08
FUJITSU

FUJITSU Software
Interstage Application Server

OLTP Server User's Guide

[Windows/Solaris/Linux |

B1WS-1091-03ENZ0(00)
April 2014

Preface

Purpose of this Document
The Interstage Application Server OLTP Server User's Guide provides details of the OLTP Server.
Note

Throughout this manual Interstage Application Server is referred to as Interstage.

Intended Readers
This manual is aimed at developers of distributed applications.
It is assumed that readers of this manual have a basic knowledge of the following:

- Basic knowledge of the OS used

Structure of This Document
The structure of this manual is as follows:
Chapter 1 OLTP Server of Interstage Application Server
This chapter explains the OLTP server.
Chapter 2 Designing the OLTP Server
This chapter explains the design method of an OLTP server.
Chapter 3 Starting / Stopping / Surveillance of WorkUnits
This chapter explains starting, stopping and surveillance of WorkUnits.
Chapter 4 WorkUnit Operation of Each Application
This chapter explains WorkUnit operation for each application.
Chapter 5 Operating the Distributed Transaction Function
This chapter explains operating the distributed transaction function.
Appendix A WorkUnit Definition
This appendix describes the WorkUnit definition.
Appendix B Interstage Operation APl Sample Programs
This appendix contains Interstage operation API sample programs.
Appendix C Notes on OLTP Server Operations
This appendix contains notes on OLTP server operations.
Appendix D WorkUnit Automatic Start Setting File
This appendix explains the WorkUnit automatic start setting file that is created to automatically start the WorkUnit.
Appendix E Procedure for CORBA WorkUnit Operation Using the Interstage Management Console
This appendix explains the procedure for operating CORBA WorkUnits using the Interstage Management Console.
Appendix F CORBA WorkUnit Activation Change
This appendix explains the CORBA WorkUnit activation change function.

Conventions

Representation of Platform-specific Information

In the manuals of this product, there are parts containing content that relates to all products that run on the supported platform. In this case,
an icon indicating the product platform has been added to these parts if the content varies according to the product. For this reason, refer
only to the information that applies to your situation.

Windows3Z Indicates that this product (32-bit) is running on Windows.
[WindowsGd | Indicates that this product (64-bit) is running on Windows.
s T B Indicates that this product (32/64-bit) is running on Windows.
Solaris32 Indicates that this product (32-bit) is running on Solaris.
Indicates that this product (64-bit) is running on Solaris.
Solaris Indicates that this product (32/64-bit) is running on Solaris.
Linux3Z Indicates that this product (32-bit) is running on Linux.

TG | Indicates that this product (64-bit) is running on Linux.
Cinu3Z 64 Indicates that this product (32/64-bit) is running on Linux.

Abbreviations

Read occurrences of the following Components as their corresponding Service.

Service Component

CORBA Service ObjectDirector

Component Transaction Service TransactionDirector

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and
Foreign Trade Control Law of Japan and/or US export control laws.

Trademarks

Trademarks of other companies are used in this documentation only to identify particular products or systems.

Product Trademarks/Registered Trademarks

Microsoft, Active Directory, ActiveX, Excel, Internet Explorer, MS-DOS, MSDN, Visual Basic, Visual C++,
Visual Studio, Windows, Windows NT, Windows Server, Win32 are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Other company and product names in this documentation are trademarks or registered trademarks of their respective owners.

Copyrights

Copyright 2002-2014 FUJITSU LIMITED

April 2014 Third Edition

November 2012 First Edition

Contents

Chapter 1 OLTP Server of Interstage APPlICALION SEIVET........cciiiiiiiii ettt e s e e e e e et e e e e s e snsaeeaeesanaaes 1
1.1 Application t0 BUSINESS CHITICAI SYSTBMS.......ccuiriiiitiieeiieieitete sttt b ettt stk b e stk b e b e e b e s e e b e e b e e ebenb e e e bt et et ebesbe e ebenbeneas 1
1.2 System Integration by Using Existing Applications...............c.c.c..... !
1.3 Client/Server Communication..........ccccevvevererierenerenns w2

1.3.1 Client/Server Communication.................... w2
1.4 Improved Distributed SyStEM MaNAGEMENT.........cviieirieteireteieseete sttt ettt te st te et sbe s et st ebe st et et enessebentseebent st ebeneseebeneneesenees 4
1.5 DiStHDULEA TIANSACLIONS ...ttt sttt b ettt st bbbt e b e b e £ b b a b b h et b bt e b bR e bbbt b bbb bt b et b et es 4
1.6 Functions for Reliable SYStEM OPEIATION.cui ettt b bt r bt r bt e b e n e e r b s 6

1.6.1 BaSIC OPEIAtiON CONEIOL......etiiiitiiteiitteieie ettt ettt b et b b et e bt b e e e b e e bt e b e a e e b e e b e £ eb e e b e b e s e e b e eb e e bt e b et e Rt et e sbeneebe e ne e 6

1.6.2 Performance INfOrmation IMEASUIEIMENT.eueirieuererieieresistes ettt ettt ettt bbbt b bt b et b et b et b bt nb bttt s 7

1.6.3 REAIIME IMONITOTING ...tttk bbbkt e bbbk bbb e bbb bbbt bbbttt bbbt b et 8
1.7 PeITOIMANCE ANAIYSIS. . ..ocviiieitieiieiteiees ettt ekt b bt e b0 ReE R b e ot e R b e e E b e bbb bRt n e bttt b et n bt n et 9

1.7.1 Automatic CeNtralized IMONTTOITNG.eueiuiiteieieeteieete etttk bbbt b e bt b e bbbt b e b et e bt e b e st e bt se e b e e be et eb b et e e ene et e 9

1.7.2 Automatic Operation for Built-in BatCh PrOgramS..........cc.ciiiciiiriciiieici ettt a st 9

Chapter 2 Designing the OLTP Server

2.1 Designing WOrkUNItS.........ccoeoeireieineneeese e

2.1.1 Application Execution Environment USING WOTKURNITS..........coiiiiiiiiiii et s 12
2.1.2 APPIICAtION PrOCESS CONMCUITENCY....ueveriitirieresteseatesteseasestesesteseesesseseasessessssessesessessesessassssessesessessabessassabensesesbessabesseseabenseresaeseerenee 12
2.1.3 AULOMALIC APPIICALION RESTAMT........eiiteiiiitciiee e b bbb e bbb n et e r e e n e 12
2.1.4 Server ApPlICAtioN TIMEE FUNCHION.oiiiiiiteie ettt bbb e bbb btk e b e s e bt se e st e bt st e b et e e b et et e st e n st ebe s 13
2.1.5 CUITENE DITECIONY .. iviuteviite ettt ettt ettt et e st et ete e b et ebe st e s e e b et ess et e sbess et e b ese e b e s et e ebe s ek e et e s e ebenaes s ebeesensebe st ensate b eseabesserearens 15
2.1.6 ENVIFONMENT VATTADIES.viiiiitieiiiee bbbt bbb bbbt bbb bbbt b bbbt en s 17
P A O 0= TU L= o] i o] SO SOSSOPTRRR 19
2.1.8 Inhibiting and PerMItting QUEUES.euiuiiteieterterieteste sttt sttt ettt bbb e e bt s b e e e at et e b ehe et e e ebeebeseebe e b e b eateb e b e Rt e b e nb et e e beneese et e e e st et s 20
2.1.9 Maximum QUEUING FUNCLION.ueieiiiteiitiriet ettt sttt te sttt s e be s e te s b e e e be st e s e ebe s e seebe e ebessessebenses s e besaeseebe b ene et ensetesbessere e 20
2.1.10 Alarm Report FUNCEION fOr StAGNANT QUEUES........c.eriiveiiriireiriet etttk b bbbt b bbb nnens 21
2.1.11 Priority Control..........ccoceveienciensiiesececeeee OSSPSR 22
2.1.12 Queued Message Cancellation Function...... e PRSPPI 22
2.1 L3 BUFTEE CONTIOL......oitiiieeitc ettt bbb bbb bbb bbb bbb 23
2.1.13.1 Buffer Control for CORBA APPIICALIONS.veuiiiiiiiieiieiiesi ettt nnens 23
2.1.13.2 Buffer Control for Transaction APPIHCALIONS.cuiiiiiiiieeesiee ettt bbbt sb et et ebe st ebe b e s nean 24
2.1.13.3 Buffer Control for 1JServer EJB APPIICALIONS........cciviiiiiieiiiiet ittt sttt b et se b s ne b nereenin 24
2.1.14 Degenerated Operation when the Automatic Restart of a WorkUnit Process Fails............cccviirniinienieiiseensee 24
2.1.14.1 Restoration of the WorkUnit in Degenerated OPEratiON...........cooueerieieirererinieeresieesesi e 25
2.1.15 Changing a WorkUnit's NUMDer 0f ProCeSS CONCUITEINCY........ccueuruirieruereeiisiestesesiesiestesessessesaeseesessessessesesseseessesessessessesessessenes 25
2.2 Various TYPES OF WOTKURNIL.......c.oiiiiiiitiieeite ettt sttt bbb e b e s et b e e e be st e b ese et e st e s s e b e et e et e s e eb et et esaebe st essebesbeteseebenen 25
2.2.1 CORBA WOTKURIL. ...tttk s €2 £ bbb bbbttt bbbt b bt 25
2.2. 1.0 USING WOTKURNIES. ...ttt ettt b e a et et h e b et e b e b e £ eE £ b e o2 e R e e b2 e e Rt e b e b es e ebe e e emeebeasentabeabeseebeseeneanennan 26
2.2.1.2 CORBA WorkUnit Operation FUNCHIONS.c..iuiuiiriiteeirieieeeresietenesiseesese st se sttt stese st b ssstesese e sese e sbesenesesseseessesenan 26
2.2.2 Processing With TranSaCtion APPIICALIONS.cviiiieiiiiieiieieie ettt be b s s te st e st e e e te s b et st e s e resae e ere e 27
2.2.2.1 Application Runtime Environments Using WorkUnits...... ettt 29
2.2.2.2 Creating Server Applications that Use APM OOV 30
2.2.2.3 SEIVEr ODJECT REGISITALION. ... c..cuiitieiitiitci ettt ettt s b e e bt e b et et et e st eseebe b ese et e b ete s b et ebe st e se et e st eseabe s enesaensenenren 31
2.2.2.4 Manual Registration O SEIVEr ODJECES.ciiiiiieiriieii bbbttt bbb enenn 31
2.2.2.5 LOCAI TranSACION LINKAJE.eiveueeuietesiesietieteieie st se ettt tesbe st estetesbe e eteeae s emeeteebe e es e ete s eseeEeebeseeseeee b eseabeseeneaseabesereasennan 31
2.2.2.6 GloDal TranSaCION LINKAGE.cceuerteiirteieieiteieiee ettt b bbb ekt b e b e e bt e b et e b e e e b e b et et b et e s b e st ebe b enen 32
2.2.2.7 SesSion INfOrmation MaNAGEIMENL.........ccuiuiieiieiit ettt ettt re et e s et e st et teebe e es s e te s b et esesbe s eseebesbeseebe st essesesbesseseaseneen 37
2.2.2.8 Server Application Process Modes (In the Case of Solaris and LiNUX).........ccoueiirrieineiieeesseeeesse e 38
2.2.2.9 Specification of the Conditions for Restarting a Server Application Process after its Failure...........cc.ccocooveniincicinnnn. 39
2.2.3 LiNKIiNG WIth EXISTING SYSEIMIS. .. .c.tiitiuiirietesirieteesis ettt ettt se st b e e et e st s e b et et st ebene s et ene st et e s e et ebe e st ebeneneetenen 39
B B VLV Vol o T a0 @] o] 1=1o1 OSSOSO 39
2.2.3.2 WIaPPEE DEIINITIONS. ...ttt bbb Rt b et e bt ne bt et n bt 39
2.2.4 Performing Processing Using General APPIHCALIONS.........c.ooiiiiiiiieeie ettt bbbt nee s 40
2.2.4. 1 USING @ WOTKUNIT. ..ottt ettt ettt sttt e b st et et e se et e s e te e b e s ebe et e e ebesa e s s ebe s ensabe b eseebe b ebeebesbebeabe s enesaensanenrin 40

2.2.5 THIMEOUL IMIONMITOTING. ¢+ttt ettt bbbkt b bt b e ek e b e s ek e b e b £ eb e e e b e e b e R e e b b e b e eb e Eeb e e b e e ebenb e b e e b e e ekt e b e e abentebeaben 41

2.2.5.1 CORBA APPICAION TIMEOULS.cviitirietiiereiteieesteeetesie e stestese st esaetestesessesaesesse e esesseseasessesessassasessessabessassasessesessensesesesenean 41
2.2.5.2 Monitoring Transaction ApPlICAtION TIMEOULS..........ccirrieiriieirieieeset et 45
2.2.5.3 Timeout Monitoring of Global Transaction APPIICATIONS..........cciiiiiiiiiee e 46
2.2.5.4 Monitoring Session Information Management FUNCLION TIMEOULS..........c.ccviuiriiiiiiiieniee et 48
2.2.6 Design when Using the Operation Support Function of @ WOrKURNIL...........ccovieiniinie e 48

2.2.6.1 WorkUnit EXit FUNCLION.......c.ccoiiieeieriectec et
2.2.6.2 Process Salvage Exit Function
2.2.6.3 WorkUnit Process Information Notification Function....

2.2.7 VarIOUS EXIT FUNCHIONS.ueitiiitieieieieeste ettt ettt et et e s be e be et e e e st e b e e b e e bt et e n e st e ke b e s e e be et e st ebeabe st eseebensensatentens
2.2.8 Trouble INVeStigation SUPPOIT FUNCEION.ciiiiiieieteiee ettt sttt ettt e b e e e b e s b e e e me st e e e st et e e e b e e beseeneebeeneneerenes
Chapter 3 Starting / Stopping / Surveillance of WOIKURNIES.ooiiiiiiiiieieie ettt e 53
3.1 Starting and StOPPING WOTKURNIES.ooviuiiueieiiteieest ettt et sa et st aese st et ebe b es s e be b eseebe b e s e et e s et e et et ebesbeseebesaesaebessesesbessenennin 53
3.1.1 Starting and Stopping WorkUnits Using the Interstage Integration COMMANG............ccocorerieiriirieneneseiesc e 53
3.1.2 MONIEOTING WOTKURNIES.cteteetiiteee ettt ettt b e bt bbbt e e e e b e e b e e e b £ b e e b e n e bt e b e e e e n e e b e eb et et e s b e neentabeaben 53
3.1.2.1 Operating Status of WorkUnits.... OSSOSO 53
3.1.2.2 Operating Status of Objects of WorkUnits.... et h ettt b bt R e be et et te b et tente e ene et e 54
3.1.2.3 Checking Application Process INFOMMALION. ..ot 56
3.1.3 Starting and Stopping WorkUnits Using the Interstage Management CONSOIE.coociiiirineiiienee e 56
3.1.4 Starting WorkUnits AULOMALICAIIY.........ccviiiiiieiiiicc st sttt st e be st et e s et et e seebe st e s ebe st et eteabens 56
3.2 Performance MONITOTING TOOL.......cuiiiiiiiieist ettt bbbt bbbt bbb bttt b et b bt b et 57
3.2.1 Functions of Performance MONITOIING TOOL........couii ittt ettt b ettt b b e sae e enesbesbeneereaeens 58
3.2.1.1 Function of Outputting Log Information to the Performance Log File...........ccociiiiiiiiiniiiieese e 58
3.2.1.2 Function of Monitoring the Real Time Performance Information by a Network Control Manager (Monitoring by MIB))59
3.2.2 Performance MONIOIING PIrOCEAUIE.ciiiiiteiiirietiitist etttk bbb bbbt bbbt b e ne bbb 60
3.2.3 ReQiStEriNg 10 the SINIMIP SEIVICE.ciuiieiiiteieieite ittt ettt b e bbb e e b e e e bt e b e e ebe e b e b e Rt ek et e bt ebenbeneebesbentebeaben 62
3.2.4 Creating a Performance MONItOring ENVIFONMENT..........coviiiiiiiiiiieiee ettt ve st eebe st e b eseebesbe s eseatesbeseensaresaens 63
3.2.4.1 Starting Operation of Performance Monitoring TOOL..........couiiiiiiiiiii s 63
3.2.5 MONIEOIING OPEIALIONS.veutsevetettertetes sttt ettt bbbk s e bR bt e h b e Rt E bt b et ne bt n ekt nr e
3.2.5.1 Starting Performance Monitoring
3.2.5.2 Starting a Business APPlICAtiON........c.ccoiviiiirieiiiieieseece e
3.2.5.3 Outputting the Performance Log File and Analyzing the Performance Informationccccocoviiiiinenninneiccec e 65
3.2.5.4 StOPPING the APPIICAIION. ... ettt ettt e bt be e et ea e e b e e e b e ebese e Rt ebeebe s e e b e ebe e enesbe s eseebeseeneanenean 66
3.2.5.5 Stopping the PerformManCe IMONITOT.c..iiiueiieee ittt bbbt b et b e bt b e e et e bt et b et e bt ebe b ene 67
3.2.5.6 Deleting the Performance Monitoring ENVIFONMENL............coiiiiiiiiieiiisieise sttt sttt sbe st s reavesnen 67
3.2.5.7 Deletion from the SNIMP SEIVICE.......c.ciiieiriireiiiees et b et b et r bbbt b et nn et n 67
3.2.6 Analyzing the Performance Information and TakKing ACHION.c.ciiiiiiiii e 67
3.2.6.1 Function of Outputting Log Information to the Performance Log File...........ccovoiiiiicieieiicccesese e 67
3.2.6.2 Performance Information Collected by the Network Control Manager with the Real Time Monitoring Function............ 70
3.2.6.3 Warnings Regarding the Evaluation of the Performance INfOrmation.............cccoieiiniiiniinseine e 71
3.2.7 Managing the Performance LOG FIlES.o ittt st b e bbbttt b e be st er et 71
3.2.8 Source Names of the Messages Displayed on the EVENT VIBWET.........cccciviiiiiiiiiiieieiesiei sttt sne 72
3.3 INLErSTAgE OPEIALION AP ..ottt b e bt b b e b bt b bbbt b bbb Rt R bRt e bRt bbb b e n e 72
3.3. 1 FUNCLION OVEIVIBW. ...ttt s 73
3.3.1.1 Interstage Operation API Environment Initialization and Collection......... s 73

3.3.1.2 Interstage Operation INformation NOtIICALION.........c.ccociiiieiiic et beean 73
3.3.1.3 INLErSLAJE OPEIATION. ... e.vveeeirereieesr ettt ettt se st r et e b bt E b st e b s e e s E e bbbt e e R bt e R bt n bt eer b r s 75
3.3.1.4 Interstage System INformation NOTITICALION.ciiiuiiiiii ettt sbe s 75
3.3.2 Compiling and LinKiNg APPIICALIONS.ccuciiiiiitiiciecet ettt ettt st a et e st e e e st s besbe e eassbe s b e s ebeabesaessatesbesaensatesrens 76
3.3 B EXAMPIES OF USE... ettt bbb H bRt b bbbk bbb b e b 76
TR I o] (=L TSP U PSSP PSPPSR 80
3.3.4.1 COMMANG OPEIALIONS. ... cteteutetesteieett ettt st e ettt etesbe st et e sbeseeseebesbeseebeebe e eb e ea e s b e Re e b e b eb e eb e ne e Rt eb e e b e st e b e e b e e ebt et e b eseabeneeseebenean 80
3.3.4.2 Starting and StOPPING WOTKURNITS.......ccviiiiieiiiieestei ettt b et a st te b e se st e s e te s b e e e te st eseebe st eseabe s enesaessaneneen 81
3.3.4.3 Operation iN the CIUSTET SYSTEM.. ..ottt bbb bbbt b et b bbb enn 81
3.3.4.4 Control Table Version-Level for Interstage OPeration APLL...........cociiiieiieese ettt 82
3.3.4.5 Parameter Information used by Interstage OPEration APL.........ccuiviiiiiiieinseet et 82

3.4 ChANGING WOTKURNITS. ...ttt b et b b ekt h bbb £ b £ eh 4 bt Eeh £ e b e b e s £ e bt b e R e e b e ne e b e e bt b e st et e e b e s e e bt st e ne b e nnan
3.4.1 Adding a WorkUnit (Transaction APPIICALIONS).........ciiueiiiiiieieiet ettt e st st e e beste st e e e st tesbeseensetesrens
3.4.2 Adding a WorkUnit (EJB APPHCALIONS).......c.uiiiireiriiieiiiieiieesis ettt sb et ne bbbt
3.4.3 DEITING 8 WOTKUNIL. ...ttt ettt bbbt b a4 etk b e bt e b e £ e b e b e Rt e b e b e b e e b e e eb e e b et eb e s b e b e ebe e ebeebeseabe st ereaben
3.4.4 Changing @ WOTKUNIL.........vciiiiiiieieti ettt ettt s bbb b e s st et e b ess et et e seebe s et e ebe s et e et e e ebesaessebeesensebe st ensebe st eseabesserearens

3.5 Changing SErVEr APPIICALIONS.c.t ettt b s bbbkt b bbb b e bt e bt b bbbt e ettt
3.5.1 Adding a Server Application (Transaction Application)....
3.5.2 Adding a Server Application (EJB Application)
3.5.3 Deleting Server AppliCations..........cccvviveiviiniisesce e
3.5.4 Changing a Server Application (Transaction Application)
3.5.5 Changing a Server Application (EJB APPHCALION).......ciiiiirieiieiie ettt st et se et st be e e nesee e eneseene s
3.5.6 Active Changing of a Server Application (Transaction Applications ONIY).........cccoiiiiiiiiiiiieiiee e 92
3.5.7 Dynamic Changing of the Number of Server AppliCation PrOCESSES.......coviiiieiierieirieisiriet ettt ssereaaens 94

Chapter 4 WorkUnit Operation 0f EACh APPICALION.iiiiiiie ettt e e st e st e e ss e e stee e e sneeeeanbeeeens 96
4.1 Operating CORBA WorkUnits
4.1.1 Application Development................
4.1.2 Compilation by IDL Compiler (IDLC COMMEAN).......c.eiriiieiiiiiiiirisieieiseie ettt bbb

4.1.3 Creating CORBA SerVer APPIICAIIONS.cuiveiiiiiiiiiit itttk n e
4.1.4 Registration of Information on Server Application to Implementation Repository Definition...........cc.ccoevereiiiiennieniennienns 97
4.1.5 Generation OF OBJECT RETEIBNCE.civiiciie ettt e e b e e e st e be s b e e e s s e be s b e s ebeabe b e s atesbesaensatenbens 98
4.1.6 Specifying/Registering WorkUNit DEfINItIONS...........coiiiiiiiiiiiie e 98
41,7 STArTING @ WOTKURNIE. ...ttt st b e b e s e e e bt e e e s £ h e ee e Rt e e e m e e R e eEea e e b e e e e st eE e b e Re e b e b e b e e be st ebesbeseabeaeereanens 98
4.1.8 STOPPING 8 WOTKUNIL.......etiiitiitetiitite etttk b sk bbbt h bt £ eh e b e b e h e b e e b e b e e e bt e b e e e bt e b et eh e et et e b e e b e e ebeaben 98
4.1.9 Operation Using the Interstage Management CONSOIE.cviiiuiieieieiei ettt b e et b et resbe b e e e tesbesaenseresbens 99
4.1.9.1 Creating @ CORBA WOIKURI.......c.couiiiteiiiteiiteieie ettt bbbt 99
4.1.9.2 Deploying @ CORBA APPIICALION.c.ciuiiiirieeieiee ettt bttt e bbbt e b e b et et e eb et be b e eneeean 100
4.1.9.3 CloSUre/ClOSUIE CaNCEITATION.ivieeeceereiciti ettt bbbkttt 103
4.1.9.4 Function for Maximum Number of Messages Retained in @ QUEUE............couieiiriiiiciniieees e 103
4.1.9.5 Alarm Notification Function for Number of MeSSages in @ QUEUE............veiiirieiriiieereniee s 103
4.1.10 Operation by CommaNd LiNg INEEITACE.c..cueieieiieieiteiee ettt b ettt b ettt b e bt b e bt eb e b bt et e
4.1.10.1 CORBA WOrkUnit DefiNItIONS.cvveueiiriieiiiiiiininsee e
4.1.10.2 CORBA Application Queue Control
4.1.10.3 GIODal TranSACION LINKAGE.ccueeiuirieieiteieterieie ettt sttt e et e e et e e et b e e st seeaeebe e ebeseeseebeseebeseeseabeneeresranea
4.2 OPErating EIB WWOTKUNITS........cuiiteiieiitesiet ettt bbbtk b et b e b bbb b8 e b £ e bt b e bt e b e b e b e ek b e bt e bt e e bt e b e e ene et et eneeen
4.2.1 Specifying/Registering WorkUnit DefiNITiONS.........c.ccviiiiiieiiieiei sttt besa et e 109
4.2.1.1 STArtING @ WOTKURNIT. ..ottt bbb bbbt e bt n et e bt en s 110
4.2.1.2 STOPPING 8 WOTKUNIL. ...ttt b et a ke beh ek b e bt b e e s e bt e e Rt eb e b e R e e b e b e bt e b e ne e b e e be b e st et e e eneetan 110
4.3 Operating Transaction APPlICAtIoN WOTKUNIES.........c.iiiiiiiiiieicisiee et sb ettt e bt e s e b e e eteebe e ensebe s eneerin 110
4.3.1 Operation Using the OBJECt PriOFtY FUNCLION.viiiiieieiieteessiee bbbttt bbbttt 110
4.3.2 Operating Procedures for Object Priority FUNCHION.........cciiiiiiiiicci e 111
N N O 71 (=3 AN o]][[oF: o] 4 OO OO TSP PRT PP 111
4.3.2.2 SPECITY WOrKUNIT DEFINITIONS.iviiiiiiiiiicieitetee sttt sttt sttt sttt et e e ebesb e b e b e st e b ebe et et ese et e e aneetesaneenin 111
4.3.2.3 RegiSter WOrkURNIt DEFINITIONS.cviiieiiiireiiiit bbb b bbbttt 112
4.3.2.4 Start the WorkUnit..........cccceoennene
4.4 Operation in Utility WorkUnits...
@ o T=) =L a0 (1=l LU OO
Chapter 5 Operating the Distributed TranSaction FUNCLONooiiiiieiiiiie et e e e 116
5.1 Procedure Required to Use Distributed Transaction FUNCLIONccoiiiiiiriniiiinesc et 116
5.2 Setting Up the System Environment for the Distributed Transaction FUNCLIONcccovveiiiiiiiiciic e 117
5.2.1 TUNING thE SYSTEIM ...ttt bbbkt bbb e b b2 b b £ b b e bbb bR bbbt bbbttt h bbbttt eb e
5.2.2 Determining If @ DiSK Partition 1S NECESSAIYcuriiveiririeiiereis sttt ne e nn e
5.2.3 Setting the CORBA Service Operating ENVIronmMeNnt File..........coiiiiiiie e
5.2.4 Setting Up the Database Linkage Service Environment Definition
5.2.5 Setting Up the Interstage Operating Environment Definitions................
5.3 Creating the OTS System Environment

5.3.1 Using the Interstage Management Console

5.3.2 USING COMIMANGS. ...ttt ettt ettt sttt e e be bt et e b e bt e b e e e b e e b e s e e b e b e b e eh e e eE e e b e s e e b e b e b e e b e e e bt e b e bt ebene e bt eb et eb e st e b e ebe e eb e e
5.3.2.1 Creating an Interstage Operating Environment Definition...........ccoiiiiiiiiiiiiiicec e
5.3.2.2 isinit Command and OtSSETUP COMMANG.........euvvrieuirirriieirieie sttt ettt bbbttt b bbbttt nn e
5.3.2.3 Using a Local Naming Service (RECOMMENTEA)........cueriiiiiriiieiiirie ettt sttt st ere s
5.3.2.4 USING REMOLE NAMING SEIVICE.....cuiitiiiitiieiiitetistiiete ettt ettt sttt a b e b e be et et e b e st et e e b e s et e s b eseebe b ebe et ese et e b etesbeneetenrans

5.4 Creating a Resource Management PrOGIAMcuiiueiriiueinieieisieieest sttt bbbkt b et b bbb bbb bbbt eb bbb nn

5.4.1 What is a Resource Management Program?...... s

5.4.2 The XA LinNKage Program.......ccccioeiieriinicisie et

5.4.3 The Database Library........ccccooeevvriiininiininnn, e

5.4.4 Creating a Resource Management PrOGIAM.........c.eirueuiiriererirretesirsetesissetestsses ettt s sttt sb bbb b bbbt s bbb bbb anens

5.5 Creating the Environment for the Resource Management PrOGIamcc.cocierereereiere e sese sttt se e se e seere s

5.5.1 Creating a ReSoUrCe DefiNItioN FIle..... ..ottt b e ettt bt nnen
5.5.1.1 Registering @ RESOUICE DEFINITION........civiiiiiiiiiiei ettt e bbb e be st et e be st et e be b eresbe s eneaee
5.5.1.2 Environment Definition for Resource Management PrOGIAM........ccoorueiriiiieiriireenesreienisieee s

5.6 Creating DETINITIONSc..iiiiiiteiee ettt b etk b et b e b b e e b e e e e b oo b e e ek e b e b e e b e Rt e b e b e bt e b e m e e b e b e bt et e n e e b e nbeat st e neebennens

5.6.1 ReSoUrce Manager INTOIMALION........ccuciiiiiiiciee ettt sttt e st e e se st et e s e et et e s e ebe s essebesb et ete st e s enesbessenearin
5.7 SEArtiNG the OTS SYSLEIMuiiieiieiiiietei ittt ettt bbb b bbbt e b bbb s e bbbt bbbt b bt e bbbt b et e bt
5.8 Starting and Stopping a Resource Management PrOGIaM ..ot

5.8.1 Environment Setting for Operation on a Host Other Than That of the OTS System
5.8.1.1 Sharing a Naming Service (Recommended)
5.8.1.2 Not Sharing a Naming ServiCe.........ccccoveerireereneeneneeeneieennas

5.9 Tracing FUNCLIONcoovvieineciene
5.9.1 Dump File Collection Function
5.9.2 TraCe LOG OULPUL FUNCLION.cuiuiitiietiititieeieti ettt sttt s b e st sbete st e seebe b et e e b essebe b ese b en s ebe b e st et ensebesnessntessesesens

ST O (o] (=1 USSP
5.10.1 Migration from the Old ENVIFONMENT. ..ottt ettt b et b e bbbt e bt b et e bt sb e et et eneebe b eneanan

Appendix A WOrKURNIt DEFINITION.......cciiiiii ittt e e s e e e et e e s nn e e s n b n e e e e et e e e nann e e e nnnneeas 129
AL SYNEBX ettt h R bR R R R R R R R SR £ R R e R R RS R £ AR e R e R e R R R e R e Rt E e Rttt r e r et eane 129
A.2 Syntax of WOrkUnNit DEFINItION FIlE..........coviiiiiiicic ettt 129
A.3 Control Statement of WOrKUNIT DEFINITION.oouiiiieiie ettt b e bbb bbb e bt b e ere b 132

A.3.1 WORK UNIT Section
R T 0 A= 10 1< O PO OSSP P PP
AALBLLL2 KN, £ Rttt

AALB.2 AP SEOLION. ...ttt bk bbb bt e bt b e bt b e R bR e R e bt e e h €A E £ SR € AR oA e E R e R £ SR e Rt b e e b e b et b bbb et e
ALZ2. L INBIME. .. bbb s

A.3.3 CONEIOL OPLION SECLION.vevtiteiiietesei ettt r b r bt e bt e b e b bt h Rt bbb bRt nb bttt nn e
LB L PN bbb £ bR R bbb R E AR R e bbb bbb
AL3.3.2 CUITENT DIFBCIONY ..ttt ettt ettt et ettt et e e s e et e b e se st et e be e b e b et e e b e s e ke e b eseeb e s eseebe s ens et et ese et e b eteabe st ebesbe e enesrenearen
AL3.3.3 REMOVE DIFECIONY.....vvieiitetiist etttk bbbt bbbk b bbb bbbt bbbt b bt b bt e bbbt
A.3.3.4 APPIICALION REIIY COUNL.....c.iviiiiieieiirest ettt b et b e h e b e bt e bbbkt ne bt r bt en s
AALB.3.5 SNAPSINOL. ...ttt R bR R £ £ £ AR £ SR e bR £ e R e b e R £ R e R e R e b e e bt eE e R e ebe e eRe e b e e ebe e e eren
AL3.3.6 Path FOr SNAPSNOL......c.iiiiiiiiiictie et b e bbb e bbb be b et e ke b et e Re et ettt bRt e Re et et eRe et e e e benreneare s
AL3.3.7 Path FOr APPIHCALION. ...tttk b bbbt b bbbt b bt b ekttt n s
A.3.3.8 Library for Application
A.3.3.9 Environment Variable.....................
A.3.3.10 Registration to Naming Service...........
A.3.3.11 USING LOAA BAIANCE........eveiiiiciiiciestee etttk e bbbt e bbbttt n s
A.3.3.12 Using Notification of USer INFOIMAION. ..ottt sttt 140
ALB.3. L3 ACCESS CONIOL....iieet bbbt b s bbb bbb bbb bbb 141
A.3.3.14 ACCESS CONIOI BASE DIN.....otieiiiiiiieteit itttk e bbbt bbbt b bbb bbbttt b bbbt 141
A.3.3.15 Maximum Processing Time FOr EXIt PrOGIaM.........cociiiiieiiiiinsiees et 141
AL3.3.16 WOrKURNIT EXIT PIOGIAIM......cuiitiitiiiitiiteiistest ettt sttt be et e bbbt et b e se e s ek e b e bt s b e e e b e eb et ebesb e bt ebeneebeebe e ebenbeneaben 142
A.3.3.17 Executable File of EXit Program fOr SAIVAQE.ccciiiiiiiiiicice ettt sttt be et basbe st ns e aran 143
A.3.3.18 WorkUnit AUtOMALIC SEOP IMOUE.c.eiveiiiieiiiiiesiet ettt bbbtttk 143
A.3.3.19 ReqUESE ASSIGNMENT IVIOUE.c.eteieieite ettt ettt sttt e st e st st e e e st ebe b e s e ebesee s e e bt eeeneabeebe e ebeebe e antabe b eneabeneeneanens 143
A.3.3.20 Traffic DIireCtor MONITOr IMIOUE.oveueiiieieieec ettt et e st b ettt et e bbb et ne et e e b ebeneneanas 144

AL3.3.21 OULPUL OF STACK TTACE. ...ttt b bbbt bbbt b bt e bt e b e e ekt e b et e bt e b e e ebt st et eb e et e eneabe 144

E N S v 14 (0 o I 0 TSSO 145
AL3.3.23 SNULAOWN TIME...cutitiitiiteeieite sttt ettt e st et et et e s besbesbeesee s e seesbesbeeseensenbesbesbeaaeesee e e eesbeebeebeensentenbesaeaseenseseesbestenteereens 145
A.3.3.24 Unconditional REACHIVALION OF PIOCESS........ccveiuiiieiiieiieiiesieste st e ste s e et e st e esaeste s teeseessebestesneaneeeeseestentaereens 146
E R TR T TS L A I o O RSUS T

AA.3.3.26 PrOCESS DEGENEIACYueveuieteirereeiietir ettt st ettt b b e st b e st b b ekt e b e e bt bt b bt bt e e e st bt e et e bt e Rt e b e e bt nn et et e an et ebenn e s nnis
A.3.3.27 Number of Revision Directories
A.3.4 Application Program Section.............ccceuc....
A.3.4.1 Destination.................
A.3.4.2 Destination Priority
ALBLA.3 PSY S E bR E b bbb E e E e h bR E R AR AR £ £ et b b e e bbbt bbb ena
ALB A EXECULADIE FIIE......eeeie etk bbbt b st b e b e R b b e e b e R e bt e bt st e bt e b et b e et e e e b e et e abene s
A.3.4.5 APPICALION LANGUAGE. ... evieveietietiteteitesieteste ettt e e te st e et e e e te st eseebe st eseebe s esesbe s esessessesesbe st eteebe s ebe st e e ebessessabessensetesseneerin
AA.B.4.6 CONCUITENCY ...ttt et ettt ettt et e bRt E Rtk e e E e e b A e st e bt e et e b e e st e Rt b e bt R e b e e R e e e bt e e e e e bt ne et e bt nr et e e nn e nnin
A.3.4.7 MaximUM PrOCESSING THME. ...ttt sttt et b et e b e e e bt ebe e e bt eb e b e b e e beeb e s e e b e neen e eb e e b e b et e abe e ebenbe e eneanan
A.3.4.8 Terminate ProCeSS fOr TIME OUL.........ceiiuiiiiiiiiitiit ettt bbb bbb bbb nena
A.3.4.9 Maximum Processing Time FOr EXIt PrOGIaM.......cciiiiiiieiiiiet stttk 154
A.3.4.10 Maximum QUEUING IMESSAJE.veuerereueieteiereseeseessesee s st se st se s s st s s st s s st ss bt e b st s e b e st e b st e b b e e eb b e r b ranens
A.3.4.11 Queuing Message t0 NOTITY AL ..ottt e bbbt e bt be b e s eeas
A.3.4.12 Queuing Message to Notify Resumption....
A.3.4.13 Environment Variable............ccccovriiiniiinnnns
A3 A4LAFOM. e,
A.3.4.15 Pre Exit Program
ALB.4.16 POSE EXIT PIOQIAM....ciuiiiiitiiiticteitet ettt ettt ettt st te s b e e e se et e s e s e e be s b e e b e et e ss e b et e sb et e e b e e eseebesbentebe et e s s enesae e anentin
A.3.4.17 RECOVENY EXIT PIOGIAM .. ittt h et b b bt e bt r ekt n et en s
A.3.4.18 EXecutable File FOr EXIT PrOGIaM.......c ittt ettt et b bbb b e bt b et e b e b e sbe s b eneebeebe e e seanennan
ALBL4.19 ACCESS CONIOL. ...ttt bbb bbb bbb bbbttt bttt bbbt
A.3.4.20 ACCESS CONIOI BASEDIN. ...ttt eb bbb bbb bbbt bbbttt b bbb eb bbb
A.3.4.21 Type OF USEr THENTITICALION.iveiiiieiiiir ettt en s
ALB.4.22 USEI INAME PAIAIM.....cuiiiiiieiteeiiet ettt b st et e e ekt e ke e s s e b e e b e e bt e e e eb e e b e e b e e R s e b e eh e e Rt e e e ne e eE e ek e e nn e b e ebeene et e nbenbeabean
ALBA.23 USEI BASE DN s
ALBA.24 USEE DIN PAIAIML ...ttt ettt bbb e bt b e bt et ek ke e b e e s e e st e b e e b e eb £ e st e e e ek e b e e b e e st et e eb e e bt eb e et e nbenbesbeebean
A.3.4.25 Password Param...........cc.cccceenennne
A.3.4.26 Bind TYPE..voeirireiririseeerreeee s
A.3.4.27 Using Wrapper Session Management.........
AL3.4.28 SESSIONID PAFAM.......cuiiiiieieiteieteete ettt ettt sttt e et e s b e ekt s e e s e e bt ee e st e Ee e emeeEe e es e e be e eEeebe e ebesbeseaaeaseneebenseneereneeneanan
A.3.4.29 Method NAmME t0 BEOIN SESSION......c.eiuiieiiiteieieiteieet ettt ettt e st e e bt st e e b e e st eb e e e b e e b et ek e sbentebe b eb et e e ebesbeneenan
A.3.4.30 Maximum Session ACtive TIMe FOr CHENL........ccccciiiiiiiiii e
A.3.4.31 Maximum Processing Time fOr WRAPPER..........ccoct ettt 163
A.3.4.32 Maximum Memory for EJB APPHCALION.coiiriiieiiireiesee et en s 164
A.3.4.33 CLASSPATH TOr APPIICALION. ...ttt b e e bbbt b et b e e bt b et e b e eb et e be e e neeean 164
A.3.4.34 Java COMMANG OPLION....iiuiiitiiieriiteiiee ettt ettt bese st e e be st ess et e b eseste s e be s e s s e be b e b e e bens et e sbe st abe b esesbe st etesbeseerin 164
A.3.4.35 EXit Program fOr PrOCESS SAIVAGE.viueuiriireiiiiesieieess ettt 165
A.3.4.36 Executable File of EXit Program fOr SAIVAQE.ccoii ittt ettt sne e 165
A.3.4.37 EXit Program fOr TeIrMINALING PrOCESS.ciuiuitirieitireeiirieteses ettt ettt see et beteseebeseseeaeseseabenessesensstesensesenes 165
A.3.4.38 Param for Executable File...........ocoooiinniiiniics166
A.3.4.39 Reset Time for Application Retry Count....
A.3.4.40 Request Assignment Mode....

F N 0 [T o] I |5 OO OO OSSPSR 167
AL A2 BUFTEE INUMDET ...ttt ettt s bt s et e b e st b et e s e b et e st et e e e st et e b e s e e Ee b e s e ebe st eseebe s eneebeneneanin 167
ALBLAAZ BUFTEE SIZE..... ettt etttk e st e st b et e st e b e e b e e e E e b e e R e eR e e e R e R e R e R e Re R eR e eReeRe e e b e ebe e st eee e eneenan 167
F N o OO SOPTSPTS 168
A.3.5 Nonresident APPlICAtioN PrOCESS SECLION........cviiiiiiiieiete ittt ettt te st e e e te st e e e besbeseebe st et etesbe e etesbesaesessensanens 168
AALB.5. L CONCUITENCY ...ttt ettt sttt ettt e st ek e Rtk eh e e h e e s Rt ne e R e s e R e s e bt R e bt e R e e bt s e e e e bt ne e e bt nn e e e en e nnen 169
ALB.5.2 Pre EXIE PIOGIAM.....eiiiitiieieite ettt sttt sttt et e e b ke e e b e e b e e eb e e e 28 e e b e e e e Ee e be e bt eeeReeb e eeemeeb e e eneabe s ebeabeneereneeneanan 169
AL3.5.3 POSE EXIT PIOGIAIM.....cuiuiietiiiieieiiieteit ettt sttt et sttt e b e bt e e e e b e m e e b e ne s e b e n e e ek e n et bebe e et et et s e ebe e neenens 169
A.3.5.4 EXECULabIe File FOr EXIt PrOQIAM.....ccvciiiiiiiciii ettt sttt bt ese b et et e b e e be st e s s ebeabe s eneenennin 170

- Vii -

A.3.5.5 Maximum Processing Time for Exit Program
AL3.5.6 DYNAMIC LINK LIDIAIY ..ottt b ettt sttt b et e se et e st e st e teebe e ensebe b eseabesaeseeneenan
A.3.5.7 EXit Program fOr PrOCESS SAIVAGE.cc.ouiueuiriireiiiiiiieietsstet etk b ettt
A.3.5.8 Executable File of EXit Program fOr SAIVAGE.cciiiiiiiiiie e
A.3.6 Multiresident APPlICAtION PrOCESS SECHION.cuiuiuiiirieiiirieteesistee sttt ettt bbbt b st st b et et b et nn et en e e
AAL3.6.1 COMCUITENCY ...ttt ettt et ekt bkt ekt s st E ekt h ek e e b2 b e bR b e o2 b0 e R e R e s £ Rt b e e b et bt e b et e bt e e e eb e n et et e nn e nn s
A.3.6.2 Pre Exit Program.... s
A.3.6.3 POSt EXIt PrOgram.......c.coviirieiiiiiieesie e
A.3.6.4 Executable File for EXit PrOgram........cccccviiiiiiiiiicie ittt
A.3.6.5 Maximum Processing Time for Exit Program
A.3.6.6 RECOVETY EXIT PIOGIAM.......etiieitiiieieite ettt ettt sttt et b et e b e b e e e b e e be e bt ee e st e b e eeene s b e e ene et e s ebesbeneebeneeneanan
A.3.6.7 EXit Program fOr PrOCESS SAIVAQE.cuetiiiitirieieiteietest ettt ettt b et b et b et b et besb e b e ebesrenea
A.3.6.8 Executable File of EXit Program fOr SAIVAQE...........ccvciiiiiiciii ettt se e enes
A.3.7 RESOUICE IMANAGET SECLION. ...c.etiveriitetesiitet ettt e bbbt b st bR h b b h b b s bR s b bbb b e bbbt nn b nn e
AT L INBIME. .o E e R R R R bR
ALB.7.2 RVt h b bR E £ E R bbbttt

Appendix B Interstage Operation APl SAMPIE PrOGIaMIS.cciiiiiiiiiie ettt e ettt e e e et e e e e s s aatbee e e e s aabbeeeaeeaaannbreeeaeaanans 176
B.1 File Configuration..........c.c.ccco.....
B.1.1 WorkUnit Startup Program
B.1.2 WOIKURNIT STOP PIOGIAM.....cuiiveiiitiiiiieteetistetete sttt sttt e st et s e te st e e e te st et e seebe st e e et s e be b e s e ebe st e s e b e e be st eseebe st et eseebesaensesesbe s enearen
B.1.3 WorkUnit/Object Information ACQUISITION PrOGIAM..........couiuiiiiiieiiiireiiisreteesre et nnene e 178
B.1.4 ODjJECE ClIOSE PIOGIAM..... . iteieieitiitetiete ettt sttt te st s e be st e se et e se et ebeebe e ebesee e eseeEe e eseebeeeeR e ebeeeemtebeebe e ebesbe s enesbenbeneabeneeneaneas 178
B.1.5 Cancel ODJECT ClOSUIE PTOGIAIM......cuiiuiuiiieteuiatestetesteieteste et st et se st abe e se st e e ebess st ebeabese et e b eb e eb e b ekt ebe e eb e s b e bt ebeneebesbe e ebenbene b 179
B.1.6 Information Acquisition of the Object in the Implementation Repository ID Program...........cccccceververieiisiesesenesiereessesnens 179
B.1.7 Acquiring/releasing of a SyStem Name lSt PrOGIAM..........ciiiieiiiiiiiiieiisee ettt 180
B.2 COMPITING QNG LINKING. ...ttt b ettt b b bt s e e s b s 4o R e e b e e b e e eb e s b e £ e bt e b e b e bt eb e e b e st e bt nbentebesbe e ebeee 180

Appendix C NOteS 0N OLTP SEIVET OPEIATIONS.uvteirtretertteee it ee e ettt e e ste e st eaasre e e s asre e e s sreeeasr e e e sreeesssneeeaasreeeaanneeesnneeas
C.1 Operation Using the Interface Information Check Functions
C.1.1 Procedure for Operating the Interface Information Check Function

Appendix D WorkUnit Automatic Start SEttNG FIlE...........eiiiiiiii e
D.1 COUING FOMMAL........uiuiitiitiictest ettt ettt st ae st st e s et et e s e e be s e st ebe s b e s s e ke e b e e eb e et e s s eb e et e b et e ebe s ese e b e s ensete b eseeb et e s s ebessentetesbe s ereee
[N A (<] 1 1< 1 SO PO PO PP PR PPRPRPRP
20T oo PSP

[200 @0 04 T=T o ST SUSPPRPR

[20 S o - Uot 1TSS PUPTPRORPRPRS

D.2 WorkUnit Automatic Start Setting File Example
D. 2.1 WOTKURNIE INAME.....ecuteuieieite it ee et e esteste et et et e s testeeseeseeseetesteateeseessen s e seabeaReaRseseese e eeeeeEeaReeReeneenteaeeaaeaneaneeseeseestesrenranrenns
D.2.2 User Name

Appendix E Procedure for CORBA WorkUnit Operation Using the Interstage Management Console..........cccccoecuvveeeeennine 190
O o] Yo =T TSSOSO 190
E.1.1 Procedure for Operation Using a Sample C APPHCALION.oiiiiiiiiiiieieries et 190
E.1.2 Procedure for Operation Using a Sample Java APPIICALION........cc.ciiiiiiiiicese ettt eae 192
E.1.3 Procedure for Operation Using a Sample C++ APPIICALION. ... 194
E.1.4 Procedure for Operation Using a Sample COBOL APPIICALION.coviiiiiiieiieeie ettt 196
E.2 FOT WINAOWS(R) ...ttt etttk bbb bt e h b £ b€ h e e b€ e e R e e bt EeH €2 E e £ e b€ e H oAb e b e b e Rt e b e b e b e e b et e b e e b et et e st e s e ebe e ebeee 198
E.2.1 Procedure for Operation Using a Sample C APPHCALION.ciiiiiiiiiiiiict ettt resaea 199
E.2.2 Procedure for Operation Using a Sample Java Application......... ...201
E.2.3 Procedure for Operation Using a Sample C++ Application.........204
E.2.4 Procedure for Operation Using a Sample COBOL APPHCATION........cciiiriiiiiieierisiee et206
LR o] g 311 GRS 208
E.3.1 Procedure for Operation Using @ Sample C APPHCALION.ciriiiiriieiieiee e 209
E.3.2 Procedure for Operation Using a Sample Java APPIICALION.cuiiiiiiiiiiee et 211
E.3.3 Procedure for Operation Using a Sample C++ APPHCALION.......cciiiiiiieiiiieeci sttt eae 213
E.3.4 Procedure for Operation Using a Sample COBOL APPHCALION.cviveiiiiiiiieiiisiee ettt 215

- viii -

Appendix F CORBA WorkUnit ACHIVAtION CRANGE.uuiiiiiiiiiiiee ettt e e ettt e e e e st et e e e e aabbe e e e e e e aanbbeeeeeeaneee 218

F.1 Procedure for CORBA WorkUnit ACEIVAtION CRANQE.........coiiiiiiiiieieiese ettt sttt se ettt e e ebesee e eneeean 218
F.1.1 WorkUnit Configuration Change PRESE...........ceiriiiriiieieiieie sttt ettt sttt sttt et 218
F.1.2 Preparation ("PrePare’) PRase. ieiieieiesiee sttt e st sa ettt b st s e te b e s et et e ket e s et e st e ke e eRe et e e be e e R e e b et be st erenren 219
F.1.3 Switch to New Environment ("Change™) PRASE.........cooiiiriiiieie e 220
F.1.4 Old Environment Deletion or Restoration (Commit or ROIIDACK) Phase..........ccoiiiiiiiiiiieee e 220

F.2 WorkUnit Configurations that can be Changed during Activation Change..........cccccvverieiiireieie e 220

F.3 Notes 0n EXECULING ACEIVALION CRANGE.ttt bbbkt bbbkt b ekt b et b bt e 225
F.3.1 Relationship between Activation Change and Existing Functions...... et E et ALttt bt et bRt R et e R et R et et et et ne et e nennens 225
F.3.2 WorkUnit ENVIFONMENT aftEr RESTAI.........cc.iiiiiiiieiiiiiiie ettt bbb bbb bt eb e e e bt bt b ebe b 225
F.3.3 Stopping a WorkUnit while the Activation is being Changed..........c.ccuiiriiiiiiiieiiiceseec e 226
3.4 CUITENT DIFECIONY ...ttt ettt bbb bbb 0 b E et E b b e b b st E bt E bt b bt et e bt 226

F.4 Activation Change Command REFEIENCES.cuiui ittt sttt et s e et e e e aeeb et e b e seenesbe e beseeneabennns 227
I T g T o[- OSSR 227
FL4.2 ISINTCRANGEWUET ... bbbt b b e bbb bbbt e bbb bttt b ettt 228
.3 ISPIEPAIBWUL ..tttk s et e E e E e E R R0 R £ R R R e AR R R R R R e R R R et n et
FiZZ ISCRANGEWUL ...ttt bbbt b e e ekt b e b e s £ e £ e b e R e eb e S4 e R £ R e A E oA e e b e 4 E e £ eE £ bt AEeR e eE e b e Rt eE e e b et e b e nbeneebenb et ebeabe e ereaben
F L5 ISCOMIMITWUL ...ttt bbb bbb H €0 e h bbb bbbttt ettt r e
FB TSTOIDACKWUL ...tttk bbb e bbb s bbbkt bbbt bbb bbb

F.4.7 ischeckwustat

|Chapter 1 OLTP Server of Interstage Application Server

With its open technology, Interstage can be used to build mission-critical, highly reliable systems that build on the capabilities of legacy
systems.

Interstage also provides communication methods required to develop various types of systems or to link with different systems.

This chapter explains what Interstage can do and how to use it.

1.1 Application to Business Critical Systems

The essential requirements for development of business critical systems are high reliability, a high degree of scalability and high
performance.

A product that satisfies these requirements is usually called an OLTP product. The OLTP services implemented by Interstage include
resource sharing functions to conserve resources and queue control functions for response security. These functions, in combination with
the core ORB functions and other application management functions of Interstage, achieve high performance levels.

Interstage maintains the stability, scalability, and high performance of a business- critical system and enables the construction of the latest
type of Internet and extranet information systems (the following figure).

Figure 1.1 Interstage Application to Business Critical Systems
GS, M, K, IBM,
AP SERVER and other companies

O
‘-lxistrng system
L I

Developme

tools Interstage

OLTP function I
ORB function I
INTERNET / INTRANET

Web browser C,C++,COBOL VB, Java
Application Application

@ High reliability

@ Scalability

@ High applicability
® Use of existing
applications

1.2 System Integration by Using Existing Applications

As well as providing such basic functions for new applications as an application server, Interstage also provides a wrapper function that
encapsulates existing applications and databases. It is possible to develop new systems that fully utilize the Interstage basic functions in
addition to services provided by existing applications (the following figure).

Figure 1.2 System Integration Using Existing Applications

GS/M Company/other companies

*RDB

IBM (MVS)

D Messags j[Fovemtr i
communication linkage i | DB conversion tools| |
i | !

- Asynchronous X “ upi
@ communication/8 M 4 oo 7

@)) e

(DATABASE LINKAGE |

TRANSACTION LINKAGE

APPLICATIONS |

Interstage

Note

FNA/TP is Fujitsu's network architecture that is supported on Solaris.

Using Application Wrappers

With Interstage, existing system applications can be used with either synchronous or asynchronous communication models, and are
represented as distributed environment objects. Clients can link directly to applications on existing systems using wrappers (the following
figure).

Figure 1.3 Linking to Applications on Existing Systems Using Wrappers

EXISTING SYSTEM
SERVER (Global server)
E Interstage
| I [% mmem Object Application I
o m Wrapping Existing means
(Link to existing means;

1.3 Client/Server Communication

Interstage enables communication between client and server supported by CORBA. Similarly, applications can be linked between
Windows® clients, UNIX servers (Solaris) and other CORBA based systems.

Communication between client and server is carried out through an ORB (Object Request Broker), which is present on both machines,
and both client and server always exchange data via the ORB.

1.3.1 Client/Server Communication

Application communication between client and server is possible, as shown in the following figure.

Figure 1.4 Client/Server Communication

CLIENT SERVER

Interstage
Application] Application

Communication between
client and server applications

As shown in the following figure, three types of client/server communication are used by Interstage:

- Client/Server Communication Using I10P
- Client/Server Communication Using HTTP
- Client/Server Communication Using SOAP

Figure 1.5 Client/Server Communication using HTTP and 1IOP
CLIENT

Web browser | I =\ HTTP/SOAP
Application é SERVER

e

Application |
CLIENT
CORBA | I lioP
client %

==

Client/Server Communication Using IIOP

IIOP (Internet Inter-ORB Protocol) is the communications protocol used to communication between a CORBA client and a CORBA
server. A client can communicate only by preparing a Web browser.

The CORBA client can be developed in Java, C, C++ or Visual Basic.

Client/Server Communication Using HTTP

HTTP (Hypertext Transfer Protocol) is used as the communications protocol. Communication can be carried out between client and server
via the Internet or an intranet using a Web browser or from a Java application.

In addition to the publication of HTML web pages, the Web server provides CGI applications, session control applications and server-
resident applications, as well as services that can be easily created using COBOL (COBOL Web Subroutine).

Client/Server Communication Using SOAP

The Simple Object Access Protocol (SOAP) is used as the communication protocol. This is used when the client/ server communication
adopting SOAP is carried out. The World Wide Web Consortium (W3C) is promoting the standardization of SOAP which is a light
protocol. SOAP uses internet standard HTTP and eXtensible Markup Language (XML) as the communication infrastructure.

1.4 Improved Distributed System Management

Using CORBA, Interstage has surmounted the problem of integrating different systems and development languages, allowing development
of a single virtual integrated system (the following figure).

Figure 1.6 Development of a Single Virtual Integrated System

Distributed allocation of server applications

UNIX server {E‘rulana} Windows NT{R] server
Cther companies
Windows MT{R} CORBA *3"""9""

Platfiorm- mdlpendant
(03, language #le) wo-way Bk

Distributed object system

Mlm"a"'.""tﬂswal‘en:l system using ‘M

Information such as the object storage location is maintained in one place within the distributed object system. On the client side, by using
this control information base, it is possible to develop applications without being aware of the final server configuration.

Specification of the linkage point can be omitted from programs making it easy to create new applications. System configuration can be
changed centrally without needing to update client applications.

High Reliability by Using Transactions
Database operations can be secured using the commit and roll-back capability provided by the transaction function. Application systems
that demand reliability can be developed easily using the transaction capability.

Wndowsie B Solaris32 WLinux32 64
Using global transaction linkage data integrity is assured because the transaction can incorporate updates to multiple databases.

Solaris32 WLinux37 64

1.5 Distributed Transactions

To maintain data integrity, database updating must be performed as an integrated, inseparable series of processing steps. This type of
processing is referred to as transaction processing.

A transaction that occurs with a single object or resource is referred to as a local transaction.

A global transaction, on the other hand, is an operation that centrally manages local transactions with multiple objects or resources in such
a way that they cooperate with each other as if they were a single transaction. In other words, a global transaction comprises multiple local
transactions that can be handled as if they were a single transaction.

The Interstage Database Linkage Service can implement an X/Open distributed transaction processing (DTP) model and guarantees the
ACID characteristics of distributed transactions (Table 1.1 ACID Characteristics and Table 1.2 Components that Constitute a DTP

Model).

Table 1.1 ACID Characteristics

Characteristic

Description

Atomicity

Guarantees that every transaction is either completed or in its original state and that data
that is subject to the operation (such as data in databases) is either completely updated or
completely not updated.

Consistency

Guarantees that database data is free of inconsistencies regardless of whether or not
transactions are completed.

Isolation

Guarantees that multiple transactions processed concurrently do not interfere with each other
and do not affect data.

Durability

Guarantees that the results of transaction processing, once completed, are maintained even
if errors occur.

Table 1.2 Components that Constitute a DTP Model

Component

Description

AP
(Application Program)

An AP is a component installed by the application developer which controls transactions by
using the service provided by TM or RM.

A J2EE application such as EJB is an example of an AP.

™

(Transaction Manager)

A TM is a transaction service that manages transactions.

Interstage provides the Database Linkage Service as a transaction service.

RM

(Resource Manager)

An RM is a program that manages resource transactions.

A database management system is an example of such a program.

cRM

(Communication RM)

A cRM is a service that provides a communication base to enable transaction control.

Interstage provides the CORBA Service as a CRM.

Consistent Processing of Distributed Databases

Interstage provides, as the database linkage service, the distributed transaction control function. This function conforms to the international
standards (OMG/CORBA) of the distributed object environment and the Java distributed transaction control mechanism, which is a
distributed database environment. This function enables consistent processing of the distributed databases (the following figure).

