08
FUJITSU

FUJITSU Software
Interstage Big Data
Complex Event Processing Server V1.1.0

User's Guide

[Linux(64)

J2UL-1665-02ENZ0(00)
February 2014

Preface

Purpose of this document

This manual provides an overview of the features of Interstage Big Data Complex Event Processing Server (hereafter referred to as
"BDCEP"). It also describes the operations required during installation and application development, and the operation and maintenance
of BDCEP.

Intended readers

This manual is intended for users who are considering installing, operating, and developing applications that use the Complex Event
Processing feature of BDCEP.

Structure of this document
This document is structured as follows:
Chapter 1 Overview
Provides an overview of BDCEP.
Chapter 2 Features Provided
Describes the features provided by BDCEP.
Chapter 3 System Configuration and Design

Describes system design for installing BDCEP, such as what kind of information system to build by installing the product, and how
to design the operation form.

Chapter 4 Installation and Setup
Describes the software requirements and resources required to install BDCEP, as well as how to install and uninstall it.
Also, explains the setup of BDCEP (that is, how to create an environment for building the system).
Chapter 5 Development
Describes how to develop applications to run on BDCEP.
Chapter 6 Operation and Maintenance
Describes how to operate and manage built systems, and how to manage BDCEP.
Chapter 7 Extended System Operations
Describes how to operate BDCEP using multiple servers.
Chapter 8 Command Reference
Describes the commands of BDCEP.
Chapter 9 Definition File Reference
Describes the definition files handled by BDCEP.
Glossary

Explains the terminology used for BDCEP.

Trademarks

- Adobe, Adobe Reader, and Flash are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries.

- Linux is a registered trademark of Linus Torvalds.

- Red Hat, RPM, and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.

Microsoft, Windows, MS, MS-DOS, Windows XP, Windows Server, Windows Vista, Windows 7, Excel, and Internet Explorer are
either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

- Software AG and Terracotta, and all Software AG/Terracotta products, are either trademarks or registered trademarks of Software
AG.

Interstage, PRIMECLUSTER, ServerView, Symfoware, and Systemwalker are registered trademarks of Fujitsu Limited.

- Other company names and product names used in this document are trademarks or registered trademarks of their respective owners.

Note that registration symbols (TM or R) are not appended to system names or product names in this manual.

Export restrictions

If this document is to be exported or provided overseas, confirm legal requirements for the Foreign Exchange and Foreign Trade Act as
well as other laws and regulations, including U.S. Export Administration Regulations, and follow the required procedures.

Copyright
Copyright 2012-2014 FUJITSU LIMITED

February 2014: Second edition
October 2012: First edition

Contents

(O g =10 (=T g @Y =T AV = PSSO SPRRTPPP 1
1.1 What is Interstage Big Data Complex EVENt PrOCESSING SEIVEI?........ccuioi ittt ettt sttt et be et be et be et e 1
1.2 ProducCt FEATUTES........ccvviiiiiiiitiit ettt

1.2.1 High-performance CEP Engine..............
1.2.2 Simple Rule Description..........cccocevevveiencnenne.
1.2.3 Simple Collaboration with External Systems
1.2.3.1 Distributed Cache Collaboration (Terracotta Collaboration)..........ccciviirieiirieriiieiesiei e 4
1.2.3.2 HAAOOP COlADOTATION.viiieeectciiiseet ettt h e bbb bt ne bttt 5
1.3 OVEIVIEW OF FEALUIES PrOVIUEM.euiieiieieite ettt bbbttt b e e e bt b et b e e e he e b e e bt et en e e b e e e bt st e s e ebeneeneebe e 6
1.3.1 FEAUrES OF The CEP ENQINE.......ciitiietiiteeiteiee sttt ettt et sttt aeae st e st e b e e ese st e e e b et esesb e e ebe s s eseebe e e ke et eseeb et ete et ess et et eresbe e ere e 7
1.3.2 Features for Development and Operating ENVIFONMENTS.ciiiiieieiriieieirisieet ettt 7
1.3.3 FEatures fOr StAtUS IMONITOTING.evreireriiiei ettt bt e bR bbbt b e n et 7
1.4 What IS COMPIEX EVENT PrOCESSING?......cueiueeiuiiteieite ettt este ettt bbbtk e b se st e e e be s b e st eb e b ebe s b e s e e b e e eh e eb e R e eb e b e bt nb e R e ebenbeaesbe e ebeneebeaben 7
1.4.1 COMPIEX EVENT PrOCESSING....eviuteteitesiitiietesteststetesessestatesaesessesessessesesseseesesseseabeseesesseseabe s ebe b eseebessebe et eseebensebesbensebe b ebessensatessanennin 8
Chapter 2 FEALUIES PrOVIAEM.uiiiiiiiiiiie ettt ettt e ettt e oo et bttt e e e e e h b e et e e e oo hb bttt e e e e bbb e e e e e e e nbbeeeeeesnnbbeeeeesannnnes 9

2.1 Input Adapter..............
2.1.1 SOAP Adapter
2.1.2 HTTP Adapter

2.1.3 SOCKET AGAPLETvtteseetetesi ettt et et E e b st E b s R E e R R bR e AR Rt R Rt e e R bR bR bR 10
A oo o 1o o OO OSSOSO 10
2.3 HIGN-SPEEA FIITEE......tetetiiti ettt ettt st e bbb e b et e b e st e s e e b et et e b e s e et e b e be e b ese ek e bebesbese et e b ebesbensebe b ebe st ensabesaenenrensaren 11

B T 1 g (0] OSSOSO 11

R Vo (=] gl B L WO OO PP T PP OPURORUPOR 12
2.4 COMPIEX EVENT PIOCESSING. ... e eeuiteueiteiteiiste ettt sttt sttt b e et b et e b et ek e b ebe s b e s b ek e b e b e eE oA £ eb e e b e R £ eb e e eb e e e e Rt e b e b e bt nbehe e b e e ebe s b e s e ebe e ebe e 13

2.4.1 Features Of COMPIEX EVENE PrOCESSING......iviviirieiiieietisteestest et ese st et e st e et te s ese st e s ese s esesbe s ebessese et e e abesaeseebe e esesbeseabe e eseee 13
2.5 EXEEINAI DALA ACCESS. ... veuvereeerieteietestestetestesestestateseasesteseasessasesteseaseseesessessaseateseeseaseseeseseaEe s et e ebenseEenbeseaEensabeebeneabensasensensateseenensenensen

2.5.1 Terracotta Collaboration

2.5.2 RDB Collaboration............c.cc.......

2.6 Output Adapter...........

2.6.1 SOAP Listener

2.8.2 CUSEOM LISEBNEN ...tttk ettt bbb e bt b et b e e b e b et b e b e Rt e b oAt e b e b e R e eE oAb e R e A A e R £ eE e b e b e eb e R e eE e s e Rt nb e R e eb e b ebe st eneabenneneaee

2.6.3 LOQUING LISTENEuiteteiteicteiete ettt ettt ettt et st e et et se et et ebe st e s e eb e s e s e e be e ebe b es e ebe s ek e b eseebe s et e e b e seebe b ebe e b e st ebe b ebeebensetesbensabensereas

2.6.4 DEDUG LLOG LISTENETeiuieitetiiieteet stttk e bbb bbbk h b bt b bt e bbb b b e bt e bttt
A o T=] =L o] o W @] T - To USSP

2.7.1 Dynamically Changing RUIES and MAaSTEE DALa..........ccueiruririeieiiiieise ettt et b bbb bbbt st e b bene st e b 19
RSl =3 To [T oo TR OO 19
2.9 RESOUITE LLOG. ..ttt ettt h et h et E b e Rt E et h R s b e e b e R e et eE e bt e Rt b e et R e Rt e et r ettt en e n e 19
O O U] (T g T=T YT TSSOSO 20

Chapter 3 System Configuration @nd DESIGN.c..uueiiiiiiiiiiie ittt e et e e et abe e e e s b e e e abr e e s asreeesneeeanrneenanee 21
3.1 System Configuration...........cc.cccveervenene.
3.2 Designing the System Configuration
3.2.1 Designing the SyStem CONTIGUIATION.coiiiiiiiitiecee ettt et b et bt ek b b e s b et et e b e b et e e et e e b e st st e ene 22
3.2.2 ASPeCts OF DESIGNING the CEP SEIVET........ccviiiieieiteietisete ettt ettt sttt st s st et e b e s ese st e e e b e s e se st e e ebesa e s e ebe e ebe st eseebe e ere e 22
3.2.2. 1 OVETAII DESIGN. ...tttk b bbb bbb e bbbk h £ E b e bbb R b bRt bbbt 22
3.2.2.2 DeSIGNING the INPUL AGAPTET.......eeeieiteieeieteeee ettt sttt b et st e e be b e s et e st e b e e e e st ebe s ese st entebe e es e aseneabeneeseseeneaneneenees 22
3.2.2.3 Designing the High-SPEEA FIITEL ..ottt b etk b et b et b bttt et sn st st nn b 22
3.2.2.4 Designing COmMPIEX EVENT PrOCESSING. . ..civiiiriieiriesieteiesistetetestessstesaesesaesassesaesesseseabessesesbeseasessesesbessetesbeseabesesesaessesessasens 23
3.2.2.5 DeSigning the OULPUL AGAPLET.......c.iiiireiiiiiieteer ettt bbb e bbbt b bbb et 23

3.2.3 Aspects of Designing a Hadoop System for COHADOIatioN.cccoiiiiiiieee e 24

3.2.4 Aspects of Designing a Terracotta Server for Collaboration...........cc.iueiiieeinieierse et 24

3.2.5 Aspects of Designing an RDB Server for Collaboration...........

3.3 Designing System RESOUICES........cvvrvireriirineeieinesreeeneeneieennas

3.3.1 Estimating Memory Usage

3.3.1.1 Amount of Memory when Using High-Speed Filter RUIES. ..o e 25
3.3.1.2 Amount of Memory when Master Data is used by the High-Speed Filter............couviieiiiiiciiieiceceese e 26
3.3.2 EStIMALING DISK USBFE. ... vttt ettt bbbt bbb bbb e bbb bbb bbb e bttt 26

Chapter 4 Installation and Setup

4.1 Installation Overview............
4.1.1 Installation Methods
4. 1.2 INSTAHIEA PACKAGES. ... iveveriieeetieiest ettt h bRt E bR bR e b bt ne bt n ekt
4.2 INSEAIIALION REQUITEMENTS........ieieiieiiite ettt b ettt e b etk e b b e b es e eb e e e bt e b oA £ e b a2 e R £ eE e R e e b e s e eR e e b e e bt ne e Rt e b e e ebeneeseebe e ebeee 30
4.2.1 HardWare ENVIFONIMENT...........ooioiiiiiiitei ettt ettt 30
4.2.2 SOTEWAIE ENVIFONMENT.......iiiitiieieiteieestee ettt sttt st e st st et e s e saes e e be e esenees e e be e e b e eE e s e e be st e b e e b e s e e benbeteebe e ebe st eseabe s atesbeneatin 30
4.2.2.1 ReQUITEA OPEIALING SYSIEM.....cuiitiieieiteieteriete ettt ettt be e e ae et e e e st seeseeae e eheeee s e bt seeb e e be e ebeseebeabe e ebenbeseebe s ebeebeneanan 30
4.2.2.2 MANGALOTY PAICK......c.eitiitiietiiet ettt b et b b bR bt e h s b b e e b £ b e e bt b e b e e b et e b e et e bt e b et et e et eneebin 32
4.2.2.3 REGQUITEA PACKAGES.vevirviviitisiitisieie sttt ettt ettt ettt te s b s e et e b e te st e se e be b e b e st es s et e b es e et e s b e b e s ess et e e eb e as e s e e b e e e b e et eseebe e eneaee 32
4.2.2.4 MULUAIY EXCIUSIVE SOTEWATE......c.tiiitetiiiieieeteies ettt bbbt b bbbt e bbb s 32
4.2.3 Resources ReqUIred at INSTAITALION.u ittt b et b bbbt et e bt e b et et b e bt e b e e nennan 33
4.2.4 ResoUrces REQUITEA At OPEIALION.cuiiiiiueeriietet ittt ettt et bbbt e bt b bRttt b e st et e b st b ekttt b et ebenen 33
4.3 Installation.........cccceeveevieieneriiecesenen bbb bbbttt e et et 33
4.3.1 Pre-installation Procedure............cooeevrnverinsreninnnnnns B TP T RSP P URTURTUPUTRI 34
4.3 1.1 SEELING JEICINOSES. ...tttk etttk beat et b e st b e e e bk e Rt e bt e 2R £ S b e R e b e ne e R £ e b e £ eR e b e b e b e e bt nh et b et b e b e enan 34
4.3.1.2 Checking the Port NUMDErS t0 D8 USE........oiiiiiiiiiici ettt sttt b ettt be et b ene 34
4.3.1.3 ChecKing Free DISK CAPACITY........ctrireiiiiiieteisi ettt b bbb bbbt e bt r et e 35
4.3.1.4 Creating the Engine EXeCUtION USEr @N0 GIOUP.......couiuiiuiiiiiieieiteieeieseeiesie et seeieste et see e s te e ebesbesesseeebeseesesbensssessensssesanens 35
4.3.1.5 ChecKing KEIMEI ParaMELEIS.c.cuiuirieierteieiteiteieste ettt sttt eb bbb st et e b et e s b e st st e e eb e s b ehe e b e b e bt eeeht st e e e bt st eat s b e e ebenbeseaben 36
4.3.1.6 Checking RESOUICE LIMITALIONS.iiieiiiiitiieisiei sttt et sttt be et st esesbe s e te et eseebe b ete st e s etesbesesbensetesaenesseseneas 37
4.3.1.7 Modifying /etc/cron.daily/tmpwatch in Red Hat Enterprise Linux 5.4 or an Earlier Version...........cccccoceevvveviiennicnniennens 37
4.3.1.8 Deleting FISVSMee64 and FISVSCITBA PACKAGES.c.ciueirtirieerieieiesieiisteie ettt ettt ne et sb et ebe b sbe e b e
4.3.2 INSTAITALION PIOCEAUIE.vitetiititetetitetetetei itttk bbb bbb bbb bbb bbb b bbb bbb bR b bbb bbb bbb bbb bbb e bbb b nena
4.3.2.1 AttENAEA INSTAHATION.viuieieiteii ettt ettt st eb et s e b e et et eseebe e et e e b e s e e b e s eteebeseebesbeseabe s ntesbeneatesenen
4.3.2.2 UNAtENABA INSTAIHTATION.eiteieiteieeete ettt ettt e st b et e st sb e e b e ne et e e b et ebese et e ebe e ebesbeseebe s eresbeneanen
4.3.3 POSt-INSTAHALION PrOCEAUIE.o iteeitiiteiete ettt ettt b et b e bbbtk e b e s e e b e e e b e b e st e b e b e bt e b e nt e b e e e bt et e neabesbenenteneanen

4.3.3.1 Setting Environment Variables
4.3.3.2 Reinstalling FIJSVsmee64 and FISVsclr64 Packages
4.3.3.3 APPIYING UPUALES.eeeeeeeeti ettt sttt ettt et bebe et et et e e es e et e e e b e ee e Rt eeem e eb e eeeRe e e e n e e Rt eeeneeb e e emeeeeseabeneenesbeneaae e ereen
4.3.4 1f an Error Occurs during INSTAHATION.o.eiiiiiiieie etttk bbbt b ettt b et st ene
=] (U« OSSPSR
44,1 SEEUD OVEIVIEW. .. .uiiieteitiseeeet ettt skt 8 et 8 b s o8R8 08880 R R e E R e e R R R £ e R b e bbb b bt e bt nn b
4.4.2 Setup of HAd0OP COIADOTALION.c.ciuiiiiiee ettt bbbt bt b e et b et b e b e b et ee
4.4.3 Setup of TerraCotta CollabOration............cviiiiiiiiciie et st e bbb e bt e st e b ettt e s b esesb e b ebe st enesbe e eaesrenene
4.4.4 Setup Of RDB COlIADOTALION.civiiiiiiieiiet ettt bbbt bbbt b et b et nn b
4.4.5 SETUP OF thE CEP ENQGINE. ..ottt e bt E bR bbbt R et e bbbt e en s
4.4.5.1 Status Immediately after INSTAIIATION.ccoiiiii ettt sttt n et nee e ene
4.4.5.2 Changing CEP ENQING SEIINGS.....iiiiirieieitiieistei st e sttt ettt te s ess st e e e be s esesbe e ebe st eseebeseebesbeseebe s ebeabesesbe s etesbeseeren
4.4.5.3 Creating @ NEW CEP ENQINE.......coiiiiieiiieiiesete et bbbt b et b ekttt n bt nn b b
4.5 Canceling Setup......ccoceoveereerensenecees
4.5.1 Deleting a CEP Engine.................
4.5.2 Canceling RDB Collaboration............
4.5.3 Canceling Terracotta Collaboration
4.5.4 Canceling Hado0p COIADOTALION. ...ttt bbb btttk e bbbt ekt b e ae st et e bt b e st et e e ne e e es
4.8 UNINSEAITALION. ...t E b e bbb bbbt
4.6.1 Pre-UniNSTAllation PrOCEUUIE. ..ot iieesteieete ettt sttt et se et et b e st e se b et et e e b e s et e s ete et ese et et ete st eseebe s ebesbeneasensanens
4.6.1.1 STOPPING EVENT SENTING. ... tvivitiririireieiie ekt b et b et e R bbbt s bt ne e n et n s
4.6.1.2 BACKING UD USEE ASSELS.eitiuietirteuiatestetesteseete sttt steseeteseesesbe st ebeseeseabe st ebesbebeebe e ek e b e st e b e sebeeb e s e eb e b ebesbeae e b et ebe et entabennebesbeneaben
4.6.1.3 STOPPING the CEP SEIVICE. ...iviuiiiiietiitiiee ettt ettt ettt b et s e b et be st e s e e be b et e e b e s e e ket ete et e s ete st ese et e s etesbeneeteteneas
4.6.1.4 DEIEING UPUALES.cuiiitetesiieteeet etttk b bbbt e E bt E bR e bt bbbt e bt n s
4.6.2 UNINSTAIALION PIOCEUUIE.........cveeeeieteete ettt sttt sttt e b et e £ b e e e e b e e be e e b e b eb e eE e e e b e e b eReeE e s e b e ea e Rt eeensebesbentebe e eneaneneee
4.6.2.1 AN UNINSTAITALION.eiueiiiieeieii ettt et b ettt s et bt s e et e b e b et et ebene e b ebene e

4.6.2.2 Unattended UNINSTAHATION.iiiiiiiie ittt ettt sttt sae e te e sbe e e be e sbeebeesbesabesssesaseetaesaseebeesbsesbeesaeenbeebeenbeessesnresseeas 57

4.6.3 POSt-UNINSLAITAtION PIOCEAUIE.......c.cviiiieieiiiiieieieiiiet etttk b bbb bbb bbb bbb bbb n bbb nna 57
4.6.3.1 UNINSEAIIING FISVOU........cectiiiiietiisee ettt b bbbt bbbttt 57
4.6.3.2 Uninstalling FISVSMEE64 AN FISVSCIIBA.........c.oouiiiiieiiiieit ettt bbbt sn et st ene 57
4.6.3.3 Removing ENVIrONMENT VariabIES...........coviiiiiiiiiitiieesee ettt sttt ettt e e be st e e b e s ebe st e e ebe st eteabe e eris 57
4.6.3.4 Engine Execution User Specified at INStAlAtiON. ..o s 58
4.6.3.5 Uninstall (MiddIeware)..........cocovevrnnciennicinneecnenns

4.6.4 1f an Error Occurs during Uninstallation

(O aF=T o) (=T QSR B 1Y =] o] o 0 T=T oL PSRRI 60
5.1 Overview Of BDCEP EVENT PrOCESSING.ueututiireteriiieetesisisteteitsess ettt st ss et se bbb b st ne b bt b ekt b ekt nb b s e b bt nn b b 60
5.2 LISt OF DEVEIOPIMENT ASSEES.cueeeieeteiteteeteiete sttt ettt et te e eteseesesee e ebeseeaeeeeaeeaeeeeseeaeseeReseeReebeeeeh e eb e e eheaE e R e ebeneebesbeseabe e ebesbeneanan 60
5.3 TASK OVEIVIBW. ...tttk b etk b stk bbb st E e b€ e H oo b€ o4 e h e b 2R £ eh £ eeeE £ 4 h e £ e b £ A b e E e eh e e eb £ e b e R e e bt e e bt e b e e ek e e b e b e b et et e nbeneatin 62
5.4 DESIGN (DEFINITION FIB).....cuiiiuiitiiitiiei ittt ettt ettt et st s et e st e st st es s e be b e st st e se et e s esess e s e e b e s ene et e e e b e b ebe et e e et e sseteabe e atn 63

