08
FUJITSU

FUJITSU Software
NetCOBOL V11.0

B
e e ey e

Getting Started

[Windows

B1WD-3354-01ENZ0(00)
August 2015

Preface

Audience
Prior to using NetCOBOL, it is assumed that you have the following knowledge:
- You have some basic understanding as to how to navigate through and use the Microsoft Windows product on your machine.
- You understand the COBOL language from a development perspective.

- If you plan on using Microsoft’s Visual Basic development environment, you have spent some time using Visual Basic to get a feel
for its interface and capabilities.

How This Manual is Organized

This manual contains the following information:

Chapter 1 A Quick Tour
Chapter 2 Developing GUI Applications
Chapter 3 Working with Visual Basic and COBOL
Chapter 4 Using SQL with COBOL
Appendix A Sample Programs
Appendix B Tips
Note:

This manual contains product descriptions of some products that have been deprecated. Please refer to the product manual for additional
information on product information and usage.

Conventions Used in This Manual

Example of convention Description

setup Characters you enter appear in bold.

Program-name Underlined text indicates a placeholder for information you
supply.

ENTER Small capital letters are used for the name of keys and key

sequences such as ENTER and CTRL+R. A plus sign (+)
indicates a combination of keys.

Ellipses indicate the item immediately preceding can be specified

repeatedly.

Edit, Literal Names of menus and options appear with the initial letter
capitalized.

[def] Indicates that the enclosed item may be
omitted.

{ABC|DEF} Indicates that one of the enclosed items delimited by | is to be
selected.

CHECK Commands, statements, clauses, and options you enter or select

appear in uppercase. Program section names, and some proper
names also appear in uppercase. Underlined text indicates the
COBOL default.

ALL

PARAGRAPH-ID

DATA DIVISION. This font is used for examples of program code.

WORKING-STORAGE SECTION.
* Get the #INCLUDE file to the data
control

#INCLUDE "NUMDATA.COB".

The form acts as an application creation Italics are occasionally used for emphasis.
window.
“PowerCOBOL User’ s Guide” References to other publications or chapters within publications

See Chapter 6, “Creating an Executable are in quotation marks.

Program.”

Related Manuals
- NetCOBOL User’s Guide
- NetCOBOL Language Reference
- NetCOBOL Syntax Samples
- NetCOBOL Debugging Guide
- NetCOBOL CBL Subroutines User’ s Guide
- NetCOBOL CGlI Subroutines User’ s Guide
- NetCOBOL File Access Subroutines User's Guide
- NetCOBOL Getting Started with COM Components
- NetCOBOL ISAPI Subroutines User’s Guide
- NetCOBOL Web Development Tools
- NetCOBOL Web Guide
- NetCOBOL J Adapter Class Generator User's Guide
- PowerBSORT Getting Started
- PowerBSORT Reference
- PowerCOBOL Getting Started
- PowerCOBOL Reference
- PowerCOBOL User’s Guide
- PowerFORM Getting Started

- PowerFORM Runtime Reference

Trademarks
- COBOL/2 is a registered trademark of Micro Focus International Ltd.

- Windows, Windows Server, and Visual Studio are either trademarks or registered trademarks of Microsoft Corporation in the U.S.A.
and/or other countries.

- Oracle is a registered trademark of Oracle Corporation.

- NetCOBOL is a trademark or registered trademark of Fujitsu Limited or its subsidiaries in the United States or other countries or in
both.

- Adobe, Acrobat, Acrobat Reader, and Acrobat logo are either registered trademarks or trademarks of Adobe Systems Incorporated in
the United States and/or other countries.

- Other product names are trademarks or registered trademarks of each company.

- Trademark indications are omitted for some system and product names described in this manual.

Security

Since there are Internet-enabled functions in the development environment, it is recommended that you use the NetCOBOL development
environment only in an Intranet, and not in the more open Internet environment.

To ensure security when working in an environment that is connected to the Internet, it is important to correctly set up both the applications
created with NetCOBOL and their operating environment.

To safeguard resources (such as databases, and input and output files), and definition and information files required for the operation of
programs from illegal access and tampering, you need to restrict access to the resources by OS functions and programs. In particular, keep
important resources in an intranet environment in which a firewall has been installed.

Although this product offers different communication functions (such as the simple communication interface facility, and the Web
subroutines), only the Web subroutines have been designed for use with Internet services. Therefore, only use these other functions in
environments that are not connected to the Internet, or in intranet environments in which firewalls have been installed and which have
been constructed to prevent security breaches.

If you are using the Web subroutines with NetCOBOL on a Web server, use the Web server authorization apparatus and encryption
communication function (SSL) to prevent illegal access or information being leaked or tampered with. Additionally, use the Web server
access log to investigate and pursue any incidents of illegal access. For details, refer to the documentation for the Web server you are
using.

You need to test applications created with NetCOBOL to ensure that even if malicious or careless data values are provided as input, no
important data can be destroyed or sensitive information obtained.

High Risk Activity

The Customer acknowledges and agrees that the Product is designed, developed and manufactured as contemplated for general use,
including without limitation, general office use, personal use, household use, and ordinary industrial use, but is not designed, developed
and manufactured as contemplated for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could lead
directly to death, personal injury, severe physical damage or other loss (hereinafter "High Safety Required Use"), including without
limitation, nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support
system, missile launch control in weapon system.

The Customer shall not use the Product without securing the sufficient safety required for the High Safety Required Use. In addition,
Fujitsu (or other affiliate's name) shall not be liable against the Customer and/or any third party for any claims or damages arising in
connection with the High Safety Required Use of the Product.

Export Regulation

Exportation/release of this software may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

Product names

The names of products described in this manual are abbreviated as follows:

Product Name Abbreviation

Microsoft® Windows Server® 2012 R2 Datacenter Windows Server 2012 R2
Microsoft® Windows Server® 2012 R2 Standard
Microsoft® Windows Server® 2012 R2 Essentials
Microsoft® Windows Server® 2012 R2 Foundation

Microsoft® Windows Server® 2012 Datacenter Windows Server 2012
Microsoft® Windows Server® 2012 Standard

Microsoft® Windows Server® 2012 Essentials

Product Name

Abbreviation

Microsoft® Windows Server® 2012 Foundation

Microsoft® Windows Server® 2008 R2 Foundation
Microsoft® Windows Server® 2008 R2 Standard
Microsoft® Windows Server® 2008 R2 Enterprise
Microsoft® Windows Server® 2008 R2 Datacenter

Windows Server 2008 R2

Windows® 8.1
Windows® 8.1 Pro
Windows® 8.1 Enterprise

Windows 8.1

Windows® 8
Windows® 8 Pro

Windows® 8 Enterprise

Windows 8

Windows® 7 Home Premium
Windows® 7 Professional
Windows® 7 Enterprise
Windows® 7 Ultimate

Windows 7

Microsoft Windows products listed in the table above are referred to in this manual as "Windows".

August 2015
Copyright 2009-2015 FUJITSU LIMITED

Contents

(O g=T o) (= g N N @ U1 o3 Qi 0T | TSSO PPTRTPPP 1
1.1 OVEIVIEW OF T8 GUIARH TOUF....uiueeiiiteieteieeii ettt ettt ettt b e bt et b e e b s b e b e b e e ek e e b e R e ek e e e b e e b e R e e b e b e b e e b e n b e b e et e st et e e e bt nbent et e e enennan
1.2 A Guided Tour through NetCOBOL.......

1.2.1 Using COBOL Project Manager......
1.2.2 Debugging......cccccevrereruereenne

1.2.3 WOrKing With OO COBOL........cueiiieeieiiiiieieiiisieie sttt bbbttt s e st e be s et e e b e st e b e b e st e et be e et et et e st e bebe e e enns
1.2.4 Invoking COBOL Project Manager from WindOWS EXPIOTEr.........cciviiiiiiiiiciiiesiciesee st 25
1.2.5 CONVEItING VEISION 3 PIOJECES....c.cviveiiiiteiiiiiesi etttk b bbb st Rkt e b bt e bttt 26
@ i1 @] 1o - J OO OSSOSOV 26
Chapter 2 Developing GUI APPICALIONS.uiiiiiie et e st e st nb e e st e sne e e s sb e e e ann et e nnn e e e nnneeeas 27
2.1 A BIIET HISEOIY ..tttk e bbb e b E bR R R R bR R R R e bRt R bbbt 27
2.2 NEECOBOL. ...ttt £ £ £ £ £ £ £ £ £ £ttt 28
2.3 EVENT-AIIVEN PrOGIAMIMING... .ttt sttt sttt ettt e be e eaeeee e e bt sees £ eb e e b e s e eh e e b e neeb e eE e b e ebeneeb e e b e R e e b et e b e e b e st et et ebesbeneebebenen 28

2.4 Using NetCOBOL

Chapter 3 Working with Visual BasiC @Nd COBOL...........uuiiiiiiiiiiie ettt et e et e e e s e e e e s e ainereeeeeannenee 31
3.1 Creating Your First Visual Basic COBOL APPIICAIION.ciuiuiiiiiiieietireeese ettt sttt b et et e e se et seeneseeneaneas 31
3.2 Integrating COBOL Programs With VISUAI BASIC.........c.ciueiiiriiiiieieieieeisie ettt st b ettt ettt nnene 47

Chapter 4 Using SQL WIth COBOL. ...ttt e ettt e e e e e bttt e e e e e s teeeeaeaaasaeeeeaeaaansbeeeeesaanbeeeaaeeaannseeeaeeannnens
AL INEFOUUCTION. ..ttt b bbb e b b e b8 e 8 E 0 h b b E b £ 0 R E £t E b b e b bt d e bt b bbb
4.2 Setting up the SQL EXECULION ENVIFONMENT........uiiitiiitirieieiteeeiest ettt sttt see e ebe b esesbe e ebesbeae e b e seebesb e s e e b e seebesbe e beseenesbeneenan
4.3 Setting up SQL Databases and Tables..............

4.4 Defining an ODBC Data SOUrce..........ccccoveerenae
4.5 Setting Up the COBOL Runtime Information....................
4.6 Potential Execution Errors Caused by Incorrect Setups

P Y o] o=t alo [QAN ST Taa o] (I o (oo | =Ty g L P PRRRTP 71
A.1UsSINg the SAMPIE PrOGram PrOJECES........viuetiiiriiieiristeiei ittt b e bbbkt b et b et n bbbt 73
A.2 Sample 1: Data Processing Using Standard INPUE-OULPUL..........ooueiiirieiieeeiee ettt st e re e e aeas 73
A.3 Sample 2: Using Line Sequential and INAEXEU FIIES.......c.ciuii ittt e 79
A.4 Sample 3: Screen Input-Output Using the Presentation File FUNCHION.........coiiiiiiiiiise s 82
A.5 Sample 4: Screen Input-Output USING the SCrEEN SECTION.......cciiiiiiiiiriiee e 82
A.6 Sample 5: Calling COBOL SUDPIOGIAIMS......c.citttiuirtiieiteieeitsteesteseetestesesseseesesaesesteseesesbe e abesseseabessabesseseabensabessentabensabessestsbesssesesseans
A.7 Sample 6: Receiving a Command Line Argument
A.8 Sample 7: Environment Variable HANAIING.cciiiiiieiec ekttt bbbt
A9 SAMPIE 8: USING @ PINE FIIE......eeciiice bbbkt b et e bt n et e e en s
A.10 Sample 9: Using @ Print File (AGVANCEA USAGJE).......ueueeiuererieiteieeterteesteseeteste et ste ettt esbe et esbeseste b e bt benesbe s ebesbeneebeseeneseeneatens
A.11 Sample 10: Using a Print File With FORMAT CIAUSE..........coiiiiiiiiieiieitei ettt sttt sb ettt s b e be st tesbessetesbeneas 106
A.12 Sample 11: REMOLE DALADASE ACCESS.verervereririreitesirisreteieresr sttt eb et sr et se b bt e e bbbt se b s et s bk h e bk s b e b bt e b bt ne b b e r et 106
A.13 Sample 12: Remote Database Access (MUItiple FOW PrOCESSING)......cuerveuireiririerieirieeeieseeesie et see et se e sbe e sbesbe e be e ereseeneeeas 113
A.14 Sample 13: Calling COBOL from ViSUAI BASIC........cc.ciiuirieiirieieiiieicnieisie sttt sttt ne bbb nnene 117
A.15 Sample 14: Visual Basic calling COBOL -Simple ATM EXAMPIE......cccciviirieiirieiiisieieiei ettt sve e 121
A.16 Sample 15: Basic Object-Oriented PrOgramMIMING.........cccieorreueiriiretieriniesesesisses et es ettt s et se bbbt se st nn b an s 127
A.17 Sample 16: Collection Class (CIaSS LIDIAIY).......c.iiiiieiiirieieit ettt sttt b et b ettt sb e et st e b nnens 129
A.18 Sample 17: Object-Oriented Cobol (Aggregation, Singleton, and IEration)..........c.ccceevrreeiennneiennee e 137
A.19 Sample 18: Advanced Object-Oriented ProgramMiNg.........cccouieeririruereririiteieiireiere sttt se bbb snsbese e
A.20 Sample 19: Object Persistence (Indexed File)....................

A.21 Sample 20: Object Persistence (Database)........

A.22 Sample 21: Multi-Thread Programming...........ccccceeveresvenane.

A.23 Sample 22: Multi-Thread Programming (Advanced usage)

A.24 Sample 23: COM Program to Control EXcel (Late BiNGiNG)........ccouauereiiiiinereieseeesiee et 176
A.25 Sample 24: COM Program to Control EXcel (Early BiNGiNg)........ccoueerieiiiniiineinieee e s 179
A.26 Sample 25: Creating @ COBOL COM SEIVEI PrOQIAM.....c.ciiuiiiieietisiiietesiestssesessessessstesassessesassesessessesassessesessessssessesessessesessasens 183

A.27 Sample 26: Using the COM Linkage-COBOL Server Program (COBOL CHENE)........ccoiiiiiieieniineneesese e 189

A.28 Sample 27: Using the COM Linkage-COBOL Server Program (ASP CHENL)........ccooviiiiiiiieiicisesies e 196
A.29 Sample 28: Transaction Management With COM LiNKage-IMTS.......ccoiiiiiirieiiieeieieee st 203
A.30 Sample 29: Inter-application COMMUNICALION FUNCLION.cuiiiiiirieiitereest ettt sttt sbe s 209
A.31 SamPple 30: USING UNICODE.........cceiiirieieirisieetsesie ettt ettt e bbbk s e e bbbt e e b bt bkt b bbb s bbbt b et 215
A.32 Sample 31: Windows System FUNCLION Call..........coiiiiieiiiee ittt 215

A.33 Sample 32: Starting Another Program

PN o] 1T a0 [P = T T O PSPPSR PP PPPRPPP 222

IChapter 1 A Quick Tour

This chapter takes you on a quick tour of the NetCOBOL development environment.

It provides you with:
- An “Overview of the Guided Tour” to help you determine which parts of the tour are most relevant to you.
- “A Guided Tour through NetCOBOL” which takes you through:
- Using COBOL Project Manager

Debugging
- Using Configuration Management
- Working with OO COBOL

The chapter focuses on creating COBOL applications. See Chapter 3. Working with Visual Basic for details on developing Visual Basic
COBOL applications.

NetCOBOL ships with sample COBOL applications that cover a wide array of NetCOBOL functions. Appendix A describes these sample
applications in detail.

NetCOBOL provides NetCOBOL Studio, a development environment based on Eclipse that replaced Project Manager.
For guided tour of NetCOBOL Studio, refer to NetCOBOL Studio User’ s Guide Chapter 2: Tutorial.

1.1 Overview of the Guided Tour

With so many features it is not practical to give you a detailed guide through all of NetCOBOL's features and qualities. For example, you
need to experience the reliability of the code for yourself, and the only valid test of a compiler's performance is how fast it executes your
code. The guided tours in the following sections therefore aim to give you a quick, get-started overview of COBOL Project Manager, then
go into depth in just three of the feature areas, namely debugging, configuration management and OO COBOL.

The guided tours will show you the following functions:

Using COBOL Project Manager

Quick tour, showing how to access and use most of the functions in COBOL Project Manager.

- Using a project - opening projects, understanding the project tree, and building trees.

Editing code - invoking the editor, editing free-format COBOL source, and aids to code readability.

- Building - building, executing, and setting compile and link options.

Maintaining data files - pointers to, and descriptions of, the data maintenance functions.

Debugging
- Preparing for debugging - setting compiler options and building.
- Invoking the debugger - options available in setting the debugging environment.
- Controlling execution - description of execution control functions and how to access them.
- Breaking execution - setting simple breakpoints, breaking on change of data, and breaking on a condition.
- Monitoring and changing data values - datatips, watching data, and the detailed data dialog.
- Tracing execution path - overview of switching on recording and exploring the execution path.

- Using the recording and playback functions - step-by-step instructions for recording and playing back debugging commands or
sessions.

- Debugging with Visual Basic - walk through a dual language debugging session.

Using the configuration management functions
- Overview of PowerGEM structures - context setting for the configuration management environment.
- How to set up a PowerGEM library - step-by-step instructions for setting up a PowerGEM library.
- Using the configuration management functions from Project Manager - how to check-out and check-in files, the effects of check-out,
and overview of other CM functions.
Working with OO COBOL
- Brief introduction to OO COBOL - concepts supported and a description of the major constituents of OO COBOL.

- Guided tour of an OO COBOL application - an OO COBOL application viewed from the Project Manager, COBOL editor, Project
Browser and Class Browser.

1.2 A Guided Tour through NetCOBOL

Follow the steps outlined in the sections below to acquaint yourself with some of the key features of the NetCOBOL product.

gn Note

Many of the windows have been resized before taking snapshots so that they do not take up too much space in this document. The windows
you see are likely to be different sizes to the windows shown in this tour.

1.2.1 Using COBOL Project Manager

The COBOL Project Manager is an integrated development environment that provides project level management for developing COBOL
applications. The Project Manager brings together:

- A sophisticated, yet easy to use source code editor

- A full ANSI 85 and ANSI 74 compliant 32 bit COBOL compiler
- A 32 bit linker

- A sophisticated COBOL source debugger

- Execution facilities

- Project management and Make facilities

- Fujitsu’s File Management Utility

- OO COBOL Class and Project browsers

We will use one of the COBOL samples to illustrate how to access the various functions of COBOL Project Manager.

A. Invoking COBOL Project Manager and Opening a Project
1. From the Windows Start menu select Programs, Fujitsu NetCOBOL V10, COBOL Project Manager.
The COBOL Project Manager window is displayed.

- Non Title - COBOL Project Manager M= B
File Edit Project Wiew Tools Environment M Help

1=l il e 2 T S e A =

Project Compozitian | E dit Hesnurcel

Feady o

2. Click on the Project Open button, on the toolbar and navigate to the folder:

C:\Program Files\Fujitsu NetCOBOL for Windows\Samples\cobol\Sample05 - assuming that you used the default folder names
when you installed the products. Substitute your folder names if you overrode the defaults.

3. Select the file sample05.prj and click Open.

Project Manager opens the project and displays a contracted project tree:

;" SAMPLEOS.PRJ - COBOL Project Manager
File Edit Frogct Yiew Toolz Enwironment CH Help

L= =1 e O I = 2 A O

Project Compozitian | Edit Besource |

E sampled.exe
-fd PRIMNTPRC.AI

1] | i

CAPROGRAM FILESSFUMITSU METCOBOL FOR WwWINDOWSASAMPLESNCOBOLNS AMPLEOSNSAMPLE 2

Notice that you can immediately see that there are two parts to this project - an EXE file and a DLL file. You would be correct in
deducing that the program within the EXE calls a program within the DLL!

4. Fully expand the project tree by selecting View, Expand All from the menu bar.

(Or you can repeatedly click on the plus symbols, , in the project tree but that takes longer!). The expanded tree looks like this:

-7 SAMPLEDS.PRJ - COBOL Project Manager

File Edit Frogct “iew Toolz Enwironment Ch Help

| @@ DlF| 2] X5 R =] SR 28] 5| S

Project Compaozitian | E dit Hesnurcel

113 ms
-] sampleh.exe
=1 Cobal Source Files

E El% Sampleb.cob

=2 Copy Library Files

ED Library Files

=53 PRINTPRC.dI
=27 Cobol Source Files

1] | i

CHPROGRAM FILESSFUNTSI NETCOBOL FOR *INDIDWSYSAMPLESSCOBOLASAMPLEOS SAMPLE 2

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

- You quickly have an overview of how the application sources are structured: a main program, SAMPLES5.COB, calls a
subprogram, PRINTPRC.COB, and they both share a common copy library, S REC.CBL.

- The chosen program structure uses a library file PRINTPRC.LIB.
- The different types of file are clearly distinguished by different icons.
- The icon for the main program, SAMPLE5.COB, stands out as it is colored red.

- The project tree is made up of folders and items. Folders contain collections of associated items, and items are assembled from
several collections. For example the project folder contains two items, SAMPLES.EXE and PRINTPRC.DLL. The
SAMPLES.EXE item is made up of two collections: a collection of COBOL source files; and a collection of library files (because
the application is a simple one, each collection only contains one item).

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

5. Right-click on various folders and items in the project tree.
Project Manager displays a pop-up menu with appropriate functions for the selected folder or item.

You build project trees by using the New Folder and New/Add File functions.

B. Editing Source Code

1. For example, one of the things you can do using the pop-up menu is edit the source code. Right-click on SAMPLES5.COB and select
Edit from the pop-up menu.

SAMPLES.COB demonstrates the use of free format coding, and doesn't have line numbers in columns 1-6. The editor therefore
displays the dialog below:

E ditor]

The line number within the zpecified fle iz not corect,
Pleaze specifty the reading method.

Reading method: ¢ Read as a text to ovenwrite the line numbers

&+ Fead as text without ine numbers:

™ Files with same extension unit reated as being without line numbers

k. I Cancel

2. Make sure you select "Read as text without line numbers" and click OK.
The Editor displays the source code for SAMPLES.COB.

Notice that readability of the code is aided by using different colors for comments, reserved words and user-defined words.

ﬁ'ﬁ Editor - [C:%,..., cobol'\ Sample05'Sample5.cob]

3| File Edit Locate Wiew Tools Options Window Help _|5||£|

D|G|E|ﬁ|%l%|ﬁ|“| o oo] ¥ Bl X 2 F“I‘“‘"I
....... w‘l....:.W..E....ﬁ:\‘....:]..w.:.... - mmam

aeooe1 IDEHTIFIEFITII]H DIUVISIOHN. _I

A8pgea2 PROGRAM-ID. SAWPLES.

Ae0ea3 => THIS SAMPLE PROGRAM IS IH FREE FORMAT. THE |
aeoeay => COMPILED WITH THE SRF COMPILER OPTIOH. THE
geoees => SPECIFIES THE SO0URCE FORHAT TYPE. SRF{FREE,I
g80ea6 => COMPILER THAT THE S0URCE PROGRAM AHD COPYBOI
a808a7 EHUIROHHMENT DIUISION.

g808a8 CONFIGURATION SECTIOHN.

aaoaa9 SPECIAL-HAMES .

aaoa1a SYSERR IS MESSAGE-DEVICE.

A86611 INPUT-OUTPUT SECTIOH.

aaaa12 FILE-COMTROL.

aeoa13 SELECT MASTER-FILE

a0661Y ASSIGH TO IHFILE

aeaa1s ORGAHIZATION IS IHDEXED _|;|
A »

| a7 lines were read, 5

We will make a trivial change to the program so that you can see Project Manager's build function in action.
3. Make sure the status bar is visible by selecting View from the Editor menu bar.

If there is no check mark by "Status Bar" click on "Status Bar" and the status bar will be displayed at the bottom of the window.
4. Scroll down until you get to line 61 (the line number is displayed in the status bar). Line 61 contains the text:

DISPLAY "GENERATE WORK-FILE =" WORK-FILE-NAME

5. Insert a space after the "=" sign.

6. Close and save the file by selecting File, Exit Editor from the menu bar and responding "Yes" to the dialog asking if you want to
save.

Cloge !

CAPROGRAM FILESS. ASAMPLES.COB Do pou want o save’?

™ Remave Trailing Elanks

I Berwmben [hitaliialie; im _I?'
[mErEment Yalue: ’1I:I _“%

es Mo | Cancel | Help

C. Building and Executing
Because the project structure is already in place building is straightforward.
1. Right-click on SAMPLES5.EXE in the project tree, and select Build from the popup menu.

Project Manager compiles the changed source program and builds the EXE. The build is actually guided by a make file that Project
Manager maintains based on the project tree.

2. Any errors in the build are highlighted in red. The Builder tool has functions for navigating from one error to the next. If you have
any errors, double click on the error line and the builder puts you into the Editor at the appropriate line. Fix each error and build the
program again.

A successful build has no red error messages:

X SAMPLEDS5.MAK - Builder
File Build Edit Errors Yiew Option Help

= ===

Build 3tart.

COEQL3Z.EXE -i"5AMPLEQOS.CEI™ -M "SAaMPLES.COB™

STATISTICYS: HIGHEST JEVERITY CODE=I, PROGEAM TNIT=1
"C:yProgram Files\Fuijitsu NetCOBOL for Windows\LINE.EXE™ /DEBUG DEEBUC
Microzsoft (Rl Incremental Linker Version 6.00.8168

Copvright (C) Microsoft Corp 199:2-19958. All rights reserwved.
TRLMPLES. OBEJ™

"PRINTPEC.LIE"

"CiyProgram Files\Fuijitsu NetCOEOL for Windows\FIEICIMP.LIE™
"Ci:NProgram Files\yFujitsu NetCOEOL for WindowssLIEC.LIE™
"Ci:vProgram Files\Fujitsu NetCOEBEOL for Windows\EERMEL3Z.LIE™
"Ci:vProgram Files\Fujitsu NetCOBEOL for WindowsyPFEOJECT.EES™
Euild End.

14 | i
y

3. Close the Builder window.

Setting compiler and linker options: Had you wanted to change the compiler or linker options before building, you would have
selected SAMPLEO5.PRJ in the project tree view and, from the menu bar, selected Project, Option, Compiler (or Linker) Options.
These functions display dialogs in which you can set the options. You are offered lists of all the compiler options and dialogs
explaining the supported options, so you do not have to remember all those details.

Qn Note

SAMPLES prints a single sheet of data to your default printer. If this is likely to cause a problem do not execute the steps 4, 5 and
6.

4. SAMPLEO5 relies on a file that is created by SAMPLEO2. With our apologies, changes to this guided tour mean the file is not
necessarily available at this point. To be sure it is available, close the SAMPLEOQS project, open SAMPLE02.PRJ (in the .\Sample02
folder), Build SAMPLEQ2 and execute SAMPLEOQ2 (select SAMPLEOQ2.EXE in the project tree and select Project, Execute from
the menu bar). Then close SAMPLE02.PRJ and reopen SAMPLEOQ5.PRJ.

5. Now execute the program by selecting SAMPLES.EXE in the project tree and selecting Project, Execute from the menu bar.

Project Manager starts the program executing. SAMPLES executes displaying the message you edited - check that there is a space
after the "=" sign.

6. Click OK in the message box. SAMPLES continues to run, printing a single sheet of data to your default printer.

We will have a closer look at the program in the debugging section.

D. Maintaining Data Files
NetCOBOL provides the COBOL File Utility for maintaining COBOL data files.
1. From the Tools menu, select File Utility.
Project Manager invokes the COBOL File Utility.

2. Click on the Commands menu of the COBOL File Utility to see the range of functions provided. You can select each of these
functions in turn to see exactly what they provide. The following list summarizes the functions (*COBOL files" means sequential,
relative or indexed files in fixed or variable length format):

- Convert: Converts text files to variable length sequential files or variable length sequential files to text files.
- Load: Loads COBOL files from variable length sequential files.

- Unload: Creates variable length sequential files from COBOL files.

- Browse: Provides hex and character display of data in COBOL and text files.

- Print: Prints data from COBOL and text files.

- Edit: Provides hex and character editing of data in COBOL and text files.

- Extend: Provides hex and character input of data to extend (add to) COBOL and text files.
- Sort: Sorts data in COBOL and text files.

- Attribute: Displays statistics on indexed files.

- Recovery: Recovers data from corrupted indexed files.

- Reorganize: Reorganizes indexed files by deleting blocks of unused data.

- Copy: Copies files.

- Delete: Deletes files.

- Move: Moves files.

Although some of the functionality of the COBOL File Utility is provided in a basic fashion you can see that most file maintenance
needs are covered by the above functions.

Purchasers of the Enterprise Edition of NetCOBOL also have the Data Converter and Data Editor tools. These provide more
sophisticated, COBOL-record-descriptionaware data conversion and editing functions. These tools are provided on the Start
Programs menu (NetCOBOL group) or can be added to Project Manager using the Tools, Customize Menu function. Dataedit.exe
and Dataconv.exe are stored in the "C:\Program Files\Fujitsu NetCOBOL for Windows\DataTool" folder.

1.2.2 Debugging

This section guides you through a number of the key debugging functions.

A. Preparing for Debugging
Programs are prepared for debugging by compiling with the TEST compiler option.

When you set this compiler option within Project Manager the appropriate linker options are set automatically. The Project Manager has
a “Build for Debugging” option on the Project, Option sub-menu that sets all the appropriate compiler and linker options for you.

In Project Manager compiler and linker options are set at the project level - so all files within a project are compiled with the same options.
Check that Sample05 is being built for debugging:
1. From the Project menu select, Option and check that “Build for Debugging” is checked.
2. Ifitis not checked, click on the menu item.
If it is checked click on a blank area of the Project Manager window to close the menu.
3. From the Project menu select Build.
Project Manager builds the project using the newly set compiler and linker options.

Note that if you didn’t have to check the “Build for Debugging” option, so that nothing has changed since the previous build, the
builder simply displays the messages “Build Start” and “Build End” indicating that there was nothing to do.

The project is now ready for debugging.

B. Invoking the Debugger
To invoke the debugger:

1. Select SAMPLEOQ5.PRJ in the project tree.
2. From the Project menu select Debug.

The COBOL Debugger starts and displays the Start Debugging dialog.

Start Debugging E E3 |

Application | Su:uuru:el Desu:riph:url Drebugaing Infu:urmatiu:unl Batch Del:uuggingl

Application:

SAMPLES. EXE Browse... |

E secution-tirme options:

Start progranm:;

(] I Cancel

This dialog gives you the opportunity to specify information that may affect your debugging session, such as: the locations of various
source and system files, the option to have the debugging session driven by a command file, and even which program you first want
to see in the debugger. Although the defaults will work for you most of the time, the ability to configure this information at start-
up is invaluable in certain situations, such as debugging with other languages. (See "Debugging with Visual Basic" below).

3. For this debugging session you do not need to specify any extra information so click OK.

4. The COBOL Debugger displays Sample5.cob. It highlights the first executable line in the procedure division.

[E& sampled - COBOL Debugger M= E3
File Edit “iew Search Continue Debug Option Window Help

2| 2| vl B 2lEl| 2lalEEE QPR BREEE 2
Ef =[5 |

E Sampleb.cob =] B
PROCEDURE DIVISIOH USIHG PARAMETER. ﬂ‘
*» (1) DETERMIHE WORK-FILE HAHE

IF PARAHETER-LEHNH = B
DISPLAY ""HOT A SPECIFIED PARAMETER.'-

“PLEASE SPECIFY PARAMETER.™
UFOH MESSAGE-DEVICE
GO TD TERHM-PROC.

IF PARAHMETER-LEH > 8 _I

DISPLAY "PARAMETER LEMGTH IS GREATER THAH 8-CHARACTERS"
UPOH MESSAGE-DEVICE
GO TD TERM-PROC.

HOUE PARAMETER-STRING{1:PARAMETER-LEH) TO WORK-FILE-HAHE .

AbD 1 TO PARAMETER-LEH.

HMOUE " .THP'" TO WORK-FILE-HAME{PARAMETER-LEH:%).

DISPLAY "GEHERATE WORK-FILE ="' WORK-FILE-HAME -

o] | |

For Help, press F1. |F|eau:heu:| zpecified position | 1 | 43- B | &

Notice that code readability is aided by coloring the source code.

5. You may want to open a number of windows in the debugger so maximize the debugger window by clicking on the maximize
button, at the top right of the window.

6. Widen the source display window by dragging the border.
You are now ready to explore the program using the debugging features.

Sections C to F give general descriptions of the functions available with pointers to where these functions can be found. You can experiment
with the functions that are of most interest to you.

Some powerful features you may want to check are:
- The "Specific Execution™ execution control function. (In section C)
- Break on change of data. (In section D)
- Datatips. (In section E)

- Tracing the execution path. (In section F)

C. Controlling Execution
Location

The execution control functions are located on the Continue menu, and a number of them are available on the toolbar:

jedl ali|sd ES Neika])15]

Hover the mouse pointer over a button to display a tooltip confirming the function of the button.
Description

Re-debug:

Restarts the program debugging session with re-initialized data. Gives the option of clearing or retaining breakpoints, watch data, and
passage counts.

Go:

Runs the program to the next breakpoint, break condition, or the end whichever comes first.

Animate:

E
Executes the program line by line at a configurable speed.

Break:

4

Interrupts execution when the program is running or being animated.
Change Start Point to Cursor: (not on toolbar)
Makes the statement containing the cursor the next statement to be executed. (If disabled try stepping one statement.)

Run to Cursor:

Runs the program up to the statement containing the cursor.

Step Into:

S=

Executes one statement. If the statement transfers control to another debuggable program the debugger takes you into that program.

Step Over:

Executes one statement and stops on the next statement in the current program, regardless of whether the current statement transfers control
to another debuggable program.

Step Out:

Runs the current program, interrupting execution when control passes to the calling (debuggable) program.

Run to Next Program:

Runs the current program, interrupting execution when control passes to another debuggable program.
Specific Execution: (not on toolbar)
Runs the program up to the next point specified in the Specific Execution Condition.

Specific Execution Condition: (not on toolbar)

-10 -

Displays a dialog from which you can select a condition for interrupting program execution. Options include stopping at any of 52 verbs,
stopping at a specified line number, stopping at the entry or exit of a named program, and stopping where a named file is accessed.
D. Breaking Execution

In addition to specifying points to which execution should run in the execution control functions, there are three other ways of breaking
execution:

- Setting breakpoints
- Breaking on change of data
- Breaking on satisfaction of a specified condition
Breakpoints
1. To set a simple breakpoint - right click on the line to contain the breakpoint and select "Set Breakpoint" from the pop-up menu.
2. To set a more complex breakpoint, select Breakpoint from the Debug menu.

You can specify that execution should only be interrupted at the line if a condition is also satisfied, or if the line has been executed
a particular number of times. You can also maintain a list of breakpoints enabling and disabling them depending on your debugging
situation.

Break on Change of Data
To have the debugger interrupt execution when the value of a data item changes:

1. Right-click on the data item name, anywhere that it occurs in the text, and select Add Watch Data from the pop-up menu.

The debugger displays the Add Watch Data dialog with the data and program name fields already filled in:

Add Watch Data | 7] !

Data name: |F'ﬂ«Flﬂ«METEH-LEN

Program name: iS.ﬁ.M PLER Cancel

Browze. .

Il

"Eecursive call level |

% Alwayps the latest

| Specific level

v Bieak at change value

2. Select any options you require, such as “Break at change of value” and click OK.
The item is added to the Watch window - shown below with two items:

MASTER-RECORD and PARAMETER-LEN.

= wfatch M= E
| Data name Status
[HMASTER-RECORD FERETETRIRIIIYIIY ...

SN ARAMETERLEN 8008

The check box indicates that any change in PARAMETER-LEN causes a break in execution - the red colored text indicates a break
on change of value has just occurred.

The queries in the MASTER-RECORD entry indicate non-character values (in this case LOW-VALUES as the record has not yet
been read).

The “---” in the MASTER-RECORD entry indicates there is more data than displayed in the window.

-11 -

3. You can check and uncheck the checkboxes in the Watch window to monitor different items for changes.

Break on Condition
To have the debugger interrupt execution when a particular condition is satisfied:
1. From the Debug menu, select Add Watch Conditional Expression.
The debugger displays the Add Watch Conditional Expression dialog with any word that was pointed at entered in the “Conditional

expression” field.

Add Watch Conditional Expression [7] !

Ok

Conditional expression: PARSMETER-LEM

Program name: IggM FLER Caricel

Il

Becurzive call level Browsze. .

% Always the latest

i Specific level I 1 _Ij

2. Enter a conditional expression in the entry field. (e.g. PARAMETER-LEN>9).

Note: The Browse function lets you enter the name of a record or group item, then select data items from within that record.
3. Click the OK button.

The debugger adds the condition to the Watch window:

¥ Watch Hi=l
I Data name | Status

1 HMASTER-RECORD PRRRPYRVNIIIIIINT .

+ PARAMETER-LEH aaas

[PARAMETER-LEH>9 Unsuccessful

It then monitors the condition and interrupts execution when the condition is satisfied.

E. Monitoring and Changing Data Values
You can monitor data values by using Datatips or the Watch Data window.
You can change data using the Debug - Data dialog, or the Watch Data window.
Datatips

You can check the value of a data item very quickly by using the datatip feature. Just hover the mouse pointer over the data item name
anywhere in the text, and the debugger displays the value.

-12 -

[E® sampleb - COBOL Debugger Mi=] Ei

File Edit “iew Search Conthue Debug Option Window Help

2| 2| vl Bl 2lEl] 2lalEEE QPR B REEE 2
ElE|E

L
=

E Sampleb.cob M= E

DISPLAY "NOT A SPECIFIED PARAMETER."-
“PLEASE SPECIFY PARAMETER."
UPON HMESSAGE-DEVICE
G0 TO TERHM-PROC.
IF PARAMETER-LEN > 8
DISPLAY “PARAMETER LENGTH IS GREATER THAN 8-CHARACTERS™
UPON HMESSAGE-DEVICE
G0 TO TERHM-PROC. [
MOUE PARAMETER-STRING{1:PARAMETER-LEN} TO WORK-F ILE-MNAME .
aDD 1 TD PARAMETER-LEN.
MOUE **.THP" TO WOR[PARAMETER-LEN = DODSJETER-LEN:z 4) .
DISPLAY “GENERATE WORK-FILE =" WORK-FILE-NAME
UPON MESSAGE-DEVUICE. =

KN |

FY

Faor Help, press F1. |Maritaring data was changed | 1] B9-24 |

Watch Data Window

The Watch Data window displays a list of items with their values.

= wfatch M= E
| Data name Status

[0 HMASTER-RECORD 812330QUARE ..
PARAHETER-LEH anas

To add an item to the Watch Data window, right click on the item name, and select "Add Watch Data" from the pop-up menu.

Alternatively display the Data dialog, enter the data name and click on the Watch button.
To edit an item in the Watch Data window, just click on the value and enter the new value.
Debug, Data Dialog

The Debug, Data dialog lets you:

Enter a data name, including names of items in any loaded program.

For recursive programs you can specify the call level at which to view the data item.

View the value of the item in character or hexadecimal formats.

Edit the value.

Add the item to the Watch Data window.

To display the Debug, Data dialog select Data from the Debug menu.

F. Tracing the Execution Path
The debugger can record the execution path so that you can check how execution reached a particular point.
To start the debugger recording the execution path select Trace from the Debug menu.

You can then run the code to a breakpoint or to the point at which a condition is satisfied.

-13-

The Backward Trace functions (Previous Statement , Next Statement , Previous Procedure , Next Procedure) help you explore the route
that execution took to reach that point.

Use View, Toolbars, to display the Backward Trace toolbar.

G. Using the Recording and Playback Functions.

The debugger lets you record complete debugging sessions or parts of debugging sections. This can let you automate repetitive tasks or
testing procedures.

The following instructions record and playback a very simple sequence but they demonstrate the principles required to set up much more
complex debug recordings.

We will record some steps, and play the recorded file while recording a new file.

1. If you have been debugging using Sample5, select Continue, Redebug to initialize the debugging session. If you have not been
debugging Sample5 start the debugger with Sampleb.

2. From the Option menu select Output Log.
The debugger displays the Output Log dialog:

Output Log B !

Current status: Stop Siat

L

i Hiztomy file =

|
il Browse, . | Close

The History file is the file to which the debugger writes a record of the operations performed with the results of those operations.
Enter "Recordingl" for the name of the history file.

Click on the Start button to start recording.

Click on the Close button to close the Output Log dialog window.

Click on the Step Into button, two times to execute two statements.

N oo g o~

Right click on the data name "WORK-FILE-NAME" and select Data from the popup menu.
The debugger displays the Data dialog.

There is nothing in WORK-FILE-NAME - it is all spaces (which you can check by switching to Hexadecimal - an ASCII space is
"20" in hex).

8. Click on the Output Log button in the Data dialog.
The debugger writes information about WORK-FILE-NAME to the log file.
9. Click on the Close button to close the Data dialog.
10. From the Option menu, select Output Log, and click on the End button.
This stops the debugger logging each operation.
11. Click on the Close button to close the Output Log dialog.
So, to recap, you have recorded stepping two statements, and checking the value of WORK-FILE-NAME.

1. Now open the Recordingl.log file by starting Windows Explorer (right click on the Start button in the Windows task bar, and select
Explore from the pop-up menu) and navigating to the folder:

C:\Program Files\Fujitsu NetCOBOL for Windows\Samples\cobol\Sample05
Then double click on the file "Recordingl.log" to bring up the file in the COBOL Editor.

-14-

Your recording should look something like this:

E?ﬂ Editor - [Sampled5'recordingl.log]

(3l File Edit Locate View Tools Options ‘Window Help =] x|
D|E-|El|ﬁl|%|§|ﬁ|ﬂ| o o] % [El@ %] 2 _|]
- il R - R ~ SRY-: SO r - | - SRR WE....:.w..ﬁ....ﬁ....?AI

868881 ENVU DBTR{recordingl) ; Environment change
afaae? ; Environment change$

gagaas ; Record logging tStart
agaany ; Logging file name :CzWPROGRAM FILESANFUJITSU
aeaeas FOR WIHDOWS\SAHMPLESACOBOLASAMPLE@A5\recordingi.log

adaaas EMU SEQ DIFF Environment change
aaaaay ; Environment change$

agaaas ; Display format of line number :Relative line number
gaaaae ; Equate capitalfsmall letter :Hot equal

288818 RUNTO HEXT GLOBAL ; One step execution

gage11 ; Execution break$ Position :SAMPLES , cy, 1
gag|12 Cause :Completed 1 step execution

888813 RUNTO HEXT GLOBAL ; One step execution

ggee1y ; Execution break$ Position :SAHMPLES , L8, 1
gaaeis ; Cause :Completed 1 step execution
A88816 LIST {(WORK-FILE-HAME) IH{SAMPLES} FORMAT{H) ; Data display

aeae17 Data display$ Type:Alphanumeric Length: 12 Re|
aaaa1s8 Hezadecimal: 8 S 8 . . . c . .. B...4_ _.8..
gaage19 ; gBoepeon 202082820 29820280280 298262028

< | _>I_I
Edit |REL Line: 1 col 1 Insert | | y

Notice that the log file consists essentially of two types of lines - debug commands or operations (ENV, RUNTO, LIST), and comment
lines starting with ";". The comments describe the commands and display results of the commands. Because the results are output as
comments you can use the log file as input to the debugger - it ignores the comments and executes the commands.

So now we will execute the log file.
1. Close the Editor and return to the debugger by selecting “sample5 - COBOL Debugger" from the Windows task bar.

2. Start another output log by selecting Option, Output Log from the menu bar, and entering "Recording2" as the History file name.
Click on the Start button, then Close the Output Log window.

By writing an output log when playing back debugger commands you can later inspect the results of those commands.
3. From the Option menu select Automatic Debugging.

The debugger displays the Automatic Debugging dialog.

Automatic Debugging [7]

T Carmmand file ik |
! | Erowse. . | lml

The command file is any file containing debug commands. We will use the first log file we created.
4. Click on the Browse button to display a list of available command files.
The debugger displays all files with a .log extension.

If necessary navigate to the folder containing your log file.

-15 -

5. Select Recordingl.log and click on Open.
You return to the Automatic Debugging dialog with the file name in the Command file entry field.
6. Click on OK to run the command file.

The debugger displays an information message that it is ignoring the DBTR option in the command file. (The ENV, DBTR option
starts history files, and is not supported when running command files - we'd normally edit the log file to remove this option.)

7. Respond OK to the message.
The debugger executes the commands in the Recordingl.log file (two steps and one check of data item contents).
8. Stop writing to the Recording2 output log by selecting Option, Output Log from the menu bar, and clicking on End.

9. Now open the Recording2.log file by returning to Windows Explorer (select Exploring from the Windows task bar) and double
clicking on the Recording?2.log file to bring it up in the COBOL Editor.

Your recording should look like this:

g‘i! Editor - [C:..." Sample05' recording2.log]

File Edit Locate Wew Tools Options Window Help _|5’|i|
alf= |n|ﬁ|@|§|§1|n| o | o] & [Bal@ X 2| Belm
....... o IR S TR, T D Y (oS U~ S, Y S ST |

geeea E,NU DBTR{"C:\Program Files\Fujitsu HetCOBOL for WindowsiSamplesicoboliSample

afeaae2 ; Environment change$

geeea3 ; Record logging tStart

gaeaay ; Logging file name :C:\Program Files\Fujitsu HetCOl
ga@aas ; for Windows‘\SamplesicoboliSampleB5hrecording2.log

geeeas ENU SEQ DIFF Environment change

ageaay ; Environment change$

dooaas ; Display format of line number Relative l1line number

aeaaay ; Equate capital/small letter :Hot equal

g88818 AUTORUN “C:\Program Files\Fujitsu HetCOBOL for Windows‘\SamplesicoboliSample®
868811 ENMV DBTR{recordingl} ; Environment change

gagei12 ; DBTR/HODBTR in command file is ignored.

goee13 ; Enuvironment change$

agea14 ENU SEQ DIFF Environment change

agaa1s ; Enuvironment change$

agea16 ; Display format of line number :Relative line number

aeaa17 ; Equate capital/small letter :Hot equal

B08818 RUNTO HEXT GLOBAL ; One step execution

gagei9 ; Execution break$ Position :SAMPLES , co,. 1

aoeaza ; Cause :cCompleted 1 step execution

888821 RUWTO HEXT GLOBAL ; One step execution _|;|
4 3
lﬁlﬁlune: 1 |C|:|I: 1 |Insert | | i

This has a couple of differences from Recordingl.log:
- First it shows the Recordingl.log file being run (the AUTORUN command).