The databases supported are Symfoware, Oracle databases, and the SQL Server in a Windows® environment, thus extending
interoperability.

Figure 1.7 Non-stop Processing of Distributed Databases

g .
|__! IEI Level i_] |

Order
O processing

business
g

Purchases OB

processing
application
|—-I| I = : Orders
= Se . —— | |
: Order
: \ processing 0718

O O business

Inventory DB g
processing M Inve
35

i,
*’ application
" Synchronous J | | I
update

@ Guarantees synchronous update in order to prevent inconsistencies
in the updated data of multiple DBs

@ Conforms to the CORBA standard transaction service (OTS).

(OTS: Object Transaction Service)

1.6 Functions for Reliable System Operation

Interstage provides an application management function that monitors operating status to ensure stable operation in systems built using
Interstage.

This section provides an overview of the Interstage operation functions.

1.6.1 Basic Operation Control

The application control function was created to improve business application operability (the following figure). It allows the construction
of an environment for business units (WorkUnits) and provides the following functions:

- Business unit operation (startup/termination)

- Multi-client process sharing (conserving resources)

Non-resident applications (conserving resources)

Multi-level processes (improving scalability)

Mid-execution snapshots/logs (improving maintainability)

Figure 1.8 Basic Operation Control

Applicaiton control function Stﬂgﬁ;ﬁgﬂiﬂm
(WorkUnit)
application application
- licati
Dall application Data appiication
application application
o sOperation control
tappllcatlﬂn fur‘lctiul"l
eShared control ’ oHiahlv-reliabl
eMultiplexing i Sglaﬁiﬁf <
sDebugging function

s Snapshot and execution log L .
Application control function J

ORB function

1.6.2 Performance Information Measurement

WorkUnit Types That Can Use the Performance Monitoring Tool
Interstage supports the following types of WorkUnits that can use the performance monitoring tool:
- Transaction application WorkUnits
- CORBA WorkUnits
The performance monitoring tools measure two types of performance information for jobs running as WorkUnits on Interstage.

The first type of performance information is measured in object units and gives a performance overview. This overview is used when a
network control manager (*1), such as Systemwalker/CentricMGR, is used to give realtime displays of performance information and to
monitor the performance of jobs running on Interstage. (Use of a network control manager to monitor and display performance information
is known as realtime monitoring.)

*1 A network control manager program monitors performance and displays the performance information on the monitoring server.

The second type of performance information is more detailed, and is measured in object, operation, and process units. This detailed
information is saved in a performance log file, which is the information source for job performance analysis.

The files converted to CSV format can be used in spreadsheet programs such as Excel, allowing the presentation of information from the
file in a graphic or other format that enables the user to analyze the performance information from various perspectives.

Types of performance information measurement are shown in the following figure.

Figure 1.9 Performance Information Measurement

Performance Monitoring Tool |

Detailed Cutline information
infarmation {reaitime monitoring)
—
R ‘ =
e —
ispreport Metwork contral manager
command
Report
(CSV format)

1.6.3 Realtime Monitoring

When a network control manager (monitoring client) such as Systemwalker/CentricMGR is used with Interstage, overview information
can be displayed in real time. Thus, the operating status and performance of jobs in a distributed environment can be monitored in real

time. Base values can be set at the network control manager. If the base values are exceeded during monitoring, an alarm is issued to
facilitate detection of performance faults.

Select realtime display of overview information if realtime monitoring of job operating status and performance (and realtime detection of
performance faults) is required (the following figure).

Figure 1.10 Realtime Monitoring

M Business application operating control
» Business application operating display
« Displays changes in transaction
volume of business application
transaction, and graphs past information

« Reports acquired information
Control
o - server
Hanufanturl
Buuunms% Business server
B Monitoring of traffic's standard values

{Adam
» Monitors standard values (target Jrati
values, normal values) to check for their / . .
being exceeded. Exceeded standard Intﬂ Interstage
value is reported as a problem. |

— Target value: value set during business
design (no. of queues)

—MNormal value: statistical value based on
past information

CIIunl Client cimt] Client

1.7 Performance Analysis

Performance monitoring tools measure overview information and detailed information simultaneously. If performance faults are detected
by the realtime monitoring function, analyze the job performance by referring to the detailed information stored in the performance log
files.

The performance log files are binary files. Use the command provided by the performance monitoring tools to convert these files to CSV
format for analysis.

The files converted to CSV format can be used in spreadsheet programs such as Excel, allowing presentation of information from the file
in a graphic or other format that enables the user to analyze the performance information from various perspectives (the following figure).

Figure 1.11 Performance Analysis

Performa
lag file

ispreport
command

Report
(CSV format)

Graphing done by
spread sheet

ﬁ%

] | |

1.7.1 Automatic Centralized Monitoring

If you are running an Interstage business system on multiple servers, you can perform centralized monitoring of the system by linking it
with Systemwalker/CentricMGR. This will simplify system operation. Systemwalker linkage offers the following functions:

- Monitoring function: You can monitor business system status from an operation control server in real time. You can grasp the entire
system'’s status and find trouble spots more easily. WorkUnit and object operating status monitoring by Systemwalker CentricMGR
can be used for CORBA WorkUnits and transaction application WorkUnits.

- Remote operation function: You can send Interstage commands to a remote business system from the operation control server. This
enables remote system maintenance and administration.

- Application distribution and management function: You can administer Interstage software resources from the operation control server,
distributing them in batch to servers and clients on-line. This makes it easier to control versions and distribute system software
resources, and reduces any errors or problems that may occur.

1.7.2 Automatic Operation for Built-in Batch Programs

Core system design must include automatic operations that allow built-in batch applications. It must also include exclusive control for
batch applications (the following figure).

Figure 1.12 Automatic Operation for Built-in Batch Programs

Wonrﬁi: git Subsidiary batch

applications

/' Input received orders) '/ Output weekly report) Y

I
|I Inwentory refarence g | |I . Transfer slip J,.'I

1 lIl| III
=y \k Total sahs / \k Delvery request

== \ Accessing with @
Mo simultaneous

virtual resource
pe rformance of jobs

- name [DE]
Application server { with same virtual

resource name

Databa:

Systemwalker uses a jobnet to control batch jobs. Interstage can recognize its applications as on-line jobs. It is possible to apply exclusive
control between on-line jobs and between batch applications.

When you link System Walker/OperationMGR you can automate the following system operations and controls.

- Automatic work unit execution
Work unit start and stop times registered in jobnet will start/stop according to schedule.
- Work unit and batch job exclusive access
When you register jobs, specify the work unit's logical resource name (queue name, resource name). This will enable WorkUnits and
batch jobs to have exclusive control of resources, and allow linked scheduling for WorkUnits and their subsidiary batch applications.
- Work unit monitoring/operation
It is easy to confirm work unit conditions as they are displayed, color-coded, in real time.

Systemwalker/OperationMGR's automatic operation can use a Gantt chart to monitor and automatically operate all jobs. When Interstage
business applications are running, their work unit conditions are displayed in a Gantt chart. For easy reference, the Gantt chart color codes
the start time, current time, and estimated completion time (the following figure).

-10 -

Figure 1.13 Systemwalker/OperationMGR's Automatic Operation

Real time monitoring of
overall business

Checks business schedule
Manitors execution of business

M Monitoring of business of
multiple servers
Unified monitoring of
departmental business
——

M Logging of execution situation

Business start time
Business end time
Program output information

Monitaring of job net

-11 -

|Chapter 2 Designing the OLTP Server

This chapter provides information on designing the OLTP server.

2.1 Designing WorkUnits

2.1.1 Application Execution Environment Using WorkUnits

A WorkUnit is a unit of application operation. Both starting and stopping applications are defined in one WorkUnit.

WorkUnit is a distinct unit of operation which may contain multiple applications. However, if one application in the WorkUnit fails and
causes an abnormal termination of the WorkUnit, all applications in the WorkUnit will be stopped. Minimize the risk of one application's
failure affecting others by creating separate WorkUnits for important applications.

Note that the number of WorkUnits, objects, and processes that can run in the entire Interstage system is limited. The formula for calculating
this limit is as follows:

[Number of WorkUnits] + [total number of objects] + [total number of processes x 2] [<=] 1,600
(The total number of objects is the total number of [Application Program] sections in the WU definition.)

To operate CORBA WorkUnits using the Interstage Management Console, refer to the Operation using Interstage Management Console
information in each section.

The user name used to operate WorkUnits must satisfy the following two conditions:
- The user name must consist only of characters permitted by the OS.

- The user name must be no more than eight bytes.

2.1.2 Application Process Concurrency

When multiple clients simultaneously issue requests to a single application, the requests will be processed by creating multiple execution
units (processes) that can be executed concurrently. The number of concurrent processes for processing multiple requests (process
concurrency) can be defined in the WorkUnit definition.

If a WorkUnit control command is used to define a CORBA application, the process concurrency must be defined not only in the WorkUnit
definition but also in the implementation repository using the OD_impl_ins command.

The process concurrency considerations include the processing time per process, the response time to the client, and the number of requests
per time unit.

Information regarding the response time to the client can be collected using the performance monitoring function. For more information
about the performance monitoring function, refer to the "Performance Monitoring" chapter in the Operator's Guide.

Defining an unnecessarily high process concurrency adversely affects the system resources, such as memory. Define a level of process
concurrency appropriate for your system.

Setting Process Concurrency Using Interstage Management Console

Set "process concurrency™ on the CORBA application deployment screen or environment setup screen. If the process concurrency is set
using the Interstage Management Console, it will not need to be set again in the implementation repository using the OD_impl_inst
command.

2.1.3 Automatic Application Restart

If an application terminates abnormally due to input of invalid data from the client, the application can be set to automatically restart. If
automatic restart is defined, requests from clients after an abnormal termination can be processed automatically.

If an application terminates abnormally due to an error before processing can be completed, it may restart in an attempt to continue
processing. You can configure the retry count to be the maximum number of times the application process terminates abnormally before
the WorkUnit also terminates abnormally. If this happens, requests that are being processed in the WorkUnit are returned to the client as
an error.

-12 -

If [1] is specified for the retry count, the application restart is not performed. If [0] is specified for the retry count, the number of application
restarts is unlimited and the WorkUnit application continues, even if the application process terminates abnormally.

If the process restart fails, the WorkUnit terminates abnormally and all applications running in the WorkUnit stop.

For a transaction application, abnormal termination of the WorkUnit occurs when the pre-exit program returns abnormally or terminates
during process restarting. To prevent this problem, take measures so that a retry for recoverable errors is performed within the pre-exit
program.

Degenerated Operation when the Restart of a Process Fails

When the restart of a process fails, the WorkUnit is terminated abnormally. However, for a WorkUnit in which two or more applications
are operating concurrently, a function is provided to avoid the abnormal termination of the WorkUnit. This ensures the WorkUnit's
continued operation, even if the restart of a process fails. This function continues the WorkUnit operation of the remaining processes after
outputting the message to indicate the failed restart of the process. For details, refer to "2.1.14 Degenerated Operation when the Automatic
Restart of a WorkUnit Process Fails".

Setting Retry Count using the Interstage Management Console

Set a numerical value (0-255) for the "retry count” on the WorkUnit definition screen or WorkUnit environment setup screen.

Determining when ‘the number of times the application process terminates abnormally’ is Reset in a
WorkUnit

The WorkUnit is not an 1JServer WorkUnit

If the application process runs normally (that is, the application returns) even once before the value set for 'number of times the
application process terminates abnormally' is reached, the value is reset.

1JServer

The value is reset after the application first terminates abnormally once the time set for [Retry Count Set Time] in the Interstage
Management Console WorkUnit:New or Interstage Management Console:Environment Settings window is exceeded.

2.1.4 Server Application Timer Function

The response time between the calling of the server application running under control of a WorkUnit and its return can be monitored by
specifying the maximum processing time (time-out) of the application. Use this function to prevent a delay in response to the client (such
a delay can occur because of application failure, or because of a processing loop). Specify the maximum processing time of the application
in the WorkUnit definition.

The behavior of the application at time-out varies depending on the application type. The server application timer function is also valid
for CORBA, J2EE, and transaction applications.

Refer to "2.2.5 Timeout Monitoring" for more details of the timer function.

Use the timer function as a corrective measure when an application return is delayed because of an error in the server application. For
general operation, avoid using the timer function as it may cause frequent time-outs.

CORBA Application

The following modes can be selected for behavior at time-out:

- The system outputs a time-out message, and forcibly terminates the server application in which a time-out occurred. After forcibly
terminating the process, the application returns with an error to the client. Note that in this mode the application of another thread
running concurrently is also forcibly terminated even if it is processing. Use this mode carefully. This mode is effective for a server
application running in process mode, or if each applicable process can be stopped when a time-out occurs.

- The system only outputs a time-out message, but does not terminate the server application process. For a server application running
in multithread mode, an application running properly in one thread may be forcibly stopped due to a problem in an application
running in another thread. This will avoid this situation. Note that in this mode the application may return normally after a message
is output. When using this function, use it together with the client time-out function (period_receive_timeout) to determine whether
any client time-out can be attributed to a delay in the server application.

-13-

J2EE Application

The following patterns may be selected as the behavior to be followed when a timeout occurs. In both cases, a thread dump is collected
automatically when the timeout occurs.

A message is output informing you that the timeout time was exceeded, and the server application process belonging to the timed-
out processing is stopped by force. After this, an error/exception is returned to the client. Select this pattern if, after considering
the fact that processing is executed in more than one thread on the corresponding process at the same time, you do nor have a
problem with the process being stopped by force.

- A message is output informing you that the timeout time was exceeded, but the server application process is not stopped. Care
should be exercised if this pattern is used because the application is sometimes returned normally after this message is output. In
addition, the output of the message from the same process does not occur until 10 minutes after output of the message following
the first timeout.

- The thread dump is collected in the container information log (info.log). It is also output twice, once immediately after the timeout
occurrence and then once again 10 seconds later. Because of this, a problem in an unchanged application that is run on a thread
can be detected using 2 thread dumps.

- Configure the maximum processing time for the application in the Interstage Management Console WorkUnit settings.

- Processing for stopping the process by force occurs 10 seconds after the second thread dump is output. This prevents the process
being stopped by force before the thread dump is output. How it works is that, 10 seconds after the message informing you that
the timeout time was exceeded is output, the second thread dump is output. A further 10 seconds later, the process is stopped by
force. For this reason, the process does not stop for at least 20 seconds.

- For this reason, even if the message is output the application might be returned normally until the process stops, and the process
might be stopped by force after that.

Setting Maximum Processing Time of Application Using Interstage Management Console
Set "maximum processing time of application" on the WorkUnit definition screen or WorkUnit environment setup screen.
Transaction Application

- The application outputs a time-out message and forcibly terminates the server application process in which a time-out occurred.
After forcibly terminating the process, the application returns with an error to the client.

Standard Setting of Server Application Timer

If the server application timer is to be used in the WorkUnit, the timer must be adjusted according to the client timer. The client timer
function is as follows:

Client time-out
The client time-out is set in the operating environment file (config) in the CORBA service:
period_receive_timeout

This parameter specifies the time during which the client waits for a response after sending a request (issuance of server method). If no
response is received from the server method within the specified time, a time-out is issued to the client application. Note that the value
obtained by multiplying period_receive_timeout by 5 is the actual time in seconds.

The server application timer function and client timer function are used in separate roles as follows:
- The server application timer function mainly monitors delays in server application processing, such as server application loops.
- The client timer function is used to guarantee responses.

To prevent an invalid time-out in the client application, the wait time for response to a request (period_receive_timeout) must be set so
that it satisfies the following expression:

period_receive_timeout (T1) > queuing time + Maximum Processing Time (T2)

For the maximum processing time of client WorkUnits when communication is performed between server applications, set the time
obtained by adding 7 seconds or more to the maximum processing time of server WorkUnits.

When the maximum processing time is exceeded during application processing of server WorkUnits, it may take up to 7 seconds before
Interstage actually detects the excess of the maximum processing time of the server and reports an error to the client.

-14-

Calculate the maximum processing time of client WorkUnits by considering the time during which a request stays in the server WorkUnit
queue and the application processing time of client WorkUnits.

2.1.5 Current Directory

The work directory (current directory) in which a WorkUnit application runs can be specified.

Using the current directory enables the applications working under control of the WorkUnit to run in different work directories.

Current Directory Generation Management Function

Up to five generations of backup copies of the current directory of a WorkUnit can be maintained by setting up the *"Number of Revision
Directories™ statement in the [Control Option] section of the WorkUnit definition.

Number of Revision Directories: 1

A backup copy is created when the WorkUnit is started, and it remains until it becomes older than the number of generations specified in
the WorkUnit definition. The directory that was created when the WorkUnit was last started and has the same name as the WorkUnit is
backed up as "workunit-name.old1.” “workunit-name.old1" is backed up as "workunit-name.old2". Thus, this backup operation is repeated
for each directory until the directory is renamed "workunit-name.oldn™ where n is the specified number of generations. If "workunit-
name.oldn" already exists, it is deleted and the directory one generation younger than "workunit-name.oldn™ is renamed as "workunit-
name.oldn" and preserved.

Even after the restart of the WorkUnit, files in the current directory, such as the standard output file (stdout), standard error output file
(stderr), etc. (or core file for Solaris/Linux version) are saved. Therefore, in the past, after the occurrence of a problem, it was necessary
to collect the files in the current directory as investigation data before restarting the WorkUnit. However, with the Current Directory
Generation Management Function, the WorkUnit can be restarted so that priority is given to the recovery of regular operations, and, later,
investigation data can be collected. Additionally, even if a long period elapses after the occurrence of a problem, the information for the
investigation can easily be obtained.

Note

- The number of generations of the current directory to be backed up is 1 by default. Therefore, directories and files created the last
time the WorkUnit was started necessarily remain in the directory specified by the current directory of the WorkUnit.

In consideration of the sizes of output files, secure sufficient free space in the disk for the directories specified by the current directory.
- The generation management function is valid for the following types of WorkUnits:

ORB, CORBA, UTY

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

- For the details of the current directory of the 1JServer WorkUnit, refer to the "Environment where J2EE Applications are Operated
(1JServer)" chapter in the J2EE User's Guide.

- According to the specified number of generations, estimate sufficient disk capacity for the current directory.

- For a CORBA WorkUnit, if "EXTP_CURRENTDIR_HISTORY=YES," (which specifies a compatible function of older versions),
is included in the environment variables of the WorkUnit definition, five generations of backup copies of the current directory are
maintained.

- A WorkUnit is backed up with the following current directory name in an extended system:

workunit-name.system-name.old*

Specification formats for CORBA applications and transaction applications

Table 2.1 Specification Formats for CORBA Applications and Transaction Applications

Platform System Specification format (*1)
Windows® - xxx\yyy\zzz
Solaris Default system xxxlyyylzzz
Linux Extended system (*2) Xxx/yyy.system-name/zzz

*1 xxx: Directory specified in the WorkUnit definition

-15 -

yyy: Relevant WorkUnit name

zzz: Application execution process ID

*2 The extended system can be used only with Solaris.

The stdout file is allocated to standard output. It is used as the output destination of data placed on standard output by the server application.

The stderr file is allocated to standard error output. It is used as the output destination of data placed on standard error output by the server
application.

According to the specifications of the OS standard 1/O library, data placed on standard output and standard error output is put in the
standard 1/O library for buffering.

The standard output and standard error output must be flushed in order to securely output the buffered data to the stdout and stderror files.

When C language is used, for instance, issue fflush(stdout) and fflush(stderr). Unless both standard outputs are flushed, the data buffered
by the standard 1/O library is not output to the stdout and stderr files.

In C++, use the standard C++ iostream library if the input/output stream (cout, cerr) is used to output data as standard output and standard
error output. If an old iostream library is used, users must program standard output and standard error output to be mapped to the files. If
a standard C++ iostream library is used, the .h file extension of <iostream> uses a header file that is not attached. Refer to information
published by Microsoft® Limited, such as MSDN, for details of the differences between old iostream libraries and standard C++ iostream
libraries.

When Java or COBOL is used, the stdout and stderr files are created but no data is output to the files.

When a COBOL application uses the DISPLAY statement, specify the compiler option SSOUT (environment variable information name)
at compilation. Also, specify the file name of the data output destination in the environment variable information name of the Environment
Variable: statement within the [Control Option] section or [Application Program] section in the WorkUnit definition. If the default is used
as the output destination for the data, and the output of messages for which the @WinCloseMSG" environment variable has been set to
"OFF" is not stopped, the application may hang when the WorkUnit stops.

When Solaris/Linux is used, an application that terminates abnormally and outputs a core file will output it in the respective current
directory.

Note
If Java is used to output data to files, the user must create a program so that standard output and standard error output are allocated to files.

If you don't want standard output and standard error output be allocated to the stdout and stderr files when a CORBA application is used,
specify the following environment variable in the Environment Variable: statement of the [Control Option] section or [Application
Program] section within the WorkUnit definition. No data will be output to the stdout and stderr files:

INTERSTAGE_WU_STDOUT_REDIRECTION = OFF

Setting Application Operation Current Directory in the Interstage Management Console

Set the "application operation current directory™ on the WorkUnit definition screen or WorkUnit environment setup screen.

Notes on creating CORBA Applications and Transaction Applications using Microsoft® Visual C++.NET or
Microsoft® Visual C++ 2005

For an application that is created using Microsoft® Visual C++.NET or Microsoft® Visual C++ 2005, data that is output to the standard
output or standard error output is not output to the stdout or stderr file in the current directory.

To solve this problem and output data correctly, perform the following steps in the application:
Add the following code to the beginning of the program: (Note 1)
freopen("stdout”, "w", stdout);

freopen(“stderr", "w", stderr);

Note 1: If Microsoft® Visual C++ 2005 is used for the build, the "warning C4996: 'freopen’ was declared using an old format.” warning
may be output. This does not affect the program.

If a pre-exit program is to be used in a transaction application, add these statements to the beginning of the pre-exit program. If the code
is added to the pre-exit program, the above processing need not be performed by the main routine or the post-exit program.

-16 -

If a pre-exit program is not to be used, add the code to the beginning of the program and arrange the program so that the code is executed
only once when the program is invoked for the first time.

2.1.6 Environment Variables

The environment variables used by the applications running under control of the WorkUnit can be defined explicitly. The environment
variables that need to be reflected in application processes can be specified in the WorkUnit definition. Use environment variables if they
are used by applications for database processing.

- Valid environment variables for application processes to be operated in the WorkUnit are described in both in the WorkUnit definition
and in the Interstage runtime environment.

In addition, regarding environment variables specified in the Interstage runtime environment, the system environment variable is
inherited in a Windows environment. In a Solaris or Linux environment, according to the start method of Interstage, different
environment variables are inherited as follows:

When Interstage is started with the /sstart command:

The environment variables specified in the /sstarfcommand runtime environment are inherited. In addition, if the operation is designed
so that Interstage is automatically started using the system initialization script (S99startis) at the start of the server, the environment
variables of the system initialization script runtime environment are inherited.

When Interstage is started from Interstage Management Console:

The environment variables specified in the Interstage JIMX service runtime environment are inherited to Interstage. The Interstage
JMX service is started with the isjmxstartcommand. Therefore, the environment variables specified in the isjmxstartcommand runtime
environment are inherited. In addition, if the operation is designed so that Interstage is automatically started by the system initialization
script (S95isjmxstart) at the start of the server, the environment variables of the system initialization script runtime environment are
inherited.

- If the WorkUnit definition and Interstage runtime environment have the same environment variables, the settings of the former have
priority.

The settings that are valid for individual environment variables are explained below:
- Environment variables other than PATH, LD_LIBRARY_PATH, and CLASSPATH

The environment variables described in the "Environment Variable" of the WorkUnit definition and those specified by the Interstage
runtime environment are both valid.

- However, if the same environment variable names are specified, the one specified in the WorkUnit definition takes precedence.

- Also, if the same environment variable name is set in both the [Application Program] and [Control Option] sections, only the one
specified in the [Application Program] section becomes valid.

LD_LIBRARY_PATH

The values of "Path" and "Library for Application" of the WorkUnit definition are specified before the value of LD_LIBRARY_PATH
specified by the Interstage runtime environment.

Thus all environment variables are valid and given priority in the following order:
1. Value set for "Path" in the WorkUnit definition
2. Value set for "Library for Application” in the WorkUnit
3. Value set in the /sstart command execution environment

Set the values for "Path" and "Library Application" in the WorkUnit definition and LD_LIBRARY_PATH in the /sstart command
execution environment so that the total path length does not exceed 16,384 bytes.

PATH

The value of "Path for Application” of the WorkUnit definition is specified before the value of PATH specified by the Interstage
runtime environment.

Both values are valid but the value set in the WorkUnit definition is given priority.

However, configure the settings so that the total length of the paths set in "Path for Application™ of the WorkUnit definition and set in
PATH specified by the Interstage runtime environment will not exceed 4096 bytes.

-17 -

CLASSPATH
CLASSPATH is valid in the CORBA WorkUnit. The variable is set in different ways for these two types of WorkUnits.
- CORBA WorkUnit

The value of "CLASSPATH for Application" of the WorkUnit definition is specified before the value of CLASSPATH specified
by the Interstage runtime environment.

Note

The CLASSPATH set in the /sstart command execution environment is not set as the java process argument (-classpath). The
CLASSPATH set in the /isstart command execution environment is ignored.

For this reason, set all classpaths, which are required for running EJB applications, for "CLASSPATH for Application” in the
WorkUnit definition.

Setting CORBA WorkUnit Environment Variables Using the Interstage Management Console
Set CORBA WorkUnit environment variables using the Interstage Management Console as follows:
Environment variables other than PATH, LD_LIBRARY_PATH, and CLASSPATH
Environment variables can be set in the following two ways:
- Environment variable on the WorkUnit: New screen, or environment variable on the WorkUnit: Environment Setup screen

- Environment variable on the CORBA Application: Deployment screen, or environment variable on the CORBA Application:
Environment Setup screen

If the same name is specified for the WorkUnit environment variable and CORBA application, the one specified in the CORBA
application is valid.

The environment variable that was set during Interstage starting and the WorkUnit environment variable are both valid.
However, if the same environment variable name is specified, the value of the environment variable defined in the WorkUnit is valid.
LD_LIBRARY_PATH

Specify the library path in the detailed settings on the WorkUnit: New screen or WorkUnit: Environment Setup screen. The specified
value is set before the value that has been set for LD_LIBRARY_PATH during Interstage startup.

A character string of up to 255 bytes, excluding null characters and n-size kana characters, can be specified per line. Up to 30 paths
can be specified by using the linefeed character as delimiter.

PATH

Specify the path in the detailed settings on the WorkUnit: New screen or WorkUnit: Environment Setup screen. The specified value
is set before the value that has been set for the environment variable PATH during Interstage startup.

A character string of up to 255 hytes, excluding null characters, can be specified per line. Up to 30 paths can be specified by using the
linefeed character as delimiter.

CLASSPATH

Specify the classpath on the CORBA Application: Deployment screen or CORBA Application: Environment Setup screen. The
specified value is set before the value that has been set for CLASSPATH during Interstage starting.

Specify one path with a character string of up to 255 bytes, excluding null. Up to 255 classpaths can be specified by delimiting them
with a linefeed character.

Note

When the Interstage Management Console is used to start Interstage, Solaris/Linux takes over the environment variables that are used
when the ismngconsolestart command or isjmxstart command is executed, and Windows takes over system environment variables.

For each of the environment variables PATH, and CLASSPATH that are set when the WorkUnit application starts, the total path length
of the value set in the WorkUnit definition, and the value that has been set in the Interstage start environment, may exceed the following
number of bytes:

PATH: 16,384 bytes
LD_LIBRARY_PATH: 16,384 bytes

-18 -

CLASSPATH: 65,536 bytes

If a value exceeds the limit, the excess part is invalid.

2.1.7 Queue Control

Multiple clients may issue requests to the same application (object). Starting the application to concurrently process all requests places
excessive load on the server.

To prevent this problem, use queue control to average the load.

Under queue control, the requests from the client are entered in the queue for the relevant application and processed sequentially by the
application.

The queue unit varies depending on the application type.
CORBA Application
A queue is created for each implementation defined in the implementation repository.

A queue exists for each implementation repository and the requests for an interface are connected to the queue of the corresponding
implementation repository. For this reason, if the application defined in the implementation repository includes multiple interfaces,
the multiple interfaces share one queue.

This queue is also used when a CORBA application is operated without using a WorkUnit.

Note

Queue control using the odsetque and odcntlgue commands is disabled for CORBA WorkUnits.

odsetqueis not valid for Linux (64 bit).
Setting Classpath Using Interstage Management Console

Specify the classpath on the CORBA Application: Deployment screen or CORBA Application: Environment Setup screen.
Transaction Application
A queue is created for each object specified in the WorkUnit definition.

When the application consists of concurrent processes, the Least Recently Used (LRU) algorithm is used for request assignment to
individual processes. This algorithm is used to minimize resource consumption by unnecessary processes. The round-robin algorithm can
also be specified for CORBA applications and transaction applications. The assignment algorithms can be specified in the WorkUnit
definition.

The round-robin algorithm enables using concurrent processes as evenly as possible. Note that requests are not completely equally assigned
because they are assigned in a round-robin fashion to each process that can accept a request at the respective time.

- LRU algorithm

Of the server application processes waiting for requests, the process that last entered the request wait state is assigned a request from
the client.

When a small number of requests are received from the client, request messages are assigned to only specific processes.
Specify LIFO for "Request Assignment Mode" in the WorkUnit definition.
- Round-robin algorithm

Of the server application processes waiting for requests, the process that first entered the request wait state is assigned a request
message from the client.

When a small number of requests are received from the client, request messages are assigned evenly to individual processes.
Specify FIFO for "Request Assignment Mode" in the WorkUnit definition.

When using the process bind function for transaction applications, use the round-robin algorithm. The round-robin algorithm assigns a
session start request evenly to each process and thus prevents performance deterioration by session concentration on one process.

When the process bind function is not used, use the LRU algorithm (default). However, use the round-robin algorithm to evenly assign
request messages from the client to server application processes.

The LRU and round-robin algorithms differ as follows:

-19 -

The LRU algorithm assigns a request message to the process that ran last, and the round-robin algorithm assigns a request to the process
that ran first among other processes waiting for requests. Thus, it is highly probable that the process to which a request is assigned by the
LRU algorithm still exists in memory, while a process to which a request is assigned by the round-robin algorithm may have been swapped
out. The LRU algorithm may thus have better communication capability.

For more information about queue control, refer to "Queue Control" in "2.2 Various Types of WorkUnit".

2.1.8 Inhibiting and Permitting Queues

Each queue can be inhibited from, or permitted to, temporarily reject requests from the client, or restart accepting requests. The queue
inhibit/permit function is used to:

- Restrict the use of a job according to the time zone.
- Temporary reject requests because the load is too high.
- Suppress requests before stopping a job so that the job stops after processing is completely finished.
If the client issues a request while the queue is inhibited, an error is reported to the client. The queue can be inhibited in the following
units:
CORBA Application
- For each implementation
- For each interface installed by implementation

To inhibit the queue for a specific interface, define the interface to be inhibited in the implementation repository definition and then start
the WorkUnit.

Setting Inhibit/Permit Queuing Using the Interstage Management Console

The Interstage Management Console enables closure/closure release using the CORBA Application: Status screen.

IJServer Application
- For each 1JServer Work Unit
Setting Inhibit/Permit Queuing Using the Interstage Management Console

In the Interstage Management Console, it is possible to block/unblock using the 13Server WorkUnit : Operate window.

Transaction Application
- For each object specified in the WorkUnit definition
The /isinhibitque command is used to inhibit the queue and the /spermitgue command is used to permit it.

The inhibit/permit function is enabled only when the relevant application runs under control of a WorkUnit. When Solaris/Linux is used,
only the user who starts the WorkUnit or the superuser can use the inhibit/permit function. Inhibiting or permitting queues can be performed
using the isinhibitque or ispermitque command or Interstage operation API.

2.1.9 Maximum Queuing Function

The maximum number of requests that can be queued can be specified explicitly with this function. This can restrict requests from the
client when the load placed on the server application exceeds a given level.

If the number of requests issued by the client exceeds the specified maximum queue number, an error is reported to the client.

The request being presently processed by the server application is not included in the number of queued requests. Specify the maximum
queuing function in the WorkUnit definition.

The maximum queuing function can be used for CORBA applications, 1JServer EJB applications, transaction applications, and wrapper
WorkUnits (Windows® and Solaris version wrapper WorkUnits only).

For the errors reported to the client for CORBA, refer to the "Exception Information and Minor Codes Reported from the CORBA Service"
chapter in the Messages manual.

-20 -

Setting Maximum Queuing on the Interstage Management Console

The maximum number of messages that can be queued for CORBA applications can be set using "maximum number of queued messages"
on the CORBA Application: Deployment screen or CORBA Application: Environment Setup screen of the Interstage Management
Console.

The maximum queuing number for an 1JServer EJB application can be set in "Maximum Number of Queuing Messages" of the Interstage
Management Console WorkUnit : Create New window, or the 1JServer WorkUnit : Environment Settings window.

2.1.10 Alarm Report Function for Stagnant Queues

An alarm is reported when the number of stagnant queues left unprocessed exceeds a specified number of queues to be monitored.
Monitoring restarts when the number of stagnant queues is reduced to the specified number of queues.

This function thus enables real-time monitoring of the system load status.
The stagnant queue monitoring function can monitor the following three states:
- The number of stagnant queues exceeds the maximum queue number.
- The number of stagnant queues reaches a specified queue number (any).
- The number of stagnant queues reaches a specified monitor restart queue number (any).
Users can specify which state to monitor in the WorkUnit definition.
Working with Systemwalker CentricMGR enables centralized monitoring for a certain number of stagnant queues.

When the number of stagnant queues subjected to monitoring has reached the relevant state, state transition information is displayed on
the screen of the Interstage CentricMGR operation control client.

This function thus enables real-time monitoring for state transition of the number of stagnant queues.
Refer to the "Performance Monitoring" chapter in the Operator's Guide for details of the linkage with Systemwalker CentricMGR.

The alarm report function for staghant queues can be used for CORBA and 1JServer EJB applications (running under control of the relevant
WorkUnit), transaction applications, and wrapper WorkUnits (Windows® and Solaris version wrapper WorkUnits only).

Even when the application does not work with Systemwalker CentricMGR, a message is output when the respective event occurs. The
number of stagnant queues can thus be checked by monitoring the respective message.

The following table lists the messages output for individual events. Refer to the Messages manual for more information.

Table 2.2 Messages Output for Individual Events
Type of application Event Output message

CORBA application The number of stagnant queues exceeds the maximum queue number. 0d11108

The number of stagnant queues reaches the specified queue number (any). | 0d11107

The number of stagnant queues reaches the monitor restart queue number | 0d11109
(any).
1JServer EJB application | The number of stagnant queues exceeds the maximum queue number. 0d11108

The number of stagnant queues reaches the specified queue number (any). | 0d11107

The number of stagnant queues reaches the monitor restart queue number
(any).

Transaction application The number of stagnant queues exceeds the maximum queue number. td12034

0d11109

The number of stagnant queues reaches the specified queue number (any). | td12033

The number of stagnant queues reaches the monitor restart queue number
(any).
Wrapper WorkUnit The number of stagnant queues exceeds the maximum queue number. (*1) | td12034

td12035

The number of stagnant queues reaches the specified queue number (any). | td12033

-21-

Type of application Event Output message

The number of stagnant queues reaches the monitor restart queue number | td12035
(any).

*1 To use the maximum queue number for a wrapper WorkUnit, specify "Number of Maximum Session™ in the component transaction
service environment definition.

Setting Maximum Queued Messages Using the Interstage Management Console

The maximum number of queued messages that are subject to monitoring and the number of queued messages for restarting monitoring
can be set on the CORBA Application: Deployment screen or CORBA Application: Environment Setup screen of the Interstage
Management Console. Use "maximum number of queued messages under monitoring"” and "number of queued messages for restarting
monitoring" on the screen.

The monitor queuing number and monitor restart queuing number for 1JServer EJB applications can be set in the Interstage Management
Console WorkUnit : Create New window or the 1JServer WorkUnit : Environment Settings window. Use "Number of Monitor Queuing
Messages" or "Number of Monitor Restart Queuing Messages" as appropriate.

2.1.11 Priority Control

Priority can be assigned among the objects that constitute a job.

This function is useful when one job needs to be processed prior to others, for example when the CPU load is too high. Priority levels 1
to 255 can be assigned.

Priority control can be performed for CORBA applications and transaction applications.

For CORBA applications, priority can be assigned to the interfaces within the same implementation. Individual priority levels can be
specified in the implementation repository definition.

Refer to "Priority Order Control" in "CORBA Application Queue Control" in the "WorkUnit Operation of Each Application" chapter for
information on how to specify the priority in the implementation repository definition using the OD_impl_inst command.

For transaction applications, a priority can be assigned among applications within the same WorkUnit. Individual priority levels can be
specified in the WorkUnit definition. Refer to "Operation Using the Object Priority Function" in "Operating Transaction Applications
WorkUnits" in the "WorkUnit Operation of Each Application” chapter for information regarding priority control over transaction
applications.

Setting Priority Control Using Interstage Management Console

Set "priority” on the CORBA Application: Deployment screen or CORBA Application: Environment Setup screen.

2.1.12 Queued Message Cancellation Function

Queued requests can be canceled and an exception posted to the client. This function is enabled in the following cases:

- The load is high, and it is estimated that that sending a reply for the queued request before the client times out will not be possible
- The load is high, and it can be decreased canceling a queued request for a low priority application in the WorkUnit

Queued requests can be canceled in the following units:

CORBA Applications
- For each implementation
Queued requests are canceled using the /scancelque command. They cannot be canceled using the Interstage Management Console.

The cancellation function is enabled only when the relevant application runs under control of a WorkUnit. When Solaris/Linux is
used, only the user who starts the WorkUnit or the super user can use the cancellation function.

To cancel all queued requests that belong to a WorkUnit, stop the WorkUnit.

-22-

2.1.13 Buffer Control

Request data from the client is temporarily held in shared memory while it is queued.

The data area in the shared memory is referred to as a communication buffer, and the way of controlling the buffer area is referred to as
buffer control. The communication buffer consists of several buffer areas, each of which holds request data. The size of the buffer is called
the buffer size and the number of buffers is called the buffer number.

2.1.13.1 Buffer Control for CORBA Applications

A buffer of a given size (4096 bytes) is prepared for copying a piece of request data. Request data is copied to the buffer area and then
queued. If the length of request data is equal to or less than the given length, the data can be accommodated in the buffer area. All for the
request data is copied to the buffer area and is then entered into a queue (*1). The queue used is created for each implementation defined
in the implementation repository. Refer to "CORBA Application™ in "2.1.7 Queue Control". If buffer tuning is performed in the WorkUnit
definition, a buffer area is created for each implementation. If buffer tuning is not performed, the default buffer is shared as a buffer area.
Note that buffer tuning cannot be performed for CORBA applications that do not run in WorkUnits. The default buffer is shared as a buffer
area for CORBA applications that do not run in WorkUnits. In addition, the buffer cannot be tuned for a CORBA application that does
not perform the WorkUnit operation. A CORBA application that does not perform the WorkUnit operation shares the default buffer as a
buffer area.

From a performance viewpoint, it is preferable that request data be fully accommodated in the buffer area and then queued. In the case of
a job using many requests with data exceeding the given length (4096 bytes), the user can tune the buffer size and buffer number for the
job. Do not to make the buffer size and buffer number too large, it will consume too much shared memory space and adversely affect the
operation efficiency. A reasonable buffer size and buffer number must be defined for each job.

Buffer tuning is valid for CORBA applications running in WorkUnits. Buffer tuning can be performed for each CORBA application by
specifying the "Buffer Number" and "Buffer size" statements in the WorkUnit definition. The tuned buffer uses a shared memory separate
from the one used for the default buffer. For details of the definition, refer to "Buffer Number" and "Buffer Size" below.

If the buffer number is not tuned in the WorkUnit definition, the default buffer area is used. The default buffer area is shared for CORBA
communication excluding the CORBA applications for which the buffer number is tuned in the WorkUnit definition. The default buffer
normally does not require tuning. However, when message 0d11110 or 0d11111 is output, the number of default buffers may be too small.
In this case, tune the buffer number by modifying the number_of_common_buffer parameter in the CORBA service operating environment
file (config).

*1 If the size of request data exceeds the given length, the excess data is received when the server application executes processing. If a
client in a multithread configuration issues multiple requests simultaneously, the next request is not processed until the data for the first
request is read. Moreover, if a large amount of data is requested, the client application process for writing to a socket may time out and
the error message 0d10965 may be output.

Buffer Size
Each request data item includes a data part that is actually set by the user and a control data part used by Interstage.

For CORBA applications, the validity of the buffer size can be checked by referring to the length of data collected for each operation by
the performance monitoring tool.

Buffer Number
The buffer number needs to be determined from the number of concurrent requests from the client.

As many buffers are required as there are client requests concurrently enqueued. Determine the number of requests that are concurrently
enqueued based on the application concurrency, application processing time, and the number of requests concurrently issued by the client.

The validity of the buffer number can be checked by referring to the number of accumulated queues obtained by the 7sinfobj command
and the number of requests waiting for processing obtained by the performance monitoring tool. Refer to the "Performance Monitoring™
chapter in the Operator's Guide for information on the performance monitoring tool.

Buffer Tuning Using the Interstage Management Console

Buffer tuning in units of CORBA applications can be performed by setting "number of communication buffers" and "communication
buffer length" on the CORBA Application: Deployment screen or CORBA Application: Environment Setup screen.

-23-

2.1.13.2 Buffer Control for Transaction Applications

Buffer areas, each consisting of a given size (4096 bytes), are prepared for transaction applications. Request data that exceeds the given
size is copied to two or more combined buffer areas and then enqueued. Transaction applications are used for general online processing.
Therefore, do not use them for transmission of large amounts of data, such as in file transfer. The number of buffers can be tuned for
transaction applications. It can be changed in the environment definition for the component transaction service.

Refer to the Tuning Guide for the environment definitions of the component transaction service.

2.1.13.3 Buffer Control for IJServer EJB Applications

The size of the buffer area for copying one item of request data is set at a length of [4096] bytes. This is used for copying and queuing
request data. When the request data length does not exceed this limit, it can fit in the buffer area, and is copied and queued (*1).

If the buffer is tuned, a buffer area is created in the WorkUnit definition for each 1JServer. If the buffer is not tuned, the default buffer is
used.

The fact that the request data fits in the buffer area and can be queued enhances processing efficiency. If the number of requests means
that the request data length exceeds [4096] bytes, the buffer length and number can be tuned by the user.

When the buffer length and number are such that they require the use of a large amount of common memory however, it is inefficient.
For this reason, set an optimum buffer length and number for each business.

If the buffer number is not tuned in the WorkUnit definition, the default buffer area is used. If the buffer length and number are tuned,
CORBA communication is shared except for 1JServer EJB applications and CORBA applications.

Normally, there is no need to tune the default buffer. If 0d11110 or 0d11111 is output, however, it is possible that the default buffer size
is insufficient. In this case, change the number_of the common_buffer parameter in the CORBA service operating environment file
(config).

*1 If the size of request data exceeds the given length, the excess data is received when the server application executes processing. If a
client in a multithread configuration issues multiple requests simultaneously, the next request is not processed until the data for the first
request is read. Moreover, if a large amount of data is requested, the client application process for writing to a socket may time out and
the error message 0d10965 may be output.

Buffer Size
One item of request data contains the control data part set by the actual user and the control data part used in Interstage.

The data length for each operation collected using the Performance Monitoring Tool can be referenced to check the validity of the buffer
length.

Buffer Number
The buffer number depends on the number of simultaneous requests from the client.

Requests from the client must be queued simultaneously. The number depends on the number of simultaneous requests from the client as
well as the application concurrency and processing time.

The validity of the buffer number can be checked by using the isinfobj command to refer to the number of messages in the queue and the
number of processing wait requests collected using the Performance Monitoring Tool. Refer to the "Performance Monitoring Tool" chapter
for details.

Buffer Tuning Using the Interstage Management Console

The buffer number and length for the 1JServer EJB application can be set in 'Buffers' and 'Buffer length' in the Interstage Management
Console WorkUnit: New window, or in the 1JServer WorkUnit: Environment Settings window.

2.1.14 Degenerated Operation when the Automatic Restart of a WorkUnit
Process Fails

When a process is forcibly stopped because an application has terminated abnormally or the maximum application processing time has
elapsed, the process restarts because of the automatic process restart function. At this time, if the process restart fails due to an application
preprocessing error or application preprocessing timeout, the WorkUnit terminates abnormally.

-24 -

For a WorkUnit in which two or more applications are operating concurrently, a function to avoid this situation is supported. Even if a
process fails to restart, this function continues the WorkUnit operation of the remaining processes, after outputting the message to indicate
the failed restart of the process.

This function is valid for a CORBA WorkUnit and 1JServer WorkUnit.

In this function, when the number of process concurrency in a WorkUnit is two or more, even when the automatic restart of the application
process fails, the operation is continued in the state where the number of process concurrency is decreased by one. Also, the function to
restore the degenerated application process is provided.

To use this function for a CORBA WorkUnit, set "YES" to the "Process degeneracy" statement in the "Control Option" section of the
WorkUnit definition.

For an 1JServer WorkUnit, in the [Environment Settings] window of Interstage Management Console, select [Continue WorkUnit
Operation] form the [Control When the Automatic Restart of an Application Fails] items.

2.1.14.1 Restoration of the WorkUnit in Degenerated Operation

A function is provided to restore the WorkUnit whose operation is degenerated. This function performs the restart of processes and restores
to the original process concurrency number the process concurrency that has been reduced due to the failed automatic restart of processes.
If the number of process concurrency is dynamically changed, it will be restored to the changed number of process concurrency.

The generated WorkUnit is restored at the following opportunities:
Recovery by the operation of the command (isrecoverwu)

Recovery by the operation of I nterstage M anagement Console

2.1.15 Changing a WorkUnit's Number of Process Concurrency

The number of process concurrency of server applications can be changed without stopping a WorkUnit in operation or changing the
WorkUnit definition.

For details, refer to "Dynamic Changing of the Number of Server Application Processes" in the "Starting / Stopping / Surveillance of
WorkUnits" chapter.

This function is valid only for a CORBA WorkUnit and the WorkUnit of a transaction application.

Note this function is supported only for the Enterprise Edition.

2.2 Various Types of WorkUnit

Interstage Application Server supports the following types of applications for operation under control of WorkUnits:

- CORBA application (CORBA WorkUnit)

Transaction application

J2EE application (1JServer WorkUnit)

Wrapper object
- General application (application not under control of Interstage Application Server)

Of these WorkUnits, the 13Server WorkUnit and CORBA WorkUnit that use CORBA applications can be defined using the Interstage
Management Console.

Using the Interstage Management Console to operate CORBA WorkUnits makes it easy to define WorkUnits and initialize application
environments. It also enables centralized management of operation and status referencing.

2.2.1 CORBA WorkUnit

CORBA applications (server applications) are supported for WorkUnit operation. A WorkUnit running CORBA applications is referred
to as a CORBA WorkUnit.

The Interstage Management Console, or WorkUnit management commands, can be used for CORBA WorkUnit definition.

-25-

Fujitsu recommends using the Interstage Management Console to operate CORBA WorkUnits.

2.2.1.1 Using WorkUnits
This section explains CORBA WorkUnits.

Application Execution Unit of CORBA WorkUnits

A CORBA WorkUnit uses the CORBA application registered in the implementation repository as its execution unit. Specify the
implementation repository 1D as the identifier of a CORBA application in the WorkUnit definition. For CORBA applications using the
same operation unit (starting and stopping simultaneously), multiple implementation repository IDs can be specified for one WorkUnit.

Applicable CORBA Applications
Only a CORBA application with the server type "persistent” can run as a CORBA WorkUnit. (type=persistent of OD_impl_insi)

CORBA Application Operation Mode

"SYNC_END" can be used as an operation mode of the CORBA WorkUnit. In this mode, if the process returns from
CORBA_BOA_impl_is_ready when the WorkUnit stops, the process must always be terminated.

If the operation mode is "SYNC_END" when the WorkUnit is stopped in normal stop or synchronous stop mode, the process returns from
CORBA_BOA_impl_is_ready, but WorkUnit termination cannot be performed until the process is finished. For this reason, the process
must always be terminated if it returns from CORBA_BOA_impl_is_ready.

2.2.1.2 CORBA WorkUnit Operation Functions

This section explains the major functions for CORBA WorkUnit operation.

Application Process Concurrency

If multiple clients are expected to issue requests simultaneously to one server application, the number of server application processes that
can concurrently be processed (process concurrency) can be defined. Specify the process concurrency in the WorkUnit definition.

The amount of process concurrency should be determined according to the processing time per process, time required for response to
clients, and the number of requests per time unit.

An appropriate process concurrency must be determined because setting it too high will adversely affect system resources, including
memory.

Note

If WorkUnit management commands are used to define CORBA applications, the process concurrency must be defined not only in the
WorkUnit definition but also in the implementation repository definition.

Note that the process concurrency in the WorkUnit definition must be lower than that in the implementation repository definition.
Setting Process Concurrency on the Interstage Management Console

When the Interstage Management Console is used to define a CORBA application, set 'process concurrency' on the application
deployment screen.

If the process concurrency is set on the Interstage Management Console, it will not need to be set in the implementation repository
definition.

Automatic Restart of Applications

If an application terminates abnormally due to input of invalid data from the client, the application can be automatically restarted. Thus,
if automatic restart is defined, requests accepted from the client while the application was stopped can be processed automatically.

Automatic application restart can be specified in the WorkUnit definition. The value to be set is the number of consecutive abnormal
terminations by which the WorkUnit terminates abnormally.

The number of consecutive abnormal terminations is the number of times the abnormal termination and restart sequence is repeated. The
WorkUnit terminates abnormally when the specified number of consecutive abnormal ends is reached. At that point the WorkUnit

-26 -

terminates abnormally, the application processes in the WorkUnit are all stopped and the request being processed in the WorkUnit returns
with an error to the client.

Setting the Retry Count on the Interstage Management Console

When the Interstage Management Console is used to define a CORBA application, set the number of consecutive abnormal ends in
the parameter "retry count” on the WorkUnit definition screen.

Timer Monitoring Function

During WorkUnit operation, the time between the calling of the CORBA application was and its return (its "response time") can be
monitored. This monitoring function monitors application hangs and processing delays to prevent delays in responding to the client. Specify
the monitoring time in the WorkUnit definition (Maximum Processing Time).

Whether to forcibly stop the application at occurrence of a time-out can also be specified in the WorkUnit definition (Terminate Process
for Time out).

- A time-out message is output in this case and the application process is forcibly terminated. The following exception is returned to
the client:

System exception Minor code (in hexadecimal notation)

UNKNOWN 0x464a0072

0x464a0872

- A time-out message is output but the application process is not terminated.

If the timer monitoring time is defined for the WorkUnit, notice the setting in the config file of the CORBA service. Refer to "Timeout
Monitoring during Operation of CORBA Applications™ for more information.

Queue Control

If requests from multiple clients are concentrated on a specific CORBA application and all requests are processed concurrently, the server
may become overloaded, which can cause processing delays and frequent time-outs. The queue control function can average the load to
prevent this problem. Refer to "CORBA Application Queue Control" in the "WorkUnit Operation of Each Application" chapter for more
information.

2.2.2 Processing with Transaction Applications

This section explains the procedure to create transaction applications. Transaction linkage is broadly divided into two types:

Local Transaction Linkage

Each application links with only one database. A transaction is restricted to one server, and controlled on the server-side.

Global Transaction Linkage

An application links with multiple databases, and updates can be carried out simultaneously. The transaction can be controlled either on
the client workstation or on the server.

Linkage is also possible with databases on separate server systems. Therefore, you can have a more flexible operational design because
you can freely distribute resources such as transaction applications and databases. Global transactions are based on an XA interface
specified by X/Open.

The following figure shows the operation of Local Transaction Linkage and Global Transaction Linkage.

-27 -

Figure 2.1 Local and Global Transaction Linkage

LOCAL TRANSACTION GLOBAL TRANSACTION
SERVER
WorkUnit
Application
i
SERVER

WorkLUnit I I
I—I _ SERVER
. \ Application wg) D' CLIENT WorkUnit

CLENT
oe]
Application
oz

DB : Datalbsase

Apart from operations involving CORBA applications, transaction-related operations are necessary in order to use an external transaction
application.

2.2.2.1 Application Runtime Environments Using WorkUnits explains the tasks relating to the use of transaction applications. First, the
tasks which you need to understand before performing Transaction Linkage are discussed. These include:

- Application execution environments that use WorkUnits
- Creating server applications that use APM
- Server object registration
Then, the tasks which are required depending on the transaction mode are discussed. These include:

- Local transaction linkage

Global Transaction Linkage

- Session information management

Linkage with multiple databases from one WorkUnit

The management of session information in transaction applications is also discussed.

Note

The number of objects that can be registered in a WorkUnit for each system scale must satisfy the following formula.
[Conditional expression]

Number of objects that can be registered = Internal limit for each system scale - number of transaction application WorkUnits - number
of WorkUnits that use multiobject residence

[Internal limit]

small: 202

moderate: 402

large: 602

super: 1002

Example:

The maximum number of WorkUnits that can be started if there is one object for one WorkUnit is as follows:

small: 101

-28 -

moderate: 201
large: 301
super: 501

2.2.2.1 Application Runtime Environments Using WorkUnits
The following operations are possible using a WorkUnit:

- You can separately control the environment necessary for executing the application. An application can be developed independently
from the execution environment just by adding an object to the WorkUnit.

- Batch control of operations is possible by assembling into one WorkUnit objects that are to be combined by the operation. By starting
or stopping a WorkUnit, you can group all objects defined in the WorkUnit together so that they can or cannot be accessed from a
client.

- Applications are loaded into memory by starting the WorkUnit, and application pre-processing is executed. The main processing is
carried out immediately in response to a client request during the operation. Pre-processing and post-processing can be carried out
separately from the main processing. Post-processing is carried out when the WorkUnit terminates. Pre-processing (pre exit program)
and post-processing (post exit program) are invoked for each process. Refer to "2.2.2.2 Creating Server Applications that Use APM"
for details on the application processing mechanism.

The main issues to consider in defining and using the WorkUnit are:

Multi-control

If requests are simultaneously output from multiple clients to one application and multi-control is enclosed, then multiple execution units
(process/es) are used to process the requests.

Queue Control

If a request is simultaneously output from multiple clients to one application, loading can be balanced by queue control.

Resident, Non-resident, and Multi-object Resident Operation of Applications

The client request can specify whether the application that is loading should be resident or non-resident. You can use system resources
efficiently by using them differently according to the nature of the client's request.

You can select a resident operation in which one application is loaded in one process or a multi-object resident operation in which multiple
applications are loaded in one process.

Application Timeout Monitor

You can specify the maximum processing time (timeout) of an application and monitor it.

Exit Program Timeout Monitor

You can specify the maximum processing time (timeout) of a pre exit and post exit programs to avoid loops and then monitor them.

Automatic Re-start at the Time of Application Error

You can re-start the application automatically if it terminates abnormally due to an input data error from the client. By setting automatic
restart, client requests that have been received during the failure can be processed normally after restarting.

Getting Snapshots

The log of 1/0 information in response to requests from the client can be collected. From the WorkUnit file, you can obtain log information
from start-up to termination of the WorkUnit for the purpose of debugging. Log information is output to the snapshot output path specified
in the WorkUnit definition.

Output Folder

You can specify the current folder when an application, pre-processing exit program, or post-processing exit program is running. The
standard output and standard error output are directed to this folder:

-29-

Output folder: xxx\yyy\zzz

xxx: Folder specified in the WorkUnit definition
yyy: Target WorkUnit name

zzz: Application execution process id

The stdout file is allocated to the standard output. This file is used as the output destination when data is output to the standard output by
a server application.

The stderr file is allocated to the standard error output. This file is used as the output destination when data is output to the standard error
output by a server application.

When the application terminates abnormally, core image files are output to this folder. When the snapshot output path is omitted, snapshots
are also output to this folder.

If a WorkUnit exit or process salvage exit program is used, the exit program runs in the following folder:

Operation folder: xxx\yyy\zzz_exit

xxx: Folder specified in the WorkUnit definition
yyy: Target WorkUnit name

zzz: Execution process id of the exit program

The standard output file and standard error output file are output to the above folder.

The output folder is created when a WorkUnit is started, and is retained even after the WorkUnit is stopped. When the WorkUnit is restarted,
the existing output folder will be deleted for each file under the folder and a new output folder will be re-created. However, if the output
folder for the WorkUnit definitions is changed after the WorkUnit is stopped, the output folder created when the WorkUnit was started
last time will not be deleted even when the WorkUnit is restarted. In this case, manually delete the unnecessary output.

Deleting Output Folders
You can specify that the output folder for a server application be automatically deleted when the application is stopped.

The output folder will be deleted when the server application stops because the WorkUnit is stopped or dynamically modified, or the
number of concurrent processes is changed. This ensures that the output folders for the stopped server application do not remain on disk
to take up excessive disk space.

However, if files with a file size of 1 or more exist in the output folder, the output folder will not be deleted. Check whether these files
are necessary, and manually delete any unnecessary files. In this case, the output folder will also be deleted and re-created when the
application is restarted.

2.2.2.2 Creating Server Applications that Use APM

When carrying out transaction linkage, you can create a server application by using APM (Application Program Manager). A server
application is executed by linking it dynamically with the APM.

The following figure shows the APM structure.

-30-

Figure 2.2 APM Structure
Connecting to database
and opening files

Pre-processing
Pre-exit program

r
Dynamic Object

o Main Processing
APM Application

Skeleton

Accessing DAT,
database BAS

Transaction application

Post-processing
Post-exit program

Disconnecting from
database and closing files

Server application

APM: Application Program Manager

Ordinary applications are normally comprised of three processes:
Pre-processing

This carries out connection processing to the databases used and file opening processing.
This processing

This carries out database access processing.
Post-processing

This carries out disconnection from the databases used and file closing processing.

The pre-processing and post-processing required depended on the database processing system used. The pre-exit program and the post-

exit program can be specified using APM. Therefore, server application developers only develop the main processes, and development
efficiency is enhanced.

Create an APM for each database management system that you use, and specify it in the WorkUnit definition. However, you do not need
to create an APM in the case of local transactions. Specify the APM name used for local transactions in the WorkUnit. Additionally,
because only one APM can be specified for one WorkUnit, it is necessary to divide the WorkUnit into two or more WorkUnits if two or

more database management systems are to be used.
2.2.2.3 Server Object Registration

The operations carried out automatically at the time of start-up if transaction linkage is carried out are:

- Server application start-up
- Object reference generation and registration to the Naming Service

However, registration to the server object Naming Service can also be carried out manually.

2.2.2.4 Manual Registration of Server Objects
1. Specify in each WorkUnit definition that you wish to register the object manually with the Naming Service.

2. Register the object to the Naming Service with the OD_or_adm command before starting the targeted WorkUnit. You need to have
started Interstage at this time.