5.4.1 Overview of Definition INFOrMALION.ciiiitiiiic ettt b ettt 63
5.4.1.1 EVENE TYPE DEIINMITION. ...ttt bbbttt b et a e ke e e bt e b et ekt e e ehe s b e e e bt nbene s b e e ebenbene b
5.4.1.2 Rule Definition..........cccccveevcninnes
5.4.1.3 Master Definition..........c.ccccceervvnnen.
5.4.1.4 RDB Reference Definition....
5.4.1.5 SOAP LiStENEI DEFINITION.cuiitiietiiteieie ittt bbbt b e e b e b et e bt e e b e e b et ek e b e st et e e et e sbeneabenenen

5.4.2 Association between the Development Asset ID and Definition INfOrmation.............ccccceveiieiiiici i 66

5.4.3 Designing an EVENt TYPE DEfINITION.......ciiiiiieii bbbttt
5.4.3.1 FRALUIES OF INPUL EVENTS.eitiicieitiieteeee ettt ettt bt e bt e e bt e b et b e e e e b e ebe e e b e sbebeebe e ebenbesesbensebesbeneenen
5.4.3.2 Recording and ANAIYZING EVENTS........ciiiiiiiieiees ettt et bbbt b ettt b e et s b e bt ene b

5.4.4 DeSIgNiNg @ RUIE DEFINITION........iiiiiiiitiieiiei ettt b ettt e s b e e e be b e be s b e st e be b ebe st e st e be b esestensabessenestensanen
5.4.4.1 High-SPEEA FIlTEr PrOCESSING. . ..e.eveveuiriiretesiistetettsiste ettt ettt s et s bbbt b st e bbb bbb s bbbt b bbb

54,4, 1.1 EXErACHION PIOCESS. .. .eueiteeetertereetestesestentetesueseetestesesseseebessesesbeseebeseeseebe e ebeeeeRe e b e eeebe e b e R e eb e nEeh e ebe e eb e nb e b e ebe e ebenbeseebe s ebesbeneaean

5.4.4.1.2 Extraction process using master data MatChing.........ccceiviiieiieiici et ns e ene s

5.4.4.1.3 J0OIN ProCcesSiNg WIth MASTEI GATA.........eveiriieiteirisieie ettt bbbttt ebe s

5.4.4.1.4 Weighting ProCESSING OF TEXL......ccvetiueiriir ittt b et b et n bt
5.4.4.2 COMPIEX EVENT PrOCESSING. ...c.veueiteeiuiiteieiterieteste ettt e ebe st ese st et be s b e st st et e besbeseebe e ebesb e st ebe e eb e ebea e e be e ebenees e ebe e ebe st e e abeneereee
5.4.4.3 Terracotta Collaboration.............cccceveirieiinieiinneeinnns

5.4.4.3.1 Considerations when using Terracotta collaboration

5.4.4.3.2 Preparing a configuration information file for Terracotta CaChe.........cccooeiiiiiincie i 77

5.4.4.3.3 USING TEITACOIA CACNE.c.eiuiitiietiiteeit ettt bbb bbbt b st b e bt a ekt b et e s e e bt st e bt st et beneeneaben 78
5.4.4.4 RDB COlIADOTAIION.vivittitireteiet ittt bbb bbb bbb bbb bbb bbb bbb bbb n e 81

5.4.4.4.1 Considerations when using RDB COHADOTAtION.ucuiiiiieiiiicieirieee e s 81

5.4.4.4.2 Specifying RDB referencing in complex event proCessing FUIES..........coeriiriiiriineeieceeee s 82
BLA4.5 SOAP LISIENE ...ttt 83
B.2.4.6 CUSTOM LEISTENET. ...tttk ettt bbb b bbb bt £ bbbt e bbb bt e bbb bbbkt e 83
5.4.4.7 LOGYING LISTEINET ...ttt e bbb e b b e bRt e Rt e b bt bR e e R st er bt e n bt nn e 83

5.4.5 DeSigning @ MaStEr DETINITION.ccuiiiiiiiieeiiee ettt ettt b e b s bRt b et b e s b et e bt e e b e eb et ebe e ebesbe e anas 85

5.4.6 Designing an Event Type Definition (FIIErEd)........ccvciiiiiiiiiiiieiciei ettt a sttt b st bt s te b nennan 85

5.4.7 Designing an RDB RefErenCe DEFINITION.cooiiiiiiieiisi bbbttt 85
5.4.7.1 Considerations when Designing an RDB Reference Definition... ettt ettt sttt et nene s 85
5.4.7.2 Settings for Cache Retention Period and Cache Purge Interval.... v e 86

5.4.8 Designing @ SOAP LiSteNer DEFINITION.......ccvciviiiiiitei it b et e b et et et e s b et e te b e sesbe st etesbeneneen 86

5.5 DIESIGN (DBEA). ... vveveaerereseesreteie ettt st b et s bt e b es e R b e R b e R R R R R R R AR R R R R R R R R R Rt R bt n e 87

5.5.1 EVENE DALA (FOF TOSTING). ... ettteuieteietirteeete ettt sttt sttt b et b et b etk b e b e b e e e b2 b e st ek e e e b e e b e Rt e b e b e bt eb e st e b e e e bt et eneabe e ebenaeneanen 87

5.5.2 Master Data (for the High-SPEEA FIEI)......cc.ciiuiiiiieiiet ettt s b bbb e ettt e bt et bebe st neebe b nennan 87
5.5.2.1 FOIMAL OF MASTET DALA.......veuieiteteriieteietreet ettt bbb bbb b bt bbbt b b st bbbt bbb 88

LRI B T = Vol L1 O T OSSPSR 88
5.5.3.1 Terracotta Cache COMPALIDIE FOMMALS.........c.oiiiiiiiiiiee ettt b e et b bbb bbbt sn e nean 88

5.5.4 Relational Datahase (RDB).......c.ciiieiiiieieiisieiitesi ettt te st s st e s e be e ebe st e e e be s ebe et e seeb e s ete s b e e ebe b e b e s bessebe b esesbensebessenenein 89
5.5.4.1 SUPPOIted RDB TaDIE FOIMALS.c.eiiieiieiiiiieieiset ekttt bbbttt n et nn b 90

5.6 Design (Collaboration APPIICALION).........ciiiieeiei ettt e et et e e s e et et ebese e s e b e se et e sbe s e ebe e ebeebe st ebe et ebesbeneeteneaneas 90

5.6.1 Designing an EVent SENAEr APPHCALION.ccuoviiiieriieiei ettt sttt ettt ettt es e st e et et b st e bt ne e e 90

5.6.2 Designing a USer-adeVelopea WED SEIVICE.c.ciiiiiiiieieee ettt eb ettt b et b ettt b ettt b et 91
5.6.3 Designing @ USer-aeVelOPEa JAVA ClaSS..........cuiveiiuiiiiieiiiieti et stea ettt st esesae st te s b e saabe st etesbeseebe st ete st e s etesbesesbessatessenensen 92
5.6.4 Designing an Event Log AnalysisS APPIICALION.ciiiiieiieic ettt 93
5.6.4.1 Output Destination and File FOrmat 0f an EVENT LOG........cociiiiiirieiieeesees et 93
5.6.5 Designing @ TerraCotta APPIHCALION.cviviuiiirirteerieieie ettt ettt et b et b ettt s et bbbttt bt n e
B 7 IMIPIEIMENTALION. ...ttt bbb bbbt E bt £ b b h e b £ b kR e b bR b E R bRt R bt bbb
5.7.1 Creating a Definition File
5.7.1.1 Creating an Event Type Definition File.....
5.7.1.2 Creating a Rule Definition File........
5.7.1.2.1 DEDUG 10G HISTENET ...ttt bbb b bbbt b bbb bttt b et b bbb
5.7.1.3 Creating @ Master DefiNITION FIl..........ciiiiiiee ettt ettt sttt b b e e b e b e
5.7.1.4 Creating an RDB Reference Definition File...........coiiiiiiiiieiiee ettt
5.7.1.5 Creating a SOAP Listener DefiNItioN FilB........ccciiiiiiiiiiiieieiet ettt b et bbb re b e enn
5.7.2 PIEPANNG DAc.eiieetiiieieet ettt bbbt bR bR R R R R R R R R e R bbbt
5.7.2.1 Preparing EVENt Data (fOr TESTING)......cvteruruirieieieieeiste ettt sttt b et b st st b et et et et e b e bt st e e st e e enesbe e enen
5.7.2.2 Preparing Master Data (for the High-SPEed FIlEI).........ccviiiiiiiiiiii ettt st ne
5.7.2.3 Preparing Data to be Stored in @ TerraCotta CACE.ccoviviuiiiiiiiiciieie e
5.7.2.4 Preparing a relational datahase...........coviereiriiieiiecis ettt r ettt
5.7.3 Implementing a Collaboration APPIICALION. ..ottt sttt b et b bbb enas
5.7.3.1 Implementing an Event Sender Application......
5.7.3.2 Implementing a User-developed Web Service.....
5.7.3.2.1 Web service implementation procedure............cccceevvererernnne.
5.7.3.3 Implementing a User-developed Java Class (Custom Listener)
5.7.3.3.1 CUSIOMLISIENET INTEITACE.cvitiiiieieicie ettt
5.7.3.3.2 CUSTOM 10011ttt h ekt e bR e R b bR b e Rt R bt b bt nn bt n et na
5.7.3.3.3 COMPIIALION. ...ttt btk bbbt b e bRt H e b e e E e R £ e b e R e bt ee 2R e e b e e e b e sa e st e b e e eb e sb et ebeneebeebe e enan
5.7.3.4 Implementing an Event Log Analysis APPICALION..........cccciiiiiiiiieiic ettt e re s
5.7.3.5 Implementing @ Terracotta APPICATION.couiiiereirisieiei et bbbttt
5.8 DEPIOYING DEVEIOPMENT ASSEES.vveveriireireririsreteie ettt s et e st beE et e b bt e R Rt s e b bt e ekt e b bt nn bt n bt
5.8.1 Deploying Definition INFOMMELION.cciiiiiiiiiti ettt bbb e bt st e b e e bt s b e e b e neebe et
LRSI o o)V To [T T - USRS RSRTSRN
5.8.3 Deploying a Collaboration APPIICALION.........cvoiiieiireer bbbttt
5.9 Integration TeSt.......ccoevrerrenieireiee e
5.9.1 Integration Test Flow.........
5.9.2 Checking an Engine Log...
5.0.3 STATING. c. vttt h e bR R R R R R R R R R SRR R R R Rt R R e R Rt E Rtk
5.9.3.1 Checking the Status of a User-developed WED SEIVICE..........ccci i e e
5.9.3.2 Starting the CEP ENQINE.....cviiiiciiiictiiee sttt ettt ettt sttt e e se st e s e e b e e e b e st e e e b e seebeebe s ebe st esa et e e ebe st etesbessatenbeneas
5.9.3.3 Checking for Syntax Errors in FIIEr RUIES..........cvoiiiiiiiitiece ettt
5.9.3.4 Checking for Syntax Errors in Complex Event Processing RUIES.........ccoireiriiiineenseeisee s 110
5.9.4 INEEGIATION TESL. ..ttt ettt sttt sttt b et b bbb e bt b e e e b e b e s £ b e b e b e e b e s £ e b e e e b e e Ees £ e b e e eh £ e E oA £ e b e e e hd ek e s e e b e ebeb e e b e e bt st eseebe e ens 111
5.9.4.1 Sending EVENT Data fOr TESTING.....cviiiieiieiitiitet sttt ettt ettt sttt b e s et e st et e b e s et e s ebessesesbe e ebeseeseebeseans 111
5.9.4.2 Checking the Operation Of FIlter RUIES.........cooiiiiecc bbb 112
5.9.4.3 Checking the Operation of Complex Event Processing RUIES...........couiiriroiieeeee e 112
5.9.4.4 Checking the Operation of a User-developed Web Service
5.9.4.5 Checking the Operation of a User-developed Java Class.......
5.9.4.6 Checking the EVENT LOG.......co it
5.9.4.7 Checking the Operation of an Event Log Analysis Application
LIRS TSR (0] o] o113 o OO RS UEO USRS
5.9.5.1 Stopping an Event SENder APPIICALION.ciiiiiiiirice bbbttt
5.9.5.2 StOPPING the CEP ENQINE. ... ecuiieiiitiieiiiteeeee ettt sttt sttt e s et et et e et e st st e e et e e be st et e e ebeebensaE e s eneabensabesseneebensaneneeneen
5.9.6 COrreCting DEVEIOPMENT ASSELS......c.eiuiiiiirteiiiterieteste sttt sttt b et e bt b a et e e s e e b eae e b e e ehe s b e s e eb e e e bt e b e s e e bt nb e bt e b et e b e b et e ebe e aten
5.10 UNAEploying DeVEIOPMENT ASSEIS.iiteiiriieriitesietistee st test ettt e seste s ebe e e seste s e ebe s e sesbe e ebe s eseebe s ebesbese et e s ete st ese et ensetessenessensans
5.10.1 Undeploying Definition INFOrMALIONS.ccoiiiiiiiiiieisie ekttt n bbb
5.10.2 Undeploying a Collaboration APPIICALION.ouiiiiiiiieee ettt b ettt b et re e e s e e e e
LSRG RC BT=] [o I 7 OO
oINS Vo T o] Y o] o] 1T LA o o OSSPSR

5.11.1 Overview Of the SampPle APPIICALION.c.iiiie bbbttt bbbt b et b b e ens 116

5.11.2 SErUCLUIE OF the SAMPIE.....c.ociiii ittt b e bbb s be b et e e b e st e be b e s e st e st ebe b ese st e st ebesaes e s beseabessens 117

DL LT3 EVBNES. ..ottt R R R R R R R R R RS R R R R R R R Rt R r Rt Rt Rt et e n s 118
5.11.3.1 LoCation INFOrMALION EVENTS.........coiiiieiiiieteieie ittt et b et sb et b et b e s b etk e b e b e e b et ek et eb e st et sbennene 118
5.11.3.2 COUPON EVEBNTS. ...ttt etttk ettt bbbt b h b £ b8t e bt e h b h et e b e e b e e bt e bt e b et e bt b e bt e b e e et e b ene 118
5.11.3.3 Filtered Location INFOrmMation EVENTS..........cciiiiiiiiieiieie bbbttt 119
5.11.3.4 Filtered Coupon EVENtS..........ccceovreirevnerinnenene,

5.11.4 Master Information...........c.cccceevrueneee
5.11.4.1 Member Information Master
5.11.4.2 StOre INFOrMALION IMIASTETc.euiiiteiiiietcie ittt b bbbt b et b bt bbbt nn bbbt

5.11.5 RUIE DBFINITION. ...ttt ettt bttt e bt e e ae e e e e e a e e e e a e e b e 2 eRese e s e e Rt eEeR e e b e e ebeeeeheebeneebeebeneebeneebeebeneanan
5.11.5.1 Filter RUIES (IF-THEN FOIMAL).......ciiiiiieiiteieesieeste ettt bbbttt b et b et b e bttt be et nbene 120
5.11.5.2 Complex Event Processing RUIES (SQL FOIMAL)........cocviiiiiiiiiieiiiiee ettt sb et re s se et sbere st a e ssenens 121

5.11.6 EVENt SENAEr SAMPIE PrOGIAM.......iuiuiiiretiiiiiiteteisist ettt b etk e bbbkttt b bbbt e bt et 122

5.11.7 DIFECEOIY STFUCTUIE. eeteiteieeterietest ettt ettt b et e et eb st et e b e s e e e a e e bt e e ehesE e e e b€ e e eh e e b e e e bt ee e R £ 4Rt e e e b e e b e e e bt e b eb e eb et eb e e b e b e e b et ebeebeneaban 124

B8 EXECULION. ...ttt ettt ettt b bbb bbb b E b E b b h b b eh b b eh e h bbb E bR bbb bbb bbb bbbk b R bbb nrn s 124
5.11.8.1 Deploying DEVEIOPMENT ASSELS......cviueueriiiteiesireetetiest ettt se ettt e bbb bbbkt b bbbk s et bbbt e bt e e anas 124
5.11.8.2 Starting the CEP ENQINE.......c.coviieiiiiiieeisieee et b et h et a bbbt e n et n b s 125
5.11.8.3 Sending Events and ChecKing the RESUILS. ..ottt 125
5.11.8.4 Stopping the CEP Engine.........cccceevvervennnne
5.11.8.5 Undeploying Development Assets

Chapter 6 Operation and MaiNTENANCE.ciiiiiiie e et e e e et e e e st e e e e s st eeaeaassbereaaeeastbaeeaessasssasaaesaasssseaeesanssraeeeesansres 128
6.1 OPErating the CEP SEIVET ..ottt bbbt bbbt b b bt b e e e b e e Eeh e e b e e e bt ee e R e bt b ehenb e s e e b e b eb e eb e e bt st e s e ebe e e 128

6.1.1 Starting the CollabOration SYSTEIM.........ccviiiiieiiiieeitei ettt e b st e et et be s b e e e b e b e tesbeseebe s ebesbessete b esesbensabesnenesrensans 128

6.1.2 STArtING the CEP SEIVICE.....eiiieieiiiiecteiiii ettt b bbbt e bbb st bbbt b bt h ekt ne bt n bt nn e 128

6.1.3 Deploying and Undeploying Definition INFOrMAtION..........cc.oiiiiiii e 129
6.1.3.1 Deploying Definition INFOrMATION..........cciiuiiiiiici ettt b et b be bt be s neerene e 129
6.1.3.2 Checking Deployed Definition INfOIMELION.........couoiiiiiricee e 130
6.1.3.3 Updating Deployed Definition INFOIMELION.cooriiriiiiit e 131
6.1.3.4 Undeploying Definition INFOMMEALION...........coiiiiiiiieiic ettt ettt st et st 131

6.1.4 Starting the CEP Engine..................

6.1.5 TYPICAI OPEIALION TASKS.eivetiuiiititiirietet stttk b bbb bbbt b bt bbb bbbt e bbb
6.1.5.1 Displaying the Operation Status 0f the CEP SEIVICE..........coeiiiiiiiieie ettt 133
6.1.5.2 Displaying the Operation Status of the CEP ENQINE..........ccoiiiiiiiiiieie e 133
6.1.5.3 Monitoring AbNOrMAlItIES USING LOGS.....iueviirieiiieiietisieistesiee st e st e sttt st e et te b seste s abe b e st s be s esessessebe s asessessaneseens 134
6.1.5.4 Checking the Resource Usage 0f the CEP ENQINE........ccioiiiiiriieiceeeee et 135
6.1.5.5 Dynamically Changing Rule Definitions and Master Data............cccoeereriiirieiereieesie et 138
6.1.5.6 StOriNG the CUSTOM LOG. ... ceiieiitiiieiiiteieiste ettt ettt ettt et e b e b e st e be s e s e st essebe s enesbe e ebesseseebe e ebesbeseabessetenberens 139