- Second, the results of each of the commands (RUNTO, and LIST) are different because the commands were executed at a different
point in the program.

You can see how, in a few steps, long or highly repetitive debug operations can be automated using the logging (recording) and automatic
debugging (playback) features.

The full set of debug commands is documented in the debugger help system in the Reference, Line Commands section. This provides you
with the option of coding sequences of debug commands using a text editor, or of generating command sequences automatically.

H. Debugging with Visual Basic

NetCOBOL is designed to work well with other languages. A good demonstration of this ability is to see the COBOL and Visual Basic
debuggers working side by side. The following steps take you through a simple program made up of Visual Basic code calling a COBOL
DLL. They give you all the information necessary to set up a dual language debugging session.

-16 -

The example assumes that you have Microsoft Visual Basic 5.0 or later installed.
Setup the Environment Variable to Invoke the Debugger

Because, in this example, Visual Basic is going to be calling COBOL, you need to ensure that an environment variable
(@CBR_ATTACH_TOOL) is set so that the COBOL Debugger is started when the COBOL code is invoked.

1. From COBOL Project Manager’s Tools menu select “Run-time Environment Setup Tool”.

2. Open the file COBOLS85.CBR in the Samplel3 folder. If it doesn’t exist, create it by navigating to the folder and entering
“COBOLB85.CBR” as the file to open.

3. Select the Section tab.

4. Select SAMPLEZ13 from the Section drop-down list.
If there is nothing in the list enter “SAMPLE13”.

5. If @CBR_ATTACH_TOOL=TEST is not displayed in the Section list box:
Select @CBR_ATTACH_TOOL from the Variable Name drop-down list.
Enter “TEST” into the Variable Value field.

Click on Set to add the variable to the section list.

25 Run-time Environment Setup Tool M= E3 |

File Enwvironment Help

— File Mame
C:hProgram FileghFujitzu MetCOBOL for WindowzhS ampleshcobolS amplel 3WCOBOLE

— Thread Mode
i+ Single Thread = Multi Thread

— Environment Y ariables

Section; Cammaon I Section |

| | [@CER_ATTACH_TOOL=TEST

Y ariable M ame;

! =

W ariable W alue:

| o M -

Set | Delete | Spply |

6. Click on Apply to write this information to the COBOL85.CBR file.
Exit from the tool.
Start Debugging from Visual Basic

1. Start Visual Basic. (The instructions are based on Visual Basic 6.0, if you are using a different version, you may need to adapt them
to your version.)

-17 -

2. Open the Visual Basic project:

C:\Program Files\Fujitsu NetCOBOL for Windows\Samples\cobol\Sample13\sample13.vbp

3. Look at the form and code of this sample to get a feel for what it does.
in, Project1 - zample13 [Form) M=l B3
m] [m] i
L f ~
] . :] = 1 : i
G e [0
. Enter 2 numbers of 4 digits or less. Click on the = button to call the
COBOL DLL that calculates the result. The result will be displayed
- to the right.
ad

The form accepts two numbers and displays the result of multiplying those numbers when the "=" button (Command1l) is pressed.
The Commandl code invokes the Samplel3 DLL created using NetCOBOL.:

ChDir App.Path
Call ZIAMPLELS (ark,

* =
M Project] - zample13 [Code] =] E3
;Cummanm =l ;Click =l
Priwvate Declare Sub SAMPLE13 Lik "samplel3 . .DLL"™ (ar%, bry, ByWal C Lz
FPrivate Declare Jub JHPCINTZ Libh "fibipret.dll™ () I
Priwvate Declare Sub JMPCINTI Likbh "fabiprot.dll™ ()
Priwvate Z3ub Commandl Click()
Jtatic C Az 3tring * 11
a = Textl.Text
ar¥ = Valia)
h = TextZ.Text
bhri = WValib)

' zet path to where samplell.exe loaded
bri, O]
Text3.Text = C
End Sub
and JMPCINT3. These calls initialize and close the COBOL run-time system.

w
There are two other pieces of code you should note, although we will not discuss them further in this guide. They are the calls to IMPCINT2
Debug toolbar).

2. When the Sample13 dialog displays, enter two numbers and click on the "=" button.

1. Execute the Visual Basic code by repeating the Debug, Step Into function (available on the Visual Basic Debug menu, and the

-18 -

v

3. Continue stepping up to, and into, the statement:
Call SAMPLE13 (ar%, br%, C)
Debug the COBOL Code

1. Control passes to the COBOL code. The runtime system recognizes that the COBOL debugger should be invoked (because the
@CBR_ATTACH_TOOL environment variable is set) so starts the debugger.

The debugger displays the Start Debugging window.

Start Debugging EE |

Application | Su:uuru:el Descripturl D ebugaing Infcurmaticunl Batch Del:uuggingl

Application:

C:%Program FilesiMicrozaft Yisual Studio 5, £ Browee, .. |

E secution-time options:

Start program:

(] I Cancel

2. The debugger displays "VB6.EXE" as the application being executed. This is the application to which the debugger attaches. You
need to be aware of this because you cannot close the debugger until you close Visual Basic.

You need to confirm two locations to the debugger: on the Source and Debugging Information tabs.
3. Select the Source tab and click on the Browse button by the "Source file storage folders" entry field.
The debugger displays the "Browse for Folder" dialog.
4. From the folder list select
C:\Program Files\Fujitsu NetCOBOL for Windows\Samples\cobol\sample13
5. Select the Debugging Information tab and click on the Browse button.
The debugger displays the "Browse for Folder" dialog.
6. Again select:
C:\Program Files\Fujitsu NetCOBOL for Windows\Samples\cobol\Sample13

7. You have now ensured that the debugger can find the COBOL source files and debugging information.

-19-

8. Click on OK to display the source in the COBOL debugger.

[Ee VBG - COEOL Debugger =] E3

File Edit “iew Search Continue Debug Option ‘Window Help

] 2 ol 2 2lell] BlalaEsE . BEEE S
Esl | 5 e
E SAMPLE13.COB Mi=] B

888618 IDENTIFICATION DIUISIOH.

8806828 PROGRAM-ID. SAMPLEA13.

8806838 EHUIROMMENT DIUISIOHN.

g8a6e48 DATA DIVISION.

8880858 WORKING-STORAGE SECTIOH.

g8ae6e 81 WKDATA PIC 39(9).

8806878 LINKAGE SECTION.

agaeEd @1 pATA1 PIC 39(4) COMP-5.

Aeaa%ad @1 DATA2 PIC 59(4) COMP-G.

aga188 @81 DATA2 PIC 222,222,229,

886118 PROCEDURE DIUISION WITH STDCALL LIMKAGE USIMG DATA1
aea12a [COMPUTE WKDATA = DATA1 = DATAZ2
aea138 MOUVE WKDATA TO DATA3

aea148 EXIT PROGRAM.

KN |

FS

For Help, press F1. \Reached specified pozition | 1] 12- " ¢

You can use all the COBOL debugging functions to debug this program. We will simply step through its three statements.
9. On the COBOL debugger toolbar, click the Step Into button, three times.

The debugger steps through the code. When the EXIT PROGRAM statement is executed, control returns to the Visual Basic debugger
(the Visual Basic button on the task bar may flash to indicate you need to switch control to that window).

10. Continue stepping through the Visual Basic code, and select the Sample 13 window to see the result displayed.

Through this simple example you have seen how complex mixed Visual Basic and COBOL applications can be debugged effectively.

1.2.3 Working with OO COBOL

A. Brief Introduction to OO COBOL

The "NetCOBOL User's Guide" contains a full introduction to the Fujitsu OO COBOL implementation. The following comments are
intended for those who only want the minimum of information before looking at an actual OO COBOL application. The comments assume
a familiarity with OO concepts and terminology.

Fujitsu OO COBOL provides: class/object models, information hiding (data encapsulation, object properties), modularization (methods,
including prototype methods), single and multiple inheritance, context-dependent functions (polymorphism), conformance checking, static
and dynamic binding, garbage collection, and exception handling.

All these features are provided by very natural extensions to the COBOL language.
In OO COBOL:
- Classes are made up of a Factory object and Class objects.

- The Factory object contains data and methods required either for creating and maintaining objects, or for objects that only require one
instance per class.

- The Class objects contain the data and methods that define the entity that the class models.
- Methods can have their own local data as well as procedure code.

- Methods are invoked using the INVOKE statement.

-20 -

- Each of the main constructs "CLASS-ID", "FACTORY", "OBJECT" and "METHODID" are defined using appropriate combinations
of the four standard COBOL divisions (IDENTIFICATION, ENVIRONMENT, DATA and PROCEDURE).

- Class definitions are stored in REPOSITORIES.

- Non-OO COBOL applications can invoke OO programs and OO code can call non-OO programs.

B. Guided Tour of an OO COBOL Application

This tour uses one of the OO COBOL samples, Samplel8, to give you quick views of the support for OO COBOL within NetCOBOL.
You will look at Sample18 in the Project Manager, in the source editor, in the Project Browser and in the Class Browser.

First we'll look at Sample18 within the COBOL Project Manager. Remember that Project Manager presents an application build structure
along with access to most of the NetCOBOL development tools.

1. Start COBOL Project Manager (from the Windows task bar select Start, Programs, Net COBOL, COBOL Project Manager).
2. From the Project Manager menu bar select File, Open and navigate to the:

C:\Program Files\Fujitsu NetCOBOL for Windows\Samples\cobol\Sample18 folder.
3. Select and Open samplel8.prj.

4. Expand the MAIN.EXE, Cobol Source File, ALLMEM.COB, BONU_MAN.COB, ADDRESS.COB, and MAIN.COB nodes by
clicking on the plus, icons.

The samplel8 project tree looks like this:

;" SAMPLE18.PRJ - COBOL Project Manager

File Edit Froect “iew Toolz Enwironment Ck Help

| @l Dl e XS] oae = B3] &5 B S

Project Compozition | E dit Hesnurcel

=] MAINEXE ;I
=1 Cobal Source Files
=[] ALLMEM.COB
ED T arget Repository Files
- E AlLLMEMBER-CLASS.REP
E|l:| Dependent A epoziton Files
f E ADDRESS-CLASS.REP
[-] BOMNU_MAMN.COB
=2 Dependent Fepositary Files
- E MaMNAGER-CLASS REP
=[] ADDRESS.COB
=23 Target Repository Files
- E ADDRESS-CLASS.REP
= MAIN.COB
=27 Dependent Fepositary Files
- E COMTROL-MEMBER-CLASS.REP

EEI--- MAMAGER.COB _|LI
4 | 9

CAPROGRAM FILESSFUITSU METCOBOL FOR WINDOWSASAMPLESNCOBOLNSAMPLETSNSAMPLE 2

The tree is similar to those for standard COBOL applications. It shows that MAIN.EXE is built from several COBOL source files
(ALLMEM.COB, BONU_MEM.COB, etc.) and uses .DLLs defined in COLLECT.LIB.

The tree is different from those for standard COBOL applications in that repositories have been added to the tree. These nodes show
the repositories that are either created by a particular source file (target repositories) or that are referenced by the source file
(dependent repositories).

Once you specify an application's source structure you can have Project Manager figure out the repository information by using the
"Repository File Search™ function on Project Manager's Edit menu.

-21-

The repository information helps identify the function of the different source files. For example:

- MAIN.COB isastandard COBOL program that uses an OO class system for its functions. It therefore references several different
classes.

- ADDRESS.COB is a class definition, hence it has a target repository. It only inherits from the FIBASE root class so it does not
have any dependent repositories.

- ALLMEM.COB has a target repository and is therefore a class definition. It references an item in the ADDRESS class so has
a dependent repository.

Now we'll take a quick look at some OO COBOL source.
5. Double-click on ALLMEM.COB.

6. Scroll past the initial (green) comments to the (blue and black) COBOL source.

&3 Editor - [C:..., cobol' Sample 18 ALLMEM.COE]

2| File Edit Locate Wiew Tools Options Window Help -|E’|£|
DIEIEII?]I%I%IEIHI o | oo 8 [Bal@[X 2 _I EIEI
i - - S R, JSRRRE:: JOR r =Ry | .- SRR v SR \;rll
aea27a8 CLASS-ID. fAllHember-class IHHERITS FJBFISE.
088288 EHUIRODHHMEHNT DIVISION.

806298 COMFIGURATIOHN SECTIDH.
8068388 REPOSITORY.

aaa318@ CLASS FJBASE _|
aaa3z2a CLASS Address—-class.
aga33e =

aea34a OB.JECT.

aea35o0 DATA DIVISION.

a883608 WORKING-STORAGE SECTIOHN.

aea3vs e 81 EWPLOYEE-HUHMBER PIC o008y} .

aea380 81 HAME PIC K(A16).
aen39a 81 EHNTER-DATE PIC X(088).
aaouea 81 QUIT-DATE PIC X(0a8).
aaou18 81 JOB-CLASS PIC o(aa1).
aaou2a 81 BASIC-SALARY PIC o(088).
aeou3a 81 TOTAL-SALARY PIC 0(068) PROPERTY.

aaouha 81 REFER-ADDRESS O0OBJECT REFEREHCE Address-cl
aea45a PROCEDURE DIUISIOH.

BAALGR ¥============================S======================
808470 * IMITIALLIZATION-HETHOD {Initial-method})

aga4gn =

aga49a = - OUTPUT: TOTAL-SARALY (PIC 9({8))

BAA5BA *==

geas10 METHOD-ID. Initial-method.
aensz2a DATA DIVISION.
aeas3ae LIHKAGE SECTIOHN.

088540 01 L-EWPLOYEE-NUMBER PIC 9(004). -
1 I_ I__ i T LI—I
Edit [#B5 [ine: 27 |Col 10 [Insert | | y

Qn Note

- The CLASS-ID paragraph. This is actually part of the IDENTIFICATION DIVISION but the IDENTIFICATION DIVISION header
is optional so you will often see a new code structure starting with its identifying paragraph (CLASS-ID, FACTORY, OBJECT, or
METHOD-ID).

- The INHERITS clause in the CLASS-ID paragraph indicating the class this class inherits from - in this case the system base class
FIBASE.

-22 -

- The methods starting with METHOD-ID, ending with END METHOD, containing data and procedure code.
- At the end of the source file, the END OBJECT and END CLASS, delimiters.

Although some new elements have been introduced, the general structure and layout should be familiar to COBOL programmers -
particularly those who have experience with nested programs.

1. Close the editor and return to COBOL Project Manager.

When developing an OO COBOL application, people within a project group will likely want to review relationships between source
and class elements, without having to release the classes to the whole development organization. The Project Browser tool has been
provided for this purpose.

2. First indicate that a project information database should be created, by selecting Properties from the menu bar and confirming that
"Create Project Database" is checked on the Properties dialog.

e T ~

G eneral |

Froject: IE:'&F‘HEIGH.-’-‘-.M FILESMFLUITSU METCOBOL FOR WIMNDOWS

[Create Project Database

Remate Development
% Mone £ Solarz

Host Mame: I j
Directory on Server machine: I Browsze... |

Comment:

Runtime Character Encoding: &7 ASCI " Unicode
k. I Cancel Help

If it is not checked, click on the "Create Project Database" check box.

3. Build the project information database by right-clicking on SAMPLE18.PRJ in the project tree, and selecting Build from the pop-
up menu.

Assuming that no other updates have been made to the project, Project Manager does no compiles or links, but just displays a
"Terminating database file creation" message.

-23-

4. You can invoke the Project Browser by selecting, Tools, Project Browser from the Project Manager menu bar.

10.

Project Manager invokes the Project Browser tool with the SAMPLE18 project already loaded:

%a C:PROGRAM FILES',FUJITSU NETCOBOL FOR. WINDOWS' SAMPLES . COE... [Eli[=] B3
File Edt Tool Miew Option Help

<] =l 8] #fE ol

ﬂ CHPROGRAM FILES\FUIITSU METC

File Marme

ALLMEMBER-CLASS W LLMEM,COB
ADDRESS-CLASS () ADDRESS-CL... ADDRESS.COB
MANAGER-CLASS (DMBNAGER-CL.., MANAGER,COB

CONTROL-MEMBER-CLASS () CONTROL-ME... CTL_MEME.COB
MEMBER-CLASS () MEMBER-CLASS MEMBER.COB

MAIN g MaTn MAIN,COB

KN — 2l |

s L

The left pane provides a tree view of the classes being used by the project.

The right pane provides details about the item selected in the left pane.

. Expand one of the nodes in the left-hand pane, for example the ALLMEMBERCLASS.

The Project Browser expands the tree to show classes that inherit from this class, referenced classes, methods, properties and inherited
methods. See the Project Browser Help for a description of the different icons. Sharp icons denote items defined within the selected
class, faded icons denote items defined outside the class (generally these are inherited items).

. Select different items in the left-hand pane and note the information that is presented in the right-hand pane, such as arguments

required for methods and data descriptions of properties.

Notice that the Project Browser includes non-OO elements, like the MAIN program - an essential part of the project, but not part
of the OO system.

Now we'll switch to the Class Browser for a slightly different view on this application.

Close the Project Browser and return to the COBOL Project Manager, where we will create a class information database.
A class information database combines information from several class repositories for display by the Class Browser.
From the Project Manager menu bar, select Tools, Class Database, Options.

Project Manager displays the dialog titled "Set the Class Database Generation Options". Its purpose is for you to list all the folders
containing repositories that you wish to include in your class information database, and for you to specify the name and location
for the class information database.

We will only specify the Samplel18 folder for source repositories.

Click on the Add button in the "Repository folder" group box.

Project Manager displays the "Browse for Folder" dialog.

(Note - this dialog starts browsing at the desktop as it assumes that your repositories will often be located on a central server.)
Navigate to the:

C:\Program Files\Fujitsu NetCOBOL for Windows\Samples\cobol\Sample18 folder, select it, and click OK.

-24 -

The sample18 folder is added to the list.
11. Click on the Browse button in the "Class database file" group box and navigate to the:

C:\Program Files\Fujitsu NetCOBOL for Windows\Samples\cobol\Sample18 folder. Then enter "samples" in the "File name" entry
field of the Open window, and click on the Open button.

A class information database called "samples.cid" will be created in the sample18 folder - normally you would place this file in a
central location accessible to all developers.

12. Click OK to close the "Set the Class Database Generation Options" dialog.

13. Create the class information database by selecting Tools, Class Database, Create from the Project Manager menu bar.
Project Manager creates the class information database and displays a message saying “Class database created successfully".

14. You can now invoke the Class Browser by selecting Tools, Class Browser from the Project Manager menu bar.

Project Manager invokes the Class Browser, displaying information from the Samples class information database.

#a C:Program Files'Fujitsu NetCOBOL for Windows'Samples'.cobol5a... [Ei=] E3
File Edit Wew Option Help

NEE

1 samples.cid = | | Mame | =
#-{_) ADDRESS-CLASS ADDRES
) FIEASE (DFIBASE

COLLECT @DICT
J CONTROL-MEMBER-CLASS QCOLLECT

g DICT () CONTROL-MEMBER-CLASS

J LIST () MEMBER-CLASS

) MEMBER-CLASS @ MANAGER-CLASS
3 MANAGER-CLASS A

Y copwa-session-apapeR — |@LIST |
Y F1-EXCEPTION () COBW3-SESSION-ADAP. .,
) F1-1AYA-BASE (D FI-EXCEPTION
) FI-JAVA-ERROR (D F1-Inva-BASE
) FI-18YA-CONTROL (D FI-16vA-ERROR
) FICOL-BLPHANUMERIC-MAP-ENTF | () FI-IavA-CONTROL
) FICOL-EXCEPTION ¥ | | (D FICOL-ALPHANUMERIC - ..
| vl | FicoL-ExcERTION 4
P

The Class Browser has a similar appearance to the Project Browser with the following differences:

- Class Browser only displays OO class information.

Classes within class browser can come from many different projects and application areas.

- Class Browser does not display source file name information.

You can select whether Class Browser should expand classes up or down the class hierarchy.

15. Experiment with browsing the Sample18 classes. Note how the Class Browser helps you understand the relationships between the
classes and the interfaces available in each class.

For more information on OO COBOL consult chapters 14 - 17 in the "NetCOBOL User's Guide".

1.2.4 Invoking COBOL Project Manager from Windows Explorer

COBOL Project Manager can be invoked not only from the Start, Programs menu (as discussed previously) but also from Windows
Explorer.

You do this by double clicking the mouse on a project file and the COBOL Project Manager starts, displaying the project you selected.

-25-

For example, double click on SAMPLE4.PRJ in the Windows Explorer window.

BN Exploring - sample04
iJ File Edt “iew Go Favorter Tool: Help |u
Folders ® || Mame | Sizel Tupe | f -
{77 samplel ;l cobald. chr 1KE CER File [
{27 sample2 (] master 16KE File
i3] sampled zample04.001 1KE 007 File
-~ samplels zample04.chi 1KE CEBIl File
-] samplelE | @ sample0d.exe 48KB Application
{1 sampled? 8] sample0d.mak KB MAK File
~{_] sample08 ST 1KB PR File '
-] Sample0d (2] sampled. cob KB COB File i
1 samplel (] sampled. obj BKE OB File
L sample12 _ILI E?samnled.wd BKE VD Fie _ILI
Ka | r 1 |’ r
i1 object(z] selected |'E|5 I:u_l,lte|_§‘ ty Computer i

This starts COBOL Project Manager with SAMPLE4.PRJ loaded.

1.2.5 Converting Version 3 Projects

If you open a P-STAFF Version 3 project with NetCOBOL or Fujitsu COBOL (Version 4 or later), COBOL Project Manager will convert
the project into the current project format.

This is true whether you open the project from COBOL Project Manager or from Windows Explorer.

1.2.6 Other Options

COBOL Project Manager provides many other functions such as:

- Invoking various tools individually from the Tools menu including the compiler, linker, debugger and editor.

- Integrating pre-compilers into your system.

Working with CORBA objects (Object Director).
- Configuring certain parts of your environment.

For details of these functions see the on-line help for COBOL Project Manager and the “NetCOBOL User’s Guide”.

-26 -

IChapter 2 Developing GUI Applications

This chapter sets the context for developing GUI applications in COBOL. It is descriptive in nature, providing a background for those
who like to know more details.

2.1 A Brief History

Itis generally agreed that COBOL programs make up anywhere from 50-75% of the world’ s current business applications. Today COBOL
programmers need a modern, powerful, and easy to use development environment that fully exploits the Microsoft Windows family of
operating systems for both development and production.

The Microsoft Windows family of operating systems has become the preferred end user platform for the vast majority of PC users. A
number of pitfalls arose, however, as traditional COBOL programmers from the mainframe world attempted to embrace this exciting new
platform.

Primarily, the intense time and complexity of low level Windows API (application programming interface) programming prevents most
developers from creating sophisticated graphical user interfaces using traditional 3GL (3rd generation language) compilers and tools.

Two approaches have been developed to deal with this problem. The first is to extend the COBOL language itself to encompass GUI
capability directly in the language. This approach offers the advantage of using a single COBOL development environment, and keeping
the entire application in native COBOL. Fujitsu’s flagship PowerCOBOL product is the best example of such an approach.

The second approach is to separate the user interface from the actual COBOL application and have it managed by a wholly separate facility.
Some COBOL vendors have attempted to deliver such a combination, but these have fallen short for a variety of reasons. Primarily, these
environments have proven to be highly unstable, lacking in many features, and very proprietary in nature. Additionally, these environments
have been in a constant state of flux as vendors attempted to deliver better stability and a wider array of functionality. The results have
typically been less than successful for developers.

In recognizing these challenges, Fujitsu has developed the world’s premier COBOL GUI and client/server application development
environment -- Fujitsu’ s flagship PowerCOBOL product line.

Fujitsu has also recognized the need for a world class COBOL development product that will integrate, coexist and exploit Microsoft’s
Visual Basic development environment.

If you want to develop full-fledged GUI applications, you should explore Fujitsu”s PowerCOBOL product. If you have the Professional
or Enterprise editions of NetCOBOL, you have probably already installed the product. If you have NetCOBOL Standard edition, you can
check the NetCOBOL web site (www.netcobol.com) for more details. You may additionally use Microsoft’s Visual Basic (version 4.0
or later) with this product to develop GUI applications.

Visual Basic was an attempt to bring out a 4GL-like development environment that would allow programmers and even non-programmers
to develop GUI applications in the Windows environment. Users could visually ‘paint’ the user interface, and then create the rest of the
application by writing small snippets of code using a proprietary scripting language that was loosely based upon the BASIC programming
language.

Initially, Visual Basic was lacking for serious business application development. Microsoft has continued to evolve Visual Basic over the
years into a serious development environment. Today it is a strong development tool for a wide number of professional developers who
want to rapidly create GUI applications for the Windows family of platforms.

For the users of COBOL applications, however, Visual Basic presents a number of substantial challenges:

- Having no relationship to COBOL, Visual Basic presents an alien development environment to COBOL programmers. They must
learn an entirely new development methodology and language.

- Visual Basic does not provide all of the facilities found in the COBOL language.

- Prior to NetCOBOL, Visual Basic could not easily be inter-mixed with COBOL programs to combine the best of both worlds, and to
allow the re-use of existing COBOL programs.

Many COBOL programmers have requirements to re-host applications (move COBOL applications from another platform such as the
mainframe) to the PC environment. At the same time they want to re-design traditional text-based interfaces to take advantage of GUI.

While some COBOL vendors attempted to provide ‘bridges’ to allow Visual Basic to intermingle with COBOL, these approaches typically
fell short.

-27 -

One of the major inhibiting factors in inter-mixing other vendor’s COBOL with Visual Basic related to the fact that each had it own
separate and complex run-time system. Mixing two very proprietary run-time systems is a substantial undertaking. Most legacy run-time
systems were architected and developed by their respective vendors long before PC’s, Windows and GUI’ s were even invented.

Fujitsu Addresses the COBOL Need

Over the years Microsoft has recognized the need to support COBOL applications and has made multiple attempts to provide products to
the COBOL community. Their original COBOL compiler was replaced by Micro Focus’ COBOL/2 product in 1988. The COBOL/2
product suffered from many of the aforementioned pitfalls, and Microsoft withdrew it from the market in June of 1993.

Fujitsu recognized this dilemma and set out to build a next generation COBOL development environment from the ground up. A special
emphasis was placed upon the design of the run- time system to alleviate the above noted problems.

Additionally, Fujitsu developed a tool to aid in the conversion of COBOL/2 applications to NetCOBOL (while COBOL is a standard
language, COBOL/2 contained a significant number of proprietary extensions).

2.2 NetCOBOL

NetCOBOL is a complete COBOL development environment that allows you to create standalone COBOL applications and/or COBOL
components for use with Microsoft Visual Basic and Visual C++ applications.

The COBOL Project Manager is a 32-hit project-oriented development environment that provides integrated access to an editor, compiler,
interactive debugger, execution environment, and other supporting tools. A sophisticated data file editor is also included. It supports all
COBOL data file types, and provides editing, conversion, printing, sorting, reorganizing and recovery capabilities.

For previous users of Micro Focus’ or Microsoft’s COBOL/2, dialect conversion products are available to aid in converting COBOL
programs using some of the Micro Focus proprietary extensions to run under NetCOBOL. See the www.adtools.com Web site for more
details.

Fujitsu PowerBSORT OCX is also included. PowerBSORT OCX is callable from any Windows application that supports OCX’s (for
example, Microsoft Visual Basic).

PowerBSORT OCX online help is provided along with sample applications for Visual Basic 4.0 and 5.0. The online help and sample files
are automatically installed along with PowerBSORT OCX.

2.3 Event-driven Programming

In order to begin developing GUI COBOL applications in the Windows environments, it is important to understand the concept of event
-driven programming.

While the term ‘event driven’ may be somewhat new in the computer industry, the concept has been around for a long time, and chances
are that if you are a COBOL programmer, you already understand it.

When COBOL programmers first began developing mainframe-based applications that interacted with users (e.g. non-batch style
applications), they were constrained to simple line-oriented ACCEPT/DISPLAY syntax.

Later, on-line transaction monitoring systems such as IBM’s CICS and IMS/DC enhanced this capability to handle full screen-oriented
interaction (as opposed to line oriented). Some PC COBOL vendors later enhanced the COBOL ACCEPT/DISPLAY verbs in non-standard
ways to provide full screen interaction.

While one could argue that none of these techniques qualified as event-driven programming, they were in fact, a primitive form of this
approach.

Event-driven programming breaks the user interface portion of a GUI application (screen 1/0, keyboard 1/0, mouse 1/0O, and a few other
possibilities), into a series of possible events.

These events include user actions such as pressing a key on the keyboard, moving the mouse, clicking the mouse on a screen object such
as a button, holding the mouse button down and dragging the mouse to move a window, and so forth.

Writing a proper Windows GUI application entails creating all of the potential windows and objects that the user may interact with
(including output objects as well), determining all of the possible events that may occur, and then creating a link between each potential
event and your application code to handle the event.

-28 -

http://www.adtools.com

What you aim to end up with is an application that registers its user interface with Windows (in much the same approach as CICS and
IMS/DC applications register themselves in the mainframe world). Once the application is registered, Windows recognizes events and
sends event driven messages to the application for resolution.

The registration and event handling processes are based upon the Windows message queue paradigm.

The Windows Message Queue
The Windows message queue is an exceptionally complex topic, and will be discussed only briefly to give you a basic understanding.

Much like CICS or IMS/DC (via VTAM) on a mainframe, Windows controls all input from the screen, mouse and keyboard. It must then
implement a technique to manage all of this and ensure that any event that takes place is routed to the proper application. For applications
that wish to update system I/O resources such as the screen, Windows also needs a mechanism to enable applications to alert it (Windows)
to do so.

Windows provides these services by implementing a message queue. Every Windows application must register itself with Windows when
it activates. As the user interacts with the system, messages are routed into each application as appropriate. Because Windows supports
multiple applications running concurrently, this proves to be a very busy part of the operating system.

This means that any Windows application registers itself with Windows, and then goes into a recurring ‘message loop’ - simply reading
in messages sent to it by the operating system and reacting as appropriate. This continues until the application receives whatever it has
defined to be a ‘terminate application” type of message and then it terminates itself.

It’s important to understand that an application can easily receive thousands of Windows event messages in a short period of time. For
example, when a user moves the mouse around the screen, multiple messages are generated to alert the application whose window(s) the
mouse passes over. These messages not only alert the application that the mouse has moved over the application’ s window, but additionally
provide information such as the exact location (X, y coordinates) where the mouse moved - even though the user did not press any of the
mouse buttons!

If your application does not contain code to handle a certain message then it may lock up or be abended. Fortunately, a common
programming technique is to provide a catchall routine that simply ignores all messages other than the ones you’ ve defined.

Hopefully, you can begin to envision the Windows application environment where messages are being sent to applications as the user
interacts with the system. The applications perform actions based upon the messages received and dispatch messages back to Windows
to perform user interface operations (for example, close a window, create a new window, update the screen with the new data being passed
along, etc.).

In a low level Windows application, developers are forced to write extensive amounts of code to deal with all of the possible events that
may occur, manage the internal message loop, and take care of a great deal of tedious work. This work may even include being forced to
re-paint the screen because another application’s window was placed on top of your application’s window. (Windows does not
automatically keep track of the layering of application windows and will not automatically restore the prior contents of a window that was
briefly overlaid.)

How PowerCOBOL and Visual Basic Simplify Application Development

One of the goals of Fujitsu’s PowerCOBOL and Microsoft’s Visual Basic is to effectively hide from the developer the tedious task of
managing the Windows message queue and an application’ s message loop.

Using PowerCOBOL or Visual Basic, a developer need only paint the application’s windows and contained objects (for example, buttons,
list boxes, text fields, etc.). PowerCOBOL users may program these windows in intuitive COBOL code, while Visual Basic developers
define (in a high level scripting language) how they are to interact with the user and the application. The developer then decides which
potential events he or she cares about (for example, a button being pushed by a mouse click), and writes the code to handle each such
event.

PowerCOBOL actually generates a great deal of the COBOL source code for GUI events and places it automatically into the COBOL
program.

This approach frees the programmer from the tedious nature of low level Windows API message queue programming in order to concentrate
on higher level aspects of the application.

Both PowerCOBOL and Visual Basic generate code for the application to handle any potential events that the developer forgets or simply
does not care to define event code for.

Because some of this code can be quite tedious and complex (for example, re-sizing a window and re-positioning all of its objects), both
PowerCOBOL and Visual Basic become great allies to the application developer who needs to field solid, fully functional GUI applications.

-29 -

When developing these types of applications using Visual Basic, users must be very familiar with Visual Basic’s scripting language,
which is very extensive and can be quite complex at times.

Additionally, developers sometimes run into development scenarios where Visual Basic may not provide a certain capability or provides
it in a somewhat tedious manner versus another programming language such as ‘C’ or COBOL.

Lastly, developers often have legacy applications available that they would like to encompass in a GUI application. These legacy
applications are often written in something other than Visual Basic script. This means that Visual Basic needs to be able to call programs
written in languages other than its own scripting language. This is exactly where NetCOBOL comes into play.

By providing the capability to associate potential events in a Visual Basic controlled application to COBOL programs, the development
environment is greatly extended. COBOL programmers can write sophisticated GUI applications with a minimal amount of knowledge
of Visual Basic’s scripting language. They may additionally re-use existing COBOL code with little or no change within a Visual Basic
application as well.

2.4 Using NetCOBOL

Creating COBOL applications to run standalone or under Visual Basic is a flexible and straightforward process. Developers typically
follow the steps below:

- Application analysis and design.

For GUI applications, creation and testing of the user interface using Visual Basic’ s development environment.

Creation and testing of the COBOL component(s) of the application using the COBOL Project Manager development environment.

- Testing and continued development of the overall application that is run under the initial control of Visual Basic when it is a GUI
application.

It is worth noting that both Visual Basic and NetCOBOL offer extensive dynamic development environments, making it easy to move
between the two when creating and testing applications.

Additionally, both environments provide extensive development support tools to aid the process.

NetCOBOL standalone .EXE files (executables) or .DLL files (dynamic link libraries) do not have to be physically linked into a Visual
Basic application and may be called dynamically at run- time by Visual Basic.

Doing away with the requirement to link all of this together allows you to work offline on either end of the application. That is, you may
work on and test the user interface under Visual Basic, or work on the COBOL component(s) in the COBOL Project Manager without
having first gone through Visual Basic.

Because of the dynamic nature of the two development environments, you do not necessarily have to follow the above steps in order. You
could first develop and test the COBOL components and then design the user interface in Visual Basic. The important point is that when
it comes time to execute the overall application, you should have the interface and the COBOL components available.

-30-

IChapter 3 Working with Visual Basic and COBOL

This chapter teaches you how to mix COBOL and Visual Basic. It starts by walking you through your first Visual Basic COBOL application
it then precedes to the details of integrating COBOL with Visual Basic.

3.1 Creating Your First Visual Basic COBOL Application

In this section, you will learn how to create a COBOL application that uses Visual Basic as a graphical front end.

It is assumed that you have already installed Visual Basic, version 5.0 or higher on your machine. If you have not, please do so before
continuing this section.

It is also assumed that you have gone through the Visual Basic Tutorial entitled “Your First Visual Basic Application,” located in the
“Visual Basic Programmer’s Guide.” This will help you understand the terminology used later in this chapter.

An Overview of the Visual Basic COBOL Application
The application you are going to develop will be a simple graphical window with a text box and two command buttons.
It will be named HICOBOL (short for "Hello from COBOL").

The text box will be assigned a text value by Visual Basic. When selected, one of the command buttons will call your HICOBOL program
and pass two parameters.

One parameter is a numeric value. The COBOL program will set this value to 100 each time, but it will be ignored by the Visual Basic
part of the application (this parameter is defined to illustrate the technique). You may enhance the application on your own to use this
value as appropriate.

The second parameter is a character string. The COBOL program will always set this to "Hello from COBOL". When the COBOL program
exits, this value will be returned to Visual Basic and the graphical text box will be updated with this new string to illustrate the interaction
between Visual Basic and COBOL.

This will happen each time a user clicks on the command button. The second command button will cause the graphical text box to be reset
to display a different string.

How NetCOBOL Interacts with Visual Basic
NetCOBOL was created to work well with other language environments from a runtime perspective.

Most programming API’ s (application programming interfaces) available on the Windows platforms support a C-style programming
interface. This includes not only operating system services such as GUI interface components, but also additionally a vast array of other
programming interfaces. These include database systems, client/server messaging and transaction systems, and even end user applications.

The arrival of NetCOBOL has brought seamless integration with operating system services and other languages to COBOL developers.
Visual Basic integration is but one example of the excellent mixed language programming support found in NetCOBOL.

The integration point between NetCOBOL and Visual Basic is the creation of a DLL (dynamic link library) file from NetCOBOL.

Instead of producing a standalone executable (EXE) file within the COBOL development environment, you instead produce a DLL file.
You can think of a DLL file as a dynamically callable COBOL subprogram, which does not have to be physically linked to a program that
calls it and may even pass data back and forth.

To create a proper DLL, the linker needs to be given the name of the DLL to be produced, and the names to export.

Exported names are the names of entry points contained within the DLL file which are to be made public to allow other applications to
call them after the DLL has been identified to the operating system.

You are going to create a simple DLL file called HICOBOL.DLL, which will contain a single exported entry point - the program name.
The program name entry point will cause a calling program to enter the program at its first executable statement in the PROCEDURE
DIVISION.

Once you have written the HICOBOL.COB program and have created the HICOBOL.DLL executable, you will exit NetCOBOL and
enter Visual Basic to design the graphical interface.

While in Visual Basic, you will create a graphical user interface (GUI) for your COBOL application, which will call the HICOBOL.DLL
program. Data will be passed back and forth as well.

-31-

To identify the NetCOBOL DLL to the Visual Basic program, you will code three simple Visual Basic DEFINE statements. One is for
the NetCOBOL run-time load program. Another is for the NetCOBOL run-time unload program. The final DECLARE statement is for
the HICOBOL.DLL executable you are going to create.

In order to get a NetCOBOL DLL program to work with Visual Basic, you need to first issue a single call from Visual Basic to ensure
that the COBOL run-time support is properly loaded.

You then code a single Visual Basic statement to call the HHCOBOL.DLL program and pass data to it.
Finally, you code a call to unload the COBOL run-time support when finished.
That’s all there is to it.

From an architectural standpoint, when you develop future, more complex Visual Basic COBOL applications you will arrange things
slightly differently than in the following example. The main reason for this is that you only need to load the NetCOBOL run-time once at
the start of your application, and issue the unload call just before you exit your Visual Basic application.

To keep the example simple and straightforward, you are going to code all three calls together (load the COBOL run-time, call HICOBOL,
unload the COBOL run-time).

Developing the COBOL Portion of the Application
In this section you are going to develop the HICOBOL.DLL executable which will be called by Visual Basic.
You are going to use the COBOL Project Manager to assist you.

1. Start the COBOL Project Manager; the following window appears:

;7" Non Title - COBOL Project Manager M=l

File Edit Project Wiew Tools Environment M Help

=|e|®| o] sl xS el 2] 2 @

Project Cormpaozitian | E dit Hesnurcel

Feady -

2. From the Project menu, select Open Project.

Project Manager displays the Open dialog.

We will use this dialog to create a new folder (sub-directory) to store the application you are about to develop.
3. Navigate to the

C:\Program Files\Fujitsu NetCOBOL for Windows\Samples\Cobol

-32-

folder.

Open

Laoak jn: I [cobol

~| & & ek E-

|:| cgismpOl
_1Fcfail
_1Fcfanz
_1Fcfan3
1 Isasmpll
1 Safsmpll
1 Sample0l
1 Sample0z
] Sample04

4]

[Sampleds
(i Samplens
(i Sample0?
(i Sample0d
(i Samplena
(i Samplel 1
(i Samplelz
(i Samplel3
(i Samplel4

[Samplels
(i Samplela
(i Samplel7?
(i Samplela
(i Sample19
I:I Samplezn
(i Samplez1
(i Samplezz
(i Samplez3

File name:

Filez af twpe:

[Samplez4
(s Samplezs
(i Sampleza
(i Samplez?
(i Samplezs
= Sampleza
(s Sample31
(i Sample3z

Cves

| Project File(*. PRJ)

[Open az read-only

Cancel

j Open
=

.

4. Locate and click on the Create New Folder button to the upper right of the dialog.

This creates a new folder in the Samples folder, called “New Folder”, with the text already selected.

5. Change the name of the folder to HICOBOL, by typing:

HICOBOL, and click on ENTER.

Open

Laak jn; I 5] cobol

-] « @&k E-

Samplels
Sampleld
Samplel?
Sampleld
Sample12
Samplez0
Sample21
Samplezz
Samplez3

File narne:

Filez of type:

[Samplez4
(i Samplezs
(i Sampleza
(i Samplez?
(i Samplezd
(i Sampleza
(i Sample31
(i Sample3z

[we4

L vES
|:I WSESSIon

[BSiHI-CEOL

[+]

j Open

| Praiect File[* PRJ)

[Open az 1ead-only

j Cancel

i

6. Double click on the new folder Hicobol, to switch to that folder.

-33-

7. In the File Name field, enter the name of the new project, HICOBOL, and click on the Open button.

Project Manager displays the following message:

T |

hicabal, pri
Thiz file does not exisk,

Create the file?
F Mo |

8. Click on the Yes button, and the project file is created.

9. Right click on the project name to display a pop-up menu and select “New File” to create a new target file.

10. Type over the file name (NewFile.EXE) with HICOBOL.DLL. The COBOL Project Manager window should now look like this:

-7 HICOBOL.PR] - COBOL Project Manager

File Edit Project Wiew Tools Environment CM Help

| WG| Ofz| %[XS] [feae -] B[] &

Project Compozitian | Edit Rezource |

| CPROGRAM FILES\FUIITSU METCOBOL FOR WINDOWS| SAMPLES W COBOL HICOBO!

1| | |

hicabal di v

Because we are not planning to create any other executables, you will now define the files that will be used to create this DLL.
11. Right-click the mouse on HICOBOL.DLL and select Create Folder from the popup menu.

Project Manager displays the Create Folder sub-menu:

COBOL Source Files
Chject Files

Library Files
Module-Definition Files
IDL files

This menu offers the types of files upon which HICOBOL.DLL might depend. You need to create just one folder - for the COBOL
source file.

12. Select “COBOL Source File”.
Project Manager adds a “COBOL Source File” folder to the project tree.

13. Right click on “COBOL Source File” and select “New File” from the pop-up menu.

-34-

14. Overtype “NewFile.COB” with “HICOBOL.COB”.

The project tree should now look like this:

-7 HICOBOL.PR] - COBOL Project Manager
File Edit Project Wiew Tools Environment M Help

L= 1 e O e e e S 2l

Project Composzition | E dit Hesuurcel

D CHPROGRAM FILES\FUIITSU METCOBOL FOR ".l'l.l'Ir".|D':lWS'I,EP-MPLES'LCOBOL'I,HICOEOl
=-fgd hicobol, dl
= {:l Cn:nl:u:nl Source Files
hlL [u] tl |_|| W

1| | i
4

hicobal,cob

You are now ready to create the COBOL source program.
15. Within the COBOL Project Manager, double-click the mouse on the HICOBOL.COB file name.

This brings up a blank Editor window as shown below:

E?ﬂ Editor - [C:%,..., COBOLYHICOBOL hicobol.cob]

7| File Edit Locabe Miew Tools Options Window Help |7 x|
Dlﬁ-lﬂlﬁl%l%lﬁlﬂl ﬂlﬁléﬁlhlﬁlxl | 5[

I i P v N, - .. U r -y . .~ S WE...AI
====== g======= EHD ========

0 o

Edit [#B5 [Lne: 1 ol 7 Insert | | y

You are now ready to construct the HICOBOL.COB source program. The quickest way to do this is to use the Editor’s template
function.

16. From the Edit menu select Template.

The Editor displays the Template dialog.

-35-

17. Expand the COBOL basic functions, Source unit nodes in the Categorization of template tree:

Template Ed |

LCateqorization of termplate: Template name:
El% COBOL basic functions | | Template name
EI% Source unit ‘Eg Source program stacturelE stermal program
e % Frogram ‘Eg Source program structure(|nternal program

- % Class

----- % Factary and Object

-5 Methad
----- % |dentification divizion

EEI---% Environment divizion

-y Data division

[+ Procedure division -

— A a e
l | _*|_I 1 |]

Presview:

IDENTIFICATION DIVISIOMN. i
FROGRAM-ID. [PFrogram-namef.

ENVIRONMENT DIVISION.

* CONFIGUEATION SECTION.
* G0URCE-COMFUTER.

* OBJECT-COMFUTER.

* SPECIAL-NAMES.

-
< _>I_I
[Keep the dialog bos oper Expand I Cancel | Help

18. Select “Source program structure (External program definition)” from the list of Template name and click the Expand button.

The Editor inserts the template code.

-36-

19. You can now see the code that has been inserted in the Editor:

ﬁﬁ Editor - [C:%,...", COBOLYHICOBOL hicobol.cob]

3| File Edit Locate Wiew Tools Options Window Help _|5|5|
DIGIEII?]I%I%I&IHI ﬂlﬁléﬁ-lhlalxl _I MI"“‘"I
i I N - U U v -y . . U U v o N ‘E‘I

geee18 _IDENTIFICATION DIUISION.
800628 PROGRAM-ID. GEProgram—name@.
688038 ENHVIROHNHENT DIUISIOHN.

g80648 = COMFIGURATION SECTIOH.
A88e58 = SOURCE-COMPUTER.
g80es8 = OBJECT-COMPUTER.
A80878 = SPECIAL-MAMES.

A006888 = REPOSITORY.

A806898 = INPUT-OUTPUT SECTIOM.
A8p1068 = FILE-COWTROL.

886118 = [-0-COHTROL.

aep12a =

A8g138 DATA DIVISION.

888148 = FILE SECTIOH.

8081508 = WORKING-STORAGE SECTIOH.
808168 = COMSTAHT SECTIODH.