2.2.2.5 Local Transaction Linkage

Carry out local transaction linkage after specifying the transaction instruction in the server application. The following figure shows local
transaction linkage:

-31-

Figure 2.3 Local Transaction Linkage

SERVER

Gnnmui';g o database
and opening files

Begin
Commit |/ rallback

- -
DB access

CLIENT
Server application

APM: Application Program Manager

Creating a Client Application

Create a client application in the same way as creating a normal CORBA client application on the client-side, as the transaction instruction
is not specified in the client application. No special steps are needed for local transaction linkage on the client-side.

Creating a Server Application

Create an application that includes a transaction instruction for the database management system being used, and the additional functions
necessary for using the database management system (such as database connection and disconnection processes).

WorkUnit Definition
In addition to the normal WorkUnit definition, the following table shows the WorkUnit definition items that are necessary for local
transaction linkage:

Table 2.3 WorkUnit Definition Iltems Necessary for Local Transaction Linkage

Definition item Set content
APM Name TDNORM
Control option | Environment Environment variables used when applications and exit programs operate
variable
Application library Folder and path where the application and exit program executable files are stored.
path

2.2.2.6 Global Transaction Linkage

Global Transaction Linkage enables simultaneous updates to linked multiple databases and maintains the integrity of each database. Global
Transaction Linkage supports databases stored on other server systems.

CORBA compliant transaction management is carried out in the distributed object environment by the Database Linkage Service, which
is comprised of two methods:

OTS System
This carries out transaction management for the entire OTS system. The system manages transaction requests from the client and transaction
recovery processing.

-32-

Resource Management Program

This is the program for executing transaction completion processing (commit/rollback). commit stores data that has been updated during
the transaction. roflback restores to its pre-update status.

The following figure shows examples of Global Transaction Linkage in the case where transactions are controlled on the client-side. The
database is maintained in multiple server machines.

Figure 2.4 Global Transaction Linkage Examples

Server

0TS Resource
systen Manager
T——

commit f rollback

Transaction nstructions Connecting to da,t,;bq,-se
: anl opening files o
Commit { rollback
APM . . D
Client Transaction DR
application Invocation o — :‘[
of ohject
| I Disconnecting from s
L — database and closing files * i
CLIENT S
Server application

oy
s

commit [rallback

Resource
Manager

. commit f rollback
Cmnnctmgmdntabusc

and opening files

Transaction ' DE

AFM e
application ACCESS

¥
...... 5| D

M

5

.
Disconnecting from
database and closing files

Server application

APM: Application Program Manager
DE: Database
DEMS: Database control system

Global transaction linkage procedures are:

- Creating a Client Application

Creating a Resource Management Program

- Creating a Server Application

WorkUnit Definition

-33-

You can control transactions on the client or server side when Global Transaction Linkage is used.

Creating a Client Application

This section explains the procedures necessary to use Global Transaction Linkage. The steps are:

1. Program specification

This specifies the process globally from the start to termination of the transaction, in order to request the transaction process in the

database linkage service.

2. Development of load modules

This links the client application to the library provided by the database linkage service for client applications.

Creating a Resource Management Program

Carry out transaction completion processing (commit/rollback) in the resource management program.

A resource management program is created for each database management system (Symfoware or Oracle or SQL Server). The following
figure shows the procedure for creating a resource management program.

Figure 2.5 Creating a Resource Management Program

(1 Creation of Resource SERVER (ZiCreation of resource
Manager definition file
Resource
Data definition file
CORBA service Create resource
Implementation Repository Resource definition file for
Naming Service Manager each database
DREMS
(3| Registration of the Resource .
- Manager for each dambase REI:::::;
management systenm T'F'li-ll'lilgﬂl'
for each
Resource
database Da definition file
management
il Create resource
definition file for
J cach database
-

DBMS: Create a Resource Manager

The steps to create a resource management program are:

1. Creating a Resource Management Program Load Module

Use the otslinkrsc command in each database management system used (Symfoware, Oracle and SQL Server) to create a resource
management program from the following libraries:

- Program for XA linkage (for linkage with XA interface)

- Database library provided by the database management system

-34-

The following figure shows the flow of creating a resource management program using the ofs/inkrsc command.

Figure 2.6 Creating a Resource Management Program Using otslinksrc Command

B e J Created by otsmiocapgm command,

Dhatabase libroey l Provided by database management system

otzlinkrsc command

Resource
Manager

Refer to the manual of the database you are using for details on the database library.
. Creating a Resource Definition File

The resource definition file is the file referenced by the resource management program. It specifies the database type and open/close
information. It is created for each database that is used (each instance in the case of Oracle).

Note
Resource definition files used in former versions cannot be used as is, but must be converted to the current version.
. Registering the Resource Management Program to the CORBA Service

After creating the resource management program, register it in the Implementation Repository and Naming Service. Register the
resource definition file by specifying its name at the ofssetrsc command.

Note

Execute the otssetrsc command on the machine that invokes the resource management program.

Creating a Server Application

The following figure shows the procedures for creating a server application.

Figure 2.7 Creating a Server Application

SERVER APPLICATION
- - g
- - - - " i
-processing -
Pre-exit program l -
Transaction
application
Definidon in WorkUnit AFM)
(1) Specification of program
‘-‘@ Creation of load module
Post-processing
Post exit program §~ = o
- -
() Creation of APM

APM: Application Program Manager

The steps to create a server application are:

-35-

1. Specification of Program
Processing (user service implementation) for the database is described in the program.
2. Creation of Load Modules
Create the following libraries and programs, and then create the transaction applications (load modules) by compiling and linking:

- Program for server applications (the program created in step 1)

Skeleton

- Server management library (a library for transaction management)

Database library

The following figure shows the flow of creating a transaction application.

Server control library l Provided by Database
Linkage Sernice

Database library J Provided by database

Figure 2.8 Creating a Transaction Application

Server applicatinn.
program

Compiler
link

. o
Compiler

Transaction
IDL file application

3. Creation of APM

The APM is created with the fdlinkapm command. When the tdlinkapm command is executed, create the APM by linking the XA
linkage library, which is provided by the database management system with the XA linkage program prepared at the time of
transaction application creation.

For information on libraries provided by the database control system, refer to the appropriate database manual. The following figure
shows the flow of creating APM from the fd/inkapm command.

Figure 2.9 Creating APM
tdlinkapm command If you are using Oracle or SymfoWARE/RDE
this is provided by the Database Linkage Service
{only if you are in Solaris).

‘_’__,_.u- XA linkage program Oiherwise it can be created by

entering the ol=mkxapgm command

Database library I Provided by database

Link

-~

comitrel system

APM I

WorkUnit Definition
In addition to the normal WorkUnit definition, the WorkUnit definition items in the following table are necessary for Global Transaction

Linkage:

Table 2.4 WorkUnit Definition Iltems Necessary for Global Transaction Linkage
Definition item Set content

APM Name Specify the name of the created APM

-36-

Definition item Set content

Control option Environment Variable | Environment variable used when applications and exit programs operate.
Application library Folder path where the application and exit program executable files are stored.
path

Resource manager Resource definition Specify the resource definition name used by the WorkUnit.

information name
Database system name | Specify the name of the database system used by the WorkUnit (up to a

maximum of 32 units).

Note

When using the Database Linkage Service, WorkUnit definitions used in the former versions cannot be used as is, but need to be converted.

Linking to Multiple Databases from One WorkUnit

To link from a single WorkUnit to multiple databases, in the WorkUnit definitions, set the [Resource Manager] section for each database,
and create the application.

Organizing applications that link to multiple databases into a single WorkUnit has these advantages over construction of systems in which
WorkUnits are separated according to each database:

- Simplified development and operation
- Improved throughput
- Reduced maintenance
However, these points should be noted:
- When creating a server application that links to multiple databases, make sure that the actual number of databases is at least two.
- Within a single transaction, access all databases that the server application is able to link to.

For details, refer to the "Operating the Distributed Transaction Function" chapter.

2.2.2.7 Session Information Management

By using the session information management function in the transaction application, you can manage the session information when the
application system is being constructed. Session information means any information that is held in each client on the server-side when
there are multiple requests and responses between the client and server objects.

There is also a way to use the process binding function in order to manage session information.

Using the Session Information Management Function

Session information management is an application in which a single task concludes as a result of multiple requests and responses. It is
used to temporarily store any data on the server side according to each processing request. Information needs to be recorded in databases
for long-term storage.

Session Information Management Units

In the session information management function, session information is managed by the Session Information Management Object (SMO).
The SMO can manage session information for each of the three identifiers that distinguish the client:

- Session ID
- Web server (InfoProvider Pro) client ID
- Client identifier

Session ID is an identifier used for identifying sessions by the Component Transaction Service. Session ID is a transaction application
server object, and it is numbered by session ID numbering API supplied by the Component Transaction Service. The session ID is used
to store session information, and it is used to transfer an operational parameter from the client to the server. Similarly, the server can
uniquely identify the client of the process request source.

-37 -

The session ID is also used in the process binding function and the AIM linkage session continuation.

When web linkage is performed using the HTML Page Editing Service (WebGateway), the client ID of the Web server (InfoProvider Pro)
is the session identifier that specifies the Web browser of the process request source. This ID is used by the Web server session management
facility. The client ID of the Web server is sent to the transaction application by the client ID notification function of the HTML Page
Editing Service (WebGateway). If Web linkage is carried out, the client ID of the Web server can be used in exactly the same way as the
session ID.

Refer to the HTML Page Editing Service User's Guide regarding the client ID notification function of the HTML Page Editing Service.
The Web server client ID is also used with the process binding function and with the session continuation of AIM linkage.

When calling a transaction application from the Web browser by using a servlet, use the session ID because the servlet isa CORBA client.
The servlet records the session ID in the object that manages a session with the Web browser, enabling the session ID of the Web browser
as the requester to correspond to the session ID of the Component Transaction Service.

The client identifier is the identifier for uniquely identifying the CORBA client process of the process request source when usinga CORBA
client. The client identifier is automatically assigned by the CORBA service. You can get the client identifier acquisition API in the
transaction application.

The following table shows the assignment methods, advantages, and usage details for the Session Information Management Object.

Table 2.5 Session Information Management Object Assignment Methods

Identifier Assignment | Method of getting Advantage Usage function
method with server
Session ID APl with server | Parameter passing You can have sessions range Session information
object from client with each application management

Client identification even with 1 | Process binding

thread unit is possible Continuous session of

AIM linkage
Web server client ID | Automatic Parameter passing Client identification with Web | Session information
assignment by from client client linkage is possible management
Web server Process binding
Continuous session of
AIM linkage
Client identifier Automatic Issuing get API by You do not have to rotate the Session information
assignment by server identifier by parameter. management
CORBA server

You do not have to rotate the
identifier on the client-side

Note

The session information area acquired by any object can be accessed even from an object that is not in the same server. Session information
that exists in multiple servers cannot be managed.

2.2.2.8 Server Application Process Modes (In the Case of Solaris and Linux)

Server application processes have the two modes described below.

Thread Mode

This is the multi-thread mode of operation for server application processes. However, the server application only runs on the primary
thread and does not operate with multiple threads. The thread mode starts multiple Interstage control threads.

The thread mode should be used in normal circumstances.

Process Mode

This is the single-thread mode of operation for server application processes. Use this mode only if the libraries of other products called
from the server application cannot be called from processes running in multi-thread mode.

-38 -

2.2.2.9 Specification of the Conditions for Restarting a Server Application Process after
its Failure

When a server application process fails during application processing, the process is restarted by the automatic application restart function.

However, for a transaction application, the restart of the process is not performed and the WorkUnit is terminated abnormally in the

following cases: Because of the area destruction by the application, the failure occurs at a time except during the control of the application

program (i.e., during the control of Interstage), or the server application is forcibly terminated externally (killed) while it is waiting for
the receipt of a request.

The abnormal termination described above can be avoided, and the process can be restarted automatically even if the application process
fails at a time except during the control of the application program.

To use this function, set "YES" to the "Unconditional Reactivation of Process" statement in the WorkUnit definition. Note this function
is disabled by default.

2.2.3 Linking with Existing Systems

To link with applications on an existing system, use the wrapping object and wrapper definition.

2.2.3.1 Wrapping Objects

Wrapping objects are functions that display existing system applications as objects of the distributed object environment with Interstage.

Wrapping objects themselves can be related to existing system applications by the WorkUnit definition. A wrapping object appears from
the client application as a communications partner, and is actually linked with the existing system application via the wrapping object on
the server.

Because wrapping objects are provided as standard, there is no need to create a server application in order to implement them. By designing
the interface section to allow linkage with Interstage, the resources (applications) of the existing system can be used effectively.

2.2.3.2 Wrapper Definitions
In order to relate an object (interface) that has been registered in the IDL file with an existing system application define this information:

- Relationship of operation name to application name on the existing system

- Relationship of the data format of each parameter and the variable format used by the application on the existing system (operation
unit of the object defined by the IDL definition file)

The following figure shows the structure for linking with an existing system:

Figure 2.10 Linking with an Existing System

Defines interface Operations that have
i enable client been defined in 1DL
manipulation of object are redefined for AIM .
GEREEEEEE, 1,.-"'-
u o

= IDL = Wrapper
s definition & definition
-.llllllll-'

L L L LT T T l-*-

-------lnnl--l-l|-l||+—

gentrit i,
& Invocation of
#, _ operation *
radaanansstt
L™
o c [
:‘ Invocation of "%
#, operation 4%
L AT L

Application

Application

2
s
i
T
E_
z

“§+~,_ BUSINESS SYSTEM
——

EXISTING SYSTEM
CLIENT h SERVER # (global server)

Only one wrapping object is defined in the WorkUnit. Similarly, you can unify the operating range of the WorkUnit with the operating
range of the applications on the existing system.

For a detailed explanation of the wrapper definitions, refer to the NETSTAGE Director User's Guide. Refer also to the relevant AIM
Manual regarding applications that are necessary in response to the existing connected system.

-39-

2.2.4 Performing Processing Using General Applications
Solaris | Mlnu=3Z"64)

General applications which are created by users and are not under Interstage can use WorkUnits just like transaction applications and EJB
applications. This is called a utility WorkUnit.

This section explains the effects and notes when a WorkUnit is used with respect to general applications.

2.2.4.1 Using a WorkUnit

The following items are available when ordinary applications not under the control of Interstage were operated in the WorkUnit.

Batch Activation of General Applications

All the ordinary applications registered in the WorkUnit can be started in batch (as many as the process concurrency specifies) by starting
the WorkUnit.

Batch Stop of General Applications

By stopping a WorkUnit, a batch stop of a group of general applications activated by the WorkUnit can be carried out. It is possible to set
an exit program that specifies how to stop general applications. You need to create an exit program that specifies a stop appropriate to
each application.

When an exit program is not set, ordinary application processes will be freed from Interstage monitoring, and the processes remain as they
are. The user has to terminate the remaining processes separately.

Automatic Reactivation of General Applications

General applications are monitored and if one of them terminates abnormally it can be reactivated automatically. It is also possible to set
the 'number of times the application process terminates abnormally' for a WorkUnit. On reaching the specified value, the WorkUnit
terminates.

Resetting the 'number of times the application process terminates abnormally"
It is possible to reset the error termination count. One of the following two methods can be used to reset the count:
Reset by specifying thetime

If a process does not terminate abnormally for a preset period of time, the error termination count that is already incremented can be reset.
The time can be set in the WorkUnit definition.

Reset by the reset command

By executing the command, the error termination count that has been incremented can be reset. Execute the command or execute it from
a general application using the System function or other method.

Process Multiplicity of General Applications

The process concurrency to be activated can be specified in the WorkUnit definition. Specify the concurrency if multiple processes need
to be activated.

Specifying the Output Directory

It is possible to specify the output directory when general applications are running. The output directory has the following configuration.
All general applications specified in the same WorkUnit are executed under the following directory. Thus, if you want to operate each
application process in a different directory, you need to move the directory within the application.

Output directory: "X /7 "Y" /"Z"

"X": Directory specified in the WorkUnit definition
"Y*": Target WorkUnit name

""Z": Execution process id of application

-40 -

Current Directory Generation Management Function

If the following environment variable is set in Environment Variable: Statement within the [Control Option] section of the WorkUnit
definition, up to five generations of the current WorkUnit directory can be backed up:

EXTP_CURRENTDIR_HISTORY=YES

A backup is created when a WorkUnit is activated and up to five generations of the backup are managed. The directory with an existing
WorkUnit name is backed up as WorkUnit-name.old1. WorkUnit-name.old1 is backed up as WorkUnit-name.old2 and thus sequentially
backed up till WorkUnit-name.old5 is created. When the directory with WorkUnit-name.old5 already exists, the WorkUnit-name.old5 is
deleted and WorkUnit-name.old4 is backed up as a new WorkUnit-name.old5.

Even after the WorkUnit is restarted, the standard output file (stdout) and standard error output file (stderr) in the current directory (or the
core file in the Solaris or Linux version) are saved. Thus, investigation information can easily be obtained even after a lapse of days after
a problem.

Process Activation Parameter Notification

Itis possible to set the activation parameters for general applications activated together with a WorkUnit. Specify the activation parameters
in the WorkUnit definition.

WorkUnit Auto-stop

When command or batch execution is used in general applications, some processes do not reside and instead stop after execution. Therefore,
if each process does not restart after terminating and all the processes in the WorkUnit terminate, the WorkUnit automatically enters a
state of termination. This is called the WorkUnit auto-stop. This function is useful for applications that stop after command or batch
execution.

2.2.5 Timeout Monitoring

Five timeouts can be monitored in Interstage:

- CORBA application timeouts

Transaction application timeouts

Global transaction application timeouts

Session information management function timeouts

2.2.5.1 CORBA Application Timeouts

This subsection explains the timeout monitoring function provided by the CORBA Service.

Timeout Monitoring during Operation of CORBA Applications

The CORBA Service provides a timeout monitoring function to monitor the application operation status so that hang-up of applications
can be prevented. Timeout durations are specified for the operations of client/server applications and the applications are notified of such
timeouts as they occur.

Types of Timeout Time Periods

Set the timeout time of the CORBA Service in the operation environment file (config) of the CORBA Service. For details including the
initial value of each parameter, refer to "config" in the Tuning Guide.

period_receive_timeout

Wait time on the client between a request transmission and the response being received.

If this timeout period elapses without the receiving a response from the server method, the client application is notified of a timeout.
period_server_timeout

Monitoring time on the server (any type other than the Persistent type) between the server method activation and the CORBA_ORB_init
method (ORB initialization method: method name of the C language interface) activation

-41-

If this time period elapses without the CORBA_ORB_init method being issued, the client is notified of a NO_IMPLEMENT exception
(that is, the non-implementation of the server method).

period_idle_con_timeout
Monitoring time of non-communication (no request transmission from the client) on the server

If no request is sent from the client after this timeout period, connection to the client is disconnected to release memory resources used
for request processing.

period_client_idle_con_timeout

Monitoring time (connection maintenance time after request return is complete) of non-communication (no request transmission to
the server) in the client.

If the request is not sent to the server after this time is exceeded, the connection to the server is terminated. The connection is re-opened
the next time a request is sent. In process mode, the connection to the server is not terminated when the timeout is exceeded, but the
next time a request is sent the connection is terminated and then re-opened.

The following figure shows the flow of processing from a request transmission (server method execution request) to return and the related
timeout time periods:

Figure 2.11 Processing a Client Request Transmission

Client CORBA CORBA Server
Senvice Sanice
o = —
iﬂb. 'y .] %’
= .
3 Tl .4—-—"@-‘ 3
8 - T— =
= a =7
S < 8
— —

TI period_receive_timeout
T2 pericd_server_timeout
T3: period_idle_con_timeout

Issue of requests from the client application.

Request transmission (connection established).

Server method activation (any type other than the Persistent type).

Issue of the CORBA_ORB _init method.

Server method return.

© o & w0 bd -

Connection terminated.

Guideline for the Timeout Time Setting

To establish CORBA application linkage, the timeout time must be set. When doing so, please remember these considerations.

period_receive_timeout (client application side)

T1 or a larger value must be set as the wait time between request transmission and response reception on the client application side.
Consideration needs to be paid to the communication speed between server and client and the processing time of server methods.

Generally set a value equal to or larger than period_server_timeout on the server application side is suitable.

-42 -

period_server_timeout (server application side)

T2 or a larger value must be set. Consideration should be given to the processing time between activation of the server method of the
server application and the issue of the CORBA_ORB _init method.

period_idle_con_timeout (server application side)

The CORBA Service on the server side terminates the connection to the client if the period_idle_con_timeout (T3) period is exceeded
after the connection is established on the first request transmission.

Since memory resources for request processing are reserved for each client in the CORBA Service, such resources are retained until
the connection is terminated.

When setting period_idle_con_timeout, consider the memory capacity that can be used by the CORBA Service and the number of
clients.

period_client_idle_con_timeout (client application side)

In thread mode applications, the CORBA Service on the client application side terminates the connection to the server if the value of
period_client_idle_con_timeout is exceeded after all requests have been returned. The connection is re-opened the next time a request
is sent. In process mode applications, the connection to the server is not terminated when the timeout is exceeded, but the next time a
request is sent the connection is briefly terminated, re-opened, and the request sent.

This prevents a send error after a request is sent without the termination of the connection being detected on the client application side,
if the connection to the server is terminated because of a timeout on the server side (the period_idle_con_timeout (T3) time is exceeded,
for example).

Client and server only

Set a value less than or equal to the value set for period_idle_con_timeout (T3) on the server application side for
period_client_idle_con_timeout (T4).

If there is a firewall between the client and server

period_client_idle_con_timeout and period_idle_con_timeout (T3) must be set after considering the firewall connection
maintenance time.

Dynamic Change of the Timeout Time (period_receive_timeout)

You can dynamically change the period_receive_timeout parameter (specifying the response time from request issue to reply receipt) by
invoking one of the following methods from the client application.

- CORBA_ORB_set_client_timer method (C interface method name)
Any time value change specified by this method is effective on the entire client application process.
- CORBA_ORB_set_client_request_timer method (C interface method name)
Any time value change specified by this method is effective only within the current thread of the client application.

Change the method of timeout for each development language as shown in the following table. For further details, refer to the Reference
Manual (API Edition).

Table 2.6 Development Language Methods

Development language Method name
C CORBA_ORB_set_client_timer, CORBA_ORB_set_client_request_timer
C++ CORBA::ORB::set_client_timer, CORBA::ORB::set_client_request_timer
Java com.fujitsu.ObjectDirector. CORBA.ORB.set_client_timer,

com.fujitsu.ObjectDirector. CORBA.ORB.set_client_request_timer

COBOL CORBA-ORB-SET-CLIENT-TIMER,
CORBA-ORB-SET-CLIENT-REQUEST-TIMER
0O0COBOL CORBA-ORB-SET_CLIENT_TIMER,

CORBA-ORB-SET_CLIENT_REQUEST TIMER

-43-

Timeout Monitoring of the Interface Repository

In the IDL compiler (/DLc command or fdc command) and interface information import (odimportir command), the processing time
required for registration/deletion of interface information from the interface repository is monitored. This is explained in Timeout time of

the interface repository.

For reference access to the interface repository, the timeout time (set by the config file) of the CORBA Service operation is valid.

Timeout Time of the Interface Repository
Set the timeout time of the interface repository to ir_timeout in the operation environment file (irconfig) of the interface repository. Changed
parameter values are enabled after the interface repository is restarted.
ir_timeout

Specify the wait time for the response to a request made to the interface repository in the IDL compiler or odimportir command (the
default value is 1,800 seconds. If 0 is specified, the monitoring of the wait time is disabled). A timeout is notified if the request does

not return after this time elapses.

Action to be taken when a timeout occurs

If a longer time is needed for the registration/deletion of interface information in the interface repository (for example, when a large IDL
file is compiled), the IDL compiler may terminate due to a timeout. In this case, the timeout may be avoided by increasing the value of

ir_timeout and reactivating the interface repository.

If a timeout occurs during registration/deletion of numerous interfaces (several hundred or more is not unrealistic in a large system), the
value of the timeout period needs to be increased.

Timeout Time Setting in Linkage with Other Services/Applications
Maximum processing time of the server application in a WorkUnit

In a WorkUnit, the maximum processing time can be set and monitored for each application.

Figure 2.12 Determining Processing Time

Client
CORBA CORBA Component S
Sarvice Sarvice Transaction Sernvice
Work unit
5 g > I o
== T2 @
[3+]
2 E
o o
E Tl i ﬁ
E' T3 =
= Lgem"" [}
S ——04 m— | 2
—
- ———— —— —

T1: period_receive_timeout
T2 Quening time {wait ime till execution}
T3 Mastimum Processing Time (Work unif definition)

When a CORBA client application and a WorkUnit are linked, period_receive_timeout (wait time till the request return) needs to be set
so that the following requirements are satisfied:
period_receive timeout (T1) > queuing time (T2) + maximum Processing Time (T3)

Set the maximum processing time of client WorkUnits communicating between server applications, to be the maximum processing time
of the server WorkUnits plus 7 seconds or more

-44 -

When the maximum processing time is exceeded during application processing of server WorkUnits, it may take up to 7 seconds before
Interstage actually detects the maximum processing time contravention of the server and is able to report an error to the client.

Calculate the maximum processing time of client WorkUnits by considering the time during which a request stays in the server WorkUnit
queue, and the application processing time of client WorkUnits.

Linkage with the Web Server

If a Servlet application (or a CGI application) activated by the Web server (InfoProvider Pro) is linked to the back-end job server/DB
server as a CORBA client, the timeout time (timeout: application transmission/reception timeout time) of the Web server needs to be
considered, in addition to the timeout time of the back-end job application.

Figure 2.13 Determining Processing Time for a Web-based Application

WWW server Back-end server
Senvlet CORBA CORBA Component
application] Service Service | Transaction Service
WWww [CQHBA]
sene client Work unit
w
L]
3
T1 IT' ﬁ_
T2 8
i N2
041 < W |
——
v I S] ﬁ ——————— —

o ——
T 1:WWW server timeout
['2:period_receive_timeout
Th:Quening time (wait time 1ill execution))
T4:Maximum Processing Time

To avoid a timeout on the CORBA client (on the Web server), period_receive_timeout (wait time till the request return) needs to be set
so that the following requirements are satisfied:

Web server timeout (T1) > period_receive_timeout (T2) > queuing time (T3) > transaction timeout (T4)

2.2.5.2 Monitoring Transaction Application Timeouts
Two timeouts can be monitored when using transaction applications:
- Server application timeouts

- EXxit program timeouts

Timeout Monitoring of Server Applications
It is possible to set the maximum allowable processing time (timeout) of a server application. Timeout values are set for each application
in the WorkUnit definitions.

If the maximum processing time is exceeded while a server application is processing, Interstage will forcibly terminate the application
process, and server application error 10004 will be posted to the client application as the server application return value. Exception
information is not posted.

Application processes forcibly terminated by Interstage are automatically restarted and are processed sequentially from the next request
in the queue. However, if a successive abnormal termination count is set in the WorkUnit definitions and the number of timeouts reaches
the successive abnormal termination count value, the WorkUnit is terminated abnormally.

- 45 -

Figure 2.14 Determining the Allowable Number of Timeouts

APM

Queve control

B NS e

Client

Application main
processing

Retum

Time monitoring
between application
call and retum

Regarding the relationship between the timeout monitoring of the transaction application and that of the CORBA application, refer to the
CORBA application timeout monitoring.

Timeout Monitoring of Exit Programs

To avoid entering pre-exit and post-exit program loops, it is possible to set a maximum allowable processing time (timeout). The value
of the timeout is defined in the WorkUnit definitions.

If the maximum processing time is exceeded while the pre-exit program is processing, the WorkUnit will fail to start. If the time is exceeded
while the post-exit program is operating, the WorkUnit will terminate abnormally.

Figure 2.15 Determining Timeout Monitoring for Exit Programs
APM Call

o
Pre-processing exit
program

Time monitoring Application main

1
1
between exil program ! pmcessing
call and retum !
1
Call S===mmmmmoooaao '
B
Post-processing exit
program
Retum

2.2.5.3 Timeout Monitoring of Global Transaction Applications

Three types of timeout monitoring are possible with transaction applications that perform global transaction linkage (global transaction
applications):

- Transaction Timeout
- Application Timeout
- Two-phase Commit Timeout

The following figure shows the range of each timeout.

- 46 -

Figure 2.16 Timeout Ranges
PASSAGE OF PROCESSING TIME

Database
management fi #
system |
Resource E
Manager \ i
—— . i
i 2 phase commit :
i Yo timeout i
OTS system E """"" r """"""""""""""" Iy I * ' """ 'i
! Application A
i ™ liI:"InEDut) i
Server i Iy ., i
application i i
E Oiperation E
!) invokati) !
Client application I:_ . !:!-f.'_g!lj BAi e Y commit S i
Transaction

B

Transaction Timeout

If a transaction does not terminate within a specified period, the transaction will be rolled back. The transaction timeout is set when the
client application is created. Note that if the timeout is set to 0, timeout monitoring will be disabled.

A greater value than the value that includes the processing times of all applications running from begin to commit must be specified for
the transaction timeout. For example, if an application is called twice after begin is called, the transaction timeout must be greater than
the processing time during which the application is called twice.

For atransaction application, if the client does not call begin or commit, the transaction automatically starts when the transaction application
is called. When the calling is completed, commit (or rollback) is called. In this case, the total value obtained by adding all processes
(including other application calls) to be called from within one method of the transaction application must be specified as the transaction
timeout time.

Specify the transaction timeout time using the following as a yardstick:
CORBA Timeout >Tran Timeout > TD Timeout
Note

- Tran Timeout: Transaction timeout time

- TD Timeout: Transaction application processing time

- CORBA Timeout: COBRA application processing time

Application Timeout
If an operation call does not complete within a specified period, control returns to the invoking side.

The application timeout is set in the operating environment file of the CORBA Service

Two-phase Commit Timeout
When a transaction does not conclude within the period specified in the two-phase commit timeout, the transaction is rolled back.

The two-phase commit timeout is set in the system environment definition file of the Database Linkage Service.

-47 -

2.2.5.4 Monitoring Session Information Management Function Timeouts

Inthe session information management function, the session information area generated by issuing the create_info or create_info2 operation
is automatically collected when no access occurs during the time specified at its generation.

If the session information area is automatically collected by this timeout monitoring function, it is posted to the status notification listener
of the session information management function (when the status notification listener is already registered).

2.2.6 Design when Using the Operation Support Function of a WorkUnit

A WorkUnit can be used for transaction applications. This section explains the behavior of the operation support function, its relationship
with the application environment and how it can be shared by applications. For information about how to use the WorkUnit with
applications, refer to "2.2.2 Processing with Transaction Applications".

Functions that can be shared by applications are:
- WorkUnit Exit Function
- Process Salvage Exit Function

- WorkUnit Process Information Notification Function

2.2.6.1 WorkUnit Exit Function

An exit program can be set for each WorkUnit. The WorkUnit Exit program specified in the WorkUnit definition is called when the
WorkUnit is activated, stopped or terminated abnormally.

This function is useful for freeing resources such as common memory where the resources are acquired when WorkUnits are activated
and released when the WorkUnits are stopped or terminated abnormally.

A WorkUnit Exit program is called when a WorkUnit is activated and can return user information. This information can be referenced
from the process information notification. For example, by retrieving the shared memory by the WorkUnit exit program at the time of the
WorkUnit startup and returning the shared memory identifier as the user information of the WorkUnit exit program, you can pass the
shared memory identifier retrieved at the time of the WorkUnit startup to the application process.

The WorkUnit exit function can monitor maximum processing time. When the maximum processing time elapses, the process to call the
exit is forced to stop and a message is output. When an attempt is made to start the WorkUnit, the activation fails. If the function is called
for other reasons, no operation error occurs.

If a WorkUnit exit program does not return due, for example, to a loop; the WorkUnit start/stop is not completed. For these reasons, you
are advised to always monitor the maximum processing time.

WorkUnit Exit programs run in the following folder:

Operation folder:xxx\yyy\zzz_exit

xxx: Folder specified in the WorkUnit definition

yyy: Target WorkUnit name

zzz: Execution process id of the WorkUnit exit program

The standard output file and standard error output file are output to the above folder.

The WorkUnit exit function is available for the transaction application WorkUnit, and the general application WorkUnit (the utility
WorkUnit).

The WorkUnit Exit function can be used for the WorkUnits of transaction applications.
Note

The WorkUnit Exit function is called once when the WorkUnit is activated by the exit program and one more time when the WorkUnit
is stopped. This is a different function from the pre/post exit function called for each application process when starting/stopping the
WorkUnit.

If the WorkUnit exit function and process collection exit function are used at the same time, the same load module needs to be used.

- 48 -

2.2.6.2 Process Salvage Exit Function

This function is useful when a process stops or resources or information related to a process set in the common memory need to be deleted.
If an application stops (including an abnormal termination), a process salvage exit program set in the WorkUnit definition can be called.

Since the Process Salvage Exit program can be called from any process other than application processes, information that can only be
referenced in application processes is unavailable. Keep this point in mind when creating a process salvage exit program.

This process salvage exit is called when a process stops due, for example, to a stop command or abnormal end.

The Process Salvage Exit function can monitor the maximum processing time. When the maximum processing time elapses, the process
to call the exit is forced to stop and a message is output. No operation error occurs.

If a Process Salvage Exit program does not return due, for example, to a loop; the next WorkUnit operation remains in wait status. For
these reasons, you are advised to always monitor the maximum processing time

Process Salvage Exit programs run in the following folder:

Operation folder: xxx\yyy\zzz_exit

xxx: Folder specified in the WorkUnit definition

yyy: Target WorkUnit name

zzz: Execution process id of the process salvage exit program

The standard output file and standard error output file are output to the above folder.

The Process Salvage Exit function can be used for the WorkUnits of transaction applications.

2.2.6.3 WorkUnit Process Information Notification Function

Applications can obtain information about local processes and the WorkUnit from environment variables. When activating each application
from the WorkUnit, you should set information about processes and the WorkUnit to specific environment variables.

The following sections explain the information to be set for environment variables. This information is set to "transaction applications".

Process Serial Number

Set a unique serial number within the WorkUnit. When a process is restarted, the same number as that of the abnormally terminated process
is set. This number is independent of the process ID.

Block allocation information for each process within the WorkUnit may be held in shared memory. If this is the case and you want to use
the same shared memory block also in the restarted process after it terminated abnormally, this number can be used to determine the block
to be used. However, since this number is only unique within the WorkUnit, only use the number for determining processes within the
WorkUnit.

WorkUnit Name
Set the name of the WorkUnit that started the process.

The WorkUnit name is useful when applications need to be aware of WorkUnit names when performing processing.

Activation User Name
Set the name of the user who activated the WorkUnit.

The activation user name is useful when the name of the user activating the process needs to be recognized.

Process Activation Count

The count of process activation is set. The number is set as 1 the initial activation by the WorkUnit and is incremented by 1 each time a
process is restarted.

The process activation count is useful when it is necessary to determine whether a process was activated for the first time or was reactivated.

WorkUnit Exit Return Information

Set the user return information as the return of the WorkUnit exit called when the WorkUnit is activated. If no WorkUnit exit is set in the
WorkUnit definition, 0 is set.

-49 -

Use this information if you need to obtain common, dynamic information within the WorkUnit.

For details on the WorkUnit exit, refer to "2.2.6.1 WorkUnit Exit Function".

2.2.7 Various Exit Functions

Interstage Application Server supports the following types of exit programs as WorkUnit operation support functions.

- Pre-exit program

Post-exit program

WorkUnit exit program

Process recovery exit program

Error exit program
- Process stop exit program

These types of exit programs have the following characteristics:

Table 2.7 Exit Program Characteristics

Exit program Call unit Call timing Example WorkUnit type
type
Pre-exit program | Application | Start of application Initial processing such as connection to database | ORB(*1)
process process
Post-exit Application | Normal termination of | Termination processing such as disconnection ORB(*1)
program process application process from database
WorkUnit exit WorkUnit Start, normal stop, When the WorkUnit starts, the WorkUnit program | CORBA
program forced stop, or allocates shared memory for use by the WorkUnit. ORB(*1)
abnormal termination When the WorkUnit stops, the program
of WorkUnit deallocates the shared memory. uTY(*2)
The identifier of the allocated shared memory can
be passed to the application process when the
program returns with the identifier as user
information.
Process recovery | Application | Normal stop, forced When the process stops, the program deletes the | CORBA
exit program process stop, abnormal resources and information related to the process ORB(*1)
termination, hot from shared memory.
modification, or UTY(*2)
dynamic deletion of
application process
Error exit Application | Detectionof clientthink | By issuing a session 1D reference API, the ORB(*1)
program process time-out while the program references the session ID (client
(session process bind function is | identifier) and, based on the session ID, frees the
unit) used area for the client object that caused a time-out in
the transaction application.
Process stop exit | Application | Start of application The program stops the utility WorkUnit process. | UTY(*2)
program process process stop processing

*1 This is not valid for Linux (64 bit) or Windows (64 bit).

*2 This is not valid for Windows.

2.2.8 Trouble Investigation Support Function

When a CORBA WorkUnit process is started, a log file is created under the current directory of the WorkUnit, and a function is offered
for the output of the process start parameter and the start environment variable.

-50 -

If the start of a lone CORBA application is successful, but start of the CORBA WorkUnit fails, it is possible that the path of an environment
variable required for WorkUnit configuration was not set. In this case, refer to this log file and check that the start parameter and
environment variable are set correctly.

This function is enabled in CORBA WorkUnits.

To use this function, set "YES" in the "Start Log" statement of the "Control Option" in the WorkUnit configuration. Alternatively, in the
Interstage Management Console [Environment Settings] window, select [Output] of the [CORBA WorkUnit Process Start Log] option.

[Log file output directory]
"[Current Directory]\[WorkUnit Name]\[Process ID]_info.log"

The log file is output in the following format.

Title : Process start date
First line : Start parameter
Second line and thereafter : Environment variable

"C:\Interstage\JDK6\bin\java.exe" "simple_s"™ Start paraneter

env[0] : ALLUSERSPROFILE=C:\Documents and Settings\All Users Environnment variable
env[1]
classpath=C:\Interstage\ODWIN\src\sample\complex\samplelist.Java\data\array;
_;C:\Interstage\lib\isadmin_scs.jar;C:\Interstage\jms\lib\fjmsprovider._jar;C
:\Interstage\J2EE\lib\isj2ee.jar;C:\Interstage\J2EE\lib\providerutil.jar;C
\Interstage\J2EE\l ib\fscontext. jar;C:\Interstage\Enabler\Runtime\Java\
Classes\jena.jar;C:\Interstage\Enabler\Runtime\Java\Classes\jcifs.jar;C
\Interstage\Enabler\Runtime\Java\Classes\jenaj2ee.jar;C:\Interstage\lib;C:
\Interstage\lib\xmlpro.jar;C:\Interstage\lib\xmltrans.jar;C:\Interstage\lib
\xmltransx.jar;C:\Interstage\ODWIN\etc\class\ODjava4. jar;C:\Interstage\eswin
\lib\esnotifyjava4.jar

env[2] : CommonProgramFiles=C:\Program Files\Common Files

env[3] : COMPUTERNAME=Interstage

env[4] : ComSpec=C:\WINNT\system32\cmd.exe

env[5] : EXTPPATH=C:\Interstage\bin

env[6] : FJIIOPPATH=C:\Interstage\EJB\BIN

env[7] : INCLUDE=C:\Program Files\Microsoft Visual Studio .NET 2003\SDK\v1l.1\include\
env[8] : IS_APL_INFO1=0

env[9] : IS_APL_INF0O2=0

env[10] : IS_APL_SERIALNUM=1

env[11] : IS_APL_STARTNUM=1

env[12] : 1S_APL_SYSNAME=default

env[13] : 1S_APL_USRNAME=root

env[14] : 1S_APL_WUNAME=ODSAMPLE

env[15] : IS_HOME=C:\Interstage

env[16] : IS_J2EEAPF=C:\Interstage\J2EE\var\deployment

env[17] : JAVA_HOME=C:\Interstage\JDK6

env[18] : LOGOFF_IGNORE=YES

env[19] : NUMBER_OF_PROCESSORS=1

env[20] : OD_HOME=C:\Interstage\ODWIN

env[21] : OD_IMPLID=ImpleArraytest

env[22] : OD_WORKUNIT=0ON

env[23] : OD_WUCURRENTDIR=ON

env[24] : OD_WUIMPLID=ImpleArraytest

env[25] : OS=Windows_NT

env[26] : Os2LibPath=C:\WINNT\system32\os2\dll;

env[27] : Path=C:\Interstage\JDK6\bin;C:\WINNT\system32;C:\WINNT;C:\WINNT\System32\
Wbem;C:\INTERS~1\bin;C:\Interstage\bin;C:\Interstage\ODWIN\bin;C:\INTERS~1\
ID\Dir\bin;C:\INTERS~I\ID\Dir\sdk\c\bin;C:\INTERS~1I\ID\Dir\sdk\c\lib\dynamic
env[28] : PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS; .VBE;.JS;.JSE; .WSF; .WSH

env[29] : PROCESSOR_ARCHITECTURE=x86

env[30] : PROCESSOR_IDENTIFIER=x86 Family 15 Model 2 Stepping 9,

-51-

Genuinelntel

env[31]
env[32]
env[33]
env[34]
env[35]
env[36]
env[37]
env[38]
env[39]
env[40]
env[41]

- PROCESSOR_LEVEL=15

: PROCESSOR_REVISION=0209

: ProgramFiles=C:\Program Files

. SystemDrive=C:

: SystemRoot=C:\WINNT

: TD_HOME=C:\INTERS~1\td

: TEMP=C:\WINNT\TEMP

: TMP=C:\WINNT\TEMP

: UJI_HOME=C:\Interstage\APC\

: USERPROFILE=C:\Documents and Settings\oms
- windir=C:\WINNT

-52 -

|Chapter 3 Starting / Stopping / Surveillance of WorkUnits

This chapter explains starting, stopping and surveillance of WorkUnits.

3.1 Starting and Stopping WorkUnits

WorkUnits can be started and stopped using the Interstage integration command, or Interstage management console. WorkUnits can also
be started automatically. Note that the Interstage Management Console can only be used for CORBA WorkUnits and 1JServer WorkUnits.

This section explains each of the above scenarios.

3.1.1 Starting and Stopping WorkUnits Using the Interstage Integration
Command

This section explains how to start and stop WorkUnits using the Interstage integration command.

Starting WorkUnits

Start a WorkUnit by specifying the WorkUnit name in the /sstartwu command.

isstartwu TDSAMPLE1

To start an EJB container, specify the EJB container name in the /sstartwu command.

isstartwu ejb-container-name

Note
Transaction application WorkUnits and WRAPPER WorkUnits can also be started with the fdstarfwu command.

Terminating WorkUnits

All WorkUnits are terminated by the /isstopwu command.

isstopwu TDSAMPLE1

To stop an EJB container, specify the EJB container name in the /isstopwu command.

isstopwu ejb-container-name

Note
Transaction application WorkUnits and WRAPPER WorkUnits can also be stopped with the tdstopwu command.

To stop an EJB container synchronously, specify "-s EJB container name" in the /isstopwu command.
To stop an EJB container forcibly, specify "-c EJB container name" in the /sstopwu command.

If a WorkUnit is stopped where the pop-up dialog indicating an application error is output, no-response may occur. In this case, a no-
response is released by closing the pop-up dialog.

3.1.2 Monitoring WorkUnits

WorkUnits can be monitored using the Interstage integration command, or the Interstage Management Console.

This section explains monitoring WorkUnits using the Interstage integration command. Similar procedures can also be used with the other
monitoring methods. Note that the Interstage management console can only be used for CORBA WorkUnits and 1JServer WorkUnits.

3.1.2.1 Operating Status of WorkUnits

The operating status of the WorkUnits can be confirmed by the 7s/istwu command.

islistwu

-53-

A WorkUnit may have one of the following statuses:

Information Contents
Starting process startproc
Executing (startup completed) execute
Processing stopped stopproc

Note

Transaction application WorkUnits and WRAPPER WorkUnits can also use the fdlistwu command.

3.1.2.2 Operating Status of Objects of WorkUnits

The /slistoby or isinfobj command is used to verify the operating status of objects (Implementation Repository ID).

islistobj

The information in the following table can also be checked using the /s/istobj command.

Table 3.1 Object Operating Status Information - islistobj Command

Information

Contents

objectname/applicationname

The application name.

kind

The WorkUnit type.

status

The status of the object of the WorkUnit.
Active: Operating

Inhibit: Inaccessible

isinfobj objname

Where objname is the name of the object whose details are to be checked.

The following information can also be checked using the /sinfobj command.

The object of a WorkUnit may have one of the following statuses:

Information Contents
Object enabled (in use) Active
Object disabled *1 (inhibited) Inhibit

CORBA Applications

The following table shows the detailed information that is displayed for an object (Implementation Repository 1D) of a running CORBA

application.

Table 3.2 Object Operating Status Information - CORBA Applications

Information Contents
impl ID The Implementation Repository ID.
kind "CORBA".
status The status of the object.
Active: Operating
Inhibit: Inaccessible
object The interface name registered in the Implementation Repository.

-54-

Information Contents
prochum Concurrent number of application processes for implementation repository ID
queue The number of client requests remaining in the application.

accumulation

The accumulation count processed by the application.

thread

The number of application threads.

wuname

The name of the WorkUnit in which the application operates.

Transaction Applications or WRAPPER Applications

The following table shows the detailed information that is displayed in the case of a running transaction application or WRAPPER

application.

Table 3.3 Object Operating Status Information - Transaction or WRAPPER Applications

Information Contents
objectname The name of the application object.
kind The application type.
TD : Object of transaction application
WRAPPER : Object of wrapper application
status The status of the object.
Active : Operating
Inhibit : Inaccessible
procnum The concurrent number of application processes for the object.
queue The number of client requests remaining in the application.
accumulation The accumulation count processed by the application.
wuname The name of the WorkUnit in which the application operates.
Note

Transaction application WorkUnits and WRAPPER WorkUnits can also be registered with the fdinfobj command.

IJServer Applications

The following table shows the detailed information that is displayed in the case of a running 1JServer application.

Table 3.4 Object Operating Status Information - 1JServer Applications

Information

Contents

1JServer name

The name of the 1JServer WorkUnit.

kind

"1JServer".

1JServer type

The 1JServer type.
1VM: The Web application and EJB application are operated on the same JavaVM.

Web: The Web application is operated alone or is operated on one JavaVM with the
EJB application on another JavaVM.

EJB: The EJB application is operated alone or is operated on one JavaVM with the
Web application on another JavaVM.

status

The status of the object.
Active: Operating.

Inhibit: Inaccessible (displayed only when the type is EJB).

-55-

Information Contents

Stop: Inactive (displayed when either of the two applications, Web and EJB
applications to be operated on different JavaVMs, is not provided).

procnum The concurrent number of application processes.

queue The number of client requests remaining in the application (EJB applications only).
accumulation The accumulation count processed by the application (EJB applications only).
instance The number of application instances (EJB applications only).

3.1.2.3 Checking Application Process Information

Use the islistaplproc command to display the process information for applications operated using the WorkUnit.

islistaplproc [wuname]

Where wuname is the name of the WorkUnit for which application process information is to be checked.

WorkUnit application process information is shown in the following table.

Table 3.5 WorkUnit Application Process Information

Information Contents
PID The process ID.
wuname The WorkUnit name.
kind The WorkUnit type.

CORBA: CORBA WorkUnit
EJB: EJB WorkUnit

TD: Transaction WorkUnit
1JServer: 1JServer WorkUnit

objectname/applicationname The following information on each WorkUnit type is output.
CORBA WorkUnit: Implementation Repository ID

EJB WorkUnit: EJB application name

Transaction WorkUnit: Object name

1JServer WorkUnit: WorkUnit name

Utility WorkUnit: Execution filename of the application

3.1.3 Starting and Stopping WorkUnits Using the Interstage Management
Console

This section explains how to start and stop WorkUnits using the Interstage management console.

To start or stop a WorkUnit, press the Start or Stop button respectively in the WorkUnit: status window.

For further information on "Using the Interstage Management Console", refer to the Operator's Guide.

3.1.4 Starting WorkUnits Automatically

WorkUnits can be started automatically during Interstage startup by creating a WorkUnit Automatic Start setting file.

The procedure for automatically starting a WorkUnit is as follows.
- Shut down Interstage.

- Create a WorkUnit Automatic Start setting file and specify the WorkUnit that is to be started automatically. Refer to the "WorkUnit
Automatic Start Setting File" appendix for further details.

-56 -

- Start Interstage. The specified WorkUnit is then automatically started.

When the Interstage management console is used to operate the WorkUnit, the setting can be performed in "WorkUnit creation" or
"WorkUnit environment settings".

Note
A WorkUnit that performs global transaction linkage cannot be started automatically.
Notes on Using a Pre-exit Program

To use a pre-exit program on a WorkUnit that is to be started automatically (to execute database connection processing), the database
must be started before the WorkUnit is started; that is, before Interstage is started. Care must therefore be taken when starting up the
machine.

When the system has been set up in such a way that Interstage starts automatically on machine startup, the order in which services are
automatically started is unclear. The database system is therefore not guaranteed to start before Interstage. The database system may also
be inactive when the pre-exit program of the WorkUnit to be started automatically is invoked so database processing in the pre-exit program
may fail.

To address the above situation, take one of the following actions:
- If the database is inactive in pre-exit processing, do not assume an error but start database connection processing.
An example outline of processing is as follows:
(Preprocessing) Database connection processing. Returns normally even if the database system is inactive.
(This processing) Database operation. Starts with database connection processing if the database is not yet connected.

- Change the start-up type of the Interstage service (service name: INTERSTAGE) from Auto to Manual to prevent Interstage starting
automatically when the server machine starts. Start Interstage after the server machine has started.

Note that although these notes use a database system as an example, similar care must be taken for other services used in the WorkUnit
pre-processing.

Notes on Wrapper WorkUnits

To automatically start a wrapper WorkUnit, do not automatically start Interstage when the machine starts. Start Interstage after the
NETSTAGE Director service has started.

3.2 Performance Monitoring Tool

The Performance Monitoring Tool is designed to collect the performance information of the objects of the transaction applications and
the wrapper running on the application server.

The Performance Monitoring Tool supports the following two functions.
- Function of outputting log information to the performance log file

This function collects the performance information of specified objects in the performance log file. The accumulated performance
information can be output in CSV format using the report output command.

- Function of monitoring the performance information in real time by a Network Control Manager (Monitoring by MIB)

By using the MIB (*2) monitoring function of a Network Control Manager such as Systemwalker/CentricMGR (*1), the performance
information of the specified object can be displayed and monitored in real time.

Displaying and monitoring performance information using a Network Control Manager is called "real-time monitoring".

This section describes how to issue commands on the application server, and display performance information when using Systemwalker/
CentricMGR as a Network Control Manager.

*1 Network Control Manager is a software program for displaying and monitoring performance information on the monitor server.

*2 MIB is the abbreviation of the Management Information Base. MIB is a management information area that has been defined for
managing the system and TCP/IP information.

The Performance Monitoring Tool consists of the performance monitoring logger that collects performance information, and various
commands.

-57 -

The Performance Monitoring Tool provides the commands shown in the following figure.

Figure 3.1 Performance Monitoring Tool Commands

"

ispmakeeny
command
Perfarmance Maonitoring
(Sharad Mamary)
Bmary. Metwork Control
t Real-time Display Manager
Sununa:}r chur;snng
Performance
Monitoring
Logger
Detailed Sl.:rrrm.ur_',' Reporting
Information
. Report
P q wl q (CSV Format)
Log File
Registration of Performance
ispsetagt Monitoring Tool
——
istration and deletion of SNMP Service
ispunsetagt Momitoring Tool
command
el

ispmakeenv command: Creates the performance monitoring environment and starts the performance monitoring logger
ispdeleteenv command: Deletes the performance monitoring environment and stops the performance monitoring logger
spstart command: Starts monitoring performance

ispstop command: Stops monitoring performance

ispstatus command: Displays performance monitoring status information.

ispreport command: Outputs the performance log file report

ispsetagt command and /spunsetagt command: Registers and unregisters Performance Monitoring Tool in SNMP service

Performance monitoring logger: Collects performance monitoring information, reports performance information to the Network Control
Manager, and creates performance log files.

3.2.1 Functions of Performance Monitoring Tool

This section describes the functions of the Performance Monitoring Tool

3.2.1.1 Function of Outputting Log Information to the Performance Log File

This function collects the performance information of specified objects in the transaction applications and the wrapper in the performance
log file. The performance information is collected at the interval specified when creating a performance monitoring environment.

Since the accumulated performance information can be output in CSV format by executing the report output command, it is useful in the
analysis of the performance information and the accumulation of statistical information.

The following information can be collected with this function.

Object Name

The name of the object from which performance information is collected

-58 -

Operation Name

The name of the operation from which performance information is collected

Process ID

The process ID of the operation from which performance information is collected

Request Processing Time (maximum/average/minimum)

The processing time of the operation. The three types of information supplied: maximum, average, and minimum, are output at each
interval to the performance log file.

Request Processing Wait Time (maximum/average/minimum)

The wait time from the acceptance of a request from a client application to the actual start of processing. The information is in object units.
The three types of statistics supplied; maximum, average, and minimum, are output at each interval to the performance log file.

Number of Times the Operation has been Executed

The number of times the operation has been executed by the process within the interval time for the performance log file.

Number of Requests Received

The cumulative number of times the operation was executed from the start of performance monitoring.

Number of Requests Awaiting Processing
The maximum number of requests placed in the queue for the object within the interval time for the performance log file.

The above data items are output in either of the following units.

Information Output for each Operation

"Request processing time" and "Number of times the operation has been executed" are data items for the operation indicated in the
"Operation name" and the process indicated in the "process ID". They are used to evaluate operations for each process.

Information Output for each Object

"Request processing wait time," "Number of requests received", and "Number of requests awaiting processing” are data items for the
object indicated in the "Object name". They are used to evaluate operations for each process.

These data items enable detailed performance analysis.

3.2.1.2 Function of Monitoring the Real Time Performance Information by a Network
Control Manager (Monitoring by MIB))

The real time monitoring function reports the performance information of the specified objects of the transaction applications and the
wrapper as MIB information (*).

A Network Control Manager such as Systemwalker/CentricMGR supports the MIB monitoring function. By using the function of the
Network Control Manager, the following operation can be performed.

Outputting the Report of the Statistical Information

The performance information can be displayed in graph or CSV format. It is useful in the collection of statistical information.

Monitoring the Performance Abnormality

By setting the threshold value for performance information such as "Number of requests awaiting processing” and monitoring it, any
abnormality in performance information can be detected in advance. This function enables prompt response to abnormal events.

* Stands for Management Information Base. In order to manage system information and TCP/IP information, the MIB is the defined
management information domain.

-59 -

The following information can be collected with this function.

Object Name

The name of the object from which performance information is to be collected.

Request Processing Time (maximum/average/minimum)

The processing time for the object. The three types of information; maximum, average, and minimum, are output at each interval for real
time monitoring.

Request Processing Wait Time (maximum/average/minimum)

The time between the acceptance of a request from a client application, and the actual start of processing. The three types of information;
maximum, average, and minimum, are output at each interval for real time monitoring.

Number of Requests Received

The cumulative number of times the operation was executed from the start of performance monitoring.

Number of Requests Awaiting Processing
The maximum number of requests that were placed in the queue for the object, within the interval for real time monitoring, is output.
The above data items are collected for each object.

When this function is used, the information can also be output to the performance log file at the same time. For a more detailed performance
analysis such as information in units of operations, analyze the information collected in the performance log file.

For the monitoring method using MIB information, refer to the manual of the Network Control Manager.

3.2.2 Performance Monitoring Procedure

To monitor and analyze the performance of Interstage job applications using the Performance Monitoring Tool, the five phases that must
be performed are

1. Registering to the SNMP service

2. Starting the Performance Monitoring Tool
3. Monitoring Operation

4. Stopping the Performance Monitoring Tool
5. Deletion from the SNMP Service

Each phase is explained in below and in Figure 3.2 Installation Procedure to Figure 3.6 Deleting the Performance Monitoring Tool.

1) Registering to the SNMP Service
Register the Performance Monitoring Tool in the SNMP service.

Registers Interstage in the SNMP service.

Figure 3.2 Installation Procedure

The performance monitoring tool is registered to
Registering to the SNMP service. It is an operation required for
SNMP service * the preparation of real-time monitoring and performed
when installing Interstage.

2) Starting the Performance Monitoring Tool

Perform this operation to start the Performance Monitoring Tool.

-60 -

Figure 3.3 Starting the Performance Monitoring Tool

Start of Interstage -’ Start of Tnterstage

¢

Creation of Performance Execute ispmakeeny command to create a

Monitoring Environment 4 performance monitoring environment and
start the Performance Monitoring Tool.

3) Monitoring Operation

Perform this operation to measure, monitor, and analyze performance information.

Figure 3.4 Monitoring Operation

Execute ispstart command to start
Sta rhiﬁ:{g :mg nee * performance monitoring and calculate

performance information.

Start Work Application * Start and operate work application.

U

Real-time performance information (summary)
Real-time Monitoring q displaying and monitoring by operating

Operation \Nem'mk Control Manager.
Stop Work Outputting the performance log file and
Appﬁ'i::aiinn anuggzlnrﬁgthe p%?fonnanae Inl?gnnaliun

Execute ispreport command fo output report of
performance log file (Detailed information) and
analyze performance.

Execute ispstop command to stop performance
%&Pm“ i 4 monitoring and calculating of performance information.
g

ispstart command can restart the performance monitoring.

Notes

- Performance monitoring can be stopped by executing the /spstopcommand instead of stopping the application. However, performance
information will not be measured after the /spsfop command is executed. To restart measuring performance information, execute the
fspstart command.

- After the ispmakeenvcommand is executed, start the business application (WorkUnit) that measures the performance. The performance
of the business applications that are started before the execution of the /spmakeenv command are not measured.

- When a Network Control Manager such as Systemwalker/CentricMGR is used to display performance information in real time, do
not start or stop performance monitoring while performance information is being displayed. Be sure to close the performance
information display screen before starting performance monitoring, and perform real-time monitoring operation and display
performance information after performance monitoring is started.

4) Stopping the Performance Monitoring Tool

Perform this operation to stop the Performance Monitoring Tool.

-61-

Figure 3.5 Stopping the Performance Monitoring Tool

Deletion of Performance Execute ispdeleteeny command o delete

. . * performance monitoring environment and
SRS o Ly stop performance monitoring tool.

Stopping of Interstage * Stopping of Interstage

Note

To create the performance monitoring environment again, first restart Interstage.

5) Deletion from the SNMP Service
Perform this operation when uninstalling Interstage.

Delete the Performance Monitoring Tool registered in the SNMP service.

Figure 3.6 Deleting the Performance Monitoring Tool

. It is a deletion operation of performance monitoring
Deletion from] tool from SNMP service and it is operated in
SNMP service uninstallation of Interstage.

3.2.3 Registering to the SNMP Service

After Interstage is installed, the following operation is required to perform real-time monitoring with a Network Control Manager such
as Systemwalker/CentricMGR. If real-time monitoring is not to be performed, the following operation need not be performed.

1) Registering to the SNMP Service

Execute the ispsetagt command to register the Performance Monitoring Tool in the SNMP service. After executing the /spsetagtcommand,
re-start the SNMP service from the Service screen in Windows. The Performance Monitoring Tool can be registered in the SNMP service
only when the SNMP service has been installed. Before executing the ispsetagt command, install the SNMP service.

