However,
in a Unicode Web application, the document code systems used for a Web page that invokes an application must be UTF8 or UCS-2
(depending on the type of WWW browser).

- 23 -

B.7 HTML Document Code System for Web Pages Used for
Processing Result Output

In a native code Web application, the only document code system that can be used for a Web page that processes output results is native
code. However, the following HTML document code systems can be used in a Unicode Web application:

- Native code

- UTF-8

- UCS-2

It is recommended that the code systems for HTML documents are the same as the output code systems for the WWW browser. This will
improve the execution performance.

B.8 Code System for Log File
The code system for the log file that is output by the Web subroutines is determined as described below:

When creating a new log file:

The first COBOL application code system referenced in the execution environment is used.

When adding log information to an existing log file:

The existing log file code system is used.

B.9 NetCOBOL Applications with Combined Code Systems
NetCOBOL applications with different code systems cannot be used in the same process. Therefore, it is not possible to use multiple Web
application code systems in IIS and NES. However, in IIS, multiple code systems can be used within the same WWW server when separate
processes are used. In a CGI application, multiple code systems can also be used within the same server, because each process is operated
independently. Refer to the NetCOBOL User's Guide for details of combined code systems.

- 24 -

	Title Page
	Preface
	Contents
	Chapter 1 Overview
	1.1 Effectively Using the Internet/Intranet
	1.1.1 Features of the Web
	1.1.2 Merits of using COBOL

	1.2 Web Applications
	1.3 How to Build Applications for the Web

	Chapter 2 Applications Using Web Subroutines
	2.1 Interface Types Available by Web Applications
	2.2 Processing Flow of Web Applications
	2.3 Differences between ISAPI and CGI
	2.4 Purpose of Using the NetCOBOL Web Subroutines
	2.5 NetCOBOL Web Subroutines
	2.5.1 Use of ISAPI
	2.5.2 Use of CGI

	Chapter 3 Points of Selecting the COBOL Web Link Function
	3.1 Features of Various Web Link Functions
	3.2 Detailed Information for Each Web Link Function

	Appendix A For Beginners Developing COBOL Web Applications
	A.1 What is a Web Application?
	A.2 NetCOBOL Web Subroutines
	A.3 HTTP Basics
	A.4 HTML Basics
	A.5 Notes and Measures Taken regarding Problems with Execution in Web Browsers

	Appendix B Use of Unicode
	B.1 WWW Browsers
	B.2 Input Code System From WWW Browser
	B.3 Code System Output to WWW Browser
	B.4 Compile Options
	B.5 Unicode Supported Subroutines
	B.6 HTML Document Code System for Web Pages Used for Invoking Applications
	B.7 HTML Document Code System for Web Pages Used for Processing Result Output
	B.8 Code System for Log File
	B.9 NetCOBOL Applications with Combined Code Systems