8881708 = LIHNKAGE SECTIOH.

geg1808 =

888198 PROCEDURE DIVISION USIHG EArgumentd.
AB\8Z288 = DECLARATIVES.

aa\az18 =

A8Be228 = EMD DECLARATIUES.

808238 EHD PROGRAM @Program-nameld.

====== ======== EHND ========

Edit |ABS |Line: 1 ol 7 Insert | |

-37-

20. Uncomment the LINKAGE SECTION header, delete other unwanted comment lines, and insert the text shown below to create the
HICOBOL program:

ﬁﬁ Editor - [C:%,...", COBOLYHICOBOL hicobol.cob]

3| File Edit Locate Wiew Tools Options Window Help _|5||5|
DIGIEII?]I%I%I&IHI ﬂlﬁléﬁ-lhlalxl _I G| o]
I i P v N, - .. U r -y . .~ S WE...AI

886618 IDEMTIFICATION DIVISIOHN.

A866828 PROGRAM-ID. HICOBOL.

g8086838 ENVIROMHENT DIVUISION.

888138 DATA DIVISION.

A8178 LINKAGE SECTION.

888188 @1 vbInteger PIC 39(4) COMP-5.

A88181 81 ubString PIC X({16).

aaA182 =

A88198 PROCEDURE DIVUISION WITH STDCALL LIHKAGE
aaa191 USIHG vbInteger vbString.
ae\a23e MOVE 188 TO0O wublInteger.

aaaz231 HOUE "Hello from COBOL" TO wbString.
aeaz32 EXIT PROGRAM.

806248 EHD PROGRAM HICOBOL.

m===== ======o= END ======== =
1| I 3

Edit |ABS |Line: 14 |Col: 28 Insert | | y

If you examine the HICOBOL program, you will understand what it does quite easily. Note that it contains a LINKAGE SECTION
and thus needs two parameters passed to it, each time it is called.

The vbinteger parameter is always set to the value of 100. The vbString parameter is always set to the value of "Hello from COBOL".

These parameters will be defined in the Visual Basic application and passed to the COBOL program. They are passed by reference
- meaning that the COBOL program gains access to the data areas in the Visual Basic program. The COBOL program updates the
values and returns control to the Visual Basic program.

21. Select Save from the File menu to save the program.

22. Select Close from the File menu to close the Editor.

You are nearly ready to build the HICOBOL.DLL executable.

-38-

23. Returntothe COBOL Project Manager window, select HICOBOL.PRJ in the project tree and, from the Project menu, select Options,
Linker Options.

Project Manager displays the Linker Options dialog:

Linker Ophons

I

— Command Line

|| Browsze. . | Cancel |
— MAP Option Help |

[/Map

AP File:

I Browee,.. |
— Debug Optian

&+ /DEBUG /DEBUGTYPE:COFF

 /DEBUG /DEBUGTYFE:BOTH

— C Run-time Library

Browse. .

Rezet

i

—COBOL Entry Object
@ Link COEOL program only

" Other

24. In the Command Line entry field type:

/EXPORT:HICOBOL

This tells the linker to make the HICOBOL entry point available as an external reference in the DLL file.
25. Click on OK.
26. From the Project menu select Build.

Project Manager compiles and, if there are no compile errors, links the program into a DLL file.

27. If you receive any compile errors, they will be displayed in red in the Builder window that is used to display compiler and linker
messages.

- Double-click on an error line to be taken to the location of the error in the editor.
- Any errors should be typos so check your code carefully, correct it and save the file.
- Return to the COBOL Project Manager window and again select Build from the Project menu.

Project manager recognizes that the source file has been updated since the last build and recompiles and relinks the appropriate
parts of the project (in this case all the parts).

Once you have a successful build (or rebuild) of your application, the following is displayed in the Builder window:

-39-

J& HICOBOL.MAK - Builder

File Build Edit Errors Yiew ©ption Help

= === EY

Build 3tart.
COEBOL3Z.EXE -i"C:\Program FilesyFujitsu NetCOEOL for WindowsYCOBOL.CEI
STATISTICS: HIGHEST SEVERITY CODE=I, PROGEAM UNIT=1
"C:hProgram FilesFujitsu NetCOBOL for Windows\LINE.EXE™ Q["HICOEOQL.OC
Microzoft (R)] Incremental Linker Wersion 6.00.5168
Copvright (C) Microsoft Corp 1992-1995. 41l rights reserved.
JEXPORT: HICOBOL
"Thicobaol.,OBJ™
"C:yProgram Files\Fujitzu NetCOEOQL for Windows) FIEICEDHM. OEJ™
"CiyProgram Files\Fujitsu NetCOEOQL for Windows\F3EICIMP.LIE™
"CiyProgram Files\Fujitsu NetCOEOQL for Windows\EEFNEL3Z.LIE™

Creating librarv hicobol.lib and obiject hicobol.exp
Euild End.

d |

sz

You have now completed the COBOL development side of this application.

Developing the GUI Interface Using Visual Basic

You will now use Visual Basic version 4.0 or higher to develop the graphical user interface for the HICOBOL application. The snapshots
are taken using Visual Basic 6.0.

1. Bring up the Visual Basic development environment. (Select Visual Basic from the Windows Start, Programs menu.)

Visual Basic displays a window like this:

Mew Project B !

icrosoft . .

- .
i i Y

Mew I E:-cistingl Fieu:entl

+

b4 3 o
2 X E)

SENE S Activex EXE Ackives DLL Ackive YE Application

| »

Conkrol Wizard
Vo B B R
o)
TR |
VB \Wizard Data Project 115 Application Addin Bickive
Manager Dacurment Dl

Pea i P=a 4 P=a 4
Open
Cancel

Help

Pl

[Don't show this dislog in the future

This window asks you to specify which type of application you are going to develop. You are going to develop a Standard EXE so:

- 40 -

2. Select Standard EXE and click on the Open button.

Visual Basic displays the following window (or one like it, depending on which display options you have set):

‘wg, Project] - Microsoft Yisual Basic [design]
Fi

ile | Edit Yiew Project Format Debug Run Query Diagram Tools Add-Ins Window Help

[B-a-BleE: 2@aoc) 0 HEIBR A .
S =l B iFroject - Project] Ed
Ef - 0 = SN HE
sFomt __________________ MEEE [B Project! (ProjectD)
s i =% Forms

... Faorml (Forml’

Properties - Formi Ed
|Furm1 Form ;l

Alphabetic |Categu:urizeu:| I
Backi“alar] &HSDDDDDDFﬂ |

Borderstvle Z - Sizable

Caption
Returnssets the text displaved in an
object's title bar or below an object's

Form Layout Ed

You should already be familiar with this environment. If not, it is strongly suggested that you go through the Visual Basic “Your
First Visual Basic Application” tutorial in “Getting Started with Visual Basic” (or “Visual Basic Programmer’s Guide” - earlier

versions).

In the center of this window is an object named FormZ1. This will become our main application window. You are going to create a

text box and two command buttons on this form.

Create the Text Box:

1. Move the mouse to the toolbox (the “object palette”) on the left-hand side of the window and click once on the text box icon.

-41 -

2. Move the mouse over to the Form1 grid. Starting near the upper left hand corner of the grid, hold the left mouse button down, and
drag the mouse down a bit and to the right to draw a text box to look something like this:

. Project] - Form1 [Form]

=l

In the Properties window, enter "Hello from Visual Basic" in the Text property value.

You will notice that it instantly changes in the text box on Form1.

Create the Command Buttons:
1. Click on the command button icon, in the toolbox.

2. Move the mouse pointer near the bottom left of the Form1 window and draw a command button by holding the left mouse button
down and dragging it.

. Project] - Form1 [Form]

........ L] L ..
o Commandi 5
SRR SRS _ S| o

=l

3. Change the Caption value (the text displayed on the command button) from Command1 to Hello COBOL, in the Properties window.

4. You may reposition the command button or the text box by selecting either with the mouse and dragging the selected object to the
position you desire on the form.

5. Now place a second command button on Form1 between the text box and the first command button by repeating steps 3 to 5 above.
Change the caption value to “Reset”.

-42 -

Form1 should now look like this:

. Project] - Form1 [Form]

........... Feset

Create the Programming Logic in Visual Basic

Now that you have created the application’s main window (Form1) and its associated objects, it’ s time to wire this all together by creating
some program logic to define the interaction of the user interface.

Visual Basic makes this process simple and straightforward in the way it has implemented the event-driven programming paradigm.
In these steps you will take care of the following tasks:
- Writing the actual Visual Basic Script (programming language) to handle events and to call the supporting COBOL application.
- Declaring the components of the supporting COBOL application to Visual Basic.
- Executing the overall application under the control of Visual Basic.
You will begin by writing the program logic.

The first requirement you will take care of is to implement the functionality for the Reset push button. The behavior that is desired is to
have the text box string reset with a standard value each time a user clicks this command button.

Implementing the Reset Button
1. Move the mouse pointer over the Reset command button. Double click on this button.

This brings up a program code window to create a Visual Basic subroutine that will be executed every time a user clicks on the
Reset button. Part of the subroutine code is created automatically (its definition and exit).

The cursor is automatically placed at the proper spot in the new subroutine to begin entering commands.

-43-

2. Enter the following line of code, which sets the text string to a new value:

Textl.Text = "Text Reset"

M Project1 - Forml1 [Code] H=] B3

|cummandz =l ICIit:k =l
Priwvate 3Sulb ComrandZ Click() =
Textl.Text = "Text Reset' —
End 3ub

Priwvate 3ub Textl Change ()

End Zub

== 1| 7

3. Click the mouse on the Close button (the X in the upper right hand corner) of the program code window you just typed in.

Implementing the Hello COBOL Button

The Hello COBOL command button is where most of the action in this application will take place. When a user clicks on this button,
Visual Basic will call the HICOBOL.DLL executable and pass two parameters to it.

The COBOL program will update both parameters and return control to the Visual Basic program. Visual Basic will take the value of the
string parameter (which the COBOL program will change to "Hello from COBOL") and update the text box value with it.

You need to perform the following steps at this point:
1. Move the mouse over the Hello COBOL command button and double click on it to open up a program code window.

2. Enter the following code in the new code window between the Private Sub and End Sub statements:

Dim vblnteger as Integer

Dim vbString as String * 16

Call JMPCINT2

Call HICOBOL (vblnteger, vbString)
Textl.Text = vbString

Call JMPCINT3

Let’s look at what each of the above noted statements does at run-time:
Dim vblinteger as Integer - This defines a numeric data item named vbinteger.
Dim vbString as String * 16 - This defines a character string of 16 characters named vbString.

Call IMPCINT?2 - This calls the supplied NetCOBOL routine which initializes the COBOL run-time support. It need only be called once
per application.

Call HICOBOL (vblinteger, vbString) - This calls the COBOL DLL file you previously created, and passes the two parameters to it.

Textl.Text = vbString - This command instructs Visual Basic to update the Text string in the Textl text box with the value contained in
vbString, which will be returned from the HICOBOL COBOL program.

Call IMPCINT3 - This calls the supplied NetCOBOL routine which unloads (exits) the COBOL run-time support. It need only be called
once per application.

Your Code window should look like this:

-44 -

M Project] - Forml [Code) _ (O] x|

ICummam:H j ICIick j

Priwvate Z3ub Commandl Click() -

Dim vhInteger As Integer

Iim vh3tring A=z 3tring * 16

Call JHPCINT:

Call HICOEBOL (vhInteger, wvh3tring)
Textl.Text = vh3tring

Call JMPCIMTS

End Sul

== | AW

Defining the COBOL Components to Visual Basic

The final step that needs to be performed is to define to Visual Basic the external COBOL executables that are going to be referenced in
this application. Do the following:

1. While the program code window shown above is still open, click on the small down arrow to activate the drop down box that
currently has the value Command1. This box is located in the upper left of the project code window. It should appear as follows:

M Project] - Forml [Code) [_ O] =]
Commandi =] |click =l

[[({General)
ap———— andl_Cllc}c[] -

Command2
Form
Textd Jtring * 16

Call JHPCINTEZ

Integer

Call HICOEBOL (vhiInteger, wvh3tring)
Textl.Text = vh3tring
Call JHPCINTS

End Zub
-

== | 1

This drop down list box allows you to navigate through your program source code for each event subroutine you have defined. You
need to go to the General section of your program to create declarations for the external COBOL executables.

2. Click on (General).

3. Enter the following 3 statements in any order (as one long string each) in the program code window in the General Section area:

Private Declare Sub HICOBOL Lib "C:\Program Files\Fujitsu NetCOBOL for Windows\SAMPLES\COBOL
\HICOBOL\HICOBOL.DLL" (vbInteger as Integer, ByVal vbString as String)

Private Declare Sub JMPCINT2 Lib "C:\Program Files\Fujitsu NetCOBOL for Windows\F3BIPRCT.DLL" ()
Private Declare Sub JMPCINT3 Lib "C:\Program Files\Fujitsu NetCOBOL for Windows\F3BIPRCT.DLL" ()

The three statements above have been wrapped to multiple lines because of the page size of this manual. They should be entered
into the program code window as a single line each (not wrapped).

These statements define to Visual Basic where the external COBOL modules that will be referenced at run-time reside. Be sure to
alter the path settings above when entering these if you changed the default installation directory when you installed NetCOBOL
to reflect your machine’s installation location.

- 45-

Your Visual Basic code should now look like this:

P Project] - Form1 [Code] =] B3
I(General} :_i i(l]eclaratiuns} j

J—
Y

Priwvate Declare 3ubh HICOBOL Lik "C:M\Program FilesWwFuji
Priwvate Declare 3ub JHPCINTZ Libh "C:\Frogram Filesh'Fuj
Priwvate Declare 3ubh JMPCINTI Likh "C:\FProgram Files\Fuj

Friwvate 3ub Commandl Clicki)

Iim vbInteger A=z Integer

Dim vhb3tring Az 3tring * 16

Call JHPCINTZ b
Call HICOEBOL (vhiInteger, vh3tring)

Textl.Text = vhi3tring

Call JMPCINTS

== 1w

4. Close the program code window.

You have now completed all of the steps required to create this sample application.
You should save the Visual Basic portion you’ ve just created.
1. Select Save Project from the File menu.
You will be prompted to save the form.

Change the Form name from Form1.frm to HICOBOL.frm, and save it in the HICOBOL folder (within the "C:\Program Files\Fujitsu
NetCOBOL for Windows\samples\cobol" folder).

2. Select Save Project again, to save the project.

Name it HICOBOL.vbp and save it.

Executing the HICOBOL Application under Visual Basic

You are now ready to execute the HICOBOL application.
1. From the Run menu of Visual Basic, select Start.

The HICOBOL graphical window you just created appears:

im. Form1 [_ [O] x|

Hello from Wizual B asic

Rezet

Hella COBOL

2. Click on the Reset button.

The text in the Text box changes to “Text Reset”.

- 46 -

3. Click on the Hello COBOL command button.
Visual Basic issues a call to the HICOBOL.DLL executable.
The program updates the parameters, which then update the text box in your graphical window to read "Hello from COBOL".
4. Click on the Reset button.
The text in the Text box returns to “Text Reset”.
5. Close the window to exit the application.
If you want to create a standalone EXE for your application, use the Make command under the Visual Basic File menu.

Note that Visual Basic applications require you to distribute the Visual Basic Run-time DLL along with your EXE and the COBOL
components required.

3.2 Integrating COBOL Programs with Visual Basic

This section contains detailed information regarding the integration of NetCOBOL programs with Visual Basic applications.

COBOL DLL Interaction with Visual Basic

To access any COBOL routines from Visual Basic, you need to first declare the COBOL PROGRAM-ID or the COBOL ENTRY routine
using the Basic DECLARE statement with the special LIB keyword to specify the path name of the COBOL DLL. These declarations can
be made in the declaration section of any form module or in the global module, and must be declared as Private. You can then call these
routines from your Visual Basic code like any other function call.

When a Visual Basic program calls a COBOL routine, you should call IMPCINT2 before calling the first COBOL routine, and call
JMPCINTS after calling the last COBOL routine. JIMPCINT2 is a subroutine that initializes the COBOL Run Time Environment and
JMPCINTS is a subroutine that exits the COBOL Run Time Environment.

Calling COBOL routines without calling JMPCINT2 and JMPCINT3 may degrade performance because the COBOL Run Time
Environments will be initialized and exited on every COBOL routine called.

Visual Basic Declarations of COBOL Modules

Private Declare Sub PROG Lib "c:\mycobol.dll" (vblnteger as Integer, ByVal vbString as String)
Private Declare Sub JMPCINT2 Lib *"C:\Program Files\Fujitsu NetCOBOL for Windows\F3BIPRCT.DLL" (O
Private Declare Sub JMPCINT3 Lib "C:\Program Files\Fujitsu NetCOBOL for Windows\F3BIPRCT.DLL" ()

NOTE: The above Declare statements should all be on a single line, they have beenwrapped in this text to fit the width of the page.

Visual Basic Call to a COBOL Program

Sub Form_Click ()

Dim vblnteger as Integer

Dim vbString as string * 15

Call JMPCINT2 ‘ Initialize COBOL Runtime Environment
Call PROG (vblnteger, vbString)

Call JMPCINT3 ‘ Terminate COBOL Runtime Environment
End Sub

COBOL LINKAGE SECTION and PROCEDURE DIVISION

Identification Division.

Program-I1D. '"PROG".

Data Division.

Linkage Section.

01 vbiInteger pic s9(4) comp-5.

01 vbString pic x(15).

Procedure Division with STDCALL Linkage Using vblnteger, vbString.

-47 -

move 100 to vblnteger
move "‘NetCOBOL™ to vbString
exit program.

Parameter Passing Between Visual Basic and NetCOBOL

Visual Basic treats a COBOL DLL as a “black box.” It only needs to know the COBOL program's LINKAGE SECTION parameter list
to pass data to and from the COBOL DLL. Parameters can only be passed from Visual Basic to COBOL BY REFERENCE, except strings
which must be passed using the ByVal keyword in the DECLARE statement. Passing parameters BY REFERENCE is the default in Visual
Basic.

Parameter names need not be the same between Visual Basic and COBOL, however, attribute, length, and number of corresponding data
items must be identical.

Visual Basic declarations must exactly match the COBOL parameter lists defined in the USING statement of the COBOL PROCEDURE
DIVISION or ENTRY statements. No parameter checking is done because the two are separate compilation units.

Visual Basic incorporates a rich assortment of data types, some of which are currently not supported by NetCOBOL. These data types
include variable-length strings, Variants, and objects.

Similarly not all COBOL data types are supported by Visual Basic.

Visual Basic Strings

All strings passed between Visual Basic and COBOL must be declared as fixed-length strings and passed using the ByVal keyword in the
DECLARE statement. To avoid possible memory corruption, ensure that all strings passed between Visual Basic and COBOL occupy the
same size.

Dim vbString as string * 15 ‘ Equivalent to PIC X(15)

Corresponding Visual Basic and COBOL Data Types
When passing parameters, associate the data types as follows:

The table below lists the classes and encoding forms.

Visual Basic COBOL

Type Name Storage Size PICTURE Clause
Boolean (16bit) 2 Bytes S9(4) COMP-5
Boolean (32bit) 4 Bytes S9(9) COMP-5
Byte 1 Byte X
Currency 8 bytes S9(10)V9(4) COMP-5
Double 8 Bytes COMP-2
Integer 2 Bytes S9(4) COMP-5
Long 4 Bytes S9(9) COMP-5
Single 4 Bytes COMP-1
String 1 Byte per Character X(n)

Passing Arrays

Visual Basic and COBOL can pass numeric arrays. This works because numeric array data is always laid out sequentially in memory. A
COBOL routine, if given the first element of an array, has access to all of its elements.

Passing the Currency Data Type

- 48 -

The Currency data type in Visual Basic equates to

PIC S9(14)V9(4) COMP-5.

You can pass Currency parameters if the receiving Linkage Section item has this picture clause.

A Visual Basic declaration of a COBOL subroutine receiving the Currency data type would look like the following:

Private Declare Sub CSPRINT Lib "c:\CSPRINT.dII'" (cc As Currency)
Private Declare Sub JMPCINT2 Lib "c:\Program Files\Fujitsu NetCOBOL for Windows\f3biprct.dll"
Private Declare Sub JMPCINT3 Lib "c:\Program Files\Fujitsu NetCOBOL for Windows\f3biprct.dll"

NOTE: The above Declare statements should all be on a single line, they have been wrapped in this text to fit the width of the page.

CSPRINT is the COBOL subroutine; JMPCINT2 and JMPCINT3 are required for mixed language applications including Visual Basic
and COBOL.

The code leading to, and including the subroutine call would look like this:

Dim cc As Currency
cc = 100.0001
Call CSPRINT(cc)

The COBOL program processing the COMP-5 equivalent of Currency would look the following:

000010 IDENTIFICATION DIVISION.
000020 PROGRAM-1D. CSPRINT.

000030 ENVIRONMENT DIVISION.

000061 DATA DIVISION.

000101 LINKAGE SECTION.

000102 01 CC PIC S9(14)V9(4) COMP-5.

000110 PROCEDURE DIVISION WITH STDCALL USING CC.
000150 ADD 1 TO CC.

000160 EXIT PROGRAM.

NOTE: If the data type is converted (for instance, if it is moved to a PACKED-DECIMAL field, or DISPLAYed), then the value of the
data may be truncated.

Returning Control and Exiting Programs

To return control from COBOL to Visual Basic, execute the EXIT PROGRAM statement. When the EXIT PROGRAM statement is
executed, control returns immediately to the calling program.

Compiling and Linking the COBOL Programs

To build the COBOL DLL, you must tell the linker which entry points are to be made external (i.e. those entry points that will be called
from Visual Basic). You can do this by:

1. Specifying the /ENTRY :entry-name linker option for each entry point, or:

2. Creating a module definition file (.DEF) that lists the attributes of the DLL library. You can modify the example below, changing
the “PROG” to match the COBOL PROGRAM-ID (or other ENTRY name that you call).

LIBRARY "‘dIl-name"
EXPORTS PROG

You then save this file as “prog-name.DEF”, where prog-name is the name of your program.

Add it to your project by right clicking on the DLL file node and select New Folder, Module Definition File, from the pop-up menu. You
then add the .DEF file to that folder.

-49-

IChapter 4 Using SQL with COBOL

This chapter describes the steps required to setup your environment to access SQL databases using ODBC. It first gives you an overview
of ODBC and the general mode of working with SQL databases; then goes into the details of setting up your environment. In particular
it covers:

- Defining SQL databases.
- Defining an ODBC data source.

- Setting up NetCOBOL runtime information.

4.1 Introduction

NetCOBOL applications can contain sophisticated processing logic that interacts with SQL database systems. The technology that is used
to interface to these databases is known as ODBC (Open Database Connectivity), which provides a standard and generic mechanism for
any number of applications to access SQL data in a relational matter.

The following sections deal specifically with how to set up the interface between a NetCOBOL SQL program and SQL databases. It
concludes with some tips identifying potential runtime problems with NetCOBOL SQL applications.

Note that the samples and screen pictures are from a Microsoft Windows 2000 environment. You may experience some differences on
Windows XP, Windows Vista, Windows Server 2003, and Windows Server 2008 systems, but these should be easy to determine.

Typical SQL Program Structure

When you create a NetCOBOL program using embedded SQL that will access one or more SQL databases, your application logic typically
goes through the following steps in the following order:

Connect to an SQL database

a.
b. Declare a cursor (for multiple Selects if desired)

3

Open the cursor (or if no cursor is desired, simply execute an SQL SELECT statement).

d. Perform any other desired SQL operations on the data, such as fetching from an open cursor, reading, writing, deleting and updating
any specific data.

e. Closing any open cursors.
f. Transaction processing, such as committing or rolling back changes.
g. Disconnecting from SQL databases.

In NetCOBOL, you code your programs using embedded SQL statements and host variables. For information on writing SQL code in
NetCOBOL programs, refer to “Chapter 19. Database (SQL)” of the “NetCOBOL User’ s Guide”. This chapter covers the information
you need to know to set up an environment that supports such programs.

Note that when creating NetCOBOL SQL applications you can access any number of SQL databases available to you within a single
application.

4.2 Setting up the SQL Execution Environment

In order for a NetCOBOL SQL application to execute successfully, you must ensure that three separate setup oriented tasks have taken
place prior to execution:

1. Define the SQL databases and tables.
2. Define ODBC data sources.
3. Setup NetCOBOL runtime information.

This section gives an overview of these three tasks. The following sections then step you through the details.

-50 -

Define the SQL Databases and Tables

The SQL database(s) and table(s) must typically be defined prior to execution. Note that the SQL language itself is divided into two
separate categories - DDL (Data Definition Language) and DML (Data Manipulation Language). DDL is used to create and delete (drop)
tables and apply certain access privileges. DML is used to manipulate data and includes reading, writing, deleting and updating tables,
among other things.

NetCOBOL applications generally are DML specific. NetCOBOL does not allow you to code embedded DDL ina COBOL program. You
may, however, write NetCOBOL applications using dynamic SQL, which contains DDL statements. See “Using Dynamic SQL” in
“Chapter 19. Database (SQL)” of the “NetCOBOL User’s Guide” for more information on dynamic SQL in NetCOBOL programs.

Once your SQL database(s) and table(s) have been set up properly, you must additionally ensure that you have been granted appropriate
access and that you are aware of any required user id(s) and password(s) required for accessing the SQL data you desire. If you are
unfamiliar with this process, you should consult with your SQL database administrator.

Define ODBC Data Sources

After your SQL database(s) and table(s) have been set up properly, you must define an ODBC data source to be used by your NetCOBOL
application. It is important to understand that ODBC acts as a sort of “middle man” between your NetCOBOL application and the actual
SQL database(s). The embedded SQL statements contained in your NetCOBOL application are actually compiled into ODBC API
(Application Programming Interface) calls to the ODBC software. ODBC then takes care of interfacing to the actual SQL database(s).

The advantage to using ODBC from NetCOBOL is that you are thus able to write a single COBOL program that can access any number
of different SQL databases, as this connection is made at runtime. Switching a NetCOBOL application from one vendor’s SQL database
system to another is as easy as switching the ODBC data source - no changes are required to the COBOL program itself; it does not have
to be recompiled or linked.

The details of creating an ODBC data source are described in the section “Defining an ODBC Data Source” below.

Setup NetCOBOL Runtime Information

Once your SQL database(s) and table(s) have been set up properly, and you have created a proper ODBC data source for your application,
you must set up NetCOBOL specific runtime information. This step connects the NetCOBOL application to the proper ODBC data source
and contains other information about the SQL database environment you wish to access. This information is contained in a NetCOBOL
information (.inf) file which is pointed to at runtime. See the section “Setting Up the COBOL Runtime Information” below for details.

4.3 Setting up SQL Databases and Tables

Because there are a wide array of different SQL database systems from a variety of different vendors it is not feasible to give detailed
instructions in this chapter. See your SQL database administrator if you have any questions.

It is worth noting, however, that one of the most common problems that developers experience is not being able to access a SQL database
because security and permissions have not been set up correctly.

If you receive unexplained errors at runtime when you attempt to access an SQL database, it is a good idea to check the user id and password
you are using. Ensure that they have the appropriate permissions set up in the SQL database system to allow you access to the database
and tables you are using.

4.4 Defining an ODBC Data Source

Creating an ODBC data source is a simple and straightforward process. You first check that you have a 32 bit ODBC manager installed,
then use the Data Source Administrator to create the ODBC data source. The following topics take you through these steps.

Checking for a 32 Bit ODBC Manager

To check for a 32 bit ODBC manager, you access the Windows Control Panel by clicking on the Windows Start button, moving the mouse
over the Settings option and left clicking on the Control Panel option. Then you access Administrative Tools by clicking Administrative
Tools icon on Windows Control Panel. Look in your Administrative Tools and ensure that you have a Data Sources (ODBC) icon as shown
in Figure below:

-51-

Administrative Tools B m]
File Edit Wiew Favorites Tools Help ﬁ

‘= Back ~ = - | @Search L, Folders @ | 3 02 X @& | e

address Administrative Tools j G0
W, o & £
il 2 ,-,

LS Component Compuker _ Ewent Viewer

Administrative Tools Services Management

(ODEC)
Data Sources (ODBC) £ I%

Shortout

Inkernet Local Security Microsoft \MET Microsoft \MET
adds, removes, and configures Open Servic.., Palicy Framework ... Framework, ...
Database Connectivity (ODBC) data

sources and drivers, %’;ﬁ I@ Iﬁ I%}

Maodified: /19,2005 10:53 &M
odified: 8/13/ Performance Personal Web Server Services
Manager Extensions...

Size: 1.52 KB

Aktributes: (normal) ﬁ

Telnet Server
Administration

|.C'.|:||:|s, remaves, and configures Open Dakabase Conneckiviey (|1 52 KB |LI.EJI My Carmputer o

If you do not have Data Sources (ODBC) installed on your Windows machine, check with your software administrator about obtaining it
and installing it properly.

An Overview of the ODBC Data Source Administrator
Double click on the Data Sources (ODBC) icon to bring up the ODBC Data Source Administrator as shown in Figure.

£710DBC Data Source Administrator e B
Uszer DSH | Sygtem DSMN I File D'SM I Driversl Trau:ingl Connection F'u:u:ulingl Abot I

Uzer Data Sources:

I arne: | Diriver | Add...
dBASE Files Microgzaft dBage Driver [*.dbf)

dB aze Files - wWard Microzaft dBase WP Driver [*.dbf] Bemove |
Excel Files Microgaft Excel Driver [*.8lz)

ForPro Files - YWord Microgaft FoxPro YFP Driver [*.dbf] Configure. .. |
MOIS SCL Server

k5 2 IEIEEE-E Microzoft Access Driver [*.mdb]
Yigual ForPro Databaze Microsaft Wisual FoxPro Driver
Yizual FoxPro Tables Microgaft Wizual FowPra Driver

A0 ODBC Usger data source stores information about how to connect to
the indizated data provider. A User data source iz only visible to pou,
and can anly be uzed on the current machine.

] I Cancel Spply Help

-52-

Note that your Data Source Administrator may appear differently depending on the Windows operating system that you are running and
the version of ODBC you have installed.

There are three tabs in this window for accessing User DSN’s, System DSN’s, and File DSN’s.

A User DSN (Data Source Name) will only be visible to the same User ID who was logged onto the current machine and previously created
the DSN. For example, if you log onto your Windows machine with a user ID of “Fred” create a new ODBC User DSN, log off and log
back on as “James”, you will not see or have access to the just-created User DSN.

If you had instead logged on as Fred and created a System DSN, any subsequent user who logged onto the same machine, regardless of
their user 1D would both see and be able to access the newly created DSN.

While User and System DSN’s are specific to the current machine only, File DSN’s may be shared by other users who have the same
ODBC drivers installed on their machines.

You can create ODBC DSN’s for any COBOL application using any of these three tabs, but remember the ramifications if you change
user ID’ s or wish to export the DSN to another machine.

Prior to creating a new DSN, you should click on the Drivers tab and ensure the ODBC database driver for the actual type of database you
wish to access is installed. In the example below, we will set up a new DSN for connecting to a Microsoft SQL Server database. Note in
the Drivers panel shown in Figure 4.3 below that a SQL Server driver is indeed installed as required.

€71 0DBC Data Source Administrator x|

dzer DSH I Syztem DSM I File DSM Dirivers | Trau:ingl Connection F'u:u:ulingl About I

ODBC Drivers that are installed on pour spstenm:

I ame | Y erzion | Company
Drriver da Microsoft para arquivos besto [* et * cev] 4.00.6200.00 hicrozaft |
Drriver do Microsoft Access [*.mdb] 4.00.6200.00 hicrozaft |
Crriver do Microsoft dB asze [+ dbf] 4.00.6200.00 hicrozaft |
Crriver do Microsoft Excel[* «ls] 4.00.6200.00 Microzaft ||
Drriver do Microsoft Paradox [*.db] 4.00.6200.00 hicrozaft |
Ciriver para o Microzoft Yizual FoxPro 6.07.8620.01 hicrozaft |
ki otk A Iriver [*.rmdb] 4.00.6200.00 kicrogoft |

icrozoft .-'lu:u:es-Treiber [".md] 4.00.6200.00 hicrozaft |
Microzoft dBase Driver [*.dbf] 4.00.6200.00 hicrozaft |
Microzoft dB ase WFP Driver [*.dbf] 6.07.8620.01 hicrozaft |
.‘.I - LR | S 'b_l

An ODBC driver allows ODBC-enabled programs to get information from
ODBC data zources. Toinstall new divers, use the diver's zetup
progran.

] I Cancel Spply Help

If your system does not contain the required ODBC driver for the type of SQL database system you wish to access, check with your SQL
database administrator about obtaining and installing the current driver.

Once you are satisfied that you have a proper driver installed, click back on one of the three DSN tabs.

Creating a Data Source Name (DSN)

In the example below, a new System DSN will be created. The System DSN tab appears as shown in Figure.

-53-

£ 0DBC Data Source Administrator 2=

Uszer D5 System DSN | File DSM I Driversl Trau:ingl Connection F'u:u:ulingl &bout I

Swatern D ata Sources:

I arne: Ciriveer | Add...
SOL Server

Bemove

Configure. ..

i

An ODBC Syztem data zource stares information abaut how to connect ta
the indicated data provider. & Syztemn data zource is visible to all uzers
an thig machine, including NT services.

] I Cancel Apply Help

To create a new ODBC data source:

1. Click on the Add button. A dialog box appears as shown in Figure.

Create Mew Data Source ll

Select a driver far which pou want to 22t up a data source.

I ame | i) il
icrozaft FoxPro YFP Driver [*.dbf]
Microzoft QDBC for Oracle
Microgaft Paradow Driver [*.db]
icrogzaft Parados-Treiber [7.db]
icrogaft Test Driver [*. bt * cav)
Microgaft Test-Treiber [5.tat; ® cav]
Microzoft Visual FosPro Driver
Microzoft Visual FosPro-Treiber
SHL Server

O e oo o o o0 (D)

< Bach I Finizh I Cancel

2. Move down the list of available ODBC drivers and select the one for which you wish to create the ODBC data source (in this
example we will pick SQL Server).

-54-

3. Click on the Finish button. A dialog box appears as shown in Figure.

Create a New Data Source to S(L Server ﬂ

Thiz wizard will help you create an ODBC data source that you can uze to
connect ko SOL Server.

YWhat name do wou want bo uze to refer to the data zource?

M ame: ||

How do you want to describe the data sournce’?

Descrption: I

Which SCL Server do pou want to connect to’?

Semer: I - |

Eirmzh i[5 | | Cancel I Help

4. In the Name field, enter the name you wish to use to access this DSN. In this example, we will use “MySQL”.

5. In the Description field (which is optional), enter a meaningful description.

6. In the Server field, you can enter “(local)” if the database system resides on the same system you are developing your application
on, or enter the name of any valid database server on your network. In this example, we will enter “(local)” to indicate that the SQL
Server resides on the same server as the application being developed as shown in Figure.

Create a New Data Source to S0L Server ﬂ

Thiz wizard will help you create an ODBC data source that you can uze to
connect ko SOL Server.

YWhat name do pou want bo uze to refer to the data zource?

M ame: IM}'SEJ L

Howw dio you want to dezcribe the data source’?

Description: [My SOL SOL Server DSH]

Wwhhich SCL Server do you want to connect to?

Server: |[I|:u:al] j

Finizh I Mext > Cancel Help

-55-

7. Now click on the Next button to bring up the dialog box shown in Figure.

Create a New Data Source to S(L Server ﬂ

Haowe ghould SEL Server wernify the authenticity of the lagin D7

£+ Bfith Windows NT authentication using the netwark login 1D

“with SOL Server authentication wsing a login 1D and password
entered by the user.

T o change the netwark: ibram uzed to communicate with SEL Server,
click Client Configuration.

Client Configuration. ..

Connect to SOL Server ko obtain default zettings for the
e L Server to ¢
additional configuration optionz.

Legirn [0 I.ﬁ.dministratnr

Bazzword: I

< Back I Mest > I Cancel Help

8. This is an important step in the process regarding security and user privileges.

The default for this is to login to the SQL Server you have previously specified using your Windows user ID and password (With
Windows 2000 authentication using the network login ID).

The second option is “With SQL Server authentication using a login ID and Password entered by the user”. If you wish to have the
user of this data source log in to SQL Server directly, you should select this second option. If you do so, you will be able to specify
a Login ID and Password. In this example, we will do this and change the User ID to “sa” and leave the password blank.

Note that the Client Configuration button is for advanced users and will allow you to check certain driver information and to change
the default network protocol to be used. You generally should not have to use this facility.

-56 -

9. Once you have changed the authenticity option and altered the User 1D and Password, click on the next button.

Because we did not change the selection for the “Connect to SQL Server to obtain default settings for the additional configuration
options” checkbox, the ODBC DSN setup process will connect to SQL Server and allow us to specify some additional information.
A dialog box appears as shown in Figure.

Create a New Data Source to S(L Server ﬂ

[iChange the default databaze tod

Imaster - |

[Attach database filename:

V LEreate temporan stored procedures for prepared SEL statements
atd drop the stared|procedures:

% Onlywhen vou disconnect,

wWwihen vou disconnect and as appropriate while youw are
connected,

W Use AMSI quoted identifiers,
¥ Use AMS] nulls, paddings and warmings.

r |ze the falover SEL Server it the primany SHL Server iz not
available,

< Back I Mest = I Cancel Help

This dialog box allows you to change certain installation specific options, and to specify how to create and deal with temporary
stored procedures. It also allows you to change the default database to be accessed. In this case, we will change the default database
to be accessed to the Pubs database.

10. Select the check box “Change the default database to:”.

11. Select the Pubs database from the dropdown list that is enabled.

-57 -

12. Click on the Next button and a subsequent dialog box appears as shown in Figure.

Create a New Data Source to S(L Server ﬂ
[T Change the language of SAL Server spstem messages bod

| Engiish =

[~ Usze strong encryphion for data

I Perform translation for character data

Iz regional zettings when outputting currency, numbers, dates and
r himes.

[~ Save long running queres ta the log file:

|CAQUERY.LOG Browse... |
Long query tirme: [millizeconds]: |3|:||:||:||:|

[~ Log ODEBLC driver statistics ta the log fils:

[CASTATSLOG Brovse... |
< Back I Finizh I Cancel | Help |

Once again some implementation specific options are made available to you.
This dialog box allows you to turn on some tracing options and to specify where you want the trace information to be output.

The “Save long running queries to the log file:” option allows you to identify long running queries so that you may examine them
later. This is generally used for performance tuning.

“Log ODBC driver statistics to the log file:” option allows you to have ODBC statistical information recorded at run time. This can
be useful in debugging ODBC specific problems. You may also turn a tracing option on or off at any time directly in the main
ODBC Data Source Administrator window under the Tracing tab.

-58 -

13. When you have finished with the configuration of the new ODBC DSN, you should click on the Finish button.

You will be presented with a dialog box containing an overview of the information associated with the new ODBC DSN you’ ve
just created as shown in Figure. More importantly, there is a Test Data Source button available. Note that some versions of the
ODBC software do not provide this option, so don’t be alarmed if you do not have it.

ODBC Microsoft SOL Server Setup ﬂ

A new ODBC data source will be created with the following
configuration;

ticrogaft SOL Server ODBC Driver Verzion 03.80.01534 :I

[rata Source Mame: MySOL

Data Source Description: My SOL SOL Server DSN
Server [local]

D atabage: [Default]

Language: [Default]

Tranzlate Character D ata: Yes

Log Long Running Cluenes: Mo

Laog Diriver Statiztics: Mo

|lze Inteqrated S ecurity: Yes

|lze Regiohal Settings: Mo

Prepared Statements Option: Drop kermparary procedures an
disconnect

IJze Failowver Server: Mo

IJze AW S| Quoted |dentifiers: es

Jze AMS| Mull, Faddings and ' armings: Yes

D ata Encryption: Mo

Test Data Source... ak. | Eanu:ell

14. If you have it available, go ahead and click on the Test Data Source button. This connects to the SQL Server specified and tries out
the data source. If it tests correctly, you will be presented with the dialog box shown in Figure.

S0QL Server ODBC Data Source Tesk ﬂ

— Test Results

Microzoft SCL Server ODBC Driver Werzion 03.80.0134 ;I
Running connectivity tests.

Alternpting connection

Connection establizhed

" ernifying option settings

Digconnecting from server

TESTS COMPLETED SUCCESSFULLY!

-59-

If you do not have the Test Data Source option available in your version of ODBC, you can use a generic query tool such as
Microsoft’s Query (MS Query) to quickly try out a new data source.

Once you have successfully set up a new ODBC DSN for your NetCOBOL application, you are ready to set up the NetCOBOL
specific runtime configuration.

4.5 Setting Up the COBOL Runtime Information

For the purpose of demonstrating a NetCOBOL application and how to set it up, we will use a simple single-program application that
reads three fields from the Employee table of the Pubs database that comes with SQL Server. This project is named “MySQL”. It consists
of a single .exe file named “MySQL.EXE”, which is created from the following COBOL program:

Identification Division.
Program-1D. MySQL
Environment Division.
Data Division.
Working-Storage Section.
01 Loop-Flag Pic 9 Value O.
EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EmplID Pic X(9) Value Spaces.
01 FName Pic X(20) Value Spaces.
01 LName Pic X(30) Value Spaces.
01 SQLSTATE Pic X(5) Value Spaces.
EXEC SQL END DECLARE SECTION END-EXEC.
Procedure Division.
Move O To Loop-Flag
SQLSTATE.
EXEC SQL
CONNECT TO Default
END-EXEC.
EXEC SQL
DECLARE CUR1 CURSOR FOR
SELECT emp_id, fname, Iname FROM employee
END-EXEC.
EXEC SQL
OPEN CUR1
END-EXEC.
If SQLSTATE Not = Zeroes
Display "Open Cursor Error! SQLSTATE: **, SQLSTATE
Exit Program
End-1T.
Move O To Loop-Flag
Perform Until Loop-Flag Not = 0O
EXEC SQL
FETCH CUR1 INTO :EmplD,
:FName,
:LName
END-EXEC
IF SQLSTATE = Zeroes
Display EmplID, * ", FName, ' ', LName
Else
Move 1 To Loop-Flag
EXEC SQL CLOSE CUR1 END-EXEC
End-IF
End-Perform.
EXEC SQL
DISCONNECT DEFAULT
END-EXEC.
Exit Program.

Prior to running a NetCOBOL SQL application, you must set up the SQL database(s) and table(s), ensure that your security and
authorization information is properly configured and available to you, and set up an ODBC DSN.

-60 -

Once you have accomplished these tasks, you must make this information available to your NetCOBOL SQL application at run time. This
is done in 2 separate steps:

1. Create a NetCOBOL specific information file (.inf file) which will contain required information.
2. Point the application at the appropriate .inf file by creating/adding it to a COBOLS85.CBR file.

You create a .inf file using the NetCOBOL utility named “SQLODBCS.EXE”. This utility will help you specify the required parameters
and write them out in the proper format. It also encrypts the Password value specified. You can view a .inf file in a text editor, but you
cannot modify any password fields because the are encrypted. However, you may modify other fields in a text editor.

If you have not done so already, you may want to take advantage of the COBOL Project Manager’s configuration features and add the
SQLODBCS.EXE utility into the Tools pull down menu. If you do not care to do this, you will have to manually find and execute this
utility each time you wish to execute it.

Adding SQLODBCS.EXE to the Tools Menu
To add the SQLODBCS.EXE utility to the Tools pull down menu of the COBOL Project Manager, perform the following steps:

1. Bring up the COBOL Project Manager. Click on the Tools pull-down menu and select the Customize Menu option as shown in
Figure.

;" MYSQL.PR] - COBOL Project Manager =] B

File Edit Project Wiew | Tools Ernwironment CM Help

@|E|ﬁ| Dl.'f_ | Compile. ..

Link. ..
Froject Composzition | Edit F
- Debug...
1 CIPROGRAM FILESFLL o >

-] MYSOLEXE
= Cobol Source Fil
e % UbEe el Execute. .,

Femote Debugger Conneckar, ..

Run-time Environment Setup Taoal, .,
File: LEility, .
Registrykey for Event Log, ..

Editar, ..

Zlass Database r
Class Browser, .,
F | Project Browser, ..

Generate a Program for Retrieving Web Parameters, .,
GEenerate a Program bo Qutput & Resulk Page,.,

Display Environment Yariables
Build Mulkiple Projects. .,

-61-

Customize Menu

Mame an ken;

dd
[Ehange...

ElEte

e

[

[t

i

Separatar

] I Cancel | Help

7| Hide

2. Click on the Add button to add a new menu item. Project Manager displays a dialog box that allows you to enter the name of the
executable file to be associated with the new menu item. Fill in the fields as shown in Figure.

Setup a Command for the Tools Menu Ed |

Name or benu: ISE!L inf File Utility

Type: i Euecute Command Send Message

— ke Command

Execution File: ISQLUDBES-EHE Browse. . |
Arguments; I J

Set up an executable file to be aszociated with the menu command.

k. Cancel Help

:

-62 -

3. Click on the OK button.

Project Manager returns you to the Customize menu dialog box displaying the information about the newly added item as shown
in Figure.

Customize Menu l

Mame an Men;

SOL inf File Utilty Add...

Delete

Up

Drawry

Separator

i

[Hide

] Cancel | Help

4, Click on the OK button.

The SQLODBCS utility has now been added to the Tools pull-down menu of the COBOL Project Manager. When you click on the
Tools pull-down menu it should appear as shown in Figure.

;" MYSOL.PR] - COBOL Project Manager =] E3

File Edit Project Miew | Tools Ernwironment M Help

E_'qs.lnlﬁl Dl.l? | Compile. ..

Lirik. ..
Project Compozition | Edit F
- [ebug...
1 CHPROGRAM FILESIFLL b e b

=] MYSGLLERE
El{:l Cobol Source Fil
o A Eeecute...
Rur-time Environment Setup Toal, .,
File Utility. ..
Reqgistrykey For Event Log. ..

Remote Debugoer Conneckar, ..

Editar. ..

Class Database »
Class Browser, .,
Project Browser, ..

aenerate a Program For Retrieving Web Barameters. .,
Generate a Program ko Cutput & Result Page. .,

Display Environment Yariables
Build Mulkiple Projects. ..