The SNMP service is installed in Windows Server® 2003 and Windows Server® 2008 SNMP in the following way:
Windows Server® 2003
- Insert the CD-ROM of the OS into the CD drive.

- Select [Install Windows Option Component], then in [Windows Component Wizard]-[Admin and Monitor Tools], add [Simple
Network Management Protocol (SNMP)].

Windows Server® 2008

- From [Server Manager]-[Feature], open [Add Feature], then select and install [SNMP Service].

2) Reading the MIB Definition File

To collect performance information from the Network Control Manager, the MIB definition file for performance information must be read
using the Network Control Manager. Have the Network Control Manager read the MIB definition file from the machine in which Interstage
has been installed, as follows:

- When the Network Control Manager operates under Windows®
Read TD_HOME\isp\mib\ispmibNT.my
- When the Network Control Manager operates under Solaris
Read TD_HOME\isp\mib\ispmibSol.my.
When using the Windows® version of Systemwalker/CentricMGR (operation management server), read the MIB definition file as follows:

- Use FTP or a similar application to copy the MIB definition file from the machine in which Interstage is installed to the machine in
which Systemwalker/CentricMGR is installed.

-62 -

Activate Systemwalker/CentricMGR System Monitor.

- Choose Tools and then Extend MIB from the System Monitor screen to display the Extend MIB screen.

Click the add button on the MIB Extension Operation screen to display the Select of Extend MIB File Selection screen.

Select the MIB file from the Extension MIB File Selection screen and click the Open button. Then, click the Close button on the MIB
Extension Operation screen.

3.2.4 Creating a Performance Monitoring Environment

3.2.4.1 Starting Operation of Performance Monitoring Tool

This section describes the construction of the environment for using the performance monitoring tool.

Starting Interstage

Execute the /sstarf command to start Interstage.

Creating the Performance Monitoring Environment
Use the ispmakeenv command to create a performance monitoring environment and activate the Performance Monitoring Tool.
In this case, the following two interval times are specified.
- Interval time for performance log file

The interval at which the performance information is output to the performance log file. The interval can be 5, 10, 20, or 30 minutes
or 1, 2, 3, or 4 hours. The default is one hour.

- Interval time for real time monitoring

The interval for collecting the performance information to be notified to the Network Control Manager. Specify the interval time when
performance monitoring is executed from the Network Control Manager. The interval can be specified between 1 and 60 minutes.
The default is 5 minutes.

After the command /spmakeenvis executed, start the business application (WorkUnit) that measures the performance. Performance of the
business applications that are started up before execution of the ispmakeenv command are not measured.

3.2.5 Monitoring Operations

This section describes the monitoring operation with the performance monitoring tool.

3.2.5.1 Starting Performance Monitoring

Start performance monitoring of the specific object with the /spstart command. The performance information is then output to the
performance log file at the interval specified with the /spmakeenv command.

Performance information is collected until it is stopped by the /ispstop command.

These commands are shown in the following figure.

Figure 3.7 Starting and Terminating Performance Monitoring

ispstart Ferformance | Start
Monitoring || s

Accumulates performance
data between these commands

ispstop

Perfi -
Monitoring |Temﬂy

-63-

3.2.5.2 Starting a Business Application

Execute the /sstartwu command to start the WorkUnit.

Real-time Monitoring

To display and monitor performance information using a Network Control Manager such as Systemwalker/CentricMGR, use the following
procedure to display performance information on the Network Control Manager screen. This procedure is an overview of real-time
monitoring operation when the Windows version of Systemwalker/CentricMGR operation management server is used. When using a
Network Control Manager other than Systemwalker/CentricMGR, refer to the user's guide for the Network Control Manager to be used.

1.
2.

Activate Systemwalker/CentricMGR System Monitor.

Select the Application Server to be monitored

Click the application server name to be monitored on the System Monitor screen.
Display the Get MIB Data screen

Choose Tools | Specific System | Get/Set MIB Data | Get MIB Data on the System Monitor screen menu to display the Get MIB
Data screen.

Display the List of Object Names and Check the Instance Number of the Object to be monitored

Make the following settings on the Get MIB Data screen and click the Retrieve button.

- Choose Not check Polling Interval.

- Specify DUMP as the Request Type.

- Specify "ispSumObjectName" in the MIB (performance information measurement item) to be displayed.
Specify the MIB according to the following procedure:
Click the Browse button to display the MIB Tree screen.

On the MIB Tree screen, expand the tree structure by double-clicking the options internet, private, enterprises, fujitsu,
application, apINetWork, apINetFunction, aplinterstage, isPerformanceinf, ispSummaryTable, and ispSummaryTableEntry in
that order. The performance information items that can be displayed in real-time monitoring will appear on the display. Click
ispSumObjectName.

Click the Add button on the Get MIB Data screen.

5. Set the Reference Value

- On the System Monitoring screen, choose Policy | Setting Policy | Node | MIB State change to display the MIB State Change
screen.

- Click the Add button on the MIB State Change screen to display the Threshold Details screen.

- Specify the MIB name (the display item name of the performance information to be monitored), instance number, and threshold
value (reference value) on the Threshold Details screen. Refer to Step 4) for information about how to specify the MIB name.

- Choose On on the MIB Monitoring screen.

6. Display the Real-time Display Screen (Performance Information)

Make the following settings and click the Retrieve button.
- Set the polling time to 5 minutes or more.
- Specify GET as the Request Type.

- Specify the instance number of the object to be monitored.

When the list of object names is displayed, the following number appears. Specify this number as the instance number.

"ispSumObjectName : "ispSumObjectName. number. object-name"

- Specify the display item name of the performance information to be displayed in the MIB Name field. Refer to Step 4 for

information about how to specify the MIB name.

-64 -

The following table shows the performance information items that can be displayed in real-time monitoring. The display item name in
this table means the item name of the performance information displayed by the Network Control Manager.

Table 3.6 Performance Information ltems

Performance information Unit Display item name Meaning
item name

Object name - IspSumObjectName Object name of the application for which
performance information is measured

Maximum request ms IspSumExecTimeMax Maximum processing time (within a polling time)

processing time required for processing the object

Minimum request processing | ms IspSumExecTimeMin Minimum processing time (within a polling time)

time required for processing the object

Averaged request processing | ms IspSumExecTimeAve Averaged processing time (within a polling time)

time required for processing the object

Maximum request ms IspSumWaitTimeMax Maximum time (within a polling time) from the time

processing wait time of a client request to the initiation of a server
application

Minimum request processing | ms IspSumWaitTimeMin Minimum time (within a polling time) from the time

wait time of a client request to the initiation of a server
application

Averaged request processing | ms IspSumWaitTimeAve Averaged time (within a polling time) from the time

wait time of a client request to the initiation of a server
application

Number of requests received | Number IspSumRequestNum Accumulated number of processes from the time of
starting the performance monitoring up to the timing
of this object.

Number of requests awaiting | Number IspSumWaitRegNum Maximum number of requests waiting for

processing processing of this object, within the polling time.

Note

- Unless the list of object names is to be displayed, always specify 'GET" as the acquisition method when displaying performance
information. If DUMP is specified for real-time display, an enormous amount of communications may be required between
Systemwalker/CentricMGR and the Performance Monitoring Tool, resulting in a heavy load on the network as well as on the
application server.

- When there is no object for which performance information can be displayed, 'NONE' will be displayed as the object name.

3.2.5.3 Outputting the Performance Log File and Analyzing the Performance Information

When the threshold value is exceeded during real-time monitoring and there is a possibility of performance abnormality analyze the detailed
information saved as the performance log file.

Use the ispreport command to output a performance log file report. This command converts the performance information saved as the
performance log file into CSV format and outputs it to the standard output. If the performance log file is to be converted into CSV format
and output as a file, specify the output destination file name as below when executing the ispreport command.

"ispreport option > output-destination-file-name'

When the ispreportcommand is executed, performance information in the performance log file will be converted one record at a time and
output to the standard output in the following format.

1. Line format

"D1,D2,D3, D4,D5,D6, D7,D8,D9, D10,D11,D12,D13, D14,D15,D16"

-65-

2. Output items in each line

The following table shows a list of output items in each line. Items D1 to D16 in the ‘'Item No.' column correspond to those shown

in 1).
Table 3.7 Output Items
Item no. | Performance information item Unit Meaning
name
D1 Data collection start date - Date the performance information measurement for the
record was started
D2 Data collection start time - Time the performance information measurement for the
record was started
D3 Data collection end date - Date the performance information measurement for the
record was finished
D4 Data collection end time - Time the performance information measurement for the
record was finished
D5 Object name - Object name of the application for which performance
information is being measured
D6 Operation name - Operation name of the application for which
performance information is being measured
D7 Process 1D - Process 1D of the application for which performance
information is being measured
D8 Maximum request processing time | ms The maximum processing time (within the interval
time) of the operation processed by the concerned
process
D9 Minimum request processing time | ms The minimum processing time (within the interval time)
of the operation processed by the concerned process
D10 Averaged request processing time ms The averaged processing time (within the interval time)
of the operation processed by the concerned process
D11 Maximum request processing wait | ms Maximum wait time (within the interval time) from the
time time of a client request to the initiation of a server
application
D12 Minimum request processing wait | ms Minimum wait time (within the interval time) from the
time time of a client request to the initiation of a server
application
D13 Averaged request processing wait ms Averaged wait time (within the interval time) from the
time time of a client request to the initiation of a server
application
D14 Number of processes Number Number of times the operation has been executed by the
process within the specified time interval
D15 Number of requests received Number Accumulated number of processes from the time of
starting the performance monitoring up to the timing of
this object.
D16 Number of requests awaiting Number The maximum number of requests waiting for
processing processing of the concerned object in interval time

3.2.5.4 Stopping the Application

Execute the /sstopwu command to start the WorkUnit.

- 66 -

3.2.5.5 Stopping the Performance Monitor

Performance Monitor is stopped with the /spstop command. When this command is executed, performance information is extracted and
output on a performance log file stop.

3.2.5.6 Deleting the Performance Monitoring Environment

This section describes the deletion of the performance monitoring tool.

Deleting the Performance Monitoring Environment

Use the /spdeleteenv command to stop the Performance Monitoring Tool and delete the performance monitoring environment. Delete the
performance monitoring environment after performance monitoring has stopped. If you do not do this, performance information will not
be collected after the performance monitoring environment is deleted. To restart performance monitoring, create a new performance
monitoring environment after restarting Interstage.

Stopping Interstage

Execute the /sstop command to stop Interstage.

3.2.5.7 Deletion from the SNMP Service

Execute the /spunsetagt command to delete the Performance Monitoring Tool from the SNMP service. After executing the ispunsetagt
command, use the Services dialog box to restart the SNMP service. This operation is required only when the Performance Monitoring
Tool has been registered in the SNMP service by using the ispsetagt command.

- Windows®
Click [SNMP Service] for 'Administrative Tools' 'Services' and then execute [Stop] and [Start].

3.2.6 Analyzing the Performance Information and Taking Action

This section describes the method of analyzing the performance information collected in the performance log file and real-time monitoring,
as well as the method for taking action.

3.2.6.1 Function of Outputting Log Information to the Performance Log File

This section describes the performance information that can be collected using the function of outputting log information to the performance
log file, the evaluation method, and the method for taking action.

1. Collectable performance information

The function of outputting log information to the performance log file allows the accumulated information to be output in CSV
format, by executing the /spreport command.

The performance information is described below.

Lineformat

"D1,D2,D3, D4,D5,D6, D7,D8,D9, D10,D11,D12,D13, D14,D15,D16"

Output itemsin each line

The following table shows a list of output items in each line. Items D1 to D16 in the 'Item No.' column correspond to those shown

in1).

Table 3.8 Output Items

Item | Performance information item Unit Meaning
no. name
D1 Data collection start date - Date the performance information measurement for the

record was started

D2 Data collection start time - Time the performance information measurement for the
record was started

-67 -

Item | Performance information item Unit Meaning
no. name
D3 Data collection end date - Date the performance information measurement for the
record was finished
D4 Data collection end time - Time the performance information measurement for the
record was finished
D5 Object name - Object name of the application for which performance
information is being measured
D6 Operation name - Operation name of the application for which performance
information is being measured
D7 Process 1D - Process ID of the application for which performance
information is being measured
D8 Maximum request processing time | ms The maximum processing time of the operation
processed within interval time
D9 Minimum request processing time | ms The minimum processing time of the operation processed
within interval time
D10 Averaged request processing time ms The average processing time of the operation processed
within interval time
D11 Maximum request processing wait | ms Maximum wait time from the time of request by the client
time to the initiation of the server application
D12 Minimum request processing wait ms Minimum wait time from the time of request by the client
time to the initiation of the server application
D13 Average request processing wait ms Average wait time from the time of request by the client
time to the initiation of the server application
D14 Number of processes Number Number of times the operation has been executed by the
process within the specified time interval
D15 Number of requests received Number Accumulated number of processes, from the time of
starting the performance monitoring to the timing of this
object.
D16 Number of requests awaiting Number The maximum number of the requests waiting for
processing processing to the concerned object in interval time

The ispreportcommand outputs the interval time information in units of operations for each process. The output information consists
of information for each process in units of operations and in units of objects.

The following is an example of output using the /spreport command.
Example
The following is an example of the performance information output when monitoring the performance of objects OBJO01 and

0OBJ002. OBJ001 and OBJ002 have one operation. The process concurrency is 1.

Figure 3.8 Performance Information When Monitoring Objects

Mumber of
Reuest Request Mumber Number of recuesis
Object Operation Process processing processing of requests awaiting

Interval time(start time end tme) nAme namss (I&] time wail tme processes received processing
2001-06-06, 22:36:27, 2001-06-06, 22:41:427, OBJI0OOL, OPEOLL, 2692, 40.0,2. 250,0.5 5500, 500, 6 [hata of
2001-06-06, 22:36:27, 2001-06-06, 22:41:27, OBJI00Z, OPEO21, 2788, 30.0,2. 210,0.5 100, 10D, & interval e A

2001-06-06, 22:41:27, 2001-06-06, 22:46:27, OBJOO1, OPEO11, 2602, 30,02, 140,0,6, 400, 900, 4 7 powof ineral
2001-06-06, 22:41:27, 2001-06-06, 22:46:27, OBJOOZ, OPEO21, 2788, 20,0.2, 130,0,6, 200, 300, 3 _ tm:B

Information on Information an
an operation unit an object unit

Example

-68 -

The following is an example of the performance information output when monitoring the performance of an object OBJO01. OBJ001
has two operations. The process concurrency is 2.

Figure 3.9 Performance Information When Monitoring an Object
Mumber of
Reguest Recuest Number Number of requesis
Object Operation Process processing processing of requests awaiting
Interval time(start timeend time) name N [time will time processes received processing
2001-06-06, 22:36:27, 2001-06-06, 22:41:27, OBJ001, OFE0OOL, 2692, 40,0,2, 250,05 400, 1100, T
2001-06-06, 22:36:27, 2001-06-06, 22:41:27, OBJOGI, OPEMZ, 2602, 30,0,2, 130,0, 6, 400, 110,
2001-06-06, 22:36:27, 2001-06-06, 22:41:27, OBJOG1, OPEMN, 2788, 30,0,2, 210,0,5 10, 110,
2001-06-06, 223627, 2001-06-06, 22:41:27, OBJ00], OPEDO2, 2788, 21.0,2, 230,0.6, 100, 1104,
2001-06-06, 22:41:27, 2001-06-06, 22:46:27, OBJ00]1, OFEOODL, 2692, 30.0,2, 140, 0.6, 400, 21040,
200 -06-06, 22:41:27, 2001 -06-06, 22:46:27, OBJOGL, OPEQNO2, 2692, 21,0,2, 130,0,6 300, 2100, 3 Dt of inierval
20010 -06-06, 22:41:27, 2001 -06-06, 22:46:27, OBJOGL, OPEOOL, 2788, 30,0,2, 130,0,6, 200, 2100, 3 ri::-l: e
2001 -06-06, 22:41:27, 2001 -06-06, 22:46:27, OBJOGI, OPEQO2, 2788, 21,0.2, 140,0.6, 100, 2100, 3

| Dhata of
inferval tirme A

& th <h S ch

T T
Informmation on Information on
an operation unit an object unit

. Evaluation and action
Reference each item in the following.
- Evaluation by operation (D8-D10, D14)

D8-D10 and D14 indicate the request processing time for the operation (indicated in D6 for the process indicated in D7) and
the number of times the operation has been executed. With this information, a process can be evaluated for each operation.

- Evaluation by object (D11-D13, D15, D16)

D15 and D16 indicate the number of requests received, and the number of requests awaiting processing, for the object indicated
in D5. With this information each object can be evaluated.

The methods of evaluating performance information and the actions to be taken are listed in the following table. If a performance
abnormality was detected, take appropriate action using the table as a reference.

Table 3.9 Performance Items Details

Item no. Performance information details Action

1 In all the time slots when performance If the request processing time is longer than the target
monitoring was performed, the maximum value, one or both of the following causes can be
request processing time is long and the assumed:

averaged request processing time is close to the

. S - The server application has a performance problem.
maximum request processing time.

- System workload is too high.

Review the server application and system from the above
viewpoints.

2 In a particular time slot, the maximum, In a particular time slot, system workload is high.
minimum, and averaged request processing

. Check the workload status by measuring performance
times are long.

information of other server applications.

In a particular time slot, the maximum,
minimum, and average request processing wait
times are long

3 Although the maximum request processing One or both of the following causes can be assumed:
time is long, the averaged request processing
time is short and close to the minimum request
processing time. - Under a particular condition, the server application
has a performance problem.

- System work load have temporarily become high.

Although the maximum request processing
wait time is long, the averaged request Review the server application and system from the above
processing wait time is short and close to the viewpoints.

minimum request processing wait time.

-69 -

Item no. Performance information details Action

4 In all the time slots when performance Processing capacity of the server application is
monitoring was performed, the maximum insufficient for the number of requests from the client.
request processing wait time and average Take action to increase the processing capacity, such as
request processing wait time are long. increasing the process multiplicity in the WorkUnit

definition.

5 In a particular time slot, the number of In a particular time slot, the number of requests to the

processes and the number of requests waiting | server application has increased.

to be processed are high. If the processing capacity of the server application is

insufficient for the number of requests from the client,
take action to increase the processing capacity such as
increasing the process multiplicity in the WorkUnit
definition.

3.2.6.2 Performance Information Collected by the Network Control Manager with the
Real Time Monitoring Function

This section describes the performance information that can be collected by the real time monitoring function, the method of evaluating
it, and the various actions available.

1) Collectable performance information

The types of information that can be collected by using the real-time monitoring function are summarized below.

Table 3.10 Output Items

Performance information item Unit Meaning
name

Object name - Object name of the application for which performance information
is measured

Maximum request processing time ms Maximum processing time within the time required for processing
the object

Minimum request processing time ms Minimum processing time within the time required for processing
the object

Averaged request processing time ms Average processing time within the time required for processing
the object

Maximum request processing wait time | ms Maximum time within a poling time from the time of request by

the client to the initiation of the server application

Minimum request processing wait time | ms Minimum time from the time of request from by the client to the
initiation of the server application

Averaged request processing wait time | ms Average time from the time of request by the client to the initiation
of the server application

Number of requests received Numb | Accumulated number of processes, from the time of starting the
er performance monitoring to the timing of this object.

Number of requests awaiting processing | Numb | Maximum number of requests waiting for processing of this object,
er within the polling time.

2) Evaluation and action

The method of evaluating the performance information collected with the real time monitoring function and the method for taking action
are listed in the table below.

If a performance abnormality was detected, take the action indicated in the table. Also, use the performance information output to the
performance log file as a guide for evaluation.

-70 -

Table 3.11 Performance Item Details

Iltem Performance information details Action
no.

1 In each of the time slots when performance If the request processing time is longer than the target value,
monitoring is performed, the maximum request one or both of the following causes can be assumed:
processing time is long. The average request
processing time is close to the maximum request
processing time. - System workload is too high

- There is a performance problem in the server application

Review the server application and system from the above
viewpoints.

2 In a particular time slot, the maximum, minimum, | In a particular time slot, the system workload is high.

n rage r r ing times are long. .
and average request processing times are long Check the workload status by measuring performance

In a particular time slot, the maximum, minimum, | information of other server applications.
and average request processing wait times are long

3 Although the maximum request processing time is | One or both of the following causes can be assumed:
long, the average request processing time is short

and close to the minimum request processing time. - System workload has temporarily become high

- Under a particular condition, there is a performance

Although the maximum request processing wait . !
problem in the server application

time is long, the averaged request processing wait

time is short and close to the minimum request Review the server application and system from the above
processing wait time. viewpoints.
4 In all the time slots when performance monitoring | Processing capacity of the server application is insufficient

was performed, the maximum request processing | for the number of requests from the client. Take action to
wait time and average request processing waittime | increase the processing capacity, such as increasing the

are too long. process multiplicity in the WorkUnit definition.
5 In a particular time slot, the number of processes | Ina particular time slot, the number of requests to the server
and requests waiting to be processed are high. application has increased.

If the processing capacity of the server application is
insufficient for the number of requests from the client, take
action to increase the processing capacity such as increasing
the process multiplicity in the WorkUnit definition.

3.2.6.3 Warnings Regarding the Evaluation of the Performance Information
There are a number of caveats about evaluating the performance information, which are shown below.

- If a value out of the range from 0 to 10,000 is specified as a reference value to the client application of the transaction application, its
request is not reflected on the performance information.

- If the server application is terminated abnormally during processing, its request is not reflected in the performance information.

3.2.7 Managing the Performance Log Files

Make sure that there is enough disk space to create performance log files before starting the Performance Monitoring Tool. Use the
following formula to estimate the required disk space.

Disk space required =
shared-memory-size-specified-when-starting-performance-monitoring-tool
X (time-from-when-performance-monitoring-tool-is-started-until-stopped
/ time-interval-specified-when-starting-performance-monitoring-tool)

Back up the performance log files and delete unnecessary files at regular intervals. Otherwise, the disk may be getting full. If the backed
up and deleted files are to be output as a report, store these files in a folder and output a report with these files specified.

Performance log files will be created in the following folders.

-71-

- The folder specified in the ispmakeenv command parameter
- The folder specified in the ISP_LOG environment variable

Performance log files will be created in the folder specified in either the /spmakeenv command or the ISP_LOG environment variable
according to the naming convention shown below. If both of them are specified, the folder name specified in the /spmakeenv command
will take priority. If neither of them is specified, the folder name 'TD_HOME\isp\log' will be used as the default folder name. TD_HOME'
is the interstage-installation-folder\td.

Performance log file name: ispYYYYMMDD. log
YYYYMMDD is a file creation date.

YYYY: Year

MM: Month (01 to 12)

DD: Day (01 to 31)

The Performance Monitoring Tool creates a performance log file for the date when it is activated. If the Performance Monitoring Tool
has been operated over several days, performance log files for these days will be created on the daily basis.

Note

After executing the fspmakeenvcommand, do not delete performance log files that are being created by the Performance Monitoring Tool.
Otherwise, performance information may not be stored correctly. Use the ispdeleteenv command to delete performance log files.

3.2.8 Source Names of the Messages Displayed on the Event Viewer

For the source names of the messages output to the event viewer, either of the following can be selected.

F3FMis

'F3FMis' is shown as the source name displayed on the event viewer

ISPerf
"ISPerf' is shown as the source name displayed on the event viewer
In the initial setting, 'F3FMis' is output.

To output 'ISPerf', take the following steps.

Procedure

1. If the environment of the performance monitoring tool has already been created with the /spmakeenv command, delete the
environment with the 7spdeleteenv command.

2. Open the performance monitoring tool environment definition file (the following file) with the editor.

[Interstage installation folder]\td\etc\isp\ispconf.txt

3. Edit the line 'Msg Source=F3FMis' described in ispconf.txt as follows:

Msg Source=I1SPerf

If a string other than 'ISPerf" is specified in 'Msg Source=', 'F3FMis' is displayed as the source name. To return the source name to 'F3FMis'
after the source name is changed in the above procedure, specify 'Msg Source=F3FMis'.

3.3 Interstage Operation API

The Interstage operation API is used to operate WorkUnits and acquire information. This section covers the following points about the
operation API group:

- Function Overview
- Compiling and Linking Applications

- Examples of Use

-72-

- Notes
The Interstage operation API provides an interface for the C language.
Note
Interstage operation APIs cannot be issued from multiple threads when they are used on a program operating in multi-thread.

The following functions of the Interstage operation API must not be issued from the pre-exit program and post-exit program of the
WorkUnit, the WorkUnit exit program, or the process salvage exit program:

- Object information notification

WorkUnit start

WorkUnit stop

Object close(*1)

Cancel object close(*1)

Information acquisition of the object in the Implementation Repository ID

*1 Object closure and object closure cancel are only supported in the Enterprise Edition.

3.3.1 Function Overview

The operation APIs provide the following functions:

- Interstage Operation APl Environment Initialization and Collection

The initialization and collection function for using Interstage Operation APIs
- Interstage Operation Information Notification

The function used to acquire WorkUnit and object-related information
- Interstage Operation

The function used to start/stop WorkUnits and block/unblock objects
Solaris32
- Interstage System Information Notification

The function of acquiring the Interstage system list information

Note

Object closure, object closure cancel, and the reporting of Interstage system information are only supported in the Enterprise Edition.

3.3.1.1 Interstage Operation API Environment Initialization and Collection

The 1ISOPenv function initializes and collects the Interstage Operation API environment.

Interstage Operation APl Environment Initialization

Initializes the Interstage Operation API environment. This APl must be used to initialize the Interstage Operation API environment before
using the Interstage Operation API. Issue this API in the application process only once at the beginning of the application.

Interstage Operation APl Environment Collection

Collects the Interstage Operation API environment. Issue this API before terminating the application process.

3.3.1.2 Interstage Operation Information Notification

The ISOPnotify function reports Interstage operation information.

-73-

WorkUnit Name Notification
Reports information on all the WorkUnits defined when API is issued. Using this API repeatedly can retrieve a list of WorkUnit names.

This API provides the following information in addition to WorkUnit names.

- WorkUnit type

Object Name Notification

Reports information on the objects defined when API is issued. Using this API repeatedly can retrieve a list of object names registered in
the specified WorkUnit.

This API provides the following information in addition to object names.
- Total number of objects registered in the WorkUnit
- Object type
- Number of concurrent processes when definitions registered
- DPCF communication path name I Windows32 | Solaris32
- Maximum number of queues
- Number of queues monitored
- Number of queues monitored and restarted
- EJB application mode
- Number of instances
The information posted depends on the type of WorkUnit.
Notes

- The meaning of 'number of concurrent processes' depends on whether the object is resident, or non-resident or multi-object non-
resident.

For resident objects, this is the number of concurrent processes for the object.

For non-resident or multi-object non-resident objects, this refers to the maximum number of concurrent processes being run
simultaneously by all non-resident and multi-object non-resident objects defined in the WorkUnit.

- Information on non-resident and multi-object non-resident object numbers of queues and numbers of requests collected by the
information notification function relate to each object.

Windowsazg | Solaris32

- The maximum number of queues for WRAPPER WorkUnit type objects is adjusted to the system maximum number of queued sessions
in the environment definitions for the Component Transaction Service. This value applies to the whole system, not each DPCF
communication path.

If the DPCF communication path name in the WorkUnit definitions is shown in the Component Transaction Service environment
definitions, the system maximum number of queued sessions is reported as the maximum number of queues.

If the DPCF communication path name in the WorkUnit definitions is not shown in the Component Transaction Service environment
definitions, no load restrictions apply to the path. In this case, the system maximum number of queued sessions is ineffective, and the
maximum number of queues will be reported as 0.

- Details on the number of queues monitored and the number of queues for which monitoring is restarted are only collected in the
Enterprise Edition.

WorkUnit Information Notification

Reports WorkUnit information when API is issued. This APl provides one of the following states: 'running’, 'starting', 'stopping’, and
'stopped' (stopped by API, stopped by command, or abnormal stop).

-74 -

Object Information Notification
Reports object information when API is issued.
This API provides the following information in addition to object status:
- State of object
- DPCF communication path state FWindows32 | Solaris32
- Number of queues
- Number of cumulative processes
- Number of concurrent processes running
- EJB application mode
- Number of instances
- Queues monitoring state
The information reported depends on the type of WorkUnit in which the specified object is defined.
Note

Queue monitoring state details are only collected in the Enterprise Edition.

3.3.1.3 Interstage Operation

The 1SOPoperate function reports Interstage operation.

WorkUnit Startup

Starts a WorkUnit. WorkUnit startup is synchronized. When a WorkUnit is started, the server application is also started.

WorkUnit Stop

Stops a WorkUnit. WorkUnit stop is synchronized. When a WorkUnit is stopped, the server application is also stopped. This API can also
stop the WorkUnit started by the fdstartwu and isstartwu commands.

Object Close

Closes the specified object

Cancel Object Closure
Cancels the closure of the specified object
Note

The object closure and cancel object closure functions can be used if the Interstage Application Server Enterprise Edition is installed.

3.3.1.4 Interstage System Information Notification

Solaris32

The ISOPsystem function provides the Interstage system information notification function.

System Name List Notification

A list of systems generated when the API is issued can be extracted.

System Name List Release
Releases the area acquired when the system name list notification API was issued.

Note

-75-

The Interstage Operation API environment does not need to be initialized when this API is used. Issue this API with superuser authority.

System name list reporting and system name list release can be used when Interstage Application Server Enterprise Edition is installed.
This function cannot be used in Interstage Application Server Enterprise Edition.

3.3.2 Compiling and Linking Applications

Specify the following include file when compiling applications that use Interstage Operation API.

Include file name Storage location

ISOP.h Interstage installation folder\td\include

Specify the following library when linking applications that use Interstage Operation API.

Library name Storage location Use

F3FMuistage.lib Interstage installation folder\td\lib Operation API run time (mandatory)

3.3.3 Examples of Use

The Interstage Operation APl initializes and collects the environment. If the environment has failed to be initialized, collection processing
will not be required.

Windows32

#include "1SOP_h"
1SOP_CTRL env;
/* initialize environment */
memset((char *)&env, 0x0, sizeof(ISOP_CTRL));
env.request = ISOP_RINIENV;
env.pktvl = ISOP_006;
1SOPenv((char *)&env);
if(env.result == -1){
/* abnormal termination: Environment collection not required*/
/* error processing */
3
~ /* execute Operation API*/
/* collect environment */
memset((char *)&env, 0x0, sizeof(ISOP_CTRL));
env.request = ISOP_RTRMENV;
env.pktvl = ISOP_006;
1SOPenv((char *)&env);
if(C env.result == -1){
/* abnormal termination */
/* error processing */

}

When using the WorkUnit name or object name notification API to obtain multiple names, specify the same control table that was returned
previously. Doing so will count the number of WorkUnit names or object names that have already been obtained. When all of the names
are retrieved, "0" will be returned as the result.

I1SOP_LSTWU Istwu;

memset((char *)&lIstwu, 0x0, sizeof(ISOP_LSTWU));
/* settings for obtaining the first name */
Istwu.opctrl._request = ISOP_RLSTWU;

Istwu.opctrl ._pktvl = 1SOP_006;

Istwu.checknum = O;

do{ /*This loop retrieves all the names */

-76-

1SOPnotify((char *)&lIstwu);
if(Istwu.opctrl.result == -1){
/* error processing */
/* Also processed here when no WorkUnit is found */
break;
}
~ /* each processing */
Jwhile(Istwu.opctrl. result == 1);

Solaris32

#include "I1SOP.h"
#define DEF_ISOPENV ""1SOPenv"*
I1SOP_CTRL env;
void *handle;
void (*ISOPENV)(char *);
int rtncode;
/* open library */
handle = dlopen("/opt/FSUNtd/lib/libistage.so™, RTLD_LAZY);
if(handle == NULL){
/* abnormal termination */
/* error processing */
3
/* obtain function address */
ISOPENV = (void (*)(char *))dIsym(handle, DEF_ISOPENV);
iT(ISOPENV == NULL){
/* abnormal termination */
/* error processing */
3
/* initialize environment */
memset((char *)&env, 0x0, sizeof(ISOP_CTRL));
env.request = ISOP_RINIENV;
env.pktvl = ISOP_006;
(*ISOPENV) ((char *)&env);
if(env.result == -1){
/* abnormal termination no need to collect environment */
/* error processing */
¥
~ /* execute Operation APl */
/* collect environment */
memset((char *)&env, 0x0, sizeof(ISOP_CTRL));
env.request = ISOP_RTRMENV;
env.pktvl = ISOP_006;
(*ISOPENV) ((char *)&env);
if(env.result == -1){
/* abnormal termination */
/* error processing */
3
/* close library */
rtncode = dlclose(handle);
if(rtncode = 0){
/* abnormal termination */
/* error processing */

}

When using the WorkUnit name or object name notification API to obtain multiple names, specify the same control table that was returned
previously. Doing so will count the number of WorkUnit names or object names that have already been obtained. When all of the names
are retrieved, "0" will be returned as the result.

I1SOP_LSTWU Istwu;
void (*ISOPNOTIFY)(char *);

-77-

memset((char *)&lIstwu, 0x0, sizeof(ISOP_LSTWU));
/* settings for obtaining the first name */
Istwu.opctrl._request = ISOP_RLSTWU;
Istwu.pktvl = 1SOP_006;
Istwu.checknum = 0;
do{ /* This loop retrieves all the names */
(*ISOPNOTIFY)((char *)&lIstwu);
if(Istwu.result == -1){
/* error processing */
/* Also processed here when no WorkUnit is found */
break;
3
~ /* each process */
while(Istwu.result == 1);

When the Interstage system information notification AP is used for system name list notification, a list of all system names can be obtained
by one invocation.

To release the area of the system name list information retrieved, specify the invocation parameter structure used for system name list
notification when the system name list release API is invoked.

ISOP_LSTSYS Istsys;
I1SOP_LSTSYSDATA *data;
int i;

/* System name list acquisition */
memset(&lstsys, 0, sizeof(ISOP_LSTSYS));
Istsys.opctrl._request = ISOP_RLSTSYS;
Istsys.opctrl_pktversion = 1SOP_006;

/* APl invocation */
1SOPsystem((char*)&lstsys);

if(Istsys.opctrl.result 1= 0) {
/* Abnormal end */

/* Error processing */

}

/* Referencing to system name list information */
data = Istsys.bufaddr;

for(i=0; 1 < Istsys.num; i++, data++) {

/* System name */

printf('SYSTEM:%s\n'*, data->sysname);

/* Profile */

printf(""PROFILE:%s\n", data->profile);

}

/* System name list release */
Istsys.opctrl._request = ISOP_RLSTFRESYS;
1SOPsystem((char *)&lstsys);

if(Istsys.opctrl.result 1= 0) {

/* Abnormal end */

/* Error processing */

}

LinuxZ

#include "I1SOP.h"
#define DEF_ISOPENV " 1SOPenv"

1SOP_CTRL env;

-78-

void *handle;
void (*ISOPENV)(char *);
int rtncode;
/* open library */
handle = dlopen("/opt/FJSvtd/lib/libistage.so™, RTLD_LAZY);
iT(handle == NULL){
/* abnormal termination */
/* error processing */
3
/* obtain function address */
ISOPENV = (void (*)(char *))dIsym(handle, DEF_ISOPENV);
iT(ISOPENV == NULL){
/* abnormal termination */
/* error processing */
3
/* initialize environment */
memset((char *)&env, 0x0, sizeof(ISOP_CTRL));
env.request = ISOP_RINIENV;
env.pktvl = ISOP_006;
(*ISOPENV) ((char *)&env);
if(env.result == -1){
/* abnormal termination no need to collect environment */
/* error processing */
}
~ /* execute Operation APl */
/* collect environment */
memset((char *)&env, 0x0, sizeof(ISOP_CTRL));
env.request = 1SOP_RTRMENV;
env.pktvl = ISOP_006;
(*ISOPENV) ((char *)&env);
if(env.result == -1){
/* abnormal termination */
/* error processing */
3
/* close library */
rtncode = dlclose(handle);
if(rtncode = 0){
/* abnormal termination */
/* error processing */

}

When using the WorkUnit name or object name notification API to obtain multiple names, specify the same control table that was returned
previously. Doing so will count the number of WorkUnit names or object names that have already been obtained. When all of the names
are retrieved, "0" will be returned as the result.

I1SOP_LSTWU Istwu;
void (*ISOPNOTIFY)(char *);
memset((char *)&lIstwu, 0x0, sizeof(ISOP_LSTWU));
/* settings for obtaining the first name */
Istwu.opctrl._request = ISOP_RLSTWU;
Istwu.pktvl = 1SOP_006;
Istwu.checknum = O;
do{ /* This loop retrieves all the names */
(*ISOPNOTIFY)((char *)&lIstwu);
if(Istwu.result == -1){
/* error processing */
/* Also processed here when no WorkUnit is found */
break;
}
~ /* each process */
while(Istwu.result == 1);

-79-

3.3.4 Notes

This section provides notes on using the Interstage Operation API. Do not use the start command provided by each service.

3.3.4.1 Command Operations
This section describes system behavior that occurs when this API conflicts with each command.
- Deleting WorkUnit definitions (fddeldef/isdelwudef commands)
- Stopping WorkUnits (Zdstopwu/isstopwu commands)
- Changing WorkUnit definitions (fdadddef/isaddwudef commands)
- Changing WorkUnit definitions dynamically (fdmodifywu command)
- Changing the number of concurrent server applications (fdmodifyprocnum command)
- Adding WorkUnit definitions (fdadddefl isaddwudef commands)
- Starting WorkUnits (tdstartwul isstartwu commands)

- Stopping Interstage (/ssfop command)

Solaris32

- Adding the system to be operated (/screatesys command)
- Deleting the system to be operated (/sdeletesys command)

The Operation API's behavior in each of the above situations is described below. We recommend that the Operation APIs be used so that
they do not conflict with these commands which change status.

Note

The functions for adding and removing systems to be operated are only supported in the Enterprise Edition.

Deleting WorkUnit Definitions

When WorkUnit definitions are deleted, the function for specifying WorkUnits will set ISOP_ENOWU in the detailed error information.
To obtain the latest status, issue the WorkUnit name notification API and the object name notification API.

Stopping WorkUnits

Use the WorkUnit information notification API to check whether the WorkUnit has stopped. This API can also obtain the status of the
WorkUnit stopped by the tdstopwu or isstopwu commands or abnormal stop status.

Changing WorkUnit Definitions and Changing WorkUnits Dynamically

The WorkUnit name notification APl and the object name notification API always obtain the latest definitions.

Changing the Number of Concurrent Server Applications

When the number of concurrent server applications is dynamically changed, the number of concurrent server applications that is reported
by the object name notification API is the number before the dynamic change. However, the object information notification AP1 will return
the latest dynamically changed number. If the number of concurrent server applications has been dynamically changed, use the object
information notification API to return the number.

Adding WorkUnit Definitions

After adding WorkUnit definitions, use the WorkUnit name notification API to retrieve all the defined WorkUnit names.

Starting WorkUnits

When a WorkUnit has been started by the tastartwu or isstartwu command, the WorkUnit information notification API will not report the
reason for WorkUnit stop.

-80-

Adding the System to be Operated | Solaris32
After adding a system to be operated, use the system name list notification API function to retrieve all of the generated system names.
Note

The addition of systems to be operated is a function only supported in the Enterprise Edition.

Deleting the System to be Operated = Solaris32

After the system to be operated is deleted, ISOP_ENOSYSTEM is posted to the detailed error information if an API is issued with the
deleted system name specified. To obtain the latest status, issue the system name list notification API.

Note

The addition of systems to be operated is a function only supported in the Enterprise Edition.

Stopping Interstage

When the system to be operated is stopped, ISOP_ESTPIS is posted to the detailed error information for all functions excluding system
information notification.

3.3.4.2 Starting and Stopping WorkUnits
This API can stop a WorkUnit in normal stop or forced stop mode.

If the WorkUnit is stopped in normal stop mode when it is communicating with a client (linked to a client), an error (ISOP_EREQREJECT)
will be returned. When a WorkUnit is stopped in synchronous stop mode, the request being processed is executed, then the WorkUnit is
stopped.

The notes below explain the following points about stopping WorkUnits:
- Forced WorkUnit Stop

- Collecting WorkUnit Information

Forced WorkUnit Stop

When a WorkUnit is forcibly stopped, APIs may terminate abnormally but the WorkUnit may fail to stop. If the WorkUnit definitely must
be stopped, use the WorkUnit information notification function to check, and take the appropriate action.

Collecting WorkUnit Information

The WorkUnit information notification function returns the following statuses as the stop modes in the return information stat. Take the
action appropriate to each case.

- ISOP_DWUSTOP
The Interstage Operation API has stopped the WorkUnit.
- ISOP_DWUSTOP_COM
The WorkUnit started by the Interstage Operation API has been stopped by the fdstopwu or isstopwu command.
- ISOP_DWUSTOP_ABEND
The WorkUnit started by the Interstage Operation API has terminated abnormally.
Solaris32 Linux3Z

- ISOP_DWUSTOP_AUTO
The utility WorkUnit started by the Interstage Operation APl has been stopped automatically.

3.3.4.3 Operation in the Cluster System
Windows3?

When using Interstage Operation APIs in an environment in which Interstage operates in a cluster system, use the following service.

-81-

- Interstage API service
This service is registered when installing Interstage.
For a concrete operation method, refer to High Availability System Guide.

Use this service only when operating Interstage in the cluster configuration. If Interstage is operated in a configuration other than the
cluster configuration, do not start this service.

3.3.4.4 Control Table Version-Level for Interstage Operation API

This section describes the following notes applicable when the version of the parameter structure control table for the Interstage Operation
API is upgraded or when the old version of the control table is used.

The Interstage Operation APl compares the value for the version of the control table set as a parameter when the API is called, and
determines the range of functions used by the API.

If the value for the version of the control table specified as a parameter when the API is called is older than, or the same as, the current
version, the range of functions supported up to the version specified by the API is used. In this case, the API simply returns the value for
the version of the control table set as the parameter.

If the value for the version of the control table specified as a parameter when the API is called is newer than the current version, the API
uses the range of functions supported up to the current version, but does not use the range of functions supported by the newer version.
In this case, the API returns the value for the current version in the area for the version of the control table set as the parameter.

The following table lists the values for the versions of control tables set when an APl is called, and the values for the version of the control
table used and returned by the API as the current version.

Table 3.12 Control Table Values

Value of version of control API uses Value of version of control table set when
table set when API called API returned
Windowsd? || Solaris32 Functions supported by ISOP_001 ISOP_001
ISOP_001
Windows3? || Solaris32 Functions supported by ISOP_002 ISOP_002
ISOP_002
Windows32 || Solaris32 Functions supported by ISOP_003 ISOP_003
ISOP_003
ISOP_005 Functions supported by ISOP_005 ISOP_005
ISOP_006 Functions supported by ISOP_006 ISOP_006
Other value Functions supported by the latest control table Windows3Z Linux3Z
version of each API ISOP_006
Solaris32
System name list notification: ISOP_001
System name list release: 1ISOP_001
Other value: ISOP_006

3.3.4.5 Parameter Information used by Interstage Operation API

The Interstage Operation API uses structure members, some of which are defined in Interstage. These definitions are shown in the following
table. Always append \0 to the end of each character string.

-82 -

Table 3.13 Structure Member Definitions

Member name included in Size Settable value
structure
WorkUnit name 36 bytes The WorkUnit name can contain up to 36 bytes of alphabetic letters, numbers,

hyphens and underscores, and must begin and end with an alphabetic letter.

Object name 255 bytes When type of the WorkUnit is ORB and WRAPPER, an object name is a character
string that consists of alphanumeric characters, underscore and slash of 255 bytes
or less including one or more slash and starts with an alphanumeric character.
Slash cannot be used for the top and the last letters and two or more consecutive
slashes cannot be used.

When the WorkUnit type is EJB, an object name is a character string (of 255
bytes or less) that consists of alphanumeric characters, hyphens, slashes, colons,
periods or underscores.

A slash cannot be used for the first or last character and two or more consecutive
slashes cannot be used.

Solaris32 8 bytes Alphanumeric characters in up to 8 bytes

System name

3.4 Changing WorkUnits

Transaction and EJB applications can be run as WorkUnits. This section explains how to add, change and delete the WorkUnits of
transaction and EJB applications.

- Adding a WorkUnit (Transaction Applications)

Adding a WorkUnit (EJB Applications)

Deleting a WorkUnit

Changing a WorkUnit

3.4.1 Adding a WorkUnit (Transaction Applications)

The following figure shows the procedure for adding a new transaction application WorkUnit to the system during operation.

-83-

Figure 3.10 Adding a New Transaction Application WorkUnit

1. Copy IDL definition file . \ CopV J
IDl.deﬂnrtmnﬁlel y

IDL defirition file | Compile

WUt eion) 7225 J
-/

4. Reflection to system R'Eﬂe‘:'t/ System I

5. Startup of WorkUnit

2. Compile with IDL computer

3. Creation of new WorkUnit definition

Start

1) Copy IDL Definition File

Copy the application program and the IDL definition file created in the start-up environment to the application environment.

2) Compile with IDL Compiler

Use the IDL compiler to compile the IDL file in the application environment. An execution module for the added application is created
on the basis of the generated skeleton code. It is recommended that the interface information check function be used when compiling the
IDL definition file. For details on the interface information check function, refer to "Operation Using the Interface Information Check
Function" in the "Notes on OLTP Server Operations" appendix.

3) Create New WorkUnit Definitions

Create a new definition for the added WorkUnit

4) Update System

Use the /saddwudefcommand to copy the WorkUnit definition to the system.

isaddwudef create-def.wu

If you specify the -0 option, then any existing definition with the same name will be overwritten. If no definition of that name exists, then
a new definition is registered. If you omit the -0 option, the file will only be registered if there is no existing definition of the same name.

Note

Transaction application WorkUnits can also be registered with the fdadddef command.

5) Start WorkUnit
Start up the added WorkUnit.

3.4.2 Adding a WorkUnit (EJB Applications)

The following figure shows the procedure for adding a new EJB application WorkUnit to the system during operation.

-84 -

Figure 3.11 Adding a New EJB Application WorkUnit

1. Create EJB application 18 appication Eﬁj

$
2. Create mw*‘ﬂnrnhlt definitions mm[ﬂ Imﬁ J
3. Reflect in system Reflect
— / System I
$
4. Start WorkUnit Start I

1) Create New EJB Application

Create the new EJB application.

2) Create New WorkUnit Definitions

Create a new definition for the added WorkUnit

3) Update System

Use the isaddwudefcommand to copy the WorkUnit definition to the system.

isaddwudef create-def.wu

If you specify the -0 option, then any existing definition with the same name will be overwritten. If no definition of that name exists, then
a new definition is registered. If you omit the -o option, the file will only be registered if there is no existing definition of the same name.

4) Start WorkUnit
Start up the added WorkUnit.

3.4.3 Deleting a WorkUnit

The procedure for deleting WorkUnits from the system during operation is illustrated in the following figure.

When a CORBA WorkUnit is used, this procedure can be executed using the Interstage management console.

Figure 3.12 Deleting a WorkUnit
1. Termination of WorkUnit

$

2. Deletion of WorkUnit WorkUnit

Terminate

1) Terminate WorkUnit

If the WorkUnit to be deleted is active, you must close it down.

isstopwu TDSAMPLE1

-85 -

2) Delete WorkUnit

Delete the corresponding WorkUnit definition.

isdelwudef TDSAMPLE1

Note

Transaction application WorkUnits can also be stopped with the fdstopwu command. WorkUnit definitions can also be deleted with the
tddeldef command.

3.4.4 Changing a WorkUnit

This section describes the procedure for changing a WorkUnit, when the resource (database name or file name) used by an application
has been altered. The following figure outlines this procedure. These changes can be made during operation. You should also follow this
sequence of operations after making any changes to application processing, which become necessary due to alterations in resource
allocation.

When a CORBA WorkUnit is used, this procedure can be executed using the Interstage management console.

Figure 3.13 Changing a WorkUnit

1. Termination of WerkUnit Termin atel

2. Changing WorkUnit definition WerkUnit definion Change

/

3. Re-start of WorkUnit Re-start |

1) Terminate WorkUnit
Terminate the WorkUnit to be changed.

isstopwu TDSAMPLE1

2) Change WorkUnit Definition
Change the WorkUnit definition. Copy the new definition to the system with the /saddwudef command.

isaddwudef -o create-def.wu

3) Re-start WorkUnit
Re-start the WorkUnit.

isstartwu TDSAMPLE1

Note

Transaction application WorkUnits can also be started and stopped with the tdstartwu and tdstopwu commands respectively. WorkUnit
definitions can also be registered with the tdadddef command.

3.5 Changing Server Applications

Server applications can be changed in the following ways. The procedures for adding and modifying transaction and EJB applications are
different.

-86 -

Active change is available for transaction applications only.

- Adding a Server Application (Transaction Application)

Adding a Server Application (EJB Application)

Deleting Server Applications

- Changing a Server Application (Transaction Application)

Changing a Server Application (EJB Application)

- Active Changing of a Server Application (Transaction Applications Only)

Dynamic Changing of the Number of Server Application Processes

3.5.1 Adding a Server Application (Transaction Application)

The procedure for adding a transaction application to an active WorkUnit is illustrated in the following figure.

Figure 3.14 Adding a Transaction Application

1. Termination of WorkUnit Terminate

¢

2.Copying of IDL definition file

IDL definiion il |C°W} J
IDL defintion fle |°°'F'_h,)
4 Setling of application information in WorkUnit definition Hmlit.‘aﬂ onirkomnai ml Set /
W / System l
6.Re-start of WorkUnit Re-start l

1) Terminate WorkUnit

¢

3.Compilation with IDL compiler

¢

¢

5 Reflection to system

¢

Terminate the WorkUnit to which you are going to add the new application.

isstopwu TDSAMPLE1

2) Copy IDL Definition File

Copy the application program and the IDL definition file, created in the startup environment, to the application environment.

3) Compile with IDL Compiler

Use the IDL compiler to compile the IDL definitions in the application environment as shown in the following Figure. Then create an
execution module for the added application on the basis of the generated skeleton code. Next, regenerate the application on the client-side
execution module, using the stub created at the same time as the compile operation.

-87 -

It is recommended that the interface information check function be used when compiling the IDL definition file. For details on the interface
information check function, refer to "Operation Using the Interface Information Check Function” in the "Notes on OLTP Server
Operations™ appendix.

Figure 3.15 Compiling the IDL Definitions

TR Specification of interface
IDL definition file §:.cen appications

Stores interface environment

: IDL mmpilern in Interface Repository

Source code for
Stub Skeleton

server application

Source code for
client application

Program Program

Compile / link
Link program with stub

Compile / link

Link program
with skeleton

Client execution module I Application execution module I

4) Set the Application Information in the WorkUnit Definition File

Set information relating to the new application in the WorkUnit definition file.

5) Update System

Use the isaddwudefcommand to copy the altered WorkUnit definition file to the system.

isaddwudef create-def.wu

If you specify the -0 option, then any existing definition with the same name will be overwritten. If no definition of that name exists, then
a new definition is registered. If you omit the -0 option, the file will only be registered if there is no existing definition of the same name.

6) Re-start WorkUnit
Re-start the WorkUnit that has been changed.

isstartwu TDSAMPLE1

3.5.2 Adding a Server Application (EJB Application)

The procedure for adding an EJB application to an active WorkUnit is illustrated in the following figure.

-88 -

Figure 3.16 Adding an EJB Application

1. Stop WorkUnit o I
.
2. Create EJB applicatio
" EJB apminatinnlm,{_j

3. Set application information in WorkUnit definitions Application Set

N information '--;‘)

4. Reflect in system Reflect / A I
5. Restart WorkUnit Restart I

1) Terminate WorkUnit

Terminate the WorkUnit to which you are going to add the new application.

isstopwu EJBSAMPLE1

2) Create EJB Application
Create the EJB application.

3) Set the Application Information in the WorkUnit Definition File

Set information relating to the new application in the WorkUnit definition file.

4) Update System

Use the isaddwudefcommand to copy the altered WorkUnit definition file to the system.

isaddwudef EJBWU.wu

If you specify the -0 option, then any existing definition with the same name will be overwritten. If no definition of that name exists, then
a new definition is registered. If you omit the -0 option, the file will only be registered if there is no existing definition of the same name.

5) Re-start WorkUnit
Re-start the WorkUnit that has been changed.

isstartwu EJBWU

3.5.3 Deleting Server Applications

An application is deleted from an active WorkUnit by the procedure illustrated in the following figure.

This procedure can be executed using the Interstage management console.

-89 -

Figure 3.17 Deleting an Application from an Active WorkUnit

1. Termination of WorkUnit e I

2.Deletion of application from unit definition file Application W
.

3.Reflection to system Reﬂect/ System |

4.Re-start of WorkUnit |

1) Terminate the WorkUnit

Terminate the WorkUnit containing the application that is to be deleted.

isstopwu TDSAMPLE1

2) Delete the Application from the WorkUnit Definition

Delete the relevant application from the WorkUnit definition file.

3) Update the System

Use the isaddwudefcommand to copy the altered WorkUnit definition file to the system.

isaddwudef -o create-def.wu

4) Re-start WorkUnit
Re-start the WorkUnit that has been changed.

isstartwu TDSAMPLE1

Note

Transaction application WorkUnits can also be started and stopped with the tdstartwu and tdstopwu commands respectively. WorkUnit
definitions can also be registered with the fdadddef command.

3.5.4 Changing a Server Application (Transaction Application)

The procedure for changing a transaction application in an active WorkUnit is illustrated in the following figure.

If the import/output elements in the client have altered, due to changes in business processing, or if the interface presented to the application
has changed, the IDL definition information must also be modified. The method for changing an application, and modifying the IDL
definition file, is described in this section.

-90-

Figure 3.18 Changing a Transaction Application in an Active WorkUnit

1. Stop WorkUnit Stop

IDL ::Ifeirlgn'rtiun .Mﬂdify/
IDL definition .Gf"‘"P""
file /
Application IW
\""J Application .E"_’E"“
6. Restart WorkUnit E—— |

1) Terminate the WorkUnit

¢

2. Modify DL definition file

¢

3. Compile with IDL compiler

¢

4. Recreate applicafion

¢

5. Replace application

¢

Terminate the WorkUnit in which the application is going to be changed.

isstopwu TDSAMPLE1

2) Modify the IDL Definition File
Modify the IDL definition file.

3) Compile with IDL Compiler
Use the IDL compiler to generate a skeleton and stub from the IDL definition file.

It is recommended that the interface information check function be used when compiling the IDL definition file.

4) Recreate Application
Modify the application and create an execution module using the generated skeleton code. Next, regenerate the client-side execution
module, using the generated stub code.

5) Replace Application
To replace the existing application with a new one, you should change the contents of the execution module, rather than altering the path
name (application library path) of the execution module.

6) Re-start WorkUnit
Re-start the WorkUnit.

isstartwu TDSAMPLE1

Note

-901-

Transaction application WorkUnit can also be started and stopped with the fdstartwu and tdstopwu commands respectively.

3.5.5 Changing a Server Application (EJB Application)

The procedure for changing an EJB application in an active WorkUnit is illustrated in the following figure.

Figure 3.19 Changing an EJB Application in an Active WorkUnit

1. Stop WorkUnit Stop I
2. Recreate EJB application B J
EJB applinatinnl y

3. Restart WorkUnit R I

1) Terminate the WorkUnit

Terminate the WorkUnit in which the application is going to be changed.

isstopwu EJBWU

2) Recreate the Application
Recreate the EJB application.

3) Restart WorkUnit
Restart the WorkUnit.

isstartwu EJBWU

3.5.6 Active Changing of a Server Application (Transaction Applications
Only)

You can change an application in an active WorkUnit and update the system accordingly, without having to terminate the WorkUnit (this
is called active changing).

The active changing of a server application is supported only in the Enterprise Edition.
Note

The active changing procedure can be used for switching to a modified application, without altering the interface. It is not valid if the

interface has been changed. Refer to "3.5.4 Changing a Server Application (Transaction Application)" for information on changing the
interface.

Active changing can be applied to transaction applications only.

The procedure for changing an active application is illustrated in the following figure.

-02 -

Figure 3.20 Active Changing of a Server Application
1.Backing up WorkUnit definition file

2 Modification of WorkUnit definition

3.Reflection to system

4.Activation change

Note

Pay attention to the following points during this process:

The active change procedure cannot be used in the following cases:
- If you are changing an operation parameter
- If the WorkUnit type is set to a type other than ORB

- If the new execution file is to have the same file name as the original, assign version information, or something similar, to prevent the
file from being overwritten when the WorkUnit is in use.

- If the active change process fails, any alterations made to the WorkUnit definition file cannot be undone.

- No other processing can be carried out while an active application change is being performed. In some instances, there may be a
temporary fall in system performance.

- In a system using the High Availability (HA) function, active changes made to the current node will not be reflected in the standby
node. Also, the active change process cannot be performed for the standby node.

- The following statements in the WorkUnit definitions cannot be dynamically changed.
- WorkUnit name
- WorkUnit type
- APM name
- DPCF communication path name
- Resident, non-resident, or multi-object-resident mode
- Bind format
- Session ID notification parameter
- Session start method
- Maximum client decision-making time
- Error exit program name
- AIM application monitoring time
- Object priority
- Maximum number of queues

- Number of queues monitored

-03-

- Number of queues for monitoring restart

1) Back up WorkUnit Definition Files

Make back-up copies of the WorkUnit definition files currently in use, in case errors occur during the active change process.

2) Modify WorkUnit Definition File
Modify the WorkUnit definition file currently in use.

3) Update System

Use the isaddwudefcommand to copy the modified WorkUnit definition file to the system.

isaddwudef -0 create-def.wu

4) Make Active Change
Use the tdmodifywu command to change the modified WorkUnit definition file.
The active change process can be used for:
- Switching to a modified server application
- Changing the environment variables used by server application

When replacing an application of the same name, supply version number information to the execution file name to avoid overwriting on
the execution file.

tdmodifywu TDSAMPLE1

Notes
1. This command can only be executed by the user who has activated the WorkUnit.

2. Active changing of WorkUnits is an operation function that modifies WorkUnit definitions without stopping applications and starts
the WorkUnit according to the modified definitions.

3. WorkUnit definition files can also be reflected in the system with the fdadddef command.

3.5.7 Dynamic Changing of the Number of Server Application Processes

The process concurrency of server applications for a WorkUnit can be changed without stopping the WorkUnit or changing the WorkUnit
definition. This is referred to as dynamically changing the number of processes.

Dynamic changing of the number of processes is only supported in the Enterprise Edition, and can only be performed for CORBA
WorkUnits and WorkUnits of transaction applications.

This section explains the procedure for dynamically changing the number of processes.

1) Dynamically Changing the Number of Processes
Change the application process concurrency using the ismodifyprocnum command or the Interstage Management Console.
Notes
- A registered WorkUnit definition cannot be modified using this function.

- For a CORBA WorkUnit, the number of processes for an application maintaining instance data for each client application (iswitch =
ON) can be increased, but not decreased. (The number of applications cannot be restored to the defined value after the number of
processes is increased).

- For WorkUnits of transaction applications, this command cannot be used for an object that uses the process binding function.

- For WorkUnits of transaction applications, this command cannot be used during execution of the activation change command
(tdmodifywu).