6.1.6 STOPPING the CEP ENGINE.....etiiiiitetiiiisiet ettt bbbt h bk e bbb bt e bbb bbb bt ne bttt 139

6.1.7 STOPPING thE CEP SEIVICE.c.tiireiieiieititeest ettt s f e b bt e b bt e R h et b bt n ekt nn et 140

6.1.8 Stopping the CollabOration SYSTEIM........coi ittt b e bbb e bbb e st e bbbt st ettt et eebe e b 140

ST 1= ot U 4 SRRSO 140

6.2.1 OPEIALION IMOUEL......eeeeietete et b bt £ E b e b bt e bkttt b bbb bt e bt nn bt e 140

6.2.2 Prerequisite Knowledge for Designing Security...... OSSPSR 141

6.2.3 Designing Security for BDCEP et 142

8.3 IMIAINTEINANCE. ...ttt bbb bbbk bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbbt n s143

6.3.1 Collecting Data for Investigation When a Problem OCCUIS...........viirriieinneiseee et 143

6.3.2 BACKUP AN RESTOE. ... ettt b etk bbbtk e bbb et e b e b e b £ e b e Rt e b e H e Rt e e e R e e b e e b e he e b e st e bt nbebe e b et e benb et e abe e atas 143
6.3.2.1 BACKUP PIOCEAUIE......c.ectiiitictiiete ettt ettt bt s b et et st et e e b et e ke b et e e b e b e be b es e et et ebe st ess et e b ebe st ensebe s enenrenens 144
5.3.2.2 RESEOIE PTrOCEUUIE.euietetiiiteteit sttt ettt bkt bbb kbt e b b e bbb bt e b bt bbbt e bbbt e bttt 145

6.3.3 APPIYING UPUALES.eceieieieeteite etttk h et bbb bt E bRt e bRt R e n s 147

(TR I B U011 To OO SO PO 148
6.3.4.1 TUNING JVIM OPTIONS. .. .ctiiteiiitiieestei ettt sttt te st e st s st s s e be b e se st e st e be e ese s s e s e e b e s e s e et e e e b e se e s e ebese et e s b e s e abe e ebe st ereebessatenbeneas 148
6.3.4.2 TUNING FIlE DESCIIPLOIS. ... vttt ettt b bbb bt e bRkt b bt b bt e bkt b s 150
6.3.4.3 TUNING TTACE LOUS. ..+uetteeutrteeeterteseateseetesteeeteseetesteseeseseesesaeseeteaseseaee e eseeseseab e e eReeeenteEe s eReeeensaEeaeee e eeensabeneenesae e aneseeneaaeneanis 151

Chapter 7 EXtended SYSLEIM OPEIALIONS.uvtiirite ittt ettt ettt sb e et bt e e rab e e s b et e e as e et e sabe e e s abb e e e asbe e e sane e e s b reeeanneeenanes 154

- Vii -

7.1 SCalADIE SYSLEIM OPEIALIONS.cutitiieterteiietet ettt sttt b e a et b et h b e s eb e s e e b e e b e e b e e b e e b e e eb e b e b e b e e e b e b e bt et et et et en e et e
7.1.1 Scaleout Of COMPIEX EVENT PrOCESSING. .. .iveveviiteriitiieresiesistitetesteststestese s et s tesaesesseseabeseesessesaabe s esesbesaebessesaabeseasessesesbenserensenens
7.1.2 Scaleout Using Terracotta COADOTATION.c.eviiveeeiriiieieiret ettt b et

7.2 Operating a Highly Reliable System Using PRIMECLUSTER.........c.couiiiiiiiieicre e
7.2.1 Overview Of Reliable SYStEM OPEIALIONS.ciiiiieteiristeiert sttt ettt sttt ettt b bttt e n b
7.2.2 CIUSEEr SEIVICE CONTIGUIATION.etiuieiiteteirtet etttk bbbttt bkt e bbb e bttt
7.2.3 Building a Cluster Service Environment....
7.2.4 OPEIatiNg @ CHUSTEI SEIVICE. ... vt itiietiiteiieie ettt b et b et b e s e e bt b e e e b e e b e Rt b e e e b e b e bt e b e b e bt s b e Rt ebe b e b e nben e ebe s eneneenees

Chapter 8 COMMANT RETEIENCE. ittt e e e et e e e e e sttt et e e e e mbae e e e e e sannbeeeeeeeannsneeeeeaansaeeaaaean 159
8.1 COPCONIECLINTO. ...ttt b b e bbb e bk R bR £ bbb h R bRt n b 159
I A o=l o Lol 01 110 oo OSSOSO 160
SRR ot=To o [=Ta] [0 £ RO OO ST TSRO P PSR 163
SR o=t oo 1T 01T o TR OSSPSR TSRO PRTR 166
8.5 CBPUISPSEIV. ...tttk b bbb b bR R R R R bR R R R R R R R R R R R R Rt R Rt e bbb e bt n bt 170
LS CR =T o o [=1 11702 To] oL SO OO OO 173
8.7 cepgetrsc...........

8.8 cepsetjvmopt
8.9 cepstarteng........
8.10 cepstartserv
ST et o1 (0] o LT 0o OO OSSP PPRRPIN
ST o1=T L (o] 011 YOS RT ST SPT ST
ST ot=T o TUT g0 (=T o] [0)Y/] oSSR 185

Chapter 9 Definition File REFEIENCE.vi ittt e s e e st e e e e st eesnne e nnnees
9.1 DEfiNING @ CEP ENQINE.....iitiitiiiitiiietiiteisti ettt ettt bt be b et e e b et e be s b e st e ket et e e b e s s et e b e st esen s e b e b ene et e ss e b et eneabe e ese st eneabeneenes
9.1.1 ENGINE CONTIGUIALTION FHIB.......viteiiiiicteiii etk e bbbt bbb bbbt b bt nn b eb e
9.2 DEfINING DEVEIOPMENT ASSELS.......ueeeierteiieterteterteeetes e st steseeseseeeebeseesesae e ebesseseabe e ebeseeseebeseeb e ebebeabeeeebeebeseebe s ebeebe st abe b ebesbeneabeeanens
9.2.1 Event Type Definition File....
9.2.2 Rule Definition File...............
9.2.3 Master Definition File..................
9.2.4 RDB Reference Definition File
9.2.5 SOAP LiStener DEfINITION FIlE........c.ciiiiiiiiiiiici sttt
9.3 Setup Files for Terracotta COlADOTAtION.c.coiiiiiiie bbbttt
9.3.1 Terracotta Cache CONFIGUIATION FIlB.........oiuiiiiieeieeee ettt et b et b e b e e b e e e bt et et be e ebesae e enan
9.3.2 Terracotta Collaboration SEIUP FIlE........c.ciiiiiiiiee ettt b bbbt et b e et nnenea
9.4 Setup File FOr RDB CoOllaDOTatiON.cc.iiiiiieiiitiieesiei ettt b et b e e be s b e s e e b et e b e sb e e e be st et e ebe e ebe st e s e sbeseatenbaneas
9.4.1 RDB COllabOration SELUD FlE.......cviviiiiiiiiieieii ettt bbbkt et n bt
9.5 Setting UP FOF INSTAITALION.uieiei e b et b et bbbt b e b e bt e b et e bt b e n e e b e b eb e et en e b e e e bt sb e e e be e neee
9.5 1 INSLAHALION FlE.......iiiiiiiiiiiititeiitit ettt bbb b bbb bbb bbb bbb bbb bbb b bbb bbb bbb bbb nr b
9.6 Characters Allowed in Item, Tag and ALrDULE NGMES........ciiiiiiiiiiiii ettt re sttt e et tesseneseeneens
9.6.1 For High-Speed Filter Rules and Master Definitions
9.6.2 For Complex Event Processing Rules
9.7 CSV FOIMAL SUPPOITE.veviuiitiieieitei ettt ettt a et st b et e se s b e e e b e s e be e b e e e b e b e beebe s e e b e b e b et e st et e b ese e b ens e ket es e e bensebessensatensebesnenes

(€1 (01T T Y PP PTP P PUPPPPRN 211

- viii -

IChapter 1 Overview

This chapter provides an overview of the features provided by Interstage Big Data Complex Event Processing Server (hereafter referred
to as "BDCEP").

1.1 What is Interstage Big Data Complex Event Processing Server?

BDCEP is software that analyzes and assesses massive volumes of event data in real time.

In recent years, there has been a growing demand from companies wanting to use ever-changing event data generated in massive volumes,
such as location information sent from smart phones and machines' operation logs, in order to leverage their business activities.

The need to process these kinds of event data in real time has drawn attention to the CEP (Complex Event Processing) technique, which
analyzes and assesses massive volumes of data with faster response times than ever before.

BDCEP includes a high-performance complex event processing engine (hereafter referred to as the "high-performance CEP engine™)
which integrates a unique high-speed filter processing technique with the complex event processing technique so suitable for processing
massive volumes of event data. This engine provides enhanced processing performance and convenience to support real-time use of
massive volumes of event data in corporate systems.

Some scenarios for using BDCEP are described below.

Provide real-time services by utilizing location information

BDCEP allows high-speed matching of real-time customer location information with information registered in the master data, such as
customer information and store information. This allows companies to instantly provide services to suit the attributes of customers, such
as "provide store coupons to people visiting the vicinity of a store, in real time".

Interstage Big Data
Complex Event Processing Server

Rules to match customer information
and store information to event data

! T
Customer 1D
|

location High-performance CEP engine -
Location information 2 4
information e * e
igh-s peed matching r] '\I
input event [o ITTEEEI T] information abodt
\ y stores in the vidnity

L -

Customer ID and event data,
induding cumrent location
information of the user

Master database

Customer Store
information information

Improve service by monitoring the operation status of sold products

BDCEP allows real-time monitoring the fault prediction of hardware sold to customers, by collecting the operation logs of hardware. This
enhances machine availability by allowing preventive maintenance to be performed, which previously may have been impossible in
periodic maintenance due to cost or other factors.

The operation logs collected by BDCEP can also be accumulated and analyzed in a Hadoop system, which allows the detection of more
refined prediction patterns. Reflecting these patterns in the complex event processing rules allows the implementation of more efficient
maintenance services.

Interstage Big Data
Complex Event Processing Senver

Rules to forecast machine failure I

|

maonitaring
High-performance CEP engine i m '

Realtime

Cperation log

Input event

[Streamlined maintenann:e]

Cperation log

Hadoop system
|

Feflect detected
patterns in rules

| Analyze accumulated
aperation logs

Detect forecast patterns
including failures

1.2 Product Features

This section explains the features of BDCEP, which include the following:

- High-performance CEP Engine
- Simple Rule Description

- Simple Collaboration with External Systems

1.2.1 High-performance CEP Engine

The inclusion of the high-performance CEP engine allows massive volumes of event processing by one server.

In conventional complex event processing products, performance dramatically declines if massive volumes of data are accessed in external
master data. To overcome that and ensure performance, multiple servers are provided to distribute processing.

BDCEP uses the unique technique of high-speed filters to allow high-speed matching of input events with master data.

This results in substantially improved performance compared with the conventional complex event processing engine, and allows the
required number of events to be processed by one server, with no decline in performance.

Figure 1.1 Comparison when massive volumes of events are processed

Complex event processing praducts Interstage Big Data
Complex Event Processing Server

Input event CEF engine Performance
(for area A) degradation

f .

CEP engine
(for area B)

:_Lllh _’

High-perfomance
CEP engine
(for areas Ato O)

Input event

Master
High-speed filter —

CEP engine}
(for area O

Multiple servers required to
distribute processing

Can be processed by single server

1.2.2 Simple Rule Description

Rules must be set in advance in order to execute complex event processing.

BDCEP uses the two description formats below in order to allow rule definitions to be created in a flexible way, according to their purpose.

SQL-type format

This format is based on the database query language SQL.

It is suitable for rules with complex conditional branching or event matching processes.
IF-THEN-type format

This format uses the "IF (condition) THEN (process)" structure.

It is suitable for rules that are simpler and easier to understand than SQL-type ones - for example, rules that describe processes such
as event filtering, or matching and joining events with master data.

This format also allows simple description of processes that, in conventional SQL-type format, tend to become large and complex,
since they need to avoid performance degradation that might be caused by costly join operations.

Figure 1.2 Comparison between an SQL-type rule and an IF-THEN-type rule describing a join with master

data
SQL-type rule IF-THEHN-type rule
inwert into 3Z select % from Ili{3tatus="Walkimng™): om 31 [
inmert into 33 select =sZ.ID, =Z.Area, dl.Age join("Member”, 5I0—SmemberID),
from 22 a= =2, =gl:MemberDE [join("Jcore”, SArea—fSstorehreal):
'melect Bge from Member if (52 tatus == "HWalking™ AND SMember Age == "3f0="
wherse menberID=5{=Z ID}'] a= 4l: AHD 5%tore . storelum > 0] then
inmert into 34 select * from S3(Age="30="): output (51D, $SArea, 53tore.storelum,
inmeart into 25 =sel=ct =4.I0, =4 Area, 4I.s=torelum, STtore. storelist)] a= FE;] .\f:?
dZ.storelist
from 24 a=x =4, =gl:ZtorelE[J‘
'melert storelum, =torelist from Store "
wherse storelreg=5(=4 Area]l’] a= 4I: i
in=mert into ZE€ =select * from SS5i{=toceBum > 0): F

Large and complex in order to . .
avoid performance degradation L LR T

1.2.3 Simple Collaboration with External Systems

1.2.3.1 Distributed Cache Collaboration (Terracotta Collaboration)

BDCEP can access data in a distributed cache stored in the in-memory data management software Interstage Terracotta BigMemory Max
(hereafter referred to as Terracotta)(*1).

This allows external data to be referenced more rapidly than a relational database (RDB). It also enables cache data to be added, updated,
or deleted when an event occurs.

ﬂ Information

=

© 0 000S0

(*1) Interstage Terracotta BigMemory Max

This is in-memory data management software that manages a terabyte or more of business data in server memory and enables ultra high-
speed and stable access to business data.

©©00S ee00000000000 0

Figure 1.3 Terracotta collaboration (1)

Input event
t.
- =| _ — High-performance CEP engine
—, 0, Terracotta
' — collaboration

Faster data referencing than
by referencing an RDB

Interstage Terracotta BighMemony Max

Figure 1.4 Terracotta collaboration (2)

Input event

Gl |y — High-performance CEP engine .

==, %, Ter e ;
— collaboration

Can add, update, and delete

Interstage Terracotta BigMemony Max

1.2.3.2 Hadoop Collaboration

Collaboration with a Hadoop system allows input events and events output by complex event processing to be accumulated in a Hadoop
server.

Analysis and processing of the accumulated events by the Hadoop system allows long-term trend analysis of the events, and this can be
harnessed for purposes that include business improvement and developing more accurate rules.

The Big Data analysis utilization software known as Interstage Big Data Parallel Processing Server (hereafter, referred to as "BDPP" -
see information below) can be used in a Hadoop system.

_ﬂ| Information

© © 0000000000000 00OCOCOCOCOCEOCEOEE

Based on Apache Hadoop, Interstage Big Data Parallel Processing Server is a Big Data support software on corporate systems that integrates
Fujitsu proprietary techniques to further improve processing performance and reliability.

© ©000O0O0COCOCOCOCOCIOCIOCOCIOCIOCIOCOCIOCOCIOCI0CI0CI0CI0CI0COCI0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEECTS

Figure 1.5 Hadoop collaboration

Interstage Big Data
Complex Event Processing Senver

Reflectin rules,
mare accurate
forecast

[|IF-THEM-type format + SCQL-type format]

Input event

=

Analyze/process

*1: Interstage Big Data Parallel Processing Server

1.3 Overview of Features Provided

This section provides an overview of the features provided by BDCEP (refer to "Chapter 2 Features Provided" for information on each
one).

Figure 1.6 List of features provided

e CEP Server Definition information -
e Rule deﬁn'rtiun ‘J ,

event
processing SOAP

o SOAP
Ewent sender system HTTP

Application server

Socket

{even? se!'ider = (User-developed
application) Web =ervices)

Interstage Big Data Interstage Terracotta
Parallel Processing Server BigMemory Max

1.3.1 Features of the CEP Engine

Input adapter

Provides three communication methods: SOAP, HTTP, and Socket.
It can connect with input sources such as sensors, smartphones, and SOA systems.
Logging (Hadoop collaboration)
Allows input events and events output by complex event processing to be recorded.
When developing rules, the output destination of logging can be a Hadoop system (Hadoop collaboration), or a CEP Server.

Outputting a log to a Hadoop system allows events to be analyzed in it, and this can be harnessed in monitoring event trends and adding
or modifying rules.

High-speed filter

Allows input events to be processed rapidly with the pre-registration of a "rule definition™ that describes how to filter input events and
perform high-speed matching of events with master data.

Complex event processing

Allows continuously generated events to be analyzed and assessed in real time with the pre-registration of a "rule definition™ that
describes detection patterns for input events.

External data access
Allows external data to be referenced from complex event processing.
Terracotta collaboration

Allows cache data stored in Terracotta to be referenced as external data. It also enables cache data to be added, updated, or deleted
when an event occurs.

RDB collaboration
Allows data registered in a relational database to be referenced as external data.
Output adapter

Allows events output by complex event processing to be sent to a user-developed Web service by using the SOAP listener, and to be
processed by a user-developed Java class by using the custom listener.

There are also the logging listener (which can be used to store the events output by complex event processing in a Hadoop system),
and the debug log listener (which can be used to output the results of complex event processing to a log, for debugging purposes).

1.3.2 Features for Development and Operating Environments

Operation commands

BDCEP provides commands that perform various operations on the CEP engine.

1.3.3 Features for Status Monitoring

Resource log output

This feature logs the CEP engine's resource usage, such as the amount of memory used and the number of input-output events.

The resource log can be used to harness this information in operation and maintenance applications for BDCEP, such as tuning.

1.4 What is Complex Event Processing?

This section explains complex event processing.

1.4.1 Complex Event Processing

Complex event processing is a technique that analyzes and assesses continuously sent massive volumes of events rapidly and in real time,
according to pre-defined rules.

Figure 1.7 Overview of the Complex Event Processing

Changing It . ' l e Respond

based on

cenditions . [Analyze and assess *. conditions -
in a real-time
Input event event-driven fashion Mavigation
4
e Prus&ing SE —
S Ft — P
=D
[Rules
L >
CEP engine

Complex event processing has the following features:

Real-time processing

In complex event processing, data input from outside is processed in memory as it is, so massive volumes of input data can be processed
more rapidly.

As a result, a response can be returned immediately even in ever-changing conditions.

Generally speaking, the throughput and latency (see information below) that can be achieved using complex event processing are as
follows:

- Throughput based on rules: Several tens of thousands to several million events/second

- Processing latency: Several microseconds to several milliseconds

'_ﬂ| Information

No program development required
The kinds of input events and processes to be processed by complex event processing are described in rules.
No particular program development is required.

By simply changing a rule, you can change the processing content (in order to change the event pattern to be detected, for example).

|Chapter 2 Features Provided

This chapter explains the features provided by Interstage Big Data Complex Event Processing Server (hereafter referred to as "BDCEP").

The features are as follows:
- Main features
- Input adapter
- Logging
High-speed filter

- Complex event processing

External data access
- Output adapter

- Operation features
- Operation commands
- Engine log
- Resource log

- Cluster service

2.1 Input Adapter

The input adapter is a feature that receives events sent from input sources such as sensors, smartphones, and SOA systems.

BDCEP provides the following three input adapters:
- SOAP adapter
- HTTP adapter

- Socket adapter

Figure 2.1 Example of the input adapter

Input event / CEP engine \

g Input adapter]_

I

X | | High-speed Cormples
y SOAP I_ — filter event
Web page processing
|
) =1 B
Smarnphone

| Socket —_—

Other j

Event senderapplication

2.1.1 SOAP Adapter

Feature details
The SOAP adapter allows SOAP messages to be received using SOAP communication.

The SOAP adapter extracts event data in XML or CSV format from the received SOAP messages and passes it to the high-speed filter.
Usage scenario

The SOAP adapter is used if event data is to be received from a system that allows SOAP communication, such as an SOA system.

Refer to Chapter 3, "Input Adapter Reference" in the Developer's Reference for examples of SOAP messages and for samples of event
sender applications.

2.1.2 HTTP Adapter

Feature details
The HTTP adapter allows HTTP requests to be received using HTTP communication.
The HTTP adapter extracts event data in XML or CSV format from the received HTTP requests and passes it to the high-speed filter.

It allows communication that is more lightweight than SOAP communication.
Usage scenario

The HTTP adapter is used if the event sender application is a Web application, or for smartphones.

Refer to Chapter 3, "Input Adapter Reference" in the Developer's Referencefor information on setting request headers and also for samples
of event sender applications.

2.1.3 Socket Adapter

Feature details
The socket adapter allows massive volumes of events to be received at high speed using a communication protocol unique to BDCEP.

The socket adapter passes the received events to high-speed filter processing.