Customize Menu. ..
301 inf File Lkility

Creating a .INF File
To create a .inf file for a NetCOBOL SQL application:

-63-

1. Select the SQL .inf File Utility from the Tools menu (or find the SQLODBCS.EXE utility in the "C:\Program Files\Fujitsu
NetCOBOL for Windows" folder and execute it).

The utility displays a file name dialog box to allow you to specify the name of the .inf file you wish to create or modify as shown
in Figure.

~File Name
: Browse. . | Cancel |
Help |

Note that it is important to fully specify the drive and path of the .inf file you wish to create or modify, to ensure it gets saved to the
proper location. If you fail to do this, your new .inf file may be saved to a different directory than where you expect to find it later.
For our example, we are going to create a .inf file named C:\MYSQL\MySQL..inf.

2. Enter the name of the .inf file you wish to create as shown in Figure.

The establizhment of the ODBC information : file name !

File Mame

C:4MypSOLmyzglin Browse... | ‘ Cancel |
Help |

3. Click on the OK button, respond Yes to the message asking you if you wish to create a new file, and OK to the message confirming
that a file was created. The SQLODBCS utility window appears as shown in Figure.

K%, The establishment of the DDBC information : ODBC information Ei |

server [nfo | Default Connection Infu:ul Connection Su:u:upel

Server Mame: I vI

Data Source

{* Machine Data Source File Data Source

Data Source Mame: I j

Uzer [D: I

Fazsward: I

LCormment; I

Access Mode—— - Commit Mode—— Eptended Dpti,:,nl

{+ Read anly {* Manual

{~ Readrite Ao

] I Cancel Spply Help

-64 -

In order to understand how to specify parameters for a .inf file in the SQLODBCS utility, you need to understand about connections
to servers from a NetCOBOL application.

To establish a connection to an actual SQL database in a NetCOBOL program (as shown in the example COBOL program above),
you must code an SQL CONNECT statement such as:

EXEC SQL
CONNECT TO "FRED"
END-EXEC.

In the above code example, the NetCOBOL program is attempting to connect to a server name “FRED”. This is a bit misleading
as “FRED” is not the name of an actual SQL or 2000 Server. Instead, “FRED” is a symbolic name to be associated with an entry
in a NetCOBOL .inf file.

Remember that when you created an ODBC Data Source in the ODBC Data Sources administrator, you specified the actual SQL
Server to connect to. This connection is managed by ODBC and it does not make sense for a COBOL program to specify a physical
server, as conflicts could arise with ODBC Data Sources.

The name “FRED” therefore simply refers to an entry in the .inf file, which will contain other parameters, including the name of
the actual ODBC data source to use at runtime. Another reason for this level of abstraction from the physical server name is to allow
you to set up multiple entries for the same physical server. You might have many different ODBC data sources defined for a variety
of different databases and/or tables that exist on a single SQL Server. You would thus require a method to be able to specify these
different ODBC data sources.

Another important point is the ability to connect to a default server. The code for this looks like:

EXEC SQL
CONNECT TO DEFAULT
END-EXEC.

In the above case, “DEFAULT” is a special symbolic name. It allows you to abstract the name of the symbolic connection out of
the program. You can specify a DEFAULT server entry in the SQLODBCS utility to point at any data source (of course you could
also make ‘FRED’ your default entry and always connect to ‘FRED’ as well). You can thus think of “DEFAULT” as just another
symbolic entry in the .inf file. Simply notice that “DEFAULT” does not require quotes around it like other symbolic names in an
SQL CONNECT statement.

Now that you understand symbolic server names and how they are used in SQL CONNECT statements, take a look back at the
SQLODBCS window as shown in Figure.

Notice that there are two areas for entering parameters. Near the bottom is an area entitled “Default Connection Information”. You
must enter the name of a default server, a User ID and a Password. These three fields are required and will be used at runtime. You
may remember that you specified a User ID and Password in the ODBC data source when you created it under the ODBC Data
Sources Administrator. Note that NetCOBOL will ignore these, however, and will instead always use the User ID and Password
you specify in the SQLODBCS utility (the User ID and Password stored in the .inf file you create). Note that the Password will be
encrypted and not viewable.

You can override the User ID and Password from within the actual COBOL program in the CONNECT Statement. For example,
if you code the following:

EXEC SQL
CONNECT TO ‘FRED
USER ‘1D0001/PWO1’
END-EXEC.

The value “ID0001” will be used as the User ID, and the value “PWO01” will be used as the password when connecting to the actual
database server, regardless of the User ID and Password currently specified in the .inf file.

If you code:

EXEC SQL
CONNECT TO ‘FRED
USER ‘1D0001’
END-EXEC.

-65-

The value “ID0001” will be used for the User 1D, but since you did not specify a Password, the Password currently specified in
the .inf file will be used when connecting to the actual database server.

In neither case will the User ID or Password specified in the actual ODBC data source be used - NetCOBOL will always override
this.

This means that you must specify a User ID and Password in the SQLODBCS utility for any .inf file you wish to create. If you leave
these out, the SQLODBCS utility will refuse to create your .inf file. If you manually delete these entries in a .inf file, you will receive
an error at runtime.

Our simple SQL COBOL application noted above connects to DEFAULT as shown in the code below.

EXEC SQL
CONNECT TO DEFAULT
END-EXEC.

We now continue with the steps for creating the .inf file.

. Tocreate the appropriate .inf file, enter the parameters shown in Figures. If you are using multithreading or object oriented programs,
see the SQLODBCS Help for the appropriate Connection Scope settings.

KX The establishment of the ODBC information : ODBC information E |

Server Info | Default Connection Info | Connection Scope I

Server Mame: IDefauIﬂ j

Data Source

f+ Machine Data Source File Data Source

Data Source Mame: IM-"'SE!L j

Lser D: IM_I,ISE!L

FPazgword; I”

LCaomment; IDefauIt
Access Mode Commit Mode Estended Uptil:lnl
f+ Read anly % banual
" Fead-rite " Auto

] I Cancel Apply Help

- 66 -

iE, The establishment of the ODBC information : ODBC information E |

Server Info Default Connection Info | Connection Su:u:upel

Server Mame: IDefauIt j

Uszer D IM_l,ISIZJL

FPazzword: I’““““‘

] I Cancel Apply Help |

K% The establishment of the DDBC information : ODBC information Ed |

Serverlnh:ul Default Connection Info - Connection Scope

" Thread

= Ohject_Instance

k. I Cancel Apply Help

-67 -

5. Click on the Apply button to create the .inf file and write it to disk.

The .inf file created by the above parameters will contain the following entries:

[SERVER LIST]

Default=Default

[Default]

@SQL_DATASRC=MySQL
@SQL_USERI1D=MySQL

@SQL_PASSWORD=BE INKAOHLEPJENBABBMM
@SQL_ACCESS_MODE=READ_ONLY
@SQL_COMMIT_MODE=MANUAL
@SQL_CONCURRENCY=READ_ONLY
@SQL_ODBC_CURSORS=USE_DRIVER
@SQL_QUERY_TIMEOUT=0
[SQL_DEFAULT_INF]
@SQL_SERVER=Default
@SQL_USERID=MySQL

@SQL_PASSWORD=BE INKAOHLEPJENBABBMM
[CONNECT ION_SCOPE]
@SQL_CONNECTION_SCOPE=PROCESS

The Server List contains a line indicating that the server specified as the Default connection (for any program trying to connect to
DEFAULT) will be the symbolic entry “Default” (Default=Default).

Following this is the entry information for the symbolic server name “Default”. Note that Entry headings are designated with square
brackets around them. This entry contains the name of the ODBC data source to be used (@SQL_DATASRC=MySQL), the access mode
to be used (@SQL_ACCESS_MODE=READ_ONLY), and the commit mode to be used (@SQL_COMMIT_MODE=MANUAL).

Following the entry for the symbolic server “Default” is an entry for the default information to be used (SQL_DEFAULT _INF). This
contains the name of the default symbolic server and a User ID and Password to be used to access it. Note that the Password value has
been encrypted.

Setting up the Runtime Environment Information

Once you have set up your SQL databases and tables, created the appropriate ODBC data source, and created the appropriate .inf file, you
are ready to execute your application.

You must, however, ensure that you point the NetCOBOL runtime at the appropriate .inf file. By finding the .inf file, the NetCOBOL
runtime will have all of the information needed to interface with ODBC at runtime to access the database tables your application references.

To point the runtime to the appropriate .inf file, you need to create a COBOLB85.CBR file (or add a new entry for your application to an
existing COBOLB85.CBR file). You should create this file in the directory in which your main application executable (.exe) file resides.

It should include the following lines of code:

[MYSQL]
@ODBC_ Inf=c:\mysql\mysql . inf

The entry “[MYSQL] designates the name of the main program. The line “@ODBC_Inf=c:\mysgl\mysql.inf” tells the runtime which .inf
file to use and where it is located. That’s all there is to it.

Instead of editing the COBOLS85.CBR file using a text editor, you can use the Runtime Environment Setup Tool, available from COBOL
Project Manager’ s Tools menu. Keys to using this tool are that:

- The file you want to edit/create is COBOL85.CBR.

- The Section you want to edit/create is MySQL.

- You can select @ODBC_Inf from the pull-down list.

- You can use the browse (--) button to select the .inf file.
- You MUST click Set to add this variable to the list.

- You MUST click Apply to save the setting.

- 68 -

4.6 Potential Execution Errors Caused by Incorrect Setups

There are a number of errors that may occur at runtime if you do not set up the ODBC environment for a NetCOBOL SQL application
properly.

For Example, if you code an erroneous SQL statement, within an EXEC SQL ---. ENDEXEC statement, the NetCOBOL compiler may
catch the error and issue an error message.

In some cases, however, the error will not be determined until runtime. Some of the most common examples are listed below.

1. A common runtime error comes from not specifying to the Runtime Environment the name of a valid .inf file. For example, in the
above example application, if you forget to specify the line:

@ODBC_Inf=c:\mysgl\mysql . inf

In COBOLB85.CBR, you will receive an error dialog box as shown in Figure. This error occurs whenever no @ODBC _inf parameter

is specified.
MESSAGE]|

JRFO3 AL ENYIRONMENT INFORMATION FILE ERROR TD PERFORR S0L.
RODBC_Inf'. PGM=tYS0L ADR=0040137D

2. If you specify an @ODBC_inf parameter and it is found, but it contains the name of a file that does not exist or cannot be found,
you receive the error dialog box shown in Figure.

MESSAGE K

MO L EMNYIROMNMENT INFORMATION FILE ERROR TO PERFORRM S0IL.
"@50L_SERVER' PGM=hv'30L ADR=0040137D

3. If your COBOL program attempts to connect to a server that is not specified in your .inf file, you will receive the error dialog shown

in Figure.
MESSAGE]|

RO L ENYIRONMENT INFORMATION FILE ERROR TO PERFORRM S0L.
@2E0L_DATASRC. PGM=MYS0L ADR=0040137F

Capturing Other Errors

There are other errors that will not produce an Error Message dialog box. In fact, they will only produce errors by returning non-zero
values in SQLSTATE and/or SQLCODE. You may notice that the simple application above only checks SQLSTATE. You will find two
additional data items useful if you add them to your EXEC SQL BEGIN DECALRE SECTION END-EXEC group. They are SQLCODE
and SQLMSG. They are defined as follows:

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
01 EmplID Pic X(9) Value Spaces.
01 FName Pic X(20) Value Spaces.

-69 -

01 LName Pic X(30) Value Spaces.
01 SQLSTATE Pic X(5) Value Spaces.
01 SQLCODE Pic S9(9) Comp-5 Value Zeroes.
01 SQLMSG Pic X(254) Value Spaces.
EXEC SQL END DECLARE SECTION END-EXEC.

SQLMSG is of particular use. The ODBC driver will place descriptive error messages in this variable. For example, if you code the name
of an ODBC data source that does not exist in the “@SQL_DATASRC=" parameter in your .inf file, you will not receive an error dialog
box. Instead you will receive a value of IM002 in SQLSTATE. This is not very helpful. But if you look at the value contained in SQLMSG,
it will be

[Microsoft] [ODBC Driver Manager] Data source name not found and no default driver specified.

There are some SQL syntax errors that will not be caught by the NetCOBOL compiler and will only show up at runtime. For example, if
you code an erroneous Where clause in a Select statement such as:

EXEC SQL
DECLARE CUR1 CURSOR FOR
SELECT emp_id, fname, Iname FROM employee
Where emp_id Not NULL
END-EXEC.

Note that “Not NULL” is invalid SQL Code. When this statement is executed at runtime, you will receive a value of 37000 in SQLSTATE
(again, not very helpful), but SQLMSG will contain:

[Microsoft] [ODBC SQL Server Driver] [SQL Server] Incorrect syntax near the keyword ‘Null’

Itis thus a good idea to always include SQLMSG in your COBOL program and to interrogate it whenever error messages occur. You may
wish to display SQLMSG when debugging after key SQL statements in your program.

-70-

Appendix A Sample Programs

The sample programs shipped with NetCOBOL are intended to give an overview of the capabilities of NetCOBOL and COBOL Project
Manager. Refer to the “NetCOBOL User’ s Guide” for further details on using NetCOBOL. The following table details the sample programs
available with NetCOBOL.

Table A.1 NetCOBOL Sample Programs

Sample Purpose of sample Functions Used
Sample01 Data Processing Using Standard Input- - ACCEPT/DISPLAY (console window)
Output - Debugger
Sample02 Using Line Sequential and Indexed Files - Line sequential file (reference)
- Indexed file (creation
Sample03 Screen Input-Output Operation Using the | Sample 3 is not available in the English version of
Presentation File Function NetCOBOL.
Sample04 Screen Input-Output Using the Screen - Screen handling
Section - Indexed file (reference)
Sample05 Calling COBOL Subprograms - Inter-program communication
- Library fetch
- ACCEPT/DISPLAY (message box)
- Print file
- Indexed file (reference)
- Line sequential file (creation)
- Passing parameters for execution
- Free format
Sample06 Receiving a Command Line Argument - Fetching command line arguments
- Internal program
Sample07 Environment Variable Handling - Environment variable handling
Sample08 Using a Print File - Print file
- ACCEPT/DISPLAY (console window)
Sample09 Using a Print File (Advanced usage) - Print file (changing print form, letter form, and layout)
Samplel0 Using a Print File with FORMAT clause | Sample 10 is not available in the English version of
NetCOBOL.
Samplell Remote database access - Embedded SQL statements (reference)
Samplel2 Remote database access (multiple row - Embedded SQL statements (reference, update and
processing) delete)
Samplel3 Calling COBOL from Visual Basic - Visual Basic
- COBOL subprograms
Samplel4 Visual Basic calling COBOL -Simple - Visual Basic
ATM Example - COBOL subprograms
Samplel5 Basic Object-Oriented Programming - Class definition (encapsulation)
- object generation
- method invocation

-71-

Sample Purpose of sample Functions Used

Samplel6 Collection Class (Class Library) - Class definition (encapsulation)
- object generation

- method invocation

Samplel7 Object-Oriented Cobol (Aggregation, - Using Class Library

Singleton, and Iteration) - Multiple inheritance

- polymorphism

Samplel8 Advanced Object-Oriented Programming - Using Class Library
- Multiple inheritance

- polymorphism

Samplel9 Object Persistence (Indexed File) - polymorphism
- Indexed file
Sample20 Object Persistence (Database) - polymorphism

- Remote database access (ODBC)

Sample21 Multithread Programming - Multithread programming

- Index file (creation, reference, update, and rewrite)
- External data/file

- Data locking

- COBOL ISAPI Subroutine

Sample22 Multithread Programming (Advanced - Multithread programming

usage) .
- COBOL ISAPI Subroutine

- Event log (output of user definition information)

- External data/file

- Data locking

- Sharing data between threads

Sample23 COM Program to Control Excel (Late - COM Client functions (Late binding)
Binding)

Sample24 COM Program to Control Excel (Early - COM Client functions (Early binding)
Binding)

Sample25 Creating a COBOL COM Server Program - COM Server functions

- Remote Database Access

- *COM-ARRAY class

Sample26 Using the COM Linkage-COBOL Server - Using COBOL COM Server
Program (COBOL Client . .

g () - COM Client Functions
- *COM-ARRAY class

- Screen handling

Sample27 Using the COM Linkage-COBOL Server - Using COBOL COM Server
Program (ASP Client) .
- ASP client
Sample28 Transaction Management with COM - COM Server functions

Linkage-MTS

-72-

Sample

Purpose of sample

Functions Used

- Object context object(MTS)

Remote Database Access

- *COM-ARRAY class

Sample29

Inter-application Communication
Function

- Inter-application communication

Sample30

Using UNICODE

Sample 30 is not available in the English version of
NetCOBOL.

Sample31

Windows System Function Call

- Calling Windows API’s

- STDCALL calling convention

- BY VALUE parameters

- RETURNING phrase of a CALL statement
- PROGRAM-STATUS special register

Sample32

Starting other programs

- Calling Windows API’s
- STDCALL calling convention
- STORED-CHARACTER-LENGTH function

A.1l Using the Sample Program Projects

There are project files for each sample COBOL application. You can compile and link any of them through the following steps:

1. Select the project file (by double clicking on it) under the appropriate samples directory. For instance, the project file for Sample 1

will be on the drive where you installed the product, under

%install_path%\Samples\cobol\Sample01; the filename is sample01.prj

(%install_path% is “C:\Program Files\Fujitsu NetCOBOL for Windows” in default).

. Once you have loaded the project file into COBOL Project Manager, you can build (compile and link) the programs in the project
by selecting Build from the Project menu, or by pressing the F7 key. Refer to the section on Using Project Manager in Chapter 1,
“A Quick Tour” for more details as well as the “NetCOBOL User’ s Guide.”

. All sample projects have the TEST compiler option set, so once you build the projects you can monitor their execution under the
COBOL Debugger by selecting Debug from the Project menu in COBOL Project Manager. See the description of debugging in
Chapter 1, “A Quick Tour” for more details as well as the “NetCOBOL Debugging Guide.”

. To execute the program select Execute from the Project menu. You need to have the Project or the .EXE file selected in the project
tree for the Execute function to be enabled.

The description for each sample usually includes instructions to step you through one or more aspects of the program and include different
demonstrations of using the tools that come with NetCOBOL.

A.2 Sample 1. Data Processing Using Standard Input-Output

Sample 1 demonstrates using the ACCEPT/DISPLAY function to input and output data. Refer to the “NetCOBOL User’s Guide” for
details on how to use the ACCEPT/DISPLAY statements.

Function

Inputs an alphabetic character (lowercase character) from the console window, and outputs a word beginning with the input alphabetic

character to the console window.

-73-

Files Included in Sample 1
- SAMPLE1.COB (COBOL source program)
- SAMPLEO1. PRJ (COBOL project file)
- SAMPLEOQ1. CBI (COBOL compilation option file)

COBOL Statements Used
ACCEPT, DISPLAY, EXIT, IF, and PERFORM statements are used.

Building/Rebuilding the Program
Project manager's build function is used to create the executable program.
In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

1. The project manager is started, project file "SAMPLEOQ1.PRJ" is opened.

;" SAMPLED1.PR] - COBOL Project Manager Hi=] E
File Edit Project Wiew Tools Environment O Help

z|E@| D[z &= XS] e =1 8% &5 B8] @

Project Composzition | E dit HESDurcel

MPLEDL.PR]

-] SAMPLEO1 EXE
=23 Cobal Source Files

...... [SAMPLE1.COB

CHMETCOBDL SAMPLES, COBCL SAMPLED L\ SAMPLEDL PRI S

2. The project file is selected, and "Compiler options" is selected from "Project”- "Options" menu.

The "Compiler options” dialog is displayed.

- Compiler Options [_ [CT) | |

Help
Option Eile: ak I
IE:HN ETCOBOLASAMPLESYCOBOLASAMPLE D1 ASAMPLEDT.CEI Cancel |
— Compiler Options -
Library Mames... |
kA2l Add...
TEST — |

COM Server...
Change...

Delete

i

Other Compiler Optionz:

-74 -

3. Confirm compiler option TEST is specified. After confirming the information, click the OK button.
You are now returned to the Project Manager window.
4. Select "Build" from Project Manager's "Project” menu or click on the Build button in the Project Manager toolbar.

After the build terminates, check that SAMPLEOL.EXE is created.

% SAMPLED1 MAK - Builder

Fil= Buld Edit Emors “iew Option Help

= EE=] 2

Build Start.

DEL "5AMPLEQL.EXE"™

DEL "3AMPLEL.OEJ™

COEQLZE.EXE -i"3AMPLEOQL,.CEI™ -M "3AMPLEL.COE"™

STATISTICS: HIGHEST SEVERITY CODE=I, PROGEAM UNIT=1
"C:ZWCOEQOLVLINE.EXE™ ADEEUG ADEEBUGTYPE:COFF 0UT: "3AMPLEQL.EXE™ [@"3AMPLEOL.OQOL"
Microsoft (R) Incremental Linker Version 6.00.5447
Copvright (C) Microsoft Corp 1992-1995. 411 ridghts reserwved.
TRAMPLEL. OBJ™

"C:NCOEOLNF3EICIMP.LIE™

"C:YCOBOLVLIEC.LIEB™

"C:YCOEOLVEERNEL3Z. LIE™

"C:YCOBOLYNPROJECT.RES™

Euild End.

1] |

b

QJT Note

If the sample has already been built you will just see the “Build Start” and “Build End” messages.

The MAIN compile option is needed to indicate the main program in a NetCOBOL application run-unit. In COBOL Project Manager
you select Main - Window or Main - Console from the pop-up menu when the COBOL source program is selected. All sample
programs have the appropriate program set as the main program.

Debugging the Program

These instructions demonstrate starting the debugger, stepping through a program, changing a data item, setting and running to a breakpoint.

To start Sample 1 using the interactive debugger, do the following:

-75-

1. In COBOL Project Manager, from the Project menu select Debug.
The debugger starts and displays the Start Debugging dialog:

Start Debugging E E3 |

Application | Su:uuru:el Descripturl D ebugaing Infcurmaticunl Batch Debuggingl

Applicatian:

SAMPLEDT EXE Browse... |

E secution-time options:

Start programm:

(] I Cancel |

2. Click on the OK button to enter the COBOL Debugger window.

[Ee SAMPLEO1 - COBOL Debugger M=l E4

File Edit “iew Search Continue Debug Option ‘window Help

2| 2| 0] B 2zl ek] BEEEE R
E|E| =5

ge4408 DATA-IHPUT SECTIOH. ﬂ‘
B04500«x(1)DISPLAY THE ABOVE MESSAGE

ga4500 DISPLAY REQUEST-MESSAGE WITH HO ADUANHCIHG.
8047 00=x(2)ACCEPT THE IHPUT CHARACTER

g84800 ACCEPT IHPUT-CHARACTER.

a849080=

A85888 SEARCH-WORD SECTIOH.
A05108==(3)WORDS ARE SEARCHED CORRESPOHMDING TO THE IMPUT CHARAGTI

geszaa PERFORHM TEST BEFORE

ges30a UARYING WORD-INMDEX FROM 1 BY 1

gasLaa UMTIL WORD-IHDEX > 26 _I

gescaa IF IHPUT-CHARACTER = FIRST-CHARACTER (WORD-IHDEX

aes50a THEH EXIT PERFORH

ges7oa EHD-IF

gas8 a0 EMD-PERFORH.

aa5980= -
4 | M
Faor Help. press F1. |Reached specified positian 1] 46- 14 5

3. Step through the program.
The program automatically positions at the first executable statement (Line 46).

Select Step Into, from the Toolbar or press the F8 key to step (advance) to the next executable statement (Line 48). Step again to
execute the Accept statement on Line 48.

-76 -

Qn Note

The Accept statement requires user input.

. Input the data item (a letter of the alphabet).

Make the console window active.

gn Note

The console window may be hidden behind the COBOL Debugger window.

Type inany lowercase alphabetic character and then press the ENTER key. The debugger automatically returns to the next executable
statement (Line 52).

ENTER ONE CHARACTER OF ALPHABETIC-LOWER.:>b ﬂ
|-

-77-

5. Change the data name (input-character) to “A”.

Move the cursor to Line 48, inside the data name INPUT-CHARACTER. Click on the magnifying glass in the toolbar or select

Data from the Debug menu. Alternatively, you can click on the right mouse button to select Data in the popup menu. The Data
dialog box is displayed.

Data K E3 |
Data name: IINP‘UT-EH.-’-‘-.FL-’-‘-.ETEH Dizplay |
Program name: IS.-’-‘-.MF'LE'I Cloze |

[T Specify the recursive call level: 1_:| BrawEes., |
Type: Categorny = Alphanumeric, Length = 1
Replace: 7
Walue:
Offset | ——-%-—-——1--—-%x—--—-2--—-2-] | Modiy |

sosoooen A
Watch

i e

i

" o

— Dizplay format

% Automatic Hexadecimal

Change the value of the data in the data value area and click on the Modify button. Click on the Close button to exit the Data dialog
box. (Answer “Yes” to save the changed data.)

6. Specify a breakpoint.
Move the cursor to Line 62, click on the right mouse button and select Set Breakpoint from the pop-up menu.
Note that the statement changes color when a breakpoint has been applied.

To delete a breakpoint, right click on the line containing the breakpoint and select Delete Breakpoint to Cursor from the pop-up menu.
You can also use the Breakpoint dialog box that is displayed by selecting Breakpoint from the Debug menu. Highlight the breakpoint you
want to delete, click on the Delete button, and then click on the Close button to exit the Breakpoint dialog box.

L:n Note

You can delete more than one breakpoint at a time by highlighting multiple items in the Breakpoint dialog box and clicking on the Delete
button.

-78 -

1. Execute the program up to the breakpoint.

Select Go in the Continue menu to execute the program to the breakpoint. Alternatively, you can press the F5 key. The program
stops at Line 62.

[Ee SAMPLEO] - COBOL Debugger =] E

File Edit iew Search Continue Debug Option ‘wWindow Help

2| 2| o] 2| 2let] BEleEE Q2R BEEE R M2

E|EEE

E Samplel.cob =] E3
apssoa IF INPUT-CHARACTER = FIRST-CHARACTER (WORD-INDEX)—
aps60a THEH EXIT PERFORH
aps7oa END-IF
agsg80a EHD-PERFORH.
aa5908=

ge6008 WORD-OUTPUT SECTIOH.
B061008*x(4) THE RESULTING WORD MATCH IS DISPLAYED
gac2ao0 DISPLAY WORD-ITEHM (WORD-THDEX}).

86380« _I

faa64Ba EXIT PROGRAM.

aa6saa EHD PROGRAM SAMPLE1. -
KN M
For Help, press F1. \Reached breakpoint | 1] B2-14 | S

Select Go or press the F5 key again to complete the debugging session.

2. To exit the Debugger, select Exit from the File menu.

A.3 Sample 2: Using Line Sequential and Indexed Files

Sample 2 demonstrates a program that reads a data file (line sequential file) created with the Editor, then creates a master file (indexed
file). For details on how to use line sequential files and indexed files, refer to the “NetCOBOL User’ s Guide”.

Overview

Reads a data file (line sequential file) that contains product codes, product names, and unit prices, and creates an indexed file with the
product code as a primary record key and the product name as an alternate record key.

Files Included in Sample 2
- SAMPLE2.COB (COBOL source program)

SAMPLEO2. PRJ (COBOL project file)

SAMPLEO2. CBI (COBOL compilation option file)

COBOLS85.CBR (COBOL runtime initialization file)

DATAFILE(Data file)

COBOL Statements Used
The CLOSE , EXIT, GO TO, MOVE , OPEN, READ , and WRITE statements are used.

Building/Rebuilding the Program
Project manager's build function is used to create the executable program.

In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

-79-

1. The project manager is started, and project file "SAMPLE02.PRJ" is opened.

;" SAMPLEDZ.PR] - COBOL Project Manager Hi=] E
File Edit Project View Tools Environment O Help

Q' O] s X P =1 B2 L[5 B @
Project Composition | Edit Besaurce |
|:| e
=] SAMPLECZ EXE
=7 Cobal Source Files

------ [sAMPLE2.COB

CHMNETCOBOL SAMPLES, COECL SAMPLEDZ) SAMPLEDZ PR.] i

2. Select "Build" from Project Manager's "Project" menu or click on the Build button in the Project Manager toolbar.

After the build terminates, check that SAMPLEO02.EXE is created.

Setting Runtime Environment Information
1. Select "Runtime Environment Setup Tool" from the "Tools" menu of the Project Manager.
The runtime environment setup tool is displayed.
2. Select "Open" on the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLEO02.EXE).
3. Select the Common tab and enter data as shown below:
- For the file-identifier INFILE, specify DATAFILE that is the file name of data file (line sequential file).

- For the file-identifier OUTFILE, specify MASTER that is the file name of master file (indexed file).

-80-

4. If MASTER is specified for OUTFILE, input data as follow and push the "Set" button.

25 Run-time Environment Setup Tool M= Ed |

File Enwvironment Help

— File Mame
C:AMetCOBOLNS ampleshoobaoly S ample02hCOBOLE5.CER

— Thread Mode
{+ Single Thread £ Multi Thread

— Ermviranment Y ariables

Section; Commaon I Section I

| 7| [infile=datafile
outfile=maszter

Wariable M arme:

| =
W ariable W alue:

| o M -

Set | Lelete | Spply |

5. Click the Apply button.
The data is saved in the object initialization file.

6. Select "Exit" on the “File" menu to terminate the runtime environment setup tool.

Debugging the Program

To run this program under the control of the Debugger, select Debug from the Project menu. The Debugger starts and displays the “Start
Debugging” dialog box.

Press the ENTER key here and you will be taken into the Debugger.

Executing the Program
Once the project is built, you can run Sample 2 by double-clicking the mouse on SAMPLE2.EXE in the COBOL Project Manager window.

Execution Result
No termination message is displayed.

After completion of execution, an indexed file (MASTER) with a product code as a key is created in the SAMPLEO2 directory. Use
Windows Explorer or File Manager to check whether the indexed file was created.

Use the COBOL File Utility to confirm that indexed file (MASTER) was created correctly. The indexed file record can be browsed using
the COBOL File Utility Browsing Records function. Refer to "COBOL File Utility" in Chapter 7 of the NetCOBOL User’ s Guide for
details.

-81-

A.4 Sample 3: Screen Input-Output Using the Presentation File
Function

Sample 3 is not available in the English version of NetCOBOL.

A.5 Sample 4: Screen Input-Output Using the Screen Section

Sample 4 demonstrates using the Screen Section (the “screen handling function”) to display and accept data. Refer to the “NetCOBOL
User’s Guide” for details on how to use the screen handling function.

Overview

When an employee's number and name are written to the screen, the program creates an indexed file with the employee's number as a
primary record key and the name as an alternate record key.

Files Included in Sample 4

SAMPLE4.COB (COBOL source program)

SAMPLEO4. PRJ (COBOL project file)

SAMPLEO4. CBI (COBOL compilation option file)

COBOLB85.CBR (COBOL runtime initialization file)

SAMPLE4.KDB(key definition file)

COBOL Statements Used
The ACCEPT, CLOSE, DISPLAY, EXIT, GO TO, IF, MOVE, OPEN, and WRITE statements are used.

Building/Rebuilding the Program
Project manager's build function is used to create the executable program.
In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

1. The project manager is started, and project file "SAMPLEO04.PRJ" is opened.

:_:F' SAMPLEO4.PR] - COBOL Project Manager

File Edit Project Wiew Tools Environment M Help

@@ Dz &[E[eX[FS] oo =] B[R] (85 & &

Project Compozitian | E dit Hesnurcel

MPLEO4. PR

=] SAMPLED4.EXE
=1+ Cobel Source Files

------ & saMPLE4.COB

CHMETCOBOLYSAMPLESYCOBOLY SAMPLEDH SAMPLEDS PR] S

2. Select "Build" from Project Manager's "Project” menu or click on the Build button in the Project Manager toolbar.

After the build terminates, check that SAMPLEOQ4.EXE is created.

-82-

Setting Runtime Environment Information
1. Select "Runtime Environment Setup Tool" from the "Tools" menu of the Project Manager.
The runtime environment setup tool is displayed.
2. Select "Open" on the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLEOQ4.EXE).
3. Select the Common tab and enter data as shown below:
- For the file-identifier OUTFILE, specify MASTER that is the file name of master file (indexed file).

- For the environment variable @CBR_SCR_KEYDEFFILE, specify SAMPLE4.KDB that is the file name of key definition file
defined only for the input F2 key to become effective.

E Run-time Environment Setup Tool M= B |

Eile Enwironment Help

— File Mame
C:AMHetCOBOLYS ampleshoobalhS ampled4hCobalds. chr

— Thread Mode
f* Single Thread £ Multi Thread

— Enviranment Y ariables

Sechan: Camrman | S ection I

I j (@CER G0 RETDEFFILE =SAMELE 4 AL

OUTFILE=MASTER

Wariable Marme:

! [

Y anable Yalue:

| J | i

Set | [elete | Spply |

4. Click the Apply button.
The data is saved in the object initialization file.

5. Select "Exit" on the "File" menu to terminate the runtime environment setup tool.

Debugging the Program

To run this program under the control of the Debugger, select Debug from the Project menu. The Debugger starts and displays the “Start
Debugging” dialog box.

Press the ENTER key here and you will be taken into the Debugger.

Executing the Program
Execute Sample 4 by double-clicking the mouse on SAMPLEO4.EXE in the COBOL
Project Manager window.

The screen for entering an employee's number and name is displayed.

-83-

{ Screen - SAMPLE 4 =]

10-HUHBER: [

HAME :

PF2:-TERH

Al AW

Input the data:

Enter an employee's number (6 digit number) and name (up to 40 alphanumeric characters).

i Sereen : SAMPLE 4 E
ID-HUMBER: 1816818
HAHE: James Duvalll]
PF2:-TERH
A M

To register data, press the ENTER key. The input data is written to the master file, and the screen is cleared for input of subsequent data.

To quit processing, press the F2 key.

Execution Result

Because the employee number becomes a main record key and the employee name becomes a record sub key, you should use Windows
Explorer to confirm that the index file (MASTER) was created in the SAMPLEOQ4 directory.

-84 -

Qn Note

You can edit the MASTER file using the Edit command in the COBOL File Utility (available from the Tools menu in the COBOL Project
Manager window).

A.6 Sample 5: Calling COBOL Subprograms

Sample 5 demonstrates an application that calls a subprogram from the main program. Sample 5 was created using free format source.

It also demonstrates how to pass an argument string to a program and how to display a message box.

Overview

Reads the contents of the master file (indexed file created in Sample 2), stores the records in a work file whose name is provided in the
@MGPRM environment variable (a way of passing information to a main program’s linkage section), then passes the work file to a
subprogram which prints the records.

The master file stores product codes, product names, and unit prices. The work file name must be specified in the @ MGPRM parameter
at program execution.

Files Included in Sample 5
- SAMPLES5.COB (COBOL source program)

PRINTPRC.COB (COBOL source program)

S_REC.CBL (COBOL library file)

SAMPLEOQ5. PRJ (COBOL project file)

SAMPLEO4. CBI (COBOL compilation option file)

COBOLS85.CBR (COBOL runtime initialization file)

COBOL Statements Used
The CALL, DISPLAY, EXIT, GO TO, MOVE, OPEN, READ, and WRITE statements are used.

Using Free Format in a COBOL Source Program

The following is an example of using free format in a COBOL source program.

-85 -

positlon |_______ 1(mmm e 2mmm———— 0= 40mmmmmmmm Smmmmmm == (=== e === =T

IDEWNTIFICATION DIVISION.

FROGRAM=-ID. SPMPLES.
*> THIS SAMPLE PROGFAM IS IN FREE FPOFMAT. THE PROGEAM MUST EBEE
¥ COMPILED WITH THE SEF COMPILER CETICN. THE SREF COMEILER OPTICH
¥> SPECIFIES THE SCURCE FORMAT TYFE. SEF(FREE,FREE)] TELLS THE
> COMFILER THAT THE SOURCE FROGRAM AND COFYBOOKES ARE IN FREE POEMAT
ENVIFONMENT DIVISIOH.
CONFIGURATION SECTION.

SPECIAL=-MAMES.

STSERFR. IS MESSAGE-DEVICE.

DATA DIVISTICN.
FILE SECTICH.
FI MRSTER=FILE.
01 MRSTER-RECORD.
02 GOoODS-RECORD,

3 GOODS=-CODE FIC X (4).
0% GIOODS=-MRME FIC X (38).
0% GOODS=FRICE FIC 904) EIMNARY.

+

PROCEDURE DIVISION USING PARRMETER.
*> (1) DETERMINE WORK-FILE NAME
IF PRRAMETER-LEN = 0
DISPLAY "NOT SFECIFIED FARAMETER. ™=
"PLERSE SPECIFY PARAMETER."™
UJPCON MESSAGE-DEVICE
&2 T2 TERM=FROC.

TERM-FRCC,
EXIT PROGRAM,
END PROGRAM SAMPLES.

You must specify the SRF compiler option in order to use free format. The SRF compiler option has two parameters; the first specifies
the format for the source program and the second specifies the format of copybooks. All copybooks must have the same format type. The
available types are FIX, for fixed format source, VAR, for variable format source, and FREE, for free format source.

File Interdependence

Following figure shows the relationship between sources files used in Sample05.

-86 -

— Source file — SAMPLES.COB — Library text — S_REC.CBL

IDENTIFICATICN DIVISICH. - e e
PROGEAM-TD. SAMPLES. P Record definition of work file

copy "s Rec. &

— Source file — PRINTPRC.COE .-

[Read master file -
ShERs mas 1=l / IDENTIFICATION DIVISLON.
PROGRAM-ID. PRINTBRC.

[Create work file] / »
COPY "5 _REC™.

CALL "FRINTPRC™ .

[Frint processing)

Prerequisite to Executing the Program
The master file created in Sample 2 is used. Therefore, execute the program in Sample 2 before executing Sample 5.

Building/Rebuilding the Program
Project manager's build function is used to create the executable program. In the following screen snapshots, the sample program was
installed to C:\NetCOBOL. Your installation folder may be different.

1. The project manager is started, project file "SAMPLE05.PRJ" is opened.

;7 SAMPLEDS.PR] - COBOL Project Manager M=l

File Edit Project Wiew Tools Environment CM Help
(@& Dliz| e X5 bee = SR 28 B @

Project Compaozitian | Edit Rezource |

-] SAMPLECS, EXE
=1 Cobol Source Files
- [sAMPLES.COB
=1 Copy Library Files
e S REC.CEL
EH:I Library Files
] PRINTPRC.LIB
=-fid PRINTPRC.DLL
EI{:I Cobiol Source Files
=[] PRINTPRC.COB
EH:I Copy Library Files

- 5_REC.CBL

CHMNETCOBOL SAMPLES, COBCL SAMPLEDS) S AMPLEDS . PRI S

2. This project file contains the following two TARGET.
- SAMPLEO5.EXE (executable file name of main program)
- PRINTPRC.DLL (DLL file name of subprogram)

-87 -

3. The project file is selected, and "Compiler options" is selected from "Project"-"Options" menu.

The "Compiler options” dialog is displayed.

- Compiler Options [_ [C1) | |

COM Server...

Help
Option Eile: Ok I
IE:HN ETCOBOLASAMPLESYCOBOLASAMPLE D5ASAMPLE 05.CEI Cancel |
— Compiler Options
Libramy Mamesz. .. |
SRFIFREE.FREE) Add...
TEST |

Change...

i

Delete

Other Campiler Options:
|

4. Confirm compiler option SRF(FREE,FREE) is specified. After confirming the information, click the OK button.

You are now returned to the Project Manager window.
5. Select "Build" from Project Manager's "Project" menu or click on the Build button in the Project Manager toolbar.

After the build terminates, check that SAMPLEO5.EXE and PRINTPRC.DLL are created.

Setting Runtime Environment Information
1. Select "Runtime Environment Setup Tool" from the "Tools" menu of the Project Manager.
The runtime environment setup tool is displayed.
2. Select "Open" on the "File" menu and select COBOLS85.CBR in the folder that contains the executable program (SAMPLE05.EXE).
3. Select the Common tab and enter data as shown below:

- For the file-identifier INFILE, specify the path name of the master file (MASTER) created in Sample 2.

-88 -

- A work file name in the @MGPRM parameter. The string in this parameter is passed to the first linkage section item in the
executing program. The work file name can contain up to 8 alphanumeric characters. The extension “TMP” is added to the
work file name before the file is created.

4, Run-time Environment Setup Tool =] |

File Environment Help

— File Mame
C:AMetCOBOLYS ampleshcobolhS ample05hCobald, cbr

— Thread Mode
&+ Single Thread " Multi Thread

— Environment ' ariables

Sechian: Comrmam | Sechion |

| | [ENCPEMsampen
IMFILE =..\zamplel2imaster
Yariable Mame:; WORK-FILE-MAME=5AMPLES. THP

! [

Wariable Yalie:

| J ah i

Set | Lielete | Spply |

4. Click the Apply button.
The data is saved in the object initialization file.

5. Select "Exit" on the "File" menu to terminate the runtime environment setup tool.

Debugging the Program

To run this program under the control of the Debugger, select Debug from the Project menu. The Debugger starts and displays the “Start
Debugging” dialog box.

Press the ENTER key here and you will be taken into the Debugger.

Executing the Program
To execute the sample program, click on the Execute button in the Project Manager window.

The message “GENERATE WORK-FILE=sample5.TMP” is displayed.

MESSAGE : SAMPLES |

& GEMERATE WORK-FILE =sample5. TMP

Confirm the contents, then click on the OK button to close the message box.

-89-

Execution Result

The master file contents are written to the default printer at the completion of program execution.

A.7 Sample 6: Receiving a Command Line Argument

Sample 6 demonstrates a program that receives an argument specified at program execution, using the command line argument handling
function (ACCEPT FROM argument-name/argument-value). Refer to “Using ACCEPT and DISPLAY Statements” in the “NetCOBOL
User’s Guide” for details on how to use the command line argument handling function.

Sample 6 also calls an internal program.

Overview

The sample program calculates the number of days from the start date to the end date. The start and end dates are specified as command
arguments in the following format:

command-name start-date end-date

START-DATE , END-DATE:
Specify a year, month, and day between January 1, 1900 and December 31, 2172 in the YYYYMMDD format.

Files Included in Sample 6
- SAMPLEG6.COB (COBOL source program)
- SAMPLEO06. PRJ (COBOL project file)
- SAMPLEQ6. CBI (COBOL compilation option file)

COBOL Statements Used
The ACCEPT, CALL, COMPUTE, COPY, DISPLAY, DIVIDE, EXIT, GO TO, IF, MOVE, and PERFORM statements are used.

Building/Rebuilding the Program
Project manager's build function is used to create the executable program.
In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

1. The project manager is started, and project file "SAMPLEO06.PRJ" is opened.

;7 SAMPLEDG.PR] - COBOL Project Manager M= B

File Edit Project Wiew Tools Environment M Help

Z|Q||| D)7 &|Ee XS] o] B3| 2|5 B &

Project Composition | E dit HESDU[CEI

. e .

=] SAMPLECE, EXE
= Cobal Source Files

...... [saMPLES.COB

MPLEDG. PRI

CHMETCOBOLYSAMPLESVWCOBOLY SAMPLEDS, SAMPLEDS PR] 5

2. Select "Build" from Project Manager's "Project" menu or click on the Build button in the Project Manager toolbar.

After the build terminates, check that SAMPLEOQ6.EXE is created.

-90-

Debugging the Program

To run this program under the control of the Debugger, select Debug from the Project menu. The COBOL Debugger starts and displays
the Start Debugging dialog box. The application name is already entered for you, you need to enter the execution-time options (command
line arguments) the program expects - a start and end date. For example:

Start Debugging HE |

Application | Su:uuru:el Desu:riptu:url D'ebugging Infu:urmatiu:unl Biatch Debuggingl

Application;

IS&MF‘LEDE.EKE Browse. .. |

Execution-time options:

I'I 3560104 13330927

Start prograrm:

QF. I Cancel

After you type in the command-line parameters for the program in the “Executiontime options” field, press the ENTER key. The Debugger
starts as shown in the following figure.

Start Debugging HE |

Application | Snurcel Desu:riph:url Debugging Infu:urmatiu:unl B atch Del:uuggingl

Application;

|Sﬁ«MF‘LEDE.E><E Browse. .. |

Execution-time options:

I'I 3560104 13330927

Start program:

]9 I Cancel

Executing the Program

To execute the program from COBOL Project Manager, you need to select “Execute with Arguments” from the Project menu.

Enter the start date and end date arguments in the “Specify Arguments” dialog.

-01-

Specify Arguments <] |

LCommand-Line Argument 0g
|1 9560104 19390927 Browsze. . |
= Cancel

Help

dis

Refer to Chapter 1, “A Quick Tour” for details on using the COBOL Project Manager.

Execution Result
Sample 6 displays the number of days from the specified start date to the specified end date.

i Conzole : SAMPLEG M= Bz

DIFFEREMCE OF DAYS IS +15972 ﬂ

COBOL : SAMPLEG |

@ The congole window iz closed.

hd|

A.8 Sample 7. Environment Variable Handling

Sample 7 demonstrates a program that changes the value of an environment variable during COBOL program execution, using the
environment variable handling function (ACCEPT FROM/DISPLAY UPON environment-name/environment-value). Refer to “Using
ACCEPT and DISPLAY Statements” in the “NetCOBOL User’ s Guide” for details on how to use the environment variable handling
function.

Overview

The sample program divides a master file (the indexed file created in Sample 2), storing product codes, product names, and unit prices,
into two master files according to product codes. The following table shows the division method and the names of the two new master

files:

Product Code File Name
Code beginning with 0 master-file-name.A
Code beginning with a non-zero value master-file-name.B

Files Included in Sample 7
- SAMPLE7.COB (COBOL source program)

-02 -

- SAMPLEOQ7. PRJ (COBOL project file)
- SAMPLEQ7. CBI (COBOL compilation option file)
- COBOLS85.CBR (COBOL run-time initialization file)

COBOL Statements Used
The ACCEPT, CLOSE, DISPLAY, EXIT, GO TO, IF, OPEN, READ, STRING, and WRITE statements are used.