- If the HA function has been used, modifications made using this command will not be reflected in the standby system.

-94 -

- If the process concurrency is repeatedly increased and decreased using this command, a directory with the same name as the process
ID name remains. This directory is created in a directory with the WorkUnit name in the current directory defined in the WorkUnit
definition, and may use hard disk resources unnecessarily.

When changing the process concurrency frequently, check the process I1Ds of the applications currently running, and delete directories
whose names indicate process IDs that are not currently running.

- For WorkUnits of transaction applications, if this command is used for a non-resident or multi-object resident type object, the process
concurrency of objects operating as non-resident types or multi-object resident types will be changed.

Selaris — Wlnux3Z 6]

- This command can only be executed by the user who started the WorkUnit or by the root user.

-05-

IChapter 4 WorkUnit Operation of Each Application

This chapter explains WorkUnit operation for each application.

4.1 Operating CORBA WorkUnits

A CORBA WorkUnit (a WorkUnit of a CORBA application) can be operated using one of the following two methods:

- Operation Using the Interstage Management Console
- Operation by Command Line Interface

This section explains the environment setup and the operating procedure required for a CORBA WorkUnit to function.

Figure 4.1 Operating CORBA WorkUnits

@ Application Development)
<

@ Compilation by IDL Compiler]
<

(@ Creating CORBA Server Applications]
&

(@ Registaton of nformtion on Server Appiication to

L

(5) Generation of Object Reference)
4

coisplay (B Specifying/Registering WorkUnit Definitions J
.

@ Displays a list of WorkUnits | @ starting a WorkUnit)
lle

@ Displays details of an object(Application) | Run task]
>

D Displays a list of objects(Applications) | ® Stopping 2 WorkUnit]

The following five separate steps are required when a CORBA WorkUnit is used.
a. CORBA application making phase (1 - 3).
b. CORBA application environment and setting phases (4 - 5).
c. CORBA WorkUnit environment and setting phases (6).
d. CORBA WorkUnit operation phase (7 - 8).
€. CORBA WorkUnit reference phase (9 - 11).

With a conventional CORBA WorkUnit, WorkUnit definitions and CORBA application definitions were implemented using the WorkUnit
operation command and CORBA Service operation command. The operations from b to e above can now be managed collectively using
the Interstage management console.

Refer to the Distributed Application Development Guide (CORBA Service Edition) and Reference Manual (Command Edition) for
CORBA application development details (programming, IDL compiler, and so on).

-06 -

4.1.1 Application Development

The CORBA application program operated under the control of the WorkUnit is made. As for the method of the programming, it is similar
to the case to operate outside under the control of the WorkUnit.

4.1.2 Compilation by IDL Compiler (IDLc Command)

The IDL definition is made, the Interface Repository is registered by the IDLc command, and the skeleton is output. As for the IDL
definition, it is similar to the case to operate outside under the control of the WorkUnit.

4.1.3 Creating CORBA Server Applications

The CORBA server application (execution module) is made from the skeleton made by made CORBA application program and IDLc
command. As for the method of making the CORBA server application, it is similar to the case to operate outside under the control of the
WorkUnit.

Note

It is necessary to end the process when "SYNC_END" is used with the CORBA WorkUnit as an operation mode or it returns from
CORBA_BOA _impl_is_ready. The stop of the WorkUnit becomes a waiting state though it returns from CORBA_BOA _impl_is_ready
in case of "SYNC_END" when the WorkUnit is usually stopped and stopped synchronously until the process is ended. Therefore, it is
necessary to end the process when returning from CORBA_BOA _impl_is_ready without fail.

When a CORBA application is operated on the WorkUnit, the standard output and standard error output from that CORBA application
are redirected to the following files.

- Standard output

"Current-directory of the WorkUnit definition"\"WorkUnit-name"\"process-id"\stdout.
- Standard error output

"Current-directory of the WorkUnit definition"\"WorkUnit-name"\"process-id"\stderr.

Data output to the standard output and standard error output is temporarily stored in the standard input-output library according to the OS
standard input-output library specifications.

Flushing must be performed for the standard output and standard error output to ensure that the stored data is reliably output to the stdout
and stderr files.

For example, issue fflush(stdout) and fflush(stderr) in C language. The data stored in the standard input-output library is not output to the
stdout and stderr files until flushing is performed.

Refer to the Reference Manual (Command Edition) for details on storing server application information in the Implementation Repository
definition using the command line interface.

4.1.4 Registration of Information on Server Application to Implementation
Repository Definition

Information on the CORBA application operated with the WorkUnit is set. It is basically similar to the case to operate outside under the
control of the WorkUnit. Notes of definition information are shown below when operating on the WorkUnit.

Start Type of Server Application (type)

The start type of the server application should set "Persistent server” type when operating under the control of the WorkUnit.

The Maximum In Process Multiplicity (proc_conc_max)

It is necessary to set larger value than the process multiplicity set by the WorkUnit definition. Please note the failure in the start of the
WorkUnit when smaller value than the process multiplicity set by the WorkUnit definition is set.

Refer to the Reference Manual (Command Edition) for details on storing the server application information in the Implementation
Repository definition by using the command line interface.

-97-

4.1.5 Generation of Object Reference

To access the made server application from other applications as a target, the object reference to identify the object is made. It registers
in service of the naming of the object reference made at the same time. It is basically similar to the case to operate outside under the control
of the WorkUnit.

4.1.6 Specifying/Registering WorkUnit Definitions

Specify and register in the WorkUnit definitions the CORBA application information required for operation in the WorkUnit.

- Specifying WorkUnit definitions
Please refer to 4.1.10.1 CORBA WorkUnit Definitions.
- Registering WorkUnit definitions

Register in Interstage the WorkUnit definitions is specified. Use the /sadadwudef command.

4.1.7 Starting a WorkUnit

Start the CORBA application specified in the WorkUnit definitions. Specify the WorkUnit name in the isstartwu command. In addition
to starting a WorkUnit via a command, a WorkUnit can be started from the Interstage operation API, Interstage management console, or
Systemwalker OperationMGR.

Note

Please do not delete the execution module of the CORBA application set to the WorkUnit definition, and do not overwrite while operating
it with the WorkUnit. The CORBA application processing and the operation of the pertinent WorkUnit might hang up when going.

If a WorkUnit fails to start, the start parameters and environment variables of the process can be output to the log file, and checked using
the process start log collection function.

Specify "YES" in the "Start Log" statement of the WorkUnit definition to enable the process start log collection function, and check that
the log file is output to the current directory.

4.1.8 Stopping a WorkUnit

Stop the WorkUnit that has been started.

A Normal stop and a synchronously stop are used when stopping usually. When it wants to stop in the emergency, the forced stop is used.
- Normal stop

Stops the WorkUnit provided that all applications defined in the WorkUnit have stopped processing. The WorkUnit cannot be stopped
if it is still processing a task. In such cases, wait until processing is completed, and run the command again.

Note

CORBA_BOA _impl_is_ready returns as operation on the application when the operation mode of the CORBA application is
"SYNC_END" or the WorkUnit Normal stops. In this case, it is necessary to end the process as processing of the application. Please
note that the stop usually enters the state of hanging up about the WorkUnit when making it to the waiting state without ending the
process. Please stop the WorkUnit compulsorily in that case by the compulsion stop command. For instance, there is a possibility of
hanging up when the thread is generated with the processing of the application for the Java application, and the generated thread has
not been stopped normally. Please collect the thread generated with the application by the application.

- Synchronous stop

After the demand processing it when the command is executed is executed, the WorkUnit is stopped. The demand which is the waiting
state is annulled (The error is notified to the client).

Note

After the demand under processing is completed, it stops at a synchronous stop. Therefore, the WorkUnit stop will hang up when the
application under processing is not completed. In that case, please stop the WorkUnit compulsorily by the compulsion stop command.

CORBA_BOA_impl_is_ready returns as operation on the application when the operation mode of the CORBA application is
"SYNC_END" or the WorkUnit usually stops. In this case, it is hecessary to end the process as processing of the application. Please

-08 -

note that the stop usually enters the state of hanging up about the WorkUnit when making it to the waiting state without ending the
process. Please stop the WorkUnit compulsorily in that case by the compulsion stop command. For instance, there is a possibility of
hanging up when the thread is generated with the processing of the application for the Java application, and the generated thread has
not been stopped normally. Please collect the thread generated with the application by the application.

- Forced stop

The forced outage stops compulsorily when the application is processing it. The application under processing is stopped compulsorily
while processing it, and annulled for the demand which is the waiting state (The error is notified to the client). The forced outage can
be compulsorily stopped by executing the compulsion stop command at the state of the WorkUnit operation of the following other
than.

- The WorkUnit start is being processed.
- The WorkUnit is being normal terminated.
- The WorkUnit is being synchronously terminated.

A WorkUnit can be stopped using a command (isstopwu) or by using the Interstage operation API, Interstage management console,
or Systemwalker OperationMGR.

4.1.9 Operation Using the Interstage Management Console

This section explains the environment creation and operating procedure required for using a CORBA application via the Interstage
management console.

Note

A CORBA application linking to a global transaction cannot be operated via the Interstage management console.

4.1.9.1 Creating a CORBA WorkUnit

WorkUnit: A WorkUnit can be created using the window for new creation. Specify the following information and click the New button
to create the WorkUnit.

- WorkUnit name
- WorkUnit type

Detailed settings can be made as required. The items and their contents are explained in the following table.

Table 4.1 CORBA WorkUnit Detailed Settings

Interstage management console item name Required Specified contents
(WorkUnit definition item name) [l
WorkUnit name Specify a WorkUnit (CORBA) identification
(Name) name.
WorkUnit type Select CORBA.
(Kind)
Application folder Specify an application subdirectory.
(Path)
Current directory for application operation Required Specify the work directory in which the

(Current Directory) application operates.

retry count Omissible Specify an ABEND count for the application

(Application Retry Count) process at which the WorkUnit stops abnormally.

Path Omissible Specify the path used by an application during

(Path for Application) operation.

-99-

Interstage management console item name Required Specified contents
(WorkUnit definition item name) =
Library path Omissible Set the path used by an application during
(Library for Application) Eﬁiﬁ:;&igﬁ?gzﬁﬁ)ya”ame
This item is valid for systems other than
Windows.
Environment variable Omissible Set the environment variable used by an
(Environment Variable) application during operation.
Exit program name for WorkUnit Omissible Specify the name of the exit program to be issued
(WorkUnit Exit Program) once during WorkUnit starting and stopping.
Maximum processing time for exit program Omissible Specify the maximum processing time for exit
(Maximum Processing Time for Exit Program) program monitoring.
The executable file name of the process collection exit Omissible Set the execution filename of the WorkUnit exit
program program and process release exit program.
(Executable File of Exit Program for Salvage)
Request dispatch mode Omissible Specify the mode in which a request message
(Request Assignment Mode) applaton proces wltin for e request.
Automatic start of WorkUnit Omissible Specify whether or not the WorkUnit is to be
started during Interstage startup.
Stack trace collection Omissible Specify whether or not stack traces are to be
(Output of Stack Trace) collected.
Time waiting for WorkUnit to start up Omissible Specify the monitoring time until the WorkUnit
(Startup Time) has started.
Forcible shutdown time for a process Omissible Specify the monitoring time until the WorkUnit
(Shutdown Time) is stopped completely.
Collection of the process start log Omissible The log of the CORBA WorkUnit at the
(Start Log) beginning of the process is collected.
Degenerated process operation Omissible If automatic restarting of a WorkUnit process
(Process Degeneration) fails, opgration continues in a state whe_re one
process is removed (degenerated operation).
Number of backup generations for the current directory Omissible The number of backup generations for the current
(Number of Revision Directories) WorkUnit directory can be specified.

The created WorkUnit can be changed using the environment setting in the WorkUnit Name operation window.
Note

If the definition of a WorkUnit being started is deleted using the isdelwudef command, a CORBA WorkUnit of the same name cannot be
created from the Interstage management console unless that WorkUnit is stopped. In this situation, stop the WorkUnit being started and
retry the operation.

4.1.9.2 Deploying a CORBA Application
CORBA WorkUnit: An application can be deployed from the Arrange window.

Set the following information and click the Deploy button. This will deploy the application so that it can be operated on the WorkUnit.

-100 -

- Implementation Repository 1D
- Execution program file
- Start specification

Note

Files such as libraries to be referenced dynamically from the execution program file of the application to be deployed must be stored on
the server where that CORBA WorkUnit operates. During the deployment operation, file transfer is not performed. Store the execution

program file in the directory specified in the application folder for the WorkUnit.

Detailed settings can also be made as required. Setting items include the settings for each CORBA application and the interface definition

settings in each CORBA application. Details of setting items and their contents are explained in the following table.

Table 4.2 Setting Items for each CORBA Application

(Queuing Message To Notify Alarm)

Interstage management console definition item Required Specified contents
name item?
(WorkUnit definition item name or definition item
name stored in implementation repository)

Implementation Repository ID Required Specify the Implementation Repository ID to

(Impl 1D/rep_id(*1)) identify a CORBA application.
The same Implementation Repository ID cannot be
specified more than once for the same WorkUnit.

Execution program file Required Set the application and exit program module

(Executable File) names.

Start specification Required Checked off or selected to start a WorkUnit after
application deployment.

Locale Omissible Specify the code system for the object reference

(locale(*1)) for V\-II’TICh the code system for the application is
specified.

Process concurrency Omissible Specify the application process concurrency.

(Concurrency/proc_conc_max(*1))

Number of processing threads Omissible Specify the number of application processing

(thr_conc_init(*1)/thr_conc_maximum(*1)) threads for each pr_ocess. T_hls number |ncre§ses or
decreases automatically with loads, so specify the
initial and maximum values.

Maximum processing time of application Omissible Set the time (in seconds) to be used as the

(Maximum Processing Time) ma>.<|mum p.rocgssmg time for an application
during monitoring.

Control when the maximum processing time of an Omissible Specify the processing to be applied to the process

application is exceeded. corresponding to the application when the

(Terminate Process for Time out) maximum application processing time has been
exceeded.

Maximum number of messages in queue Omissible Set the maximum number of messages to be

(Maximum Queuing Message) retained in a queue.
An alarm can then be issued as soon as the number
of messages in the queue exceeds this value.

Number of messages in a queue to trigger alarm Omissible Set the number of messages in a queue on which

an alarm is to be issued. If the number of messages
in the queue reaches this number, an alarm is
issued.

-101-

(mode(*1))

Interstage management console definition item Required Specified contents
name item?

(WorkUnit definition item name or definition item

name stored in implementation repository)

Number of messages in a queue at which monitoring isto | Omissible Set the number of messages in a queue on which

be restarted monitoring for alarm issuing is to be restarted.

. . . When this number is reached (after the number of
ueuing Message To Notify Resumption .

@ g g fy ption) messages in the queue has exceeded the number at
which an alarm is triggered), monitoring of the
number of messages in the queue is restarted.

Class path Omissible Set the class path to be used when a CORBA

(CLASSPATH for Application) application (Java) operates.

Environment variable Omissible Set the environment variables used by an

(Environment Variable) application and exit program during operation.
Use the following specification format:
"Environment variable = value". The PATH and
LD_LIBRARY_PATH parameters cannot be
specified.

Name of process collection exit program Omissible Set the name of the process release exit program.

(Exit Program for Process Salvage) Note_ t_hat only the name of a C program can be
specified.

The executable file name of the process collection exit Omissible Set the filename of the execution file for the

program process release exit program

(Executable File of Exit Program for Salvage)

Start parameter Omissible Specify the start parameter for the application.

(Param for Executable File) For a Java application, an application class name
to be specified in a Java command must be set.

Request dispatch mode Omissible Specify the mode in which a request message from

(Request Assignment Mode) a cl_lgnt isdistributed to aserver application process
waiting for that request.

Number of communication buffers Omissible Set the number of queue buffers.

(Buffer Number)

Communication buffer size Omissible Set the data item size for which a single queue

(Buffer Size) operation is to be performed in accordance with a
request.

Instance retaining function Omissible Specify whether or not an application is to retain

(iswitch(*1) instance data for each client application.

This item is valid for applications in the C++, Java,
and OOCOBOL programming languages.

SSL information addition to object reference Omissible Specify the SSL information addition rules that

(ssI(*1)) apply when_ an_object reference is created for a
server application.

Operation mode Omissible Specify the operation mode for a CORBA

application.

*1 Implementation Repository definition item

-102 -

Table 4.3 Setting Items for each Interface

Interstage management console definition item Required Specified contents
name item?

Interface Repository ID Omissible Set the Interface Repository ID of an object.

Addition to Naming Service Omissible Specify whether or not the object is added to a
Naming Service.

Naming service registration name Omissible If an object is added to a Naming Service, specify
its name.

Priority order Omissible Specify the priority order of objects.

Library path name Omissible Specify the path name to a library.

COBOL dynamic skeleton interface Omissible Set the Interface Repository ID of an object.

4.1.9.3 Closure/Closure Cancellation

To close or cancel closure for a queue or interface for CORBA applications, click the Close or Disclose button in the Status.

4.1.9.4 Function for Maximum Number of Messages Retained in a Queue
To use the function to determine the maximum number of messages left in a queue, set the maximum value in the WorkUnit definition.

If there is a request to retain messages in the queue which exceeds the maximum number of messages in the queue, the following exception
is returned to the client.

System exception Minor code (hexadecimal notation)

NO_RESOURCE 0x464a0094

0x464a0894

4.1.9.5 Alarm Notification Function for Number of Messages in a Queue

To use the alarm notification function when a queue contains a certain number of messages, set the following details in the WorkUnit
definition: The number of messages in a queue at which an alarm is to be issued, and the number before monitoring for alarms will be
restarted.

- Maximum number of messages in a queue

The maximum number of messages retained in a queue. When this value is exceeded, a message is output. A later message is also
output notifying the user that a new alarm will not be issued for this event until the number of messages reaches that at which monitoring
will restart.

- Number of messages in a queue before an alarm is issued

Set the number of messages in a queue at which an alarm is issued (a message is output). If the number of messages retained in the
queue reaches this value, a message is output. A later message is also output notifying the user that a new alarm will not be issued for
this event until the number of messages reaches that at which monitoring will restart.

- Number of messages in a queue before monitoring is restarted

Set the number of messages in a queue at which monitoring for alarms is to be restarted. When this value is reached after an alarm
for an excessive number of queue elements was issued, monitoring of the number of messages in the queue is restarted and a message
is output to that effect.

4.1.10 Operation by Command Line Interface

This section explains the environment creation and operating procedure for using a CORBA WorkUnit via the command line interface.

4.1.10.1 CORBA WorkUnit Definitions

The CORBA WorkUnit definition items and their contents are shown in the following table.

-103 -

Table 4.4 CORBA WorkUnit Definition Items

(the executable file name of the process
collection exit program)

Section name Definition name Required Specification details
item?
WORK UNIT Name (WorkUnit name) Required Specify the WorkUnit name
Kind (WorkUnit type) Required Set as "CORBA".
Control Option Path Required Set the path in which general
(application library path) applications exist.
Current Directory Required Specify the directory in which
(current directory) applications run.
The application runs under the
directory/WorkUnit name/process ID
directory specified for this item.
Application Retry Count (continuous Omissible Set the number of abnormal
abnormality termination count) terminations after which automatic
retry disabling occurs for the
application.
This item is ignored when the
"WorkUnit Automatic Stop Mode:"
statement is set to "YES".
Path for Application Omissible Specify the path (environment
(path used by the application) varle_lble_ PATH) used when the
application operates.
Library for Application Omissible Specify the library path (environment
(Library path used by application) variable LD—ITIBRARY—PATH) used
when the application operates.
Environment Variable Omissible Specify the environment variable used
(environment variable) when the application operates.
Maximum Processing Time For Exit Program | Omissible Specify the monitoring value for the
(maximum processing time for exit program) n_1aX|mum exit progra_m processing
time (process stop exit).
When it is set in the [Control Option]
section, this value becomes valid for
the application under the WorkUnit.
If this value is also set in the
[Application Program] section, the
value set in the [Application Program]
section becomes valid for the
application.
Executable File of Exit Program for Salvage | Omissible When using the process stop exit, set

the executable file in which the
process stop exit program is set.

This specification can be set in the
[Control Option] section or the
[Application Program] section.

If an executable file has not been set
for the [Application Program] section,
the executable file set for the [Control
Option] section is enabled.

-104 -

Section name Definition name Required Specification details
item?
Request Assignment Mode Omissible Specify the mode in which a client
(Request dispatch mode) request me§sag_e is dlstrlbuted_ t_o the
server application process waiting for
the request.
Application Impl ID Required Specify the Implementation
Program (Implementation Repository 1D) Rep(_)sn(_)ry ID to identify a CORBA
application.
The same Implementation Repository
ID cannot be specified more than once
for the same WorkUnit.
Executable File Required Set the application and exit program
(Execution program file) module names.
Concurrency Omissible Specify the concurrency of the
applications to be started.
(process concurrency)
Maximum Processing Time (Maximum Omissible Set the time (in seconds) that is to be
processing time of application) used as the maximum processing time
for an application during monitoring.
Terminate Process for Time out Omissible Specify the processing that is to be
(Control when the maximum processing time applied to Fhe process correspon_dlng
T to the application when the maximum
of an application is exceeded) L
processing time has been exceeded for
that application.
Maximum Processing Time for Exit Program | Omissible Specify the maximum processing time
(Maximum processing time for exit program) for \A.Ih'Ch the exit program is
monitored.
Maximum Queuing Message Omissible Set the maximum number of messages
(Maximum number of messages in queue) to be retained in a queue.
An alarm can then be issued as soon as
the number of messages in the queue
exceeds this value.
Queuing Messages To Notify Alarm Omissible Set the number of messages in a queue
. . at which an alarm is to be issued.
(Number of messages in a queue to trigger
alarm) An alarm is issued if the number of
messages in the queue reaches this
number.
Queuing Messages To Notify Resumption Omissible Set the number of messages in a queue
(Number of messages in a queue at which ?t which monitoring for alarm issuing
Lo is to be restarted.
monitoring is to be restarted)
When this number is reached after the
number of messages in the queue has
exceeded the number at which an
alarm is triggered, monitoring of the
number of messages in the queue is
restarted.
CLASSPATH for Application Omissible Set the class path to be used when a

(Class path)

CORBA application (Java) operates.

-105 -

Section name Definition name Required Specification details
item?

Exit Program for Process Salvage Omissible Set the name of the process release exit

(Name of process collection exit program) program.
Note that only the name of a C program
can be specified.

Destination Priority Omissible Specify the priority for the object.

(object priority) A priority from 1 to 255 can be
specified, with higher numbers
indicating higher priority.

Request Assignment Mode Omissible Specify the mode in which a client

(Request dispatch mode) request messag_e is dlstrlbuted_ t_o a
server application process waiting for
the request.

Buffer Number Omissible Set the number of queue buffers.

(Number of communication buffers)

Buffer Size Omissible Setthe data item size for which asingle

(Communication buffer size) queue operatlgn is to be performed in
accordance with a request.

Refer to WorkUnit Definition in Appendix A for the WorkUnit definition syntax rules.

4.1.10.2 CORBA Application Queue Control

Priority Order Control
If priority control is to be used by a CORBA application, it is necessary to register the priority in the Implementation Repository.

Priority is specified for the Interface Repository ID with the detailed information file specified by the -ax option of the OD_impl_inst
command. The specification method is as follows

intfID = priority;solib[,[prefix][,inherit[,.-1]11

- intfID
The Interface Repository ID of the object is specified.
- priority
The priority (0-255) of the object is specified. When priority control is not used, 0 is specified.
- solib
The path name in the library is specified.
- prefix

When the first character string prefix of the function name is specified with the -S option of the IDLc command, when specifying it
(C language only).

- inherit

The Interface Repository ID inherited to is specified.

Closure or Closure Cancellation
This section explains how to close or cancel closure for a queue or interface.

Closure is performed using the isinhibitque command.

isinhibitque WUl IDL:testl:1.0 IDL:testl/intfl1:1.0

- 106 -

Closure cancellation is performed using the ispermitque command.

ispermitque WUl IDL:testl1:1.0 IDL:testl/intfl:1.0

Note

It is necessary to register the interface name which performs the close processing in the Implementation Repository beforehand when the
interface is closed.

If a request is sent from a client while the queue is closed, the following exception is returned to the client.

System exception Minor code (hexadecimal notation)
NO_RESOURCE 0x464a0094
0x464a0894

Function for Maximum Number of Messages Retained in a Queue
To use the function for the maximum number of messages retained in a queue, set the maximum value in the WorkUnit definition.

If there is a request to retain messages in the queue for which the maximum number of messages in the queue would be exceeded, the
following exception is returned to the client.

System exception Minor code (hexadecimal notation)
NO_RESOURCE 0x464a0094
0x464a0894

Alarm Notification Function for the Number of Messages in a Queue

To use the alarm notification function for a certain number of messages in a queue, set the following details in the WorkUnit definition:
The number of messages in a queue at which an alarm is issued and that before monitoring for alarms will be restarted.

- Maximum number of messages in a queue

The maximum number of messages retained in the queue. When this value is exceeded, a message is output. A later message is also
output notifying the user that a new alarm for this event will not be issued until the number of messages reaches the number at which
monitoring will restart.

- Number of messages in a queue before an alarm is issued

Set the number of messages in the queue at which an alarm is issued (a message is output). If the number of messages retained in the
queue reaches this value, a message is output. A later message is also output notifying the user that a new alarm for this event will not
be issued until the number of messages reaches that at which monitoring will restart.

- Number of messages in a queue before monitoring is restarted

Set the number of messages in a queue at which alarm monitoring is to be restarted. When this value is reached after an alarm for an
excessive number of queue elements was issued, monitoring of the number of messages in the queue is restarted and a message to that
effect is output.

4.1.10.3 Global Transaction Linkage

This section explains how to operate applications in the CORBA WorkUnit to implement global transaction linkage.

-107 -

Figure 4.2 Implementing Global Transaction Linkage

4

(@) Creating a resource definition file]
ol
<+

(@) Creating and registering a WorkUnit definition file

<4

(&) Creating and running & resource control program

)
)

L 2
) Starting a WorkUnit]
)

<4

Run task

o
(7) Stopping the WorkUnit]

To implement global transaction linkage using the CORBA WorkUnit, the operations in (1), (2), (3), and (5) are required in addition to
those required using CORBA applications for local transactions.

The Interstage management console can be used for (4) and (6).

(1) Creating applications
This section explains how to operate applications in the CORBA WorkUnit to implement global transaction linkage.

Create CORBA application programs used for global transaction linkage. Application programs used for global transaction linkage can
be created in the same way as for those running not under control of WorkUnits.

(2) Creating a resource definition file

Create a resource definition file. A resource definition file can be created in the same way as one used not under control of a WorkUnit.

(3) Creating and registering an implementation repository information definition

Create and register an implementation repository information definition.

(4) Creating and registering a WorkUnit definition file
Create and register a WorkUnit definition file for the CORBA application used to implement global transaction linkage.

Refer to 4.1.6 Specifying/Registering WorkUnit Definitions for information on how to create and register a WorkUnit definition file.

(5) Creating and running a resource control program

Create and run a resource control program. A resource control program can be created and run in the same way as one used not under
control of a WorkUnit.

(6) Starting a WorkUnit
Start the WorkUnit that defines the CORBA application used to implement global transaction linkage.
Refer to 4.1.7 Starting a WorkUnit for information on how to start the WorkUnit.

-108 -

(7) Stopping the WorkUnit
After operation is finished, stop the WorkUnit.

Refer to 4.1.8 Stopping a WorkUnit for information on how to stop the WorkUnit.

4.2 Operating EJB WorkUnits

This section explains how to create the environment and the procedures for operating EJB applications in WorkUnits. The procedure is
outlined in the following figure.

Figure 4.3 Creating the Environment and Operating Procedures for EJB WorkUnits

1. Craata folder to hold application l

2. Develop EJB application
3. Bun deployment tool

4. Install EJE application

5. Bun customization tool

6. Setfregistar WaorkLnit definitions I
7. Start WorkUnit .

¢

Run task

8. Stop WorkUnit '

Operations 1 to 8 are required in order to operate an EJB application in a WorkUnit.

4.2.1 Specifying/Registering WorkUnit Definitions

Specify and register in the WorkUnit definitions the EJB application information required for operation in the WorkUnit.

- Specifying WorkUnit definitions

-109 -

- Registering WorkUnit definitions

Register in Interstage the WorkUnit definitions in which the EJB application information is specified. Use the /isaddwudefcommand.

4.2.1.1 Starting a WorkUnit

Start the EJB application specified in the WorkUnit definitions. Specify the WorkUnit name in the isstartwu command.

4.2.1.2 Stopping a WorkUnit
Stop the WorkUnit that has been started.
WorkUnits can be stopped in two ways:
- Normal stop

Stops the WorkUnit provided that all applications defined in the WorkUnit have stopped processing. The WorkUnit cannot be stopped
if it is still processing a task. In such cases, wait until processing is completed, and run the command again.

- Forced stop

Stops the WorkUnit even if an application is still performing processing. Specify the WorkUnit name in the /sstopwu command.

4.3 Operating Transaction Application WorkUnits

This section explains the Object Priority Function:

- Operation Using the Object Priority Function

- Operating Procedures for Object Priority Function
- Create Application
- Specify WorkUnit Definitions
- Register WorkUnit Definitions

Start the WorkUnit

4.3.1 Operation Using the Object Priority Function

The object priority function allows the specification of priorities for transaction application objects.

This function makes it possible to assign priorities to processing as shown in the following figure.

Figure 4.4 The Object Priority Function
AFPM

Object 1 priority 10 (
Request for I - Objest 2

Flodues /'(,) application
}.‘_J } \-J" . *‘
) o Cbject 1
Object 2 priority 20 application

——
Heguest for
objact 2
4 |

—» Hequest flow

_—

Multiple objects are set in a single APM process. The APM receives data in order from the highest priority objects down. Therefore, if
data for an object with a high priority resides in the queue, data for an object with a low priority is not processed.

Solaris

This function can be used when the application language is C or COBOL.

-110-

Linux3Z 64 |

This function can be used when the application language is C.

4.3.2 Operating Procedures for Object Priority Function

This section describes the procedures for using the object priority function. The procedure is shown in the following figure and described
in the following text.

Figure 4.5 Operating Procedures for the Object Priority Function

1. Create application l
2. Specify WorkUnit definitions .
3. Register WorkUnit definitions .
4, Start WorkUnit .

4.3.2.1 Create Application
Create the application
Note

C++ applications cannot use this function.

4.3.2.2 Specify WorkUnit Definitions
Specify the priority for the object in the WorkUnit definitions.
The following table explains the WorkUnit definitions required when using the object priority function.
Note

The object priority function can only be used for objects specified in the WorkUnit definitions.

Table 4.5 WorkUnit Definition Specifications

Section name Definition name Details of specifications
Application Program Destination (object name) Specify the name of the object using priority
Destination Priority (object priority) Specify the priority for the object. Priority

from 1 to 255 can be specified, with higher
numbers indicating higher priority

Form (resident or non-resident mode) Specify NONRESIDENT or
MULTIRESIDENT
Nonresident Application Concurrency (process concurrency) Specify the application concurrency
*
Process *1 Pre Exit Program (pre-exit program) Specify the exit program name if an exit
program, started when the WorkUnit is started,
is used.

-111-

Section name

Definition name

Details of specifications

Post Exit Program (post-exit program)

Specify the exit program name if an exit
program, started when the WorkUnit is
stopped, is used.

Executable File for Exit Program (name of
executable file for exit program)

Specify the executable file name for the exit
program if the exit program is created as an
executable file separate from the application.

Maximum Processing Time for Exit Program
(maximum processing time for exit program)

Specify the monitoring time (seconds) for the
maximum processing time for the exit
program.

Multiresident Application
Process *2

Concurrency (process concurrency)

Specify the application concurrency

Pre Exit Program (pre-exit program)

Specify the exit program name if an exit
program, started when the WorkUnit is started,
is used.

Post Exit Program (post-exit program)

Specify the exit program name if an exit
program, started when the WorkUnit is
stopped, is used.

Executable File for Exit Program (name of
executable file for exit program)

Specify the executable file name for the exit
program if the exit program is created as an
executable file separate from the application.

Maximum Processing Time for Exit Program
(maximum processing time for exit program)

Specify the monitoring time (seconds) for the
maximum processing time for the exit
program.

*1 Required if NONRESIDENT is specified in the Application Program Form.

*2 Required if MULTIRESIDENT is specified in the Application Program Form.

Note

Apart from these definitions, the definitions are otherwise as normal.

4.3.2.3 Register WorkUnit Definitions

Register the WorkUnit definitions in the system using the isaddwudef command.

Note

WorkUnit definitions can also be added with the tdadddef command.

4.3.2.4 Start the WorkUnit

Start the WorkUnit specified in the WorkUnit definitions using the isstartwu command.

Note

WorkUnits can also be started with the tdstartwu command.

4.4 Operation in Utility WorkUnits

NLinux32/64]

Solaris

When operating a general application out of the control of Interstage on a WorkUnit, create the environment and perform operation as

shown below.

-112 -

Figure 4.6 Operation in Utility WorkUnits

1. Developing a general application I
2. Setting/registering the WorkUnit definition I

3. Starting the WorkUnit

Run task l
4. Stopping the WorkUnit l

4.4.1 Operating Procedures

When operating a general application on a WorkUnit, the operations in Steps 1 to 4 are required.

1) Developing a General Application
Create a general application that is to be operated in a WorkUnit. Before using it in a WorkUnit, test the general application by starting it
independently.
2) Setting/Registering the WorkUnit Definition
Set and register the information of the general application required for the operation of the WorkUnit.
- Setting the WorkUnit definition

In the WorkUnit definition, set the information for operating a general application on a WorkUnit.

Table 4.6 Setting the WorkUnit Definition

Section name Definition name Details of specifications
WORK UNIT Name (WorkUnit name) Specify the WorkUnit name
Kind (WorkUnit type) Specify UTY to operate general applications that are not

under Interstage on the WorkUnit.

Control Option Path (application library path) Set the path in which a general application exists.

Current Directory (current directory) | Specify the directory in which applications run. The
application operates under the directory/WorkUnit name/
process ID directory specified for this item.

Application Retry Count (continuous | Set the number of times the application was terminated
abnormality termination count) abnormally until automatic retry disabling occurs. When
"WorkUnit Automatic Stop Mode:" statement is set to
"YES," this item is ignored.

Path for Application (path used by the | Specify the path (environment variable PATH) used when
application) the application operates.

-113 -

Section name

Definition name

Details of specifications

Library for Application (Library path
used by application)

Specify the library path (environment variable
LD_LIBRARY_PATH) used when the application
operates.

Environment Variable (environment
variable)

Specify the environment variable used when the
application operates.

Maximum Processing Time For Exit
Program (maximum processing time
for exit program)

Specify the monitoring value for the maximum processing
time of the exit program (process stop exit). When it is set
in the [Control Option] section, this value becomes valid
for the application under the WorkUnit. If this value is also
set in the [Application Program] section, the value set in

the [Application Program] section becomes valid for the

application.

Executable File of Exit Program for
Salvage (the executable file name of
the process collection exit program)

When using the process stop exit, set the execution file in
which the process stop exit program is set. Set it in the
[Control Option] section or the [Application Program]
section. If an executable file has not been set for the
[Application Program] section, the executable file set for
the [Control Option] section is enabled.

WorkUnit Automatic Stop Mode
(Automatic stop mode)

Set to stop the WorkUnit automatically.

Application Program

Executable File (execution file name)

Specify the general application that runs in the WorkUnit.

Concurrency (process concurrency)

Specify the concurrency of the applications to be started.

Environment Variable (environmental
variable)

Specify the environment variable used when the
application operates. When the environment variable of
the same name is specified in "Environment Variable" in
[Control Option], this item becomes valid for the
application set in [Application Program].

Param for Executable File (starting
parameter)

Set the parameter to be passed when starting applications.

The parameters are set in order starting from the parameter
defined first.

Reset Time for Application Retry
Count (Reset Time for Application
Retry Count (retry count reset time)

Set the continuous non-stop time until the present
abnormal termination count is reset.

Exit Program for Terminating Process
(process stop exit program name)

Set the name of the program that stops the started
application.

Executable File of Exit Program for
Salvage (the executable file name of
the process collection exit program)

When using the process stop exit, set the execution file in
which the process stop exit program is set. Set in the
[Control Option] section or the [Application Program]
section. When it is also set in the [Control Option] section,
the execution file set in this item section becomes valid for
the application set in [Application Program].

Maximum Processing Time For Exit
Program (output program maximum
processing time)

Specify the monitoring value for the maximum processing
time of the exit program (process stop exit). If the
monitoring time is also registered in the [Control Option]
section, the value here becomes valid for the relevant exit
program.

- Registering the WorkUnit definition

Register the WorkUnit definition in which the information on general applications is set in Interstage. For registration, use the

[sadadwudef command.

-114 -

3) Starting a WorkUnit

Start the general applications set in the WorkUnit definition. To start the applications, use the /isstartwu command with the WorkUnit name
specified.

4) Stopping the WorkUnit
Stop the WorkUnit during starting processing.

There are two types of stopping methods: one is to stop with a command and the other is to wait for all the applications to stop and stop
the WorkUnit.

For stopping applications with a command, the following two methods can be used. For normal stop, specify the WorkUnit name in the
isstopwu command. For forced stop, also specify -c.

Normal Stop

Release the application processes started on the WorkUnit from the monitoring target. That is, monitoring of general applications by
the WorkUnit is canceled and the command returns control. Since the processes of the general applications are left after the WorkUnit
stops and the command returns, you need to stop the processes.

Itis also possible for the user to create a process stop exit program that stops application processes and set it in the WorkUnit definition
so that it can be called when the WorkUnit is stopped. Since normal termination is notified to the exit program, this method is effective
to terminate the WorkUnit by discriminating from the forced stop.

Forced Stop

Release the application processes started on the WorkUnit from the monitoring target. That is, monitoring of general applications by
the WorkUnit is canceled and the command returns control. Since the processes of the general applications are left after the WorkUnit
stop command is returned, you need to stop the processes.

It is also possible for the user to create a process stop exit program that stops application processes and set it in the WorkUnit definition
so that it can be called when the WorkUnit is stopped. Since forced termination is notified to the exit program, this method is effective
to terminate the WorkUnit by discriminating from normal stop.

The WorkUnit is stopped when all applications have been stopped, as follows:
WorkUnit Automatic Stop

Like commands and batch, there are applications that do not reside as processes and stop after execution. For such applications, do
not restart a process even if it stops and stop the WorkUnit after all the processes in the WorkUnit stop. The WorkUnit automatic stop
is an effective function for commands and batch. The WorkUnit automatic stop is set in the WorkUnit definition.

-115-

Chapter 5 Operating the Distributed Transaction Function

Solaris32 W Linux3Z/ 64

This chapter describes the procedure and environment setup required to use the distributed transaction function.

It describes how to create the environment in order to use the /sinitand /sstart commands, and how to use the ofssefup command to set up
the environment.

Note

Windaws3Z | Solarisid2
When using the Database Linkage Service, the resources used in the old environment (such as resource definition files and WorkUnit
definitions) need to be migrated.

5.1 Procedure Required to Use Distributed Transaction Function
WMredonesB2 B Solaris32

Set up the environment and follow the sequence shown in the following figure in order to use the Distributed Transaction Function in
Interstage. The Distributed Transaction Function provides a Database Linkage Function. This is described with the appropriate procedures
for setting up the environment

Figure 5.1 Procedure Required to Use Distributed Transaction Function

Craation and startup of database
environment
—-—
System environment setup for
distributed transaction function

izinit command Creation of 00 emvironment .
Creation of TD ervironmeant l

Creation of OTS system « . Creation and environment creation
anvironmant r of resource manager

———

Craation of dient / server application '

Craation of definiion j

isstart command Startup of OD I
Startup of TD I

Startup of OTS system j .

ﬁ

Startup of resource manager J

Startup of WerkUnit j

OD: CORBA Service TD: Component Transaction Service
OTS: Database Linkage Service

-116 -

5.2 Setting Up the System Environment for the Distributed
Transaction Function Solaris32

The system environment should be set in accordance with the following procedure. Note that the environment definitions vary according
to the environment type (CORBA applications and transaction applications). The following figure illustrates the procedure.

Figure 5.2 Setting Up the System Environment for the Distributed Transaction Function

System tuning

Set the operating environment file of CORBA service and set the environment definition

of the Database Linkage Service Environment Operatin
. dﬂﬂmddﬂﬂ.’ﬂﬂﬂ environment flle of

linkage service | CORBA service
"

Interstage installation
foldenODWINetc\config

Interstage installation
folder\ots\etc\config

: p Operating Set
Set Interstage operating environment definitions environment
definitions —/

5.2.1 Tuning the System | Solarisiz

To use the Distributed Transaction Function, the following resources will require tuning. Tuning of resources to use by the Database
Linkage Service is done by the ini file (Interstage installation folder\ots\etc\ots.ini)

- Shared memory
- Semaphore resources

- Message queue

5.2.2 Determining If a Disk Partition Is Necessary ! Solarisiz

To create system log files for use of the distributed transactions feature using a raw device, a disk partition must be created.

Calculate the required area size using the formula below:

maximum number of transactions * X + 1 (Kbyte)

- If up to 4 resources can join one transaction: X =4

- If more than 4 resources can join one transaction: X = number of resources that can join the transaction

5.2.3 Setting the CORBA Service Operating Environment File

This is only required if a CORBA application uses the distributed application function.

When the Distributed Transaction Function is used in a CORBA application, modify the initial value of the operating environment file of
the CORBA Service (Interstage installation folde\ODWIN\etc\config). The setting value is calculated in the formula shown in the
following table.

-117 -

Refer to 5.2.5 Setting Up the Interstage Operating Environment Definitions for information on how transaction applications use the
Distributed Application Function.

For information on the meaning of the parameters to be changed, and instructions on setting them, refer to the Tuning Guide.

If the Naming Service runs on a separate machine from the OTS system because of the system configuration, change the operating
environment file of the CORBA Service on the machine where the Naming Service is running

Table 5.1 CORBA Service Operating Environment File Settings

Parameter Formula for Estimating the Quantity to be Used
max_IIOP_resp_con If the Database Linkage Service is to be used, add the following values to max_IIOP_resp_con.
(See Note 1) Valuetobeadded=3+x+y+z

x: Level of process concurrency when Resource Manager is started
(default = 6) (See Note 2)
y: Number of client applications to be connected

z: Number of server application processes to be started

max_IlIOP_init_con If the Database Linkage Service is to be used, add the following value to max_IIOP_init_con.
(See Note 1) Valuetobeadded=2 +x +y

x: Level of process concurrency when the Resource Manager is started

(default = 6) (See Note 2)

y: Number of server application processes to be started

max_II1OP_req_per_con If the Database Linkage Service is to be used, specify a value greater than the concurrency
level of the OTS system.

(See Note 3)

max_process If the Database Linkage Service is to be used, add the following value to max_process.
Valuetobeadded=1+x+y+z

x: Level of process multilevel concurrency when Resource Manager is started

(default = 6) (See Note 2)

y: Number of client applications to be started

z: Number of server application processes to be started

period_receive_timeout Please note the following points.
Specify a value greater than the timeout monitor period of the transaction.

Specify a value at least double the period_idle_con_timeout value.

Notes
1. If this value has been increased from its initial value, the system resources (shared memory et cetera) will need to be tuned.

2. The concurrency level of the Resource Manager is the value specified by the -m option when the ofssetrsc command is executed +
1

3. The concurrency level of the OTS system is the value specified by the -m option when the ofssefup command is executed.

5.2.4 Setting Up the Database Linkage Service Environment Definition

The environment definition of the Database Linkage Service (Interstage-installation-folder\ots\etc\config) also needs to be changed in line
with operational requirements.. This must be done for both CORBA Service and transaction applications, with the initial values modified
according to the operation.

-118 -

5.2.5 Setting Up the Interstage Operating Environment Definitions

Do this if a transaction application uses the distributed transaction function. It is not required for CORBA applications.

If Interstage is to be operated using a transaction application, use the 7s/nitand isstart commands. Do not directly use commands such as
otssetup, otsstart, and otsstop which are provided by the Database Linkage Service. If using a transaction application, set the Interstage
operating environment definitions (Interstage installation folder\td\etc\isreg\isinitdef.txt) before executing the /sinitand 7sstartcommands.

The following definition values required for the Database Linkage Service are automatically set by Interstage according to the system
scale. Therefore, change the initial values when needed. Be sure to set the setup type and system log file name.

Set OTS setup type
OTS Setup mode = SYS

Multilevel concurrency of Database Link Service
OTS Recovery=2

Be sure to set a system log file name
to be used by the Database Link Service
OTS path for system log=

Maximum number of Database Link Service transactions

If the system is small,

the maximum number of clients that can connect should be set in
accordance with the size of the system.

OTS maximum Transaction=50

5.3 Creating the OTS System Environment @i Soarisi2 (Linuxi2/64)

This operation is required only when a CORBA application is used.

It is not required when a transaction application is used.

The Distributed Transaction Function is provided by the OTS System, user applications and resource management programs. The OTS
System manages the transaction information.

OTS System

The OTS System consists of multiple objects. It manages transaction information, controls recovery and so on.

5.3.1 Using the Interstage Management Console

The Interstage management console is used to perform environment settings for the transaction service (OTS).

Note

If detailed setup settings are changed, the transaction service environment is rebuilt. This means that all of the previously stored JTS
resource definition information is deleted. To reuse these resources in global transactions, select and apply "Use Global Transaction™ in
the resource environment setting.

5.3.2 Using Commands

An OTS system is usually created as an extension of the environment setup for Interstage as a whole, using the /sinitcommand. However,
the otssetyp command is used when the Naming Service is running by a different node from the OTS System.

5.3.2.1 Creating an Interstage Operating Environment Definition
An Interstage operating environment definition is automatically created when an Interstage system definition file is registered.

For details on Interstage operating environment definition, refer to the Interstage Application Server Operator's Guide.

-119-

5.3.2.2 isinit Command and otssetup Command
Use the /sinit command to initialize Interstage.
To initialize Interstage by using the isinit command, an Interstage operation environment definition must be created to set required items.
Refer to the Interstage Application Server Operator's Guide for details on the Interstage operation environment definition.

To use the Database Linkage Service, Interstage must be initialized by type2. To use an EJB application, specify ejb.

isinit type2 ejb

To use the remote Naming Service, /sinit must be executed by type3. In type3, an environment setting for the OTS system is not made.
Therefore, use the otssetup command to make environment settings for the OTS system and resource management program.

The following explains how to set the operation environment by the otssetyp command and delete the operation environment.

otssetup -f setup infomation file

To delete the OTS system, specify the following and execute the command.

otssetup -d

5.3.2.3 Using a Local Naming Service (Recommended)

This section explains the setting method for using the Naming Service of the same host as the one where the Database Linkage Service
(OTS system) operates.

For the following definition items requited for the Database Linkage Service, Interstage sets values according to the system scale. To
change the values appropriately for the operation environment, change the values of the following items.

However, be sure to set a setup type and system log file name.

Setting of Interstage Operation Environment Definition

Set OTS setup type
OTS Setup mode = sys

Thread concurrency of OTS system
OTS Multiple degree = 5

Recovery process concurrency of database linkage service
OTS Recovery = 2

Be sure to set a system log file name
to be used by the Database Link Service
OTS path for system log =

Maximum number of Database Link Service transactions

If the system is small,

the maximum number of clients that can connect should be set in
accordance with the size of the system.

0TS maximum Transaction = 50

Interstage Initialization

Use the /sinit command to initialize Interstage.

isinit type2 ejb

5.3.2.4 Using Remote Naming Service

This section explains the setting method for using the Naming Service of a host other than the one where the Database Linkage Service
(OTS system) operates.

-120 -

When the remote Naming Service is used, the /isinit command cannot be used to initialize the OTS system.

After an environment setting for the Naming Service is made, the ofssetup command must be used to initialize the OTS system.

Setting of Interstage Operation Environment Definition

NS USE = remote
NS Host Name = host name where Naming Service to be used operates
NS Port Number = port number of Naming Service to be used

Interstage Initialization

Use the /sinit command to initialize Interstage.

isinit type3

Creating Setup Information File

Setting of OTS setup type
MODE = SYS

Thread concurrency of OTS system
OTS_FACT_THR_CONC = 5

Recovery process concurrency of database linkage service
OTS_RECV_THR_CONC = 2

Be sure to set system log file name used in database linkage service.
LOGFILE =

Maximum number of transactions of database linkage service

When system scale is small

Specify the maximum number of clients connected according to system scale.
TRANMAX = 100

Environment Setting for Database Linkage Service

Use the otssetyp command to initialize OTS.

otssetup - setup-information-file

Solaris 32

5.4 Creating a Resource Management Program

Linux3Z 64|

This section describes how to create a Resource Management program. An overview of the process is shown in the following figure. It is
not necessary to create a Resource Management Program for JTS.

Figure 5.3 Creating a Resource Management Program

XA linkage program

otsmkxapgm command

Database library

otslinkrsc command

Note

There are no rules for the sequence in which resource management and user application programs are created. Either can be created first.

-121-

5.4.1 What is a Resource Management Program?

A Resource Management Program is a system program running in a processing space independent from the OTS system, and operates as
an object on the machine where the database is running. The Resource Management Program runs in multiprocessing mode (6 concurrent
processes by default) and cannot run in multithread mode.

There are two types of Resource Management Programs; the resource management programs for OTS and those for JTS. The Resource
Management Program for OTS is required when a C, C++, or COBOL application performs global transaction linkage. The Resource
Management Program for JTS is required when an EJB application performs global transaction linkage.

When a transaction completion request (commit/rollback) is issued from the client application, the Resource Management Program receives
it viathe OTS system and reports transaction completion to the database. If the Resource Management Program is started while an unsolved
transaction remains, the unsolved transaction is also recovered.

Depending on the operating environment, in some cases the Resource Management Program can also be started on a separate machine
from the one where the OTS system is running.

One is made in case of Oracle on every instance, in case of Symfoware/RDB on every the database, in case of SQLServer to SQLServer,
and you must start a Resource Management Program for OTS.

Resource Management Program for JTS does not need to be created.

Figure 5.4 Resource Manager

Resource definition file
Resource manager

openinfo=
closeinfo=

Databa
XA linkage Database

program library
wp Control flow

As shown in the Figure 5-4, the Resource Management Program for OTS consists of an XA linkage program and a database library.
For the Resource Management Program for JTS, no XA linkage program exists.

When the Resource Manager for OTS is started, it connects to the database based on the information in the resource definition file.
Therefore, when the Resource Management Program is started, the database described in the resource definition file needs to have been
started.

When the Resource Manager for JTS is started, it reads all the resource definition files with RSCTYPE=JTS specified in the resource
definition file registered with the ofssetrsc command.

Database Library
The database library is the library provided by the database.

It is used when creating Resource Management Program and user application programs. Refer to the specific database manual for details
of libraries.

JDBC Class Library
For the Resource Manager for JTS, the JDBC library for JDBC2.00P (Optional Package) provided by the vendor is required.

5.4.2 The XA Linkage Program

An XA linkage program is a program that links to the database using the XA interface.

If an XA linkage program is to be used, you will have to create it using the otsmkxapgm command.

-122 -

Note
In the Resource Manager for JTS, a XA linkage program does not need to be created.

The preparation of the program for the XA linkage

otsmkxapgm -s xaosw -r "/libpath:"C:\ORACLE\RDBMS\XA" oraxalO.lib" -o
c:\temp\ots\oraxa.dll

5.4.3 The Database Library

The database library shows the library provided by the database.

It is used when creating Resource Managers and server applications. Further details on the library will be found in the manual specific to
each database.

5.4.4 Creating a Resource Management Program

A Resource Manager can be created by linking together the XA linkage program and the database library published by the database vendor,
using the otslinkrsc command.

Note
In the Resource Manager for JTS, a XA linkage program does not need to be created.

Example of the Resource Management Program Wifndow 3 5

otslinkrsc -1 xa_linkpgm -r "library" -o name

-I xa_linkpgm: name of XA linkage program
-r "library": library published by database vendor
-0 name: name of Resource Manager to be created

Example of the Resource Management Program | Solaris32 W Linux«3Z 64

otslinkrsc [-t {thread | process} 1 -1 xa_linkpgm -r "library" -o name

-t {thread | process} : mode of process or thread
-I xa_linkpgm: name of XA linkage program
-r "library": library published by database vendor

-0 name: name of Resource Manager to be created

5.5 Creating the Environment for the Resource Management
Program midms=2s4 Solarisi2

Create the environment using the procedure shown in the following figure before starting the new Resource Manager program.
Figure 5.5 Resource Manager Environment

Registration of resource manager

otssetrsc command J

Creation of resource definition file

Next, you will need to create a resource definition file to store the information comprising the OPENINFO and CLOSEINFO character
strings for the XA interface required by each database vendor.

-123 -

5.5.1 Creating a Resource Definition File

A resource definition file contains the resource definition required for each resource (such as a database). A resource definition file must
be created for each database, and must describe, in text format, items such as the OPENINFO and CLOSEINFO character strings for each
database type name. In the Resource Manager for JTS, the information for acquiring the mounting class of
javax.transaction.xa.XADataSource (initial ContextFactory,providerURL, etc.) provided by each database vendor from JNDI is described
in test format. The name of this resource definition file is specified as a parameter when registering or starting the Resource Manager.
When starting the Resource Manager for JTS, it does not need to be set.

Typical settings for the resource definition file are shown in the following subsections.

An Example of the Resource Definition for OTS of Oracle

resource definition name

NAME=ORACLE_DEF

environment variables

ENVIRON ORACLE_SID=orac

name of RM to be used, and OPEN NFO and CLOSElI NFO character strings
RMNAME=Oracle_XA

OPENINFO=0racle_XA+Acc=P/system/manager+SesTm=0

CLOSEINFO=

An Example of the Resource Definition for JTS of Oracle

resource definition name

name=ORACLE_JTS_DEF

intialContextFactory, providerURL used

type=DBMS

lookUpName=jdbc/xa/OracleXADataSource
initialContextFactory=com.sun.jndi.fscontext.RefFSContextFactory
providerURL=File:/INDI/xa

rscType=JTS

An Example of Resource Definition for OTS of Symfoware/RDB

resource definition name

NAME=ORACLE_DEF

name of RM to be used, and OPEN NFO and CLOSEI NFO character strings
RMNAME=RDBI I

OPENINFO=TO "DB1" USER "system/manager”

CLOSEINFO=

SQL Server Resource Definition File

Windowsd2

name of RM to be used, and OPENINFO and CLOSEINFO character strings
RMNAME=MS_SQL_Server

OPENINFO=Tm=0TS, RmRecoveryGuide=197BAA60-8011-11d2-B342-0000E20F0756
CLOSEINFO=Tm=0TS,RmRecoveryGuide=197BAA60-9011-11d2-B342-0000E20F0756

The resource definition file can be created using a text editor. Refer to the Tuning Guide for details of the format of the resource definition
file.

5.5.1.1 Registering a Resource Definition

To validate the resource definition created for each resource, register the resource definition using the ofssetrsccommand. A JTS resource
definition can be registered via the Interstage management console.

The database service may be uninstalled from and reinstalled in the same environment. If the same resource definition is to be used
subsequently, the registered information need not be deleted by the otssetrsc command prior to installation.

-124 -

Notes
- Up to 32 resource definitions can be registered.

- If the CORBA Service is reinstalled or initialized, the resource definition must be re-registered.

5.5.1.2 Environment Definition for Resource Management Program

To implement an environment definition for a JTS resource management program that is to be used by the distributed transaction function
of a J2EE application, perform either of the following:

- Update config file
- Update RMP property

Updating a config File

On the PATH= line defined in the config file, specify in full path the path to the java command to be used by the resource management
program for JTS. Refer to the Tuning Guide for details.

Updating the RMP Property

For "RecoveryTarget=" defined in the RMP property file, specify the names of the resources to be recovered from a failure, delimited by
a blank. If the recovery objects are not set, the failure recovery is not made during start of the resource management program for JTS.
Normally specify this option.

Refer to the Tuning Guide for details.

56 Creating DefinitioNs 1Windows3Z| Solaris32 1 Linuxd2

This involves creating the WorkUnit definitions. This is only necessary for transaction applications using the Distributed Transaction
Function.

This section explains the definition information for the use of the Distributed Transaction Function.

5.6.1 Resource Manager Information

Specify the [Resource Manager] database information when using global transactions (*1).

Example of definition of Resource Manager information

#Resource Manager information
[Resource Manager]
Name:RDBII_DEF
RM:RDBI 1

[Resource Manager]
Name : ORACLE_DEF
RM:Oracle_XA

*1 This is only specified if the WorkUnit type is ORB.

5.7 Starting the OTS System Wikms=2/ss Solarisi2 (Linudz/64)

To use the Interstage management console to start up the OTS system, start Interstage to synchronously start up the OTS system. To start
up only the OTS system, use the ofsstart command. To start the OTS system, the ofsstart command is executed. Execute this command
when a CORBA application uses the Distributed Transaction Function. When using transaction applications, the /sstart command starts
the OTS system together with all the services.

For that reason, execute the following command to start the CORBA Service for CORBA applications:

otsstart

-125-

To stop the OTS system, the ofsstop command is executed. However, if a transaction application is to be run, the 7sstop command will be
used, so this operation is unnecessary.

otsstop

5.8 Starting and Stopping a Resource Management Program
Wndows 3 B4 Solaris32 WLinux3Z 64

To start the Resource Management Program, the ofsstartrsccommand is executed. This is carried out on the machine on which the Resource
Management Program is started. Do this separately for CORBA and transaction applications. The CORBA Service must be started before
the following command is executed:

Resource Management Program for OTS

otsstartrsc -pg C:\temp\ots\resourcel.exe -n resourcedefl

C:ltemplotslresourcel.exe: name of Resource Manager
resourcedefl: The resource definition name when registered with otssetrsc

To stop the Resource Manager, the ofsstoprsc command is executed.

otsstoprsc -n resourcedefl

Resource Management Program for JTS

otsstartrsc -j

otsstoprsc -j

When the Interstage management console is used to set up a transaction service, start Interstage to start the resource management program
for JTS as the transaction service (JTSRMP).

5.8.1 Environment Setting for Operation on a Host Other Than That of the
OTS System

This section explains the environment setting required for operating the resource management program on a host other than the one on
which the OTS system operates.

5.8.1.1 Sharing a Naming Service (Recommended)

A Naming Serviceis shared between the host on which the OT S system operates and the one on which the resour ce management
program oper ates.

1. Specify the following in the Interstage operating environment definition for the host on which the resource management program
operates.

NS USE = remote
NS Host Name = name of host where Naming Service to be used operates
NS Port Number = port number of Naming Service to be used

2. At the host on which the resource management program operates, select type3 in the isinit command to initialize Interstage.

3. At the host on which the resource management program operates, execute the isstart command to start Interstage. (The OTS system
is not started up.)

4. At the host on which the resource management program operates (Windows only), use the net command to start the
ObjectTransactionService.

5. At the host on which the OTS system operates, use the isstart command to start up that OTS system. (*1)

-126 -

6.

7.
8.

At the host on which the resource management program operates, specify the following in the setup information file. (*2)

MODE = RMP

At the host on which the resource management program operates, use the otssetup command to initialize Interstage.