Usage scenario

The socket adapter is used if massive volumes of events need to be processed using high throughput.

Refer to Chapter 3, "Input Adapter Reference" in the Developer's Reference for protocol details and also for samples of event sender
applications.

2.2 Logging

Logging is a feature that records, as a log, events received from the input adapter prior to high-speed filter processing or events that are
the output results of complex event processing.

An Interstage Big Data Parallel Processing Server (Hadoop collaboration) or a CEP Server can be selected as the destination for recording
events.

Recording in an Interstage Big Data Parallel Processing Server (Hadoop collaboration)

This selection records events in an event log to be generated in the Interstage Big Data Parallel Processing Server (hereafter, referred to
as "BDPP").

-10 -

Accumulation, analysis, and processing of the event log can be performed in the BDPP.

The analysis results of the event log can be used for improving the accuracy of the complex event processing rules.

Recording in a CEP Server

This selection records events in the engine log of a CEP Server. The engine log can be used for purposes such as checking event reception
and checking rule operation when rules are being developed.

Figure 2.2 Logging

CEFP Server

(" CEP engine A

Complex
event
processing

[nput
adapter

Catput
adapter

[nput event

Logoging

Hadoop
collaboration

Event
log

,f’

Enginelog |

Interstage Big Data
Parallel Processing Server

Select the destination for recording events according to your objective.

Refer to "5.6.4.1 Output Destination and File Format of an Event Log" for information such as the output destination of the event log.

& Note

To use Hadoop collaboration, BDPP must be installed separately.

2.3 High-speed Filter

The high-speed filter is a feature that allows the “extraction process of input events" and "join processing of input events with master data"
to be performed at high speed.

Events output by the high-speed filter become input events for complex event processing.

This section explains the filter rules used by the high-speed filter as well as the master data (files in which data from the master database
is stored in CSV format).

2.3.1 Filter Rules

Filter rules define how the "extraction process of events" and "join processing of events with master data" are to be performed.

Input events passed from the input adapter to the high-speed filter are processed based on the filter rules that have been defined.

Filter rules are described using IF-THEN-type format.

Refer to Chapter 2, "Filter Rule Language Reference" in the Developer's Reference for information on filter rules.

-11 -

Typical processes that are performed using filter rules are as follows:

Extraction process of input events

Only events that match the conditions specified as filter rules are extracted from input events and passed to Complex Event Processing.

Extraction process using master data matching

The master data is matched based on the contents of input events, and input events are extracted in accordance with the matched value in
the master data.

The master data is used only as conditions for the extraction process, and join processing with input events will not be performed.

Join processing with master data
Input events and pre-registered master data are joined and passed to Complex Event Processing.

The extraction process can also be performed on the join results.

Figure 2.3 Example of join processing with master data

Filter rules

Joinmaster data that matches to input event itern " key"

Input event AEP engine \

High-speed filter Event B-1 Carmplex
Event: A-1 ke%_.r=1. event
key=1 processing

ﬁ\ address=Tuokyo
) Jain }
processing .
. Event: B-2
Event; A-2 - kev=5

key=5 address=Csaka

haster data

Event: A-3 key | address Even}:DEI-S
key=10 By=
= ! Tokyo address=Fukuoks
a Csaka
10 Fukuoka

o y,

Weighting processing of text

The text contained in input events is weighted using specific keywords that appear in the text.

This processing allows the extraction of only those events with a total weight that exceeds the threshold, and also to detect those events
that are consecutively received if used with complex event processing.

2.3.2 Master Data

The master data refers to the files in which data from the master database is stored in CSV format.

The master data is used as "join targets" or "extraction conditions of input events" that have been passed to the high-speed filter.

Refer to "5.5.2 Master Data (for the High-speed Filter)" for information on the master data.

-12 -

Qn Note

The master data is loaded in CEP engine memory when the CEP engine starts. Refer to "'3.3.1 Estimating Memory Usage" for information
on the required memory usage.

2.4 Complex Event Processing

Complex event processing is a feature that allows any event to be detected and allows "join processing between events" by using pre-
registered event processing rules.

This section explains the features in complex event processing.

2.4.1 Features of Complex Event Processing

Complex event processing receives events processed by the high-speed filter and then processes them according to complex event
processing rules.

It then passes the events that fall under the rules defined in complex event processing to the output adapter.
Refer to "2.6 Output Adapter" for information on the output adapter.
Complex event processing rules are described using the SQL-type format (complex event processing language).

Refer to Chapter 1, "Complex Event Processing Language Reference" in the Developer's Reference for information on complex event
processing language.

The items below are features of Complex Event Processing in BDCEP.

Matching between events

With matching between events, matching is performed between multiple items of event data input from the high-speed filter.

External data access
With external data access, Terracotta collaboration and RDB collaboration are used to allow external data to be referenced.
Complex event processing allows external data to be referenced just by defining rules.
Refer to "2.5.1 Terracotta Collaboration™ for details.

Refer to "2.5.2 RDB Collaboration" for details.

Join processing of cache data and input events
With complex event processing, input events can be retained in the memory cache (feature available in the window).
Join processing of the retained cache data with other input events is also possible.

The example below is an operation image of join processing.

-13-

Figure 2.4 Example of join processing of cache data and input events using a window

Complex event processing

Jaoin input event data and event data stored

in the window
((EEF' Engine \
Hiah- Complex event Cutput
speed Event &2 || Event: A-1 processing adapter Event AB-1
filter key=15 key=110 key=110
value=12 value=11 value=11
Join switch=on
Processin -
Event: B-4 Event: B-3 } Event: AB-2
key=13 key=12 Vindaow key=13
switch=0n switc h=aff value=11
switch=off
Retain as cache
\ Event: B-1 Event: B-2 }
key=10 key=1%
switch=on switch=off

g._z] Note

- Memory usage must be estimated according to the cache to be retained. Refer to "3.3.1 Estimating Memory Usage" for information
on the estimation method.

- If the CEP engine is stopped, the cache retained in memory will be deleted.

2.5 External Data Access

Complex Event Processing allows external data to be referenced using Terracotta collaboration or RDB collaboration. In addition,
Terracotta collaboration allows data to be added, updated, and deleted.

2.5.1 Terracotta Collaboration

A cache stored in external Interstage Terracotta BigMemory Max (hereafter referred to as "Terracotta") can be referenced as a named
window from the complex event processing of BDCEP. As data in the window is actually external to the system, this window is also called
a Virtual Data Window.

In the example below, a cache stored in Terracotta is referenced, and the referenced data is joined with input events and then passed to
the output adapter.

-14 -

Figure 2.5 Example of Terracotta collaboration (1)
Complex event processing rules

% Join Terracotta cache and input event
ﬁl-EF' engine -\
Hltgh-SDEEd Complexevent Output Event AB-1
lter Event A-1 processing adapter key=5
key=5 value=11

value=11 T address=0saka
— > Join _)
Event: A-2 ey 1Event: AB-2
key=10

keyv=10

= indow value=12
e e address=Fukuoka
Terracotta
collaboration
_ —)

Interstage Cache

Terracotta

BigMemory Max 1 address=Tokyo

(Terracotta) 5 address=Csaka

10 | address=Fukuokg

The following example retains input events in the Terracotta cache and joins the retained cache data to other input events.

Figure 2.6 Example of Terracotta collaboration (2)
Complex event processing rules

*Hold input event Bin the Terracotta cache

* Join Terracotta cache and input event &

/-CE P engine -\‘

High-spe Complex evant Output
fiter Event A2 || Event A-1 processing sdapter Event: AB-1
key=15 kay=10 kay=10
wvalue=12 value=11 value=11
|| Jgin "y switch=on
processing 3
Event: 5-4 Ewant: B-3 E‘VE I'I::EAE-IZ
kay=13 kay=12 al 1 wind 2y=
=witch=on switch=off - wi ¥'5|_UE=12
Terracotta switch=off
collaboration
i v
l,\ Hold the contents of event B in the cache _‘/J
Interstage Temacotts Cachs
BighMemory Max B
(Temacotta) key=10 switch=on

kay=15 | szwitch=off
k=y=6 switch=off

Refer to "4.4.3 Setup of Terracotta Collaboration" for information on how to set up Terracotta.

Refer to "5.4.4.3.3 Using Terracotta cache" for information on how to use a Terracotta cache from complex event processing.

-15-

g:{] Note

To use Terracotta collaboration, you must separately install Terracotta.

2.5.2 RDB Collaboration

You can reference RDB data from complex event processing provided by BDCEP.

Setting up the system to use a cache enables data to be referenced at a higher speed than when accessing a relational database each time.
Essentially, the key and result of a query that has been referenced once are saved in the cache, and when the relational database is
subsequently referenced using the same key, the data is obtained from the stored cache.

The following example references the data in a relational database, joins the referenced data to input events, and passes it to the output
adapter.

Figure 2.7 Example of RDB collaboration

Complex event processing rules

Join information registered in the
ROB and input event data

/CEF' engine

: Complex event Output Event: AB-1
H{g:—spe ed Event: A-1 processing adapter key=5
key=5 value=11

value=11 = address=0saka
Join 5
_* I } processing
Event: A-2 Event: AB-2

key=10 RDB referencing key=10
value=12 vale=1
address=Fukuoka
Reference anly the
first time
(g /" —
Hold as cache
RDB ﬂ\‘
Query Results
key | address key=5 | address = Osaka
5 Osaka key =10 | address = Fukuoka
10 Fukuoka
15 Hakata J)

Refer to "4.4.4 Setup of RDB Collaboration™ for information on how to set up RDB collaboration.

Refer to "5.4.4.4.2 Specifying RDB referencing in complex event processing rules” for information on how to reference the data in a
relational database.

g:{] Note

- If there is a large volume of data stored in the cache, memory usage also increases. Set a cache retention period according to memory
usage. Refer to "3.3.1 Estimating Memory Usage" for information on how to estimate the amount of memory to be used by RDB
referencing.

-16 -

- RDB collaboration uses JDBC drivers provided by various RDB products. BDCEP operations are confirmed for the following JDBC
drivers:

- JDBC driver of Symfoware Server V10.1.0A
- JDBC driver of Symfoware Server (Open Interface) V12.0
- PostgreSQL JDBC Driver Version 9.3-1100 (JDBC 4)

2.6 Output Adapter

The output adapter is a feature that outputs the processing results of complex event processing rules externally.

BDCEP provides four output adapters shown below, according to objective of the user:

Figure 2.8 Output adapter

(/f-JEF' Senver \1

ﬁ]TEF' engine \
Ty
ﬁl_utput adapter _\\
Application server
User-developed
Custom listener -}Ja'u'a class g
Cnmpltex Lser-developed
even g
prﬂmgsing SOAP listener WWeb senices
communication
Logaging listener
-
\\Debug log listener
N\ — .
Y *L \ 4
L Engine log |

4

Interstage Big Data
Parallel Processing Server

Table 2.1 Overview of the output adapter
Output adapter Details of feature Output destination

SOAP listener Notifies the results of complex event - User-developed Web service
processing (events) to a user-
developed Web service, using SOAP
communication

- Engine log (for send records)

Custom listener Passes the results of complex event - User-developed Java class
processing to a user-developed Java
class, and executes them.

-17 -

Output adapter Details of feature Output destination

Logging listener Logs the results of complex event - Event log (BDPP)
rocessin
P g - Engine log
Debug log listener Outputs debug information on - Engine log

complex event processing rules

2.6.1 SOAP Listener

The SOARP listener sends the results of complex event processing to a user-developed Web service, using SOAP communication.

It also leaves send records in the engine log.

Use the SOAP listener if you want to use the processing results of complex event processing in an external application.
Refer to "5.4.4.5 SOAP Listener" for information on how to use the SOAP listener.

Also refer to "5.4.8 Designing a SOAP Listener Definition".

2.6.2 Custom Listener

The custom listener passes the results of complex event processing to a user-developed Java class.

Use it to process the results of complex event processing using a Java program that runs on the same process (Java VM) as the CEP engine.

Refer to "5.4.4.6 Custom Listener" for information on how to use the custom listener.

& Note

You must develop the user-developed Java class separately.

2.6.3 Logging Listener

The logging listener logs the results of complex event processing in the log storage area.

Use the logging listener if you want to analyze the results of complex event processing using a Hadoop system (BDPP).

Refer to "5.4.4.7 Logging Listener" for information on how to use the logging listener.

2.6.4 Debug Log Listener

The debug log listener outputs debug information on complex event processing rules to the engine log.

Use the debug log listener if you want to check the operation of complex event processing rules.

Refer to "5.7.1.2.1 Debug log listener” for information on how to use the debug log listener.

Qn Note

The debug log listener may cause performance to decline, so use it only for development.

2.7 Operation Commands

The operational features of BDCEP are provided using commands.

A list of the commands provided is shown below.

Refer to "Chapter 8 Command Reference" for information on the commands.

-18 -

Type Command name

Command overview

Configuration cepconfigeng

Creates or deletes a CEP engine

Development cepdeployrsc

- Deploys a development asset

- Dynamically changes rules (*1) and the master data

cepgetrsc

References development assets

cepundeployrsc

Undeploys a development asset

Operation cepdispeng

Displays the status of a CEP engine

cepdispserv

Displays the status of the CEP service (*2)

cepstarteng Starts a CEP engine
cepstartserv Starts the CEP service (*2)
cepstopeng Stops a CEP engine
cepstopserv Stops the CEP service (*2)
Maintenance and tuning | cepgetjvmopt References JVM options
cepsetjvmopt Sets JVM options

Troubleshooting cepcollectinfo

Collects data for investigation in batch

*1: Filter rules and complex event processing rules

*2: Service that manages the CEP engines on the CEP Server

2.7.1 Dynamically Changing Rules and Master Data

The feature for dynamically changing rules and the master data enables you to replace rules (filter rules and complex event processing

rules) with new rules and reload the master data without stopping the CEP engine.

This feature reduces the time required for replacing rules and reloading the master data, because it is not necessary to stop and start the

CEP engine.

Refer to "8.3 cepdeployrsc™ for information on dynamic change.

2.8 Engine Log

Information on errors that have occurred in a CEP engine, such as insufficient memory and logging failures, is output to the engine log.

If some abnormality is detected in a CEP engine, this log can be analyzed in order to identify the cause.

Debug information for complex event processing rules that have been described is also output to the engine log, if the debug log listener

has been set in the complex event processing rules.

The engine log is also used by logging as an event recording destination.

Refer to "6.1.5.3 Monitoring Abnormalities Using Logs" for information such as the output destination of the engine log.

2.9 Resource Log

Resource information for a CEP engine that is collected on a regular basis is output to the resource log.

Analyzing this log allows resource use conditions to be monitored and tuned.

Refer to "6.1.5.4 Checking the Resource Usage of the CEP Engine” for information such as the output items and output destination of the

resource log.

-19 -

2.10 Cluster Service

The Cluster Service of BDCEP can be used to build a reliable system using PRIMECLUSTER, in order to prevent a long-term suspension
of business due to a hardware fault on the CEP Server.

Refer to "7.2.1 Overview of Reliable System Operations" for details.

-20 -

|Chapter 3 System Configuration and Design

This chapter explains the system configuration and design of Interstage Big Data Complex Event Processing Server (hereafter referred to
as "BDCEP").

3.1 System Configuration

A configuration diagram of BDCEP and related products is shown below.

Refer to "Chapter 2 Features Provided" for information on each feature.

-
CEP Server . QOperation
Rule definit
ule definition M ‘-,
: User
CEP engine

Event zender
application

User-developed
Web =ervices

Input High-=peed CE;L”EDI_:?X
adapter fitter .
processing

Qutput
adapter

HTTP

Socket| : I Costorn listener Application server
Uzer-developed
Java clags
v Resource
Loaai Terracotta RDB information
e collaboration | collaboration| epliection
Hadoop Master = =
mllaburatiunJ data [Resl.uu ;rcﬂ

Interstage Big Data Interstage Terracotta
Parallel Processing Server BigMemory Max

Collaboration features

BDCEP allows collaboration with the products listed below. Note that in the given product names. x can be any number and X can be any
letter.

- Product that can be used in Hadoop collaboration

- Interstage Big Data Parallel Processing Server V1.0.x (V1.0.1 or later)
- Product that can be used in Terracotta collaboration

- Interstage Terracotta BigMemory Max V4.0.x (V4.0.1 or later)

- Products that can be used in RDB collaboration (can collaborate with relational databases supported by the JDBC drivers of the
following products)

- Symfoware Server V10.x.xX (V10.1.0A or later)
- Symfoware Server (Open Interface) V12.x.x (V12.0.0 or later)
- PostgreSQL JDBC Driver Version 9.x-xxxx (JDBC 4) (Version 9.3-1100 or later)

If the collaboration features mentioned above are to be used, a server with the product installed must be provided for each product, in
addition to the CEP Server.

-21-

Refer to the manual of each product for information on designing the server configuration and also for the installation procedure required
for each product.

Refer to "4.4 Setup" for information on the setup of a CEP Server for collaboration.

3.2 Designing the System Configuration

This section explains designing the system configuration.

3.2.1 Designing the System Configuration

After identifying which features and collaboration systems will be required, perform the design tasks explained in the sections below
according to the tasks where BDCEP is to be used and the purpose for using BDCEP.

Refer to "3.1 System Configuration" and "Chapter 2 Features Provided" for information on the system configuration and for details on
each feature.

Refer to "7.1 Scalable System Operations" if operating BDCEP in a scalable configuration, or "7.2 Operating a Highly Reliable System
Using PRIMECLUSTER" if operating BDCEP in a highly reliable configuration.

3.2.2 Aspects of Designing the CEP Server

After deciding on the features to be used for each business application, estimate the CEP Server configuration. To achieve a design that
meets the estimates requirements use the following features:

- Overall design

- Designing the input adapter

Designing the high-speed filter

- Designing complex event processing

Designing the output adapter

The following sections explain the considerations required for the design of each feature. The items considered here are used in "3.3
Designing System Resources".

3.2.2.1 Overall Design
The main consideration for the overall design of the CEP Server is shown below.

- Number of CEP engines to operate on the CEP Server

3.2.2.2 Designing the Input Adapter
The input adapter design considerations are as follows:
- Number of input event type
- Input event details
- Data received (per unit of time)
- Maximum data size
- Average data size
- Use of logging

- Number of items

3.2.2.3 Designing the High-speed Filter

The high-speed filter processing design considerations are as follows:

-22 -

Number of high-speed filter statements (IF-THEN statements)
- High-speed filter statement details (IF-THEN statement)
- Search conditions to be specified in the high-speed filter statement
- Master data to be used
- High-speed filter processing event types (those where input events and item content are different)
- High-speed filter processing event details
- Number of occurrences (per unit of time)
- Average data size
- Number of items

Number of master data

Master data details
- Number of records
- Average data size of each item

- File size

.2.2.4 Designing Complex Event Processing
The complex event processing design considerations are as follows:
- Use of Terracotta collaboration

Number of Terracotta cache

Use of RDB collaboration

Details of the cache size to be used for RDB collaboration
- Cache retention period

- Cache purge interval

.2.2.5 Designing the Output Adapter
The output adapter design considerations are as follows:

- Number of user-developed Web service (called from complex event processing rules)

Details of calls to user-developed Web services
- Number of calls (per unit of time)

- Average data size

Number of data type (events or processing results of rules) for complex event processing rules logging

Details of data to be logged
- Number of occurrences (per unit of time)

- Average data size

Types of user-developed Java classes (custom listener) called from complex event processing rules
- Details of calls to user-developed Java classes
- Number of calls (per unit of time)

- Average data size

-23-

3.2.3 Aspects of Designing a Hadoop System for Collaboration

The Hadoop system design considerations, when using Hadoop collaboration to perform logging, are listed below.

Based on this information, design storage areas for the required event logs in the Hadoop system. Refer to the Interstage Big Data Parallel
Processing Server manuals for information on the design of the Hadoop system.

- Number of data type to be logged (events or processing results of complex event processing rules)
- Details of data to be logged

- Number of occurrences (per unit of time)

- Average data size

- Accumulation period

3.2.4 Aspects of Designing a Terracotta Server for Collaboration

The Terracotta server design considerations, if Terracotta collaboration is to be performed, are listed below.