Prerequisite to Executing the Program

The master file created in Sample 2 is used. Therefore, execute the program in Sample 2 before executing Sample 7.

Building/Rebuilding the Program
Project manager's build function is used to create the executable program.

In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

1. The project manager is started, and project file "SAMPLEOQ7.PRJ" is opened.

S SAMPLEDT.PR] - COBOL Project Manager M=l B

File Edit Project Wiew Tools Environment CM Help

|E@| D] &l X]S] e =1 B2 2|5 B @

Project Compozitian | Edit Rezource |

-] SAMPLED? EXE
=] Cobal Saurce Files

...... [SAMPLE?.COB

CHMNETCOBOL SAMPLES, COBOLSAMPLED T\ SAMPLEDT PRI i

2. Select "Build" from Project Manager's "Project” menu or click on the Build button in the Project Manager toolbar.

After the build terminates, check that SAMPLEOQ7.EXE is created.

Setting Runtime Environment Information
1. Select "Runtime Environment Setup Tool" from the "Tools" menu of the Project Manager.
The run-time environment setup tool is displayed.

2. Select "Open" on the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLEQ7.EXE).

-03-

3. Select the Common tab and enter data as shown below:

- For the file-identifier INFILE, specify the path name of the master file (MASTER) created in Sample 2.

E% Run-time Environment Setup Tool M= B3 |

File Emvironment Help

— File Mame
C:AMetCOBOLYS amplezhcobolhS ampled s Cobolds. chr

— Thread kMode
{* Single Thread £ Multi Thread

— Environment Y ariables

Section; Commmon | Section I

| =l BHFTES G aMPLE 2 TE R

Yariable Marme:

! =~

Wariable Y alue:

| J i i

Set | Lielete | Spply |

4. Click the Apply button.
The data is saved in the object initialization file.

5. Select "Exit" on the “File" menu to terminate the run-time environment setup tool.

Debugging the Program

To run this program under the control of the Debugger, select Debug from the Project menu. The Debugger starts and displays the Start
Debugging dialog box.

Click the OK button or press the ENTER key. You will be taken into the Debugger as shown in the following figure.

-94 -

[E® sampleD? - COBOL Debugger M=l Ei

File Edit “iew Search Contnue Debug Ophon Window Help

2| 2| o] @ 2| BBlEEE QPR BlRERS] K
E|E|EE

E Sample?.cob M= E
004800 ﬂ‘
804980%=(1)GET THE OLD-MASTER-FILE HAME
g8% 868 MOVE SPACE TO OLD-FILE-HAHE.
ap=168 DISPLAY "IHFILE™ UPDH EHU-HAME.
ap-208 ACCEPT OLD-FILE-HAME FROM EHU-UAL
gp-3068 OH EXSCEPTIONH GO TO TERH-PROC
gps 408 EHD-ACCEPT.
8aSSa0= _I
Bp56008%={2YGEHERATE A HEW-MASTER-FILEA1.
gps7 00 MOVE SPACE TOD FILE-HAHE.
gps8 00 STRIMG OLD-FILE-HAME HEW-FILE-HAME-SUF1 DELIHMITED BY '
gpc9008 INTD FILE-HAHE.

Bd6 808 DISPLAY "OUTFILE™ UPOH EHU-HAHE.

gd61088 DISPLAY FILE-HAME UPOH EHU-UAL.

Bd62 08 OPEH OUTPUT HEW-HASTER-FILE.

fdoa3 08 OPEH IHPUT OLD-MASTER-FILE. -
4| I * /}:

Faor Help, press F1. |Rieached specified pasition | 1) B0-13 | 2

Executing the Program

To execute the program from COBOL Project Manager, select Execute from the Project menu. There are no command line arguments.

& Note

Execute the program in Sample 2 beforehand.

Execution Result
The following two files are created in the directory of the master file created in Sample 2:
- MASTER.A: Stores the data of products whose codes begin with 0.
- MASTER.B: Stores the data of products whose codes begin with a non-zero value.

The contents of the newly created master files (MASTER.A and MASTER.B) can be checked with the program in Sample 5, in the same
manner as for the master file created in Sample 2.

A.9 Sample 8. Using a Print File

Sample 8 demonstrates a program that outputs data (input from the console window) to a printer using a print file. Refer to “Printing” in
the “NetCOBOL User’s Guide” for details on using a print file.

Overview

The sample program inputs data of up to 40 alphanumeric characters from the console window, and outputs the data to the printer.

Files Included in Sample 8

- SAMPLES8.COB (COBOL source program)

-05-

- SAMPLEO08. PRJ (COBOL project file)
- SAMPLEQ8. CBI (COBOL compilation option file)

COBOL Statements Used
The ACCEPT, CLOSE, EXIT, GO TO, IF, OPEN, and WRITE statements are used.

Building/Rebuilding the Program
Project manager's build function is used to create the executable program.
In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

1. The project manager is started, and project file "SAMPLEO08.PRJ" is opened.

;7 SAMPLEDS.PR] - COBOL Project Manager M= B

File Edit Project Wiew Tools Environment M Help

3@l D7 #Ee] X5 oo =] 87 &% B| &

Project Compozitian | E dit Hesnurcel

=] SAMPLES.EXE
=1 Cobal Source Files

CHMETCOBOLYSAMPLESYCOBOLY SAMPLEDZ SAMPLEDS . PR 5

2. Select "Build" from Project Manager's "Project” menu or click on the Build button in the Project Manager toolbar.

After the build terminates, check that SAMPLEOQ8.EXE is created.

Debugging the Program

To run this program under the control of the Debugger, select Debug from the Project menu. The Debugger starts and displays the “Start
Debugging” dialog box.

Press the ENTER key here and you will be taken into the Debugger, as shown in the following figure.

-906 -

[E® sampled - COBOL Debugger M=l Ei

File Edit “iew Search Contnue Debug Ophon Window Help

2| 2| o] @ 2| BBlEEE QPR BlRERS] K

E|E|EE
B Sample8.cob M=l E3
881588 PROCEDURE DIUISION. ﬂ‘
A81688==(1)0PEH THE PRINT-FILE.
ae1760 OPEH OUTPUT PRINT-FILE.
aa18a0=
881988 LOOP-POINT.
ae8z22a8a8 ACCEPT PRINT-RECORD FROM COMSOLE.
aez23a608 IF PRINT-RECORD{1:5) = "fEHD ™
aez240808 GO TO TERM-PROC.
ae25a6a8 WRITE PRINT-RECORD. _I
a8z26088 GO TO LOOP-POINT.
A82780=
A82888 TERM-PROC.
ae3eaa CLOSE PRINT-FILE.
883188 EHD PROGRAM SAMPLES.
[+ | M 4
Far Help. press F1. \Reached specified position | 1] 17-13 | 42

Executing the Program
To execute in COBOL Project Manager, select Execute from the Project menu. There are no command line arguments.
A console window is then displayed.

In the console window, enter the data to be printed . Data of up to 40 characters can be entered at a time.

_+Conzole - SAMPLES ==l B
1234567890123 456789012345678901234567898 ﬂ
abcd
363636 3636 363636 3636 3636 36 5 AP L E 8 36 36 36 36 36 36 36 36 36 36 36 36 3636 36 36 3 3 3
FEHD

COBOL : SAMPLES =l

@ The conzole window is closed.

hd|

To terminate the program, press the RETURN key, type /END and press the RETURN key. Click on the OK button to close the message
window.

-97 -

Execution Result

The input data is written to the printer at termination of the program.

abod

J.J.th.J.J.J.h».J.J.J.EE__P:IEEth.J.J.J.th.

dok ok ko ok ok W R

A.10 Sample 9: Using a Print File (Advanced usage)

Sample 9 demonstrates:

- Using a print file without a FORMAT clause;

Using the I control record to set and change page forms, in combination with Forms Control Buffers (FCBs);

- Using the CHARACTER TYPE clause to control letter size and pitch; and

Using the PRINTING POSITION clause to control the layout (line / column).

Refer to “Printing” in the “NetCOBOL User's Guide” for details on using “print file 1” and “print file 2”.

Overview

Following table below describes each of the tasks performed by this sample. The tasks show a number of printing features. There are
essentially four elements that give you control over the various printing features:

1. COBOL syntax
- PRINTING MODE clauses in the SPECIAL-NAMES paragraph.
- ASSIGN TO PRINTER in the SELECT statement.
- CHARACTER TYPE and PRINTING POSITION clauses in data definitions.
2. The I-Control Record
A record that you write to the print file using the syntax:
“CTL IS page-cntl” in SPECIAL-NAMES
and
WRITE I-Control-Record AFTER ADVANCING page-cntl
3. Forms Control Buffers (FCBs)

These are form information buffers stored by the COBOL run-time system, using information defined in environment variables of
the form “FCBxxxx=".

-08 -

4. Environment variables

Environment variables define fonts, FCBs, document names and other printing details.

Following table indicates which of the above are used to provide a particular feature. You will need to read the table, inspect the COBOL
code, and consult the chapter on “Printing” in the “NetCOBOL User's Guide” to fully understand all the features being demonstrated.

Task Description

Detailed features

Controlled by I-Control field /
COBOL clause

Related Environment

Variable(s)

1a. Prints a page at 6 LPI,
10 CPI on a PowerFORM
overlay grid

6 LPI - defined in FCB

I-Control:

FCB-NAME (="LT6L”")

FCBLT6L=:-

10 CPI PRINTING MODE x ---
AT PITCH -
+
CHARACTER TYPE x
Letter size paper I-Control:

PAPER-SIZE (=”LTR”)

Impact font

PRINTING MODE x
-~ WITH FONT GOTHIC

+

CHARACTER TYPE x

@PrinterFontName=

(-+-, Impact)

Courier New font

PRINTING MODE x

@PrinterFontName=

-+« WITH FONT (Courier New,)
MINCHOU ---
+
CHARACTER TYPE x
Grid (PowerFORM I-Control: FOVLTYPE=KOL6

overlay -

KOL6LT6L.OVD)

FOVL-NAME (="LT6L")
FOVL-R (=1 -to use
overlay on a single

page)

OVD_SUFFIX=0VD

Data item position

within line

PRINTING POSITION

Different character type

PRINTING MODE x

forms - FORM ---
+
CHARACTER TYPE x
Document name I-Control: @CBR_DocumentName_

displayed by Windows

DOCUMENT-NAME
(=DOC1)

DOC1=<document

name string>

-99-

Task Description

Detailed features

Controlled by I-Control field /
COBOL clause

Related Environment

Variable(s)

1b. Prints a page at 8 LPI,
10 CPI on a PowerFORM
overlay grid

8 LPI - defined in FCB

I-Control:

FCB-NAME (="LT8L”)

FCBLT8L="-

10 CPI PRINTING MODE x -
AT PITCH ---
+
CHARACTER TYPE x
Letter size paper I-Control:

PAPER-SIZE (="LTR”)

Impact font

PRINTING MODE x
- WITH FONT GOTHIC

+

CHARACTER TYPE x

@PrinterFontName=

(-+-, Impact)

Courier New font

PRINTING MODE x

@PrinterFontName=

-+~ WITH FONT (Courier New, ---)
MINCHOU ---
+
CHARACTER TYPE x
Grid (PowerFORM I-Control: FOVLTYPE=KOL6

overlay -

KOL6LT8L.OVD)

FOVL-NAME (="LT8L")
FOVL-R (=1 -touse
overlay on a single

page)

OVD_SUFFIX=0VD

Data item position

within line

PRINTING POSITION

Different character type

PRINTING MODE x

forms - FORM ---
+
CHARACTER TYPE x
2a. Prints letters in font Document name I-Control: @CBR_DocumentName_

sizes: 3,7.2,9, 12, 18, 24,
36, 50, 72, 100, 200, and
300 points.

On legal-sized paper (After
printing a header page)

COBOL run time system
automatically calculates
the best character pitch
fitted to the character size

displayed by Windows

DOCUMENT-NAME
(=DOC1)

DOC1=<document

name string>

Different font sizes

PRINTING MODE x
=+ IN SIZE nn POINT ---
+

CHARACTER TYPE x

Legal size paper

I-Control:

PAPER-SIZE (="XXX")

-100 -

@PRN_FormName_XXX
=Legal 8 1/2 x 14 in

Task Description

Detailed features

Controlled by I-Control field /
COBOL clause

Related Environment

Variable(s)

(character pitch
specification is omitted).

FCB-NAME (="LPI6”)

FCBLPI6="-

Impact font

Default - Gothic font

@PrinterFontName=

(-+-, Impact)

Shaded background
(PowerFORM overlay -
KOL6LGLT.OVD)

I-Control:

FOVL-NAME (="LGLT”)
FOVL-R (=1 -touse
overlay on a single

page)

FOVLTYPE=KOLG6
OVD_SUFFIX=0VD

Document name

displayed by Windows

I-Control:
DOCUMENT-NAME
(=DOC2)

@CBR_DocumentName_
DOC2=<document

name string>

2b. Prints characters at

pitches: 1,2,3,5,6,7.5, 20,

and 24 CPI.

Here, the COBOL run

time system automatically
calculates the best
character size fitted to the
character pitch (the

character size specification

is omitted).

Different pitches

PRINTING MODE x
-+ ATPITCHN CPI -
+

CHARACTER TYPE x

Legal size paper

I-Control:
PAPER-SIZE (="XXX")
FCB-NAME (="LPI6”)

@PRN_FormName_XXX
=Legal 81/2x 14 in

FCBLPI6="

Impact font

Default - Gothic font

@PrinterFontName=

(-+-, Impact)

Shaded background
(PowerFORM overlay -
KOL6LGLT.OVD)

I-Control:
FOVL-NAME (="LGLT”)
FOVL-R (=1 - to use

overlay on a single

FOVLTYPE=KOLG6
OVD_SUFFIX=0VD

page)
Document name I-Control: @CBR_DocumentName_
displayed by Windows DOCUMENT-NAME DOC2=<document
(=DOC2) name string>

2c. Prints characters in:
Impact,

Impact half-size,
Courier New, Courier

New half size.

Impact font

PRINTING MODE x
-~ WITH FONT {GOTHIC}
{GOTHIC-HANKAKU} -
+

CHARACTER TYPE x

@PrinterFontName=

(-+-, Impact)

Courier New font

PRINTING MODE x

- WITH FONT
{MINCHOU}
{MINCHOU-HANKAKU}

-101-

@PrinterFontName=

(Courier New, -+)

Task Description

Detailed features

Controlled by I-Control field /
COBOL clause

Related Environment

Variable(s)

+

CHARACTER TYPE x

Full size

PRINTING MODE x
-+ BY FORMF -
+

CHARACTER TYPE x

Half size

PRINTING MODE x
-+ BY FORMH -
+

CHARACTER TYPE x

Legal size paper

I-Control:
PAPER-SIZE (="XXX”)
FCB-NAME (="LPI16”)

@PRN_FormName_XXX
=Legal 8 1/2 x 14 in

FCBLPI6="

Shaded background
(PowerFORM overlay -
KOL6LGLT.OVD)

I-Control:

FOVL-NAME (="LGLT”)
FOVL-R (=1 -touse
overlay on a single

page)

FOVLTYPE=KOLG6
OVD_SUFFIX=0VD

Document name

displayed by Windows

I-Control:
DOCUMENT-NAME
(=DOC2)

@CBR_DocumentName_
DOC2=<document

name string>

2d. Prints

characters in different form
sizes:

Em-size,

en-size,
expanded emsize,
expanded ensize,
tall em-size,

tall en-size,
double em-size
and

double en-size.

Em-size PRINTING MODE x
- BY FORMF -
+
CHARACTER TYPE x
En-size As above with:

-+ BY FORMH -

Expanded em-size

As above with:

- BY FORM F0201 ---

Expanded en-size

As above with:

-+ BY FORM H0201 -

Tall em-size As above with:
- BY FORM F0102 ---
Tall en-size As above with:

-+ BY FORM H0102 ---

Double em-size

As above with:

-+ BY FORM F0202---

Double en-size

As above with:

-102 -

Task Description

Detailed features

Controlled by I-Control field /
COBOL clause

Related Environment

Variable(s)

-+ BY FORM H0202:--

Legal size paper

I-Control:
PAPER-SIZE (="XXX")
FCB-NAME (="LPI6”)

@PRN_FormName_XXX
=Legal 81/2x 14 in

FCBLPI6="-

Shaded background
(PowerFORM overlay -
KOL6LGLT.OVD)

I-Control:

FOVL-NAME (="LGLT”)
FOVL-R (=1 - to use
overlay on a single

page)

FOVLTYPE=KOLG
OVD_SUFFIX=0VD

Document name

displayed by Windows

I-Control:
DOCUMENT-NAME
(=DOC2)

@CBR_DocumentName_
DOC2=<document

name string>

2e. Prints a mixture of the
above features: font size,
pitch,

half/full size characters.

Files Included in Sample 9
- SAMPLE9.COB (COBOL source program)

- COBOLS85.CBR (Environment variable initialization file)

- KOL5A4L6.0VD (Form overlay pattern)

- KOL5A4L8.0VD (Form overlay pattern)

- KOL5B40V.0OVD (Form overlay pattern)

- KOL5A4L6.PDM (Form descriptor)

- KOL5A4L8.PDM (Form descriptor)

- KOL5B40OV.PDM (Form descriptor)

COBOL Statements Used

The ADD, CLOSE, DISPLAY, IF, MOVE, OPEN, PERFORM, STOP, and WRITE statements are used.

Building/Rebuilding the Program

Project manager's build function is used to create the executable program.

In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

-103 -

1. The project manager is started, and project file "SAMPLE09.PRJ" is opened.

;" SAMPLED9.PR] - COBOL Project Manager Hi=] E
File Edit Project View Tools Environment O Help

Q' O] s X P =1 B2 L[5 B @
Project Composition | Edit Besaurce |
|:| e
=] SAMPLES.EXE
=7 Cobal Source Files

------ [5AMPLES.COB

CHMETCOBOLY SAMPLES, COBCL SAMPLEDD SAMPLEDS. PRI i

2. Select "Build" from Project Manager's "Project" menu or click on the Build button in the Project Manager toolbar.

After the build terminates, check that SAMPLEO09.EXE is created.

Checking Execution Environment Information
Sample 9 uses a number of run-time environment variables that play an important part in achieving the demonstrated features.
To check these variables:
1. From the COBOL Project Manager Tools menu, select “Run-time Environment Setup Tool”.

The Run-time Environment Setup Tool Window opens.

-104 -

2. From the File menu select Open, and select COBOL85.CBR in the sample09 folder. The window should look like below figure.

25 Run-time Environment Setup Tool M= Ed |

File Enwvironment Help

— File Mame
C:AMetCOBOLNS ampleshoobaolsS ample03h Cobal3h. chr

— Thread Mode
{+ Single Thread £ Multi Thread

— Ermviranment Y ariables

Section; Commaon I Section I

I j (i BH Documenttame DOCT=54MEP; o
@ACER_DocumentM ame_DOC2=VARIO
"W ariable M ame: @CBR_OverlayPrintOfzet="AaLI10

@CBR_OverlayPrintSPEC=COBOL

@CER_PrinteraME_Size=TYPE-PC

| | | @CERPrintTextPostion=TYPE2
BCER_Texttlign=BOTTOM

" ariable W alue: @0 efaultFCB_Mame=FCEDFLT

(2 rv5 etwfindow=15E -

| o M :

Set | Lelete | Spply |

3. Check the setting of environment variable FOVLDIR in the list of environment variables. If it is not set to your location for the
sample09 folder, change it to that value by:

a) Selecting FOVLDIR in the environment variable list. “FOVLDIR” will be displayed in the Variable Name field, and its current
setting in the Variable Value field.

b) Use the browse (“---”) button to navigate to the sample09 folder, select any file, and click OK. The path and filename are returned
to the Variable Value field.

c) Delete the last “\” and the file name that follows it from the string in the Variable Value field.
d) Click the Set button, to set your change in the Section list of environment variables.
e) Click the Apply button, to save your changes to the COBOL85.CBR file.

4. When you have finished reviewing the environment variables, select Exit from the File menu.

Debugging the Program

To run this program under the control of the Debugger, select Debug from the Project menu. The Debugger starts and displays the “Start
Debugging” dialog box.

Press the ENTER key here and you will be taken into the Debugger.

Executing the Program

To execute in COBOL Project Manager, select Execute from the Project menu. There are no command line arguments.

Execution Results

The sample pages described in table A.3 above are printed to the default printer.

-105 -

A.11 Sample 10: Using a Print File with FORMAT clause

Sample 10 is not available in the English version of NetCOBOL.

A.12 Sample 11: Remote Database Access

Sample 11 extracts data from a database and assigns it to a host variable using the SQL database function.

In normal operation, the database is placed on a server and is accessed by the client via an ODBC driver.

However, a database file is included with this sample to enable you to use a relational database off-line. This database file-called
STOCK.MDB-- includes the Microsoft Access runtime support. It can therefore be used as long as Open Database Connectivity (ODBC)
is installed and configured properly.

For more about using ODBC drivers, refer to the “Database (SQL)” chapter in the “NetCOBOL User’s Guide”, and the relevant
documentation from your database vendor.

To run this sample program in a true distributed configuration, the following products are required:
- Client
- ODBC driver manager
- ODBC driver
- Products needed for the ODBC driver
- On the server
- Database

- Products needed for accessing the database via ODBC

Overview

The sample program accesses the database on the server and outputs all data stored in the database table "STOCK" to the client console.
When all data has been referenced, the link to the database is disconnected.

Files Included in Sample 11
- SAMPLE11.COB (COBOL source program)

SAMPLE11.PRJ (COBOL project file)

SAMPLE11.CBI (COBOL compiler option file)

COBOLS85.CBR (COBOL run-time initialization file)

SAMPLE11.INF (ODBC information file)

STOCK.MDB (Sample database for Microsoft Access)

COBOL Statements Used
The DISPLAY, IF and PERFORM statements are used.

Embedded SQL statements (embedded exception declarations and CONNECT, DECLARE CURSOR, OPEN, FETCH, CLOSE,
ROLLBACK, and DISCONNECT statements) are also used.

Prerequisite to Executing the Program

ODBC is a defined interface that attempts to provide a highly generic API into any database system that provides compliant drivers. Just
about every database system available today provides ODBC drivers for a variety of platforms.

In order to execute this sample, you must have already installed 32-bit ODBC support on your Windows 2000, XP, Windows Server 2003,
or Windows Server 2008, along with the Microsoft Access Driver.

- 106 -

Verifying Whether ODBC is installed

In order to verify whether your system has the proper support installed, look in your Administrative Tools for the icon of ODBC data
source administrator.

An example is given below.

Administrative Tools

File Edit ‘jew Fawaorites Tools Help

s Back + = - | ‘@hsearch [YFolders 04 | [OF X% =) | EH-

Address administrative Tools

LZ@, O] ﬁ

e Component Computer

Administrative Tools Services Management

?I_c;lcll:r?jtuurces (ODBC) £ I%

Internet Local Security Microsoft WET Microsoft \MET

adds, removes, and configures Open Servic,., Palicy Framewark ... Framewaork ...
Diatabase Conneckivity (ODBC) data

sources and drivers, %’;ﬁ @ % I%}

Modified; S/19)2005 10:53 &M
1181 Performance Personal Web Server Services
Size: 1.57 KB Manager Extensions...

Aktributes: {normal) Iﬁ

Telnet Server
Administration

|.|!'.|:||:|sJ removes, and configures Open Database Connectiviey |1 52 KB |L.'EJ| My Computer =

Double-click on this icon.

Select the Drivers (or ODBC Drivers) tab and verify that the Microsoft Access Driver (*.mdb) is installed. The driver is shown highlighted
in the following figure.

QT Note

Depending on the version of Microsoft Access, the ODBC drivers may not be installed by default - you must manually select these options
when you install Microsoft Access (either from the Microsoft Access installation CD or the Office Professional CD).

You will also require a sample Microsoft Access run-time enabled database called "STOCK.MDB". This file can be found in the
SAMPLE11 folder.

Once you have verified installation of 32 Bit ODBC, Microsoft Access and the associated drivers, you are ready to proceed with executing
the sample.

Defining an ODBC Source for Your Application
The first development task that needs to be accomplished is to define an ODBC Source for the application.

An ODBC Source can be thought of as simply specifying to the ODBC manager a symbolic name that you wish to use in your application
to describe an ODBC connection to a specific ODBC database driver and database.

The following figures may or may not match what you see on your particular operating system, but you should be able to perform the
following tasks by using the instructions provided.

-107 -

Bring up the Administrative Tools and double click on the Data Sources (ODBC) icon. The main ODBC Data Source Administrator
window is displayed.

&1 0DBC Data Source Administrator e
[zer DSH I Syztem DSH I File DSM Drivers | Trau:ingl Cannectian F'u:u:ulingl About I

ODBC Drivers that are installed on vour system:

I arne: | Yerziaon | Compary
Drriver da Mizrozoft para arquivos testo [t * csv] 4.00.6200.00 Microgaft |
Drriver do Mizrazoft Access [*.mdh) 4.00.6200.00 Microgaft |
Drriver do Mizrazoft dBaze [*.dbf 4.00.6200.00 Microgaft |
Drriver do Mizrozoft Excell® «lz] 4.00.6200.00 Microsaft 1|
Drriver do Mizrozoft Paradox [*.db] 4.00.6200.00 kdicrogaft |
Drriver para o Microgoft Visual FoxPro B.01.8630.01 kdicrogaft |
tdicrosoft Aocess Iriver 2 rmdb] 4.00.6200.00 kdicrogaft |
Microgoft Access-Treiber [*.mdb] 4.00.6200.00 kdicrogaft |
Microgoft dBaze Driver [*.dbf] 4.00.6200.00 kdicrogaft |
Microgoft dBaze WFP Driver [7.dbf] B.01.8630.01 bdicrosoft |-
4| |]

An ODBC driver allowsz ODEC-enabled programs to get information from
ODBC data zources. To install new divers, use the diver's zetup
progran.

] I Cancel Spply Help

You will add a new User DSN. Select the User DSN tab, and click on the Add button.

ODBC Data Source Administrator displays the “Create New Data Source” dialog box.

Create Mew Data Source ﬂ

Select a driver for which you want to zet up a data source.

M arne | h
Drriver da Microzoft para arquivos testo [* bt ® osw] 4.
Ciriver do Microsatt Acc [*.mdh] 4,
Drriver do Microzoft dBaze [*.dbf 4,
Drriver do Microzoft Excel(® sls] 17
Driver do Microzoft Parados [*.db] 4.
Driver para o Microsaft Visual FoxPro G.
Microzaft Access Diver [*.mdb] 4.
Microzaft Access-Treiber [*.mdb] 4.
Microzaft dBaze Dnver [*.dbf] 4, =
bdirreneft AR nes WED Mrivear 1% ARF c
<] _>I_I

< Bach I Finizh I Cancel

Select the Microsoft Access Driver (*.mdb) and click on the Finish button.

The ODBC Microsoft Access Setup dialog box is displayed.

-108 -

0ODBC Microsoft Access Setup

Drata Source Mame: |Stu:u:k

|:|:
Ix

Description: ISampIe 11 Databaze
Cancel |
—Databaze
Databaze: Help |
Select... | Create. .. | Bepair... Compact... |
Advanced... |

— Syztem Databaze

* Mone
" Databasze:

System Databasze, .

Optiorss»

Enter Stock in the Data Source Name field and Sample 11 Database in the Description field as shown above.

You also need to select a file (database) to bind this driver to. Click on the Select button in the ODBC Microsoft Access Setup dialog box.
The Select Database dialog box is displayed. Navigate through the directories and find the "Stock.mdb" database file:

x
Databaze Mame Directories:
|$t|:u:k.mdl:| ot cobolveampled1

I Cancel |

- = e ;I

. [= WetCOBOL

| [=* Samples —IHEH:'

I %Esubul 11 [Read Only

ample
P £ [T Exclusive

| =

| List Files of Type: Drives:

Arccess Databages [*.mnj I = o Windows j Metwark... |

Click on the OK button. This will take you back to the ODBC Microsoft Access Setup dialog box.
Click on the OK button. This will take you back to the main ODBC Source Administrator window.

Note that "Stock™ has been added to the list in User DSN. Although you should not set any additional options for this exercise, you may
wish to highlight “Stock” and click on the Configure button.

This will give you an idea of some of the additional options that are available when developing these types of applications. Once you are
back to the main ODBC Source Administrator window, click on the OK button. This will exit the ODBC configuration facility. You have
now defined the new ODBC Source (Stock) you are going to use with COBOL.

Building/Rebuilding the Program
Project manager's build function is used to create the executable program.

In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

-109 -

1. The project manager is started, and project file "SAMPLE11.PRJ" is opened.

;7 SAMPLE11.PR] - COBOL Project Manager = |EI|5|

File Edit Project View Tools Environment Help

||\ Dl7| & |E|8| XS] [reeee x| &8 2|55

Project Composzition | Edit Besource |

=] SAMPLE11,EXE
=7 Cobal Source Files

------ [SAMPLE11.COB

CHMETCOBOLYSAMPLESYCOBOLYSAMPLEL 11SAMPLEL L PR S

2. Select "Build" from Project Manager's "Project” menu or click on the Build button in the Project Manager toolbar.

After the build terminates, check that SAMPLE11.EXE is created.

Setting ODBC information

The ODBC information file is necessary for the execution of this sample program. When connecting it with the database by using the
ODBC driver, necessary information is included as for the ODBC information file.

The ODBC information file is made by using ODBC information Setup Tool (SQLODBCS.EXE). Refer to the “Database (SQL)” chapter
in the “NetCOBOL User’s Guide” for more detailed information.

The following figures show the place where information necessary to connect it with an attached sample database by this sample program
was set.

k%, The establishment of the ODBC information: x|

Server Info | Default Connection Infa | Cornection Scope

Server Hame: |EEM j
Data Source

t+ tachine Data Source © File Data Source

Diata Source Marme: ISt':":k j
Usger D I
Paszword: I
Comment; Idefault

Access Mode—— - Commit Mode—— Eptended Dpti,:,nl

f* Read anly * Manual

= Read-*#/rite £ Ak

k. I Cancel Spply Help

-110-

g._z] Note

Information shown up is included in SAMPLE11.INF. When data bases other than Microsoft Access are used, setting other items might
become necessary.

Setting Run-time Environment Information
1. Select "Run-time Environment Setup Tool" from the "Tools" menu of the Project Manager.
The run-time environment setup tool is displayed.
2. Select "Open" on the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE11.EXE).
3. Select the Common tab and enter data as shown below:

- For the environment variable @ODBC_Inf , specify SAMPLE11.INF.

4, Run-time Environment Setup Tool Y]

Eile Enwironment Help

— File Mame
C:AMetCOB0L \samplesscobaliS ample] 1heobal35. chr

— Thread Mode
f* Single Thread " Multi Thread

— Ervviranment Y anables

Sechan: Camrman | S ection I

| [~ @ODBC,_Inf=sampled 1.inf

Wariable Marme:

I =~

Yarnable Yalue:

| J an i

Set [elete | Spply |

4. Click the Apply button.
The data is saved in the object initialization file.

5. Select "Exit" on the "File" menu to terminate the run-time environment setup tool.

Debugging the Program

To run the program under the control of the Debugger, select Debug from the Project menu. The Debugger starts and displays the Start
Debugging dialog box. Press the ENTER key.

When the source is read into the COBOL Debugger, it will look like the following figure.

-111-

[e SAMPLE11 - COBOL Debugger =1af x|

File Edit Yiew Search Continue Debug Option Window Help
2| 2| o 6 2| BElEEkE QPR BEREEE
B3 Bz |5

M [=EY
ﬂﬂl]31ﬂ*===j
8883208= CURSOR DECLARATION
BAB3 3 fx==================-ss-sSssssSsSssSsSsSsSsssSsssssssS=s==s
gaa3un EXEC S0QL
gaa3so DECLARE CUR1 CURSOR FOR SELECT * FROM STOCK _|
gaa3oen END-EXEC.

BOB37 fx===

808380« COHMECT TO THE DATABASE OM DEFAULT SERVER

BAB3 P Ax===

ddoL08 P-5TART.

daou1a EXEC S(QL COHHECT TO DEFAULT EHD-EXEC.

gegnz2ex-———-—————--— -

B 0 043 P36 36 36 36 36 36 3636 36 36 3636 36 3636 36 3 36

0004, Axxxx HOTES * XXX

B 0 A4S P36 36 36 36 36 36 36 36 36 36 36 36 36 3636 36 3 36 -
<] | v 4

For Help, press F1. Reached specified position | 1| 41-12 | 4

Executing the Program

To execute this program, you can double-click on SAMPLE11.EXE in the Project Tree or select Execute from the Project menu, with the
project or .EXE file selected.

Execution Result

The data extracted from the table is displayed, as shown in the following figure.

-112 -

' Console : SAMPLE11

no.16:
Product number
Product name =

= +8243

CASSETTE DECK

Stock quantity = +P000avo14

Warehouse number = +00882
no.17:

Product number = +8351

Product name =

CASSETTE TAPE

Stock quantity = +000882508
Warehouse number = +0062
no.18:
Product number = +@380@
Product name = SHAUVER
Stock quantity = +@000adessa
Warehouse number = +0003
no.19:
Product number = +0398
Product name = DRIER
Stock quantity = +@000aaesua
Warehouse number = +0003
There are 19 data in total

EHD OF SESSION

=101]

A.13 Sample 12: Remote Database Access (Multiple row
processing)

A sample program (sample 12) provided with this product is explained below.

Sample 12 shows an example where two or more lines in a database are operated with one SQL statement as an example of advanced
usage of the database (SQL) function.

A database is present in a server and is accessed from a client.

A database is accessed via the ODBC driver. For details of database access using the ODBC driver, refer to Chapter 19 in the “NetCOBOL
User’s Guide”.

To use this program, the following products are necessary.
Client:
- ODBC driver manager
- ODBC driver
- Products necessary for ODBC driver
Server:
- Database
NOTE:
- The function to use with this sample depends on your database. With Microsoft® Access, we could not execute this sample correctly.

- Products necessary for database access using ODBC

Overview

Sample 12 uses the STOCK table of the sample database. Refer to “Sample Database” in the “NetCOBOL User’s Guide” for details of
the sample database.

- Sample 12 accesses and disconnects it after the following operation:

-113 -

Display of all data items in the database

- Fetch of the GNO value on a row with GOODS value "TELEVISION"

QOH update on a row with the fetched GNO
Deletion of lines with GOODS values "RADIO", "SHAVER", and "DRIER"

Redisplay of all data items in the database

Part of the output result is output to a file by using compiler option SSOUT.

Programs and files in Sample 12
- SAMPLE12.COB (COBOL source program)

SAMPLE12.PRJ (Project file)

SAMPLE12.CBI (COBOL compiler option file)

COBOLB85.CBR (COBOL run-time initialization file)

SAMPLE12.INF (ODBC information file)

COBOL functions used in sample 12
- Remote database access

- Project management function

COBOL statements used
The CALL, DISPLAY, IF, and PERFORM statements are used.

Embedded SQL statements (host variable with multiple rows specified, host variable with a table specified, embedded exception
declaration, CONNECT statement, cursor declaration, OPEN statement, FETCH statement, SELECT statement, DELETE statement,
UPDATE statement, CLOSE statement, COMMIT statement, ROLLBACK statement, and DISCONNECT statement) are used.

Prerequisite to Executing the Program

In order to execute this sample, the DBMS product which can be connected via ODBC is installed in server side and make the table named
STOCK for the database connected by default.

Make the STOCK table in the format as following.

GNO Goods QOH WHNO
Binary integer Fixed-length character Binary integer Binary integer
4 digits 10 bytes 9 digits 4 digits

Store the data items shown following in the STOCK table.

GNO Goods QOH WHNO
110 TELEVISION 85 2
111 TELEVISION 90 2
123 REFRIGERATOR 60 1
124 REFRIGERATOR 75 1
137 RADIO 150 2
138 RADIO 200 2
140 CASSETTE DECK 120 2

-114 -

GNO Goods QOH WHNO
141 CASSETTE DECK 80 2
200 AIR CONDITIONER 4 1
201 AIR CONDITIONER 15 1
212 TELEVISION 0 2
215 VIDEO 5 2
226 REFRIGERATOR 8 1
227 REFRIGERATOR 15 1
240 CASSETTE DECK 25 2
243 CASSETTE DECK 14 2
351 CASSETTE TAPE 2500 2
380 SHAVER 870 3
390 DRIER 540 3

Building and rebuilding the program
The project manager's build function is used to compile and link this program.
Folder C:\NetCOBOL is assumed below as the location where NetCOBOL is installed.
Change the folder name C:\NetCOBOL to the name of the folder where NetCOBOL is installed.
1. Start the Project Manager, and project file SAMPLE12.PRJ is open.

J7 SAMPLE1Z.PR] - COBOL Project Manager M=l E

File Edit Project View Tools Environment M Help

=|d@ D] &l XS] o =1 B2 25 B @

Project Compozitian | Edit Resource |

=] SAMPLE1Z EXE
=-{_7 Cobol Source Files

------ [sAMPLE12.COB

CHMETCOBOL SAMPLES, COBCOLSAMPLEL 2\ SAMPLELZ PRI o

2. Select Build from the Project menu.

After build termination, check that SAMPLE12.EXE is created.

Setting ODBC information

The ODBC information file is necessary for the execution of this sample program. When connecting it with the database by using the
ODBC driver, necessary information is included as for the ODBC information file.

The ODBC information file is made by using ODBC information Setup Tool (SQLODBCS.EXE). Refer to the “Database (SQL)” chapter
in the “NetCOBOL User’ s Guide” for more detailed information.

-115-

Setting Run-time Environment Information
1. Select “Run-time Environment Setup Tool” from the Tools menu.
The Run-time Environment Setup Tool is displayed.

2. Select "Open" on the File menu and create an object initialization file (COBOL85.CBR) in the folder that contains the executable
program (SAMPLE12.EXE).

3. Select a common tab and set data as shown below:

- Specify an ODBC information file name in environment variable information @ODBC_Inf (ODBC information file
specification).

- Specify a file to save the DISPLAY statement output result in environment variable RESULT.

E Run-time Environment Setup Tool M= B |

Eile Enwironment Help

— File Mame
C:AMetCOBOLAS amplesheobaolsS ample] 2heobal35. cbr

— Thread Mode
f* Single Thread £ Multi Thread

— Enviranment Y ariables

Sechan: Camrman | S ection I

| | [@0DBC_In=5AMFLETZINF
RESULT =result. b=t

Wariable Marme:

! [

Y anable Yalue:

| J | i

Set | [elete | Spply |

4. Click the Apply button.
The set data is saved in the object initialization file.

5. Select "Exit" on the File menu to terminate the Run-time environment setup tool.

Debugging the Program

To run the program under the control of the Debugger, select Debug from the Project menu. The Debugger starts and displays the Start
Debugging dialog box.

Press the ENTER key.

Executing the program
Select "Run" on the Project Manager "Project” menu.

The following is displayed in the COBOL console window.

-116 -

SUCCESSFUL CONNECTION WITH DATABASE.

RECEIVE THE PRODUCT NUMBER WHOSE PRODUCT NAME IS ‘TELEVISION’

SET STOCKS OF THE FOLLOWING PRODUCTS DECREASING 10

TELEVISION -> + 0110

TELEVISION -> + 0111

TELEVISION -> + 0212

DELETE THE ROW WHICH HAS PRODUCT NAME IS ‘RADIO’ , ‘SHAVER’ OR ‘DRIER
PROGRAM END

To the file assigned to environment variable RESULT, the contents of the STOCK table before and after the operation are output in the
format shown below.

Contents before processing

No.01:
Product number = +0110
Product name = TELEVISION
Stock quantity = +000000085
Warehouse number = +0002
No.19:
Product number = +0390
Product name = DRIVER
Stock quantity = +000000540
Warehouse number = +0003

There are 19 data in total.
Contents after processing

No.01:
Product number = +0110
Product name = TELEVISION
Stock quantity = +000000075
Warehouse number = +0002

No.15:
Product number = +0351
Product name = CASSETTE TAPE
Stock quantity = +000002500
Warehouse number = +0002

There are 15 data items in total.

A.14 Sample 13: Calling COBOL from Visual Basic

Sample 13 illustrates a COBOL DLL created with NetCOBOL that is called from a Visual Basic® application.

This sample program requires Visual Basic 5.0 or later.

Overview

At initialization the Visual Basic application calls a subroutine, IMPCINT?2 that initializes the COBOL run-time environment, ready for
a call to a COBOL program.

The Visual Basic form shows a simple equation in which the user enters two numbers (either side of a multiply “*” sign) and presses the

w_»

=" sign, which is a button. The Visual Basic application passes the two values to the COBOL application which does the multiplication
and returns the result for the Visual Basic code to display.

In the Visual Basic application’s termination code, it calls the IMPCINT3 subroutine to close the COBOL run-time environment.

Files Included in Sample 13
- SAMPLE13.EXE (Visual Basic executable file)
- SAMPLE13.VBP (Visual Basic project file)
- SAMPLE13.FRM (Visual Basic form module)

-117 -

SAMPLE13.COB (COBOL source program)

SAMPLE13.PRJ (COBOL project file)

SAMPLE13.CBI (COBOL compiler option file)

SAMPLE13.LNI (Linkage option file)

COBOLS85.CBR (COBOL run-time initialization file)

Subroutines used in Sample 13

These subroutines are used by in the Visual Basic part of SAMPLE 13 to initialize and terminate the COBOL run-time system.
- JMPCINT2
- JMPCINT3

Building/Rebuilding the Program
Project manager's build function is used to create the executable program.

In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

1. The project manager is started, and project file "SAMPLE13.PRJ" is opened.

J7 SAMPLE13.PR] - COBOL Project Manager M=l E

File Edit Project View Tools Environment M Help

=||@| D[z &lEe XS] s =1 8% /8] 5 &

Project Compositian | Edit Besource |

=-fi SAMPLE13.DLL

" B3 Cobal Saurce Files
- SAMPLEL3.COB
=27 Other

- SAMPLE1L3.FRM

: SAMPLE1S.MEP

CHMETCOBOLYSAMPLESYCOBOLY SAMPLEL 3\SAMPLELS . PR 5

-118 -

2. The project file is selected, and "Linker options" is selected from "Project"-"Options" menu.

The "Linker options" dialog is displayed.

Linker Ophons

|

— Command Line

EAPORT:SAMPLETS Browse. . | Cancel |
— MAP Option Help |

[/Map

AP File:

I Browee,.. |
— Debug Optian

&+ /DEBUG /DEBUGTYPE:COFF

 /DEBUG /DEBUGTYFE:BOTH

— C Run-time Library

Browse. .

Rezet

i

—COBOL Entry Object
@ Link COEOL program only

" Other

3. "/[EXPORT:SAMPLE13" is specified for the "Command line" editing box. After confirms it, the OK button is clicked.
You are now returned to the Project Manager window.

4. Select "Build" from Project Manager's "Project” menu or click on the Build button in the Project Manager toolbar.
After the build terminates, check that SAMPLE13.dll is created.

5. When you rebuild executable file of Visual Basic, SAMPLE13.VBP (Visual Basic project file) included in the "Other” folder of
the project is selected and "Edit" is selected from the project menu.

Visual Basic starts; "Make of SAMPLE13.EXE" is selected from the file menu.

Debugging the Program

Applications containing a mixture of COBOL and Visual Basic code can be debugged under the control of both the COBOL and Visual
Basic debuggers. To accomplish this, follow these steps:

1. Select "Run-time Environment Setup Tool" from the "Tools" menu of the Project Manager.
The run-time environment setup tool is displayed.

2. Select "Open" on the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE13.EXE).

-119 -

3. Select the Common tab and enter data as shown below:

- For the environment variable @CBR_ATTACH_TOOL, specify TEST.

E% Run-time Environment Setup Tool M= B3 |

File Emvironment Help

— File Mame
C:AMetCOBOLYS ampleshcobolyS amplel 3SCOBOLES.CER

— Thread kMode
{* Single Thread £ Multi Thread

— Environment Y ariables

Section; Commmon | Section I

| | [@CER_ATTACH_TOOL=TEST

Yariable Marme:

! =~

Wariable Y alue:

| J i i

Set | Lielete | Spply |

4. Click the Apply button.

The data is saved in the object initialization file.
5. Select "Exit" on the “File" menu to terminate the run-time environment setup tool.
6. Start Visual Basic and load the SAMPLE13.VBP project.

7. Start debugging the Visual Basic code when you execute the call to SAMPLE13 (the COBOL program) the COBOL debugger is
invoked so that you can continue debugging in the COBOL part of the application.

8. When you exit from the COBOL application control returns to the Visual Basic code.
The section “H. Debugging with Visual Basic” in Chapter 1’ s Quick Tour steps through this example in some detail.

For more information on this topic, see Chapter 3, “Working with Visual Basic and COBOL” and the “NetCOBOL Debugging Guide”.

Executing the Program

To execute the program:

-120 -

1. The simple calculator window used by this application is shown in the following figure.

. Sample 13 i

Enter 2 numbers of 4 digits or less. Click on the = button to call the
COBOL DLL that calculates the result. The result will be displayed
to the right.

End

2. To use this form:
Enter a number (up to 4 digits) in each text box to the left of the “=" button.
Press the “=" button.

Visual Basic calls COBOL to perform the calculation and format the answer. Visual Basic then displays the answer to the right of the

=" button.

A.15 Sample 14: Visual Basic calling COBOL -Simple ATM
Example

Sample 14 demonstrates Visual Basic calling COBOL by using a simple automatic teller machine (ATM) bank account handling example.

Operating this program requires Visual Basic version 5.0 or later.

Overview
The sample program performs the following account functions:
- Opening a new account
- Depositing funds
- Withdrawing funds
The account data, comprising account number, PIN number, name and balance, is saved in an indexed file.

The structure of the indexed file is:

Account number 9(5) *> (This is the primary record key.)
Password 9(4)

Name X(12)

Deposit 9(9)

When functions are requested from the “ATM terminal” (user screens), the record data for the account in the indexed file is updated.