At the host on which the resource management program operates, use the otsstartrsc command to start that resource management
program.

*1 If the OTS system uses a non-local Naming Service, set the Naming Service to be used in the Interstage operating environment definition
in the same way as the setup for a resource management program to initialize Interstage. Refer to 5.3.2.4 Using Remote Naming
Service for details.

*2 Do not specify HOST and PORT.

5.8.1.2 Not Sharing a Naming Service

Different Naming Servicesareused at thehost on which the OT S system oper ates and the one on which theresour ce management
program oper ates. (The resour ce management program uses the local Naming Service.)

1.

At the host where the resource management program operates, specify the following in the Interstage operation environment
definition file.

OTS Setup mode = rmp

OTS Host = name of host where OTS system operates

OTS Port= port number of CORBA service at node where OTS system operates
OTS Locale= locale of host where OTS system operates

At the host where the resource management program operates, select type2 in the isinit command to initialize Interstage.

At the host where the resource management program operates, use the isstart command to start Interstage. (The OTS system is not
started up.)

At the host where the OTS system operates, use the isstart command to start up that OTS system.

At the host where the resource management program operates, use the otsstartrsc command to start that resource management
program.

Different Naming Servicesareused at thehost on which the OT S system oper ates and the one on which theresour ce management
program oper ates. (The resour ce management program uses a remote Naming Service.)

1.

At the host where the resource management program operates, specify the following in the Interstage operation environment
definition file.

NS USE = remote
NS Host Name = name of host where Naming Service to be used operates
NS Port Number = port number of Naming Service to be used

At the host where the resource management program operates, select type3 in the isinit command to initialize Interstage.

At the host where the resource management program operates, use the isstart command to start Interstage. (The OTS system is not
started up.)

At the host where the resource management program operates, create a setup information file to set the following:

OTS Setup mode = rmp

OTS Host = name of host where OTS system operates

OTS Port = port number of CORBA service of host where OTS system
operates

OTS Locale = locale of host where OTS system operates

At the host where the resource management program operates (Windows only), use the net command to start the
ObjectTransactionService service.

At the host where the resource management program operates, use the ostsetup command to specify and set up the setup information
file.

-127 -

7. At the host where the resource management program operates, use the isstart command to start Interstage. (The OTS system is not
started up.)

8. At the host where the OTS system operates, use the isstart command to start up that OTS system.

9. At the host where the resource management program operates, use the otsstartrsc command to start that resource management
program.

Notes

- This section contains only the information required to operate the resource management program on another host. Refer to the Tuning
Guide for details on the Interstage operation environment definition file and setup information file.

- Refer to 5.3.2.4 Using Remote Naming Service for details on the settings when the OTS system uses the Remote Naming service.

5.9 Tracing Function Solaris32 WLinuxdZ/64)

The following two tracing functions can be used in the Database Linkage Service.
- Dump file collection function

- Trace log output function

5.9.1 Dump File Collection Function

By using the otsgetdump command, the dump file collection function can collect the dump files of the OTS system and resource
management program. This facilitates recovery from a failure, if any on the system, by referencing the output information and investigating
the transaction information. Refer to the Reference Manual (Command Edition) for details on using the otsgetdump command.

5.9.2 Trace Log Output Function

By using the trace log output function, detailed information on failures in the communication layer and those in a resource (such as a
database) linked with the Database Linkage Service can be collected. The operation of the data linkage service can also be checked.

The trace log output function is used for the following three processes:
- Command
- Application

- Resource Management Program

Command Trace Log

This function automatically outputs a trace log when the processing of the Database Linkage Service is executed, by using a command
provided by the Database Linkage Service and Interstage integration command. The contents of the file are separately output for each
command regardless of whether that command is normal or abnormal.

5.10 Notes Solaris32 WLinux3z/64)

This section provides notes on linking to Interstage under Interstage V3.1 and higher.

5.10.1 Migration from the Old Environment

When converting from an V3.1 environment or earlier, the environment and definitions must be converted.

-128 -

Appendix A WorkUnit Definition

WorkUnit definition is described in the following format.

Note

Upon completion of structuring the application environment, creating a backup copy of the resources is recommended for the possible
crash of resources.

For the procedure of creating a backup copy, see Maintenance (Backup of resources) in the Interstage Application Server Operator's Guide.

A.1l Syntax

The syntax of a WorkUnit definition is the same as that for the Component Transaction Service environment definition. Refer to the
Component Transaction Service environment definition section for details.

A.2 Syntax of WorkUnit Definition File

A WorkUnit definition is specified in the following format:

[WORK UNIT] section
WORK UNIT information
[APM] section
APM name
[Control Option] section
Control option
[Resource Manager] section
Resource Manager information
[Application Program] section
Application information
[Nonresident Application Process] section
Nonresident application information
[Multiresident Application Process] section
Multi-object resident application information

The following is an example of a WorkUnit definition.

WORK UNIT
Definition name and type
Name: WorkUnit name

Kind: WorkUnit type

APM
APM name

Name: APM name

Control Option
Control option

Path: application-library-path

-129 -

Path: application-library-path
To define multiple application library paths, write multiple "Path:" statements.
- Current Directory: current-folder
- Remove Directory: Whether or not the APM (server application) current folder is to be deleted
- Application Retry Count: abend-limit
- Snapshot: snapshot-acquisition-specification
- Path for Snapshot: snapshot-output-path
- Path for Application: application-use-path
- Path for Application: application-use-path
To define multiple application paths write multiple "Path for Application:" statements.
- Environment Variable: Environment variable
- Environment Variable: Environment variable
To define multiple environment variables, write multiple "Environment Variable:" statements.

- Registration to Naming Service: Registration status of Naming Service

Using Load Balance: Use load balance function Y/N (*1)
- Using Notification of User Information: Notify user identification information Y/N

Access Control: Access control used Y/N

- Access Control Base DN: Base ID for entry subject to access control

*1 This is not valid for Linux (64 bit).

Resource Manager
Resource manager information
File: Resource definition file
RM: RM name

To define multiple resource manager information, write multiple [Resource Manager] sections.

Application Program
Application information

Destination: Destination name (object name)
Destination Priority: Object priority
PSYS: DPCF communication path
Executable File: Execution file name
Application Language: Application language
Code Conversion For String: Code conversion information (string)
Concurrency: Process multi level
Maximum Processing Time: Application maximum processing time
Terminate Process for Time out: Forced termination when maximum processing time has elapsed Y/N
Maximum Processing Time for Exit Program: Maximum processing time for exit program
Maximum Queuing Message: Maximum number of messages in queues

Queuing Message to Notify Alarm: Number of queues monitored

-130 -

Queuing Message to Notify Resumption: Number of queues to resume monitoring
Environment Variable: Environment variable
Environment Variable: Environment variable
To define multiple environment variables, write multiple "Environment Variable:" statements.
From: FormResident or nonresident type
Pre Exit Program: Pre exit program
Post Exit Program: Post exit program
Recovery Exit Program: Name of recovery exit program
Executable File for Exit Program: Executable file for exit program
Access Control: Access control is used Y/N
Access Control Base DN: Base ID for entry subject to access control
Type of User Identification: Type of user identification information
User Name Param: User name notification parameter
User Base DN: User name detection starting point DN
User DN Param: User ID notification parameter
Password Param: Password notification parameter
Bind type: Bind type
Using Wrapper Session Management: AIM linkage session inheritance function used Y/N
SessionID Param: SessionlD notification parameter
Method Name to Begin Session: Method (operation) to begin session
Maximum Session Active Time for Client: Maximum thinking time for client
Maximum Processing Time for WRAPPER: AIM application monitoring time
Maximum Memory for EJB Application: Maximum memory for EJB applications
CLASSPATH for Application: Class path for applications
CLASSPATH for Application: Class path for applications

To define multiple class paths for applications, write multiple "CLASSPATH for Application:" statements. To define multiple application
information, write multiple [Application Program] sections.

Nonresident Application Process
NONRESIDENT APPLICATION INFORMATION
Concurrency: Process multi level
Pre Exit Program: Pre exit program name
Post Exit Program: Post exit program name
Executable File for Exit Program: Executable file name for exit program
Dynamic Link Library: Dynamic link library name

Dynamic Link Library: Dynamic link library name

To define multiple dynamic link libraries, write multiple "Dynamic Link Library:" statements.

Maximum Processing Time for Exit Program:

-131-

Multiresident Application Process
MULTIRESIDENT APPLICATION INFORMATION
Concurrency: Process multi level
Pre Exit Program: Pre exit program name
Post Exit Program: Post exit program name
Executable File for Exit Program: Executable file name for exit program
Maximum Processing Time for Exit Program: Maximum processing time for exit program

Recovery Exit Program: Recovery exit program name

A.3 Control Statement of WorkUnit Definition

After the beginning of the WorkUnit definition is declared in the [WORK UNIT] section, WorkUnit information is described as follows:

[APM] section

[Control Option] section

- [Resource Manager] section

[Application Program] section

- [Nonresident Application Process] section

[Multiresident Application Process] section
If the WorkUnit type is WRAPPER or EJB, sections other than [Control Option] and [Application Program] are ignored.

Some sections can be omitted, depending on the type of WorkUnit and the functions used by them. Where they can be omitted, omit the
section name and the statement.

A.3.1 WORK UNIT Section

Declare the start of the WorkUnit definition.

Synopsis
[WORK UNIT]
Name:
WorkUnit name
Kind:
WorkUnit type

A.3.1.1 Name
WorkUnit name
Explanation

Set the WorkUnit name.

The WorkUnit name can contain up to 36 bytes of alphanumeric characters, hyphens, and underscores, and must begin and end with
an alphanumeric character.

A.3.1.2 Kind
WorkUnit type
Explanation

Set the WorkUnit type.

-132 -

CORBA: Specified when CORBA applications operate in a WorkUnit.

ORB: Specified when transaction applications operate in a WorkUnit.

EJB: Specified when EJB applications operate in a WorkUnit.

WRAPPER: Specified for AIM linkage. No application can operate in the applicable WorkUnit.

UTY: Specified when a general application outside the control of Interstage is operated in a WorkUnit.
Note
"UTY" is supported for Solaris and Linux, but not for Windows.

"WRAPPER" is supported for Windows and Solaris, but not for Linux.

A.3.2 APM Section

Specify APM name.

Synopsis
APM
Name:

APM name

A.3.2.1 Name
APM name
Explanation
Set APM name.
Specify the APM name in alphanumeric characters consisting of 23 or less bytes.

Set"TDNORM" to the NAME of the [APM] section only if the application language in the WorkUnit definition is C++. Set "TDNORM"
to the APM name when not using the global transaction linkage function. When the global transaction linkage function is used, specify
the APM name created by the APM creation command (tdlinkapm).

Be sure to specify this statement when the WorkUnit type is ORB.
Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.3 Control Option Section

Specify control option of WorkUnit.

Ensure that this section is only set up at one location in the WorkUnit definition.

Synopsis
Control Option
Path:
application library path
Current Directory:

current-folder

-133-

Remove Directory:
Whether or not APM (server application) current folder is to be deleted
Application Retry Count:
abend-limit
Snapshot:
snapshot-acquisition-specification
Path for Snapshot:
snapshot output path
Path for Application:
application-use-path
Environment Variable:
environment variable
Registration to Naming Service:
registration type of Naming Service
Using Load Balance:
This is not valid for Linux (64 bit).
use load balance function Y/N
Using Notification of User Information:
notify user identification information Y/N
Access Control:
existence of the access control execution
Access Control Base DN:
cardinal point distinct name of access control applicable entry
Maximum Processing Time for Exit Program:
maximum processing time for exit program
WorkUnit Exit Program:
WorkUnit exit program name
Executable File of Exit Program for Salvage:
executable file of exit program for salvage
WorkUnit Automatic Stop Mode
WorkUnit automatic stop mode
Request Assignment Mode
Request assignment mode
Traffic Director Monitor Mode
Existence of IPCOM monitoring
Output of Stack Trace
Existence of stack trace acquisition at the time of timeout detection
Startup Time

WorkUnit startup waiting time

-134-

Shutdown Time

WorkUnit forced stop waiting time

Unconditional Reactivation of Process

Unconditional restart of the process

Start Log

Collection of the process start log

Process Degeneracy

Degenerated process operation

Number of Revision Directories

Number of backups of the current directory

Syntax

A.3

The following statements are mandatory if the WorkUnit type is "ORB":
- "Path:" statement
- "Current Directory:" statement
The following statement is mandatory if the WorkUnit type is "EJB":
- "Current Directory:" statement
Up to 10 of the following statements can be specified. To create multiple specifications, write multiple statements:
- "Path:" statement
Up to 30 of the following statements can be specified. To create multiple specifications, write multiple statements:
- "Path for Application:" statement
Input a newline /n at the end of the "Environment Variable:" statement line (a 2 byte code is automatically added to the string length).

Multiple "Environment Variable:" statements can be specified, however, the length of the strings specified in the "Environment
Variable:" statements is restricted to 4096 bytes.

If the "Snapshot:" statement is set to DISABLE, the "Path for Snapshot:" statement is ignored.

If the "Snapshot:" statement is set to ENABLE and the "Path for Snapshot:" statement is omitted, snapshot information is output to
the current application runtime directory.

3.1 Path

Application library path

Explanation

Set the path to the directory where the application and exit program executables are stored.
When the application language type is C++, set the path to the directory where the application and exit program executables are stored.
When the WorkUnit type is CORBA and the application language is Java, specify the path to the Java execution file directory.

This statement can be specified in up to 10 statements. To specify more than one statement, the specification must be repeated. Note
that the same path cannot be duplicated when specifying the statements.

A string of up to 255 bytes without spaces, beginning with "/".
Be sure to specify the absolute path in this statement. The relative path and current directory "." cannot be specified.

Be sure to specify this statement when the WorkUnit type is CORBA, ORB, EJB, or UTY.

Range of Support

(O Windows, Solaris, Linux

-135-

Edition Enterprise Edition, Standard-J Edition

WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.2 Current Directory
Explanation
Set the path to create the current folder for the application and exit programs.
A string of up to 255 bytes without spaces, beginning with "/
Always specify an existing path in this statement. If the path cannot be located, the WorkUnit fails to start.

Be sure to specify the absolute path in this statement. The relative path and current directory "." cannot be specified.

A directory with the WorkUnit name is created in the directory specified by this statement. In this created directory, a directory with
the process ID is created. This process ID directory is actually the current directory.

If the directory specified in this statement has insufficient disk space, the WorkUnit may fail to start. In addition, in a Solaris or Linux
system, when an application process is terminated abnormally, a core file is output. Therefore, secure enough disk space.

Be sure to specify this statement when the WorkUnit type is CORBA, ORB, EJB, or UTY.
In the case of the Java language, the stdout and stderr files are created but data is not output to them.

When the Java language is used to output data to the files, the program must be prepared in such a way that the user allocates the
standard output and standard error output to those files.

Range of Support

(O Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.3 Remove Directory
Specify whether the current directories of the application and exit program (process 1D directories) are to be deleted when APM is stopped.
Explanation
Specify whether or not the APM (server application) current folder is to be deleted when APM stops.
- YES: Delete the APM (server application) current folder.
- NO: Do not delete the APM (server application) current folder.
This statement can be omitted. If so, the default is "NO".

Note that, if files that have a file size of 1 or more are stored in the current folder, the current folder is not deleted even if "YES" is set
for this statement.

This statement is valid when the WorkUnit type is ORB.

If activation change or process concurrency has repeatedly been increased and decreased for the WorkUnit of a transaction application,
many directories with process IDs will remain. This statement provides a function to prevent the accumulation of directories of finished
processes.

Even if "NO™" is specified in this statement, the directories and files in the current directory are deleted when the WorkUnit is restarted.

Range of Support

-136 -

oS Windows, Solaris, Linux

Edition Enterprise Edition
WorkUnit type CORBA

A.3.3.4 Application Retry Count

abend-limit

Explanation
An integer value from 0 to 127 specifying the consecutive abended application count until automatic restart is disabled.
This statement is optional. If it is specified as zero, or not specified, re-starting is performed unconditionally.
This statement is valid when the WorkUnit type is CORBA, ORB, EJB, or UTY.
Note

- When 1 is specified in this statement, the application process is not restarted and the WorkUnit stops abnormally.

- When 2 or more is specified in this statement, the WorkUnit stops abnormally if execution of a server application ends
abnormally and restarts consecutively until the specified number of retries is reached. When the server application recovers
normally, the counter is reset.

- In CORBA WorkUnits in which logic is used to generate the object reference in the first method as with "Factory" or object
unit process bind, the counter is reset even if this method is operating normally. Even if an ABEND occurs during business
method invocation, a value of 2 or more may therefore be invalid.

- For an EJB WorkUnit, the counter is reset when the "create™ method operates normally. Even if an ABEND occurs during
business method invocation, a value of 2 or more may therefore not be valid.

- For a utility WorkUnit, specify a retry count reset time (in the Reset Time for Application Retry Count: statement in the
Application Program section) so that the counter is reset when the specified time has elapsed.

Range of Support

(O Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.5 Snapshot
snapshot-acquisition-specification
Explanation
Set whether a file output snapshot is obtained.
- ENABLE: Obtain a snapshot
- DISABLE: Do not obtain a snapshot
The default is "DISABLE".

If "ENABLE" is specified in this statement, the snapshot information file is output in the current directory. To change the output
directory of the snapshot information file, specify the "Path For Snapshot" statement.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

-137 -

A.3.3.6 Path for Snapshot

Snap shot output path

Explanation
This statement can be omitted. If so, the current folder is set as the default value.
A string of up to 255 bytes without spaces, starting with "/".
Be sure to specify the absolute path in this statement. The relative path and current directory "." cannot be specified.
This statement is only valid when the WorkUnit type is ORB.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.3.7 Path for Application
Explanation
Set the path to be used by the application and exit programs at run time.

This statement can be specified in up to 30 statements. To specify more than one statement, the specification must be repeated. Note
that the same path cannot be duplicated when specifying the statements.

If two or more paths are specified, they are set in the "PATH" environment variable in the order of specification. Note that the value
in the "PATH" environment variable specified in the Interstage startup environment is added after the value set by this statement.

A string of up to 255 bytes without spaces.

This statement is optional. The default value is the path used by the application.

If this statement is omitted, it is assumed that there is no path used by the application.
This statement is valid when the WorkUnit type is CORBA, ORB, EJB, or UTY.

Range of Support

(0N Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.8 Library for Application
Explanation
Set the library path to be used by the application and exit programs at run time.

This statement can be specified in up to 30 statements. To specify more than one statement, the specification must be repeated. Note
that the same path cannot be duplicated when specifying the statements.

A string of up to 255 bytes without spaces.

A value that can be set in the LD_LIBRARY_PATH environment variable can be specified in this statement.
This statement is optional. The default value is the Library path used by the application.

If this statement is omitted, it is assumed that there is no Library path used by the application.

This statement is valid when the WorkUnit type is CORBA, ORB, EJB, or UTY.

Range of Support

-138 -

oS Windows, Solaris, Linux

Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY
Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.9 Environment Variable
Explanation
Set the environment variable to be used when the application and exit programs are run.

This statement can be specified more than once. In this case, the character strings specified in all of the Environment Variable statements
must total 4,096 or fewer bytes.

Specify the setting in the following format:
"environment variable= value"
Checks other than character type and length are not performed.
This statement is optional. If it is not specified, no default library is assumed.
The following word cannot be used because it is the reserved word of this statement.
- PATH
- LD_LIBRARY_PATH
If addition is required, specify the addition using the "Path for Application™ or "Library for Application" statement.
This COBOL runtime check can be avoided by setting the following environment variable in this statement.
- CBR_CODE_CHECK=no
This statement is valid when the WorkUnit type is CORBA, ORB, EJB, or UTY.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.10 Registration to Naming Service
Explanation
Specify the Naming Service registration type.
- MANUAL: manual registration. Specify the objects in advance.
- AUTO: auto registration default.
Interstage performs the following operations automatically:

- Registers the objects in the Naming Service before the WorkUnit starts.
- Deletes the objects from the Naming Service when the WorkUnit stops.

Note: When manually registering the object in the Naming Service or load balance function, specify the following Implementation
Repository ID per operation type in the -a option of the OD_or_adm or odadminister/lb commands. Also, start Interstage first, and then
register the objects.

-139 -

If the WorkUnit type is ORB FUJITSU-Interstage-TDLC
If the WorkUnit type is WRAPPER FUJITSU-Interstage-TDRC

Always use manual registration if a proxy link is used. Use the OD_or_adm command with the -x option to specify the Inbound Proxy
information. If SSL is used for communication, ensure that the objects are registered manually. In such cases, specify the -s option of

the OD_or_adm command.
This statement is only valid when the WorkUnit type is ORB.
Load balance function is not valid for Linux (64 bit).

Range of Support

(O] Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB, WRAPPER

Note

"WRAPPER" is supported on Windows and Solaris, but unsupported on Linux.

A.3.3.11 Using Load Balance
This is not valid for Linux (64 bit).
Explanation
Specify whether to use load balance Y/N.
- YES: Use load balance
- NO: Do not use load balance
This statement is optional. The default value is NO.
If the Naming Service has already been set, this setting becomes effective.

This statement is only valid when the WorkUnit type is ORB.

Range of Support
oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB, WRAPPER
Note

"WRAPPER" is supported on Windows and Solaris, but unsupported on Linux.

A.3.3.12 Using Notification of User Information

Explanation

Specify whether to report user identification information.
- YES: Report user identification information
- NO: Do not report user identification information
This statement is optional. The default value is NO.

This statement is only valid when the WorkUnit type is ORB.

Range of Support

oS Windows, Solaris

Edition Enterprise Edition

- 140 -

WorkUnit type ORB

A.3.3.13 Access Control
Explanation
Specify the existence of the execution of the access control for the WorkUnit.
- YES: A WorkUnit is made the target of the access control.
- NO: A WorkUnit isn't made the target of the access control.
This statement can be omitted. When this statement is omitted, NO is set up as an optional value.

And, regardless of the designation of the "Access Control" statement of the [Application Program] section, it is effective. When both
designations are given, access control for the WorkUnit is carried out first, and next access control for the object is carried out.

The EJB WorkUnit is not included in the security functions of the Component Transaction Service.
This statement is only valid when the WorkUnit type is ORB.
Range of Support

(0N Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB, WRAPPER

Note

"WRAPPER" is supported on Windows and Solaris, but unsupported on Linux.

A.3.3.14 Access Control Base DN
Explanation
Specify the distinct name (DN) of entry to find the WorkUnit registered in InfoDirectory, when the WorkUnit needs to be accessed.
The above statement is mandatory when the "Access Control" statement of the [Control Option] section is set to YES.
The length of the DN should not exceed 1023 bytes.
Setup example:
- Access Control Base DN: "ou=ISResouce, o=Fujitsu, c=jp"

Note: Specify the DN of the top most directory in the folder class so that the access control can look up the WorkUnit in the
InfoDirectory. If the WorkUnit fails to start, due to it not being registered, specify the next highest directory in the hierarchy.

This statement is only valid when the WorkUnit type is ORB.
Range of Support

0os Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB, WRAPPER

Note

"WRAPPER" is supported on Windows and Solaris, but unsupported on Linux.

A.3.3.15 Maximum Processing Time For Exit Program
Explanation
Specifies the monitoring time (in seconds) of the maximum processing time of the exit program.

An integer value of 1 to 1800.

- 141 -

This statement can be omitted. If this statement is omitted, 300 is set as a default value.
This statement is valid when the WorkUnit type is CORBA, ORB, EJB, or UTY.
Note

A value in this statement is valid for each of the following exit programs. If the processing time of each exit program exceeds the
specified time, the process where that exit program operates is forcibly aborted.

- Pre exit program

If the time is exceeded, the program causes WorkUnit startup to fail.
- Post exit program

WorkUnit stop processing continues even if the time is exceeded.
- Error exit program

If the time is exceeded, the program stops the application process. If automatic restart is set, the program restarts the application
process. If automatic restart is not set, the WorkUnit stops abnormally.

- WorkUnit exit program

If the time is exceeded when the program is executed at WorkUnit startup, the program causes WorkUnit startup to fail. If the time
is exceeded when the program is executed at the time of WorkUnit stop processing, the WorkUnit stop processing continues.

- Process release exit program

WorkUnit stop processing continues even if the time is exceeded.
- Process termination exit program

WorkUnit stop processing continues even if the time is exceeded.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.16 WorkUnit Exit Program

Explanation

Set the function name of the exit program to be executed before the process starts at start of the WorkUnit and after the process is
released at stop of the WorkUnit.

A character string of up to 31 bytes.

This statement can be omitted.

This statement is valid when the WorkUnit type is CORBA, ORB, EJB, or UTY.
Note

- The WorkUnit exit program is executed even after control fails to start the process and then fails to start the WorkUnit, or after
the WorkUnit stops abnormally and then its process is released.

- When this statement is set, be sure to specify the exit program execution file name in the Executable File of Exit Program for
Salvage statement.

Range of Support

oS Windows, Solaris, Linux

Edition Enterprise Edition, Standard-J Edition

-142 -

WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.17 Executable File of Exit Program for Salvage

Explanation
Specifies an executable file name of the exit program for salvage.
A character string of up to 31 bytes. This statement does not distinguish between upper case and lower case.
This statement can be omitted.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.18 WorkUnit Automatic Stop Mode

Explanation

To implement a batch program on the utility WorkUnit, specify YES. If YES is specified, the current process is not restarted even if
it terminates, but the WorkUnit is automatically stopped when all of the processes under that WorkUnit terminate.

- YES: Automatically stops WorkUnit.
- NO: Does not automatically stop WorkUnit.

This statement is only valid when the WorkUnit type is UTY.

If "YES" is specified in this statement, an application is not restarted even if it terminates abnormally, and the WorkUnit completes
normally when all of the processes are completed. Therefore, specify this statement when a batch program is to be started in the

WorkUnit.
Range of Support
(O Solaris, Linux
Edition Enterprise Edition
WorkUnit type uTy
Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.19 Request Assignment Mode
Explanation
Specify mode in which a request message from client is assigned to server application process waiting for requests.

- LIFO: A request message from the client is assigned to the process that last entered the wait state among all server application
processes waiting for requests.

- FIFO: A request message from the client is assigned to the process that first entered the wait state among all server application
processes waiting for requests.

When this statement is specified, it applies to all of the applications in a WorkUnit.

-143-

This statement can be omitted. If it is omitted, "LIFO" is set as the default value.
This statement is valid when the WorkUnit type is CORBA, ORB, or EJB.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB

A.3.3.20 Traffic Director Monitor Mode
Explanation
Specifies whether or not the WorkUnit is to be the subject of IPCOM monitoring.
- YES: Is to be monitored by IPCOM.
- NO: Is not to be monitored by IPCOM.
This statement is valid when the WorkUnit type is CORBA, ORB, EJB, or UTY.

When using the multi-system function, this statement is only effective in the default system. It is not effective if specified by the
extended system.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.3.21 Output Of Stack Trace
Explanation
- YES: Outputs stack trace.
- NO: Does not output stack trace.

By specifying "YES" in this statement, you can locate the hang-up position in the stack trace file when an application hangs up and a
timeout occurs. Note that the stack trace file is output in the current directory.

This statement can be omitted. If this statement is omitted, "YES" is set as the default value.
This statement is valid when the WorkUnit type is CORBA or ORB.

Note
When YES is specified in this statement, be sure to apply the following OS patches:

If the OS patch is not applied, the stack trace output processing may hang up due to an operating system problem and it may not be
possible for WorkUnit collection processing to continue from that point on.

- Solaris7: 106541-22

Range of Support
oS Solaris
Edition Enterprise Edition
WorkUnit type CORBA, ORB

- 144 -

A.3.3.22 Startup Time

Explanation

Specify a monitoring time until the WorkUnit startup is completed. If the application process start processing exceeds the specified
time, the process is shutdown to stop the restart processing. In this situation, the WorkUnit start processing terminates abnormally.

A value from 0 to 65,535 can be specified in this statement.
This statement can be omitted. If this statement is omitted, 300 is set as the default value.
Note that when 0 is specified, start time monitoring is not performed. The WorkUnit start processing may not be canceled.
This statement is only valid when the WorkUnit type is ORB.
Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type CORBA

A.3.3.23 Shutdown Time

Explanation

If the stopping of the WorkUnit was executed, specify the maximum wait time (in seconds) for the process to completely stop. If the
application process stop processing exceeds the specified time (there was a hangup), the process is shutdown so that the stop processing
completes normally.

A value from 0 to 65,536 can be specified in this statement.

This statement can be omitted. If this statement is omitted, 180 is set as the default value.

Note that when 0 is specified, shutdown time monitoring is not performed. The WorkUnit stop processing may not be canceled.
This statement is only valid when the WorkUnit type is CORBA.

[Estimate M ethod]

Shutdown Time is the baseline value (time) used for determining that Application Process Stop Processing Time in the stopping of
the WorkUnit is abnormal (there was a hangup). When tuning Shutdown Time, try to ensure that Application Process Stop Processing
Time follows the formula below:

Shutdown Time (secs) > Application Process Stop Processing Time (secs)

- Application Process Stop Processing Time

In most cases, the default value can be used. The exception is when mode was set to SYNC_END (the activation method does not
return even when the server application is active) after server application activation, and post-processing has been described after
the activation method.

For details on the server application movement modes after activation, refer to the Reference Manual (Command Edition), section
"OLTP System Operation Edition", "CORBA Service Operation Commands", "OD_impl_inst" .

Customer transactions are expected to be complete when the WorkUnit is stopped. For this reason, the default value is set to 180
seconds, to allow confirmation of hangups.)

If WorkUnit is stopped during a transaction, then try to ensure that Shutdown Time exceeds the combined total for the Application
Processing Time and Application Process Stop Processing Time:

Shutdown Time (secs) > Application Processing Time (secs) + Application Process Stop Processing
Time (secs)

- Application Processing Time

If the WorkUnit is stopped while the application is being processed, then set the longest time required for the application to complete
normally.

- 145 -

If synchronous stop of the WorkUnit is executed while the application is being processed, then it waits for completion of requests
being processed before stopping the processes. If this element is not taken into account, then the shutdown will occur while requests

are still being processed in the synchronous stopping of the WorkUnit.

- Application Process Stop Processing Time

Refer to the formula above.

Example:
If Application Processing Time is 120 and Application Process Stop Processing Time is 5, set a minimum of 126 for Shutdown Time.

Range of Support

(O Windows, Solaris, Linux

Edition Enterprise Edition

WorkUnit type CORBA

A.3.3.24 Unconditional Reactivation of Process
Unconditional restart of the process

Explanation

If a WorkUnit process (with the WorkUnit type "ORB") of the Component Transaction Service is terminated in a state other than that
in which an application program is being controlled, this statement is specified if the process needs to be restarted.

- YES: The process is restarted.
- NO: The process is restarted only when an application program is being executed.

Note that even when "YES" is specified, if the number of application terminations has reached the "Application Retry Count™ (the
number of contiguous abnormal terminations), the restart is canceled and the WorkUnit is stopped.

This statement can be omitted. If it is omitted, "NO" is set as the default value.

Range of Support

0s Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.3.25 Start Log
Collection of the process start log
Explanation
The log of the CORBA WorkUnit at the beginning of the process is collected.
- YES: The start log is collected.

- NO: The start log is not collected.
If "YES" is specified, the log will be created in the current directory of the WorkUnit, and the process start parameters and environment
variables will be output.
This statement can be omitted. If it is omitted, "NO" is set as the default value.
Specifying this statement enables the collection of diagnostic information which can be used to determine whether there is an error in
the process start parameters and environment variables when a CORBA WorkUnit fails to start during the development phase.

Range of Support

(O Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type CORBA

- 146 -

A.3.3.26 Process Degeneracy
Degenerated process operation
Explanation

During WorkUnit operation, a process is restarted with the automatic restart function if abnormal termination of a process occurs. If
the process restart fails, the operation can be continued in a state where one process is removed (degenerated operation).

- YES: If the restart fails, the number of processes is degenerated and the operation continues.
- NO: If the restart fails, the WorkUnit is stopped.

This function is valid when the process concurrency is two or more. If processes fail to restart repeatedly and the number of processes
becomes 0, the WorkUnit is stopped.

This statement can be omitted. If it is omitted, "NQO" is set as the default value.

It is recommended that "YES" is specified in this statement so that WorkUnit operation can continue for any remaining processes even
if the restart fails after abnormal process termination.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type CORBA

A.3.3.27 Number of Revision Directories
Number of backups of the current directory
Explanation

The number of backups of the current directory of the WorkUnit can be specified. By specifying this statement, the current directories
of the WorkUnit for past operations can be backed up for as many generations as specified.

A value from 0 to 5 can be specified for this statement.

If 0 is specified, the current directories of the WorkUnit for past operations are not backed up. The current directory at the previous
start is deleted at the start of the WorkUnit.

This statement can be omitted. If it is omitted, O is set as the default value.

It is recommended that "1" is specified in this statement so that data output in the current directory remains, even if the WorkUnit is
terminated abnormally. It is then possible to later collect the data in the current directory after starting the WorkUnit to recover the
operation.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4 Application Program Section

Specify application information.

Synopsis

Application Program

- 147 -

Destination:
Destination name (object name)
Destination Priority:
Object priority
PSYS:
DPCF communication path name
Executable File:
Execution file name
Application Language:
Application language
Concurrency:
Process multi level
Maximum Processing Time:
Application maximum processing time
Terminate Process for Time out:
Forced termination when maximum processing time has elapsed Y/N
Maximum Processing Time for Exit Program:
Maximum processing time for exit program
Maximum Queuing Message:
Maximum number of messages in queues
Queuing Message to Notify Alarm:
Number of queues monitored
Queuing Message to Notify Resumption:
Number of queues to resume monitoring
Environment Variable:
Environment variable
Form:
Multi-object resident, resident or nonresident type
Pre Exit Program:
Pre exit program
Post Exit Program:
Post exit program
Recovery Exit Program:
Abnormal exit program
Executable File for Exit Program:
Exit program execution file
Access Control:
The existence of the access control execution
Access Control Base DN:

The cardinal point distinct name of access control applicable entry

- 148 -

Type of User Identification:
User identification information type
User Name Param:
User name notification parameter
User Base DN
User name retrieval base ID
User DN Param:
User distinct name notification parameter
Password Param:
Password notice parameter
Bind Type:
Bind type
Using Wrapper Session Management:
AIM linkage session inheritance function used Y/N
SessionID Param:
Session ID notice parameter
Method Name to Begin Session:
The method (the operation) that starts the session
Maximum Session Active Time for Client:
The maximum time of the client thinking time
Maximum Processing Time for WRAPPER:
AIM application watch time
Maximum Memory for EJB Application:
Maximum amount of memory for EJB applications
CLASSPATH for Application:
Class path used by application
Java Command Option:
Java command specifying option
Exit Program for Process Salvage:
Exit program name for process salvage
Executable File of Exit Program for Salvage:
Executable file of exit program for salvage
Exit Program for Terminating Process
Exit program for terminating process
Param for Executable File
Param for executable file
Reset Time for Application Retry Count
Reset time for application retry count
Request Assignment Mode

Request assignment mode

- 149 -

Impl ID

Implementation Repository ID

Buffer Number

The number of communication buffers

Buffer Size

The size of the communication buffers

Path

application path

Note

If the process binding function is used in a WorkUnit of a transaction application (a WorkUnit with the type "ORB"), note the following:

If an application development language is C or COBOL, "INSTANCE" cannot be set in the Bind Type statement. An attempt to
register a WorkUnit definition with such a setting ends in failure.

If an application development language is C++, "PROCESS" cannot be set in the Bind Type statement. An attempt to register a
WorkUnit definition with such a setting ends in failure.

An attempt to register a WorkUnit definition ends in failure when "PROCESS" or " INSTANCE" is set in the Bind Type statement
and a Method Name to Begin Session statement is not set.

An attempt to register a WorkUnit definition ends in failure when "PROCESS" or " INSTANCE" is set in the Bind Type statement
and a Session ID Param is not set.

Syntax Rules

- A maximum of 256 [Application Program] sections can be specified.

- If NONRESIDENT or MULTIRESIDENT is specified at the "Form:" statement of the [Application Program] section, the following
statements are ignored:

"Environment Variable:" statement
"Concurrency:" statement

"Pre Exit Program: " statement

"Post Exit Program: " statement

"Executable File for Exit Program: " statement

"Maximum Processing Time For Exit Program : " statement

- If the WorkUnit type is ORB, the following statements are mandatory:

"Destination:" statement

"Executable File:" statement

- If the WorkUnit type is WRAPPER, the following statements are mandatory:

"Destination:" statement

- "PSYS:" statement

- If the WorkUnit type is EJB, the "Destination:" statement is mandatory:

- The "Code Convert For String:" statement can be omitted. Other statements are ignored.

- A newline code 2 bytes is automatically added to the string length in "Environment Variable:" statement settings.

- Multiple "Environment Variable:" statements can be specified.

When specifying multiple "Environment Variable:" statements, the total number of strings specified at the "Environment Variable:"
statement must be less than or equal to 4096.

-150 -

- If "CPP" is specified at the "Application Language:" statement of the [Application Program] Section, NONRESIDENT or
MULTIRESIDENT cannot be specified at the "Form:" statement.

- If NONRESIDENT or MULTIRESIDENT is specified at the "Form:" statement of the [Application Program] section, the same
language must be set at all "Application Language" statements.

- If NONRESIDENT is specified in the "Form:" statement of the [Application Program] section, PROCESS cannot be set in the "Bind
Type:" statement.

- If the [Application Program] section is coded more than once in one WorkUnit definition, NONRESIDENT and MULTIRESIDENT
cannot both be specified in the "Form:" statement.

Note

- The destination name specified at other [Application Program] sections in the same WorkUnit definition cannot be specified at
the "Destination:" statement.

- Other executable file names specified in the [Application Program] section of the same WorkUnit definition, and the exit program
executable file name specified in the [Nonresident Application Process] section and the "Executable File for Exit Program"
statement in the [Multiresident Application Process] cannot be specified in the "Executable File" statement.

- The "Code Conversion For String:" statement can be omitted. If it is omitted, the following is assumed, depending on the WorkUnit
type:

- If the WorkUnit type is ORB, DISABLE is assumed. The code conversion type between type applications is required at
connection.

- If the environment variable specified at the "Environment Variable:" statement of the [Application Program] section is the same
as that specified at the "Environment Variable:" statement of the [Control Option] section, the environment variable specified at
the "Environment Variable:" statement of the [Application Program] section is used.

A.3.4.1 Destination

Destination name (object name)
Explanation
For EJB WorkUnits, specify STATEFUL or STATELESS Session Bean (high speed calling Bean)

If the WorkUnit type is not EJB, specify a character string of up to 255 bytes, including one or more slashes, consisting of alphanumerics,
underscores, and slashes, and starting with an alphabetic character. However, two or more consecutive slash characters cannot be used
in place of the single slash at the beginning and end. In the object IDL definition, specify the module name and interface name, separated
by a slash.

EJB WorkUnit destination names must be character strings of up to 255 bytes, consisting of alphanumeric characters, hyphens, slashes,
colons, periods or underscores. However, two or more consecutive slash characters cannot be used in place of the single slash at the
beginning and end.

This statement is valid when the WorkUnit type is CORBA, ORB, or EJB.
Notes

- When manually registering an ORB WorkUnit object, set the destination name specified at destination, to the -n option of the
OD_or_adm or odadministerlb commands when using the load balance function by replacing the slash / with two colons "::". Refer
to the example below.

- When manually registering an object, register it after starting Interstage.
Example

WorkUnit Definition :

Destination: MOD1/INTF1

OD_or_adm command:

OD_or_adm -c IDL:MOD1/INTF1:1.0 -a FUJITSU-Interstage-TDLC -n MOD1::INTF1

-151-

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4.2 Destination Priority
Object priority
Explanation
Specifies the priority for an object.
Specify an integer between 1 and 255. Higher values indicate higher priorities.
The default value is 10.
This statement is only valid if NONRESIDENT or MULTIRESIDENT is specified in the "Form:" statement.
Note:

To use priority control for CORBA applications, it is necessary to register priority in the Implementation Repository. For details, refer
to "Priority Control" In "Designing the OLTP Server".

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.4.3 PSYS

DPCF communication path

Explanation
If the WorkUnit type is WRAPPER, set the information to indicate the position of the AIM application of the global server to be linked.
This is an alphanumeric string of up to 8 bytes.
This statement is not necessary if the WorkUnit type is not "WRAPPER."

Range of Support

0s Windows, Solaris
Edition Enterprise Edition
WorkUnit type WRAPPER

Note

"WRAPPER" is supported on Windows and Solaris, but unsupported on Linux.

A.3.4.4 Executable File
Executable file name
Explanation

When the WorkUnit type is CORBA and the application is in Java language, specify a Java execution file name. If the application is
coded in Java, the executable file specifies the Java executable name ("java.exe" for Windows and "java" for Solaris/Linux).

If the WorkUnit type is "ORB", specify the module name for the application and exit programs.

-152 -

To create an exit program in a different executable file to the application, specify the filename for the exit program of this section.
If the application language is C++, specify the application and program executable names.
The following three file names cannot be specified in this statement:

- The execution file name specified in another Application Program section in the same WorkUnit definition

- The exit program executable file name specified in the Executable File for Exit Program statement in the Nonresident Application
Process and Multiresident Application Process sections

- The collection exit program executable file name specified in the Executable File of Exit Program for Salvage statement in the
Nonresident Application Process and Multiresident Application Process sections.

The exit program executive file name of our section is set up when application is made with the C language, COBOL and an exit
program is made as another executive file with the application.

A string of up to 31 bytes.
This name cannot be omitted.

Range of Support

oS Windows, Solaris, Linux

Edition Enterprise Edition

WorkUnit type CORBA, ORB, UTY
Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4.5 Application Language
Explanation
Specify the application language.
- CC
- CPP: C++
- COBOL: COBOL
If CPP is specified in this statement, NONRESIDENT and MULTIRESIDENT cannot be specified in the "Form:" statement.
This statement is optional. The default value is "C".
Be sure to specify this statement when the WorkUnit type is ORB.
Range of Support

(O] Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.4.6 Concurrency
Process multiple level
Explanation
Set process multiple level of application. Integer value 1 to 255.
This statement is optional. The default value is 1.

Range of Support

oS Windows, Solaris, Linux

Edition Enterprise Edition, Standard-J Edition

- 153 -

WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4.7 Maximum Processing Time

Explanation

An integer value from 0 to 86400 specifying the maximum processing time monitoring value seconds for the application.
This statement is optional. A time watch isn't done when this statement is optional or when 0 is specified.
This statement is valid when the WorkUnit type is CORBA, ORB, or EJB.

Note

If the application processing time exceeds the time specified in this statement, the process where the exit program is operating is

forcibly stopped. The process is not forcibly stopped, however, if the WorkUnit type is CORBA or EJB, and NO is specified in the
Terminate Process for Time out statement.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB

A.3.4.8 Terminate Process for Time out

Explanation

For EJB WorkUnits, specifies whether the process containing the application is forcibly terminated when the maximum application
processing time has passed.

- YES: Process is forcibly terminated
- NO: Process is not terminated
The default value is YES.
This statement is only valid if a value other than 0 was specified in the Maximum Processing Time statement.

This statement is valid when the WorkUnit type is CORBA or EJB.
Range of Support

0s Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, EJB

A.3.4.9 Maximum Processing Time For Exit Program
Explanation
An integer value from 1 to 1800 specifying the maximum processing time monitoring value seconds for the exit program.

This statement is optional. If this statement is omitted, the value specified in the same statement of the [Control Option] section is
used.

If this statement is omitted and the same statement of the [Control Option] section is omitted, 300 is set as a default value.
This statement is valid when the WorkUnit type is CORBA, ORB, EJB or UTY.
Note

The values in this statement are valid for each of the following exit programs. If the processing time of each exit program exceeds the
specified time, the process where the exit program is operating is forcibly stopped.

- 154 -

- Pre exit program

If the time is exceeded, the program causes WorkUnit startup to fail.
- Post exit program

WorkUnit stop processing continues even if the time is exceeded.
- Error exit program

If the time is exceeded, the program stops the application process. If automatic restart is set, the program restarts the application
process. If automatic restart is not set, the WorkUnit stops abnormally.

- Process release exit program

WorkUnit stop processing continues even if the time is exceeded.
- Process termination exit program

WorkUnit stop processing continues even if the time is exceeded.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4.10 Maximum Queuing Message
Explanation
Specifies the maximum number of messages to be queued at the message destination. When this value is exceeded, an alarm is posted.
Specify an integer from 0 to 2147483647.
The set value must also be smaller than BufferNumber.

This statement can be omitted. If omitted, or if 0 is specified, the number of messages is unlimited. In such a case, the alarm notification
when the number has exceeded the maximum queuing number, is not performed. Also, even when this statement is specified, the alarm
notification when the number has exceeded the maximum queuing number is not performed if the monitoring queuing number is
omitted.

This statement is only valid for ORB type WorkUnits.
Range of Support

(O Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type CORBA, ORB, EJB

A.3.4.11 Queuing Message to Notify Alarm

Explanation

Specifies the number of queued messages at which an alarm is posted. An alarm is posted when the number of queued messages reaches
this value.

Specify an integer from 1 to 2147483647.

For ORB type WorkUnits, if a value other than 0 is specified in Maximum Queuing Message, a higher value cannot be specified in
this statement.

This statement can be omitted. If it is omitted, no alarm is posted.

-155-

Note

If this statement is specified in Standard-J Edition and the WorkUnit type is ORB or WRAPPER, an error occurs when the definition
is registered, while the statement is ignored if the WorkUnit type is EJB.

Range of Support

(O Windows, Solaris, Linux

Edition Enterprise Edition

WorkUnit type CORBA, ORB, EJB, WRAPPER
Note

"WRAPPER" is supported on Windows and Solaris, but unsupported on Linux.

A.3.4.12 Queuing Message to Notify Resumption
Explanation

Specifies the number of queued messages at which monitoring to post an alarm is resumed. Once the number of messages has passed
the level in Queuing Message to Notify Alarm, and then reaches the value specified in this statement, monitoring of the number of
messages queued is resumed.

Specify an integer from 0 to 2147483647. Note that the value may not be higher than that in Queuing Message to Notify Alarm.
This statement can be omitted. The default is 70% (ignoring decimals) of the value specified in Queuing Message to Notify Alarm.
Note

If this statement is specified in Standard-J Edition and the WorkUnit type is ORB or WRAPPER, an error occurs when the definition
is registered, while the statement is ignored if the WorkUnit type is EJB.

Range of Support

(O] Windows, Solaris, Linux

Edition Enterprise Edition

WorkUnit type CORBA, ORB, EJB, WRAPPER
Note

"WRAPPER" is supported on Windows and Solaris, but unsupported on Linux.

A.3.4.13 Environment Variable
Explanation

Specifies the environment variable to be used when the application and exit programs run. Specify a character string of up to 4096
bytes.

Specify the value in the following format:
"environment variable = value"
Character type and length is not checked.

This statement can be specified more than once. In this case, the character strings specified in the Environment Variable statement
must total 4,096 or fewer bytes.

This statement is optional. When this statement is omitted, the environment variable specified by the "Environment Variable :"
statement of the [Control Option] section at the time of the practice is used.

If the environment variable specified in the Environment Variable statement in the Application Program section and that specified in
the Environment Variable statement in the Control Option section are the same, the environment variable specified in the Application
Program section becomes valid.

Note that the following word cannot be used because it is the reserved word of this statement.

- PATH

- 156 -

- LD_LIBRARY_PATH
This statement is valid when the WorkUnit type is CORBA, ORB, EJB, or UTY.

Range of Support

(O Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4.14 Form

Explanation
Specify resident, non-resident, or multiresident type.
- resident: RESIDENT
- non-resident: NONRESIDENT
- multiresident: MULTIRESIDENT
The default value is RESIDENT.
This statement is only valid when the WorkUnit type is ORB.
When "NONRESIDENT" is specified, be sure to set up the [Nonresident Application Process] section.
When "MULTIRESIDENT" is specified, be sure to set up the [Multiresident Application Process] section.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.4.15 Pre Exit Program

Explanation
Set the name of the exit program to be started when starting the WorkUnit. This cannot be set if the application language is C++.
The exit program name referred to as "function name" in C, and "ProgramID" in COBOL can consist of the following:
- Function name C: Alphanumeric and underscore characters up to a maximum 31 bytes.

- ProgramID COBOL: Alphanumeric and hyphen characters up to a maximum 30 characters, and must include one or more alpha
characters. The first and last characters must not be a hyphen -.

This statement is optional.
This statement is only valid when the WorkUnit type is ORB.
Range of Support

(O Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

- 157 -

A.3.4.16 Post Exit Program

Explanation

Set the name of the post exit program to be started when terminating the WorkUnit. This cannot be set if the application language is
C++.

The post exit program name referred to as "function name™ in C, and "ProgramID" in COBOL can consist of the following:
- Function name C: Alphanumeric and underscore characters up to a maximum 31 bytes.

- ProgramID COBOL: Alphanumeric and hyphen characters up to a maximum 30 characters, and must include one or more alpha
characters.

The first and last characters must not be a hyphen -.

This statement is optional.

This statement is only valid when the WorkUnit type is ORB.

In addition. hyphens and underscores cannot be used at the same time.

Range of Support

0s Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.4.17 Recovery Exit Program
Explanation

Specify the name of the recovery exit program started when client thinking time has passed, when using the Process Binding Function.
This statement cannot be specified when C++ is used.

The name of the abnormal exit program is set up.
The recovery exit program name referred to as "function name™ in C, and "ProgramID" in COBOL can consist of the following:
- Function name C: Alphanumeric and underscore characters up to a maximum 31 bytes.

- ProgramID COBOL.: Alphanumeric and hyphen characters up to a maximum 30 characters, and must include one or more alpha
characters.

The first and last characters must not be a hyphen -.
This statement is optional.
This statement is only valid when the WorkUnit type is ORB.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.4.18 Executable File for Exit Program

Explanation

When the pre exit, post exit, and error exit programs are stored in the execution file of a non-application program, specify the execution
file name of an exit program.

Exit program execution file

When creating an exit program as an executable file, independent of an application, set the filename of the exit program.
This statement is only valid when the WorkUnit type is ORB.

A string of up to 31 bytes.

- 158 -

This statement does not distinguish between upper case and lower case.
If this statement is omitted, the value specified in the "Executable File:" statement is used.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.4.19 Access Control
Explanation
Specify the existence of the execution of the access control for the object.
- YES: An object is made the target of the access control.
- NO: An object isn't made the target of the access control.
This statement is optional. The default value is "NO".

And, regardless of the designation of the Access Control statement of the [Control Option] section, it is effective. When both
designations are given, access control for the WorkUnit is carried out first, and next access control for the object is carried out.

This statement is only valid when the WorkUnit type is ORB.
Note
The EJB WorkUnit is not included in the security functions of the Component Transaction Service.

Range of Support

(O Windows, Solaris
Edition Enterprise Edition
WorkUnit type ORB

A.3.4.20 Access Control BaseDN
Explanation
Specify the distinct name (DN) of entry to find the object registered in InfoDirectory when the object needs to be accessed.
This statement is mandatory when the "Access Control" statement of the [Application Program] section is set to YES.
The length of the DN should not exceed 1023 bytes.
This statement is only valid when the WorkUnit type is ORB or WRAPPER.

Note: Specify DN of the top most directory in the folder class so that the access control can look up the object with InfoDirectory. If
the WorkUnit fails to start, due to the object not being registered, specify the next highest directory in the hierarchy.

Range of Support

(O] Windows, Solaris
Edition Enterprise Edition
WorkUnit type ORB, WAPPER

A.3.4.21 Type of User Identification
Type of user identification
Explanation
Specify the type of user identification.

- DN: Identification name (DN)

-159 -

- NAME: User name
The default value is "DN".
This statement is only valid when the WorkUnit type is ORB or WRAPPER.

Range of Support

0os Windows, Solaris
Edition Enterprise Edition
WorkUnit type ORB, WAPPER

A.3.4.22 User Name Param

User name communication parameter
Explanation
Specify the parameter that sets the user name in calling operations when access control is applied to WorkUnits or objects.
This statement is mandatory when access control is used, and when NAME is specified in the Type of User Identification statement.

WorkUnits can only be started if string parameters are specified in this statement. Character strings must not exceed 128 bytes and
must follow IDL identifier syntax.

This statement is only valid when the WorkUnit type is ORB or WRAPPER.
Note

For operations with objects subject to access control, access control is only applied to operations with in or inout parameters specified
in this statement.

Range of Support

0os Windows, Solaris
Edition Enterprise Edition
WorkUnit type ORB, WAPPER

A.3.4.23 User Base DN

User retrieval base point ID
Explanation
States the DN of the tree in which user information is stored on the directory server.

If user information is specified in multiple entries, specify the DN of the highest level of the common tree for each of the entries. The
user base DN specified in this statement is treated as the top level for retrieving user information.

As the character string specified in User Base DN is passed directly to the directory server, specify the character string that will be
used by the directory server.

This statement is mandatory if access control is used, and if NAME is specified in the Type of User Identification statement.
Specify the DN in up to 1023 bytes.
This statement is only valid when the WorkUnit type is ORB or WRAPPER.

Range of Support

oS Windows, Solaris
Edition Enterprise Edition
WorkUnit type ORB, WAPPER

- 160 -

A.3.4.24 User DN Param

Explanation

Specifies the parameter that defines a user's unique name when you carry out access control for the WorkUnit or the object. This
statement is mandatory when access control is carried out and when DN is specified in the Type of User Identification statement.

The start of the WorkUnit fails when the pattern of the parameter specified by this statement is except for string. The string that can
be specified follows the regulation of the identifier of the IDL grammar within 128 bytes.

Note: The call of the operation which doesn't have the parameter of the type in specified by this statement by the operation of the object
that access control is carried out, or the type inout becomes the outside of the object of the access control.

This statement is only valid when the WorkUnit type is ORB or WRAPPER.

Range of Support

0os Windows, Solaris
Edition Enterprise Edition
WorkUnit type ORB, WAPPER

A.3.4.25 Password Param
Explanation
Specifies the parameter that defines a user's password when you carry out access control for the WorkUnit or the object.
This statement is indispensable when access control is carried out.

Note: The call of the operation which doesn't have the parameter of the type in specified by this statement by the operation of the object
that access control is carried out, or the type inout becomes the outside of the object of the access control.

A character except for the ASCII code can't be used for the password by the access control.
This statement is only valid when the WorkUnit type is ORB.
Range of Support

0os Windows, Solaris
Edition Enterprise Edition
WorkUnit type ORB, WAPPER

A.3.4.26 Bind Type
Explanation

Process Binding Function bind type is specified.
- DISABLE: Process Binding Function is not used.
- PROCESS: Process
- INSTANCE: Instance

This statement is optional.

The default value is "DISABLE".

When the application development language is C or COBOL, INSTANCE cannot be set. When the application development language
is C++, PROCESS cannot be set.

When PROCESS or INSTANCE s set in this statement, be sure to set the Method Name to Begin Session statement and SessionID
Param statement.

When the application development language is C or COBOL, INSTANCE cannot be set in the Bind Type statement. Doing so causes
WorkUnit definition registration to fail.

Range of Support

-161 -

oS Windows, Solaris, Linux

Edition Enterprise Edition

WorkUnit type ORB

A.3.4.27 Using Wrapper Session Management
Explanation
AIM linkage session inheritance function used Y/N
Specifies whether the AIM linkage session inheritance function is used.
- YES: Used
- NO: Not used
This statement is only valid for WRAPPER type WorkUnits.
This statement is optional.
The default value is "NO".
This statement is only valid when the WorkUnit type is ORB.
Range of Support

(O] Windows, Solaris
Edition Enterprise Edition
WorkUnit type WRAPPER

A.3.4.28 SessionID Param
Explanation
The parameter name to set up Session 1D defined with IDL definition is set up.
This statement is optional.
Be sure to specify this statement when you set up "PROCESS" or "INSTANCE" in the Bind Type statement.

When AIM linkage is used for session inheritance and the session ID is used in the session information management object, this
statement is mandatory.

The string that can be specified follows the regulation of the identifier of the IDL grammar within 128 bytes.

This statement is only valid when the WorkUnit type is ORB.

Range of Support
0osS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB, WRAPPER
Note

"WRAPPER" is supported on Windows and Solaris, but unsupported on Linux.

A.3.4.29 Method Name to Begin Session
Explanation
The method (the operation) that starts the session is set up.
Be sure to specify this statement when you set up "PROCESS" or "INSTANCE" in the Bind Type statement.

For WRAPPER type WorkUnits, specify the operation name that starts sessions specified in the wrapper definition. This statement is
mandatory if AIM linkage is used for session inheritance.

-162 -

The string that can be specified follows the regulation of the identifier of the IDL grammar within 128 bytes.
This statement is only valid when the WorkUnit type is ORB.
Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB, WRAPPER

Note

"WRAPPER" is supported on Windows and Solaris, but unsupported on Linux.

A.3.4.30 Maximum Session Active Time for Client

Explanation
The maximum time of the client thinking time is set up in second unit.
This statement is valid only when PROCESS or INSTANCE is set in the Bind Type statement.
An integer value from 0 to 86400.
This statement is optional. The default value is 300.
When 0 is specified, a time watch isn't done.
This statement is valid only when the WorkUnit type is ORB.

Note

- Assession is interrupted when a request from the client application during the session exceeds the specified time but does not arrive
at the server application. If an error exit program has been registered, the program is executed.

- In the error exit program, collect the information of the session being continued.

Range of Support

0os Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB, WRAPPER

Note

"WRAPPER" is supported on Windows and Solaris, but unsupported on Linux.

A.3.4.31 Maximum Processing Time for WRAPPER
Explanation
Specify the monitoring value (seconds) for response time from the AIM application.
An integer value from 0 to 1800. When 0 is specified, a time watch isn't done.
This statement is optional.
The default value is 30.
This statement is only valid when the WorkUnit type is WRAPPER.
Range of Support

(O Windows, Solaris
Edition Enterprise Edition
WorkUnit type WRAPPER

- 163 -

A.3.4.32 Maximum Memory for EJB Application
Maximum memory size for EJB applications
Explanation
Specify the maximum memory for the Java VM used by EJB applications.
Specify an integer between 16 and 2047 (megabytes).
This statement is optional.
The default value is the JDK/JRE default value.
This statement is only valid when the WorkUnit type is EJB.

Range of Support

(O Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type EJB

A.3.4.33 CLASSPATH for Application

Class path for application
Explanation
Specify the class path used when EJB applications are started.
Specify a character string of up to 255 bytes.
This statement is optional.
The default is no class path.

This statement can be specified up to 30 times. To specify multiple statements, repeat the statement. Note that the same path cannot
be specified more than once.