Based on this information, design a Terracotta server. Refer to the Interstage Terracotta BigMemory Max manual for information on the
design of the Terracotta server.

- Total data size to be stored in the cache

3.2.5 Aspects of Designing an RDB Server for Collaboration

The RDB server design considerations, if RDB collaboration is to be performed, are listed below.

Based on this information, desigh an RDB server. Refer to the manual for the collaborating relational database product for information
on the design of the RDB server.

- Number of simultaneous RDB server connections

- Calculate using numberOfCepEnginesToPerformRdbCollaboration x 2
- Details of queries issued during RDB collaboration

- Number of queries issued per unit time

- SQL statements of a query

3.3 Designing System Resources

3.3.1 Estimating Memory Usage

The expression for calculating the amount of memory to be used by the CEP Server is shown below.

Estimated amount of memory required
=A+ (@B +C+D+E+ F) x numberOfCepEngines + G + H) x 1.2 + 1|

Table 3.1 Explanation of items in memory estimation expression

Item Explanation Memory usage

A Base memory amount 2.7GB

B Amount of memory when using high-speed filter Refer to "3.3.1.1 Amount of Memory when Using High-
rules speed Filter Rules".

c Amount of memory when master data is used by the | Refer to "3.3.1.2 Amount of Memory when Master Data is
high-speed filter used by the High-speed Filter".

=24 -

Item

Explanation

Memory usage

Amount of memory when rules are used in complex
event processing

The estimation expression is shown below. (MB)

numberOfRuleDefinitions x 31 MB

Amount of memory when an event type definition is
used in complex event processing

The estimation expression is shown below. (MB)

(numberOfinputEventTypes +
numberOfTypesOfEventsAlreadyProcessedByHighSpeed
Filter) x 37 MB

Amount of memory when a SOAP listener definition
is used in complex event processing

The estimation expression is shown below. (MB)

numberOfUserDevelopedWebServices x 2.5 MB

Amount of memory required for Terracotta
collaboration

The estimation expression is shown below. (MB)

sizeOfDataPoollnCache x
numberOfCepEnginesToPerformTerracottaCollaboration
Refer to "9.3.1 Terracotta Cache Configuration File™ for the
value of sizeOfDataPoollnCache.

Amount of memory required for RDB collaboration
(using a cache)

The estimation expression is shown below. (MB)

Memory requirement of CEP engines that perform RDB
collaboration =

(cacheRetentionPeriod + cachePurgelnterval)

X
numberOfRadbSearchesWithDifferentSearchConditionsPe
rSecond

x averageNumberOfRecords ThatMatchSearchConditions
X (totalSizeOfExtractColumn(bytes) + 15)

x 13 /1048576

Memory requirement of RDB collaboration =
totalMemoryRequirementOfCepEngines ThatPerformRdb
Collaboration

Amount of memory called from the custom listener
and used by a user-developed Java class

Depends on the implementation of the user-developed Java
class.

3.3.1.1 Amount of Memory when Using High-speed Filter Rules

The expression for calculating the amount of memory (bytes) when high-speed filter rules are used is shown below.

Amount of memory when using high-speed filter rules
= Total amount of each ifThenStatementMemoryRequirement

ifThenStatementMemoryRequirement = 272 x 1024 x 1024 + 960 x 1024 x R + 16 x L + 8 x a

Variable Meaning Unit
R Number of output items to be described in the output expressions of high-speed filter Items
rules
L Maximum data size of input events Bytes
a Area to be used in partial character, character range, and numeric range search (*1) Bytes

*1: Use the following expression to calculate this if search is to be executed with a partial character, character range, or numeric range

specification:

numberOfPartialChars, charRange, or numericRange x numberOfKeywordChars x 2,048 Bytes

Use the following expression to calculate this if search is to be executed with a combination of partial character, character range, and

numeric range specifications:

-25-

numberOfPartialChars x charRange x numericRange x numberOfKeywordChars x 2,048 Bytes

- For "number of partial characters", specify the number of parts delimited by a vertical bar (]).
For example, if the search keyword "Sm(ith|ythelithy)John" is specified, the number of partial characters will be 3.
- For "character range”, specify how many are in the range of the ASCII character code values separated by a hyphen (-).

For example, if the search keyword "class[A-C]" is specified, that range will be 0x41 (A), 0x42 (B), and 0x43 (C), so the character
range will be 3.

- For "numeric range", specify how many are in the range of numeric 1 and numeric 2, separated by a comma (,).

For example, if the search keyword "alcohol[9,11]%" is specified, that range will be 9, 10, and 11, so the numeric range will be 3.

3.3.1.2 Amount of Memory when Master Data is used by the High-speed Filter

If master data is to be used, the amount of memory capacity shown below will be required in addition to what would be normally required.

Memory usage when using master data = Total amount of each ifThenStatementMemoryRequirement

ifThenStatementMemoryRequirement
= outputltemMemoryRequirement + joinRelationalExpressionMemoryRequirement

outputltemMemoryRequirement = N x (B + 60)

(If a numeric-type or string-type perfect match is specified)
joinRelationalExpressionMemoryRequirement = N x (216 + A)

(If partial match of a string is specified)
jJoinRelationalExpressionMemoryRequirement = a x N x (2 x A - (log,,N or 1, whichever is greater)) x 144

The meaning of each variable is shown below.

Variable Meaning Unit
N Number of master data records Records
A Average data size of master items specified in search expressions or in join-relational Bytes

expressions in join expressions (*1)

B Average data size of master items specified in the output items of output expressions (*1) Bytes
a Join key coefficient (*2) 0<a<l1

*1: If the "val" function is specified in a join-relational expression and an output item, the data size will be 16.

*2: This depends on the content of the master data specified in the join conditions in the high-speed filter rules (see the table below).

Table 3.2 Join key coefficient

Content of master data Join key
coefficient
If values vary widely in the second half of the key 0.4

Example: (000001, 000002, 000012, 000125, etc.)

If values vary widely in the first half of the key 0.6
Example: (100-001, 210-001, 321-001, etc.)

If values vary widely throughout the key 0.8
Example: (123456, 234512, 912384, etc.)

3.3.2 Estimating Disk Usage

The expression for calculating the disk usage required by the CEP Server is shown below.

-26 -

Disk usage required = (A+ B +C+D+E+F + G+ H) x 1.2

Table 3.3 Explanation of items in disk usage estimation expression

(except for the above
logs)

Ivar/opt/FISVisjee
Ivar/opt/FISVjs2su
Ivarlopt/FISVcep
Ivarlopt/FISVihs
Ivarlopt/FISVjs5

-27 -

Item Explanation Directory Estimated disk usage
A Base disk usage The directories are as follows: The estimated disk usage is as
Jopt follows:
Jetclopt /opt: 900 MB
jvarlopt [etc/opt: 30 MB
Ivar/opt: 60 MB
B Event log Refer to "5.6.4.1 Output Destination and File (*1)
(Before the high-speed Format of an Event Log".
filter is used)
c Event log Refer to "5.6.4.1 Output Destination and File (*2)
(After complex event Format of an Event Log".
processing)
D Resource log High-speed filter: The estimation expression is shown
/var/opt/FISVcep/cep/fit/logs/ResourceLog/ below. (MB)
cepEngineName 2 MB x numberOfCepEngines
Complex event processing:
Ivarlopt/FISVcep/cep/cep/logs/
ResourcelLog/ cepEngineName
E Engine log High-speed filter: The estimation expression is shown
Ivar/opt/FISVcep/cep/flt/logs/EngineLog/ below. (MB)
cepEngineName 200 MB x numberOfCepEngines
Complex event processing:
Ivar/opt/FISVcep/cep/cep/logs/EngineLog/
cepEngineName
F Custom log Ivar/opt/FISVcep/cep/cep/logs/EngineLog/ The estimation expression is shown
cepEngineName below. (MB)
100 MB x
numberOfCepEnginesToBeUsed
G Master data This will be the path specified in "dataFile™ inthe | This will be the master data file size.
master definition file.
Refer to "9.2.3 Master Definition File" for
details.
H Maintenance log of the | /var/opt/FJSVisjee/nodeagents/ijna/ The estimation expression is shown
high-speed filter cepEngineName_FIt_Ins/current below. (MB)
(totalNumberOfFilterStatementsDe
scribedInHighSpeedFilterRules x
1.6 +0.2) x4 MB
/ Other maintenance logs | Logs in the following directories: The estimation expression is shown

below. (MB)

1301 MB + 618 MB x
numberOfCepEngines

Item Explanation Directory Estimated disk usage
Ivar/opt/FISVj2ee
Ivar/opt/FISVisjmx
Ivar/opt/FISVisas
Ivar/opt/FISVod
J File output by the user- | Depends on the implementation of the user- Disk usage depends on the
developed Java class developed Java class. implementation of the user-
(excluding the custom developed Java class.
log)

*1: Calculate the events to be logged by the input adapter. The expression is shown below.

Disk usage of event log (B) (KB) = Total amount of each diskUsageOfEventsToBelLogged

diskUsageOfEventsToBeLogged (KB)
= numberOfEventsReceivedPerSecond x averageDataSize (KB) x eventLogAccumulationPeriod (Seconds) x 1.2

*2: Calculate the data (events or processing results of rules) to be logged by complex event processing. The expression is shown below.

Disk usage of event log (C) (KB) = Total amount of each diskUsageOfDataToBelLogged

diskUsageOfDataToBelLogged (KB)
= numberOfDataOccurrencesPerSecond x averageDataSize (KB) x eventLogAccumulationPeriod (Seconds) x 1.2

-28 -

IChapter 4 Installation and Setup

This chapter explains how to install, set up, and uninstall Interstage Big Data Complex Event Processing Server (hereafter referred to as
"BDCEP").

Refer to "7.2.3 Building a Cluster Service Environment" before operating BDCEP in a high-reliability (failover cluster) environment.

4.1 Installation Overview

This section provides an overview of BDCEP installation.

4.1.1 Installation Methods

BDCEP is installed using shell scripts. The following installation methods are available:

Attended installation

Use ‘attended installation' to execute the installation according to your specific requirements such as the engine execution user name.

Unattended installation

Use 'unattended installation' to execute the installation according to a setup file specified when the Installer starts, with no querying from
the Installer.

4.1.2 Installed Packages
Below is a list of the packages installed by BDCEP.

Table 4.1 List of packages
Type Package name Note

Basic features of BDCEP FJSVcep
FJSVes

FISVextp
FJSVihs

FJSVisas

FJSVisco

FJSVisgui

FJSVisjee
FISVisjmx

FJSVisscs

FJISVj2ee

FJSVJavaSE-jdké-rhel5 Installed on Red Hat Enterprise Linux 5
(for Intel64)

FJSVJavaSE-jdk6-rhel6 Installed on Red Hat Enterprise Linux 6
(for Intel64)

FJISVjs2su
FISVjs5
FJSVijssrc
FJSVod

FJSVots-EE

-29-

Type Package name Note
FJSVporb
FJSVsclr64
FISVsmee64

FJSVsvmon
FJSVtd
FJSVtdis

FISVxmlipc

Qn Note

If packages provided by BDCEP are installed or uninstalled directly, for example by using rpm, they will not operate normally.

Unless directed to do otherwise by Fujitsu technical support, always use the BDCEP installation and uninstallation shell scripts to install
and uninstall, respectively.

4.2 Installation Requirements

This section explains the resources required for installation.

4.2.1 Hardware Environment

The hardware below is required in order to use BDCEP:

- PRIMERGY RX series or PRIMERGY TX series
BDCEP also requires an environment with sufficient memory available.

Refer to "Chapter 3 System Configuration and Design™ for information on estimating the memory size.

4.2.2 Software Environment

The software below is required in order to use BDCEP.

4.2.2.1 Required Operating System

Either of the operating systems below is required.

Operating system name Remarks
Red Hat Enterprise Linux 5 (for Intel64) This operating system supports operation using version 5.3 or later.
Red Hat Enterprise Linux 6 (for Intel64) This operating system supports operation using RHSA-2010:0842

(kernel-2.6.32-71.7.1.¢l6) or later.

Version 6.1 or later has RHSA-2010:0842 applied.

gn Note

BDCEP is guaranteed to operate in an environment where the SELinux function is disabled.

-30-

;ﬂ Information

If BDCEP is to operate on Red Hat Enterprise Linux 6 (for Intel64), use the packages below in addition to the packages installed with the
minimum operating system option.

Package Architecture
alsa-lib Xx86_64
cloog-ppl x86_64
compat-libtermcap 686
compat-readline5 686
cpp x86_64
file x86_64
gcc x86_64
gcc-c++ x86_64
gdb x86_64
glibc 686
glibc-devel x86_64
glibc-headers x86_64
kernel-headers x86_64
libICE x86_64
libSM x86_64
libX11 x86_64
libX11-common noarch
libXau x86_64
libXext x86_64
libXi x86_64
libXp x86_64
libXt x86_64
libXtst x86_64
libgomp x86_64
libstdc++-devel x86_64
libtool-ItdI Xx86_64
libxch x86_64
Iksctp-tools x86_64
make x86_64
mpfr x86_64
ncurses-libs 686
nss-softokn-freebl 686
perl x86_64
perl-Module-Pluggable x86_64
perl-Pod-Escapes x86_64
perl-Pod-Simple x86_64

-31-

Package Architecture

perl-libs x86_64
perl-version x86_64
ppl x86_64
redhat-Isb x86_64
strace x86_64
tesh x86_64
unixODBC x86_64
zlib 686

4.2.2.2 Mandatory Patch

The patch below must be installed in advance.

Item No. Operating system Patch ID and batch update Remarks

1 Red Hat Enterprise Linux 6 (for Intel64) RHBA-2011:0321-1

4.2.2.3 Required Packages
The packages below are required for using BDCEP.

If you install BDCEP in an environment where the following packages have not been installed, the BDCEP installer installs them.

Item Package name Remarks
No.

1 FJSvcir This is "Uninstall (middleware)", a common tool for Fujitsu middleware
products. It manages information about installed Fujitsu middleware products

CIRuntime Application
(CIRuntime Application) and deletes products.

2 FISVastl This is a data collection tool common to Fujitsu middleware products.

(FIQSS)

4.2.2.4 Mutually Exclusive Software

Do not install the software or packages below on the same system as BDCEP.

Item No. Product name Version Remarks

1 Interstage Application Server V9.0.0 or later | (*1)

2 Interstage Application Development Cycle Manager | V10.1 or later

3 Interstage Big Data Complex Event Processing Server | V1.0.0 or later | No more than one instance can be installed on
the same operating system.

4 Interstage Big Data Parallel Processing Server VV1.0.0 or later | The Development Server can be installed on
the same system.

5 Interstage Business Application Server 8.0.0 or later (*1)

6 Interstage Service Integrator V9 or later (*1)

7 Interstage Job Workload Server V8 or later

8 Interstage List Works V9 or later

9 Interstage Service Integrator V9.0.0 or later | (*1)

-32-

Item No. Product name Version Remarks

10 Interstage Shunsaku Data Manager V7

11 Interstage Web Server V9.0.0 or later | (*1)

12 Interstage Web Server Express V11.0.0 or later | (*1)

13 ServerView Resource Orchestrator Cloud Edition V3 or later

14 Systemwalker Availability View V13.3.0 or later | (*1)

15 Systemwalker Centric Manager V13.4.0 or later | The Job Server can be installed on the same

system.

16 Systemwalker IT Change Manager V14 or later

17 Systemwalker Network Manager V12 or later

18 Systemwalker Service Catalog Manager V14.1 or later

19 Systemwalker Service Quality Coordinator Enterprise | V13.4 or later This is mutually exclusive software only when
Edition a dashboard or BrowserAgent is used.

20 Systemwalker Software Configuration Manager V14.1 or later

*1: In Red Hat Enterprise Linux 5 (for Intel64) or Red Hat Enterprise Linux 6 (for Intel64), the product cannot be installed on the same

system even if the product supports operation in 32-bit mode.

4.2.3 Resources Required at Installation

The resources below are required for BDCEP installation.

Disk capacity

The disk capacity below is required for installing BDCEP. If necessary, extend the size of the relevant file system.

Directory Required disk capacity
lopt 900 MB
[etc/opt 30 MB
Ivarlopt 60 MB

Memory capacity

The memory capacity below is required for installing BDCEP. If necessary, extend the amount of memory installed.

- 2.7GB

4.2.4 Resources Required at Operation

To operate BDCEP, estimate the following resources and allocate the required capacities:

- Memory

- Disk

Refer to "Chapter 3 System Configuration and Design" for information on estimating resources.

4.3 Installation

This section explains how to install BDCEP.

-33-

4.3.1 Pre-installation Procedure

This section explains the tasks required before installing BDCEP.

- Setting /etc/hosts

- Checking the Port Numbers to be Used

- Checking Free Disk Capacity

- Creating the Engine Execution User and Group

- Checking Kernel Parameters

- Checking Resource Limitations

- Modifying /etc/cron.daily/tmpwatch in Red Hat Enterprise Linux 5.4 or Earlier Version

- Deleting FISVsmee64 and FISVsclr64 Packages

4.3.1.1 Setting /etc/hosts

Configure the /etc/hosts file so that network name resolution is enabled for the CEP Server host name (*1). Note the following when
registering the host name:

- When registering the CEP Server host name as "127.0.0.1" (CEP Server loopback address), always first describe the IP address setting
used when gaining access from outside the CEP Server.

- Alternatively, do not set the host name of the CEP Server for *127.0.0.1".

*1: The HOSTNAME parameter setting in the /etc/sysconfig/network file.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of setting /etc/hosts

Below is an example of setting the host name "cepsv1" for *127.0.0.1". In this example, the IP address setting used when gaining access
from outside the CEP Server is "10.10.10.10".

10.10.10.10 cepsvl
127.0.0.1 cepsvl localhost.localdomain localhost

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

4.3.1.2 Checking the Port Numbers to be Used

Check that the port numbers to be used by BDCEP are available for use. The port numbers used by BDCEP are shown below. Use firewall
or operating system settings to ensure the relevant port can be used.

Port number Description

80 Port number used by the input adapter (SOAP adapter or HTTP adapter) to receive input events.

81 Port number used internally by BDCEP.

102 Access from outside the CEP Server is not required.
389
636
2000
2465

3279
4433

5432

-34-

Port number Description
6666
8002
8009
8080
8686
8909

8919
9700
10550
10555
12000

12001
12200

12210
12220

12230
13000
23600-23602

23700-23710
28080

28090-28100

28686-28696

anyPort Port number used by the input adapter known as the socket adapter to receive input events.

Use this by setting one unused port number between 5001 and 32767 for each CEP engine, and
by setting a maximum of five for the entire CEP Server.

Setting the port numbers to be used is done in CEP engine setup after installation.

Port number 9600 is set in the CEP engine created at initial setup.

4.3.1.3 Checking Free Disk Capacity

Check that the disks have sufficient free capacity. Refer to "4.2.3 Resources Required at Installation™ for information on the required disk
capacity.

If there is a shortage of free disk capacity, extend the size.

4.3.1.4 Creating the Engine Execution User and Group

Create a specific user and group to execute the CEP engine. Each of the processes of the CEP engine run with the user and group permissions
created here.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Operation example of creating the engine execution user and group using the user name "isbdcep" and the group name
" i$dcq)ll

-35-

$ su - <ENTER>
/usr/sbin/groupadd isbdcep<ENTER>
/usr/sbin/useradd -g isbdcep isbdcep<ENTER>

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

Qn Note

- The user creation method depends upon the management policy of the system. Always check with the system administrator.

- Up to 8 characters can be specified for the user name and the group name.

4.3.1.5 Checking Kernel Parameters
Kernel parameters must be tuned in advance when operating BDCEP.
Edit Zetc/sysctl .conf to change the values of the target kernel parameters to suitable values, according to the parameter "type".
- If the type is "Maximum™:

If the value already set (initial value or previously set value) is greater than the value shown in the table, it need not be changed. If it
is smaller than the value in the table, change it to the value in the table.

- If the type is "Additional"

Add the value shown in the table to the value that is already set (initial value or previously set value). Check the system maximum
values before adding this value and, if adding that value would exceed the system maximum value, set the system maximum value.

The current kernel parameters can be verified using "/sbin/sysctl -a".
After making the changes, execute "/sbin/sysctl -p /etc/sysctl.conf" or reboot the OS.
Refer to the documentation for the operating system for information on how to change the kernel parameters.