Files Included in Sample 14
- SAMPLE14.EXE (Visual Basic executable file)
- SAMPLE14.VBP (Visual Basic project file)
- SAMPLE14.BAS (Visual Basic standard module)

-121-

- SAMPLE14.FRM (Visual Basic form module)
The main window for the “ATM terminal” processing.
- SINKI.FRM (Visual Basic form module)
Dialog for opening a new account.
- SINKCHK.FRM (Visual Basic form module)
Displays the assigned account number for a new account.
- SELE.FRM (Visual Basic form module)
Account-handling dialog - shows account number, name and balance, and offers the withdrawal and deposit functions.
- NYUKIN.FRM (Visual Basic form module)
Dialog for performing a deposit.
- SYUKIN.FRM (Visual Basic form module)
Dialog for performing a withdrawal.
- ERROR_H.FRM (Visual Basic form module)
Error message box.
- K_KEN.COB (COBOL source program)
Retrieves accounts by account number.
- K_SIN.COB (COBOL source program)
Opens a new account.
- K_NYU.COB (COBOL source program)
Adds money deposited to an account.
- K_SYU.COB (COBOL source program)

Subtracts money withdrawn from an account.

Processing Overview

The Visual Basic application starts, and subroutine JIMPCINT2 (which initializes the COBOL run-time system) is called when the main
form is loaded.

The Visual Basic forms manage the interface with the user - accepting input data, transaction requests and displaying output data and
messages. COBOL programs are called to manage the account data in the indexed file.

When the Visual Basic application is closed, it calls subroutine JMPCINT3 (which terminates the COBOL run-time).

Following figure shows the structure of the application:

-122 -

Visual Basic COBOL

System
sampleld.exe
|
COBOL initialization protessing -— JMPCINT2 Initialization procedure subroutine
|
Processing opening of a new account — Account number retrieval processing
Account refrieval processing --- Account refrieval processing
Withdrawal processing - Processing for debiting money
Deposit processing - Processing for depositing money
|
|
COBOL termination processing --- JMPCINT3 Termination subroutine

COBOL Statements used in Sample 14
The MOVE, IF, PERFORM, COMPUTE, OPEN, READ, WRITE, REWRITE, CLOSE and EXIT statements are used.

COBOL Run-time System Subroutines

The following routines are used to initialize and terminate the COBOL run-time system.
- JMPCINT2
- JMPCINT3

Building/Rebuilding the Program
Project manager's build function is used to create the executable program.

In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

-123 -

1. The project manager is started, and project file "SAMPLE14.PRJ" is opened.

;" SAMPLE14.PR] - COBOL Project Manager

File Edit Project View Tools Environment O Help

| @ D] (@] XS] ot =] B2 L8] 2| &
Project Composition | E dit Fiesource |
=-figd K_KEN.DLL
EH:l Zobol Source Files
[K_KEM.COR
[K_NYU.COB
[K_SYULCOR
L[] K_SINLCOB
EH:I Cther
----- SYLIKIN,FRM
----- MYLIKIN, FRM
----- SAMPLE14,FRM
----- SELE,FRM
----- SINKT,FRM
----- SINKICHK FRM
----- ERROR_H.FRM
----- SAMPLE14.BAS
----- SAMPLE14.VEP

CHMETCOBOL SAMPLES, COBOLSAMPLE L 1S AMPLEL4. PRI

-124-

2. The project file is selected, and "Linker options" is selected from "Project"-"Options" menu.

The "Linker options" dialog is displayed.

Linker Ophons

|
— Command Line
S AERPORT kWYL /E=PORT:E._SY Browse. .. | Cancel |

— MAP Option Help |

[/Map

AP File:

I Browee,.. |
— Debug Optian

&+ /DEBUG /DEBUGTYPE:COFF

 /DEBUG /DEBUGTYFE:BOTH

— C Run-time Library

Browse. .

Rezet

i

—COBOL Entry Object
@ Link COEOL program only

" Other

3. "/[EXPORT:K_KEN /EXPORT:K_SIN /EXPORT:K_NYU /EXPORT:K_SYU" is specified for the "Command line" editing box.
After confirms it, the OK button is clicked.

You are now returned to the Project Manager window.
4. Select "Build" from Project Manager's "Project” menu or click on the Build button in the Project Manager toolbar.
After the build terminates, check that K_KEN .DLL is created.

5. When you rebuild executable file of Visual Basic, SAMPLE14.VBP (Visual Basic project file) included in the "Other" folder of
the project is selected and "Edit" is selected from the project menu.

Visual Basic starts; "Make of SAMPLE14.EXE" is selected from the file menu.

Debugging the Program

Applications containing a mixture of COBOL and Visual Basic code can be debugged under the control of both the COBOL and Visual
Basic debuggers. To accomplish this, follow these steps:

1. Select "Run-time Environment Setup Tool" from the "Tools" menu of the Project Manager.

The run-time environment setup tool is displayed.

2. Select "Open" on the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE14.EXE).

-125-

3. Select the Common tab and enter data as shown below:

- For the environment variable @CBR_ATTACH_TOOL, specify TEST.

E% Run-time Environment Setup Tool M= B3 |

File Emvironment Help

— File Mame
C:AMetCOBOLYS ampleshcobolyS ample 44cobalds. chr

— Thread kMode
{* Single Thread £ Multi Thread

— Environment Y ariables

Section; Commmon | Section I

| | [@CER_ATTACH_TOOL=TEST

Yariable Marme:

! =~

Wariable Y alue:

| J i i

Set Lielete | Spply |

4. Click the Apply button.

The data is saved in the object initialization file.
5. Select "Exit" on the “File" menu to terminate the run-time environment setup tool.
6. Start Visual Basic and load the SAMPLE14.VBP project.

7. Start debugging the Visual Basic code when you execute the call to SAMPLE14 (the COBOL program) the COBOL debugger is
invoked so that you can continue debugging in the COBOL part of the application.

8. When you exit from the COBOL application control returns to the Visual Basic code.
The section “H. Debugging with Visual Basic” in Chapter 1’ s Quick Tour steps through this example in some detail.

For more information on this topic, see Chapter 3, “Working with Visual Basic and COBOL” and the “NetCOBOL Debugging Guide”.

Executing the Program

To execute the program:

-126 -

1. The first application dialog is displayed:

im. Sample 12 !
Acount nurmber “
FIM number I
New Aiccount? | ok | Ewo

2. To work with the application click on the “New Account?” button.

The New Account Information dialog is displayed:

. Mew Account Information |

M ame Ii

Deposgit amount I

PIM number I

Ok | CAMCEL

3. Open a new account. Type in a name (such as Alan), an amount (such as 100000) and a PIN number (such as 1234). Click the OK
button.

A dialog displaying the assigned account number is displayed:

. Account Humber Assignment |

M arne |Alan

Account number IDDDD 1

4. Note the account number and the PIN number you used - you will need to enter them in subsequent transactions.
5. Click on the OK button to return to the main Sample 14 dialog box.

6. You can now enter the account and PIN numbers and use the Withdrawal and Deposit functions.

A.16 Sample 15: Basic Object-Oriented Programming

This program illustrates basic object-oriented programming functions including encapsulation, object generation and method invocation.

Overview

In the sample program, three employee objects are generated. After an object has been generated using the "NEW" method, the "Data-
Set" method is invoked to set the data.

Although all the employee objects have the same form, they have different data (employee numbers, names, departments and sections,
and address information). Address information also belongs to an object, containing postal codes and addresses.

Upon input of an employee humber on the screen, the appropriate "Data-Display" method in the employee object is invoked, with employee
information in the object is displayed on the screen.

-127 -

The employee object invokes the "Data-Get" method of the associated address object to acquire the address information.

The employee object consists of three pieces of data and an object reference to an address object. The structure of the object is transparent
to the main program user. The user must, however, understand the two methods of "Data-Set" and "Data-Display."

The encapsulation of data completely masks the information in the object.

Files Included in Sample 15

- MAIN.COB (COBOL source program)

MEMBER.COB (COBOL source program)

ADDRESS.COB (COBOL source program)

SAMPLE15.PRJ (Project file)

SAMPLE15.CBI (Compiler option file)

SAMPLE15.TXT (Program guide)

COBOL Functions used in Sample 15
- Object-oriented programming function
- Class definition (Encapsulation)
- Object generation
- Method invocation

- Project management

Object-Oriented Syntax used in Sample 15
- INVOKE and SET statements
- REPOSITORY paragraph

- Class, object and method definitions

Building/Rebuilding the Program
Project manager's build function is used to create the executable program.

In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

-128 -

1. The project manager is started, and project file "SAMPLE15.PRJ" is opened.

;" SAMPLE15.PR] - COBOL Project Manager Hi=] E
File Edit Project View Tools Environment O Help

(3|8 D] #Ee] XS] oo =] 83 L5 B &
Project Composition | E dit Fiesource |
W] inETce
=[] MAIN.EXE
EH:l Zobol Source Files
1] MEMBER, COB
EH:I Target Repository Files
- -F] EMPLOYEE REP
=1-_7] Dependent Repositary Files
~{#] aCDR.REP
=[] ADDRESS.COB
EH:l Target Repository Files
] ADDR.REP

= MAIN.COB
=--{_1 Dependent Repositary Files

----- A0DR.REP
- EMPLOYEE.REP

CHMETCOBOLYSAMPLESYCOBOLY SAMPLEL S\ SAMPLELS . PR S

2. Select "Build" from Project Manager's "Project” menu or click on the Build button in the Project Manager toolbar.

After the build terminates, check that MAIN.EXE is created.

Debugging the Program

You can execute this program under the control of the COBOL Debugger by selecting Debug from the Project menu.

Executing the Program
To execute the linked program, select Execute from the Project menu.
Sample 15 requires no special execution environment information to be set.

The interface is very basic - simply enter an employee number 1, 2 or 3 to display details for that employee. After the details are displayed
enter Y or N to terminate or continue.

A.17 Sample 16: Collection Class (Class Library)

Sample 16 demonstrates using a collection class for creating a class library.

This sample can be used as an example of class library creation, and can be used to create a class library in an actual program.

This sample covers only the basic operation. An easy-to-use class library can be rolled out by modifying and changing this sample.

Overview
A collection class is the generic name of a class that handles a set of objects-it is used to collectively handle and store many objects.
This sample covers the following classes.
- Collect (Collection)
- Dict (Dictionary)
- List (List)

-129 -

Class Layers

The following diagram shows the relationships between the class layers in Sample 16.

Element-Get
|[Element-Inssrt
|Element-Futhit

Element-PFutlLast

ElementHo-Gat

Element-Get
|[Element-Putht
|FirstKey-Get
|LastEey-Get

|Remove-A11

|LastElement-Get | Remove-At |
|Bemove-Al1l1 +———————————————————————— +

In addition to the above classes, Sample 15 also includes the classes BinaryTree-Class, DictionaryNode-Class and ListNode-Class. These
classes, which are used inside the List and Dict classes, are transparent to the collection class user, and are not explained here.

Collect Class
This is the highest collection class. All collection classes inherit this class.
Collect is an abstract class, and does not create any objects.
Since this class inherits the FIBASE class, all the methods defined in the FIBASE class can be used.

Definitions

-130 -

CLASS-ID. Collect INHERITS FJBASE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
CLASS FJBASE.

OBJECT.
PROCEDURE DIVISION.
METHOD-I1D. CollectionSize-Get.
METHOD-ID. FirstElement-Get.
METHOD-ID. NextElement-Get.
METHOD-ID. PreviousElement-Get.
END OBJECT.

END CLASS Collect.

CollectionSize-Get method

This method investigates the number of elements in a set.
Parameter

None

Return value

PIC 9(8) BINARY

Returns the element immediately preceding the one currently pointed to. If a previous element does not exist, NULL is returned.

Dict Class

This class has the following features:

Each element has a key.

The key value is unique.

A key can be used for retrieval.
- The key is used for ordering.

Since this class inherits from the Collect class, all the methods defined in Collect can be used as well.

Definitions

CLASS-ID. Dict INHERITS Collect.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
CLASS Collect.

OBJECT.
PROCEDURE DIVISION.
METHOD-ID. Element-Get.
METHOD-ID. Element-PutAt.
METHOD-1D. FirstKey-Get.
METHOD-ID. LastKey-Get.
METHOD-ID. Remove-All.
METHOD-1D. Remove-At.
END OBJECT.

END CLASS Dict.

Element-Get method

This method returns elements for a specified key.

-131-

Parameter

Key: PIC X(10)

Specifies a key value for an element to be returned.
Return value

USAGE OBJECT REFERENCE

Returns an element for a specified key if it is found, and returns NULL if it is not found.

Element-PutAt method

This method adds an element for a specified key. If an element with the same key already exists, it is replaced by the new element.
Parameters

Key: PIC X(10)

Specifies the key value of the element to be added or replaced.

Element: USAGE OBJECT REFERENCE

Specifies the element to be added or replaced.

Return value

None

Firstkey-Get method

This method determines the key value for the first element.
Parameter

None

Return value

PIC X(10)

Returns the key value for the first element. If the number of elements is 0, or if the key for the first element is a blank, a blank is returned.

LastKey-Get method

This method determines the key value for the last element.
Parameter

None

Return value

PIC X(10)

Returns the key value for the last element. If the number of elements is 0, or if the key for the last element is a blank, a blank is returned.

Remove-All method

This method deletes all elements contained in a set.
Parameter

None

Return value

None

-132 -

Remove-At method

This method deletes an element for a specified key.
Parameter

Key: PIC X(10)

Specifies the key value for the element to be deleted.
Return value

None

List Class

This class has the following features:
- Elements are arranged in a certain order.
- Duplicate elements can be contained.

Since this class inherits from the Collect class, all the methods defined in the Collect class can be used as well.

Definitions

CLASS-ID. List INHERITS Collect.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
CLASS Collect.

OBJECT.
PROCEDURE DIVISION.
METHOD-ID. Element-Get.
METHOD-ID. Element-Insert.
METHOD-I1D. Element-PutAt.
METHOD-ID. Element-PutLast.
METHOD-ID. ElementNo-Get.
METHOD-ID. LastElement-Get.
METHOD-ID. Remove-All.
METHOD-ID. Remove-At.
END OBJECT.

END CLASS List.

Element-Get method

This method returns the element at a specified location (index).

Parameter

Index: PIC 9(8) BINARY

Specifies the location of the element to be returned by an integer starting at 1.
Return value

USAGE OBJECT REFERENCE

Returns the specified element. If no element exists at the specified location, NULL is returned.

Element-Insert method
This method adds an element at the specified location (index).
Parameters

Index: PIC 9(8) BINARY

-133-

Specifies the location at which the element is to be added by an integer beginning with 1.
If a value greater than the number of elements plus 1 is specified, no element is added.
Element: USAGE OBJECT REFERENCE

Specifies the element to be added.

Return value

PIC 9(8) BINARY

Returns the location at which the element was added by an integer beginning with 1. If no element is added, 0 is returned.

Element-PutAt method

This method replaces the element at the specified location (index).
Parameters

Index: PIC 9(8) BINARY

Specifies the location of the element to be replaced by an integer beginning with 1. If a value greater than the number of elements is
specified, no element is replaced.

Element: USAGE OBJECT REFERENCE

Specifies the element to be replaced.

Return value

Returns the location of the replaced element using an integer beginning with 1.

If no element has been replaced, 0 is returned.

Element-PutLast method

This method adds an element after the last element.
Parameter

Element: Specifies the element to be added.

Return value

None

ElementNo-Get method

This method checks the location (index) of a specified element.
Parameter

Element: Specifies the element whose location is checked.

Return value

PIC 9(8) BINARY

Returns the location of the element using an integer beginning with 1.
If the specified element is not found, O is returned.

If duplicate elements exist, the first found location is returned.
LastElement-Get method

This method returns the last element.

Parameter

-134-

None
Return value
USAGE OBJECT REFERENCE

Returns the last element. If the number of elements is 0, NULL is returned.

Remove-All method

This method deletes all the elements contained in a set.
Parameter

None

Return value

None

Remove-At method

This method deletes the element at the specified location (index).

Parameter

Index: PIC 9(8) BINARY

Specifies the location of the element to be deleted using an integer starting at 1.
If a value greater than the number of elements is specified, no element is deleted.
Return value

Returns the location of the deleted element using an integer beginning with 1.

If no element has been deleted, 0 is returned.

Programs and Files in Sample 16
- COLLECT.COB (COBOL source program)
- DICT.COB (COBOL source program)
- LIST.COB (COBOL source program)
- BIN_TREE.COB (COBOL source program)
- D_NODE.COB (COBOL source program)
- L_NODE.COB (COBOL source program)
- SAMPLE16.PRJ (Project file)
- SAMPLE16.CBI (Compiler option file)
- SAMPLE16.TXT (Program guide)

COBOL Functions Used in Sample 16
- Object-oriented programming functions
- Class definition (Encapsulation)
- Inheritance
- Object creation
- Method calling

- Project management

-135-

Object-Oriented Syntax used in Sample 16
- INVOKE and SET statements

Object properties

Method calling

REPOSITORY paragraphs

Class , object and method definitions

Building the Class Library
The Build function supported by the COBOL Project Manager is used to create the class library.
1. Start the Project Manager, and project file SAMPLE16.PRJ is opened.

ZF SAMPLE16.PR] - COBOL Project Manager

File Edit Project Wiew Tools Environment CM Help

=] E3

| (& Dl &R X[S] ooe = BlR] 2% 2] 2

Project Compozitian | Edit Rezource |

- COLLECT.DLL
=] Cobol Source Files

(-] BIN_TREE.COB
- [iF] COLLECT.COB
-] D_MODE.COB
-] DICT.COB

-] L_MODE.COR
-] LIST.COR

CHMETCOBOLYSAMPLESYCOBOLY SAMPLEL&YSAMPLELS, PR

2. Select Build from the Project menu.
When building terminates, the following files are created.

COLLECT.DLL

COLLECT.LIB

COLLECT.REP
DICT.REP

LIST.REP

(.JT Note

Some other files are also created, but they are not required when the class library is used.

Using the Class Library
When the sample class library to be used is installed in a program, the following files are required.
For Compiling or Linking
- COLLECT.LIB (Import library)
- COLLECT.REP (Repository library)

-136 -

- DICT.REP (Repository file)
- LIST.REP (Repository file)

Install the above files to be used into a project that uses the class library. See Sample 18, ” Advanced Object-oriented Programming.”

For Executing
- COLLECT.DLL (DLL file)

A.18 Sample 17: Object-Oriented Cobol (Aggregation, Singleton,
and Iteration)

Sample 17 demonstrates the general object-oriented design concepts of aggregation, singleton, and iteration.

The program use the Dict and List classes created in "Sample 16 Collection Class (Class Library)".

It also requires Microsoft Excel (abbreviated to “Excel”).

Overview

The purpose of Sample 17 is to illustrate implementation of the object-oriented concepts of aggregation, singleton and iteration (explained
below). It uses a conference room booking system to demonstrate these features. The user interface is very basic as the focus is to
demonstrate the OO concepts.

The conference room booking system provides functions for:

- Reserving a conference room.

Canceling a conference booking.

- Reviewing conference room bookings.

Listing, adding and deleting conference rooms.
- Updating conference room details.

The OO concepts are demonstrated as described below.

Aggregation

Aggregation is a relation of "whole to part". The life of the downstream class instance in the aggregate relation is controlled completely
by the life of the upstream class instance. In this sample, the following classes are in the aggregation relation:

- Reservation-status-Date class (RSVSTATE-DATE-CLASS) and Reservation-status- Conference-Room class (RSVSTATE-
CFNROOM-CLASS).

- Reservation-status-Conference-Room class (RSVSTATE-CFNROOM-CLASS) and Reservation-status-Time-Frame class
(RSVSTATE-TIME-CLASS).

- Conference-Room-Information-Control calls (CFRINFO-CNT-CLASS) and Conference-Room-Information class (CFRINFO-
CLASS).

Singleton
Singleton refers to a mechanism that guarantees that only one object instance can exist for a class.

This is implemented in the SINGLE-TON class in this sample. The SINGLE-TON class is inherited by the following classes so that they
can only create a single object instance.

- Reservation control class
- RSVCNT-CLASS
- Conference room information control class

- CFRINFO-CNT-CLASS.

-137 -

- Error processing class

- ERROR-CLASS

Iteration

Iteration provides a means of accessing elements sequentially without having to be aware of the internal structure of the aggregation object.
In this sample, iteration is implemented by the LIST-ITERATER class.

Two or more LIST-ITERATER class objects can be created for a single list object.
In this sample, iteration is used in the following functions:
- Display of reservation information
Method: RSV-SITUATION-LIST-DISP,
Class: RSVCNT-CLASS
- Deletion of reservation state objects (date, conference room and time frame)
Method: RSV-SITUATION-OBJ-DEL
Class: RSVCNT-CLASS
- Retrieval of conference room information and reservation information
Method: RSV-DATA-RETRIEVAL
Class: RSVINFO-CLASS
- Storing the information in an Excel file.
Entry: PRESERVATION-DATA
Program: EXCEL-EDIT

Design of Sample 17

Following figure shows the relationships between the classes used in Sample 17.

-138 -

Ig'rigm Exception Object
Error Class
Singleton Class
L= Resevation ~) Dictionary - -¢ Reservation stafus -
| Control Class Class Dact Date Class
Method Method Class ~| List Class
Control Class List
o
Conference Conference Reservation status -
room - - | =.@| room __| Conference room
information -] ListClass |- information = Class
control Class Lust Class
\! e @
EXCEL L~ List Tterate Reservation status -
eration = Class Time form Class
List Class -t . Reservation
List mformation Class
4[> - Shows an inheritance relationship > - Shows a one-fo-one relationship

>@ - Shows a one-to-many relationship

Programs and Files in Sample 17
- MAIN.COB (COBOL source program)
- EXCELEDT.COB (COBOL source program)
- RSVCTRL.COB (COBOL source program)
- ROOMCTRL.COB (COBOL source program)
- DATESTA.COB (COBOL source program)
- ROOMSTA.COB (COBOL source program)
- TIMESTA.COB (COBOL source program)
- RESERVE.COB (COBOL source program)
- SPECCTRL.COB (COBOL source program)
- SPEC.COB (COBOL source program)

-139 -

- SINGLETN.COB (COBOL source program)
- LISTITER.COB (COBOL source program)
- ERRORPUT.COB (COBOL source program)
- RSVINFO.CBL (library file)

- ROOMINFO.CBL (library file)

- R_CONST.CBL (library file)

- SPECINFO.CBL (library file)

- ROOMLIST.XLS (Excel file)

- RSVLIST.XLS (Excel file)

- DICT.REP (Repository file)

- LIST.REP (Repository file)

- SAMPLE17.PRJ (project file)

- COLLECT.DLL (DLL file)

- COLLECT.LIB (import library)

COBOL Functions used in Sample 17
- Object oriented programming functions
- Definition of class (encapsulation)
- Inheritance
- Multiple inheritance
- Creation of objects
- Method calls
- Exception handling
- OLE connection

- Project manager function

Object-Oriented Syntax used in Sample 17
INVOKE and SET statements

Object properties

In-line method calls

REPOSITORY paragraphs

Class , object and method definitions

Type definitions

Before Executing the Application
Check the definitions of the Excel file names in the file:
R_CONST.CBL

used by most of the programs. (To edit this file expand the project tree down to a list of Copy Library Files for one of the programs, e.g.
MAIN, and double click on the R_CONST.CBL file name.)

The names are defined at the head of the file as the constants; CNFROOM-FILENAME and RSV-FILE-NAME.

- 140 -

You may need to change the settings of these constants if you did not install to the default folder structure.
Samplel7 frequently writes to the Excel files so if you want to preserve the original or other version of these files, please take a backup
before running Samplel7.

Attention

The code is written to discard out-of-date data. When objects are restored from the Excel file, any objects with dates earlier than the current
date are discarded.

Likewise, when objects are preserved, any objects that are out-of-date are not written to the Excel file.

Building the Application
Project Manager's build function is used to make the executable program.
1. Start the Project Manager.
2. Open project file SAMPLE17.PRJ.

3. Select Build from the Project menu.

Executing the Application
To execute the program select Execute from the Project menu. (No run-time environment variables need to be set.)

When the program starts, it reloads the information from Excel, then displays a list of options:

! Console - PG-MAIN [_ (]

#x The conference room data is being restored ... == -
=% Please wait for a while. *%
#% The reservation data is being restored ... *%
=% Please wait for a while. *%

<¢{ Conference room reservation program >3
1. Reserve and refer
2. Retriewval
3. Conference room control
X. End
Please SELECTIVE processing. § 1 or 2 or 3 or X) =2 I

Guidelines for Operating the Application
The application has a simple, menu-driven interface, controlled by the MAIN.COB program.
The main menu lets you select functions by entering a number from 1 to 3 or X to exit. The functions are:
1. Reserve and refer

this provides the ability to reserve conference rooms, see bookings of conference rooms (on a given date), and cancel bookings.

- 141 -

2. Retrieval
The retrieval function returns all conference room bookings for a given name.
3. Conference room control
The conference room control function lets you update, add and delete conference room details.

Once you have entered the primary function you are prompted to enter data an item at a time. Sometimes the interface introduces a set of
information to be entered, such as "Enter the conference room name, and time at which it should be booked" and the prompts for the first
piece of information (the conference room name). Just enter the first piece of information and you will be prompted for the other pieces
in the set.

You'll be asked for the following information for the different functions:

Reserve and refer

An 8-digit date (equal to or later than today's date)

Conference room name (4 characters)

Time (AM or PM)

If there is no booking for that room, date and time, you are prompted for:

Name (10 characters)

Extension (9 digits)

Department (10 characters)

and are returned a reservation number (required if you later want to cancel the reservation).

If there is a booking for the room, the booking details are displayed and you have the option to cancel the room. If you choose to cancel
the booking you are prompted for the 4 digit reservation number.

Retrieval

You are prompted to enter:

Subscriber name (10 digits) - the name entered when booking the room.
Information corresponding to the name is displayed.

NOTE: The program is configured so that it only displays five reservations. To increase this change the following item in the
R_CONST.CBL file.

RSV-MAX IS 5

Conference room control
You are prompted to enter:
Conference room name (4 characters)

If the conference room exists, details for that conference room are listed. If it doesn't exist you are prompted to enter details to register the
conference room. The conference room details are:

Capacity (2 digits)
Extension (9 digits)
Type (N for general, T for video)

When changes are completed the appropriate updates are made to the Excel file to reflect the changes.

End

The program saves reservation information objects in the Excel file and terminates.

- 142 -

A.19 Sample 18: Advanced Object-Oriented Programming

Sample 18 uses all object-oriented specific functions including encapsulation, inheritance and polymorphism.

This program, which deals with two or more employee objects, uses the Dict class created in Sample 16, “Collection Class (Class
Library).”

Overview

The application shows how an OO system can be set up to manage employee information. It implements, in a basic manner, the functions
of registering, deleting, and modifying employee details, calculating salaries and printing a directory of employee information.

The employees are classified into staff members and managers. Different data is maintained and the pay calculation method differs between
staff members and managers. The elements of the application are:

- An employee class that defines the attributes common to all employees (AllMember-class)
- A staff member class that defines the attributes particular to staff employees (Member-Class)
- A manager class that defines the attributes particular to managers (Manager-Class)
The staff member and manager classes inherit the employee class.
The addresses portion of the employee information is managed by an independent class (Address-Class).
Address objects are referenced from employee objects (and their subclasses).
The employee object defines the employee data to be managed by the supervisor.
Sample 18 use the dictionary class (Dict) created in Sample 16, “Collection Class (Class Library)”. It registers an employee object with
the dictionary using the employee number as the key. The dictionary class allows easy repeat processing of two or more employee objects,
and easy retrieval of an employee object.
Programs and Files in Sample 18
- MAIN.COB (COBOL source program)
- ALLMEM.COB (COBOL source program)
- MEMBER.COB (COBOL source program)
- MANAGER.COB (COBOL source program)
- ADDRESS.COB (COBOL source program)
- BONU_MAN.COB (COBOL source program)
- BONU_MEM.COB (COBOL source program)
- SALA_MAN.COB (COBOL source program)
- SALA_MEM.COB (COBOL source program)
- DICT.REP (Repository file)
- SAMPLE18.PRJ (Project file)
- SAMPLE18.CBI (Compiler option file)
- COBOLS85.CBR (Environment variable initialization file)
- COLLECT.DLL (DLL file)
- COLLECT.LIB (Import library)

COBOL Functions used in Sample 18
- Object-oriented programming functions
- Class definition (Encapsulation)

- Inheritance

-143-

- Object generation
- Method calling
- Polymorphism
- Screen operation function

- Project management

Object-Oriented Syntax used in Sample 18
- INVOKE and SET statements
- Object properties

- In-line method calls

REPOSITORY paragraphs

- Class, object and method definitions

Building the Application

Project Manager's build function is used to make the executable program.
1. Start the Project Manager.
2. Open project file SAMPLE18.PRJ.

3. Select Build from the Project menu.

Debugging the Application
The project file is supplied with the debugging option set. You can execute the program under the control of the COBOL Debugger by:

1. Selecting Debug from the Project menu.

- 144 -

2. Clicking on the OK button in the Start Debugging dialog box.
The COBOL Debugger loads the code as shown in the following figure.

[E MAIN - COBOL Debugger M=] E3

File Edit iew Search Continue Debug Option ‘wWindow Help

= | o] B 2] eHeEEE QPR BB R M
Ei Main._cob - O =
882398 PROCEDURE DIVISION. Zl
ag2h00=
ae2u1n PERFORH INITIAL-PROCESSIHG.
ae242a PERFORH HAIH-PROCESSIHG UHTIL SCREEH-SELECTIOH-HUI
ae243na PERFORH EHND-PROCESSIHG.
ae244a EXIT PROGRAM.
88245 A=
ﬂﬂEuﬁﬂ*==LJ
a82478= IHITIAL-PROCESSIHG
B2 4B Ax==:
882498 IHITIAL-PROCESSIHNG SECTIOH.
a82500=
ap251a IHUOKE Control-member-class "“HEW"
ae2s52a RETURHING EMPLOYEE-COHTROL-OBJECT.
08253 A=
882548 IHITIAL-PROCESSING-ERIT. f
4 3
For Help, press F1. Reached specified position 1] 241-12

Executing the Application
To run the application, select Execute from the Project menu.

The main application window is displayed:
i Screen : MAIN

--<{Employee administration>--
1.Employee information registration
2 _Employee information deletion
3.Employee information correction
4.Salary calculation
L.Directory

&.End

Select number==> |j

To operate the program, enter the number of the desired process into “Select number” and press ENTER.

- 145 -

Note that this sample does not implement object persistence so data is lost when the application terminates. See Sample 19 for the same
application with persistence added.

Registering Employee Information
Enter the employee information including:
- Employee number (four-digit numeric character string);
- Name (Character string of eight or fewer characters);
- Address consisting of a (Japanese style) postal code (7 digits) and a character string of 20 or fewer characters

- Date the employee joined the company (in the format of YY.MM.DD - for this program there is no date processing so the format is
not significant)

- Status code (1 for a manager, and 2 for a staff member); and
- Basic pay (numeric character string of eight or fewer digits)

For a manager, type in the special allowances (numeric character string of six or fewer digits). For a general staff member, type in the
overtime (numeric character string of five or fewer digits).

Press the F3 key to register the data.

To terminate processing of employee registration information, press the F2 key.

Deleting Employee Information
To delete employee information, type in the employee number (four-digit numeric character string), and press the F3 key.

The employee data is displayed and can be corrected.

Calculating Employee Pay
When you select the “Salary calculation” function, the pay of all employees is calculated.
Entering an employee number and pressing the F3 key displays the pay information for that employee.

To terminate processing of the salary calculation function, press the F2 key.

Address list
An employee address list can be printed. Select Manager (1) or General employee (2), and then press the F3 key.

End

Terminates processing.

A.20 Sample 19: Object Persistence (Indexed File)

Sample 19 demonstrates object persistence based on the program created in Sample 18, “Advanced Object-Oriented Programming.” In
Sample 18, all objects are created in memory and thus upon termination of the program, all objects are lost.

In an actual system, however, data must be preserved when the program terminates. For an object-oriented system, in which the data is
held in objects, the objects must continue to exist whether or not the application is executing. These objects are known as persistent objects.

In general, a persistent object can be implemented by relating the object to databases or files. In this example, persistent objects are rolled
out by relating each object to an index file record.

For further details on object perpetuation, refer to the section “Making Objects Persistent” in the “NetCOBOL User’ s Guide”.

- 146 -

Overview

The function of this sample is identical to that of Sample 18 except that the employee and address objects are stored in an index file, and
persistence functions are added.

Persistence is implemented by adding the following methods to the employee and address objects.
- Store-Method (Object method)
Stores an object in the file.
- RetAt-Method (Factory method)
Loads an object from the file using the employee number as the key.
- Remove-Method (Factory method)
Deletes an object from the file using the employee number as the key.

Actually, the object saving and retrieving is implemented by using the employee master class and the address master class. From the object
user (the MAIN program in this example), however, the process is viewed as if the employee object assumed all the tasks.

Programs and Files in Sample 19
- MAIN.COB (COBOL source program)
- ALLMEM.COB (COBOL source program)
- MEMBER.COB (COBOL source program)
- MANAGER.COB (COBOL source program)
- ADDRESS.COB (COBOL source program)
- SET.COB (COBOL source program)
- STORE.COB (COBOL source program)
- ALLMEM_M.COB (COBOL source program)
- ALLMEMMF (Data file)
- BONU_MAN.COB (COBOL source program)
- BONU_MEM.COB (COBOL source program)
- MEM_SET.COB (COBOL source program)
- MEM_STOR.COB (COBOL source program)
- MAN_SET.COB (COBOL source program)
- MAN_STOR.COB (COBOL source program)
- ADDR_M.COB (COBOL source program)
- ADDR_MF (Data file)
- SALA_MAN.COB (COBOL source program)
- SALA_MEM.COB (COBOL source program)
- SAMPLE19.PRJ (Project file)
- SAMPLE19.CBI (Compiler option file)
- COBOLS85.CBR (Environment variable initialization file)

COBOL Functions used in Sample 19
- Object-oriented programming functions

- Indexed file functions

- 147 -

- Project management

Object-Oriented Syntax used in Sample 19
INVOKE and SET statements

Object properties

In-line method calls

REPOSITORY paragraphs

- Class, object, factory and method definitions

Building the Application

Project Manager's build function is used to make the executable program.
1. Start the Project Manager.
2. Open project file SAMPLE19.PRJ.

3. Select Build from the Project menu.

Debugging the Application
The project file is supplied with the debugging option set. You can execute the program under the control of the COBOL Debugger by:

1. Selecting Debug from the Project menu.
2. Clicking on the OK button in the Start Debugging dialog box.
The COBOL Debugger loads the code as shown in the following figure.

[Ee MAIN - COBOL Debugger =] E3
File Edit “iew Search Continue Debug Option ‘window Help
2| 2| o] B el BElEEEE QPR BlEEEE e
E| ==
Ei Main_cob | _ [O] x|
883228 PROCEDURE DIVISIOHN. "
88323 8=
ae324a PERFORH INITIAL-PROCESS .
ae325a PERFORH HAIH-PROCESS UHTIL DSP-SELECT-HUHMBER =
ae3261a PERFORH END-PROCESS .
ae327a STOP RUH.
88328 0=
[“;1329ﬂ*===—I
883308= IHITIAL-FROCESS
a@331 8=
ge3320= fAs for master file, OPEH is done.
Af233 fx==:
883348 IHITIAL-PROCESS SECTIOH.
08335 0=
ga3360 IMUOKE AllHMember-class "MasterOpen-method”.
88337 8= -
4| I [=
Far Help, press F1. |Reached specified position 1] 324-12 |

Executing the Application

To run the application, select Execute from the Project menu.

- 148 -

The main application window is displayed.

For details on running the program, see Sample 18, ” Advanced Object-oriented Programming”. The main difference is that data you enter
is preserved from one execution of the application to the next to the next.

A.21 Sample 20: Object Persistence (Database)

Sample 20 demonstrates a method of making a permanent object and is based on the program created in "Sample 18 Object-Persistence".
In sample 18, all objects were created in memory. Therefore, the objects disappear at program termination. However, some data has to
remain in the system after the program ends. An object that retains data after the program ends is called a "Permanent Object".

In the previous program, such data was stored in a file or a database. To create a permanent object one must associate the permanent object
with data in file or a database. In this example, the permanent object has been achieved by associating each object with a line in a data
base table.

Refer to the "NetCOBOL User's Guide™ for details on Object Persistence.
The database exists on the server, and is accessed from the client side.

The database is accessed via the ODBC driver. For information on setting up and using ODBC databases, please refer to the Chapter 19,
"Database (SQL)" of the "NetCOBOL User's Guide".

The following products are necessary to execute this program.
- Client
- ODBC driver manager
- ODBC driver
- Products needed for the ODBC driver
- On the server
- Database

- Products needed for accessing the database via ODBC

Overview

The management of employee information (addition, deletion, and modification), the salary calculations, and address are printed as was
done in sample 18.

In addition to the functions above, in this example the employee object and the address object stored in the database, and a permanent
object function is added.

These functions have been created in the employee and the address objects by adding the following methods.

Store-Method (object method)

: The object is stored in a database.

RetAt-Method (object method)

: The object is read from the database using the employee number as the key.

RemoveAt-Method (object method)

: The object is removed from the database using the employee number as the key.

Update-Method (object method)

: The object stored in the database is updated.

Available Programs
- MAIN.COB (COBOL source program)
- ALLMEM.COB (COBOL source program)
- MEMBER.COB (COBOL source program)

- 149 -

- MANAGER.COB (COBOL source program)

- ADDRESS.COB (COBOL source program)

- SET.COB (COBOL source program)

- ALLMEM_M.COB (COBOL source program)

- BONU_MAN.COB (COBOL source program)

- BONU_MEM.COB (COBOL source program)

- MEM_SET.COB (COBOL source program)

- MEM_STOR.COB (COBOL source program)

- MAN_SET.COB (COBOL source program)

- MAN_STOR.COB (COBOL source program)

- ADDR_M.COB (COBOL source program)

- SALA_MAN.COB (COBOL source program)

- SALA_MEM.COB (COBOL source program)

- SAMPLE20.PRJ (project file)

- SAMPLE20.CBI (compilation option file)

- SAMPLE20.MDB (Microsoft Access Database file)
- COBOLS85.CBR (initialization file for execution)
- SAMPLE?20.KBD (key definition file)

- SAMPLE20.INF (ODBC information file)

Applicable COBOL Functions
- Object oriented programming function
- Remote database access (ODBC) function

- Project manager function

Available Object-oriented Statements/Paragraphs/Definitions
INVOKE and SET statements
Object property
In-line invocation of a method
Repository paragraph

Class definition, object definition, factory definition, and method definition

Prerequisite to Executing the Program

ODBC is a defined interface that attempts to provide a highly generic API into any database system that provides compliant drivers. Just
about every database system available today provides ODBC drivers for a variety of platforms.

In order to proceed with this exercise, you must have already installed 32-bit ODBC support on your Windows 2000, XP, Windows Server
2003, or Windows Server 2008 system, along with the Microsoft Access Driver.

Verifying Whether ODBC is Installed

Please refer to "Samplel1".

-150 -

Defining an ODBC Source for Your Application
The first development task that needs to be accomplished is to define an ODBC Source for the application.

An ODBC Source can be thought of as simply specifying to the ODBC manager a symbolic name that you wish to use in your application
to describe an ODBC connection to a specific ODBC database driver and database.

The following figures may or may not match what you see on your particular operating system, but you should be able to perform the
following tasks by using the instructions provided.

Bring up the Administrative Tools and double click on the Data Sources (ODBC) icon.

The main ODBC Data Source Administrator window is displayed.

&1 0DBC Data Source Administrator e

Uszer DSM | Syztem DSH I File D5 I Driversl Trau:ingl Cannectian F'u:u:ulingl About I

Uzer Data Sources:

I arne: | Diriver | Add...
dBASE Files Microzaft dBage Driver [*.dbf)

dB aze Files - wWard Microzaft dBage WP Driver [7.dbf] Bemove |
Excel Files icrogaft ERcel Driver [*.x1z]

ForPro Files - Wiord icrogaft FoxPro WFP Driver [*.dbf] Canfigure. .. |

MAIS SAL Server

5 AL NEEEEER Microsoft Access Driver [F.mdb]
Yizual ForPro Databaze Microsaft Wisual FoxPro Driver
Yizual FoxPro Tables icrogaft Wizual FowxPra Driver

An ODBC zer data source stores information about how to connect ko
the indizated data provider. A ser data source iz only visible b pou,
and can anly be uged on the cument machine.

] I Cancel Spply Help

You will add a new User DSN. Select the User DSN tab, and click on the Add button.

ODBC Data Source Administrator displays the “Create New Data Source” dialog box.

-151-

Create Mew Data Source il

Select a driver for which pou want to zet up a data sounce.

I ame | b
Drriver da Microzoft para arquivos testo [* et * cav] 4.
Dirver do Microzaft & [*.mdb] 4,
Driver do Mizrozoft dBaze [*.dbf)
Drriver do Microzoft Excel(. «lz]
Drriver do Microsoft Paradox [*.db]
Ciriver para o Microsoft Yizual FosPro
Microzoft Access Diver [*.mdh)
Microzoft Access-Treiber [*.mdb]

Microzoft dBase Driver [*.dbf]
bdirroneft AR nes WUED rir;uc.r 1% ARA
4

o P T R e

T
4

¢ Bach I Finizh I Cancel

Select the Microsoft Access Driver (*.mdb) and click on the Finish button.

The ODBC Microsoft Access Setup dialog box is displayed.

0ODBC Microsoft Access Setup

|:|:
x

[rata Source Mame; |Sample2d K.
Dezcription: |Sample 20 D atabaze
Cancel |
— D atabase
D atabase: Help |
Select... | Create. .. | Bepair... Compact... |
Advanced... |

— System Databaze

i+ Mone
™ Databasze:

Syztem Databaze,.

Optiorss»

Enter Sample20 in the Data Source Name field and Sample20 Database in the Description field as shown above.

You also need to select a file (database) to bind this driver to. Click on the Select button in the ODBC Microsoft Access Setup dialog box.
The Select Database dialog box is displayed. Navigate through the directories and find the "Sample20.mdb" database file:

-152 -

x
D atabaze MName Directaries:
|SampI32El.mu:|I:| ch. scobolveamplel

Cancel
- = &h ;I —l
[= METCOBOL
(= SAMPLES 4|HE'F'
%ESDEDII - [~ Read Only
AmpiE] [T Exclusive
Ligt Files of Type: Drives:
Arccess Databaszes [*.mnj I = o Windows j Metwark... |

Click on the OK button. This will take you back to the ODBC Microsoft Access Setup dialog box.
Click on the OK button. This will take you back to the main ODBC Source Administrator window.

Note that "Sample20™ has been added to the list in User DSN. Although you should not set any additional options for this exercise, you
may wish to highlight “Sample20” and click on the Configure button.

This will give you an idea of some of the additional options that are available when developing these types of applications. Once you are
back to the main ODBC Source Administrator window, click on the OK button. This will exit the ODBC configuration facility. You have
now defined the new ODBC Source (Sample20) you are going to use with COBOL.

Building/Rebuilding the Program

Project manager's build function is used to create the executable program.

1. The project manager is started.

-7 SAMPLE20.PR] - COBOL Project Manager - 0] x|

File Edit Project Wiew Tools Environment Help

Q' O] &R XS] e =] R &[5 2] &

Project Compozitian | E dit Hesnurcel

(=] MAIN.EXE

EI{:I Cobal Source Files
; MAIN,COR
MANAGER, COB
SALA_MAN,COB
BOMU_MAN, COB
MamN_SET.COR
MalN_STOR . COR
MEMBER ,COE
SALA_MEM.COE
BOMU_MEM, COB
MEM_SET.COB
MEM_STOR .COB
ALLMEM, COB
ALLMEM_M, COB
ADDRESS.COR
ADDR_M.COB
SET.COE

=

CHMETCOBOLY SAMPLES, COBOLSAMPLEZDSAMPLEZ0. PRI L

- 153 -

2. Project file "SAMPLE20.PRJ" is opened.
"Build" is selected from the "Project" menu.
Setup the Execution Environment Information
The initialization file for execution is updated with the Run-time Environment Setup Tool. The content is shown below.
1. The Run-time Environment Setup Tool is started.
2. The initialization file for execution is opened. (COBOL85.CBR)
3. A common tab is selected.
4. The ODBC information file name is specified for @ODBC_Inf. (SAMPLE20.INF)
5. The key definition file name is specified for @CBR_SCR_KEYDEFFILE. (SAMPLE20.KBD)

25, Run-time Environment Setup Tool)]

File Enwvironment Help

— File Mame
C:AMetCOBOL \zamples aabalhS ample2 04Cobal35. cbr

— Thread Mode
{+ Single Thread £ Multi Thread

— Enviranment % ariables

Section; Cammaon I Section I

I j @CER_SCR_KEYDEFFILE=SAMPLEZ20.KE
@E00BC_Inf=C:ACOBOLASAMPLESNCOBOD

Wariable M arme:

[=
W anable W alue:

| o M -

6. Click "Apply" button, and the content is saved in the execution initialization file.

7. Click "Exit" button in file menu, and the Run-time Environment Setup Tool ends.

Executing the Program
To execute the program, "Execute" is selected from the project menu.
Execution Procedure
Please refer to "Sample 18 Object Persistence" for execution procedures.
However, please note the following points.
- When the name and the address are input, National characters cannot be used.
Please use upper and lower case letters or numeric characters.

- An error report is generated when an error occurs when accessing the database (such as connecting or getting a record).

- 154 -

A.22 Sample 21: Multi-Thread Programming

Sample 21 demonstrates how COBOL can support multithreading programming.

In sample 21, a resource (file data) is shared between threads, and the synchronous control between threads is shown by using the multi-
thread programming functions of NetCOBOL.

Please refer to Chapter 22, "Multithread Programs” of the “NetCOBOL User's Guide” for details of the multi-thread programming functions
of NetCOBOL.

Sample 21 is a Web application. Web applications typically can benefit from multithreading applications.

Please refer to the "NetCOBOL Web Guide" and the "NetCOBOL ISAPI Subroutines User's Guide™ for details of the functions available
for programming the Web.