A value that can be set in the CLASSPATH environment variable can be specified in this statement.
This statement is valid when the WorkUnit type is CORBA or EJB.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, EJB

A.3.4.34 Java Command Option
Java-command specifying option
Explanation
Specifies the option to be set to the Java command used for starting an EJB application.
A character string of up to 4096 bytes.
This statement can be omitted. If omitted, it is assumed that there are no options
This statement is valid when the WorkUnit type is EJB.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type EJB

- 164 -

A.3.4.35 Exit Program for Process Salvage
Exit program for process salvage
Explanation
Specifies the name of the Exit program for process salvage. Only a program name of C language can be specified.
Alphanumeric characters and underscores of up to 31 bytes.
This statement can be omitted.
This statement is valid when the WorkUnit type is CORBA, ORB, EJB, or UTY.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4.36 Executable File of Exit Program for Salvage
Executable file of exit program for salvage
Explanation
Specifies the executable file name of the exit program for process salvage.
A character string of up to 31 bytes. This statement does not distinguish between upper case and lower case.
This statement can be omitted.
This statement is valid when the WorkUnit type is CORBA, ORB, EJB, or UTY.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4.37 Exit Program for Terminating Process
Explanation
Specifies the process exit program name for the application process which operates as a WorkUnit.
Set a character string of 31 or fewer bytes consisting of alphanumeric characters and underscores in this statement.

This statement is valid only for the "UTY" WorkUnit type. For the "UTY" type, also be sure to specify a program whose process is to
be stopped with this statement. If this specification is omitted, processes of a utility WorkUnit cannot be stopped.

This statement can be omitted.
This statement is valid when the WorkUnit type is UTY.

Range of Support

(0N Solaris, Linux
Edition Enterprise Edition
WorkUnit type uTY

- 165 -

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4.38 Param for Executable File

Explanation

Specify the parameter to be passed when a utility WorkUnit application is started, or the start parameter to be set for the CORBA
application. For an application in Java language, specify the class name for the Java application.

This statement can be specified in up to 255 statements and is set as a parameter in the specified order.

A character string of 65,025 or fewer bytes can be specified.

If this statement is specified more than once, the total of the following two items must be 65,025 or fewer bytes:
- The total number of bytes in the character string of each start parameter specified in each statement
- The total number of bytes (the number of parameters x 1 byte)

This statement can be omitted.

This statement is valid when the WorkUnit type is CORBA or UTY.

Range of Support

(O] Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type CORBA, UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4.39 Reset Time for Application Retry Count
Explanation

The present retry count (number of continuation attempts after abnormal termination). The continuation non-stopped time until the
specification is reset in the Application Retry Count statement of the [Control Option] section is set up per second.

An integer value from 0 to 86400 can be set.
This statement can be omitted.
If this statement is omitted, a retry count is not reset. A retry count is also not reset if 0 is specified.
This statement is valid when the WorkUnit type is UTY.
Range of Support

(O] Solaris, Linux
Edition Enterprise Edition
WorkUnit type UTY

Note

"UTY" is supported on Solaris and Linux, but unsupported on Windows.

A.3.4.40 Request Assignment Mode
Explanation
Specify mode in which a request message from client is assigned to server application process waiting for requests.

- LIFO: A request message from the client is assigned to the process that last entered the wait state among all server application
processes waiting for requests.

- 166 -

- FIFO: A request message from the client is assigned to the process that first entered the wait state among all server application
processes waiting for requests.

If this statement is specified, It is valid for the application of this section.

This statement can be omitted. If it is omitted, LIFO is used by default..

This statement is valid when the WorkUnit type is CORBA, ORB, or EJB.
Range of Support

(O Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, ORB, EJB

A.3.4.41 Impl ID

Explanation
Specifies the Implementation Repository ID to be started.
A string of up to 255 bytes can be specified in this statement.

An Implementation Repository ID specified in other [Application Program] sections of the same WorkUnit definition cannot be
specified in this statement.

This statement should be specified when the WorkUnit type is CORBA.
Range of Support

0os Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type CORBA

A.3.4.42 Buffer Number

Explanation
An integer value from 1 to 1048576 can be set.
When this statement is specified, the "Buffer Size:" statement is mandatory.
This statement can be omitted. If this statement is omitted, the default buffer is used.
Refer to "Buffer Control” for information about the communication buffer.
This statement is valid when the WorkUnit type is CORBA or EJB.

Range of Support

(O Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, EJB

A.3.4.43 Buffer Size
Explanation
An integer value from 4096 to 2147483647 can be set.
When this statement is specified, the "Buffer Number:" statement is mandatory.
This statement can be omitted. If this statement is omitted, the default buffer is used.
This statement is valid when the WorkUnit type is CORBA or EJB.
Range of Support

- 167 -

oS Windows, Solaris, Linux

Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, EJB
A.3.4.44 Path
Explanation

Specify the path to the directory containing the executable files of the application programs.
If the WorkUnit type is "CORBA" and the application language is Java, specify the path to the storage directory of Java executables.
A string of up to 255 bytes without spaces, beginning with "/".
Be sure to specify the absolute path in this statement. The relative path and current directory "." cannot be specified.
Be sure to specify this statement when the WorkUnit type is CORBA, ORB, EJB, or UTY.
Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition, Standard-J Edition
WorkUnit type CORBA, EJB

A.3.5 Nonresident Application Process Section

Specify the definition corresponding to non-resident type.
This section is only valid when the WorkUnit type is ORB.

This section is mandatory when "NONRESIDENT" is specified in the "From" statement.

Synopsis
Nonresident Application Process
Concurrency
Process multi level
Pre Exit Program
Pre exit program name
Post Exit Program
Post exit program name
Executable File for Exit Program
Executable file name for exit program
Maximum Processing Time for Exit Program:
Maximum processing time for Exit Program
Dynamic Link Library
Dynamic link library name
Exit Program for Process Salvage
Exit program name for process salvage
Executable File of Exit Program for Salvage

Executable file of exit program for salvage

- 168 -

Syntax Rules
- Only one [Nonresident Application Process] section can be specified at the WorkUnit.

- If NONRESIDENT is specified in the "Form:" statement of the [Application Program] section, the following statement must be
specified in the [Nonresident Application Process] section:

- "Concurrency:" statement

- If NONRESIDENT is not specified in the "Form:" statement of any [Application Program] section, the [Nonresident Application
Process] section is ignored.

- The filename specified in the "Executable File:" statement of the [Application Program] section cannot be specified in the "Executable
File for Exit Program:" statement.

A.3.5.1 Concurrency
Explanation
Set the process concurrency of the application.
Status: Process multi level
An integer value 1 to 255 can be set for the process concurrency of the application.
This statement is mandatory.

Range of Support

(O] Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.5.2 Pre Exit Program
Explanation
Set the name of the exit program to be started when starting the WorkUnit.
The pre exit program name referred to as "function name" in C, and "ProgramID" in COBOL can consist of the following:
- Function name C: Alphanumeric and underscore characters up to a maximum 31 bytes.

- ProgramID COBOL: Alphanumeric and hyphen characters up to a maximum 30 characters, and must include one or more alpha
characters. The first and last characters must not be a hyphen -.

This statement is optional.

Range of Support

0OS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.5.3 Post Exit Program
Explanation
Set the name of the exit program to be started when terminating the WorkUnit.
The post exit program name referred to as "function name" in C, and "ProgramID" in COBOL can consist of the following:
- Function name C: Alphanumeric and underscore characters up to a maximum 31 bytes.

- ProgramID COBOL.: Alphanumeric and hyphen characters up to a maximum 30 characters, and must include one or more alpha
characters. The first and last character must not be a hyphen -.

This statement is optional.

- 169 -

Range of Support

(O8]

Windows, Solaris, Linux

Edition

Enterprise Edition

WorkUnit type

ORB

A.3.5.4 Executable File for Exit Program

Explanation

When creating an exit program as an executable file independent of an application, set the filename of the exit program.
If the Pre Exit Program or Post Exit Program statements are specified, this statement is mandatory.

A string of up to 31 bytes without spaces.

This statement does not distinguish between upper case and lower case en- and em- sized characters.

Range of Support

N

Windows, Solaris, Linux

Edition

Enterprise Edition

WorkUnit type

ORB

A.3.5.5 Maximum Processing Time for Exit Program

Explanation

Set an integer value 1 to 1800 as the maximum processing time for an exit program, in seconds. This statement can be omitted. If
omitted, the value specified in the same statement of the [Control Option] section is used.

If this statement was omitted and the same statement of the [Control Option] section was also omitted, 300 is set as a default value.

Range of Support

0s Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.5.6 Dynamic Link Library
Explanation
When using a database from a non-resident application, specify the dynamic link library name

If the application is executed in non-resident mode, it may malfunction because the database library connected to the application is
released from the process when the application execution ends. If the library is to reside in the process, specify this statement. The
specified library is not released from the process even when the application ends.

Up to 10 statements of this type can be specified.
A string of up to 31 bytes without spaces.

This statement does not distinguish between upper case and lower case en- and em- sized characters.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

-170 -

A.3.5.7 Exit Program for Process Salvage
Explanation
Specifies the exit program name for process salvage. Only a program name of C language can be specified.
The name must comprise alphanumeric characters and underscores of 31 or fewer bytes.
This statement can be omitted.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.5.8 Executable File of Exit Program for Salvage
Explanation
Specifies the executable file name of the exit program for salvage.
A character string of up to 31 bytes. This statement does not distinguish between upper case and lower case.

This statement can be omitted.

Range of Support
(6] Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.6 Multiresident Application Process Section

Specify the definitions for multi-object resident mode.
This section is only valid when the WorkUnit type is ORB.
This section is mandatory when "MULTIRESIDENT" is specified in the "From" statement.

Synopsis
Multiresident Application Process
Concurrency
Process concurrency
Pre Exit Program
Pre-exit program name
Post Exit Program
Post-exit program name
Executable File for Exit Program
Executable file name for exit program
Maximum Processing Time for Exit Program
Maximum processing time for exit program
Recovery Exit Program

Recovery exit program name

-171 -

Exit Program for Process Salvage
Exit program name for process salvage
Executable File of Exit Program for Salvage

Executable file name of exit program for salvage

Syntax Rules
- Specify only one [Multiresident Application Process] section per WorkUnit.

- If MULTIRESIDENT is specified in the "Form:" statement of the [Application Program] section, the following statement must be
specified in the [Multiresident Application Process] section:

- "Concurrency:" statement

- If MULTIRESIDENT is not specified in a "Form:" statement in an [Application Program] section, the [Multiresident Application
Process] section is ignored.

- The file name specified in the "Executable File:" statement in the [Application Program] section cannot be specified in the "Executable
File for Exit Program:" statement.

A.3.6.1 Concurrency
Explanation
Specify the application concurrency.
Specify an integer between 1 and 255. This statement is mandatory.

Range of Support

(O Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.6.2 Pre Exit Program

Explanation
Specify the name of the exit program started when the WorkUnit is started.

Specify up to 31 bytes of alphanumerics and underscores (C function names), or up to 30 alphanumeric characters and hyphens (COBOL
program lIds) including at least one alphabetic character. Do not use hyphens at the beginning or end.

This statement is optional.

Range of Support

0OS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.6.3 Post Exit Program
Explanation
Specify the name of the exit program started when the WorkUnit is stopped.

Specify up to 31 bytes of alphanumerics and underscores (C function names), or up to 30 alphanumeric characters and hyphens (COBOL
program Ids) including at least one alphabetic character. Do not use hyphens at the beginning or end.

This statement is optional.

Range of Support

-172 -

oS Windows, Solaris, Linux

Edition Enterprise Edition

WorkUnit type ORB

A.3.6.4 Executable File for Exit Program
Explanation
Specify the executable file name for the exit program if it was created as an executable file separate from the application.
This statement is mandatory if the Pre Exit Program, Post Exit Program or Recovery Exit Program is specified.
Specify acharacter string of up to 31 bytes. This statement does not distinguish between upper and lower case en- and em-size characters.

Range of Support

(O] Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.6.5 Maximum Processing Time for Exit Program
Explanation
Specify the monitoring value (seconds) for the maximum processing time for the exit program.
Specify an integer between 1 and 1800.
This statement can be omitted. When omitted, the value specified in the same name statement of the [Control Option] section is used.
If this statement was omitted and the same statement of the [Control Option] section was also omitted, 300 is set as a default value.

Range of Support

0osS

Windows, Solaris, Linux

Edition

Enterprise Edition

WorkUnit type

ORB

A.3.6.6 Recovery Exit Program
Explanation

Specify the name of the recovery exit program that is started when client thinking time is exceeded, when the Process Binding Function
is used. Do not, however, set the name when the application language is C++.

Specify up to 31 bytes of alphanumerics and underscores (C function names), or up to 30 alphanumeric characters and hyphens (COBOL
program lds) including at least one alphabetic character. Do not use hyphens at the beginning or end.

This statement is optional.
This statement is only valid when the WorkUnit type is ORB.

Range of Support

(O] Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.6.7 Exit Program for Process Salvage

Explanation

Specifies the exit program name for process salvage. Only a program name of C language can be specified.

Alphanumeric characters and underscores of up to 31 bytes.
This statement can be omitted.

Range of Support

oS Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.6.8 Executable File of Exit Program for Salvage
Explanation
Specifies the executable file name of the exit program for salvage.
A character string of up to 31 bytes. This statement does not distinguish between upper case and lower case.
This statement can be omitted

Range of Support

(O] Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

A.3.7 Resource Manager Section

Specify resource manager information.

Synopsis
Resource Manager
Name:
Resource definition name
RM:

Database system name

Syntax Rules
- 32 [Resource Manager] sections can be specified.
- When specifying one [Resource Manager] section, the RM statement can be omitted.

- The resource definition files of different [Resource Manager] sections in the same WorkUnit definition cannot be specified in the
"File" statement.

Note
- When not using global transactions, this section can be omitted. If it is not specified, omit the section name also.

- If the Database Linkage Service is used, the WorkUnit definition used in an earlier version cannot be used as it is.

A.3.7.1 Name
Explanation
Resource definition name
Specifies the name of the resource definition that defines the resource used by this WorkUnit.

Up to 36 bytes of alphanumeric characters, hyphens, and underscores. This statement does not distinguish between upper case and
lower case.

-174 -

Hyphens and underscores cannot be used at the beginning or end of the Resource definition name.

Range of Support

(O] Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB
A.3.7.2 RM
Explanation

Database system name
Specify the system name of the database to be used by the WorkUnit in a string of up to 31 bytes without spaces.

Range of Support

(O] Windows, Solaris, Linux
Edition Enterprise Edition
WorkUnit type ORB

-175-

Appendix B Interstage Operation APl Sample Programs

This appendix describes how to create Interstage Operation APl applications.
The different types of Interstage Operation APl sample programs are as follows:
- B.1.1 WorkUnit Startup Program
The WorkUnit startup program starts all the WorkUnits defined in the tdadddef and isaddwudef commands.
- B.1.2 WorkUnit Stop Program
The WorkUnit stop program stops all the WorkUnits that have been started.
- B.1.3 WorkUnit/Object Information Acquisition Program

The WorkUnit/object information acquisition program obtains information about all the WorkUnits and objects defined in the tdadddef
and isaddwudef commands.

- B.1.4 Object Close Program

The Object Close Program shows how to close a specified object.
- B.1.5 Cancel Object Closure Program

The Cancel Object Closure Program shows how to cancel the closure of a specified object.
- Information acquisition of the object in the Implementation Repository 1D

In information acquisition of the object in the Implementation Repository ID, information on the defined object in all Implementation
Repository IDs is acquired.

Solaris

- Acquiring/releasing of a system name list
Acquiring a system name list acquires information about generated systems.
Releasing a system name list releases information about acquired systems.
Note
Interstage Operation API can be used when one of the following features has been custom-installed:
- Multilanguage Service

- J2EE Compatible

B.1 File Configuration

The file configuration of each application is shown in the following subsections. Item numbers listed in the following sections are as
follows:

(1) WorkUnit Startup Program

This is an application for starting all the defined WorkUnits.
(2) Makefile for WorkUnit Startup Program

This is a Makefile for making the binary file of the WorkUnit startup program. Correct it according to the environment.
(3) WorkUnit Stop Program

This is an application for stopping all the WorkUnits that have been started.
(4) Makefile for WorkUnit Stop Program

This is a Makefile for making the binary file of the WorkUnit stop program. Correct it according to the environment.
(5) WorkUnit/Object Information Acquisition Program

This is an application for obtaining information about all the defined WorkUnits and objects.

-176 -

(6) Makefile for WorkUnit/Object Information Acquisition Program

This is a Makefile for making the binary file of the WorkUnit/object information acquisition program. Correct it according to the
environment.

(7) Object Close Program

This is an application for closing the specified object.
(8) Makefile for Object Close Program

This is a Makefile for making the binary file of the object close program. Correct it according to the environment.
(9) Cancel Object Closure Program

This is an application for canceling the closure of a specified object.
(10) Makefile for Cancel Object Closure Program

This is a Makefile for making the binary file of the cancel object closure program. Correct it according to the environment.
(11) Information Acquisition of the Object in the Implementation Repository ID Program

This is an application for acquiring the information of the object in the Implementation Repository ID.
(12) Makefile for Information Acquisition of the Object in the Implementation Repository ID Program

This is a Makefile for making the binary file of the information acquisition of the object in the Implementation Repository ID Program.
Correct it according to the environment.

(13) Acquiring/releasing of a system name list Program
This is an application for acquiring/releasing of a system name list.
(14) Makefile for Acquiring/releasing of a system name list Program

This is a Makefile for making the binary file of the acquiring/releasing of a system name list program. Correct it according to the
environment.

(15) Project File
This is a project file for compiling server applications under Microsoft® Visual C++®.
(16) Solution File

This is a file for managing project configuration under Microsoft® Visual C++®.

B.1.1 WorkUnit Startup Program

The following table provides details of the files associated with this program.

WorkUnit Startup Program
Wi =12 B

This program is located in Interstage installation folder\td\sample\ISOP_APNSTRWU.

Item no. File contents File name
1) WorkUnit startup program strwu.c
(15) Project file strwu.vcproj
(16) Solution file strwu.sIn

Selaris | MLinux3Z 61|
This program is located in $TD_HOME/sample/ISOP_API/STRWU.

Item no. File contents File name

1) WorkUnit startup program strwu.c

-177 -

Item no. File contents File name
(2) Makefile for WorkUnit Startup Program Makefile
B.1.2 WorkUnit Stop Program
The following table provides details of the files associated with this program.
WorkUnit Stop Program
ko =32 B
This program is located in Interstage installation folder\td\sample\ISOP_APNSTPWU.
Item no. File contents File name
3) WorkUnit stop program stpwu.c
(15) Project file stpwu.veproj
(16) Solution file stpwu.sIn
Solaris | MLnux3Z 61
This program is located in $TD_HOME/sample/ISOP_API/STPWU.
Item no. File contents File name
3) WorkUnit stop program stpwu.c
4) Makefile for WorkUnit Stop Program Makefile

B.1.3 WorkUnit/Object Information Acquisition Program

The following table provides details of the files associated with this program.

WorkUnit/Object I nformation Acquisition Program

Windows32 B4

This program is located in Interstage installation folder\td\sample\ISOP_APN\NOTIFYWU.

Item no. File contents File name
(5) WorkUnit/object information acquisition program notifywu.c
(15) Project file notifywu.vcproj
(16) Solution file notifywu.sin
Solaris | MLInuwedZ 64
This program is located in $TD_HOME/sample/ISOP_API/NOTIFYWU.
Item no. File contents File name
(5) WorkUnit/object information acquisition program notifywu.c
(6) Makefile for WorkUnit/Object Information Acquisition Program Makefile

B.1.4 Object Close Program

The following table provides details of the files associated with this program.

Object Close Program

Windows32 54

-178 -

This program is located in Interstage installation folder\td\sample\ISOP_APNINHOBJ.

Item no. File contents File name
@) Object close program inhobj.c
(15) Project file inhobj.vcproj
(16) Solution file inhobj.sIn
Solaris | Mlinux3Z 6]
This program is located in $TD_HOME/sample/ISOP_API/INHOBJ.
Item no. File contents File name
©) Object close program inhobj.c
(8) Makefile for Object Close Program Makefile
B.1.5 Cancel Object Closure Program
The following table provides details of the files associated with this program.
Cancel Object Closure Program
Windon =32 B
This program is located in Interstage installation folder\td\sample\ISOP_API\PMTOBJ.
Item no. File contents File name
9) Cancel object closure program pmtobj.c
(15) Project file pmtobj.vcproj
(16) Solution file pmtobj.sin
Solaris | Mlnux32 64
This program is located in $TD_HOME/sample/ISOP_API/PMTOBJ.
Item no. File contents File name
9) Cancel object closure program pmtobj.c
(120) Makefile for Cancel Object Closure Program Makefile

B.1.6 Information Acquisition of the Object in the Implementation
Repository ID Program

The following table provides details of the files associated with this program.

Information Acquisition of the Object in the Implementation Repository 1D Program

Windo=12 5

This program is located in Interstage installation folder\td\sample\ISOP_APNNOTIFYIMPL.

Item no. File contents File name
(11) Information Acquisition of the Object in the Implementation Repository | notifyimpl.c
ID Program
(15) Project file notifyimpl.vcproj
(16) Solution file notifyimpl.sin

-179 -

Solaris | MLinu3Z 64
This program is located in $TD_HOME/sample/ISOP_API/NOTIFYIMPL.

Item no. File contents File name
(11) Information Acquisition of the Object in the Implementation Repository | notifyimpl.c
ID Program
12) Makefile for Information Acquisition of the Object in the Makefile
Implementation Repository ID Program

B.1.7 Acquiring/releasing of a system name list Program

The following table provides details of the files associated with this program.

Acquiring/releasing of a system name list Program
Solaris

This program is located in $TD_HOME/sample/ISOP_API/LSTSYS.

Item no. File contents File name
(13) Acquiring/releasing of a system name list Program Istsys.c
(14) Makefile for Acquiring/releasing of a system name list Program Makefile

B.2 Compiling and Linking

This section describes the procedure for compiling and linking applications.

Wnchomy =32 B

We assume that these applications are compiled using Microsoft® Visual C++® projects.

We recommend that the files provided be copied to a folder and customized according to the environment of the copy destination before
using the sample programs.

Compiling and Linking Applications

Use Microsoft® Visual C++® projects to compile the applications. Executing the project build compiles and links the files required for
creating server applications.

When the build terminates normally, strwu.exe, stpwu.exe, notifywu.exe, inhobj.exe or pmtobj.exe will be created in the same folder as
the project file.

Solaris | MLnu32 64
This section describes the procedure for compiling and linking applications.

We recommend that the files provided be copied to a folder and customized according to the environment of the copy destination before
using the sample programs.

The following explanation uses the following coding:
$CURRENT: Indicates the directory containing the files used by each application
>cd $CURRENT
>make clean
a. Execute the make command for the WorkUnit startup program.

Execution of the make command compiles and links the files required for writing the application. If the /make command terminates
normally, strwuis created in the current directory where the make command was executed. If the make command fails, execute the
following command:

-180 -

>make clean
. Execute the make command for the WorkUnit stop program.

Execution of the make command compiles and links the files required for writing the application. If the make command terminates
normally, stpwu is created in the current directory where the make command was executed. If the make command fails, execute the
following command:

>make clean
. Execute the make command for the WorkUnit/object information acquisition program.

Execution of the make command compiles and links the files required for writing the application. If the /make command terminates
normally, notifywu s created in the current directory where the make command was executed. If the make command fails, execute
the following command:

>make clean
. Execute the make command for the object close program.

Execution of the make command compiles and links the files required for writing the application. If the make command terminates
normally, /nhobyj is created in the current directory where the make command was executed. If the make command fails, execute
the following command:

>make clean
. Execute the make command for the cancel object closure program.

Execution of the make command compiles and links the files required for writing the application. If the make command terminates
normally, pmtoby is created in the current directory where the /make command was executed. If the make command fails, execute
the following command:

>make clean
. Execute the make command for the WorkUnit list acquisition/release program.

By executing the make command, the files required for creating an application are compiled and linked. If the make command
terminates normally, /stsysis created in the current directory in which the /make command was executed.

If the make command fails, execute the following command:

>make clean

-181-

Appendix C Notes on OLTP Server Operations

This appendix provides notes on OLTP server operation.

C.1 Operation Using the Interface Information Check Functions

When requesting processing from a client application to a server application, this function checks that there is no difference in the interface
information between the two.

These functions help to avoid the following occurrence if any inconsistency in the interface information occurs between the client and the
server:

- Request data from the client application that was received by the server application shows an illegal value.

Memory shortage error.

No response to processing request
- Abnormal termination of Interstage

The interface information check function can be used if a client application is created in the following range and linked to the CORBA
Service or Component Transaction Service.

- One of the following is used in the client applications
- Static start interface of the CORBA client created in the following languages
- C language
- C++ language
- Java
- COBOL
- Portable-ORB
- Either of the following services is used (see the following figures).

- CORBA Service or

-182 -

- Component Transaction Service

Figure C.1 CORBA Service

IDL definition

Embed identification Embed identification

informmation IDL compiler information
Report
Cliant Stub [the identification
application information when

recuesting
Processing

Return with

BAD PARAM 2lec
exception mconsistency

CORBA service

Figure C.2 Component Transaction Service

IDL defimition

Register IR

Load TR information when starting
IDL compiler the Work Unit and calculate

the wdentification information.
Embed identi fication

information
Report ™
Client the identification L
application SWb 1§ formation when GOmMunication

requesting control
processing

Returm with

BAD_PARAM ~aiailcld
excephon nconsstency

[R: Interface repository
TDx Component transaction service

Component transaction service

Note

To use this function, Interstage Application Server V4.0 or later must be installed in both the server and client environments. If the client
environment uses one of the following, an execution error occurs in the client application.

- The run time of Interstage Application Server is V3.1 or earlier is installed and

- By using the stub file corresponding to this function, execute the created client application

-183 -

C.1.1 Procedure for Operating the Interface Information Check Function

This section describes the procedure for operating the interface information check function.

CORBA Service

The following figure shows the Interface Information Check Function with a CORBA Service.

Figure C.3 Interface Information Check Function with a CORBA Service

1. Compile IDL J
2, Create a client application J
3. Create a server application J
4, Start the server application j

1) Compiling IDL
Execute IDL compilation with the /DL ccommand and create a stub file and a skeleton file. Specify the -f option for the IDLc command.
For the IDLc command, refer to the Reference Manual (Command Edition).

2) Creating a Client Application

Create a client application. Be sure to use the stub file created in Step 1) above. For details on how to create a client application, refer
to the Distributed Application Development Guide (CORBA Service Edition).

3) Creating a Server Application

Create a server application. Be sure to use the skeleton file created in Step 1) above. For details on how to create a server application,
refer to the Distributed Application Development Guide (CORBA Service Edition).

4) Starting the Server Application

Start the server application.

-184 -

Component Transaction Service

Figure C.4 Interface Information Check Function with a Component Transaction Service

1 .Compile IDL I

2. Create a client application

3. Create a server application

4, Set the environment definition file of the componet transaction service

5. Start Interstage

6. Start the WorkUnit

1) Compiling IDL
Execute IDL compilation with the fdc command to create a stub file and a skeleton file. Specify the -f option for the fac command.
For information about the fdc command, refer to the Reference Manual (Command Edition).

2) Creating a Client Application

Create a client application. Be sure to use the stub file created in Step 1) above. For details on how to create a client application, refer
to the Distributed Application Development Guide (CORBA Service Edition).

3) Creating a Server Application

Create a server application. Though there is no particular risk in the creation of a server application, be sure to use the skeleton file
created concurrently with the stub file in Step 1) above.

4) Setting the Environment Definition File of the Component Transaction Service

Specify whether to use the interface information check function in the environment definition file.

Table C.1 Environment Definition Information

Section name Definition name Details of specifications
Specify whether to use the interface information check
function.
SYSTEM ENVIRONMENT | Using Interface Check "YES": The interface information check function is used.

"NQO": The interface information check function is not used.

The default is "NO."

5) Starting Interstage

Start Interstage with the /sstart command.

For information about the /sstart command, refer to the Reference Manual (Command Edition).
6) Starting the WorkUnit

Start the WorkUnit with the /sstartwu command.

-185-

For the 7sstartwu command, refer to the Reference Manual (Command Edition).

- 186 -

Appendix D WorkUnit Automatic Start Setting File

This appendix explains the WorkUnit automatic start setting file that is created to automatically start a WorkUnit when Interstage starts.

D.1 Coding Format

The file coding format normally consists of the following elements. If the file coding format contains an error, a syntax error occurs and
all of the coded information becomes invalid.

- Statement

Section

Comment line

Space line

D.1.1 Statement

A statement is a line for setting information. The following format is used for a statement.

workunit-namel@user-namel[:workunit-name2@user-namel](\n)

Each statement consists of a WorkUnit name, an @ (at sign), a user name, and a ":" (colon). The statement coding rules are as follows:
- To omit a statement, delete the relevant statement or omit only parameter values.
- A comment cannot be inserted into the statement line.

The individual elements of a statement are explained below.

WorkUnit Name

Specify the name of the target WorkUnit according to the following rules:
- Specify the name using up to 36 bytes of alphanumeric characters, hyphens, underscores.

- Note that en-size uppercase and lowercase letters are not distinguished and em-size uppercase and lowercase letters are not
distinguished. No name can begin or end with a hyphen, or an underscore. If a tab or space is specified at the beginning of the target
line, it is ignored.

User Name
Specify a user name according to the following rules:
- Specify the user name using up to 20 bytes of alphanumeric characters.

- If atab or space is specified at the beginning of the target line, it is ignored.

: (colon)
Use a colon as a delimiter between sets of WorkUnit names and user names according to the following rules:
- If aspace or tab is inserted before or after the colon it is ignored.

- Indicate the end of the setting with a space, tab, linefeed ('\n"), or EOF.

Upper case and lowercase letters are distinguished.

Only one character string can be specified.

If a space or tab is to be included, it must be enclosed within double quotes.

If two or more settings are to be specified, provide as many statements as there are settings.

- 187 -

@ (at sign)
Use this sign as a delimiter between a WorkUnit name and user name.
Note

A space or tab cannot be inserted before or after a colon.

D.1.2 Section

A section is a group of statements. It can be coded in the following format:

[section-name](\n)
statement (\n)
statement (\n)

Each section consists of "[section-name]" and two or more statements. The following rules apply:
- Only "Work Unit" can be specified for the section name.
- A section begins with "[section-name]" and continues until the next section or EOF appears.
- To omit a section, delete the entire section or change it to a comment.
- A section that consists of "[section-name]" alone without statements cannot be specified.
- No statements other than "[section-name]" can be included on the same line as "[section-name]".
- Each section name must always be enclosed in square brackets "[]".

- A character string consisting of alphanumeric characters and/or spaces can be specified for a section name. The character string must
begin with an alphanumeric character.

- Uppercase and lowercase letters used to specify a section name are not distinguished.
- No command can be inserted on the same line as "[section-name]".

Examples of normal section specifications are provided below.

Exanple 1: A section contains one statenent.
[Section](\n)

Statement
Exanple 2: A section contains three statenents
[Section](\n)

Statement

Statement

Statement

Examples of statements that cause a syntax error are shown below.

Exanple 3: A comment is inserted onto the line where [section nane] is provided

[Section] # This is a Section(\n)

Statement
Exanmpl e 4: The square brackets of [section nane] are not correctly paired
[Section(\n)

Statement

D.1.3 Comment Line

A comment line is used to insert a comment into a file. Write a comment as follows:

comment (\n)

The following rules apply to the comment line:

- Specify a number sign "#" at the beginning of the comment line.

-188 -

D.1.4 Space Line

A space line can be inserted. It is ignored during analysis.

D.2 WorkUnit Automatic Start Setting File Example

An example of a WorkUnit automatic start setting file is shown below.

[Work Unit]
ODWU@userl:EJBWU@user?2
TDWU1@user3
TDWU2@user4

D.2.1 WorkUnit Name

Specify the names of the WorkUnits to be started automatically when Interstage starts. The WorkUnits are started in the specified order.

For CORBA WorkUnits and 1JServers, multiple WorkUnits can be specified by delimiting them with a colon (:) so that they can be started
in parallel.

Refer to Appendix A "WorkUnit Definition" for the WorkUnit name specification procedure.

D.2.2 User Name

The user name specified immediately after an @ (at sign) does not affect the starting of a WorkUnit, and cannot perform display and
specification via the Interstage management console.

The character sequence is only required for syntax reasons, so specify a dummy user name as an alphanumeric character sequence of less
than eight characters.

-189 -

Appendix E Procedure for CORBA WorkUnit Operation
Using the Interstage Management Console

This appendix describes the procedure for CORBA WorkUnit operation using the Interstage management console.

E.1 For Solaris

- Procedure for Operation Using a Sample C Application

Procedure for Operation Using a Sample Java Application

- Procedure for Operation Using a Sample C++ Application

Procedure for Operation Using a Sample COBOL Application

E.1.1 Procedure for Operation Using a Sample C Application

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample C application, this section explains how to create a WorkUnit, operate the application, and then delete the
WorkUnit.

- Creating a CORBA application
- Starting the Interstage Management Console
- Creating a CORBA WorkUnit
- Deploying the CORBA application
- Starting the CORBA WorkUnit
- Running the Client Application
- Stopping the CORBA WorkUnit
- Undeploying the CORBA application
- Deleting the CORBA WorkUnit
This section explains the procedure for starting the sample application located at /opt/FSUNod/src/samples/complex/samplelist.C/data/

any.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). Here, the sample application provided under /opt/FSUNod/src/samples/complex/samplelist.C/data/any is used.

OD_HOME=/opt/FSUNod

export OD_HOME (Set OD_HOME in the environment variable.)
LD_LIBRARY_PATH=$0D_HOME/lib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH (Set the library path in the environment variable.)
cd /opt/FSUNod/src/samples/complex/samplelist.C/data/any

make (Create an application.)

H R OH H R H

2) Starting the Interstage Management Console
Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.

-190 -

1
2.

3.

Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
Select "CORBA" as the WorkUnit type.
The default "WUOQO01" is entered for the WorkUnit name.

Click the [WorkUnit Settings [Show]] link to display detailed settings and enter /opt/FSUNod/src/samples/complex/samplelist.C/
data/any for the Application Folder and enter /opt/FSUNod/src/samples/complex/samplelist.C/data/any for the Application Working
Directory. Click the Create button.

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.

1.
2.

Select the [View WorkUnit Status] tab and click on the newly created WorkUnit (WUO001) in the WorkUnit list.

Select the [Deploy] tab and enter "IDL:ODsample/anytest:1.0" for the Implementation Repository ID and "'simple_s" for the Program
EXE File.

Leave the "Restart WorkUnit after deployment"” check box selected.
Click [Show Details [Show]] to display CORBA Application and Interface

Click [CORBA Application [Show]] to display the detailed settings of the CORBA application. Select "SYNC_END" for the
operation mode.

Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

Enter "IDL:ODsample/anytest:1.0" for the Interface Repository ID and "ODsample::anytest" for the Naming Service Name.
Click the Add button to add the interface definition.

After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.

1.
2.

Select the [Status] tab for the WorkUnit to be started.

Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at /opt/FSUNod/src/samples/complex/samplelist.C/data/any is used.

cd /opt/FSUNod/src/samples/complex/samplelist.C/data/any
make (Create an application.)

Run the client application.

Execute the following at the client application storage destination:

simple_c

TC_ODsample_samplel:paral
TC_ODsample_sample2:paral = [x] para2 = [0.001000]
TC_ODsample_sample3:paral

[300] para2 = [test]

[yl para2 = [0.000100]

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.

-191-

1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.

3. "WorkUnit Stop Selection" page is displayed. Select "Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository 1D to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.

1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

E.1.2 Procedure for Operation Using a Sample Java Application

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample Java application, this section explains how to create a WorkUnit, operate the application, and then delete the
WorkUnit.

- Creating a CORBA application

- Starting the Interstage Management Console
- Creating a CORBA WorkUnit

- Deploying the CORBA application

- Starting the CORBA WorkUnit

- Running the Client Application

- Stopping the CORBA WorkUnit

- Undeploying the CORBA application

- Deleting the CORBA WorkUnit

This section explains the procedure for starting the sample application located at /opt/FSUNod/src/samples/complex/samplelist.Java/data/
any.

The procedure for Java version "JDK 6" (the JDK installation path "/opt/FISVawjbk/jdké") is shown below.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). In this example, the sample application provided under /opt/FSUNod/src/samples/complex/samplelist.Java/data/any is
used.

PATH=/usr/bin:/opt/FJISVawjbk/jdk6/jre/bin:/opt/FISVawjbk/jdk6/bin:/opt/
FSUNod/bin:$PATH

export PATH

OD_HOME=/0pt/FSUNod

export OD_HOME (Set OD_HOME in the environment variable.)

CLASSPATH=. :$0D_HOME/etc/class/ODjava4. jar :$CLASSPATH

export CLASSPATH (Set the classpath in the environment variable.)
LD_LIBRARY_PATH=$0D_HOME/lib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH (Set the library path in the environment variable.)

H RO H R R H

-192 -

cd /opt/FSUNod/src/samples/complex/samplelist.Java/data/any
make (Create an application.)

2) Starting the Interstage Management Console
Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.
1. Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
2. Select "CORBA" as the WorkUnit type.
The default "WUO001" is entered for the WorkUnit name.

3. Click the [WorkUnit Settings [Show]] link to display detailed settings and enter /opt/FISVawjbk/jdk6/bin for the Application
Folder; /opt/FSUNod/src/samples/complex/samplelist.Java/data/any for the Application Working Directory; /opt/FSUNod/lib for
the Library Path; and OD_IMPLID=IDL:ODsample/anytest:1.0 for the Environment variables. Click the Create button.

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.
To run more than one application on one WorkUnit, repeat the deployment.
1. Select the [View WorkUnit Status] tab and click the newly created WorkUnit (WUO0O01) in the WorkUnit list.

2. Select the [Deploy] tab, and enter 'IDL:ODsample/anytest:1.0' for the Implementation Repository 1D and “java" for the Program
EXE File.

Leave the "Restart WorkUnit after deployment" check box selected.
3. Click [CORBA Application [Show]] to display the detailed settings of the CORBA application.

Enter "/opt/FSUNod/src/samples/complex/samplelist.Java/data/any™ and "/opt/FSUNod/etc/class/ODjava4.jar" on separate lines,
for the Classpath; enter class name "simple_s" for the Startup parameters, and select "SYNC_END" for the operation mode.

4. Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

5. Enter "IDL:ODsample/anytest:1.0" for the Interface Repository 1D and "ODsample::anytest" for the Naming Service Name.
6. Click the Add button to add the interface definition.

7. After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment" during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.
1. Select the [Status] tab for the WorkUnit to be started.

2. Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at /opt/FSUNod/src/samples/complex/samplelist.Java/data/any is used.

PATH=/usr/bin:/opt/FJSVawjbk/jdk6/jre/bin:/opt/FISVawjbk/jdk6/bin:/opt/
FSUNod/bin:$PATH
export PATH

-193 -

CLASSPATH=. : /opt/FSUNod/etc/class/ODjava4. jar: $CLASSPATH
export CLASSPATH
LD_LIBRARY_PATH=/opt/FSUNod/lib:$LD_L IBRARY_PATH

export LD_LIBRARY_PATH

cd /opt/FSUNod/src/samples/complex/samplelist.Java/data/any

H OH R H R

Run the client application.

Execute the following at the client application storage destination:

exec-CL
rtn.paral = 300
rtn_param2 =

out.paral = x
out.para2 = 0.0010
inout.paral =y
inout.para2 = 1.0E-4

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.

1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.

3. "WorkUnit Stop Selection" page is displayed. Select "Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository ID to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.

1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

E.1.3 Procedure for Operation Using a Sample C++ Application

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample C++ application, this section explains how to create a WorkUnit, operate the application, and then delete the
WorkUnit.

- Creating a CORBA application

- Starting the Interstage Management Console
- Creating a CORBA WorkUnit

- Deploying the CORBA application

- Starting the CORBA WorkUnit

- Running the Client Application

- Stopping the CORBA WorkUnit

- Undeploying the CORBA application

-194 -

- Deleting the CORBA WorkUnit
This section explains the process for starting the sample application located at /opt/FSUNod/src/samples/complex/samplelist.C++/data/
any.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). Here, the sample application provided under /opt/FSUNod/src/samples/complex/samplelist.C++/data/any is used.

OD_HOME=/opt/FSUNod

export OD_HOME (Set OD_HOME in the environment variable.)
LD_LIBRARY_PATH=$0D_HOME/1ib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH (Set the library path in the environment variable.)
cd /opt/FSUNod/src/samples/complex/samplelist.C++/data/any

make (Create an application.)

B OHOH H R R

2) Starting the Interstage Management Console

Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.

1. Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
2. Select "CORBA" as the WorkUnit type.
The default "WUOQ01" is entered for the WorkUnit name.

3. Click the [WorkUnit Settings [Show]] link to display detailed settings and enter /opt/FSUNod/src/samples/complex/samplelist.C+
+/data/any for the Application Folder and enter /opt/FSUNod/src/samples/complex/samplelist.C++/data/any for the Application
Working Directory. Click the Create button.

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.
1. Select the [View WorkUnit Status] tab and click on the newly created WorkUnit (WU001) in the WorkUnit list.

2. Select the [Deploy] tab, and enter “IDL:ODsample/anytest:1.0" for the Implementation Repository 1D and "simple_s" for the
Program EXE File.

Leave the "Restart WorkUnit after deployment" check box selected.
3. Click [Show Details [Show]] to display CORBA Application and Interface.

4. Click [CORBA Application [Show]] to display the detailed settings of the CORBA application. Select "SYNC_END" for the
operation mode.

5. Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

6. Enter "IDL:ODsample/anytest:1.0" for the Interface Repository 1D and "ODsample::anytest" for the Naming Service Name.
7. Click the Add button to add the interface definition.

8. After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment" during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.

-195-

1. Select the [Status] tab for the WorkUnit to be started.

2. Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at /opt/FSUNod/src/samples/complex/samplelist.C++/data/any is used.

cd /opt/FSUNod/src/samples/complex/samplelist.C++/data/any
make (Create an application.)

Run the client application.

Execute the following at the client application storage destination:

simple_c
smpl->paral = 100
smpl->para2 = OUT

smp2->paral = X
smp2->para2 = 0.01
smp3->paral = z

smp3->para2 = 0.001

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.

1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.

3. "WorkUnit Stop Selection" page is displayed. Select "Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.
1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository 1D to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.

1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

E.1.4 Procedure for Operation Using a Sample COBOL Application

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample COBOL application, this section explains how to create a WorkUnit, operate the application, and then delete
the WorkUnit.

Creating a CORBA application

Starting the Interstage Management Console

Creating a CORBA WorkUnit

Deploying the CORBA application

Starting the CORBA WorkUnit

-196 -

Running the Client Application

- Stopping the CORBA WorkUnit

Undeploying the CORBA application

- Deleting the CORBA WorkUnit

This section explains the process for starting the sample application located at /opt/FSUNod/src/samples/complex/samplelist. COBOL/
data/any.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). In this example, the sample application provided under /opt/FSUNod/src/samples/complex/samplelist. COBOL/data/any

is used.

OD_HOME=/opt/FSUNod

export OD_HOME (Set OD_HOME in the environment variable.)

LD_LIBRARY_PATH=$0D_HOME/lib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH (Set the library path in the environment variable.)
cd /opt/FSUNod/src/samples/complex/samplelist.COBOL/data/any

make (Create an application.)

2) Starting the Interstage Management Console

Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.

1.
2.

Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
Select "CORBA" as the WorkUnit type.
The default "WUOQO1" is entered for the WorkUnit name.

Click the [WorkUnit Settings [Show]] link to display detailed settings and enter /opt/FSUNod/src/samples/complex/
samplelist. COBOL/data/any for the Application Folder and /opt/FSUNod/src/samples/complex/samplelist. COBOL/data/any for the
Application Working Directory.

Also enter /opt/FISVcbl/lib, /opt/FSUNod/lib/nt, /opt/FSUNod/src/samples/complex/samplelist. COBOL/data/any for the library
path, and NLSPATH=/opt/FISVcbl/lib/nls/%L/%N.cat:/opt/FISVcbl/lib/nls/C/%N.cat:/usr/dt/lib/nls/msg/%L/%N.cat for the
Environment variables. Click the Create button.

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.

1.
2.

Select the [View WorkUnit Status] tab and click the newly created WorkUnit (WUO0O1) in the WorkUnit list.

Select the [Deploy] tab, and enter "IDL:INTF_A:1.0" for the Implementation Repository ID and "024_s" for the Program EXE File.
Leave the "Restart WorkUnit after deployment"” check box selected.

Click [Show Details [Show]] to display Show CORBA Application and Show Interface Definition.

Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

Enter "IDL:INTF_A:1.0" for the Interface Repository ID and "INTF_A" for the Naming Service Name.
Also enter "/opt/FSUNod/src/samples/complex/samplelist. COBOL/data/any/libINTF-A.so" for the Library Path.

Click the Add button to add the interface definition.

After the interface definition is complete, click the Deploy button to deploy the application.

-197 -

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment"” during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.
1. Select the [Status] tab for the WorkUnit to be started.

2. Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at /opt/FSUNod/src/samples/complex/samplelist. COBOL/data/any is used.

LD_LIBRARY_PATH=/opt/FSUNod/src/samples/complex/samplelist.COBOL/data/any:/
opt/FSUNod/lib/nt:/opt/FJISVcbl/1ib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH (Set the library path in the environment variable.)
cd /opt/FSUNod/src/samples/complex/samplelist.COBOL/data/any

make (Create an application.)

Run the client application.

Execute the following at the client application storage destination:

024 _c

CLIENT START!!

IN-PARAM VALUE: 001743234

10-PARAM VALUE: 8888

INTF-A-OP RETURN!!

RESULT VALUE : .89333000E 02

A-OUT-P VALUE : .55555555500000000E 02
A-10-P VALUE : +000012345

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.

1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.

3. "WorkUnit Stop Selection” page is displayed. Select "Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository ID to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.
1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

E.2 For Windows(R)

- Procedure for Operation Using a Sample C Application

-198 -

- Procedure for Operation Using a Sample Java Application
- Procedure for Operation Using a Sample C++ Application

- Procedure for Operation Using a Sample COBOL Application

E.2.1 Procedure for Operation Using a Sample C Application

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample C application, this section explains how to create a WorkUnit, operate the application, and then delete the
WorkUnit.

- Creating a CORBA application

- Starting the Interstage Management Console

- Creating a CORBA WorkUnit

- Deploying the CORBA application

- Starting the CORBA WorkUnit

- Running the Client Application

- Stopping the CORBA WorkUnit

- Undeploying the CORBA application

- Deleting the CORBA WorkUnit
This section explains the procedure for starting the sample application located at C:\ Interstage\ODWIN\Src\SAMPLE\COMPLEX
\samplelist. C\DATA\ANY _S.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). Here, the sample application provided under C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist. C\DATA
\ANY _S is used.

1. Change the current folder to the following folder:

C:
cd C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.C\DATA\ANY_S

2. Execute the IDL compiler from the command prompt to generate the skeletons.

IDLc simple.idl

3. Build does ANY_S.exe

2) Starting the Interstage Management Console

Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.

1. Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.

2. Select "CORBA" as the WorkUnit type.
The default "WUO001" is entered for the WorkUnit name.

-199 -

3. IWindows3Z
Click the [WorkUnit Settings [Show]] link to display detailed settings. Enter:
- C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist. C\DATAVANY _S\Release
for the Application Folder, Enter:
- C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist. C\DATAVANY _S\Release
for the Application Working Directory.
[WindowsG4 |
Click the [WorkUnit Settings [Show]] link to display detailed settings. Enter:
- C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist. C\DATAVANY _S\Itanium\Release
for the Application Folder. Enter:
- C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist. C\DATAVANY _S\Itanium\Release
for the Application Working Directory.
4. Click the Create button.

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.
1. Select the [View WorkUnit Status] tab and click on the newly created WorkUnit (WUQO1) in the WorkUnit list.

2. Select the [Deploy] tab and enter " IDL:ODsample/anytest:1.0" for the Implementation Repository ID and " ANY_S.exe" for the
Program EXE File.

Leave the "Restart WorkUnit after deployment" check box selected.
3. Click [Show Details [Show]] to display CORBA Application and Interface

4. Click [CORBA Application [Show]] to display the detailed settings of the CORBA application. Select "SYNC_END" for the
operation mode.

5. Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

6. Enter "IDL:ODsample/anytest:1.0" for the Interface Repository 1D and "ODsample::anytest" for the Naming Service Name.
7. Click the Add button to add the interface definition.

8. After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment" during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.
1. Select the [Status] tab for the WorkUnit to be started.
2. Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist. C\DATA\ANY _C is used.

- 200 -

1. Change the current folder to the following folder:

C:
cd C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.C\DATA\ANY_C

2. Execute the IDL compiler from the command prompt to generate the skeletons.

1DLc simple.idl

3. Build does ANY_C.exe
Run the client application.

Execute the following at the client application storage destination:

Windowsd2

cd Release

ANY_C

TC_ODsample_samplel:paral = [300] para2 = [test]
TC_ODsample_sample2:paral = [x] para2 = [0.001000]
TC_ODsample_sample3:paral = [y] para2 = [0.000100]

| W indowsos |

cd ltanium\Release

ANY_C

TC_ODsample_samplel:paral = [300] para2 = [test]
TC_ODsample_sample2:paral = [x] para2 = [0.001000]
TC_ODsample_sample3:paral = [y] para2 = [0.000100]

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.

1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.
3. "WorkUnit Stop Selection” page is displayed. Select “Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository ID to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.

1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

E.2.2 Procedure for Operation Using a Sample Java Application

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample Java application, this section explains how to create a WorkUnit, operate the application, and then delete the
WorkUnit.

-201-

- Creating a CORBA application

- Starting the Interstage Management Console
- Creating a CORBA WorkUnit

- Deploying the CORBA application

- Starting the CORBA WorkUnit

- Running the Client Application

- Stopping the CORBA WorkUnit

- Undeploying the CORBA application

- Deleting the CORBA WorkUnit

This section explains the procedure for starting the sample application located at C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX
\samplelist.Java\ADATA\ANY.

The procedure for Java version "JDK 6" (the JDK installation path "C:\Interstage\JDK®6\bin") is shown below.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). In this example, the sample application provided under C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.Java
\DATA\ANY is used.

cd C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.Java\DATA\ANY
make (Create an application.)

Press any key to continue.

2) Starting the Interstage Management Console

Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.
1. Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
2. Select "CORBA" as the WorkUnit type.
The default "WUO001" is entered for the WorkUnit name.

3. Click the [WorkUnit Settings [Show]] link to display detailed settings and enter C:\Interstage\JDK®6\bin for the Application Folder;
C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.Java\ADATA\ANY for the Application Working Directory;
OD_IMPLID=IDL:ODsample/anytest:1.0 for the Environment variables. Click the Create button.

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.
To run more than one application on one WorkUnit, repeat the deployment.
1. Select the [View WorkUnit Status] tab and click the newly created WorkUnit (WUO0O01) in the WorkUnit list.

2. Selectthe [Deploy] tab, and enter "IDL:ODsample/anytest:1.0" for the Implementation Repository ID and “java.exe" for the Program
EXE File.

Leave the "Restart WorkUnit after deployment" check box selected.
3. Click [CORBA Application [Show]] to display the detailed settings of the CORBA application.
Enter the following:

- Classpath: "C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.Java\ADATA\ANY"

-202 -

- Startup parameters: "-Xrs",and class name "simple_s" (the parameters are separated by a page break)
- Operation mode: "SYNC_END"

4. Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

5. Enter "IDL:ODsample/anytest:1.0" for the Interface Repository 1D and “ODsample::anytest" for the Naming Service Name.
6. Click the Add button to add the interface definition.

7. After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.
1. Select the [Status] tab for the WorkUnit to be started.
2. Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.Java\ADATA\ANY is used.

cd C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.Java\DATA\ANY

Run the client application.

Execute the following at the client application storage destination:

exec-CL
rtn.paral = 300
rtn.param2 =

out.paral = x
out.para2 = 0.0010
inout.paral =y
inout.para2 = 1.0E-4

Press any key to continue.

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.
1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.
3. "WorkUnit Stop Selection” page is displayed. Select “Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository ID to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.

- 203 -

1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

E.2.3 Procedure for Operation Using a Sample C++ Application
This is not valid for Windows (64 bit).

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample C++ application, this section explains how to create a WorkUnit, operate the application, and then delete the
WorkUnit.

- Creating a CORBA application

- Starting the Interstage Management Console

- Creating a CORBA WorkUnit

- Deploying the CORBA application

- Starting the CORBA WorkUnit

- Running the Client Application

- Stopping the CORBA WorkUnit

- Undeploying the CORBA application

- Deleting the CORBA WorkUnit
This section explains the process for starting the sample application located at C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX
\samplelist. C++\DATA\ANY _S.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). Here, the sample application provided under C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist. C++H\DATA
\ANY _S is used.

1. Change the current folder to the following folder:

C:
cd C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.C++\DATA\ANY_S

2. Execute the IDL compiler from the command prompt to generate the skeletons.

1DLc -vcpp simple.idl

3. Double-click the project workspace file (ANY_S.MDP) from Windows Explorer and invoke Visual C++.
4. Build does ANY_S.exe

2) Starting the Interstage Management Console

Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.

1. Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
2. Select "CORBA" as the WorkUnit type.
The default "WUO001" is entered for the WorkUnit name.

-204 -

3. Click the [WorkUnit Settings [Show]] link to display detailed settings and enter C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX
\samplelist. C++-\DATA\ANY _S\Release for the Application Folder and enter C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX
\samplelist. C++\DATA\ANY _S\Release for the Application Working Directory. Click the Create button.

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.
1. Select the [View WorkUnit Status] tab and click on the newly created WorkUnit (WU001) in the WorkUnit list.

2. Select the [Deploy] tab, and enter "IDL:ODsample/anytest:1.0" for the Implementation Repository ID and "ANY_S.exe" for the
Program EXE File.

Leave the "Restart WorkUnit after deployment" check box selected.
3. Click [Show Details [Show]] to display CORBA Application and Interface.

4. Click [CORBA Application [Show]] to display the detailed settings of the CORBA application. Select "SYNC_END" for the
operation mode.

5. Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

6. Enter "IDL:ODsample/anytest:1.0" for the Interface Repository 1D and "ODsample::anytest" for the Naming Service Name.
7. Click the Add button to add the interface definition.

8. After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment” during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.
1. Select the [Status] tab for the WorkUnit to be started.
2. Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.C++\DATAVANY_C is
used.

1. Change the current folder to the following folder:

C:
cd C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.C++\DATA\ANY_C

2. Execute the IDL compiler from the command prompt to generate the skeletons.

1DLc -vcpp simple.idl

3. Double-click the project workspace file (ANY_C.MDP) from Windows Explorer and invoke Visual C++.
4. Build does ANY_C.exe
Run the client application.

Execute the following at the client application storage destination:

cd Release

ANY_C
smpl->paral 100
smpl->para2 = OUT

- 205 -

smp2->paral =
smp2->para2 = 0.01
smp3->paral
smp3->para2

o1
X

1
N

0.001

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.

1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.

3. "WorkUnit Stop Selection" page is displayed. Select "Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository ID to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.

1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

E.2.4 Procedure for Operation Using a Sample COBOL Application

This is not valid for Windows (64 bit).

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample COBOL application, this section explains how to create a WorkUnit, operate the application, and then delete
the WorkUnit.

- Creating a CORBA application
- Starting the Interstage Management Console
- Creating a CORBA WorkUnit
- Deploying the CORBA application
- Starting the CORBA WorkUnit
- Running the Client Application
- Stopping the CORBA WorkUnit
- Undeploying the CORBA application
- Deleting the CORBA WorkUnit
This section explains the process for starting the sample application located at /opt/FSUNod/src/samples/complex/samplelist. COBOL/

data/any.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). In this example, the sample application provided under C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX
\samplelist. COBOL\DATA\ANY is used.

- 206 -

1.

3.

Change the current folder to the following folder:

C:
cd C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.COBOL\DATA\ANY

Execute the IDL compiler from the command prompt to generate the skeletons.

IDLc -cobol 024.idl

Build does SERVER-MAIN.EXE

2) Starting the Interstage Management Console

Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.

1.
2.

Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
Select "CORBA" as the WorkUnit type.
The default "WUO0O01" is entered for the WorkUnit name.

Click the [WorkUnit Settings [Show]] link to display detailed settings and enter C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX
\samplelist COBOL\DATA\ANY for the Application Folder and C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX
\samplelist. COBOL\DATA\ANY for the Application Working Directory.

Click the Create button.

4) Deploying the CORBA Application

Deploy the CORBA application so that it can run in the WorkUnit.

1.
2.

Select the [View WorkUnit Status] tab and click the newly created WorkUnit (WUO0O01) in the WorkUnit list.

Select the [Deploy] tab, and enter "IDL:INTF_A:1.0" for the Implementation Repository ID and "SERVER-MAIN.EXE" for the
Program EXE File.

Leave the "Restart WorkUnit after deployment" check box selected.
Click [Show Details [Show]] to display Show CORBA Application and Show Interface Definition.

Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

Enter "IDL:INTF_A:1.0" for the Interface Repository ID and "INTF_A" for the Naming Service Name.
Click the Add button to add the interface definition.

After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment” during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.

1
2.

Select the [Status] tab for the WorkUnit to be started.

Click the Start button.

- 207 -

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist. COBOL\DATA\ANY is
used.

1. Change the current folder to the following folder:

C:
cd C:\Interstage\ODWIN\Src\SAMPLE\COMPLEX\samplelist.COBOL\DATA\ANY

2. Execute the IDL compiler from the command prompt to generate the skeletons.

IDLc -cobol 024.idl

3. Build does CLIENT-MAIN.EXE
Run the client application.

Execute the following at the client application storage destination:

CLIENT-MAIN

CLIENT STARTI!!

IN-PARAM VALUE: 001743234

10-PARAM VALUE: 8888

INTF-A-OP RETURN!!

RESULT VALUE : .89333000E 02

A-OUT-P VALUE : .55555555500000000E 02
A-10-P VALUE : +000012345

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.
1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.

3. "WorkUnit Stop Selection” page is displayed. Select “"Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository ID to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.
1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

E.3 For Linux

Procedure for Operation Using a Sample C Application

Procedure for Operation Using a Sample Java Application

Procedure for Operation Using a Sample C++ Application

- Procedure for Operation Using a Sample COBOL Application

- 208 -

E.3.1 Procedure for Operation Using a Sample C Application

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample C application, this section explains how to create a WorkUnit, operate the application, and then delete the
WorkUnit.

- Creating a CORBA application

- Starting the Interstage Management Console
- Creating a CORBA WorkUnit

- Deploying the CORBA application

- Starting the CORBA WorkUnit

- Running the Client Application

- Stopping the CORBA WorkUnit

- Undeploying the CORBA application

- Deleting the CORBA WorkUnit

This section explains the procedure for starting the sample application located at /opt/FISVod/src/samples/complex/samplelist.C/data/any.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). Here, the sample application provided under /opt/FISVVod/src/samples/complex/samplelist.C/data/any is used.

OD_HOME=/opt/FJSVod

export OD_HOME (Set OD_HOME in the environment variable.)
LD_LIBRARY_PATH=$0D_HOME/l1ib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH (Set the library path in the environment variable.)
cd /opt/FJSVod/src/samples/complex/samplelist.C/data/any

make (Create an application.)

R OH W R H

2) Starting the Interstage Management Console

Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.
1. Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
2. Select "CORBA" as the WorkUnit type.
The default "WUO001" is entered for the WorkUnit name.

3. Click the [WorkUnit Settings [Show]] link to display detailed settings and enter /opt/FISVod/src/samples/complex/samplelist.C/
data/any for the Application Folder and enter /opt/FISVod/src/samples/complex/samplelist.C/data/any for the Application Working
Directory. Click the Create button.