Below are the kernel parameters to be set.

Shared memory

Parameter Description Value to be set Type
kernel.shmmax Maximum size in shared memory 57413492 Maximum
kernel.shmmni Maximum number of shared memory segments 41 Additional

Semaphore

For semaphore settings, set the values for each parameter in the following format:

kernel .sem = SEMMSL SEMMNS SEMOPM SEMMNI

Parameter Description Value to be set Type
SEMMSL Maximum number of semaphores for each semaphore 512 Maximum
identifier
SEMMNS Number of semaphores for the system as a whole 5763 Additional
SEMOPM Maximum number of operators for each semaphore call 50 Maximum
SEMMNI Number of semaphore operators for the system as a 1143 Additional
whole

Message queue

-36-

Parameter Description Value to be set Type
kernel.msgmax Maximum message size 16384 Maximum
kernel.msgmnb Maximum number of bytes of messages in the message 32768 Maximum

queue
kernel.msgmni Maximum number of message queue IDs 526 Additional

4.3.1.6 Checking Resource Limitations
When operating BDCEP, adjust the user limitations for the number of processes (threads) that can be executed.

Edit "/etc/security/limits.conf" and change the number of processes (threads) that the user can execute to an appropriate
value.

For BDCEP, set the number of processes (threads) the engine execution user can execute to "2048" or higher. Add "2048" to the already
specified value (the initial or previously specified value).

The number of processes (threads) that the engine execution user can execute can be checked with the following command as a superuser.

/bin/su -c “ulimit -u" engineExecutionUser <ENTER>

Reboot the OS after changing the value.

Refer to the OS manual for information on how to change the value.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Examplefor setting /etc/security/limits.conf

This is an example for specifying the number of processes (threads) an engine execution user can execute. In this example, the value is
set by adding "2048" to the default value of "1024".

isbdcep soft nproc 3072

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

4.3.1.7 Modifying /etc/cron.daily/tmpwatch in Red Hat Enterprise Linux 5.4 or an Earlier
Version

The following shared memory file is generated while BDCEP is running (XXXis the user name, Y'YY'is the process ID):

/tmp/hsperfdata_XXX/YYY

If the tmpwatch shell script is registered in cron, the shared memory file is deleted by the tmpwatch shell script. This may cause problems
during product operations.

To avoid this, modify the /etc/cron.daily/tmpwatch shell script so that shared memory files are not the targets of deletion by tmpwatch.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of modified /etc/cron.daily/tmpwatch shell script
Precede the 'Jusr/shin/tmpwatch XXX /tmp' line with the lines in the example below (XXXis in hours):

for £ in “echo /tmp/hsperfdata_*/*" ; do
/bin/touch $f > /dev/null 2>&1
done

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

4.3.1.8 Deleting FISVsmee64 and FJSVsclr64 Packages

If the FISVsmee64 and FJSVsclr64 packages were installed using a Fujitsu product other than BDCEP (such as Systemwalker Centric
Manager), perform the following procedure:

-37-

1. Check the installation of the FISVsmee64 and FISVsclr64 packages.

Check if the FISVsmee64 and FISVsclr64 packages have been installed. If so, check the version of each package using the following
commands:

rpm -q -1 FJISVsmee64 | grep Version <ENTER>
rpm -q -i FJISVsclr64 | grep Version <ENTER>

If the packages have been installed, the version information will be displayed. If nothing is displayed, the packages have not been
installed, so the following steps are not required. Skip to "4.3.2 Installation Procedure".

L:n Note

If the installed version is more recent than the version provided by BDCEP, you must perform the procedure explained in "4.3.3.2
Reinstalling FISVsmee64 and FISVsclr64 Packages" after installing BDCEP.

;ﬂ Information

The versions of FISVsmee64 and FIJSVsclr64 bundled with this version of BDCEP are as follows:

FJSVsmee64 4.1.2
FJSvVsclr64 2.0.7

2. Stop all Fujitsu products. Refer to the manual provided with each product for information on how to stop the product.

3. Uninstall the FISVsmee64 and FISVsclr64 packages.

rpm -e FJSVsmee64 <ENTER>
rpm -e FJISVsclr64 <ENTER>

4.3.2 Installation Procedure

From the following two types, select the most suitable installation method. If installing using multi-user mode, check that the operations
of other users will not affect the installation:

- Attended installation

- Unattended installation

QJT Note

BDCEP cannot be installed in an environment where it has already been installed.

4.3.2.1 Attended Installation

1. Loginas a superuser.

$ su - <ENTER>

2. Load the installation DVD-ROM and execute the installation shell script (install.sh) stored on the DVD-ROM from any directory.

mount /dev/deviceFileName dvdRomMountDir <ENTER>
dvdRomMountDir/install.sh <ENTER>

3. The product name will be displayed as shown below.

| Interstage Big Data Complex Event Processing Server V1.1.0 |

-38-

| Copyright 2012-2013 FUJITSU LIMITED |

4. In the interactive process shown below, which continues from the display above, specify the engine execution user and the name
of the group to which the engine execution user belongs, which were created in advance.

Only a user or group that has already been created can be specified. You can stop installation by typing "g" and pressing the Enter
key.

Below is an input example where "isbdcep™ is specified as the user name and "ishdcep" is specified as the group name.

Please specify the engine execution user and group.

CEP engine processes will run as the specified user and group.
It differs who performs operational commands.

Please enter the user name of the engine execution user [q]: isbdcep<ENTER>

Please enter the group name of the engine execution user [q]: isbdcep<ENTER>

5. Then specify the engine name to be created at initial setup. You can stop installation by typing "q" and pressing the Enter key.

Please enter the initial engine®s name (default: CepEngine) [gq]: CepEngine<ENTER>

6. The installation details will be displayed.
In installPackages, all of the packages to be installed will be displayed delimited by spaces.

Engine execution user (group):

specifiedEngineExecutionUserName (specifiedEngineExecutionUserGroupName)
Initial engine®s name:

specifiedEngineName
Installation packages:

installPackages

7. Check the content and, to start installing the packages, type "y" and press the Enter key.

To stop installation, type "q" and press the Enter key.

Do you want to proceed with the installation? [y,q]:y<ENTER>

8. When installation has completed normally, the message below will be output.

The installation processing completed successfully.

9. After installation has completed normally, reboot the OS. Perform the post-installation procedure to continue.

shutdown -r now <ENTER>

4.3.2.2 Unattended Installation

1. Create an installation file. Create the file after designing and checking the parameters to be specified in advance.
Refer to "9.5.1 Installation File" for information on the file.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Below is an example of the file.

In this example, "isbdcep" is specified as the engine execution user, "isbhdcep" is specified as the group to which the engine
execution user belongs, and "CepEngine" is specified as the name of the CEP engine to be created at initial setup.

-39-

BDCEP_USER_NAME=isbdcep
BDCEP_GROUP_NAME=isbdcep
BDCEP_INITIAL_ENGINE_NAME=CepEngine

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

E’ Point

© 00 0000000000000 0000000000000000000000000000000O0COC0C0COCOCOCOCOCOCOCCOCO00C0000C0000000000000000000000000000

A sample of the installation file is stored in "/samples/bdcep . conf" on the DVD-ROM of BDCEP. To work efficiently, copy
the sample to the work directory of the system and then edit the parameters.

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

2. Log in as a superuser.

$ su - <ENTER>

3. Load the installation DVD-ROM and, from any directory, execute the installation shell script (install.sh) stored on the DVD-ROM,
with the "-s instal IFilePath "option added.
After execution, BDCEP installation will start.

mount /dev/deviceFileName dvdRomMountDir <ENTER>
dvdRomMountDir/install.sh -s installFilePath <ENTER>

Qn Note

The instal IFi lePath specification is mandatory.

If there is no file in the specified instal IFi lePath or if the read fails, an error message will be displayed and installation will
stop.

4. When installation has completed normally, the message below will be output.

The installation processing completed successfully.

5. After installation has completed normally, reboot the OS.

shutdown -r now <ENTER>

4.3.3 Post-installation Procedure

This section explains the tasks after installation.

4.3.3.1 Setting Environment Variables

Add the path below to the PATH environment variable of the CEP Server users.

/opt/FJSVcep/bin

E) Point

© © 0000000000 000COCOCOCOCOCEOCEOEE

Creating a file with the content below in the /etc/profile.d directory of the CEP Server will allow the PATH environment variable
to be set uniformly for the CEP Server users.

File: Zetc/profile.d/FJSVcep.sh

Interstage Big Data Complex Event Processing Server V1.1.0
export PATH=/opt/FJSVcep/bin:${PATH}

File: Zetc/profile.d/FJSVcep.csh

- 40 -

Interstage Big Data Complex Event Processing Server V1.1.0
setenv PATH /opt/FJSVcep/bin:${PATH}

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

4.3.3.2 Reinstalling FISVsmee64 and FJSVsclr64 Packages

If the versions of the FISVsmee64 and FISVsclr64 packages installed by BDCEP are older than the previously installed versions, perform
the following procedure:

1. Uninstall the FISVsmee64 and FISVsclr64 packages.

rpm -e FJSVsmee64 <ENTER>
rpm -e FJISVsclr64 <ENTER>

2. Reinstall the FISVsmee64 and FISVsclr64 packages from a product that bundles the more recent versions of the FISVsmee64 and
FJSVsclr64 packages. Refer to the manual provided with the product for information on how to install the packages.

3. Start all products that you stopped when performing the procedure in "4.3.1.8 Deleting FISVsmee64 and FISVsclr64 Packages".
Refer to the manual provided with each product for information on how to start the product.

4.3.3.3 Applying Updates
Refer to "6.3.3 Applying Updates" to apply product and software (included with BDCEP) updates.
After applying the updates, set up BDCEP. Refer to "4.4 Setup" for details.

4.3.4 If an Error Occurs during Installation

This section explains how to respond if a failure occurs during installation.

If an error occurs before package installation

After responding in accordance with the error message, re-execute the install.sh shell.

If an error occurs during package installation

Execute uninstall.sh and uninstall the packages that have been installed. Then, after responding in accordance with the error message
output at install.sh execution, re-execute the install.sh shell.

Refer to Section 2.1, "Errors during Installation™ in 7Troubleshooting for details.

ﬂ Information

Installer log file

Below is the log file output by the Installer. It records detailed operation statuses in addition to the messages displayed in the windows
and can be referred to when an issue arises.

/var/tmp/bdcep_install.log

When installation is successful, the log file will be stored as follows:

/var/opt/FJSVcep/bdcep_install.log

4.4 Setup

This section explains how to set up BDCEP.

-41-

4.4.1 Setup Overview

An overview of BDCEP setup is shown below.

Setup of Hadoop collaboration

}

Setup of Terracotta collaboration

]

Setup of ROB collaboration

}

Setup of the CEF engine

: *| - Tasks performed as required

4.4.2 Setup of Hadoop Collaboration

With BDCEP, received events and events output from the CEP engine can be logged. The following two destinations can be selected for
logging:

- Hadoop system

- CEP Server (*1)
*1: Events are logged in the engine log for the purpose of verifying events received and verifying the results of complex event processing.
To log events in a Hadoop system, setup of Hadoop collaboration is also required.
The Hadoop system that can be linked to is shown below. x can be any number.

- Interstage Big Data Parallel Processing Server V1.0.x (VV1.0.1 or later)

Setup procedure

1. On the CEP Server, install and setup the BDPP Development Server. The CEP engine operates as an application for accessing the
Hadoop system.

Refer to Section 6.4, "Installing to a Development Server" in the User's Guide of the BDPP manuals for details.
2. On the Hadoop system, register the engine execution user specified at BDCEP installation as a Hadoop user.

Refer to Chapter 11, "Managing Job Execution Users™ in the User's Guide of the BDPP manuals for details.

4.4.3 Setup of Terracotta Collaboration

Complex Event Processing of BDCEP can collaborate with Interstage Terracotta BigMemory Max (hereafter referred to as "Terracotta™)
to rapidly reference the cache on Terracotta. To perform Terracotta collaboration, setup of Terracotta collaboration is also required.

The Terracotta product that can be linked to is shown below. x can be any number.

- Interstage Terracotta BigMemory Max V4.0.x (V4.0.1 or later)

Setup procedure

1. Install and set up Terracotta on the CEP Server. The CEP engine operates as a Terracotta client. Refer to the Terracotta manual for
details.

-42-

2. Stop the CEP service.

cepstopserv <ENTER>

3. Save the following four files with modified names:

- lopt/FISVisjee/lib/jersey-bundle-1.0.3.1.jar

Jopt/FISVisjee/lib/jsr311-api-1.0.jar

lopt/FISVisjee/lib/jettison-1.0.1.jar

lopt/FJSVisjee/lib/jackson-asl-0.9.4.jar

Run the following command to modify the names:

cd /opt/FJSVisjee/lib/ <ENTER>

mv jersey-bundle-1.0.3.1.jar jersey-bundle-1.0.3.1.jar.backup <ENTER>
mv jsr3ll-api-1.0.jar Jsr3ll-api-1.0.jar.backup <ENTER>

mv jettison-1.0.1.jar jettison-1.0.1.jar.backup <ENTER>

mv jackson-asl-0.9.4_jar Jackson-asl-0.9.4_jar_backup <ENTER>

H R OH H R

4, Restart the CEP service.

cepstartserv <ENTER>

5. Set permissions for the Terracotta license file (terracotta-license.key) to enable the engine execution user to read it.

6. Edit the Terracotta Collaboration setup file. Refer to "9.3.2 Terracotta Collaboration Setup File" for details.

4.4.4 Setup of RDB Collaboration

Complex Event Processing of BDCEP can use RDB Collaboration to reference a relational database that is external to the CEP Server.
To perform RDB collaboration, setup of RDB collaboration is also required.

BDCEP can collaborate with the relational databases supported by the JDBC driver of the products listed below. Note that in the given
product names. x can be any number and X can be any letter.

- Symfoware Server V10.x.xX (V10.1.0A or later)
- Symfoware Server (Open Interface) V12.x.x (V12.0.0 or later)
- PostgreSQL JDBC Driver Version 9.x-xxxx (JDBC 4) (Version 9.3-1100 or later)

Setup procedure

1. On the CEP Server, install and set up a JDBC driver suited to the relational database you want to connect to. The CEP engine runs
as a client of the relational database. Refer to the manual provided with the selected JDBC driver for details.

2. Edit the RDB Collaboration setup file. Refer to "9.4.1 RDB Collaboration Setup File" for details.

gn Note

If Symfoware Server with the native interface (not the PostgreSQL extended interface) is used for collaboration, set 16 or higher as the
number of simultaneous processes in the relational database environment.

4.4.5 Setup of the CEP Engine

This section explains the setup of the CEP engine.

- Status Immediately after Installation
- Changing CEP Engine Settings

- Creating a New CEP Engine

-43-

4.4.5.1 Status Immediately after Installation

Immediately after installation, the CEP service that manages the CEP engine should be running, and one immediately usable CEP engine
will be created. This CEP engine is hereafter referred to as the "initial CEP engine" when it is necessary to distinguish it from other CEP
engines. The initial CEP engine will have the stopped status.

Figure 4.1 Status immediately after installation

CEP Server

CEF engine
(Initial CEP engine)

CEP service

This initial CEP engine has the settings shown below. This initial CEP engine can be used to deploy and check the operation of a sample
application.

Item Value to be set

CEP engine name The name specified at installation.

This is "CepEngine" if the specification was omitted at installation.

Logging type Not set (Logging not used).

Directory name Same as above

Number of open logging files Same as above.

Logging cycle time Same as above.

Socket adapter port 9600

JVM High-speed Filter options (*1) Maximum value of memory allocation pool: 2048 MB

Initial value of memory allocation pool: 512 MB
Maximum value of permanent generation area: 192 MB

JVM Complex Event Processing options Same as above.

(*1)

*1: Settings relating to memory used by the CEP engine. Refer to "6.3.4.1 Tuning JVM Options" for information on each parameter.

Below is the engine configuration file used in initial CEP engine creation.

/etc/opt/FISVcep/cep/sample_eng.xml

Refer to "9.1.1 Engine Configuration File" for information on how to view the contents of the engine configuration file.

4.4.5.2 Changing CEP Engine Settings

When using logging in the initial CEP engine, the CEP engine settings must be changed.

The two methods below are used to change the CEP engine settings, and the items that can be changed will vary depending on the method
used.

-44 -

Method for changing settings Items that can be changed

Using cepconfigeng - Logging settings

- Port number used in socket communication

Using cepsetjvmopt - Memory used by CEP engine

Changing settings using cepconfigeng is explained below.

Refer to "6.3.4.1 Tuning JVM Options" for information on changing settings using cepsetjvmopt.
Changing settings using cepconfigeng

Below is a flowchart for changing settings using cepconfigeng.

P
LF‘repare the current engine configuration ﬁle]

|

Back up the engine configuration file

!

&

L Edit the engine configuration file

|

Check the running status of the CEP SEWiCE]

e

|

-
LCheck the stopped status of the CEP engine

!

Execute cepconfigeng

A

!

L Store the engine configuration file

The procedure for changing CEP engine settings is explained below. For these tasks, log in as a superuser to execute the commands.

1. Preparethecurrent engine configuration file.

A CEP engine that is not to be changed must also be defined in the engine configuration file to be specified at cepconfigeng command
execution. Therefore, define the changes based on the current stored engine configuration file.

The engine configuration file used in the creation of the initial CEP engine is stored in the following location:

/etc/opt/FISVcep/cep/sample_eng.xml

H Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of preparing the engine configuration file used in the creation of theinitial CEP engine

cp /etc/opt/FISVcep/cep/sample_eng.xml /etc/opt/FJISVcep/Engine.xmI<ENTER>

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

- 45-

Qn Note

If the engine configuration file to be specified at cepconfigeng command execution does not include a created CEP engine definition,
cepconfigeng will delete the CEP engine which is not specified in the engine configuration file.

. Back up the engine configuration file.

Before editing the current engine configuration file, create a backup of the engine configuration file. Always create a backup to
avoid losing definition information erroneously.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of backing up the engine configuration file

cp /etc/opt/FISVcep/Engine.xml /etc/opt/FJSVcep/Engine.bak.xmI<ENTER>

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

. Edit the engine configuration file.
Edit the engine configuration file using a command such as vi, and then define the settings for the target CEP engine.

Refer to "9.1.1 Engine Configuration File" for information on the format of the engine configuration file.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Definition example of enabling logging for theinitial CEP engine

The definition example below shows "enabling logging of the CEP Server (output destination is the engine log)" for the initial CEP
engine immediately after installation.

The "CepEngine" that is displayed in the definition depends upon the CEP engine name specified at installation.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <subSystemConfig xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1i'>
3 <engineConfig i1d=""CepEngine'>

4 <logging>

5 <type>file</type>

6 </logging>

7 <socketAdapterPort>9600</socketAdapterPort>

8 </engineConfig>

9 </subSystemConfig>

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

. Check therunning status of the CEP service.

The CEP service must be running to execute cepconfigeng. Use cepdispserv to check the status of the CEP service. Refer to 8.5
cepdispserv" for details.

If the CEP service is not running, use cepstartserv to start it. Refer to ""8.10 cepstartserv" for details.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of using cepdispserv to check therunning status of the CEP service
Execute cepdispserv to check that the content below is output.
The operating process number will be displayed where "nnnr' is displayed.

Generated CEP engine names are displayed in place of cepEngine.

cepdispserv<ENTER>

G-
Interstage Java EE DAS started
-9

-46 -

Interstage Java EE Node Agent started
-9

CEPAgentlJServerCluster running
cepEngine_flt not running

cepEngine_cep not running

-9

Status : Running

-9

jsvc (pid nnnn nnnn) is running...
-9

pg_ctl: server is running (PID: nnnn)
-9

Command cepdispserv executed successfully.

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

;ﬂ Information

The CEP service entity

A CEP service is a service made up of multiple processes.

. Check the stopped status of the CEP engine.

The target CEP engine must be stopped for cepconfigeng to change the settings of the CEP engine. Use cepdispeng to check the
status of the engine. Refer to ""8.4 cepdispeng" for details.