To execute this sample, the following products are needed on the client side and the server side.

Client side
- World Wide Web browser
- Microsoft(R) Internet Explorer 4.0 or more
- Netscape Navigator(TM) 4.0 or more
Server side
- One of the following products:
- Microsoft® Windows® 2000 Server operating system
- Microsoft® Windows® 2000 Advanced Server operating system
- Microsoft® Windows Server® 2003 Standard Edition
- Microsoft® Windows Server® 2003 Enterprise Edition
- Microsoft® Windows Server® 2008 Standard Edition
- Microsoft® Windows Server® 2008 Enterprise Edition

- Microsoft® Internet Information Server 5.0 or later

Overview
The sample program consists of the following three parts.

- Initialization processing
The resource (file data) between threads is acquired, and is initialized.

- Authorization processing
The authorization process is achieved by accessing the resource (file data) between threads.

- Termination processing
The resource (file data) between threads is closed.

This sample demonstrates how to share resource data with Web functions, and how to synchronize the threads.

Available Programs
- Project files

- ISAPIAPL.PRJ

- MTHAPL.CBI

-155-

- Option files
- ISAPIAPL.CBI
- MTHAPL.CBI
- COBOL source files
- AUTH.COB
- ISAINIT.COB
- ISATERM.COB
- MTHEND.COB
- MTHSTR.COB
- MTHUSRINF.COB
- SHUTDOWN.COB
- STARTUP.COB
- STUPINIT.COB

Library text
- User-Info.CBL
- User-Lock.CBL

Module definition files

- AUTH.DEF

- SHUTDOWN.DEF

- STARTUP.DEF
- Data files

- USERINFO
- Run-time Initialization file

- COBOLS85.CBR

HTML files

- ADMIN.HTML

- AUTHHTML

- AUTHFAIL.HTML

- AUTHSUCESS.HTML
- NOTOPENED.HTML

- OPENED.HTML

- SHUTDOWN.HTML

- STARTUP.HTML

- SYSERROR.HTML

- SYSTEMERROR.HTML

- 156 -

Process Flow

1. Business start and end

Startup Windowr
S tartup hival)

A drmirastration
Windawr
(& drean hteal)

Shut-down
Windowr
(5 hatdowm bl)

2. Authorization service

Anthonzaton

Anthorzation
Windowr
(& TTTH bt

Authorization
Fail Window
(&TTTHF &1L ht

Applicable COBOL Functions
- Index file (reference)

External data

External file

Data lock subroutine

COBOL ISAPI subroutine

Applicable COBOL Statements

The CALL, CLOSE, EXIT, GO TO, IF, MOVE, OPEN, PERFORM, READ, and SET statements are used.

Building the Program

Project manager's Build function is used to create the executable program.

Startup process
[Startup.cob)

A Start Anthonzation

process (MWlthetr cob)

shut-down process | g Stop Authonzation
(5 hatdowncob) process (Tulthend.cob)
Euthorization Getting User
process {Auafh.cob) Inforama ion
(MTHUSFINE.COR)

- 157 -

Usex

(User Information)

In the following screen snapshots, the sample program was installed to C:\NetCOBOL. Your installation folder may be different.

1. The project manager is started.

2. The project file "MTHAPL.PRJ" is opened.

sF MTHAPL.PR] - COBOL Project Manager

File Edit Project Wiew Tools Environment CM Help

=|=[® Dlz| b|E[@] XS] Feoeee =] |2 (8 2] 2|

Project Compaozitian | E dit Hesnurcel

Z1MTHAPL. PRI

=k MTHSTR.DLL
=1-{_7] Cobal Source Files
=[] MTHSTR.COB
=127 Copy Library Files
8] usER-LOCK. CBL
=-§id MTHEND.DLL
=1-{_1 Cobal Source Files
=1] MTHEND.COB

=27 Copy Library Files

=-fd MTHUSRINF.DLL
EH:I Zobol Source Files
(2] MTHUSRINF COB
=27 Copy Library Files
- [F] USER-LOCK, CBL
] USER-TNFOLCEL

CHMNETCOBOL SAMPLES, COBOLY SAMPLEZ 1\ MTHARL, PRI i

3. The project file is selected, and "Compiler options" is selected from "Project"-"Options" menu.

The "Compiler options” dialog is displayed.

- Compiler Options [_ [CT) | |
Help
Option Eile: ok, |

IE:HN ETCOBOLYSAMPLESACORBOLASAMPLE 214 M THAPL.CEI Cancel

— Compiler Options

ALPHALPAORD) &dd...
SHRE=T

THREAD[MULTN Changs.. COM Server...

Library Mames...

flk

Delete

iF

Other Compiler Optionz:

- 158 -

4. Compiler option THREAD(MULTI), SHREXT and ALPHAL(WORD) are specified.
After confirming the information, click the OK button.
You are now returned to the Project Manager window.

5. "Build" is selected from Project Manager's "Project" menu.

(Prior to executing the application, please confirm that all the DLL’s in the application have been built correctly.)

6. The project file "ISAPIAPL.PRJ" is opened

s ISAPIAPL.PR] - COBOL Project Manager M=l E
File Edit Project View Tools Environment M Help

=|=[@| Dlz| &|E[E| XS] e ~] 82| 28] 2] 2|

Project Compositian | Edit Besource |

=
=i STARTUP.DLL
=] Cobol Source Files
[STARTUR,COB

- [E] STUPINIT,COB
- L] ISATERM.COB
=L Module-Definition Files
- |d] sTARTUP.DEF
EH:l Library Files

- HH MTHSTR.LIE

L4 |\ \FSBISAPLLIE
=-fig SHUTDOWR, DLL
-] Cobol Source Files
-] Module-Definition Files
D Library Files
[#-Egd AUTH.DLL —
=20 other

- SYSERROR,HTML
5 AUTH,HTML
- ALTHFAIL HTML
- AUTHSUCCESS. HTML =]

CHMETCOBOLYSAMPLESVWCOBOLY SAMPLEZ 1\ ISAPTIAPL. PRI S

APTAPL.PR]

7. The compiler option dialog is displayed as in step 3 above, showing that the compiler options THREAD(MULTI), SHREXT, and
ALPHAL(WORD) are specified.

Modify the folder name of the library file specified in the compiler option LIB.
Click the OK button.

-159 -

You are now returned to the Project Manager window.

- Compiler Options [_ O] =] |

Help
Option File: g I
IE:'xN ETCOBOLASAMPLESYCOBOLASAMPLE 215 SARIAPL.CEI Cancel |
— Compiler Options
Libramy Mamesz. .. |

ALPHALMORD) Add...

LIB["C:\MetCOBOL\S amplestcobolhS ample2?' —

SHREXT - COM Server... |

Change. ..

THREAD(MULTI)

Delete

i

Other Compiler Options:
|

8. "Build" is selected from Project Manager's "Project" menu.

Executing the Program

Itisassumed that the domain-name and virtual directory name are registered in 11S (Internet Information Services) as "user" and "sample21"
respectively.

This example presumes that Microsoft Internet Explorer is being used.
1. The authentication service begins.

The following information is set in URL.

Address | http://user/sample21/admin.html

The administrator menu screen is displayed. Click on the “Set Starting Business” hyperlink.

<} Administrator Menu - Microsoft Internet Explorer

J File Edt “ew Go Favontes Help |

J@,@,o@‘@®@

Hachk Fanyarnd Stop Fiefresh Haorme Search Fawortez Histary Channels

Fr

J.-’-'-.ddress @ hittp: ffusernd zampled] A admin. kil j J Links=

=

Administrator Menu

s et starting busmess
s et ending business

S B

|@ | I_ I_ I_ @ Internet zone

When clicked, the authentication service begins. Please do so before starting the authentication service.

- 160 -

2. The authentication service is started.

The following information is set in the URL and the "Execute™ key is pushed.

Address | http://user/sample21/Auth_html

The authentication service screen is displayed. After the screen is displayed, input a User ID and password, then click the "OK"
button.

Valid User ID’ s are USER0001 to USER0030. The password is the same as the User ID.

2] Member Authentication - Microsoft Internet Explorer

J File Edit “ew Go Favortes Help |

SO AR (o) ‘ Q) & @
Hach FEanwarnd Stop R efregh Haome Search Favortez Hiztory Channeles | Fu
J.-'l'-.ddress @ hittp: £ fuzer Azample2 1 Aduth. bkl j J Linksz

=
Member Authentication

Pleaze input wvour ID and password.

TTzer I |

Password: I

ﬂl Clear |
|@—| I_I_I_@ Internet zone

B

-161 -

When the OK button is clicked, the authentication success screen is displayed.

+J Authentication Succeeded - Microzoft Internet Explorer

J File Edit “ew Ga Favortes Help |

j«ﬂ:,cb,eﬁ‘@@@

Hach fmnand Stop Refrezh Harme Search Favontez History Channels

Fr
J.-’-‘-.ddress @ http: £ fuzer fzamplez1 SduthSuccess. himl j J Links=

=

Authentication Succeeded

Y our authentication succeeded.

Eeturn to Member Authentication

|@ | |_ l_ I_ @ Intermet zone

If the User ID and/or password are invalid, an authentication failure screen is displayed.

+J Authentication Failed - Microsoft Internet Explorer

J File Edit “ew Go Favortes Help |

L, 2, 0 (o) ‘ Q) & ©
Hach Fmnwand Stop R efresh Haome Search Favortes History Channels | Fu
| Address [@] http:/ user /sample2] ZAuthF ail || | Links

=
Authentication Failed

Tour authentication falled. Please check wvour ID and password.

Feturn to MWember Authentication

|l

|@ | I_ I_ I_ @ Internet zone

-162 -

3. The authentication service is ended.

Input following information in the URL and press the "Execute™ key.

Address |

http://user/sample21/admin._html

Because the administrator menu screen is displayed, "Set ending business" is clicked.

3 Administrator Menu - Microsoft Internet Explorer

J File Edit “iew Go Favortes Help

j L, 2. 0 (o) ‘ Q) @ 8
Hach Eonyand Stop Refregh Horme Search Favortes Higtory Channels | Fu
J.-'i‘-.du:lress @ http: A fuserdzampled] Aadmin. kil j J Links

s et starting business

s et ending busimess

2]

Administrator Menu

=

| I_ l_ l_ @ Internet zane

[~
/

A.23 Sample 22: Multi-Thread Programming (Advanced usage)

In sample 22, the program in sample 21 is enhanced to demonstrate an online store.

The sample uses multi-thread programming functions as well as functions for programming the Web.

Please refer to "NetCOBOL Web Guide" and "NetCOBOL ISAPI Subroutines User's Guide" for details of the Web functions.

Please refer to Chapter 22 "Multithread Programs™ of the "NetCOBOL User's Guide" for details of the multithreading programming

functions.

This example also outputs an event log using the function “COB_REPORT_EVENT”.

This function is described in Appendix H of the “NetCOBOL User's Guide”.

To use this sample, the following products are needed on the client side and the server side.

Client side

- Microsoft® Internet Explorer 4.0 or more

- Netscape NavigatorTM 4.0 or more

Server side

- One of the following products:

- Microsoft® Windows® 2000 Server operating system

- Microsoft® Windows Server® 2003 Standard Edition

Microsoft® Windows® 2000 Advanced Server operating system

Microsoft® Windows Server® 2003 Enterprise Edition

- 163 -

- Microsoft® Windows Server® 2008 Standard Edition
- Microsoft® Windows Server® 2008 Enterprise Edition

- Microsoft® Internet Information Server 5.0 or later

Overview
The sample program consists of the following five parts.
- Begin processing
The resource (file data) between threads is acquired and initialized.
- Authorization processing
The authorization processing is achieved by referring to the resource (file data) between threads.
- Order confirmation processing
The order confirmation processing is performed by referring to the resource (file data) between threads.
- Order issue processing
The order issue processing is performed by referring to the resource (file data) between threads. Shared file update processing is done.
- Termination

The resource (file data) between threads is closed.

Available Programs

- Project files
- ISAPIAPL.PRJ
- OLSAPL.PRJ

- Option files
- ISAPIAPL.CBI
- OLSAPL.CBI

- COBOL source files
- AUTH.COB
- CONFIRM.COB
- ENTRY.COB
- ISAINIT.COB
- ISATERM.COB
- OLSEND.COB
- OLSPRDGT.COB
- OLSSTCGT.COB
- OLSSTCODR.COB
- OLSSTR.COB
- OLSUSRINF.COB
- SHUTDOWN.COB
- STARTUP.COB
- STUPINIT.COB

- 164 -

- Library text

Order-Info.CBL
Product-Info.CBL
Stock-Info.CBL
User-Info.CBL
User-Lock.CBL
User-Log.CBL

- Module definition files

AUTH.DEF
CONFIRM.DEF
ENTRY.DEF
SHUTDOWN.DEF
STARTUP.DEF

- Data files

PRODUCTINFO
STOCKINFO
USERINFO

- Run-time Initialization file

COBOLS85.CBR

- HTML files

ADMIN.HTML
AUTH.HTML
AUTHFAIL.HTML
CATALOG.HTML

CONFIRMDETAILPARTS.HTML

CONFIRMHEAD.HTML
CONFIRMTAIL.HTML
ILLIGALACCESS.HTML
ILLIGALSYSTEM.HTML
NOTOPENED.HTML
OPENED.HTML
ORDERDETAILPARTS.HTML
ORDERRESULTHEAD.HTML
ORDERRESULTTAIL.HTML
SHOPPINGMENU.HTML
SHORTAGESTOCK.HTML
SHUTDOWN.HTML
STARTUP.HTML

- 165 -

- STARTMENU.HTML

- SYSERROR.HTML

- SYSTEMERROR.HTML

- UNDERCONSTRUCTION.HTML
- GIF files

- CATALOGTITLE.GIF

- FJLOGO.GIF

- TITLE.GIF

- LifeBookE.GIF
- JPEG files

- LifeBookB.JPG

- LifeBookC.JPG

- LifeBookL.JPG

Process Flow

1. Business start and end

Shut-down
Windowr
(S hutdowm hiral)

Startup Window
(Startup hival)
5 tartup process o Ofart Online store
l (3 tartup.cob) (Dlsstr.cob)
Adrarastration \ T
Window
{ & clvean htral) j l
Shut-down process | Stop Online store
< T (S hutdown coh) (Dlsend.cob)

T

- 166 -

2. Online store

B

l,_,_ﬂ_'__-_._‘\
- Get customes —
Authonty process 44— ferration A Customer
(4o thoob) (Clsusrnfech) (Useninf)
J \'q'_—_—d'#}
r‘"_’_—_‘_-""\
Make order Ask products —
comfimmation sheet [M— stock o il
(Coafirmech) (Clsstegtedch) (S tockinfo)
\x‘—————#—-l
\ Lisk prodacts -
data Products
/ (Qlsprogt.cob) (Produchnt)
Entry process . Update stock,
(Extry.cch) and rezister
crder T
(Clss toodr.cch) —
—P Oxder
Display Oxder e
wformaton
window (+2) D
\-‘_‘——_.——'_F-/
——¥ e
#] is made by Comfinvhead Wl Cordfivind etailparts bl and Cordimndadl kbl N,

#2 15 made by Ordenesult hiwl, orderdetalparts bl and corfirmmesulttail hml.

Applicable COBOL Functions
- Index file (creation, reference, update, and rewrite)
- External data
- External file
- Data lock subroutine
- External file event log (output of user definition information)

- COBOL ISAPI subroutine

Applicable COBOL Statements

The CALL, CLOSE, EXIT, GO TO, IF, MOVE, OPEN, PERFORM, READ REWRITE, SET, START, and WRITE statements are used.

Building the Program

The Project Manager's Build function is used to create the executable program.

- 167 -

In the following screens, the user has installed the COBOL system in C:\NetCOBOL.

Your install location may be different.
1. The Project Manager is started.

2. The project file "OLSAPL.PRJ" is opened.

:_,-F' OLSAPL.PR] - COBOL Project Manager

File Edit Project Wiew Tools Environment O Help

||\ D7 & |58 XS] [feese x| 5| 2|55

Project Composzition | E dit HESDurcel

B S
=-Ee3 OLSSTR.DLL
EH:I Zobol Source Files
E-[H] OLSSTR.COB
=27 Copy Library Files
- [H] USER-LOCK. CBL
[2] USER-LOG, CBL
=-fd OLSUSRINF.DLL
EH:I Zobol Source Files
(2] OLSUSRINF.COB
=7 Copy Library Files
[USER-LOG, CBL
b USER-LOCK. CEL
o[] USER-TNFOLCEL
- f5d OLSSTCGET.OLL
K OLSPRDGT.OLL
E
E

F|- g OLSSTCODR.DLL
H|- i OLSEMD.DLL

CHMETCOBOLYSAMPLESVWCOBOLY SAMPLEZZVOLSAPL . PR)

3. The project file is selected, and "Compiler options” is selected from the "Project"-"Options" menu.

The "Compiler options” dialog is displayed.

—# Compiler Options M= BT |
Help
Optian Eile: oK. |

IE:'\N ETCOBOLASAMPLESACOBOLASAMPLE 2250LSAPL.CEI Cancel

— Campiler Ophions

Library Mames...

fl

ALPHAL[WORD) add..
SHREXT
THREAD[MULTI] COM Server...

Change...

Delete

iF

Other Compiler Options:

4. Compiler option THREAD(MULTI), SHREXT and ALPHAL(WORD) are specified.
Click the OK button.

- 168 -

5. "Build" is selected from Project Manager's "Project" menu.
Please confirm each DLL (dynamic link library) registered in the project is created.

6. Next, The project file "ISAPIAPL.PRJ" is opened

;7 ISAPIAPL.PR] - COBOL Project Manager M=l E3
File Edit Project Wiew Tools Environment O Help

||\ D7 & |58 XS] [feese x| 5| 2|55

Project Composzition | E dit HESDurcel

APTAPL, PRI
=-Eo STARTUP.DLL
EH:l Zobol Source Files
- [F] sTaRTUR.COR
[STUPINIT.COB
- [E] ISATERM.COB
=) Module-Definition Files
- L[df] sTARTUR.DEF
EH:I Library Files
-.4# oLssTR.LIB
----- .\ \F3BISAPLLIE
F|- g SHUTDOWH,DLL
fl- i AUTH.DLL
F|-§d COMFIRM.DLL
F|-§d EMTRY.DLL

CHMETCOBOLYSAMPLESVWCOBOLY SAMPLEZZAISAPTAPL. PRI)

7. The compiler option dialog is displayed as in step 3 above. The compiler option THREAD(MULTI), SHREXT, and

ALPHAL(WORD) are specified. Modify the folder name of the library file specified with the compiler option LIB. After
confirmation, the OK button is clicked.

- Compiler Options [_ O] =] |
Help
Option File: 0k |

IE:HN ETCOBOLNSAMPLESACOBOLSSAMPLEZ24 SARPIARPL.CEI

Cancel |
[Compler Qptians Libramy Mamesz. .. |
.-’-'-.LF'III-L-’-j-.L['\-'-.-"EIHD] .
Iélfn[:‘EE;{\IetEEIEEIL"-.Samples'\EElEEthSampleEE 1 —— COM Server.. |
THREAD[MULTI

_IJ}
o
o

Delete

Other Compiler Options:

8. "Build" is selected from Project Manager's ""Project" menu.

Please confirm each DLL (dynamic link library) registered in the project is built.

- 169 -

Executing the Program

It is assumed that the domain-name and virtual directory name are registered in I1S (Internet Information Server) as "user" and "sample22"
respectively.

In this example uses Microsoft® Internet Explorer as the WWW browser.
1. Online store is started.

The following information is set in theURL.

http://user/sample22/admin._html

Then click "Set starting business".

/7§ Administrator Menu - Microsoft Internet Explorer

J File Edit “ew Go Favortes Help |

J@,®,eﬁ‘@®@

Hach Fmniand Stop Refresh Haorne Search Fawortez Higtory Channels

Fu
J,.-:-.,.jdregg @ hittp: # fuzerdzample?2 fadmin. html j J Lirk

=

Administrator Menu

s et startine business
s et ending busmess

[~
|@ | I_ I_ I_ @ Internet zone o

When clicked, the online store is started. Please do the "Set starting business" before starting online shopping.

2. Online store is started.

The following information is set in URL and the "Execute" key is pushed.

http://user/sample22/startmenu._html

-170 -

Because the screen of an online store is displayed, the catalog shopping is clicked.

; Online Catalog Shopping - Microsoft Internet Explorer
J File Edit “ew Go Favortes Help |

J@,@,eﬁ‘ﬁﬁﬁ

Hachk FEanyarnd Stop Refresh Haorme Search Fawontez Histary Channels

Fr
J.-’-'-.ddress @ http: £ duzerd zample22/Starthkd enu. hitml j J Links

¢ Catalos shopping
s LFemster member

~ B

|@ | I_ l_ l_ @ Internet zomne

When Catalog Shopping is clicked, the member authentication screen is displayed.

After the screen is displayed, the User ID and password are input. Click the "OK" button.

-171-

Valid User ID’ s are USER0001 to USER0030. The password is the same as the user ID.

] Member Authentication - Microsoft Internet Explorer

J File Edit Miew Go Favoites Help

Member Authentication

Flease input vour ID and password.
Flease regster the member n no member regstration.

TR S AR 3 B
Hack Fanwand Stop Refresh Haorne Search Fawvortez Higtory Channels | Fu
J.-'l'-.ddress @ http: #fuzerdzample2 2 4uth. bkl j J Links

TTser ID: I

Pazzword: I

ﬂl Clearl

d

€ |

I_ I_ I_ "@ Internet zone

7

When the "OK" button is clicked, the catalog screen is displayed. The catalog screen shows you the various PC’ s and their quantities
available for ordering. To place an order, select one or more products and enter an order quantity, then press the “Order” button.

“J Catalog - Microsoft Internet Explorer
i J File Edt ‘iew Favortes Toolz Help

J & Back + = - () ﬁ| 60 Search (] Favorites €78 History ||%v =N

J Address IE http:£410.124. 401078080/ sample22-2/Catalog htrl

-] @60 | Links >

E& %ﬂ;rﬁwm':r? “ MG A TFT 64ME; BB HD:d DD [Windows98 SE 7] AEE § B
LifeBook La7p || Fentiamll 3661337 4GATFT 64E43GE HDESK 490 [FlatinumAWinNT =] | [2893 [2
Life Book B112 m I:entium 233MHE 847 SuEA TFT.22ME2 2GE HDSEK wan [Windows98 1] =R R
Life Book BE142 Celeron 2000HE.2.47 SWEA TFT,22ME6.4GE HNEEK, A0 madem | Windows38 5E j |1 709 |2
LifeBook E360 | Freak ot mosem Flomr e [WindowsNT =] [eoas m
LifeBook 360 | pare Aot (21 SEATET S2ME 358 HD24 G0~ [WindowsNT =] [5as [o
LifeBook E3B0 | Fonm 40N E 150 i T ol (BB D2 4. O ['windawsNT =] [a99 [o

’m Clear I Return to Shopping Menu | —

=l

|@ ’_l_lﬂ Internet y

-172 -

When the "Order" button is clicked, the order confirmation screen is displayed. The content of the order is confirmed and the "Order

issue" button is clicked.

‘7 Order confirmation - Microsoft Internet Explorer

=J File Edit ‘“iew Favortes Toolz Help

J & Back ~ = - () ol | 0 Search [3 Favorites €3 History ||%v =NE

J-"l"-ddrESS IE 3=FPCO3027 3%price09=1599%num09=04ProductM umber 1 0=F PCO3028 3% price1 0=2899%num1 D=D&DK=Drderj #Go “ Lirks **

Order confirmation

content. The order iz issued.

The content of the order is as follows. Please push the "Order issue” button after confirming the

-

Product Name Model Quantity | amount{$)
Life Book L470 Platinum /Winds [z] 5503
Life Book B112 Windows98 E 4797
LifeBook B142 WindowsD3 SecondEdition | [2 | 3598
Total 7 13553
Order issue | Gancel |
|&] Done L Intemet

-173 -

Ml L

When the "Order issue" button is clicked, the order result screen is displayed.

a Order Rezult - Microzoft Internet Explorer

] J File Edit ‘“iew Favontes Tool: Help |
J = Back - = - a ol | @Sealch (3] Favorites @Histary | %- ==
JAddIESS @ tuantity02=+++++++++34Productumber03=FPCO10031 &F‘roductﬁluantit_l,lEIB=+++++++++2&DK=Drder+issuej P Go H Lirks *
=l
Order Result
Tour order was issued. The content is as follows.
Order number | [ONUM1624066]1 ‘ Order date || 08,/02/2000 ‘
Product Name Model Quantity | Amount(§}
Life Book L470 Platinum /Windg 2 5398
LifeBook B112 Windows93 3 4797
LifeBook B142 Windows93 SecondEdition 2 4598
Total 7 13853
Return to cataloe :I
|@ Dione ’_l_lﬂ Internet y

3. Online shopping is terminated.

The following information is set in URL and the "Execute" key is pressed.

http://user/sample22/admin_html

-174 -

Because the administrator menu screen is displayed, the "Set ending business™ is clicked.

<} Administrator Menu - Microsoft Internet Explorer

J File Edit “ew Go Favortes Help |

J@,@,oﬁ‘@ﬁﬁ

Hachk fanyand Stop Refresh Haorme Search Fawontez Higtary Channels | Fu

J,&,ddregg @ http: A duzerd zample2 2 admin. html j J Liriks

=

Administrator Menu

s Set starting business
s et ending business

[~
|@ | I_ I_ I_ @ Internet zone i

Creating an Event Log

In this exercise, detailed information of errors detected by the program is output to an event log by using the event log output subroutine.
Note that the Event Viewer discussed below is only available on Windows Vista, Windows 2000, Windows Server 2003, Windows Server
2008 and Windows XP.

1. The log of the application is selected by starting the Event Viewer from the Administrative Tools.

HEvent Viewer = =10] %]
| agion pen | & =+ | Bm|FRE 2 -
Trae | P.'p.pll:a:lurtL-ug 151 pwens)
Iﬂ E‘n:'rl 'l.'l:m:rl, ocal [LTvpe | Crzke | Time Source | Categor: | Ewvenk | Lis=r il
bl ﬁam:r af19j2008 JPHETPM NetCOBOL Spalication Téore 1} s
nechthng i"l'u'.-'-:l ring GrL9fa00s HE42T AWM NetCOBOL ons 310 A
] SpstemLog _E,,'-'l'drinq SIL9f2005 FHEHETPM COM+ kM 4104 1T
@]n‘umaﬁr.n B L2005 11395008 .., Mailnstallar ona 11708 5-1-5-21-120
Erformation 5192005 MOO5 & Soecl Taone ITe A
:@‘In‘a matcn Bf19E005 aolst aM WTools Tone Las nia
-..l')]rfnrmlil:n BrLara0ls G261 PM Msilreksl=r o= LIT2E 5-1-5-231-120
:Q'llfumdljl.'n SrLgfands G255 M Msilretzlsr [T L1707 5-1-5-21-120
Gdrfoemation #1&E005 SiEROOPM Milnstalar ong 1?07 5-1-5-21-120
*-‘,J'Ir-‘l:‘rm:lﬁ-.'n &f18i2005 SIEHEIPM Mslinstaler Tone 11707y 5-1-5-21-120
q.‘)ln‘n matcn BILEE00S SENEAEPM Msilrstaler fons 11Ty S5-1-5-21-120
-J:i]rfnrmah:n GrLEra00s G210+ P Msilrstalsr fuones '.]l.'-'I]? 5-1-5-21-120 =
4 *
I

-175-

2. Detailed information is displayed when the source selects the log of "NetCOBOL Application”, and double-clicks it.

]

Event I

[rate:; 2/19/20058 Source: MetCOBOL Application + |

Time: 15:24 Categon: Mone

Type: Error Event ID: 0O + |
Uzer P 4,
Cormputer; Wh-SwIH2E-TEMP

Dezcription:

The open erar accurred. pragram:Start_online_shaop File name

= Cuztomer-info F5 =35

Data: % Bytes € Wiords

=l
] I Cancel | Spply |

A.24 Sample 23: COM Program to Control Excel (Late Binding)

Sample 23 is a program that uses the COBOL COM client function to operate Excel.

The COBOL COM client function creates a COM object that uses functions which the COM server supports in the same way asa COBOL
method.

Excel is an independent application and also functions as a COM server. Therefore, an application that operates Excel can be written with
COBOL.

To run this program, the following products are necessary:
- Microsoft(R) Excel
"Excel" is used here as a generic name for these products.

For details on the COBOL COM function, refer to Chapter 24 in the "NetCOBOL User’s Guide".

Overview
The sample program performs the operations listed below for Excel from a COBOL application.

- Excel activation and termination

Excel sheet open

Work sheet selection and data insertion

Graph creation
- Printing of a selected sheet

The COBOL COM client function supports the early binding and late binding methods to recognize COM server methods and interfaces.

-176 -

Late binding is used in this sample.

When late binding is used, usable COBOL descriptions are limited and execution performance is slower than early binding, but late binding
is freer from the effects of COM server modifications than early binding. When using late binding this program can operate Excel97 and
Excel2000, which are different COM servers.

For details of early binding, see Sample 24, "COM Program to Control Excel (Early Binding)."

Available Programs
- SAMPLE23.PRJ (Project file)
- SAMPLE23.COB (COBOL source file)
- GRAPHDATA.XLS (Excel file for test)

Available COBOL Functions

- COM client function

Applicable COBOL Statements
The DISPLAY, IF, INVOKE, PERFORM, and SET statements are used.

Building/Rebuilding
The Project Manager's Build function is used to compile and link this program.
Folder C:\NetCOBOL is assumed below as the location where NetCOBOL is installed.
Change the folder name C:\NetCOBOL to the name of the folder where NetCOBOL is installed.

1. Start the Project Manager.

;" SAMPLEZ3.PR] - COBOL Project Manager Hi=] E
File Edit Project View Tools Environment O Help

| " Dlz| &5 x5 b = SR 28 8| @
Project Composzition | E dit Bezource |

B F | NETCOBOLYSAMPLES) COBOL)SAMPLEZ
=] SAMPLEZ3.EXE
=7 Cobal Source Files

------ [sAMPLE23.COB

CHMNETCOBOLY SAMPLES, COBOLSAMPLEZ S SAMPLEZS. PRI S

2. Open the project file SAMPLE23.PRJ.
3. Select "Build" on the "Project" menu.

After the build terminates, check that SAMPLE23.EXE is created.

-177 -

Executing the Program
1. Select "Execute" on the "Project"” menu.

Excel is started. The following message is also displayed on the COBOL console and the system waits for input.

: Conzole : SAMPLE23 M= E3 ‘

Please input the file name of Excel for test (full path}) ﬂ
=

~|

2. Use the full path-name to specify an Excel file for the test.
The specified Excel file is opened and the sample program controls Excel.

The following message is displayed on the COBOL console and the system waits for input again.

i Console : SAMPLE23 M= E3

Please input the file name of Excel for test (full path) “
=» CI\HETCOBOL\SAMPLES\COBOLYSAMPLE23\GRAPHDATA.XLS

Please select a type of graph.

: bar graph {vertical)

bar graph (horizontal)

line graph

circle graph

ladar graph

{[JY I - I & B

-178 -

3. Input the type of graph to be created.

The specified graph is plotted. The following message is displayed on the COBOL console and the system waits for input again.

Flease input the file name of Excel for test {full path) -
=» C:\HETCOBOL\SAMPLESACOBOLA\SAMPLE23AGRAPHDATA.XLS

Please select a type of graph.

1: bar graph (vertical)

2: bar graph {(horizontal)

3: line graph

4: circle graph

5: ladar graph

=> 3

If you want to print a graph, input a name of printer.
=> FUJITSU XL-6688

=

4. If the graph is to be printed, specify a printer name. If it is not to be printed, press the ENTER key without inputting data.

Excel is terminated and the program is terminated. The graph is printed before terminating Excel when a printer name is specified.

A.25 Sample 24. COM Program to Control Excel (Early Binding)

Sample 24 is a program that uses the COBOL COM client early binding function to operate Excel.

The COBOL COM client function creates a COM object to use functions which the COM server supports in the same way as the COBOL
method.

Excel is an independent application and also functions as a COM server. So, an application that operates Excel can be written with COBOL.
To execute this program, the following products are necessary:

- Microsoft(R) Excel
"Excel" is used here as a generic name for these products.

For details on the COBOL COM function, refer to Chapter 24 in the "NetCOBOL User’s Guide".

Overview
The sample program performs the operations listed below for Excel from a COBOL application.
- Excel activation and termination
- Excel sheet open

Work sheet selection and data insertion

- Graph creation

Printing of selected sheet

The COBOL COM client function supports the early binding and late binding methods to recognize COM server methods and interfaces.

Early binding is used in this sample.

-179 -

When early binding is used, object property and in-line method invocation can be written. Also, the performance is better than that of late
binding. However, the early binding method requires a type library during development and is liable to be influenced by COM server
modifications. This program uses the COM server name EXCEL to use the Excel functions. An Excel type library must be specified for
this COM server name before compiling the program. Excel97 cannot be operated with an executable file built by referencing an Excel2000
type library. Also, Excel2000 cannot be used with an executable file built by referencing an Excel97 type library.

For details of late binding, see Sample 23, "COM Program to Control Excel (Late Binding)."

Available Programs
- SAMPLE24.PRJ (Project file)
- SAMPLE24.COB (COBOL source file)
- GRAPHDATA XLS (Excel file for test)

Applicable COBOL Functions
- COM client function

- Project management function

Applicable COBOL Statements
The DISPLAY, IF, INVOKE, PERFORM, and SET statements are used.

Building and Rebuilding
The Project Manager's Build function is used to compile and link this program.
Folder C:\NetCOBOL is assumed below as the location where NetCOBOL is installed.
Change the folder name C:\NetCOBOL to the name of the folder where NetCOBOL is installed.
1. Start the Project Manager.

:_,-F' SAMPLEZ24.PR] - COBOL Project Manager

File Edit Project Wiew Tools Environment O Help

Q' O] o] X oo =1 Bl L[5 B @
Praject Composzition | E dit HES.:,,_”,:EI
BREC\NETC LISAMPLES L1SAMPL MPLE=4.PR.]
-] SAMPLEZ4,EXE
=] Cobol Source Files

...... [sAMPLE24.COB

CHMNETCOBOL SAMPLES, COBOLSAMPLEZ\SAMPLEZ4 . PRI i

2. Open the project file SAMPLE24.PRJ.

3. Select a project file and select "Compiler Options" from the "Project-Option" menu.

The "Compiler Options" dialog is displayed.

-180 -

4. Click the "COM Server Name" button in the "Compiler Options" dialog.

COM Server Ed |

— COM Server 0k,

ELEL = L wProaran Fies iorosott Lo W Add..

Cancel

Change...
Help

i
4

Delete

<] | i

The "COM Server Setting" dialog is displayed.

5. Set data as shown below, assuming that type library Excel is installed in the "C:\Program Files\Microsoft Office" with COM server
name EXCEL.

EXCEL = C:\Program Files\Microsoft Office\Office\Excel8.0lb

If type library Excel2000 is used (file name: Excel9.0lb) or Excel is installed in another folder, click the Change button to change
the type library setting.

6. Select "Build" from the "Project” menu.

After build termination, check that SAMPLE24.EXE is created.

Ln Note

When you use Excel2002 or later, following modification is necessary.
- Program

Modify "sample24.cob" as following.

001040 INVOKE OBJ-CELL "'SET-VALUE"

001050 USING PDATA(CELL-COL)

001060* If you use EXCEL2002 or later, replace the above statement with
001061* this statement:

001070* INVOKE OBJ-CELL "'SET-VALUE"

001080* USING OMITTED PDATA(CELL-COL)

- Comment out line 1040 and 1050.

- Validate the comment line 1070 and 1080.

001040* INVOKE OBJ-CELL '"SET-VALUE"

001050* USING PDATA(CELL-COL)

001060* If you use EXCEL2002 or later, replace the above statement with
001061* this statement:

001070 INVOKE OBJ-CELL '"SET-VALUE"
001080 USING OMITTED PDATA(CELL-COL)
- Type library

The type library of Excel2002 or later is Excel.exe. Set COM server name as shown below, assuming that Excel2002 is installed
in the "C:\Program Files\Microsoft Office".

EXCEL = C:\Program Files\Microsoft Office\Office\Excel._exe

-181-

Executing the Program
1. Select "Execute" on the "Project"” menu.

Excel is started. The following message is displayed on the COBOL console and the system waits for input.

: Conzole : SAMPLE24 M= E3 ‘

Please input the file name of Excel for test (full path}) ﬂ
=

~|

2. Use the full path-name to specify an Excel file for the test.

The specified Excel file is opened and the program controls Excel. The following message is displayed on the COBOL console and
the system waits for input again.

i Console : SAMPLE24 M=l B

Flease input the file name of Excel for test {full path) -
=> C:\HETCOBOL\SAMPLESACOBOLANSAMPLE24NGRAPHDATA.XLS

Please select the type of graph.

1: bar graph (vertical)

2: bar graph {(horizontal)

3: line graph

4: circle graph

5: radar graph
=3 I

-182 -

3. Input the type of a graph to be created.

The specified graph is plotted. The following message is displayed on the COBOL console and the system waits for input again.

Flease input the file name of Excel for test {full path) -
=> C:\HETCOBOL\SAMPLESACOBOLANSAMPLE24NGRAPHDATA.XLS
Please select the type of graph.

1: bar graph (vertical)

2: bar graph {(horizontal)

3: line graph

4: circle graph

5: radar graph

=> 3

If you want to print a graph, input a name of printer
=> FUJITSU XL-6688

=

4. If the graph is to be printed, specify a printer name. If it is not to be printed, press the ENTER key without inputting data.

Excel is terminated and the program is terminated. The graph is printed before terminating Excel when a printer name is specified.

A.26 Sample 25: Creating a COBOL COM Server Program

Sample 25 shows an example where the COBOL COM server function is used to enable a COBOL program to be used as a COM server.

The COBOL class definition can be shifted to the COM server without change, by using the COBOL COM server function. The selected
class is published as the COM server interface simply by setting the necessary information with the Project Manager's COM sever creation
function and executing rebuild.

For details on the COBOL COM function, refer to Chapter 24 in the "NetCOBOL User’s Guide".
This program accesses a database via an ODBC driver, so the following products are necessary to use this program:

- Database

Products necessary for database access with ODBC
- ODBC driver
- ODBC driver manager

For details of database access using an ODBC driver, refer to Chapter 19 in the "NetCOBOL User’s Guide".

Overview

The sample program consists of two class definitions.

-183 -

~ONLINE_STORE———

Database
—> | DB_ACCESS :: Transaction management
< SQL data operation

The COBOL ONLINE_STORE class is the COM server class. The ONLINE_STORE class provides the following functions for
constructing an online store application:

- Authorization processing

Stock check

- Order registration
- Order exact calculation

In addition to COBOL programs, programs generated with Visual C++(R), programs generated with Visual Basic(R), and active server
pages (ASP) Visual Basic(R) Scripting Edition (VBScript) can be used as client programs to use these functions. See Sample 26 and
Sample 27 for examples of the COBOL client and ASP client.

Available Programs
DB_ACCESS.COB (COBOL source file)

ONLINE_STORE.COB (COBOL source file)

STORESV1.PRJ (project file)

STORESV1.CBI (compiler option file)

STORESV1_DLL.CSI (COM server information file)

STORESV1.DEF (module definition file)

Applicable COBOL Functions
- COM server function
- Remote database access

- *COM-ARRAY class

Applicable COBOL Statements
The IF, INVOKE, INITIALIZE, SET, MOVE, and PERFORM statements are used.
The embedded SQL statements (COMMIT, CONNECT, INSERT, SELECT, UPDATE, ROLLBACK, and DISCONNECT) are used.

Operation necessary before executing the program
Construct an environment where a database can be accessed via the ODBC driver.
Set a default server to be connected and create the four tables shown below in a database on the server.
- CUSTOMER table

Use the format shown below to create this table.

-184 -

USERID PASSWORD
Variable-length character Variable-length character
32 bytes 32 bytes

Store the data items shown below in the client table.

USERID PASSWORD

USER0001 USER0001
USER0002 USER0002
USERO0003 USERO0003
USER0004 USER0004
USER0005 USER0005
USER0006 USER0006
USERO0007 USERO0007
USER0008 USERO0008
USER0009 USER0009
USER0010 USER0010
- STOCK table

Use the format shown below to create this table.

PRODUCTNUMBER

QUANTITY

Fixed-length character

10 bytes

Fixed-length character

10 digits

Store the data items shown below in the stock table.

PRODUCTNUMBER QUANTITY
FMV2TXH111 900000
FMV2TXH161 100000
FMV2TXH151 500000
FMV2TXF111 45000
FMV2TXF161 300000
FMV2TXF151 60000
FMV2DXH111 90000
FMV2DXH161 55000
FMV2DXH151 990000
FMV2DXF111 10000
FMV2DXF161 777700
FMV2DXF151 200000
FMV2DXD111 690000
FMV2DXD161 870000
FMV2DXD151 619000

-185-

PRODUCTNUMBER QUANTITY
FMV2DXA111 2900000
FMV2DXA161 8760000
FMV2DXA151 100000
FMV3NA3LCO 10000
FMV3NA3LC6 300

- ORDERTABLE

Use the format shown below to create this table.

ORDERNUMBER

USERID

DATE

Fixed-length character

12 bytes

Variable-length character

32 bytes

Fixed-length character

14 bytes

No data need be stored in the ORDERTABLE table.

- ORDERDETAIL table

Use the format shown below to create this table.

ORDERNUMBER

PRODUCTNUMBER

QUANTITY

Fixed-length character

12 bytes

Fixed-length character

10 bytes

Decimal integer

10 digits

No data need be stored in the ORDERDETAIL table.

- - Use the ODBC information file setting tool (SQLODBCS.EXE) to create an ODBC information file (assumed to be C:

\DBMSACS.INF).

Building and Rebuilding

The Project Manager's Build function is used to compile and link this program.

Folder C:\NetCOBOL is assumed below as the location where NetCOBOL is installed.

Change the folder name C:\NetCOBOL to the name of the folder where NetCOBOL is installed.

1. Start the Project Manager.

- 186 -

2. Open the project file SAMPLE25.PRJ.

-| TSTORESY1.PR] - COBOL Project Manager
File Edit Project View Tools Environment O Help

(=8| D[7| #=l@] XS] boe =1 €% 28] 2] 2

F'n:uiect Composzition | Edit Besource |

*o STORESWYL.DLL
EH:l Cobol Source Files
=[] OMLINE_STORE.COB
: El l:l Target Repository Files
------ E OMLIME_STORE.REP
El l:l Dependent Repository Files
------ i#] DB_ACCESS REP
B . DE_ACCESS, COB
=- l:l Target Repository Files
------ if] DB_ACCESS REP

CHMETCOBOLY SAMPLES COBCOL SAMPLEZS\STORESYL PR i

3. Check the set COM server information.

Select a target file (STORESV1.DLL) and select "View" from the "Project-Option-COM server" menu.

p TSTORESY1.PR] - COBOL Project Manager

File Edit | Project “iew Tools Environment CM Help

ﬁrl E |1 Cpkion [ain » Bl @l
Project Co Edit, .. v Euild For Debugging
—_— [Display... ——
|’__‘| CHMNET: i Campiler Opkians. ..
= Biuild F7 Linker Cptions. ..
' Rebuild Shift+F7 e :
: COM Server Wi,
B Compile Chrl+F7 e i J
Set Yersion Information. ..
Debug... I
Femote Debug, .,
Execute ES
B Execute with Atguments
ek Run-Time Environment. ..
References Remote Development r y

- 187 -

The "View" dialog is opened and the server information can be referenced.

Yiew |
Server Class Selection | Server Information I Server Clazz Information I Clazs ID I
COBOL Clazs: Server Clazs:
DB_ACCESS fddss | OMLIME_STORE
z[lelete |
Kk, Help

4. Select "Build" from the "Project" menu.

After build termination, check that STORESV1.DLL is created.

Setup the Server Program Execution Environment
1. Select "Run-time Environment Setup Tool" from the "Tools" menu of Project Manager.
The run-time environment setup tool is displayed.

2. Select "Open" on the "File" menu and create an object initialization file (COBOLB85.CBR) in the folder that contains the dynamic
link library (STORESV1.DLL).

-188 -

3. Select a common tab and set data as shown below:

- Specify an ODBC information file name in environment variable information

@ODBC_Inf (ODBC information file specification).

4, Run-time Environment Setup Tool M=l B3 |

File Environment Help

— File Mame
C:AMetCOBOLYS ampleshoobolyS ample2BhCOBOLE5.CER

— Thread Mode
&+ Single Thread £ Multi Thread

— Enviranment W ariables

Sectian: Camrman | S ection |

| | [@0DBC_Inf=C\Dbmsacs.inf

Yariable Mame;

! [

Y ariable Yalue:

| J | i

Set [Delete | Spply |

4. Click the Apply button.
The data is saved in the object initialization file.

5. Select File, Exit to terminate the run-time environment setup tool.

Registering the COM Server

The created COBOL application must be registered in the Windows system to use it as a COM server. There are two registration methods
depending on how the COM server is used.

- When the COM server and COM client are used on the same machine

Use REGSVR32.EXE to register the COBOL application in the system registry.

For details, refer to Section the "Registering or Deleting a COM Server" in the "NetCOBOL User’ s Guide".
- When the COM server is used from a COM client in a remote network-connected machine.

Use Microsoft Transaction Server (MTS). Use MTS explorer to register the COBOL application in the system registry and MTS. For
details, refer to Section the "Registration in the MTS Environment" in the "NetCOBOL User’ s Guide".

A.27 Sample 26: Using the COM Linkage-COBOL Server Program
(COBOL Client)

Sample 26 demonstrates a client program that uses the COBOL server program in Sample 25 with the COBOL COM client function.

For details on the COBOL COM function, refer to Chapter 24 in the "NetCOBOL User’s Guide".

-189 -

Overview

The sample program uses the COBOL server program generated in Sample 25 to create the online store application. The client program
accepts data input on the screen by using the screen operation function and requests the server program to process the accepted data. The
result of the server program processing is displayed on the screen.