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.

1. Select the [View WorkUnit Status] tab and click on the newly created WorkUnit (WU001) in the WorkUnit list.

2. Select the [Deploy] tab and enter "IDL:ODsample/anytest:1.0" for the Implementation Repository ID and "simple_s" for the Program
EXE File.

Leave the "Restart WorkUnit after deployment"” check box selected.

- 209 -

3. Click [Show Details [Show]] to display CORBA Application and Interface

4. Click [CORBA Application [Show]] to display the detailed settings of the CORBA application. Select "SYNC_END" for the
operation mode.

5. Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

6. Enter "IDL:ODsample/anytest:1.0" for the Interface Repository ID and “ODsample::anytest" for the Naming Service Name.
7. Click the Add button to add the interface definition.

8. After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment” during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.
1. Select the [Status] tab for the WorkUnit to be started.
2. Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at /opt/FISVod/src/samples/complex/samplelist.C/data/any is used.

cd /opt/FJISVod/src/samples/complex/samplelist.C/data/any
make (Create an application.)

Run the client application.

Execute the following at the client application storage destination:

simple_c

TC_ODsample_samplel:paral [300] para2 = [test]
TC_ODsample_sample2:paral = [x] para2 = [0.001000]
TC_ODsample_sample3:paral [y] para2 = [0.000100]

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.

1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.

3. "WorkUnit Stop Selection” page is displayed. Select "Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository ID to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.

1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

-210-

E.3.2 Procedure for Operation Using a Sample Java Application

Th

is section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be

operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample Java application, this section explains how to create a WorkUnit, operate the application, and then delete the
WorkUnit.

Th

Creating a CORBA application

Starting the Interstage Management Console
Creating a CORBA WorkUnit

Deploying the CORBA application

Starting the CORBA WorkUnit

Running the Client Application

Stopping the CORBA WorkUnit
Undeploying the CORBA application
Deleting the CORBA WorkUnit

is section explains the procedure for starting the sample application located at /opt/FISVod/src/samples/complex/samplelist.Java/data/

any.

Th

1)C

e procedure for Java version "JDK 6" (the JDK installation path "/opt/FISVawjbk/jdk6") is shown below.

reating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). In this example, the sample application provided under /opt/FJSVod/src/samples/complex/samplelist.Java/data/any is
used.

#
FJ

H R OH R R H R R

PATH=/usr/bin:/opt/FJSVawjbk/jdk6/jre/bin:/opt/FISVawjbk/jdk6/bin:/opt/
SVod/bin:$PATH

export PATH

OD_HOME=/opt/FJSVod

export OD_HOME (Set OD_HOME in the environment variable.)

CLASSPATH=. :$0D_HOME/etc/class/ODjava4. jar:$CLASSPATH

export CLASSPATH (Set the classpath in the environment variable.)
LD_LIBRARY_PATH=$0D_HOME/1ib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH (Set the library path in the environment variable.)
cd /opt/FJSVod/src/samples/complex/samplelist.Java/data/any

make (Create an application.)

2) Starting the Interstage Management Console

Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3)C

reating a CORBA WorkUnit

Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.

1. Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
2. Select "CORBA" as the WorkUnit type.
The default "WUOQO1" is entered for the WorkUnit name.

3. Click the [WorkUnit Settings [Show]] link to display detailed settings and enter /opt/FISVawjbk/jdk6/bin for the Application
Folder; fopt/FISVod/src/samples/complex/samplelist.Java/data/any for the Application Working Directory; /opt/FISVod/lib for the
Library Path; and OD_IMPLID=IDL:ODsample/anytest:1.0 for the Environment variables. Click the Create button.

-211-

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.
1. Select the [View WorkUnit Status] tab and click the newly created WorkUnit (WUO0O1) in the WorkUnit list.

2. Select the [Deploy] tab, and enter "IDL:ODsample/anytest:1.0" for the Implementation Repository ID and "java" for the Program
EXE File.

Leave the "Restart WorkUnit after deployment"” check box selected.
3. Click [CORBA Application [Show]] to display the detailed settings of the CORBA application.

Enter "/opt/FISVod/src/samples/complex/samplelist.Java/data/any”, "/opt/FISVod/etc/class/ODjava4.jar" for the Classpath; enter
class name "simple_s" for the Startup parameters, and select 'SYNC_END' for the operation mode.

4. Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

5. Enter 'IDL:ODsample/anytest:1.0' for the Interface Repository ID and 'ODsample::anytest' for the Naming Service Name.
6. Click the Add button to add the interface definition.

7. After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling 'Restart WorkUnit after deployment’ during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.
1. Select the [Status] tab for the WorkUnit to be started.

2. Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at /opt/FISVod/src/samples/complex/samplelist.Java/data/any is used.

PATH=/usr/bin:/opt/FJSVawjbk/jdk6/jre/bin:/opt/FISVawjbk/jdk6/bin:/opt/
FJISVod/bin:$PATH

export PATH

CLASSPATH=. :/opt/FJSVod/etc/class/ODjava4. jar :$CLASSPATH

export CLASSPATH

#LD_LI1BRARY_PATH=/0pt/FJSVod/lib:$LD_LI1BRARY_PATH

export LD_LIBRARY_PATH

cd /opt/FJISVod/src/samples/complex/samplelist.Java/data/any

Run the client application.

Execute the following at the client application storage destination:

exec-CL
in.paral = a
in.para2 = 1.0E-5
inout.paral = ¢
inout.para2 = 1.0E-4
rtn.paral = 300
rtn.param2 = test

out.paral = x
out.para2 = 0.0010
inout.paral = y
inout.para2 = 1.0E-4

-212 -

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.
1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.
3. "WorkUnit Stop Selection” page is displayed. Select “Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository ID to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.

1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

E.3.3 Procedure for Operation Using a Sample C++ Application

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample C++ application, this section explains how to create a WorkUnit, operate the application, and then delete the
WorkUnit.

- Creating a CORBA application
- Starting the Interstage Management Console
- Creating a CORBA WorkUnit
- Deploying the CORBA application
- Starting the CORBA WorkUnit
- Running the Client Application
- Stopping the CORBA WorkUnit
- Undeploying the CORBA application
- Deleting the CORBA WorkUnit
This section explains the process for starting the sample application located at /opt/FISVod/src/samples/complex/samplelist.C++/data/

any.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). Here, the sample application provided under /opt/FISVod/src/samples/complex/samplelist.C++/data/any is used.

OD_HOME=/opt/FJSVod

export OD_HOME (Set OD_HOME in the environment variable.)
LD_LIBRARY_PATH=$0D_HOME/lib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH (Set the library path in the environment variable.)
cd /opt/FJISVod/src/samples/complex/samplelist.C++/data/any

make (Create an application.)

H OHOH H R R

-213 -

2) Starting the Interstage Management Console

Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.

1.
2.

3.

Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
Select "CORBA" as the WorkUnit type.
The default "WUO0O01" is entered for the WorkUnit name.

Click the [WorkUnit Settings [Show]] link to display detailed settings and enter /opt/FISVod/src/samples/complex/samplelist.C+
+/data/any for the Application Folder and enter /opt/FJSVod/src/samples/complex/samplelist.C++/data/any for the Application
Working Directory. Click the Create button.

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.

1.
2.

Select the [View WorkUnit Status] tab and click on the newly created WorkUnit (WUO001) in the WorkUnit list.

Select the [Deploy] tab, and enter "IDL:ODsample/anytest:1.0" for the Implementation Repository ID and "simple_s" for the
Program EXE File.

Leave the "Restart WorkUnit after deployment"” check box selected.
Click [Show Details [Show]] to display CORBA Application and Interface.

Click [CORBA Application [Show]] to display the detailed settings of the CORBA application. Select "SYNC_END" for the
operation mode.

Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

Enter "IDL:ODsample/anytest:1.0" for the Interface Repository ID and "ODsample::anytest" for the Naming Service Name.
Click the Add button to add the interface definition.

After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment” during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.

1
2.

Select the [Status] tab for the WorkUnit to be started.

Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at /opt/FISVod/src/samples/complex/samplelist.C++/data/any is used.

cd /opt/FJISVod/src/samples/complex/samplelist.C++/data/any
make (Create an application.)

Run the client application.

Execute the following at the client application storage destination:

simple_c
smpl->paral = 100

-214 -

smpl->para2

ouT

smp2->paral = X
smp2->para2 = 0.01

smp3->paral
smp3->para2

z
0.001

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.

1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.

3. "WorkUnit Stop Selection" page is displayed. Select "Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository 1D to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.

1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

E.3.4 Procedure for Operation Using a Sample COBOL Application

This section explains the procedure for creating an environment in which a CORBA WorkUnit (CORBA application WorkUnit) can be
operated using the Interstage Management Console.

If a CORBA application is to be run in a WorkUnit, an application execution environment must be created according to the following
procedure. Using a sample COBOL application, this section explains how to create a WorkUnit, operate the application, and then delete
the WorkUnit.

Creating a CORBA application

Starting the Interstage Management Console
Creating a CORBA WorkUnit

Deploying the CORBA application

Starting the CORBA WorkUnit

Running the Client Application

Stopping the CORBA WorkUnit
Undeploying the CORBA application
Deleting the CORBA WorkUnit

This section explains the process for starting the sample application located at /opt/FISVod/src/samples/complex/samplelist. COBOL/data/

any.

1) Creating a CORBA Application

Create a server application according to the execution procedure provided in the Distributed Application Development Guide (CORBA
Service Edition). In this example, the sample application provided under /opt/FISVod/src/samples/complex/samplelist. COBOL/data/any
is used.

-215-

OD_HOME=/opt/FJSVod

export OD_HOME (Set OD_HOME in the environment variable.)
LD_LIBRARY_PATH=$0D_HOME/lib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH (Set the library path in the environment variable.)
cd /opt/FJISVod/src/samples/complex/samplelist.COBOL/data/any

make (Create an application.)

H OH OH H B R

2) Starting the Interstage Management Console

Start the Interstage Management Console by specifying "https://(host-name):12000/IsAdmin" from the Web browser.

3) Creating a CORBA WorkUnit
Create a WorkUnit definition to enable the CORBA application to run in a WorkUnit.
1. Select [System], [WorkUnits], and then the [Create a new WorkUnit] tab.
2. Select "CORBA" as the WorkUnit type.
The default "WUO001" is entered for the WorkUnit name.

3. Click the [WorkUnit Settings [Show]] link to display detailed settings and enter /opt/FISVod/src/samples/complex/
samplelist. COBOL/data/any for the Application Folder and /opt/FIJSVod/src/samples/complex/samplelist. COBOL/data/any for the
Application Working Directory.

Also enter /opt/FISVcbl/lib, /opt/FISVod/lib/nt, /opt/FISVod/src/samples/complex/samplelist. COBOL/data/any for the library
path, and NLSPATH=/opt/FISVcbl/lib/nls/%L/%N.cat:/opt/FISVcbl/lib/nls/C/%N.cat:/usr/dt/lib/nls/msg/%L/%N.cat for the
Environment variables. Click the Create button.

4) Deploying the CORBA Application
Deploy the CORBA application so that it can run in the WorkUnit.
1. Select the [View WorkUnit Status] tab and click the newly created WorkUnit (WUO0O1) in the WorkUnit list.
2. Select the [Deploy] tab, and enter "IDL:INTF_A:1.0" for the Implementation Repository ID and "024_s" for the Program EXE File.
Leave the "Restart WorkUnit after deployment" check box selected.
3. Click [Show Details [Show]] to display Show CORBA Application and Show Interface Definition.

4. Click [Interface [Show]] to display the interface definition items. Click the Add Interface button to display the interface definition
addition screen.

5. Enter "IDL:INTF_A:1.0" for the Interface Repository ID and "INTF_A" for the Naming Service Name.
Also enter "/opt/FISVod/src/samples/complex/samplelist. COBOL/data/any/libINTF-A.so" for the Library Path.
6. Click the Add button to add the interface definition.

7. After the interface definition is complete, click the Deploy button to deploy the application.

5) Starting the CORBA WorkUnit
Start the CORBA WorkUnit that was set in the WorkUnit definition.

Enabling "Restart WorkUnit after deployment"” during deployment setting automatically starts the WorkUnit when deployment is finished.
This function is enabled by default.

The WorkUnit is also started automatically when Interstage starts. Normally, automatic starting is also enabled by default.
1. Select the [Status] tab for the WorkUnit to be started.

2. Click the Start button.

6) Running the Client Application

Create a client application according to the procedure in the Distributed Application Development Guide (CORBA Service Edition). In
this example, the sample application provided at /opt/FISVod/src/samples/complex/samplelist. COBOL/data/any is used.

- 216 -

LD_LIBRARY_PATH=/opt/FJSVod/src/samples/complex/samplelist.COBOL/data/any:/
opt/FJsSVod/lib/nt:/opt/FISVcbl/1ib:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH (Set the library path in the environment variable.)
cd /opt/FJISVod/src/samples/complex/samplelist.COBOL/data/any

make (Create an application.)

Run the client application.

Execute the following at the client application storage destination:

024 c
CLIENT STARTI!

IN-PARAM VALUE: 001743234

10-PARAM VALUE: 8888

INTF-A-OP RETURN! !

RESULT VALUE : .89333000E 02

A-OUT-P VALUE : .55555555500000000E 02
A-10-P VALUE : +000012345

7) Stopping the CORBA WorkUnit
Stop the WorkUnit that is running.

1. Select the [Status] tab for the WorkUnit to be stopped.
2. Click the Stop button.

3. "WorkUnit Stop Selection" page is displayed. Select "Normal Stop" and click the Stop button.

8) Undeploying the CORBA Application
Undeploy the CORBA application.

1. Select the [Undeploy] tab.

2. Select the check box to the left of the Implementation Repository 1D to be undeployed, and click Undeploy.

9) Deleting the CORBA WorkUnit
Delete the CORBA WorkUnit.

1. Select the [Status] tab and click the Delete button.

2. The dialog message "WorkUnit will be deleted. Do you wish to continue?" is displayed. Click OK.

- 217 -

Appendix F CORBA WorkUnit Activation Change

Solans

This appendix explains the CORBA WorkUnit activation change function.

If this function is used, it is possible to switch application program modules and change the WorkUnit operating environment (WorkUnit
configuration information) without stopping the WorkUnit itself. This is called "activation change".

During activation change of a CORBA WorkUnit, a new process is started, and the new process and the process that is currently running
are switched.

It is also possible to start the new process and put it on standby beforehand. This means that it is possible to switch the new and old
processes at a particular point. The old process can also be put on standby temporarily after the switch, so that it can be switched back if
an error occurs.

CORBA WorkUnit activation change operations are described below.
Note that the CORBA WorkUnit activation change function can only be used in the Enterprise Edition.
Note

In this function, commands are used to execute several procedures before the actual activation change occurs. For this reason, a thorough
knowledge of the activation change function is required, and procedures must be followed and executed correctly.

If it is possible to stop the WorkUnit as part of application program maintenance, it is recommended that the activation change function
not be used. Stop the WorkUnit, switch the application program, and then restart the WorkUnit instead.

F.1 Procedure for CORBA WorkUnit Activation Change

This section explains the procedure for CORBA WorkUnit activation change.

This function is typically used in the following situations:
- Correction of application problems in online business (WorkUnit)
- Periodic changing of the application operating environment in a WorkUnit configuration (environment variables, and so on)

These operations are executed when applications are not running, or when the number of accesses is low, such as at night. Execution of
these operations is not recommended when there are large numbers of requests, because application regression problems or an operating
environment defect may occur after the change.

The four phases of CORBA WorkUnit activation change are as follows. To execute the activation change, execute the command for each
phase for the WorkUnit that is running.

1. WorkUnit Configuration Change Phase

2. Preparation ("prepare") Phase

3. Switch to New Environment ("change™) Phase

4. Old Environment Deletion or Restoration (Commit or Rollback) Phase

The current activation change phase can be checked using the "/scheckwustat' command.

F.1.1 WorkUnit Configuration Change Phase

In the WorkUnit configuration change phase, register the corrected WorkUnit configuration used for activation change in Interstage.

If the activation change function is used to correct an application program, the modules that are currently running cannot be overwritten
directly. For this reason, store the correction target application module in a different directory to the one in which the modules that are
currently running are stored. Next, change "Application Path" or "Application Library Path" (in Java, this is "Application Class Path") of
the WorkUnit configuration to the directory in which the corrected module is stored, and then register the WorkUnit configuration change.

Execute the following procedure.

-218 -

1. Create the application storage directory.

Example

If the application module that is currently running is stored in "/apl/WUO001/svapl", create "/apl/WUO001/svapl_UPDATE1".
2. Create a backup of the WorkUnit configuration file.

A backup of the WorkUnit configuration file that is currently running must be created before the WorkUnit configuration is changed.
3. Change the WorkUnit configuration file.

Change "Application Path (PATH)", Application Library Path (Library for Application)", or "Application Class Path (CLASSPATH
for Application)" of the WorkUnit configuration to the path of the directory in which the corrected module is stored.

Example

PATH: /apl/WUO001/svapl_UPDATE1

Change the environment variables in the application operating environment at the same time.
4. Register the WorkUnit configuration file after the change in Interstage.

Use the "/schangewudef' command to change the WorkUnit configuration. This registers the WorkUnit configuration used by the
new environment after the activation change in Interstage.

At this stage, two statuses are registered: the WorkUnit configuration that is currently running, and the WorkUnit configuration that
is used after the activation change.

The ischangewudef command can only be executed if the corresponding WorkUnit is running ("Execute” is displayed for the
WorkUnit when the /s/istwu command is run). If this command is executed, the status changes from normal operation status to
"activation being changed" status, and the phase changes to the "WorkUnit configuration change phase".

Note

- When the corrected application module is stored in the executable environment, make sure the application module that is currently
running is not overwritten. If itis overwritten, an error may occur in the WorkUnit that is running. In this case, enter revision information
in the directory, and store it in a different directory.

- It is also possible to prevent overwriting by entering revision information in the executable module (file name) after the correction,
and changing the module name. To change the module name, set the name of the module after the correction in "Executable File
(Executable File name)" of the WorkUnit configuration, and then execute the activation change.

- In the "WorkUnit configuration change phase", "ischangewudef -0" can be used to overwrite the configuration used for activation
change. However, in phases from the "Preparation ("prepare") phase" onwards, this command cannot be executed until the activation
change is completed. This is because it prevents the execution of the " /saddwuderf" normal configuration registration command while
the activation is being changed.

- If the CORBA application is in library format, only the library name is specified for the solib defined in the CORBA application
definition intfID. You must also specify the library storage destination directory in 'Library for Application' of the WorkUnit definition.

Use the "F.4.2 isinfchangewudef" command to refer to information about the WorkUnit configuration registered for use in activation
change.

F.1.2 Preparation ("prepare'") Phase

In the preparation ("prepare") phase, use the "/spreparewd' command to create a new WorkUnit environment based on the WorkUnit
configuration registered for use in activation change, and start a new process. The new process starts up with standby status, meaning that
requests from the client are not processed when the "prepare" phase is completed.

- When the preparation (“prepare™) phase is completed, requests from the client for old processes are processed. Requests from the
client for new processes are not processed. At this point, the application process number in the corresponding WorkUnit is twice the
number for normal operation. If the process concurrency is changed, the value is the total of the old environment process concurrency
and the new environment process concurrency.

- Set a value for "proc_conc_max" (in the CORBA server application configuration information registered in the implementation
repository) that is twice the value for normal operation (the total value for the old environment process concurrency and the new
environment process concurrency if the process concurrency is changed).

-219-

- The "ispreparewd' command can only be executed for a WorkUnit configuration change phase WorkUnit.

F.1.3 Switch to New Environment ("change") Phase

In the switch to new environment (“"change™) phase, use the "ischangewd" command to temporarily stop the processing of old process
requests (after the processing of requests in progress is completed, processing stops temporarily). Processing requests that have accumulated
in the current queue, and requests after that, are processed when the processing of new processes starts.

To abort an activation change, execute the "/srollbackwu* command. This deletes the new process environment, and operations continue
in the old environment.

Note

- If an error occurs in an application in the new environment at the point when the switch to the new environment (“change") phase is
completed, the old process is on standby with a “temporarily stopped" status so that it can be switched back. At this point, the application
process number in the corresponding WorkUnit is still twice the number for normal operation (the total value for the old environment
process concurrency and the new environment process concurrency if the process concurrency is changed).

- The "ischangewd" command can only be executed for a preparation ("prepare™) phase WorkUnit.

F.1.4 Old Environment Deletion or Restoration (Commit or Rollback) Phase

In the old environment deletion or restoration (commit or rollback) phase, delete the old environment or execute a switch back to the old
environment.

After the "change" phase, check the operating conditions for the application in the new environment. If there are no problems, delete the
old environment using the "iscommitwu' command to execute the deletion request.

If there is an error in the application in the new environment, use the "/srollbackwd/' command to restore the old environment and return
the status before activation change.

Note

- If the "iscommitwd' command is used to delete the old environment, and the "/srollbackwd' command is used to delete the new
environment that was restored to the old environment, it might mean that the application is running on a process that has been stopped.
These commands therefore provide options for stopping processes synchronously (after application processing finishes) and for
shutting down processes.

- The "iscommitwu' command can only be executed for a switch to new environment (“"change") phase WorkUnit.

- If the "/srollbackwu' command is used to restore the old environment, the status before activation change is returned. For this reason,
the WorkUnit configuration registered for use in activation change is deleted from the Interstage system. To re-execute activation
change, start again from "1) WorkUnit configuration change phase".

The "isrollbackwd' command can be executed in each of the following phases: WorkUnit configuration change phase, Preparation
("prepare") phase, Switch to new environment (“change™) phase. Regardless of the phase, the status before activation change is returned
after the "/srollbackwd' command is executed.

F.2 WorkUnit Configurations that can be Changed during
Activation Change

WorkUnit configuration information that can be changed during activation change is shown below.

The "Application Program" section cannot be added/deleted. To add/delete the "Application Program" section, stop the WorkUnit and
then re-register the WorkUnit configuration.

CORBA server application configuration information registered in the implementation repository cannot be changed. To change this
information, stop the WorkUnit and then re-register the WorkUnit configuration.

Section Configuration option Contents Changeable?

WORK UNIT Name Set the WorkUnit name. No

The WorkUnit name cannot be changed.

-220 -

Section

Configuration option

Contents

Changeable?

Kind

Set "CORBA" for a CORBA application. The
WorkUnit type cannot be changed.

No

Control Option

Path

Set the path of the directory in which the
executable file is stored. To switch the application,
specify the path of the directory in which the
corrected module is stored.

(Note)

Store the corrected module in a different directory
to the one in which the modules that are currently
running are stored.

Yes

Current Directory

Set the path for creating the application current
directory.

Yes

Application Retry Count

Set the number of continuous shut downs until
automatic restart is no longer possible for the
application.

Yes

Path for Application

Set the path (the PATH environment variable) that
is used when the application is running.

Yes

Library for Application

Set the path for the application library that is used
when the application is running (the
LD_LIBRARY_PATH environment variable).

If the application subprogram is stored in a
different directory to the application executable
file, specify the directory path for storing the
corrected module.

(Note)

Store the corrected module in a different directory
to the one in which the modules that are currently
running are stored.

Yes

Environment Variable

Set the environment variable that is used when the
application is running.

Yes

Maximum Processing Time for
Exit Program

Set the maximum processing time monitoring
value for the exit program.

Yes

WorkUnit Exit Program

Set the name of the exit program that is issued once
when the WorkUnit starts and once when it
finishes.

(Note)

The changed WorkUnit exit program is valid after
the switch to the new environment (“change")
phase of the activation change.

If the WorkUnit is stopped in the activation change
preparation ("prepare™) phase, the WorkUnit exit
program before the change is valid.

Yes

Executable File of Exit Program
for Salvage

Set the name of the executable file for the
WorkUnit exit program and the process salvage
exit program.

(Note)

When salvaging a process in an old environment,
the value before the change is valid. When

-221-

Yes

Section

Configuration option

Contents

Changeable?

salvaging a process in a new environment, the
value after the change is valid.

Request Assignment Mode

Request message assignment mode
(Note)

Queue-related configuration information cannot
be changed.

No

Traffic Director Monitor Mode

Set whether or not to make this WorkUnit a target
of crash monitoring during IPCOM linkage.
WorkUnits that are targets of monitoring cannot
be changed while they are running.

No

Startup Time

Specify the monitoring time until startup of the
WorkUnit is completed.

(Note)

Monitor the process startup time in the activation
change preparation (“prepare") phase.

Yes

Shutdown Time

Set the monitoring time (in seconds) until the
WorkUnit is stopped completely.

(Note)

Monitor the process stop time in the old
environment deletion or restoration (commit or
rollback) phase of the activation change.

Yes

Process Degeneracy

Specify whether or not to allow the WorkUnit to
continue running when automatic restart of the
application fails.

Yes

Number of Revision Directories

Specify the number of revision directories in the
current directory of the WorkUnit.

(Note)

If the current directory is changed by the activation
change, this is valid if the WorkUnit directory
exists in the new directory.

Yes

Application
Program

Impl 1D

Specify the implementation repository 1D of the
CORBA application that starts up in the
WorkUnit.

(Note)

The implementation repository 1D cannot be
changed.

No

Executable File

Specify the executable module for the CORBA
application.

If the application is switched, change the value
specified in "Executable File" to enter and manage
revision information in the executable file.

Yes

Concurrency

Set the process concurrency for the application.

Yes

Maximum Processing Time

Set the maximum processing time monitoring
value for the application (in seconds).

Yes

Terminate Process for Time out

Specify whether or not to shut down the process
that is running in the corresponding application

-222 -

Yes

Section

Configuration option

Contents

Changeable?

when the maximum processing time for the
application is exceeded.

Maximum Processing Time for
Exit Program

Set the maximum processing time monitoring
value for the exit program (in seconds).

Yes

Maximum Queuing Message

Set the maximum queue number for messages that
can accumulate in the queue.

(Note)

Queue-related configuration information cannot
be changed.

No

Queuing Message To Notify
Alarm

Set the accumulated queue number for notifying
the alarm. The alarm is notified when the
accumulated queue number reaches this value.

(Note)

Queue-related configuration information cannot
be changed.

No

Queuing Message To Notify
Resumption

Set the accumulated queue number for resuming
monitoring of the alarm notice.

If the accumulated queue number exceeds the
monitored queuing number, monitoring of the
accumulated queue number is resumed when it is
the same as this value.

(Note)

Queue-related configuration information cannot
be changed.

No

CLASSPATH for Application

Set the classpath that is used when the application
is running.

To switch the Java application, specify the
classpath in which the corrected module is stored.

(Note)

Store the corrected module in a different directory
to the one in which the modules that are currently
running are stored.

Yes

Environment Variable

Set the environment variable that is used when the
application is running.

Yes

Exit Program for Process Salvage

Set the process salvage exit program. Only C
programs can be specified.

(Note)

When salvaging a process in an old environment,
the value before the change is valid. When
salvaging a process in a new environment, the
value after the change is valid.

Yes

Executable File of Exit Program
for Salvage

Set the name of the executable file for the
WorkUnit exit program and the process salvage
exit program.

(Note)

-223 -

Yes

Section

Configuration option

Contents

Changeable?

When salvaging a process in an old environment,
the value before the change is valid. When
salvaging a process in a new environment, the
value after the change is valid.

Param for Executable File Set the parameter that is passed when the Yes
application starts up. If more than one parameter
is set, set this option more than once.
(Note)
This is valid after the process starts up in the new
environment in the activation change preparation
("prepare") phase.

Request Assignment Mode Request message assignment mode No
(Note)
Queue-related configuration information cannot
be changed.

Buffer Number Set the buffer number for the queue. No
(Note)
Queue-related configuration information cannot
be changed.

Buffer Size Set the data length for executing the queue No
operation for one request.
(Note)
Queue-related configuration information cannot
be changed.

Path Set the path of the directory in which the Yes

executable file for the application program is
stored.

To switch the application, specify the path of the
directory in which the corrected module is stored.

(Note)

Store the corrected module in a different directory
to the one in which the modules that are currently
running are stored.

Note

In CORBA server application configuration information registered in the implementation repository, if settings for retaining instance data
have been implemented in each client application (iswitch=ON), the new process does not inherit the instance data from the old process.

For this reason, a problem may occur in applications in which the retaining of instance data is required.

When executing activation change, the possibility that instance data will not be retained in the created application must be considered.

Also be sure prior to activation change to set a value for the maximum process concurrency (proc_conc_max) that is twice the value for
normal operation (the total value for the old environment process concurrency and the new environment process concurrency if the process

concurrency is changed).

When activation change is executed, the process concurrency is temporarily twice the value for normal operation. If the value for

proc_conc_max is low, the preparation (“prepare™) phase fails.

- 224 -

F.3 Notes on Executing Activation Change

This section contains notes about executing activation change.

F.3.1 Relationship between Activation Change and Existing Functions

Updating the WorkUnit Configuration (Update of the Configuration using the "isaddwudef -0" Command)

The "/saddwudef -d' command can be used to update the WorkUnit configuration even if the WorkUnit is running (the changes are valid
after the next startup). However, updating of the WorkUnit configuration is prevented if the activation is being changed (from the WorkUnit
configuration change phase onwards). Changes during the WorkUnit configuration change phase can only be made using the
ischangewudefcommand. ischangewudefcannot bed used during or after the preparation (“prepare") phase.

After the activation change is finished, the "/isaddwudef -0' command can be used to update the WorkUnit configuration.

Changing the Process Concurrency Dynamically

Changing of the process concurrency dynamically is prevented while the activation is being changed (from the WorkUnit configuration
change phase onwards). To change the process concurrency dynamically, wait until the activation change is finished.

Activation change is also prevented during dynamic changing of the process concurrency, but is possible once dynamic changing of the
process concurrency is completed.

Degeneracy Operation when Automatic Restart of the Application Fails

Activation change is possible during normal operation, even if the degeneracy operation is valid when automatic restart of the application
fails. Activation change is also possible with "Running degeneracy" status. If there is an error in the application program or operating
environment, the correct status can be restored by implementing the activation change. In this case, the status of the WorkUnit after the
activation change is "Running normally (execute)".

Restore processing for a degeneracy operation status WorkUnit cannot be executed while the activation is being changed in the following
phases: WorkUnit configuration change phase, Preparation ("prepare™) phase, Switch to new environment (“change" phase)).

If the process number is set to "0" while the activation is being changed, the WorkUnit crashes.

Restart of the Process while the Activation is being Changed

In the switch to new environment (“'change") phase of activation change, if the application in progress in the old environment crashes the
process is restarted in the old environment and put on standby status. If the restart of the process fails, the WorkUnit crashes (if the settings
for degeneracy operation when automatic restart of the application fails are valid, the status changes to degeneracy operation status).

F.3.2 WorkUnit Environment after Restart

If the WorkUnit stops during the activation change, the environments for restarting the WorkUnit in each phase are as shown in the
following table.

Regardless of whether the WorkUnit for which the activation is being changed shuts down independently or because of an Interstage crash,
the procedure for restarting after the crash is the same.

Status before crash Environment after Remarks
restart
WorkUnit configuration change phase Old environment After the restart, the status is the same as before the

activation change. (*1)

Preparation (“prepare") phase Old environment After the restart, the status is the same as before the
activation change. (*1)

Switch to new environment (“change™) New environment After the restart, the status is the same as on completion
phase of the activation change. (*2)

Status where the old environment is New environment After the restart, the status is the same as on completion
deleted, and the activation change is of the activation change.

completed

-225-

Status before crash Environment after Remarks
restart

Status where the old environment is Old environment After the restart, the status is the same as before the
restored, and the status before the activation change.
activation change is returned

*1 If a crash occurs in the WorkUnit configuration change phase and the activation change preparation (“prepare™) phase, the start status
after the restart is the same as before the activation change was executed.

*2 To restart the WorkUnit in the old environment after the crash, re-register the WorkUnit configuration for the old environment using
the "fsaddwudef" command, and then restart the WorkUnit.

F.3.3 Stopping a WorkUnit while the Activation is being Changed

While the activation is being changed, a WorkUnit can only be stopped by shutting it down in the "prepare™ phase or the "change" phase.

Activation change status Can the WorkUnit be | Environment after Remarks
stopped? restart
WorkUnit configuration change Normal: Yes Old environment After the restart, the status is the same
phase as before the activation change. (*1)

Synchronous: Yes

Shutdown: Yes

Preparation (“prepare") phase Normal: No Old environment After the restart, the status is the same

1 H *
Synchronous: No as before the activation change. (*1)

Shutdown: Yes

Switch to new environment Normal: No New environment After the restart, the status is the same

"change") ph n completion of the activation

("change™) phase Synchronous: No as on completion of the activatio
change. (*2)

Shutdown: Yes

Status where the old environment is | Normal: Yes New environment After the restart, the status is the same

deleted, and the activation change is . as on completion of the activation
Synchronous: Yes

completed change.

Shutdown: Yes

Status where the old environment is | Normal: Yes Old environment After the restart, the status is the same
restored, and the status before the) as before the activation change.

. . Synchronous: Yes
activation change is returned

Shutdown: Yes

*1 If the WorkUnit is stopped using the "stop" command in the WorkUnit configuration change phase and the activation change preparation
("prepare™) phase, it is assumed that the activation change has been canceled, and the start status after the restart is the same as before the
activation change was executed.

*2 If the WorkUnit is shut down using the "stog' command in the switch to new environment (“change™) phase, it is assumed that the
activation change has been completed, and the start status after the restart is the same as when the activation change is completed. To start
the WorkUnit with the status before the activation change, re-register the WorkUnit configuration for the old environment using the
"isaddwudef' command, and then restart the WorkUnit.

F.3.4 Current Directory

The application process work directory (refer Note below) is created using an application process Process ID Name. If the activation
change is implemented, new environment work directories are created, with previous environment work directories left as they are.

Previous environment work directories are not deleted once the activation change is complete.

For this reason, the number of work directories may increase, compressing the file system, if an activation change is repeated.

- 226 -

Additionally, if an activation change is repeated, you must change the current directory specified in the WorkUnit definition before and
after the activation change. If this directory is no longer necessary, delete it once the activation change is complete.

Note

The work directory is made up of the following structure:

Current directory specified in the WorkUnit definition/WorkUnit name/Application execution process ID

F.4 Activation Change Command References

This section explains the commands that are used to execute activation changes.

F.4.1 ischangewudef

Name
ischangewudef

WorkUnit configuration change for the activation change

Format

ischangewudef [-M system] [-o0] WorkUnit configuration file name

Description

The "ischangewudef" command executes the WorkUnit configuration change for the activation change. This command has the following
options and arguments:

-M system [Selaris
Specify the name of the target system.

If this option is omitted, the default system is specified.

If a WorkUnit configuration with the same name already exists, it is overwritten. If a WorkUnit configuration does not exist, a new
one is registered. If this option is omitted, a new WorkUnit configuration is not registered if there is already a WorkUnit configuration
with the same name.

WorkUnit configuration file name

Specify the file name of the text file described in the WorkUnit configuration. If there are any spaces in the file name, put the file name
in single or double quotation marks.

Notes

- Incomplete configurations cannot be registered.

The "ischangewudef* command can only be used by the user or superuser that started the WorkUnit.

- The "ischangewudef" command can only be used for "CORBA" WorkUnit types.

This command cannot be used on a Managed Server.

Example

Registering this command in the "WU001.wu" file in which the WorkUnit configuration is described:

ischangewudef WUOOL1.wu

Registering this command in the "WUO0O01.wu" file in which the WorkUnit configuration is described by overwriting the existing contents:

ischangewudef -o WUOO1.wu

- 227 -

F.4.2 isinfchangewudef

Name
Isinfchangewudef

Displays the contents of the WorkUnit configuration in the configuration change phase of the activation change

Format

isinfchangewudef [-M system] wuname

Description

The "isinfchangewudef" command outputs the contents of the WorkUnit configuration registered for activation change in the configuration
change phase of the activation change in standard output.

This command can be used to refer to the contents of the WorkUnit configuration registered for activation change when the CORBA
WorkUnit has started up, and after the " ischangewudef* command is executed from the configuration change phase of the activation change
up until the switch to new environment (“'change") phase.

This command has the following argument:
-M system [Selaris

Specify the name of the target system.

If this option is omitted, the default system is specified.
wuname

Specify the name of the WorkUnit to be displayed.

Example

isinfchangewudef WUOO1
[WORK UNIT]
Name: WUOO1
Kind: CORBA

[Control Option]

Application Retry Count: O

Maximum Processing Time for Exit Program: 300
Request Assignment Mode: LIFO

Output of Stack Trace: NO

Startup Time: 180

Shutdown Time: 180

Traffic Director Monitor Mode: NO

Process Degeneracy: NO

Start Log: NO

Number of Revision Directories: 1
[Application Program]

Executable File: simple_s

Concurrency: 1

Maximum Processing Time: O

Terminate Process for Time out: NO

Maximum Processing Time for Exit Program: 300
Maximum Queuing Message: O

Request Assignment Mode: LIFO

Impl ID: IDL: testl/intfl: 1.0

F.4.3 ispreparewu

- 228 -

Name
Ispreparewu

WorkUnit activation change preparation

Format

ispreparewu [-M system] wuname

Description
The "ispreparewd' command executes WorkUnit activation change preparation.
This command has the following argument:
-M systemllSolaris
Specify the name of the target system.
If this option is omitted, the default system is specified.
wuname

Specify the name of the WorkUnit for activation change preparation.

Notes
- Take a backup of the WorkUnit configuration file before the activation change.

- If settings for retaining instance data have been implemented in each client application (iswitch=0N), the new process does not inherit
the instance data from the old process.

- Set the combined process concurrency for the old and new processes for the started application in the "proc_conc_max" server
application information (maximum process concurrency) value registered in the implementation repository. "proc_conc_max" should
be set before the activation change.

- The "ispreparewd' command can only be used by the user or superuser that started the WorkUnit.

- The "ispreparewd' command can only be used for "CORBA" WorkUnit types.

Example

Executing activation change preparation for WorkUnit "WU001":

ispreparewu WUOO1

F.4.4 ischangewu

Name
ischangewu

Executes activation change for the WorkUnit

Format

ischangewu [-M system] wuname

Description

The "ischangewd"' command executes activation change for a WorkUnit for which activation change preparation is completed (the switch
to the new environment).

This command has the following argument:

- 229 -

-M system [Selaris

Specify the name of the target system.

If this option is omitted, the default system is specified.
wuname

Specify the name of the WorkUnit for which activation change is to be executed.

Notes

- If settings for retaining instance data have been implemented in each client application (iswitch=ON), the new process does not inherit
the instance data from the old process.

- The "ischangewd" command can only be used by the user or superuser that started the WorkUnit.

- The "ischangewd" command can only be used for "CORBA" WorkUnit types.

Example
Executing the activation change for WorkUnit "WU001":

ischangewu WUOO1

F.4.5 iscommitwu

Name
iscommitwu

Deletes the old environment in the activation change for the WorkUnit

Format

iscommitwu [-M system] [-c] wuname

Description

The "iscommitwu' command deletes the old environment in the activation change for the WorkUnit, completes the activation change, and
continues operations in the new environment.

This command has the following arguments:
-M system I Selaris
Specify the name of the target system.

If this option is omitted, the default system is specified.

-C
Shuts down the old environment process after the "change" phase.
If this option is omitted, processes in the old environment are stopped synchronously (after the processing of requests in progress is
completed, processing stops).
wuname
Specify the name of the WorkUnit for which activation change is to be executed.
Notes

- If"SYNC_END" is specified in the running mode after activation of the server application, finish the process explicitly after the return
from the activation method (such as the issue of the "exit" function).

- The "iscommitwd' command can only be used by the user or superuser that started the WorkUnit.

- The "iscommitwud' command can only be used for "CORBA™ WorkUnit types.

-230 -

Example
Deleting the old environment for WorkUnit "WUO001".

iscommitwu WUOO1l

F.4.6 isrollbackwu

Name
isrollbackwu

Restores the old environment in the activation change for the WorkUnit

Format

isrollbackwu [-M system] [-c] wuname

Description

The "isrollbackwd' command returns the status to the status before the execution of activation change when the WorkUnit activation is
being changed or when the WorkUnit was stopped during activation change.

This command has the following arguments:
-M system [Selaris
Specify the name of the target system.

If this option is omitted, the default system is specified.

Shuts down the new environment process after the "change" phase is completed.

If this option is omitted, processes in the new environment are stopped synchronously (after the processing of requests in progress is
executed, processing stops).

wuname

Specify the name of the WorkUnit for which activation change is to be executed.

Notes

- If"SYNC_END" is specified in the running mode after activation of the server application, finish the process explicitly after the return
from the activation method (such as the issue of the "exit" function).

- The "isrollbackwu/' command can only be used by the user or superuser that started the WorkUnit.

- The "isrollbackwd' command can only be used for "CORBA" WorkUnit types.

Example
Restoring the old environment for WorkUnit "WUO0O01".

isrol lbackwu WUOO1

F.4.7 ischeckwustat

Name
ischeckwustat

Displays the status of the activation change for the WorkUnit

-231-

Format

ischeckwustat [-M system] wuname | -a

Description

The "ischeckwustat' command displays the current activation change phase for the specified WorkUnit, or the activation change status
for all WorkUnits.

The following information is displayed:
- WorkUnit name
- WorkUnit type
- activation change status

The following status is displayed:

- execute : Running normally

registered : The configuration change phase
- prepare : The "prepare" phase
- change : The "change" phase
This command has the following arguments:
-M system [I__Eclaris
Specify the name of the target system.
If this option is omitted, the default system is specified.
wuname

To check the activation change status of a specific WorkUnit, specify the name of the WorkUnit.

Specify this option to check the activation change status for all WorkUnits.

Note
- The "ischeckwustat' command can only be used for "CORBA™ WorkUnit types.

Example
>ischeckwustat WUOO1
wuname kind status
wuoo1 CORBA registered

>ischeckwustat -a

wuname kind status
WU0o01 CORBA execute
wuoo02 CORBA registered
WU003 CORBA prepare
wuoo4 CORBA change
WUO0O05 CORBA execute

-232-

	Title Page
	Preface
	Contents
	Chapter 1 OLTP Server of Interstage Application Server
	1.1 Application to Business Critical Systems
	1.2 System Integration by Using Existing Applications
	1.3 Client/Server Communication
	1.3.1 Client/Server Communication

	1.4 Improved Distributed System Management
	1.5 Distributed Transactions
	1.6 Functions for Reliable System Operation
	1.6.1 Basic Operation Control
	1.6.2 Performance Information Measurement
	1.6.3 Realtime Monitoring

	1.7 Performance Analysis
	1.7.1 Automatic Centralized Monitoring
	1.7.2 Automatic Operation for Built-in Batch Programs

	Chapter 2 Designing the OLTP Server
	2.1 Designing WorkUnits
	2.1.1 Application Execution Environment Using WorkUnits
	2.1.2 Application Process Concurrency
	2.1.3 Automatic Application Restart
	2.1.4 Server Application Timer Function
	2.1.5 Current Directory
	2.1.6 Environment Variables
	2.1.7 Queue Control
	2.1.8 Inhibiting and Permitting Queues
	2.1.9 Maximum Queuing Function
	2.1.10 Alarm Report Function for Stagnant Queues
	2.1.11 Priority Control
	2.1.12 Queued Message Cancellation Function
	2.1.13 Buffer Control
	2.1.13.1 Buffer Control for CORBA Applications
	2.1.13.2 Buffer Control for Transaction Applications
	2.1.13.3 Buffer Control for IJServer EJB Applications

	2.1.14 Degenerated Operation when the Automatic Restart of a WorkUnit Process Fails
	2.1.14.1 Restoration of the WorkUnit in Degenerated Operation

	2.1.15 Changing a WorkUnit's Number of Process Concurrency

	2.2 Various Types of WorkUnit
	2.2.1 CORBA WorkUnit
	2.2.1.1 Using WorkUnits
	2.2.1.2 CORBA WorkUnit Operation Functions

	2.2.2 Processing with Transaction Applications
	2.2.2.1 Application Runtime Environments Using WorkUnits
	2.2.2.2 Creating Server Applications that Use APM
	2.2.2.3 Server Object Registration
	2.2.2.4 Manual Registration of Server Objects
	2.2.2.5 Local Transaction Linkage
	2.2.2.6 Global Transaction Linkage
	2.2.2.7 Session Information Management
	2.2.2.8 Server Application Process Modes (In the Case of Solaris and Linux)
	2.2.2.9 Specification of the Conditions for Restarting a Server Application Process after its Failure

	2.2.3 Linking with Existing Systems
	2.2.3.1 Wrapping Objects
	2.2.3.2 Wrapper Definitions

	2.2.4 Performing Processing Using General Applications
	2.2.4.1 Using a WorkUnit

	2.2.5 Timeout Monitoring
	2.2.5.1 CORBA Application Timeouts
	2.2.5.2 Monitoring Transaction Application Timeouts
	2.2.5.3 Timeout Monitoring of Global Transaction Applications
	2.2.5.4 Monitoring Session Information Management Function Timeouts

	2.2.6 Design when Using the Operation Support Function of a WorkUnit
	2.2.6.1 WorkUnit Exit Function
	2.2.6.2 Process Salvage Exit Function
	2.2.6.3 WorkUnit Process Information Notification Function

	2.2.7 Various Exit Functions
	2.2.8 Trouble Investigation Support Function

	Chapter 3 Starting / Stopping / Surveillance of WorkUnits
	3.1 Starting and Stopping WorkUnits
	3.1.1 Starting and Stopping WorkUnits Using the Interstage Integration Command
	3.1.2 Monitoring WorkUnits
	3.1.2.1 Operating Status of WorkUnits
	3.1.2.2 Operating Status of Objects of WorkUnits
	3.1.2.3 Checking Application Process Information

	3.1.3 Starting and Stopping WorkUnits Using the Interstage Management Console
	3.1.4 Starting WorkUnits Automatically

	3.2 Performance Monitoring Tool
	3.2.1 Functions of Performance Monitoring Tool
	3.2.1.1 Function of Outputting Log Information to the Performance Log File
	3.2.1.2 Function of Monitoring the Real Time Performance Information by a Network Control Manager (Monitoring by MIB))

	3.2.2 Performance Monitoring Procedure
	3.2.3 Registering to the SNMP Service
	3.2.4 Creating a Performance Monitoring Environment
	3.2.4.1 Starting Operation of Performance Monitoring Tool

	3.2.5 Monitoring Operations
	3.2.5.1 Starting Performance Monitoring
	3.2.5.2 Starting a Business Application
	3.2.5.3 Outputting the Performance Log File and Analyzing the Performance Information
	3.2.5.4 Stopping the Application
	3.2.5.5 Stopping the Performance Monitor
	3.2.5.6 Deleting the Performance Monitoring Environment
	3.2.5.7 Deletion from the SNMP Service

	3.2.6 Analyzing the Performance Information and Taking Action
	3.2.6.1 Function of Outputting Log Information to the Performance Log File
	3.2.6.2 Performance Information Collected by the Network Control Manager with the Real Time Monitoring Function
	3.2.6.3 Warnings Regarding the Evaluation of the Performance Information

	3.2.7 Managing the Performance Log Files
	3.2.8 Source Names of the Messages Displayed on the Event Viewer

	3.3 Interstage Operation API
	3.3.1 Function Overview
	3.3.1.1 Interstage Operation API Environment Initialization and Collection
	3.3.1.2 Interstage Operation Information Notification
	3.3.1.3 Interstage Operation
	3.3.1.4 Interstage System Information Notification

	3.3.2 Compiling and Linking Applications
	3.3.3 Examples of Use
	3.3.4 Notes
	3.3.4.1 Command Operations
	3.3.4.2 Starting and Stopping WorkUnits
	3.3.4.3 Operation in the Cluster System
	3.3.4.4 Control Table Version-Level for Interstage Operation API
	3.3.4.5 Parameter Information used by Interstage Operation API

	3.4 Changing WorkUnits
	3.4.1 Adding a WorkUnit (Transaction Applications)
	3.4.2 Adding a WorkUnit (EJB Applications)
	3.4.3 Deleting a WorkUnit
	3.4.4 Changing a WorkUnit

	3.5 Changing Server Applications
	3.5.1 Adding a Server Application (Transaction Application)
	3.5.2 Adding a Server Application (EJB Application)
	3.5.3 Deleting Server Applications
	3.5.4 Changing a Server Application (Transaction Application)
	3.5.5 Changing a Server Application (EJB Application)
	3.5.6 Active Changing of a Server Application (Transaction Applications Only)
	3.5.7 Dynamic Changing of the Number of Server Application Processes

	Chapter 4 WorkUnit Operation of Each Application
	4.1 Operating CORBA WorkUnits
	4.1.1 Application Development
	4.1.2 Compilation by IDL Compiler (IDLc Command)
	4.1.3 Creating CORBA Server Applications
	4.1.4 Registration of Information on Server Application to Implementation Repository Definition
	4.1.5 Generation of Object Reference
	4.1.6 Specifying/Registering WorkUnit Definitions
	4.1.7 Starting a WorkUnit
	4.1.8 Stopping a WorkUnit
	4.1.9 Operation Using the Interstage Management Console
	4.1.9.1 Creating a CORBA WorkUnit
	4.1.9.2 Deploying a CORBA Application
	4.1.9.3 Closure/Closure Cancellation
	4.1.9.4 Function for Maximum Number of Messages Retained in a Queue
	4.1.9.5 Alarm Notification Function for Number of Messages in a Queue

	4.1.10 Operation by Command Line Interface
	4.1.10.1 CORBA WorkUnit Definitions
	4.1.10.2 CORBA Application Queue Control
	4.1.10.3 Global Transaction Linkage

	4.2 Operating EJB WorkUnits
	4.2.1 Specifying/Registering WorkUnit Definitions
	4.2.1.1 Starting a WorkUnit
	4.2.1.2 Stopping a WorkUnit

	4.3 Operating Transaction Application WorkUnits
	4.3.1 Operation Using the Object Priority Function
	4.3.2 Operating Procedures for Object Priority Function
	4.3.2.1 Create Application
	4.3.2.2 Specify WorkUnit Definitions
	4.3.2.3 Register WorkUnit Definitions
	4.3.2.4 Start the WorkUnit

	4.4 Operation in Utility WorkUnits
	4.4.1 Operating Procedures

	Chapter 5 Operating the Distributed Transaction Function
	5.1 Procedure Required to Use Distributed Transaction Function
	5.2 Setting Up the System Environment for the Distributed Transaction Function
	5.2.1 Tuning the System
	5.2.2 Determining If a Disk Partition Is Necessary
	5.2.3 Setting the CORBA Service Operating Environment File
	5.2.4 Setting Up the Database Linkage Service Environment Definition
	5.2.5 Setting Up the Interstage Operating Environment Definitions

	5.3 Creating the OTS System Environment
	5.3.1 Using the Interstage Management Console
	5.3.2 Using Commands
	5.3.2.1 Creating an Interstage Operating Environment Definition
	5.3.2.2 isinit Command and otssetup Command
	5.3.2.3 Using a Local Naming Service (Recommended)
	5.3.2.4 Using Remote Naming Service

	5.4 Creating a Resource Management Program
	5.4.1 What is a Resource Management Program?
	5.4.2 The XA Linkage Program
	5.4.3 The Database Library
	5.4.4 Creating a Resource Management Program

	5.5 Creating the Environment for the Resource Management Program
	5.5.1 Creating a Resource Definition File
	5.5.1.1 Registering a Resource Definition
	5.5.1.2 Environment Definition for Resource Management Program

	5.6 Creating Definitions
	5.6.1 Resource Manager Information

	5.7 Starting the OTS System
	5.8 Starting and Stopping a Resource Management Program
	5.8.1 Environment Setting for Operation on a Host Other Than That of the OTS System
	5.8.1.1 Sharing a Naming Service (Recommended)
	5.8.1.2 Not Sharing a Naming Service

	5.9 Tracing Function
	5.9.1 Dump File Collection Function
	5.9.2 Trace Log Output Function

	5.10 Notes
	5.10.1 Migration from the Old Environment

	Appendix A WorkUnit Definition
	A.1 Syntax
	A.2 Syntax of WorkUnit Definition File
	A.3 Control Statement of WorkUnit Definition
	A.3.1 WORK UNIT Section
	A.3.1.1 Name
	A.3.1.2 Kind

	A.3.2 APM Section
	A.3.2.1 Name

	A.3.3 Control Option Section
	A.3.3.1 Path
	A.3.3.2 Current Directory
	A.3.3.3 Remove Directory
	A.3.3.4 Application Retry Count
	A.3.3.5 Snapshot
	A.3.3.6 Path for Snapshot
	A.3.3.7 Path for Application
	A.3.3.8 Library for Application
	A.3.3.9 Environment Variable
	A.3.3.10 Registration to Naming Service
	A.3.3.11 Using Load Balance
	A.3.3.12 Using Notification of User Information
	A.3.3.13 Access Control
	A.3.3.14 Access Control Base DN
	A.3.3.15 Maximum Processing Time For Exit Program
	A.3.3.16 WorkUnit Exit Program
	A.3.3.17 Executable File of Exit Program for Salvage
	A.3.3.18 WorkUnit Automatic Stop Mode
	A.3.3.19 Request Assignment Mode
	A.3.3.20 Traffic Director Monitor Mode
	A.3.3.21 Output Of Stack Trace
	A.3.3.22 Startup Time
	A.3.3.23 Shutdown Time
	A.3.3.24 Unconditional Reactivation of Process
	A.3.3.25 Start Log
	A.3.3.26 Process Degeneracy
	A.3.3.27 Number of Revision Directories

	A.3.4 Application Program Section
	A.3.4.1 Destination
	A.3.4.2 Destination Priority
	A.3.4.3 PSYS
	A.3.4.4 Executable File
	A.3.4.5 Application Language
	A.3.4.6 Concurrency
	A.3.4.7 Maximum Processing Time
	A.3.4.8 Terminate Process for Time out
	A.3.4.9 Maximum Processing Time For Exit Program
	A.3.4.10 Maximum Queuing Message
	A.3.4.11 Queuing Message to Notify Alarm
	A.3.4.12 Queuing Message to Notify Resumption
	A.3.4.13 Environment Variable
	A.3.4.14 Form
	A.3.4.15 Pre Exit Program
	A.3.4.16 Post Exit Program
	A.3.4.17 Recovery Exit Program
	A.3.4.18 Executable File for Exit Program
	A.3.4.19 Access Control
	A.3.4.20 Access Control BaseDN
	A.3.4.21 Type of User Identification
	A.3.4.22 User Name Param
	A.3.4.23 User Base DN
	A.3.4.24 User DN Param
	A.3.4.25 Password Param
	A.3.4.26 Bind Type
	A.3.4.27 Using Wrapper Session Management
	A.3.4.28 SessionID Param
	A.3.4.29 Method Name to Begin Session
	A.3.4.30 Maximum Session Active Time for Client
	A.3.4.31 Maximum Processing Time for WRAPPER
	A.3.4.32 Maximum Memory for EJB Application
	A.3.4.33 CLASSPATH for Application
	A.3.4.34 Java Command Option
	A.3.4.35 Exit Program for Process Salvage
	A.3.4.36 Executable File of Exit Program for Salvage
	A.3.4.37 Exit Program for Terminating Process
	A.3.4.38 Param for Executable File
	A.3.4.39 Reset Time for Application Retry Count
	A.3.4.40 Request Assignment Mode
	A.3.4.41 Impl ID
	A.3.4.42 Buffer Number
	A.3.4.43 Buffer Size
	A.3.4.44 Path

	A.3.5 Nonresident Application Process Section
	A.3.5.1 Concurrency
	A.3.5.2 Pre Exit Program
	A.3.5.3 Post Exit Program
	A.3.5.4 Executable File for Exit Program
	A.3.5.5 Maximum Processing Time for Exit Program
	A.3.5.6 Dynamic Link Library
	A.3.5.7 Exit Program for Process Salvage
	A.3.5.8 Executable File of Exit Program for Salvage

	A.3.6 Multiresident Application Process Section
	A.3.6.1 Concurrency
	A.3.6.2 Pre Exit Program
	A.3.6.3 Post Exit Program
	A.3.6.4 Executable File for Exit Program
	A.3.6.5 Maximum Processing Time for Exit Program
	A.3.6.6 Recovery Exit Program
	A.3.6.7 Exit Program for Process Salvage
	A.3.6.8 Executable File of Exit Program for Salvage

	A.3.7 Resource Manager Section
	A.3.7.1 Name
	A.3.7.2 RM

	Appendix B Interstage Operation API Sample Programs
	B.1 File Configuration
	B.1.1 WorkUnit Startup Program
	B.1.2 WorkUnit Stop Program
	B.1.3 WorkUnit/Object Information Acquisition Program
	B.1.4 Object Close Program
	B.1.5 Cancel Object Closure Program
	B.1.6 Information Acquisition of the Object in the Implementation Repository ID Program
	B.1.7 Acquiring/releasing of a system name list Program

	B.2 Compiling and Linking

	Appendix C Notes on OLTP Server Operations
	C.1 Operation Using the Interface Information Check Functions
	C.1.1 Procedure for Operating the Interface Information Check Function

	Appendix D WorkUnit Automatic Start Setting File
	D.1 Coding Format
	D.1.1 Statement
	D.1.2 Section
	D.1.3 Comment Line
	D.1.4 Space Line

	D.2 WorkUnit Automatic Start Setting File Example
	D.2.1 WorkUnit Name
	D.2.2 User Name

	Appendix E Procedure for CORBA WorkUnit Operation Using the Interstage Management Console
	E.1 For Solaris
	E.1.1 Procedure for Operation Using a Sample C Application
	E.1.2 Procedure for Operation Using a Sample Java Application
	E.1.3 Procedure for Operation Using a Sample C++ Application
	E.1.4 Procedure for Operation Using a Sample COBOL Application

	E.2 For Windows(R)
	E.2.1 Procedure for Operation Using a Sample C Application
	E.2.2 Procedure for Operation Using a Sample Java Application
	E.2.3 Procedure for Operation Using a Sample C++ Application
	E.2.4 Procedure for Operation Using a Sample COBOL Application

	E.3 For Linux
	E.3.1 Procedure for Operation Using a Sample C Application
	E.3.2 Procedure for Operation Using a Sample Java Application
	E.3.3 Procedure for Operation Using a Sample C++ Application
	E.3.4 Procedure for Operation Using a Sample COBOL Application

	Appendix F CORBA WorkUnit Activation Change
	F.1 Procedure for CORBA WorkUnit Activation Change
	F.1.1 WorkUnit Configuration Change Phase
	F.1.2 Preparation ("prepare") Phase
	F.1.3 Switch to New Environment ("change") Phase
	F.1.4 Old Environment Deletion or Restoration (Commit or Rollback) Phase

	F.2 WorkUnit Configurations that can be Changed during Activation Change
	F.3 Notes on Executing Activation Change
	F.3.1 Relationship between Activation Change and Existing Functions
	F.3.2 WorkUnit Environment after Restart
	F.3.3 Stopping a WorkUnit while the Activation is being Changed
	F.3.4 Current Directory

	F.4 Activation Change Command References
	F.4.1 ischangewudef
	F.4.2 isinfchangewudef
	F.4.3 ispreparewu
	F.4.4 ischangewu
	F.4.5 iscommitwu
	F.4.6 isrollbackwu
	F.4.7 ischeckwustat