If the CEP engine is running, use cepstopeng to stop the CEP engine. Refer to "8.11 cepstopeng" for details.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of using cepdispeng to check the stopped status of theinitial CEP engine
Execute cepdispeng to check the contents of the initial CEP engine output, as shown below.

The "CepEngine" that is displayed in the command execution example and output example depends upon the CEP engine name
specified at installation.

cepdispeng -e CepEngine<ENTER>

engineld :CepEngine
port 9600
status_Filter :STOP
status_cep :STOP

Command cepdispeng executed successfully.

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

. Execute cepconfigeng.

Specify the edited engine configuration file and execute cepconfigeng. When the command is executed, confirmation of the change
is requested, type "y" to continue execution. Execution of the command can be canceled by typing "n" or "q". Refer to "8.2
cepconfigeng” for details.

jpﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of executing cepconfigeng

Below is an example of specifying "/etc/opt/FJISVcep/Engine.xml" as the edited engine configuration file.

cepconfigeng -f /etc/opt/FJISVcep/Engine.xmI<ENTER>
Are you sure you want to change the CEP Engine configuration? [y,n,q]:y<ENTER>
Command cepconfigeng executed successfully.

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

-47 -

7. Storetheengine configuration file.

The engine configuration file specified in cepconfigeng will be required in future for further additions or deletions of CEP engines
or for changing settings, so store it in a safe place. Consider creating a backup on external media, as required.

Ln Note

The backup creation method depends upon the management policy of the system. Always check with the system administrator.

4.4.5.3 Creating a New CEP Engine

In general, only one CEP engine operates, but there may be times when multiple CEP engines need to be provided, such as when a
development environment is being divided for multiple development groups.

BDCEP allows a maximum of five CEP engines to be created for one CEP Server. This section explains how to create a new CEP engine
using cepconfigeng.

Creating a new CEP engine using cepconfigeng

Below is a flowchart for creating a new CEP engine using cepconfigeng.

-
LF‘repare the current engine configuration ﬁle]

}

Back up the engine configuration file

!

&

L Edit the engine configuration file

!

Check the running status of the CEP SEWiCE]

s

|

Execute cepconfigeng

A —

I

L Store the engine configuration file

The procedure for creating a new CEP engine is explained below. For these tasks, log in as a superuser to execute the commands.

1. Preparethe current engine configuration file.

An existing CEP engine must also be defined in the engine configuration file to be specified at cepconfigeng command execution.
Therefore, define the settings of the CEP engine to be added based on the current stored engine configuration file.

E’ Point

© 00 0000000000000 0000000000000000000000000000000O0COC0C0COCOCOCOCOCOCOCCOCO00C0000C0000000000000000000000000000

If an operation has been performed previously according to the execution example in "4.4.5.2 Changing CEP Engine Settings", the
current engine configuration file will be the following file:

/etc/opt/FISVcep/Engine.xml

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

-48 -

Qn Note

If the engine configuration file to be specified at cepconfigeng command execution does not include an existing CEP engine
definition, cepconfigeng will delete the CEP engine which is not specified in the engine configuration file.

. Back up the engine configuration file.

Before editing the current engine configuration file, create a backup of the engine configuration file. Always create a backup to
avoid losing definition information erroneously.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of backing up the engine configuration file

cp /etc/opt/FISVcep/Engine.xml /etc/opt/FJSVcep/Engine.bak.xmI<ENTER>

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

. Edit the engine configuration file.
Edit the engine configuration file using a command such as vi, and then define the settings for the new CEP engine to be added.

Use a CEP engine name that does not duplicate the name of another CEP engine. Refer to "9.1.1 Engine Configuration File" for
information on the format of the engine configuration file.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of creating a new CEP engine called " NewCepEngine"

Create a new CEP engine with the settings below, in addition to the initial CEP engine changed according to the example of executing
changes to the settings of a CEP engine in "4.4.5.2 Changing CEP Engine Settings".

Item Value to be set Description
CEP engine name NewCepEngine Use a CEP engine name that is
unique.

Logging type Logging is not used, so do not set a
value.

Directory name Same as above

Number of open logging files Same as above.

Logging cycle time Same as above.

Socket adapter port Socket communication is not If not set, only a SOAP adapter or
performed, so do not set a value. HTTP adapter can be used.

Below is an example of defining an engine configuration file.

The part from "<engineConfig id=""NewCepEngine'>"to "</engineConfig>"in lines 9 and 10 is the definition of
the new CEP engine to be added.

The existing CEP engine definition remains as is. The "CepEngine" that is displayed in the definition depends upon the CEP engine
name specified at installation.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <subSystemConfig xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1i">
3 <engineConfig id=""CepEngine'>

4 <logging>

5 <type>file</type>

6 </logging>

7

<socketAdapterPort>9600</socketAdapterPort>

-49-

8 </engineConfig>

9 <engineConfig id="NewCepEngine'>
10 </engineConfig>
11 </subSystemConfig>

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

. Check the running status of the CEP service.

The CEP service must be running to execute cepconfigeng. Use cepdispserv to check the status of the CEP service. Refer to 8.5
cepdispserv" for details.

. Execute cepconfigeng.

Specify the edited engine configuration file and execute cepconfigeng. When the command is executed, confirmation of the change
is requested, so type "y" to continue execution. Execution of the command can be canceled by typing "n" or "q". Refer to "8.2
cepconfigeng” for details.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of executing cepconfigeng

Below is an example of specifying "/etc/opt/FJISVcep/Engine.xml" as the edited engine configuration file.

cepconfigeng -f /etc/opt/FISVcep/Engine.xmI<ENTER>
Are you sure you want to change the CEP Engine configuration? [y,n,q]:y<ENTER>
Command cepconfigeng executed successfully.

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

. Storethe engine configuration file.

The engine configuration file specified in cepconfigeng will be required in future for further additions or deletions of CEP engines
or for changing settings, so store it in a safe place. Consider creating a backup on external media, as required.

Qn Note

The backup creation method depends upon the management policy of the system. Always check with the system administrator.

4.5 Canceling Setup

This section explains how to cancel the setup of the features set up in 4.4 Setup".

4.5.

Deleting a CEP Engine
Canceling RDB Collaboration
Canceling Terracotta Collaboration

Canceling Hadoop Collaboration

1 Deleting a CEP Engine

This section explains how to delete a CEP engine.

Deleting a CEP engine that is no longer required allows the system resources such as memory and disk that were used by that CEP engine
to be used for other purposes. This section explains how to delete a CEP engine using cepconfigeng.

& Note

When a CEP engine is deleted, definition information deployed to the CEP engine (such as rule definitions) will also be deleted. The
engine log and resource log of the CEP engine will be deleted as well. Take a backup as required. Refer to "6.3.2 Backup and Restore"
for details.

-50 -

Deleting a CEP engine using cepconfigeng

Below is a flowchart for deleting a CEP engine using cepconfigeng.

Figure 4.2 Flowchart for deleting a CEP engine

P
LF‘repare the current engine configuration file

|

Back up the engine configuration file

!

Edit the engine configuration file

|

Check the running status of the CEF service

|

-
LCheck the stopped status of the CEP engine

!

Execute cepconfigeng

I

L Store the engine configuration file

&

s

A

- | — o — | - -

The procedure for deleting a CEP engine is explained below. For these tasks, log in as a superuser to execute the commands.

1. Preparethe current engine configuration file.

An existing CEP engine must also be defined in the engine configuration file to be specified at cepconfigeng command execution.
Therefore, define the settings of the CEP engine to be deleted based on the current stored engine configuration file.

El Point

© 00 0000000000000 0000000000000000000000000000000O0COC0C0COCOCOCOCOCOCOCCOCO00C0000C0000000000000000000000000000

If an operation has been performed previously according to the execution example in "4.4.5.3 Creating a New CEP Engine", the
current engine configuration file will be the following file:

/etc/opt/FISVcep/Engine . xml

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

gn Note

If the engine configuration file to be specified in cepconfigeng does not include an existing CEP engine definition, cepconfigeng
will delete the CEP engine which is not specified in the engine configuration file.

2. Back up the engine configuration file.

Before editing the current engine configuration file, create a backup of the engine configuration file. Always create a backup to
avoid losing definition information erroneously.

-51-

jpﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of backing up the engine configuration file

cp /etc/opt/FISVcep/Engine.xml /etc/opt/FJSVcep/Engine.bak.xmI<ENTER>

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

. Edit the engine configuration file.

Edit the engine configuration file using a command such as vi, and then comment out or delete the definition for the CEP engine to
be deleted.

Refer to "9.1.1 Engine Configuration File" for information on the format of the engine configuration file.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Definition example of deleting a CEP engine called " NewCepEngine'

In this example, the CEP engine called "NewCepEngine" that was created according to the execution example in "4.4.5.3 Creating
a New CEP Engine" will be deleted.

Below is a definition example of the engine configuration file.

Note that the definition of the relevant part in lines 9 to 12 is not simply deleted. Instead, the part from "<engineConfig
id=""NewCepEngine'>" to "</engineConfig>" is commented out. Commenting out allows you to thoroughly check the
deletion range while you work. The "CepEngine" that is displayed in the definition depends upon the CEP engine name specified
at installation.

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <subSystemConfig xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:vi'>
3 <engineConfig id=""CepEngine'>

4 <logging>

5 <type>file</type>

6 </logging>

7 <socketAdapterPort>9600</socketAdapterPort>

8 </engineConfig>

9 <I--

10 <engineConfig id="NewCepEngine">

11 </engineConfig>

12 -—>

13 </subSystemConfig>

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

. Check therunning status of the CEP service.

The CEP service must be running to execute cepconfigeng. Use cepdispserv to check the status of the CEP service. Refer to 8.5
cepdispserv" for details.

. Check the stopped status of the CEP engine.

The target CEP engine must be stopped for cepconfigeng to be used to delete the CEP engine. Use cepdispeng to check the status
of the engine. Refer to "8.4 cepdispeng" for details.

. Execute cepconfigeng.

Specify the edited engine configuration file and execute cepconfigeng. When the command is executed, confirmation of the change
is requested, so type "y" to continue execution. Execution of the command can be canceled by typing "n" or "q". Refer to "8.2
cepconfigeng" for details.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of executing cepconfigeng

Below is an example of specifying "/etc/opt/FJISVcep/Engine.xml" as the edited engine configuration file.

-52-

cepconfigeng -f /etc/opt/FJISVcep/Engine.xmI<ENTER>
Are you sure you want to change the CEP Engine configuration? [y,n,q]:y<ENTER>
Command cepconfigeng executed successfully.

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

7. Storetheengine configuration file.

The engine configuration file specified in cepconfigeng will be required in future for further additions or deletions of CEP engines
or for changing settings, so store it in a safe place. Consider creating a backup on external media, as required.

;n Note

The backup creation method depends upon the management policy of the system. Always check with the system administrator.

4.5.2 Canceling RDB Collaboration

Below is a flowchart for canceling RDB collaboration.

Figure 4.3 Flowchart for canceling RDB collaboration

Checkthe contents of the
. applications being executed

!

Checkthe CEP engine settings

}

Stop the CEP senvice

-

v

Uninstall the JOBC driver

1. Check the contents of the applications being executed.
Make inquiries to the application maintenance staff to ensure that the applications being executed do not require RDB collaboration.
2. Check the CEP engine settings.

Check ifan RDB reference definition has been deployed to an existing CEP engine. If an RDB reference definition has been deployed,
undeploy the RDB reference definition.

3. Stop the CEP service.

Stop the CEP service that is running. The stop method is shown below. Log in as a superuser to execute the command.

cepstopserv<ENTER>

4. Uninstall the JDBC driver.

Uninstall the JDBC driver. Refer to the manual provided with the JDBC driver for information on how to uninstall the driver.

4.5.3 Canceling Terracotta Collaboration

Below is a flowchart for canceling Terracotta collaboration.

-53-

Figure 4.4 Flowchart for canceling Terracotta collaboration

.

Checkthe contents of the
applications being executed

Stop the CEP semvice

:

Uninstall Terracotta

. Check the contents of the applications being executed.

Make inquiries to the application maintenance staff to ensure that the applications being executed do not require Terracotta
collaboration.

;ﬂ Information

If an application is to use Terracotta collaboration to reference the Terracotta cache, specify vdw:ehcache() in the CREATE
WINDOW statement in the complex event processing rule definition. Refer to "5.4.4.3.3 Using Terracotta cache" for details.

. Stop the CEP service.

Stop the CEP service that is running. The stop method is shown below. Log in as a superuser to execute the command.

cepstopserv<ENTER>

. Uninstall Terracotta.

Uninstall Terracotta. Refer to the Interstage Terracotta BigMemory Max manual for information on how to uninstall it.

4.5.4 Canceling Hadoop Collaboration

Below is a flowchart for canceling Hadoop collaboration.

Figure 4.5 Flowchart for canceling Hadoop collaboration

Check the contents of the
applications being executed

Check the CEP engine settings

:

.

Stop the CEF semvice

-

ninstall the Development Server

-

-

1. Check the contents of the applications being executed.

Make inquiries to the application maintenance staff to ensure that the applications being executed do not perform Hadoop
collaboration. If there is an application that is to perform Hadoop collaboration, consider modifying the application.

_ﬂ Information

An application uses the two methods below to use Hadoop collaboration. Refer to "Chapter 5 Development" for details.

-54-

- Specifying "true" in the useLogging item in the event type definition

- Using the "@LoggingListener" annotation in the complex event processing rule definition

2. Check the CEP engine settings.

Check the contents of the engine configuration file used in the settings of the existing CEP engine to ensure the existing CEP engine
is not specifying a Hadoop collaboration setting. If there is a CEP engine performing Hadoop collaboration, consider changing the
settings of the CEP engine.

ﬂ Information

If an operation has been performed previously according to "4.4.5 Setup of the CEP Engine", the current engine configuration file
will be the following file:

/etc/opt/FISVcep/Engine.xml

To perform Hadoop collaboration, "bdpp" will be specified in the "type" element under the "logging" element. Refer to "9.1.1
Engine Configuration File" for information on the format of the engine configuration file.

3. Stop the CEP service.

Stop the CEP service that is running. The stop method is shown below. Log in as a superuser to execute the command.

cepstopserv<ENTER>

4. Uninstall the Development Server.

Uninstall the Development Server. Refer to the Interstage Big Data Parallel Processing Server manual for information on how to
uninstall it.

4.6 Uninstallation

This section explains how to uninstall BDCEP.

4.6.1 Pre-uninstallation Procedure

This section explains the tasks required before uninstalling BDCEP.

4.6.1.1 Stopping Event Sending

Stop event sending to the CEP Server.

4.6.1.2 Backing up User Assets

Back up user assets. Refer to "6.3.2 Backup and Restore" for information on how to back up user assets such as definition information.

4.6.1.3 Stopping the CEP Service

Stop the CEP service that is running. The stop method is shown below. Log in as a superuser to execute the command.

cepstopserv<ENTER>

4.6.1.4 Deleting Updates
If the following updates of BDCEP and of the software bundled with BDCEP have been applied in UpdateSite format, delete the updates:
- Interstage Big Data Complex Event Processing Server

- Interstage Application Server Enterprise Edition (64 bit)

-55-

2 See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

Refer to the Help in "UpdateAdvisor (middleware)" and the update information files of each update for details.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

4.6.2 Uninstallation Procedure

This section explains the uninstallation procedure.

From the following two types, select the uninstallation method that best suits the method of use. If uninstallation using multi-user mode,
check that the operations of other users will not affect the uninstallation:

Attended uninstallation

Use 'attended uninstallation' to execute the uninstallation with querying to check that uninstallation is to be executed and then executes
uninstallation.

Unattended uninstallation

Use 'unattended uninstallation’ to execute the uninstallation with no querying from the Uninstaller.

gn Note

With uninstallation, the packages installed by BDCEP will be uninstalled. Specific installed packages and features cannot be selected for
uninstallation. Some packages will be uninstalled manually.

In addition, the resources under the installation destination directory will be deleted at uninstallation. Always save necessary resources
before uninstallation. Refer to "6.3.2 Backup and Restore" for information on backup.

4.6.2.1 Attended Uninstallation

1. Log in as a superuser.

$ su - <ENTER>

2. Load the installation DVD-ROM and execute the uninstallation shell script (uninstall.sh shell) stored on the DVD-ROM from any
directory.

mount /dev/deviceFileName dvdRomMountDir <ENTER>
dvdRomMountDir/uninstall.sh <ENTER>

3. The product name will be displayed as shown below.

4. Continuing from the display above, the uninstallation content will be displayed as shown below.
In uninstallPackages, all of the packages to be uninstalled will be displayed delimited by spaces.

Uninstallation packages:
uninstal IPackages

5. Check the content and, to start uninstalling the packages, type "y" and press the Enter key.
To stop uninstallation, type "q" and press the Enter key.
After typing "y", BDCEP uninstallation will start. Uninstallation can be stopped by typing "q".

All files/directories under the installation destination directory will be deleted.
Please back up the required resources before uninstalling.

Do you want to proceed with the uninstallation? [y,q]:

-56 -

6. When uninstallation has completed normally, the message below will be output. Perform the post-uninstallation procedure to
continue.

The uninstallation processing completed successfully.

4.6.2.2 Unattended Uninstallation

1. Login as a superuser.

$ su - <ENTER>

2. Load the installation DVD-ROM and, from any directory, execute the uninstallation shell script (uninstall.sh shell) stored on the
DVD-ROM, with the -s option added.

mount /dev/deviceFileName dvdRomMountDir <ENTER>
dvdRomMountDir/uninstall.sh -s<ENTER>

3. When uninstallation has completed normally, the message below will be output.

The uninstallation processing completed successfully.

4.6.3 Post-uninstallation Procedure

This section explains the tasks after uninstallation.

4.6.3.1 Uninstalling FISVod
The uninstaller does not uninstall the FISVod package when the following product is installed on CEP Server.
- Systemwalker Centric Manager (Management Server)

Below are manual uninstallation steps for the FJSVod package.

1. Check product usage

Check if the following product is installed. If it is installed, do not uninstall the FISVod package.
- Systemwalker Centric Manager (Management Server)
2. Uninstall the FJSVod package

Execute rpm as a superuser to uninstall the FISVod package.

/bin/rpm -e --nodeps FJSVod <ENTER>

4.6.3.2 Uninstalling FISVsmee64 and FJSVsclr64

The uninstaller does not uninstall the FISVsmee64 and FISVsclr64 packages, because these packages may be included in Fujitsu non-
Interstage products such as Systemwalker Centric Manager.

If you want to uninstall these packages manually, execute following commands as a superuser.

/bin/rpm -e --nodeps FJSVsmee64 <ENTER>
/bin/rpm -e --nodeps FJSVsclr64 <ENTER>

4.6.3.3 Removing Environment Variables

Delete the path below from the PATH environment variable of the CEP Server users.

/opt/FJSVcep/bin

-57 -

E) Point

© © 0000000000 000COCOCOCOCOCEOCEOEE

IT the following Ffiles were created in the /etc/profile.d directory in "4.3.3.1 Setting Environment Variables',
delete the created files:

- letc/profile.d/FISVcep.sh
- letc/profile.d/FJSVcep.csh
4.6.3.4 Engine Execution User Specified at Installation

The engine execution user and the group to which the engine execution user belongs that are specified at installation will not be deleted
at uninstallation. If the user is not required, delete the user.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Below is an example of manually deleting the execution user called "ishdcep".

$ su - <ENTER>
userdel isbdcep<ENTER>

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

& Note

The user and group deletion method depends upon the management policy of the system. Always check with the system administrator.

4.6.3.5 Uninstall (middleware)
Installing BDCEP also installs "Uninstall (middleware)".

"Uninstall (middleware)" is a common tool for Fujitsu middleware products. It manages information about installed Fujitsu middleware
products and starts the product uninstaller.

Perform the following procedure to uninstall this tool:

1. Start "Uninstall (middleware)", and check if any other Fujitsu middleware products exist on the system. Start the tool as follows:

/opt/FJSVcir/cir/bin/cimanager.sh -c <ENTER>

2. If there are no installed Fujitsu middleware products, run the following uninstallation command:

/opt/FJISvVcir/bin/cirremove.sh <ENTER>

3. When "This software is a common tool of Fujitsu products. Are you sure you want to remove it? [y/n]:" is displayed, type "y" to
continue with the uninstallation process.