—Machine A
Screen 'COBOL client
- ~ CLMAIN.COB
b _, | com
— sener
'\\"'\-\. .-"/ N
| |
—
{_

Available Programs
- CLMAIN.COB (COBOL source program)
- ORDERSHEET-INFO.CBL (COBOL library file)
- PRODUCT-TABLE.CBL (COBOL library file)
- SCREENS.CBL (COBOL library file)
- SAMPLE26.PRJ (Project file)
- SAMPLE26.CBI (compiler option file)

Applicable COBOL Functions
- Screen function
- COM client function

- *COM-ARRAY class

Applicable COBOL Statements
The ACCEPT (screen function), DISPLAY (screen function), EVALUATE, INVOKE, IF, PERFORM, and SET statements are used.

Operations Necessary Before Executing the Program

When a COM sever in a remote network-connected machine is used, install the server information in the machine where this program is
to be executed as follows:

1. Generate a client information installation program in the machine where the COM server is registered. For details on generation of
the data, refer to the section "Installation in the Client Machine™ in the "NetCOBOL User’ s Guide".

2. Execute the client information installation program on the machine where this program is to be executed. If this program is to be
executed on the same machine as the COM server, this operation is unnecessary.

Building and Rebuilding

The Project Manager's build function is used to compile and link this program.

-190 -

In the following screen snapshots, it is assumed that NetCOBOL was installed in folder C:\NetCOBOL. Change the folder name C:
\NetCOBOL to the name of the folder where NetCOBOL is installed on your machine.

1. Start the Project Manager.
2. Open the project file SAMPLE26.PRJ.

ST SAMPLE26.PR] - COBOL Project Manager M=l B

File Edit Project Wiew Tools Environment CM Help

= s N RS s I e A

Project Compaozitian | E dit Hesnurcel

-] SAMPLEZ6, EXE
EI{:I Cobiol Source Files
= [CLMAIN.COB
=127 Copy Library Files
~.[#] SCREENS.CBL
.| 5] PRODUCT-TABLE.CBL
[ORDERSHEET-INFC,CEL

CHMETCOBOLYSAMPLESYCOBOLY SAMPLEZESAMPLEZE PR)

3. Select the project file and select "Compiler Options" from the "Project-Option" menu.
The "Compiler Options" dialog is displayed.

4. Click the COM Server button in the "Compiler Options™ dialog.
The "COM Server" dialog is displayed.

5. Specify STORESV1.DLL (type library) for COM server name STORESV1. Check the entry, then click the OK button.
The "Compiler Options" dialog is redisplayed. Click the OK button to redisplay the Project Manager window.

6. Select "Build" from the “Project” menu.

After build termination, check that SAMPLE26.EXE is created.

Configuring the Server Program Execution Environment
1. Select "Run-time Environment Setup Tool" from the "Tools" menu of the Project Manager.
The run-time environment setup tool is displayed.

2. Select "Open” on the "File” menu and create an object initialization file (COBOL85.CBR) in the folder that contains the executable
program (SAMPLE26.EXE).

-191-

3. Select the Common tab and enter data as shown below:
- Specify "(80,27)" in the environment variable information @ScrnSize (logical screen size in screen operation).

E% Run-time Environment Setup Tool M= B3 |

File Emvironment Help

— File Mame
C:AMetCOBOLYS ampleshcobolyS ample26SCOBOLE5.CER

— Thread kMode
{* Single Thread £ Multi Thread

— Environment Y ariables

Section; Commmon | Section I

| =] e

Yariable Marme:

! =~

Wariable Y alue:

| J] o
Set | Lielete | Spply I

- If the COBOL client program is executed on the same machine as the server program, also set the server program execution
environment information by specifying the ODBC information file name in environment variable information @ODBC_Inf
(ODBC information file specification).

4. Click the Apply button.
The data is saved in the object initialization file.

5. Select "Exit" on the “File" menu to terminate the run-time environment setup tool.

-192 -

Executing
1. Select "Execute" on the "Project" menu

The screen shown below is displayed. Input the user 1D and password and press the ENTER key (use the CURSOR or TAB key to
move among the input fields). Valid user IDs are USER0001 to USER0010 and the password is the same as the user ID. Note that
the entered password is not displayed.

Please input the password as your ID.

UserlID
Password

Please push the ENTER key after input UserID/Password.

< | 2y

2. The menu screen is displayed. Input "1" and press the ENTER key.

+ Screen : CLMAIN

Please select processing.

1. Catalog Shopping
2. Exit

---> 0

Please push the ENTER key

-193 -

3. The catalog screen is displayed. Input the number of items to be ordered. Use the CURSOR or TAB key to move among the input
fields. After entering the data, press the ENTER key.

A — O] %
Please input the amount. |
Product Name 0s Price Amount
FMU-B450TX2 WindowsNT 428000
FMU-B450TX2 Windows98 408000
FMU-E450TX2 Windows95 402000
FMU-E400TX2 WindowsNT 368000
FMU-E400TX2 Windows98 348000
FMU-E400TX2 Windows95 348000
FMU-E450DX2 WindowsNT 398000
FMU-8450DX2 Windows98 378000
FMU-8450DX2 Windows95 378000
FMU-E400DX2 WindowsNT 338000
FMU-E400DX2 Windows98 318000
FMU-E400DX2 Windows95 318000
FMU-E350DX2 WindowsNT 278000
FMU-E350DX2 Windows98 258000
FMU-E350DX2 Windows95 258000
FMU-B366DX2c WindowsNT 238000
FMU-8366DX2c Windows98 218000
FMU-8366DX2c Windows95 218000
FMU-636B6NA3/L WindowsNT 642000 -
KN AW

-194 -

4. The order check screen is displayed. Input "Y" and press the ENTER key.

\ Screen ! CLMAIN
Please confirm the orders.

Product Name Amount
FHU-6450TX2 WindowsNT 3
FHU-B6450TX2 Windows95 2
FHU-6400TX2 Windows95 1
FMU-6366NA3/L WindowsNT 4

Is it good?(V/N)=> Y

-195-

5. The order list screen is displayed. The (2) menu screen is redisplayed when the ENTER key is pressed.

' Screen | CLMAIN
The following orders were accepte .

Order number: ONUM12173959 2000/05/16 12:1°7
FMU-G450TX2 WindowsNT 428000 3 1284000
FMU-6450TX2 Windows395 4o8000 2 816000
FMU-BHOOTX2 Windows95 348000 1 348000
FMU-636B6NA3/L WindowsNT 643000 4 2592000

Total 10
Payment $5,040,000

6. To terminate the processing, input "2" on the menu screen and press the ENTER key.

A.28 Sample 27: Using the COM Linkage-COBOL Server Program
(ASP Client)

Sample 27 shows an example where a COM server created using the COBOL COM server function is used by calling it from active server
pages (ASP) Visual Basic(R) Scripting Edition (VBScript).

For details on ASP and VBScript, refer to commercially available handbooks.
- To use this program, the following products are necessary:
- - Microsoft(R) Windows(R) 2000 Server operating system
- - Microsoft(R) Windows(R) 2000 Advanced Server operating system
- - Microsoft(R) Windows Server(R) 2003 Standard Edition

- Microsoft(R) Windows Server(R) 2003 Enterprise Edition
- - Microsoft(R) Windows Server(R) 2008 Standard Edition

- Microsoft(R) Windows Server(R) 2008 Enterprise Edition

- Microsoft(R) Internet Information Server 5.0 or later

Overview
ASP is one of the methods of constructing dynamic Web applications by embedding script language in the HTML document.

A COM server object can be created in ASP VVBScript by using a server object in which the CreateObject method is installed. The method
provided by the COM server can be called from the created object.

-196 -

Use this function to create online store Web applications using the COBOL server program in Sample 25.

Available Programs
- MENU.ASP (ASP page file)
- AUTH.ASP (ASP page file)
- CATALOG.ASP (ASP page file)
- CONFIRM.ASP (ASP page file)
- ORDER.ASP (ASP page file)
- STYLE.CSS (style sheet file)
- CATALOGTITLE.GIF (image file)
- FILOGO.GIF (image file)

Operations Necessary Before Execution

The COM server program created in Sample 25 is used in this sample. Build the COM server program, register it as the COM server, and
configure the execution environment information.

Next, register Sample 27 with the Internet Service Manager as follows:

-197 -

1. Activate the Internet Service Manager, select "specified Web site", and select "Virtual Directory" from the "New Creation" field
on the "Context" menu.

. S . .
+E Internet Information Services

| acton vew ||« » [Bm|XEFRDE (2 [2]r = 0|

Tree | Narme | Path | stanis «
W Internet Information Services L@Scripts hi\netpubtscripts
5. @ % 14040129 @IISHeIp. b hwinnthelptjishelp .) .
e &3 Default FTP Site & sadmin HWINNT S ystem 32Ynetsryisadmin
e —— S 11ssamples b netpubtjissamples
"'Q DetaLlt ekl = Tr'e bprogram flestcommaon fles\system\msadc
=48 Admirist Explore | bin H:\Program Fles\Common Fles\Wicrosoft Sh...
- Default 5 Open arver H:\Program Files\Phone Book Service\Bin
Browse Data H:\Program Fles\Fhone Book Service\Data
ters H:WWINNT wvebhprinters
Start Ssion O hsamplesinsassion
=top mpll Disamplesysasmpl1
PaLise test H:\Program FlesiFuiits COBOLAVCOBOL \zam...
camila Mt ammlach ™ ORs ammlach amp|e2?
= Site
Al Tasks WirtLal Dire
Wieny } Server Extensions Web
Server Extensions Administrator
Crelete SCIpE
Refresh et
Export List... gf i
_ art.asp
Properties lstart.asp
c.gif
Help Jerror.gif

@ . ostinfo.html hl
4| | B 4|D b

Create new virtual directory |

-198 -

2. Input a virtual directory name, and then specify the physical path of Sample 27 with the ASP page file.

Virtual Directory Creation Wizard

Yirtual Directory Alias

“'ou must give the wirtual directary a short name, or alias, for quick reference. @J

Type the alias wou want to use to gain access to this Web vidual directory. Use the same
naming conmwventions that wou would for naming & directony.

Aligs:
sample?

< Back et »

Cancel

Execution

Domain name "user" and virtual directory name "sample27" are assumed.

Microsoft Internet Explorer is used as the WWW browser.

-199 -

1. Input the URL as shown below.

The menu screen is displayed. Select "Catalog Shopping™ and click the OK button.

3 MEMU - Microsoft Internet Explorer

j File Edit ‘iew Favorites Tools Help |

| Back ¥ = ¥ (D) 7 | Qisearch [Favorites E8Hstory | [~ & [F]

JAddress I@ hitp: /4040128 Jp.nm. fujitsu. co. jp/sample2 7 fmenu. asp j GO HLinks *
. Al
You are Sthcustomer since 1999/12/24
@ Catalog shopping
 Member registration

OK CANCEL

[
@] Done \ | |8 Local intranet Z

2. The member authorization screen is displayed. Input a user ID and password and click the OK button. Valid user ID’ s are USER0001
to USER0010. The passwords are identical to the user ID.

Note that the entered password is not displayed.

3 Member Authentication - Microsoft Internet Explorer

J File Edit “iew Favorites Tools Help ‘

| <sBack ¥ =~ @ [1) 12y | Qisearch (G Favorites E&Hstory | [y & 5

JAddress I@ it s /4040 129, Ip. nim. fuditsu.co, jofsample 2 7 /AuUth, asp ﬂ PGo HLiﬂkS 2

[

Member Authentication

Please input your userid and password.

UszerlD: |

Password: |

OK | CANCEL |

El
@] Done ’_l_ =% Local intranet 7

- 200 -

3. The catalog screen is displayed. Input the number of items to be ordered and click the Order button.

a CATALOG - Microsoft Internet Explorer

j File Edit Wiew Favorites Tools Help |

| Back v = ~ D 7 | Qisearch (FFavortes €&Hstory | [y~ &]

JAddress I@ http: /4040 129, Ip.nm. fujitsu.co.p/sample2 7 /Catalog.asp j G HLinks 2
Please input amount. B
| Product Name Specification Model | Price ‘ Amount

Dentigm-II WindowsNT Model 428000 o
FMV-6430TX2 450NMHz,64MB,4.3GB,Viper Windows98 Model 408000“0
V330,100BASE-TX Windows95 Model 408000“0
Pentium-I WindowsNT Model 368000 [0
FMV-6400TX2 400MHz,64MB,4.3GB,Viper Windows98 Model |348000 |3
V330,100BASE-TX Windows93 Model 348000“0
Pentium-II WindowsNT Model|398000 |2
FMV-6450DX2 |[450MHz,32MB,4.3GB,RAGE PRO Windows98 Model 378000“0
TURBO,SOUND,100BASE-TX fare 4ows95 Model 378000“0
Pentium-I WindowsNT Model (338000 [0
FMV-6400DX2 [400MHz,32MB,4.3GB, RAGE PRO [Windows98 Model (318000 |1
TURBO,SOUND.100BASE-TX i dows95 Model 318000“0
Pentium-II WindowsNT Model|278000 |5
FMV-6350DX2 (350MHz32MB,4.3GB,RAGE PRO Windows98 Model 258000“0
TURBO,SOUND.100BASE-TX i dows95 Model zssooo\la
Celeron WindowsNT Model|238000 \|0
FMV-6366DX2c|366MHz,32MB,4.3GB,RAGE PRO (Windows98 Model 218000“0
TURBO,SOUND,100BASE-TX fare 4ows95 Model 218000“0
Order | Clear | Menu |
hd
|€| Dore l_l_ (2% Local intranet 7

-201-

4. The order check screen is displayed. Click the Order Issue button.

#3 ORDER - Microsoft Internet Explorer

J File Edit ‘iew Favorites Tools Help
| Back ¥ =~ D 7 | EQisearch (FFavorites E&Hstory | [y~ Ed
JAddress I@ http: /4040129 lp.nm. fujitsu.co.jpfsample2 7/ Confirm.asp j GO |JLinks ?
Please confirm the order, and click the [ORDER] buiton if it is good. . [
Please click browser's [Return] when inputting again.
| Product Name | Specification Model | Price |Amount|AmountOfMoney Note
Pentium-II WindowsNT Model|428000|0 0 ----
FMV-64530TX2 |450MHz,64MB.4.3GB, Viper [Windowsz98 Model 4080000 0 -—--
V550,100BASE-TX Windows95 Model 4080000 0
Pentium-II WindowsNT Model|368000(0 0 ===
FMV-6400TX2 |[400MHz,64MB,4.3GB,Viper [Windows98 Model [3480003 1044000 Stocked
V550,100BASE-TX Windows95 Model 3480000 0
Pentium-II WindowsNT Model 3980002 796000 Stocked
450MHz,32MB,4.3GB,RAGE
FMV-6450DX2 PRO Windows98 Model 3780000 0 -—-
TURBO,SOUND,100BASE- :
TX Windows935 Model 3780000 0 ----
Pentium-II WindowsNT Model 3380000 0
400MHz,32MB,4.3GB, RAGE
FMV-6400DX2 PRO Windows98 Model |318000|1 318000 Stocked
TURBO,SOUND,100BASE- -
TX Windows95 Model 3180000 0 -
Pentium-1I WindowsNT Model 2780005 1390000 Stocked
350MHz,32MB,4.3GB,RAGE
FMV-6350DX2 PRO Windows98 Model 2580000 0 -—--
TURBO,SOUND,100BASE- :
TX Windows95 Model [258000|0 0 -
Celeron WindowsNT Model 2380000 0
366MHz,32MB,4.3GB,RAGE
FMV-6366DX2¢ PRO Windows98 Model [218000|0 0 -—-
TURBO,SOUND,100BASE- :
TX Windows935 Model 2180000 0 ---- (I
ORDER | MENU | -
|7 Mirna ,_ ,_ml aeal intranat -

-202 -

5. The order reception screen is displayed. The (2) menu screen is redisplayed when the Menu button is clicked.

A GiveAnOrder - Microsoft Internet Explorer

J File Edit “iew Favorites Tools Help |

| GBack v = -) 4} | Qisearch (FFavorites E#Hstory | [B

JAddress I@ http: /4040129 p.nm.fujitsu.co.jp/sample2 7 #0rder .asp j @GO |J Links

=

Order getting screen

The following orders were accepted. Thank you.

UserID USER0001 OrderNumber ONUM14560735

ProductNumber | Amount
FMV2ZTXF161 3
FMV2ZDXHI111 2
FMVZDXF161 1
FMVZDXD111 5

MENU |

[Caution]
If browser's [refresh] button is clicked, it will be double registration.
[~
|€| Done l_l_ (52 Local intranet o

A.29

Sample 28: Transaction Management with COM Linkage-MTS

Sample 28 demonstrates COBOL COM server program transaction management using the Microsoft(R) Transaction Server (MTS).

See Chapter 24 in the "NetCOBOL User’ s Guide" for details on COBOL application transaction management using MTS.

To use

this program, the following products are necessary:

- One of the following products:

Microsoft(R) Windows(R) 2000 Server operating system
Microsoft(R) Windows(R) 2000 Advanced Server operating system
Microsoft(R) Windows Server(R) 2003 Standard Edition
Microsoft(R) Windows Server(R) 2003 Enterprise Edition
Microsoft(R) Windows Server(R) 2008 Standard Edition
Microsoft(R) Windows Server(R) 2008 Enterprise Edition

- Microsoft(R) Transaction Server 2.0 or later

This program accesses a database via the ODBC driver, so the following products are necessary to run this program:

- Database

- Products necessary for database access with ODBC

- ODBC driver

- 203 -

- ODBC driver manager
For database access using an ODBC driver, refer to Chapter 19 in the "NetCOBOL User’ s Guide".

Overview
As in Sample 25, this sample program provides the following functions for constructing an online store application:
- Authorization processing

Stock check

- Order registration

Order calculation
However, this program manages transactions directly from a COBOL program by using the MTS functions.

In Sample 25, the embedded SQL statements COMMIT/ROLLBACK are used and transaction management depends on the database.
This is a simple approach for someone who is familiar with embedded SQL statements but increases the database processing load.

—ONLINE_STORE———,

Database

—> | DB ACCESS Transaction management

R

‘ SQL data operation

This program manages transactions by itself with MTS functions. This reduces the database processing load and enables more detailed
transaction management.

~ONLINE_STORE———,

5 | MTS
—> | DB _ACCESS h ‘ Transaction management
< >
< | Database
SQL data operation

There are two methods of using the MTS function for transaction management from a COBOL application:
- Control of transactions where the object is operating from the COM server object
- Control of transactions where the COM server is operating from the COM client

The first method is shown below.

-204 -

Available Programs

DB_ACCESS.COB (COBOL source file)

ONLINE_STORE.COB (COBOL source file)

STORESV2.PRJ (project file)

STORESV2.CBI (compiler option file)

STORESV2_DLL.CSI (COM server information file)

STORESV2.DEF (module definition file)

Applicable COBOL Functions
- COM server function
- Remote database access
- *COM-ARRAY class

- Object context object

Applicable COBOL Statements
The IF, INVOKE, INITIALIZE, SET, MOVE, and PERFORM statements are used.
The embedded SQL statements (CONNECT, INSERT, SELECT, UPDATE, ROLLBACK, and DISCONNECT) are used.

Operations Necessary Before Execution
- Construct an environment where a database can be accessed via the ODBC driver.

- Set a default server to be connected to and create the five tables listed below in a database on the server. For the formats of the tables
and data to be stored, see Sample 25, "Creating a COBOL COM Server Program .

- CUSTOMER table
- STOCK table
- ORDERTABLE table
- ORDERDETAIL table
- Use the ODBC information file tool (SQLODBCS.EXE) to create an ODBC information file (assumed to be C\ADBMSACS.INF).

Building and Rebuilding
The Project Manager's build function is used to compile and link this program.

In the screen snapshots below, itis assumed that NetCOBOL was installed in folder C:\NetCOBOL. Change the folder name C:\NetCOBOL
to the name of the folder where NetCOBOL is installed on your machine.

1. Start the Project Manager.

- 205 -

2. Open the project file SAMPLE28.PRJ.

;" STORESYZ.PR] - COBOL Project Manager Hi=] E
File Edit Project View Tools Environment O Help

=\ @ D] fEe] XS] e =] Bl L[58 2| @
Project Composzition | E dit Fesaure |
B} CiNETCC
fﬁ STORESYZ.DLL
=7 Cobal Source Files
- [B] OMLINE_STORE.COB
. [Target Repository Files
[OMLINE_STORE.REP
=[] DB_ACCESS.COB
EH:I Target Repository Files
] DB_aACCESS.REP

CHMETCOBOLY SAMPLESVWCOBOLY SAMPLEZB\STORESYZ PRI S

3. Check the COM server information.
Select a target file (STORESV2.DLL) and select "View" from the "Project-Option-COM Server" menu.

;7 STORESYZ.PR] - COBOL Project Manager M=] B
File Edit | Project Wiew Tools Enwvironment CM Help

@|;||1 Main ' & &
Project Co Edit, .. v Euild for Debugging
———— | Display... I
|’__‘| CHMNET: e Compiler Options, .,
-5 Euild F7 Linker Options. ..
=3 Rebuild shift+F7 T
: M Server
B Compile Chi+FT Srver J
Debug. .. Set Mersion Information. . . —
El Remoke Debug, ..
Execute =]
Execube with Srguments
References Set Run-Time Environment. .. o
Remaote Development b

- 206 -

The "View" dialog is opened and the server information can be referenced.

Yiew |
Server Class Selection | Server Information I Server Clazz Infarmation I Clazz D I
COBOL Clazs: Server Clazs:
fddss | DB_ACCESS
OMLIME_STORE
z[lelete |

Kk, I Help

4. Select "Build" from the "Project" menu.

After build termination, check that SAMPLE28.DLL is created.

Registering the COBOL Application in MTS

The COBOL application must be registered in the Windows system to use it as a COM server. Also specify a transaction control method
in the registration.

Use the MTS explorer to register the COBOL application in the system registry and MTS. For details, refer to the section “Registration
in the MTS Environment" in the "NetCOBOL User’s Guide".

- 207 -

Setup the Server Execution Environment
1. Select "Run-time Environment Setup Tool" from the "Tools" menu of Project Manager.

The run-time environment setup tool is displayed.

8, Run-time Environment Setup Tool M= E |

File Environment Help

— File Mame
C:AMetCOBOLYS amplezcobolhS amplez8WCOBOLES. chr

— Thread Mode
% Single Thread £ Multi Thread

— E rvironment % ariables

Section: Comman I Section I

| | [@0DEC_Inf=c\dbmsacs.inf

W ariable M arne:

! =~

W ariable W alue:

| o -

Eet gelete | _, gl:ll:ll-lrl.\,l

2. Select "Open" on the "File" menu and create an object initialization file (COBOLB85.CBR) in the folder that contains the dynamic
link library (SAMPLE28.DLL).

3. Select the Common tab and enter data as shown below:

Specify an ODBC information file name in the environment variable @ODBC_Inf (ODBC information file specification).
4. Click the Apply button.

The data is saved in the object initialization file.

5. Select "Exit" on the "File" menu to exit the tool.

Modifying the Client Program

Samples 26 and 27 can be used as clients of this program by modifying them as shown below.
- Using the COBOL client in Sample 26.

- Modify the cluster specifier of the CLMAIN.COB repository as shown below.

000200 CLASS ONLINE_STORE AS ""*COM:STORESV2:ONLINE_STORE"

- 208 -

- Open the project file SAMPLE26.PRJ, delete COM server name STORESV1, and enter STORESV2.

=101 x|

7 SAMPLE26.PR]J - COBOL P
File Edit Project View Tools Enwvironment CM Help

==\ Dl7| & [E|E X[[Feese >] #|%5| 2|35

Project Composzitian | Edit Besource |

CH\NETCOBOLYSAMPLES|COBOL|SAMPLEZE| SAMPLEZS. PR
=] SAMPLEZ6.EXE

-4 Compiler Options o ==]
Help
O ption Eile: (0] 4 |
IE:&NETEDEDLHS.&MF‘LESHEDEDLHS&MPLEEEKSAMF‘LEEE.EBI Cancel |
Compiler Optiomns
|_ I ibramy Mames... |
X
_ COM Server oK | COM Server... I
| Add... Cancel |
T |
COM Server: QK |
ISTDHESVE
Cancel |

T~ Twpe Librany
Help |
ILHS ampleshcobolhSample2B S TORESWZ.DLL Browse... I

- Rebuild SAMPLE26.EXE.
- Create an installation program for client information on the Sample 28 program and install it in the client.
- Using the ASP client in Sample 27.
Modify the CreateObject argument for COM object creation as shown below.

Catalog.asp

Set OLSService = Server.CreateObject(""'STORESV2.ONLINE_STORE'™)

Confirm.asp

Set OLSService = Server.CreateObject(""'STORESV2.ONLINE_STORE™)

Order.asp

Set obj = Server.CreateObject(*'STORESV2.ONLINE_STORE™")

A.30 Sample 29: Inter-application Communication Function

Sample 29 demonstrates how to use the simplified inter-application communication function to read or write messages to or from logical
destinations. For details on how to use the simplified inter-application communication function for message transfer, refer to the topic
“Using Simplified Inter-application Communication” in Chapter 18 of the “NetCOBOL User’ s Guide.”

- 209 -

Overview
The sample program transfers messages between SAMPLE29 and COMMU.

SAMPLE?29 establishes a connection to server "SERVER1", writes messages to logical destination "MYLD1", and reads messages from
logical destination "MYLD2". If no message comes from logical destination "MYLD2", SAMPLE?29 waits for the message arrival for up
to 60 seconds. After reading messages from the logical destination "MYLD2", SAMPLE29 reads messages from logical destination
"MYLD1" in order of priority.

COMMU establishes a connection to server "SERVERL1", reads messages from logical destination "MYLD1", then writes messages to
logical destinations "MYLD1" and "MYLD2”.

Inter-app|ication
Communicat ion server

ro8MPLEZY 1 reERYERT ———— ~LOMMU |
| | || |
| CALL "COBCI_WRITE™ - —’—> | LD1 |—|—>CﬁLL "COBCI_READ”™ |
| I — |
I CALL "COECI_READ” <——f—|—| LDz | ‘%‘| CALL "COBCI_WRITE™ - I
| I

LD: logical destination

Available Programs

SAMPLE?29.COB (COBOL source program)

COMMU.COB (COBOL source program)

SAMPLE29.PRJ (Project file)

PRM_REC.CBL (library text)

SAMPLE29.INI (logical destination definition file)

Applicable COBOL Functions

Using Simplified Inter-application Communication

Applicable COBOL Statements
The CALL, DISPLAY, IF, and MOVE statements are used.

Prerequisites to Execution
To make the Sample 29 programs ready for execution, execute the following utility:
- COBCISRV
After you run this, you can build and execute Sample 29.

You may refer to Chapter 18, “Communication Functions” in the “NetCOBOL User’s Guide” for more general information on the
following topics:

- Activating the server for simplified inter-application communication.
- Creating logical destinations "LD1" and "LD2" on the server for simplified interapplication communication.

- Changing the information on the opponent machine name of the logical destination definition file (SAMPLE29.INI) by using the
logical destination definition file creation utility (COBCIU32.EXE). Specify the host name of the server as the opponent machine
name and click on the Set button.

-210-

Building the Program

The project file for Sample 29 is SAMPLE29.PRJ in the SAMPLE29 directory. Select “Open Project” from the “File” menu to load it
into the COBOL Project Manager window.

Fully opened, this simple project includes two separate executable files that share the same copy libraries, as shown in the following figure.

;7 SAMPLEZ29.PR] - COBOL Project Manager =] B

File Edit Project Wiew Tools Enowironment CM o Help

S| | D[z| & [E[2[X[S] bbo -] 25| 2 &
Project Composition | Edit Bezource |
) IEC)
=] SAMPLEZS.EXE
. =] Cobol Source Files
=-[B SAMPLE23.COB
E|C| Copy Library Files

: ~[] PrM_REC.CBL
=] COMMULEXE
Ell:l Cobol Source Files
- CoMMU.CoB
=7 Copy Library Files

------ PRM_REC.CEL
CH\NETCOBOLYSAMPLES| COBOLYSAMPLEZS| SAMPLEZS, PR

Build the project by selecting Build from the Project menu.

The MAIN and TEST compiler options have been specified.

-211-

Setup the Server Program Execution Environment
1. Select "Run-time Environment Setup Tool" from the "Tools" menu of Project Manager.

The run-time environment setup tool is displayed.

8, Run-time Environment Setup Tool M= E |

File Environment Help

— File Mame
C:AMetCOBOLYS amplezhcobolhS ample234COBOLES. CER

— Thread Mode
% Single Thread £ Multi Thread

— E rvironment % ariables

Section: Comman I Section I

I j @CBR_CIIMF=5 ample29.ini

W ariable M arne:

[[
W ariable W alue:

| o -
Set | Delete | Apply I

2. Select "Open" on the "File" menu and create an object initialization file (COBOLS85.CBR) in the folder that contains the executable
file (SAMPLE29.EXE).

3. Select the Common tab and enter data as shown below:

- The path name of the logical destination definition file of the @CBR_CIINF environment variable has been pre-assigned to
SAMPLE29.INLI. This is the default setting for both the SAMPLE29 and COMMU executable files.

4. Click the Apply button.
The data is saved in the run-time initialization file.

5. Select "Exit" on the “File" menu to terminate the run-time environment setup tool.

Debugging the Program

To run these programs under the control of the Debugger, select Debug from the Tools menu. The Start Debugging dialog box appears.
Press the ENTER key.

When the source is read into the COBOL Debugger, it will look like the following figure.

-212 -

[£e COMMU - COBOL Debugger =]
File Edit Wiew 3Search Continue Debug Option Window Help

=] | o] 8 2l 2EEEE TR BEREEE 2

E coMmu.Ccos

1:008018 IDENTIFICATION DIVISION.
2:0800028 PROGRAM-ID. COMHU.
3:80803 8=

L:008048 DATA DIVISION.

5:0808058 WORKING-STORAGE SECTIOHN.

6:008060 COPY "PRM_REC.CBL".

7 :000807 8=

8:008088 61 HSG-AREA.

9:0008098 82 COMM-AREA OCCURS 1 TO 32008 DEPEHDING OM HMSG-LEH-W.
10:080180 a3 PIC 8{1).

11:886118 81 MSG-LEN-W PIC 2(5).

12:080128 81 TRANSHMIT-HMSGH PIC K(38) VALUE "MESSAGE SEHMT FROW COMHU™.
13:080130 981 TRANSHIT-MSG2 PIC K(25) VALUE "MESSAGE SENMT : PRIODRITY=3".
14000140

15:880150 PROCEDURE DIVISION.
16:880160+* COMMECT TO THE SERVER.

17 : 8868170 HOVE ""SERVER1" TO SERVER-HAME.

18 :806180 CALL "COBCI_OPEN" WITH C LIMKAGE

19:88681908 USIHG BY REFEREMCE STATUS-ARER

20:8080200 BY REFEREHMCE SERUER-HAME

21:8862108 BY REFEREMCE SERUER-ID

22:-880220 BY UALUE COMHM-RESERVED.

23:-8802308 IF PROGRAM-STATUS = 8 THEH

24880240 DISPLAY “"CONHECTION T0O THE SERUER SUCCEEDED.™

25 -8Aa0254a DISPLAY " SERUER-HAME = " SERUER-HAME

26:-880260 ELSE

27:-880270 DISPLAY “CONHECTION TO0 THE SERVUER FAILED.™

28:-8808288 DISPLAY " SERUER-HAME = " SERUER-HAME

29:-888298 DISPLAY " ERR-CODE = " ERR-CODE OF STATUS-AREA

JA:88832688 DISPLAY " DETAIL-CODE = " DETAIL-CODE OF STATUS-AREA

31:-888318 GO TO EXIT-FPROC r
[« 2w

Executing the Program

To execute this sample, you must start both executable filess—SAMPLE29.EXE and COMMU.EXE. You can do this by double-clicking
the mouse on the executable files in the COBOL Project Manager window.

-213 -

Execution Result

: Console - SAMPLEZ29 M= B

COHNHECTION TO THE SERVER SUCCEEDED.
SERVER-HAHE : SERVER1
A MESSAGE HAS BEEH WRITTEH.
LOGICAL-DESTINATION T HYLD
A MESSAGE HAS BEEHM WRITTEH.
DESTIHATION T HYLD
*#x EXECUTE COMHU.EXE *=xx=
A MESSAGE HAS BEEH RECEIVED.
DESTIMATION : MYLD2
MESSAGE RECEIVED : MESSAGE SEHT FROM COHMHU
A MESSAGE HAS BEEH RECEIVED.
DESTINATIOHN T MYLD1
MESSAGE RECEIVED : MESSAGE SENT : PRIORITY=3
A MESSAGE HAS BEEH RECEIVED.
DESTIHATION T HYLD
MESSAGE RECEIVED : MESSAGE SENT : PRIORITY=S
DISCONMECTION FROM THE SERUER SUCCEEDED.
SERVER-HAHE : SERVER1

-

Check the messages displayed on the console to ensure the following:
In the SAMPLE29 console window:
1. Messages from COMMU have been read from logical destination "MYLD2".

2. Messages have been read from logical destination "MYLD1" in order of priority.

! Console : COMMU [_ [}

CONMECTION TO THE SERVER SUCCEEDED.
SERVER-HAME : SERUVER1
A HMESSAGE HAS BEEHW RECEIVED.
DESTIHATION : MYLDA
MESSAGE RECEIVED : HMESSAGE SENT FROM SAMPLE29
A HMESSAGE HAS BEEH WRITTEH.
DESTIHATIOH : MYLD1
A MESSAGE HAS BEEHW WRITTEH.
DESTINATIOHN : MYLD2
DISCONMECTION FROW THE SERVER SUCCEEDED.
SERVER-HAME : SERUVERA1

-

In the COMMU console window:

1. Messages from SAMPLE?29 have been read from logical destination "MYLDZ1".

-214-

2. Messages have been written to logical destination "MYLD1" and logical destination "MYLD2".

A.31 Sample 30: Using UNICODE

Sample 30 is not available in the English version of NetCOBOL.

A.32 Sample 31: Windows System Function Call

Sample 31 demonstrates how to invoke a Windows system function - for this example, a call to create a message box.

Overview

Sample 31 calls the Windows system function "MessageBoxA" to display a message in a message box with YES, NO and Cancel buttons.
(Note that an "A" needs to be appended to the function call when the function call contains a character string parameter and you are working
in ASCII, as opposed to Unicode data, when the suffix is "W".)

The call uses the STDCALL calling convention.

The message box returns a value indicating which button was pressed. This value is returned in the data item specified in the RETURNING
phrase.

It is possible to refer to this return value in a batch file. In a batch file, you can access this return value by the name ERRORLEVEL.
SAMPLE31.BAT demonstrates this as follows.

B Sample?l.bat - Hotepad =] B3

File Edit Search Help

:START =]

echo %msg%

set msg=Selected the “Cancel®, Restart again.

start /fw HMsqBox.exe

@rem If return code is over 9999 then call the COBOL program
again.

if errorlevel 9999 goto START

@rem If return code is over 2 then selected the "Ho".

if errorlevel 9 goto HG

echo Selected the "Yes'. Ll

Files Included in Sample 31
MSGBOX.COB (COBOL source program)

SAMPLE31.PRJ (Project file)

SAMPLE31.CBI (Compiler option file)

SAMPLE31.BAT (Batch file for start)

COBOL Statements Used
- Method of calling C program from COBOL program
STDCALL call convention

Parameter transfer BY VALUE

RETURNING phrase of CALL statement

Special register PROGRAM-STATUS (RETURN-CODE)

- Project Manager

-215-

Qn Note

1. Most Windows system functions (and C routines in general) require that strings be terminated with a null byte (X"00" or LOW-
VALUE). The sample shows how you can place these bytes using reference modification.

2. The Windows system function names are case sensitive. So be sure to get the case correct as in *MessageBoxA". You need to specify
the compiler option "NOALPHAL" or "ALPHAL(WORD)" to ensure the COBOL system uses mixed case for the function name.

Building the Program
Project manager's build function is used to make the executable program.

1. Start the Project Manager.

2. Open project file SAMPLE31.PRJ.

J7 SAMPLE31.PR] - COBOL Project Manager M=l E
File Edit Project View Tools Environment M Help

=|d@| D[z &l XS] oen =1 B2 /5 B @

Project Compositian | Edit Besource |

Y NET (TR
=] MSGEOR, EXE
= Cobol Source Files
B MSGBOX.COB

=] Library Files

CHMETCOBOLY SAMPLES, COBOLSAMPLES 1\ SAMPLESL . PR i

Library file "USER32.LIB" is required to link the program. It is used to ensure the linker can resolve the external reference
"MessageBoxA". If you installed the product to something other than the default folder structure, you should change the folder

name to match the folder structure you are using.

3. Select "Build" from the project menu.

- 216 -

Executing the Program

1. Open a Command Prompt, change directories to the SAMPLE31 folder, and execute SAMPLE31.BAT.

=] E3

2000 Microsoft Corp.
ample bolysample3l

Z 1 MetCOE nple obo ampledl=sampledl, bat

2. The following message boxes are displayed. Click one of the buttons.

From COBOL: TITLE

It is a message box,

wsampledl

zampledl.hat
n code from the M

4. When the [Cancel] button is clicked, the program is executed again.

A.33 Sample 32: Starting Another Program

Sample 32 demonstrates a program that starts another program, waits for the started program to terminate, and receives a completion code
from the started program via inter-program communications.

- 217 -

Overview

When SAMPLE32 is executed, you are prompted for a program to run. If you enter nothing, the program MSGBOX.EXE from the
SAMPLE3L1 folder is executed. If you specify a program name, you must enter the fully qualified path to the location of the application
(or batch file) to execute.

The Windows system function “CreateProcessA” is called specifying this for the argument, and specified program or batch file is started.

If the specified program is successfully started, SAMPLE32 then waits until the specified program terminates and then receives the
completion code from the started program.

Files Included in Sample 32
- SAMPLE32.COB(COBOL source program)
- SAMPLE32.PRJ (Project file)

COBOL Statements Used

Method of calling a C program from COBOL program

STDCALL call convention

- Parameter transfer in BY VALUE

RETURNING phrase of CALL statement
STORED-CHAR-LENGTH function

Project Manager

Before Executing the Application
SAMPLE32 uses MSGBOX.EXE from SAMPLE 31. Therefore, please build the MSGBOX application prior to executing SAMPLE32.
In the following screens, SAMPLEQG is also executed, therefore please build SAMPLEQ6 prior to executing SAMPLE32.

Building and Rebuilding
The Project Manager's build function is used to compile and link this program.
In the screen snapshots below, NetCOBOL was installed in folder C:\NetCOBOL.
Change the folder name C:\NetCOBOL to the name of the folder where NetCOBOL is installed on your machine.
1. Start the Project Manager.
2. Open the project file SAMPLE32.PRJ.

;7 SAMPLE32.PR] - COBOL Project Manager M=l E

File Edit Project View Tools Environment M Help

s|H@| Dl o= XS] P =1 Bl 205 B8] @

Project Compozitian | Edit Resource |

=[] SAMPLE3Z EXE
=7 Cobol Source Files

------ [sAMPLE3Z.COB

CHMNETCOBOLY SAMPLES, COBOLSAMPLEIZ\SAMPLESZ PRI S

-218 -

3. Select "Build" from the "Project” menu.

After build termination, check that SAMPLE32.EXE is created.

Executing the Program
1. Select "Execute” on the "Project" menu.

The following display appears and waits for your input.

: Conzole : SAMPLE 32 [_ []

Input the path name that execution program. -
{If input no character, then execute the SAHPLE31)
=>

=

2. Input the path and filename of an executable program or batch file. The environment variable PATH is not referenced here, therefore
it is necessary to specify a relative path from the SAMPLE32 folder, or a fully qualified path name.

If nothing is entered, then MSGBOX.EXE of SAMPLE31 is executed. Press the ENTER key.

-219-

3. The completion code of MSGBOX.EXE of SAMPLES31 is displayed (indicating what button was pushed). In the following screen,
the “No” button was pressed.

i Console : SAMPLE32 e b |

Input the path name that execution program. =
{If input no character, then execute the SAMPLE31) | |
=

Execute the program ..\SAMPLE31\HSGBOX.EXE

Succeeded in executing program ..\SAHPLE31\HSGBOX.EXE

Return code from ..ASAMPLE31\MSGBOX.EXE is '000800080A89".

=

4. If SAMPLE3?2 is reexecuted and an executable program or batch file name is specified, you are then prompted to enter command
line arguments (if any) for the EXE or BAT file, as shown below.

! Conszole - SAMPLE32 M= E3

Input the path name that execution program. -
(If input no character, then execute the MsgBox.EXE of SAHPLE31)

=> ..AsampleB6ysample @6 .exe

Inpit the command line arguments.

=>

-220 -

5. SAMPLEO6.EXE requires two command line arguments. Please note that the command line arguments are specified following the
program name.

! Conzole : SAMPLE32 [_ [}

Input the path name that execution program. -
(If input no character, then execute the MsgBox.EXE of SAHPLE31)

=> ..AsampleB6ysample @6 .exe

Input the command line arguments.

=» sampleBf 19998731 28001229

=

6. A message indicating that SAMPLEQ6 has been started is displayed. (The system console is opened and the execution result of
SAMPLEDO6 is output.) The completion code of SAMPLEQ6.EXE is displayed and execution ends.

! Conzole : SAMPLE32 [_ [}

Input the path name that execution program. -
(If input no character, then execute the MsgBox.EXE of SAHPLE31)

=> ..AsampleB6ysample @6 .exe

Input the command line arguments.

=» sampleBf 19998731 28001229
Execute the program ..\sample@tysamplefi.exe
Succeeded in executing program ..%\sampleBdisample86.exe
Return code from ..\sampleB@é\sampleBé.exe is ‘00AGAAA0B0" .

-221-

Appendix B Tips

1.

To build a module or application in Project Manager you must have the executable module or project selected in the project tree
view. If any other item is selected in the tree view, the build function is disabled.

To set compiler and linker options in Project Manager you must have the project selected in the project tree view.

Before invoking the Data function in the debugger, if possible, place the cursor on the data item name you want to inspect. This
saves you having to enter the data name in the Data dialog.

The Data file I/O function in the debugger is targeted at Fujitsu-specific data file features, only likely to be found in applications
being ported from other Fujitsu environments (e.g. mainframe and UNIX machines).

To create a class information database you first use the menu bar Tools, Class Database, Options dialog to set up the folders containing
the class repositories. You then select the Tools, Class Database, Creation function to create the database.

To create a project information database you make sure that "Creation Project Database" is checked on the Project, Option sub-
menu, then build the project.

For more information on NetCOBOL check the following sources: Softcopy documentation - All the NetCOBOL manuals are
available in softcopy form (Adobe Acrobat pdf). You can access the documentation from the Start>Programs>NetCOBOL menu.

Help - Most components come with on-line help that explains interface details and command formats.

-222 -

	Title Page
	Preface
	Product names
	Contents
	Chapter 1 A Quick Tour
	1.1 Overview of the Guided Tour
	1.2 A Guided Tour through NetCOBOL
	1.2.1 Using COBOL Project Manager
	1.2.2 Debugging
	1.2.3 Working with OO COBOL
	1.2.4 Invoking COBOL Project Manager from Windows Explorer
	1.2.5 Converting Version 3 Projects
	1.2.6 Other Options

	Chapter 2 Developing GUI Applications
	2.1 A Brief History
	2.2 NetCOBOL
	2.3 Event-driven Programming
	2.4 Using NetCOBOL

	Chapter 3 Working with Visual Basic and COBOL
	3.1 Creating Your First Visual Basic COBOL Application
	3.2 Integrating COBOL Programs with Visual Basic

	Chapter 4 Using SQL with COBOL
	4.1 Introduction
	4.2 Setting up the SQL Execution Environment
	4.3 Setting up SQL Databases and Tables
	4.4 Defining an ODBC Data Source
	4.5 Setting Up the COBOL Runtime Information
	4.6 Potential Execution Errors Caused by Incorrect Setups

	Appendix A Sample Programs
	A.1 Using the Sample Program Projects
	A.2 Sample 1: Data Processing Using Standard Input-Output
	A.3 Sample 2: Using Line Sequential and Indexed Files
	A.4 Sample 3: Screen Input-Output Using the Presentation File Function
	A.5 Sample 4: Screen Input-Output Using the Screen Section
	A.6 Sample 5: Calling COBOL Subprograms
	A.7 Sample 6: Receiving a Command Line Argument
	A.8 Sample 7: Environment Variable Handling
	A.9 Sample 8: Using a Print File
	A.10 Sample 9: Using a Print File (Advanced usage)
	A.11 Sample 10: Using a Print File with FORMAT clause
	A.12 Sample 11: Remote Database Access
	A.13 Sample 12: Remote Database Access (Multiple row processing)
	A.14 Sample 13: Calling COBOL from Visual Basic
	A.15 Sample 14: Visual Basic calling COBOL -Simple ATM Example
	A.16 Sample 15: Basic Object-Oriented Programming
	A.17 Sample 16: Collection Class (Class Library)
	A.18 Sample 17: Object-Oriented Cobol (Aggregation, Singleton, and Iteration)
	A.19 Sample 18: Advanced Object-Oriented Programming
	A.20 Sample 19: Object Persistence (Indexed File)
	A.21 Sample 20: Object Persistence (Database)
	A.22 Sample 21: Multi-Thread Programming
	A.23 Sample 22: Multi-Thread Programming (Advanced usage)
	A.24 Sample 23: COM Program to Control Excel (Late Binding)
	A.25 Sample 24: COM Program to Control Excel (Early Binding)
	A.26 Sample 25: Creating a COBOL COM Server Program
	A.27 Sample 26: Using the COM Linkage-COBOL Server Program (COBOL Client)
	A.28 Sample 27: Using the COM Linkage-COBOL Server Program (ASP Client)
	A.29 Sample 28: Transaction Management with COM Linkage-MTS
	A.30 Sample 29: Inter-application Communication Function
	A.31 Sample 30: Using UNICODE
	A.32 Sample 31: Windows System Function Call
	A.33 Sample 32: Starting Another Program

	Appendix B Tips