The uninstallation process completes in a few seconds.

4. After the uninstallation completes, the following directory and the files under it will still exist, so delete it.

/var/opt/FJSVcir

4.6.4 If an Error Occurs during Uninstallation

If execution of the uninstaller fails, after responding in accordance with the message, re-execute the uninstall.sh shell.

Refer to Section 2.2, "Errors during Uninstallation" in Troubleshooting for details.

-58 -

;ﬂ Information

Logfileof the uninstaller
Below is the log file output by the uninstaller. It records detailed operation statuses in addition to the messages displayed in the windows
and is referred to when trouble occurs.

/var/tmp/bdcep_uninstall.log

When uninstallation is successful, the log file will be deleted.

-59-

IChapter 5 Development

This chapter explains event processing using Interstage Big Data Complex Event Processing Server (hereafter referred to as "BDCEP"),
from design to development and testing.

This chapter also explains the sample application.

5.1 Overview of BDCEP Event Processing

BDCEP event processing is broadly divided into the following two types:

- Event processing that uses logging to record input events in an external Hadoop system.

- Event processing that applies a series of rules to input events and either logs the processing results, sends them to an external Web
service, or processes them using a user-developed Java class. This type of event processing also performs processes such as referencing
external data (distributed cache, relational database) when applying the rules.

Deploying the following definition information allows the system to perform these series of operations. The sections that follow explain
the details of this definition information:

- Event type definition (mandatory)

Rule definition (optional)

Master definition (optional)

RDB reference definition (optional)

SOAP listener definition (optional)

In addition to this definition information, using BDCEP to utilize the processing results of events will also require development assets,
such as applications for analyzing logged events or processing results and Web services that operate after receiving the processing results
of events.

5.2 List of Development Assets

The table below lists the development assets of BDCEP. Development assets are broadly divided into definition information, data, and
collaboration applications. Definition information is deployed in the CEP engine for execution. Each of the others is provided (deployed)
in its corresponding server.

Table 5.1 List of development assets

Development . Deployment
P Development asset Explanation p'y .
asset type destination

Define the format of the events the input adapter is to
receive. Also define the log storage area specification and
Event type definition | Whether or not complex event processing is to be used.

The events the input adapter is to receive can be in XML or
CSV format.

Define high-speed filter processing rules and complex
Definition event processing rules. Describe these using filter rule
information language (IF-THEN format) and complex event processing
rule language (SQL format), respectively.

CEP engine

Rule definition The processing results of complex event processing rules
can be sent to an external application by SOAP
communication, accumulated on disks by logging, and
processed according to a user-developed Java class by the
custom listener.

-60 -

Development . Deployment
P Development asset Explanation P . y .
asset type destination
Define this if the items that make up the events will vary
Event type definition | according to factors such as join and extraction processing
(filtered events) of high-speed filter processing.
Filtered events will be in CSV format.
Create this if master referencing is to be performed in high-
Master definition speed filter processing. This is the definition of the master
data to be referenced.
Create this if RDB collaboration is to be performed using
RDB reference . . .
. complex event processing. Define RDB connection
definition . .
information.
Define the interface of the user-developed Web service to
SOARP listener be used as the send destination when the processing results
definition of complex event processing rules are to be sent to an
external application using SOAP.
Event data This is event data to be sent to the CEP Server to check the Event
. operation of definition information. sender
(for testing)
system
Master data This is required separately if master referencing is to be
. L . . g . CEP
(for the high-speed performed in high-speed filter processing. Provide this in Server
filter) CSV file format on the CEP Server.
This is required separately if Terracotta collaboration is to
Data be performed. Provide this on the collaborating Terracotta
Terracotta (*1) server. Terracotta
cache server
A Terracotta application for update is required separately
in order to store or update the data in a Terracotta cache.
This must be considered if RDB collaboration is to be
Relational database | performed. Provide this on the collaborating RDB server. RDB
(RDB) RDB commands or an RDB application is required for server
storing and updating data in a relational database.
This is an application that sends events to the CEP engine.
To use SOAP for sending events, provide a SOAP client
application.
This is not required if events are to be sent directly to the Event
Event sender . - .
anplication CEP engine using an existing system as the event sender. sender
PP If a new event sender application needs developing, it must system
be done according to the device to be used as the sender.
The event sender sample program bundled with the product
Collaboration can be used in the operation testing of rule definitions.
application This Java class receives the output of complex event
User-developed processing rules via the custom listener and processes it. CEP
Java class It is deployed to the CEP Server and called from a CEP engine
engine.
This is a Web service (SOAP application) that receives and
User-developed controls event data sent by the output adapter. Application
Web service server

Deploy this in the application server that collaborates with
CEP Server.

-61-

Development . Deployment
P Development asset Explanation P . y .
asset type destination
) This is an application for analyzing event logs logged in a
Event log analysis Hadoop system. Develop this using the Hadoop Java API. Hadoop
application system
Deploy this in the Hadoop system and then execute it.
This is an application, separate from the complex event
processing rules, for updating the cache contents such as by
Terracotta initially storing data in a Terracotta cache. Terracotta
application server
This is not required if an existing Terracotta cache is to be
used.

The following figure below shows the deployment destination of each development asset.
Figure 5.1 Deployment destinations of development assets

* CEP Server
f High-performance CEP engine

Input
adapter

Complex
event
processing

High-speed
filter

Qutput
adapter

Eventsender
system Hadoop

collaboration

Eventlog

Analysis
application

Interstage Big Data
Parallel Processing Senver
(Hadoop system)

A: Eventtype definition

B: Rule definition (left: Filter rule,
right: Complex event
processingrule)

C: Eventtype definition (filtered events)

O: Master definition

E: RDE definition

F: S0AP listener definition

5.3 Task Overview

=: Event data (for testing)

H: Master data (for high-speedfilter)
I: Terracotta cache

J.ROB

Terracotta
collaboratio

Terracotta
application

Interstage Terracotta
BigMemory Max
(Terracotta server)

RDOBserver

0: Terracotta application

K: Eventsenderapplication

L: User-developedJava class (custom listener)
M: User-developedWebservice

M: Eventloganalysis application

Application
SEMVET

The development flow is shown below.

-62 -

Figure 5.2 Development flow

| Design

!

y

Implement

}

Deploy development assets]

R

!

Integration test

!

[Undeploy development assets

Ty R

Development environment

Design and develop definition information using a developer's own local personal computer, and check the operation by deploying the
definition information in a CEP engine on the CEP Server.

For the event data for testing or master data (CSV), use data extracted from an existing database or data generated using a tool such as
Excel.

When developing a collaboration application, use a development environment that is suitable for the collaborating system or product.

5.4 Design (Definition File)

This section explains how to design each type of definition information.

5.4.1 Overview of Definition Information

This section provides an overview of items included in the following definition information:

- Event Type Definition

Rule Definition

Master Definition

RDB Reference Definition

SOAP Listener Definition

5.4.1.1 Event Type Definition

The table below provides an overview of event type definitions.

Table 5.2 Overview of event type definitions
Item Description

Development asset ID Specify an ID that is unique in the deployment destination CEP engine.

A development asset ID for the event type definition is used as an event stream
name in complex event processing rules.

Format Specify the format of the event that is input to filter processing and complex event
processing.

Specify XML or CSV.

-63-

Item Description

Filtered events will only be in CSV format.

CSV column information Set this item if the event format is CSV.

Define column names and type information.

XML schema (*1) Set this item if the event format is XML.

Specify a schema (XML schema), which represents the event structure.

Root element (*1) Specify an event root element name if the event type is XML. This will be one of
the XML schema defined elements.

Use of logging Specify whether to use Logging for received events that have not been processed
by the high-speed filter in the input adapter.

Log storage area (*1) Specify a storage area if Logging is used in the input adapter.

Use of complex event processing Specify whether to use complex event processing.

*1: There is no need to consider this if the definition information is "event type definition (filtered)". Refer to "5.4.6 Designing an Event
Type Definition (Filtered)" for information on this definition.

5.4.1.2 Rule Definition

The table below provides an overview of rule definitions.

Table 5.3 Overview of rule definitions
Item Description

Development asset ID Specify an ID that is unique in the deployment destination CEP engine.

Filter rule Define high-speed filter rules.
Multiple filter statements can be specified in a rule by specifying them consecutively.
Use relevant development asset 1D values in the following rule items:

- ON statement event type

Specify a development asset ID for the event type definition that corresponds to input
events.

- Master data
Specify a development asset ID for the master definition.
- Output expression event type alias

Specify a development asset ID for the event type definition that corresponds to
filtered events.

Complex event processing rule | Define rules for complex event type processing (complex event processing rules).

Multiple complex event processing statements can be defined in a rule by delimiting them
using semicolons.

Use relevant development asset 1D values in the following rule items:
- Input event stream names
Specify the development asset ID for the event type definition.
- Database name
Specify the development asset ID for the RDB reference definition.

- SoapListener annotation

Specify the development asset ID for the SOAP listener definition.

-64 -

5.4.1.3 Master Definition

The table below provides an overview of master definitions.

Table 5.4 Overview of master definitions

Item Description

Development asset 1D Specify an ID that is unique in the deployment destination CEP engine.

Schema file Specify a file in which data file item names are defined.

Data file Specify a directory path where data files are stored, or the data file path.
If adirectory is specified, all files stored in the specified directory excluding subdirectories
are treated as the master data.
Multiple data files can be specified and treated as single master data.

Use of skip Specify whether to skip the first line of a data file.

5.4.1.4 RDB Reference Definition

The table below provides an overview of RDB reference definitions.

Table 5.5 Overview of RDB reference definitions

Item

Description

Development asset 1D

Specify an ID that uniquely identifies the definition information.

Database system name

Specify the name of the database system. (*1)

Schema name

Specify the schema name of the database to be connected. (*1)

JDBC driver class

Specify the class of the JDBC driver. (*2)

Database URL

Specify the URL of the database to be connected.

Access ID

Specify the name of the user who will connect to the relational database.

Access password

Specify the password of the user who will connect to the relational database.

Cache retention period

Specify the time period for holding the RDB reference results in the cache.

Cache purge interval

Specify the time interval for flushing the cache of RDB reference results.

*1: Required when referencing Symfoware with the native interface.

*2: Required when referencing Symfoware (Open Interface) or PostgreSQL.

5.4.1.5 SOAP Listener Definition

The table below provides an overview of SOAP listener definitions.

Table 5.6 Overview of SOAP listener definitions

Item

Description

Development asset 1D

Specify an ID that is unique in the deployment destination CEP engine.

Connection URL

Specify a connection URL of the user-developed Web service.

Namespace

Specify a namespace of the message (SOAP body content) to be sent to the user-developed
Web service.

Namespace prefix

Specify a namespace prefix used in the message (SOAP body content) to be sent to the
user-developed Web service.

Root element

Specify a root element name of the message (SOAP body content) to be sent to the user-
developed Web service.

-65-

5.4.2 Association between the Development Asset ID and Definition
Information

Each item of definition information has a development asset ID used to uniquely identify it as well as to associate it with other items of
definition information.

When designing definition information, these development asset IDs must be managed.

Below is an example of the association between each development asset. The development asset IDs and rules described for each
development asset must be defined so that they establish this association.

Figure 5.3 Association between development asset IDs and definition information
Event type definition Event type definition (filtered)
I I

= » Development asset ID « Development asset ID

Master definition

Rule definition

[by %,
| %
« Development asset ID « Development asset D
« High-speed filter rules
« Event type name (input) RDB reference definition N
+ Master definition reference | Ty
| « Event type alias (output) Frmra smEr T
« Complex event processing rules _|
* Stream name SOAP listener definition
+ Database name [L)
+ Soaplistener annotation
I——> « Development asset D

5.4.3 Designing an Event Type Definition

This section explains the points to consider when designing an event type definition.

5.4.3.1 Features of Input Events
Check details such as the data format and size of input events as well as their frequency of occurrence, as follows:
- If an existing system is to be used as the input event sender, check the event specifications of the existing system.

- Check the requirements relating to the amount of processing of the input events, such as the average input event size and the average
number of events received per unit of time (for example, per hour or per second).

- Inan event type definition, the two event data formats are XML and CSV format, as follows:
- Select XML format or CSV format as appropriate.

- Input events with other data formats such as binary format cannot be directly received, so consider converting the data format
between the event sender and the CEP Server.

- 66 -

5.4.3.2 Recording and Analyzing Events
This section explains the points to consider when recording and accumulating events for analysis and other purposes.

To record events, use BDCEP Logging.

Accumulating events
To accumulate the events in the Hadoop system where they are being logged, consider the following points:

- Type and format of the events to be logged
Consider what type of events to log and accumulate.

- Storage destination of the events to be logged
The Hadoop system to be connected is set according to the engine configuration file of the CEP engine.
In the Hadoop system to be connected, check for a path that can be used as a storage destination.

- Event accumulation capacity (free disk capacity required)
The event storage destination will require enough free disk capacity to accumulate massive volumes of events.

Check the average event size, number of recordings per unit of time, and accumulation period in order to consider the disk capacity
required for recording and accumulating the events.

If necessary, consider an expansion plan for the system to be used as the event storage destination.

Analyzing accumulated events
An application for analysis must be designed and developed in order to analyze the accumulated events.

Refer to "5.6.4 Designing an Event Log Analysis Application™ for information on designing an application for analysis.

5.4.4 Designing a Rule Definition

A rule definition consists of two types of rules: the filter rules to be used in high-speed filter processing and the complex event processing
rules to be used in complex event processing.

This section explains the following items, including considerations when designing rules and the creation procedures to use:
- High-speed Filter Processing
- Considerations when creating filter rules

- Processing pattern of filter rules

Complex Event Processing
- Considerations when creating complex event processing rules
- Creation procedure for complex event processing rules

Terracotta Collaboration

RDB Collaboration

SOAP Listener

Custom Listener

Logging Listener

5.4.4.1 High-speed Filter Processing
Define the filter rules to be used by the high-speed filter.

Considerations when creating filter rules

The items to consider when creating filter rules are as follows:

-67 -

- Unit of rule creation
Create a filter rule for each event type. Multiple filter rules cannot be defined simultaneously for a certain event type.

- Processing pattern of filter rules
Select a suitable processing pattern from the ones described below, and then create a rule similar to the selected pattern.
Refer to Chapter 2, "Filter Rule Language Reference" in the Developer's Reference for information on filter rules.

- Master data

Master data is referenced from within filter rules. Some individual events may contain only limited information such as an ID or code
in order to cut down on the volume of event communication. Writing rules to process events is difficult in that situation, so it is possible
to use master data that can be referenced using the ID or code as a key. Using master data in this way allows rules to be created more
easily.

The master data must be created as files in CSV format by the user beforehand.
Refer to "5.4.5 Designing a Master Definition" for information on designing master data.
- Memory usage for filter rules

Using filter rules requires a large amount of memory. Refer to *3.3.1.1 Amount of Memory when Using High-speed Filter Rules" and
""3.3.1.2 Amount of Memory when Master Data is used by the High-speed Filter" for information on the memory required.

Processing pattern of filter rules

By defining filter rules in the high-speed filter, the user can describe event extraction as well as extraction and join processing in combination
with master data. The output of the high-speed filter is used directly as the input of complex event processing.

The processes performed by the high-speed filter are generally represented by the following four patterns and their combinations:

Extraction process

- Extraction process using master data matching

Join processing with master data

- Weighting processing of text

5.4.4.1.1 Extraction process

This processing pattern extracts from the input events those events that meet the conditions described in IF-THEN statements in the filter
rules.

Consider using this processing pattern if only the events required are to be extracted from massive volumes of events.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of an extraction process
This is an example of extracting events using the content of the events (value).

"value > 10" is defined as the extraction condition.

-68 -

Filter rules

Input event jith valugs10
Event: A-1
key=1 r CEP engine ‘!
value=10

High-speedfilter Event A7 Complex
Event: A-2 key=5 event _
::EEE—H T processing

- Extraction _}
process)

Event: A-3 Event: A-3
key=10 key=10
value=12 value=12

L J

Ruleto becreated

The rule to be created in the example above is as follows:

on inputEventTypelD {
if ($value > 10) then output() as inputEventTypelD;

}

- inputEventTypelD is the development asset ID of the target event type definition.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

’_ﬂ| Information

Filtering theitemsin the eventsto be output
Items in the events to be output can also be filtered. Below is an example of outputting only "key" in the example shown above.
To output using a different format from that of the input events, a corresponding event type definition (filtered) will also be required.

Refer to Section 2.7, "Output Expression Format" in the Developer's Reference for details.

on inputEventTypelD {
if ($value > 10) then output($key) as outputEventTypelD;

}

- inputEventTypelD is the development asset ID of the target event type definition.

- outputEventTypelD is the development asset ID of the event type definition (filtered) that represents the results of filtering the
item.

5.4.4.1.2 Extraction process using master data matching

This processing pattern matches the relevant entries of master data (CSV files) on the basis of values such as those of the ID or code
contained in the input events, and then extracts the events based on the values of the relevant entries.

Consider using this processing pattern if only the events required are to be extracted from massive volumes of events but the events
themselves do not contain the information required for extraction.

To perform the processing of this pattern, a master definition must also be designed.

_VJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of the extraction process using master data matching

-69 -

This is an example of referencing the relevant entries of master data based on the "key" contained in the events, and then extracting the
events based on the values of "address" in the entries. "address==Fukuoka" is defined as the extraction condition.

Filter rules

Input event
) Extract events that match address=="Fukuoka"
Event: A-1
key=1)
value=10 ﬁ_EFI engine \
Event A2 High-speed filter Sunemniﬂex
key=5 :
value=11 S Event: A-3 pracessing
racton KE}":1 0 b
Event A-3 process value=12
key=10
value=12 Master data
key |address
1 Tokyo
5 Osaka
10 Fukuoka

e /

Ruleto becreated

The rule to be created in the example above is as follows:

on inputEventTypelD {

it (lookup(“"masterDefinitionlID", $key == $key, string($address)) == "Fukuoka'™) then output() as
inputEventTypelD;
3

inputEventTypelD isthe development asset ID of the target event type definition.

masterDefinitionlD is the development asset ID of the master definition that corresponds to the master data to be referenced.
- To compare "$address" as a string, use "string($address)" to fetch the values.

- The left side of "$key == $key" is "key" of the input events and the right side is "key" of the master data.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

gn Note

The master data information will not be assigned to the input events if they are only matched using "1ookup". If join processing with
master data is required, a join expression must be described. Refer to "5.4.4.1.3 Join processing with master data" below for information
on join processing.

5.4.4.1.3 Join processing with master data

This processing pattern joins input events with master data. Consider using this processing pattern to assign the required data for the next
complex event processing. It enables faster join processing than RDB referencing using complex event processing rules.

To pass the results of joining to complex event processing, an event type definition (filtered) corresponding to the join results will also be
required.

-70 -

jJJ Example

Example of join processing with master data

This is an example of joining the corresponding master data on the basis of "key" contained in the events, and then assigning "address™
to the events.

Filter rules

Input event Join input events and master data
Event: A-1
key=1
ﬂé P engine \
- High-speed filter Event B-1 Complex
Eve Pt' A2 key="1 e n?
key=5 address=Tokyo processing
Join ;
processing Event: B-2
Event: A-3 key=5
key=10 address=0saka
Master data
l Event: B-3
key | address key=10
1 Tokyo address=Fukuoka
5 Osaka
10 Fukuoka

Ruleto becreated

The rule to be created in the example above is as follows:

on inputEventTypelD {

join('masterDefinitionID”, $key == $key) output($key, "masterDefinitionlID".$address) as
outputEventTypelD;
3

- inputEventTypelD is the development asset ID of the event type definition that is the rule target.
- masterDefinitionlD is the development asset ID of the master definition that corresponds to the master data to be referenced.

- outputEventTypelD is the development asset ID of the event type definition (filtered) that represents the results of joining.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.4.4.1.4 Weighting processing of text

This processing pattern can weight the text in input events by registering the weight of the keywords in the master data. This in turn allows
applications including those that extract only those events with a total weighting that is above a threshold, and those that detect consecutively
issued events that are above a threshold.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of weighting processing of text

If the text contained in events contains search words that have been defined in the master data, assign the number of search words it
contains as well as the total weighting value set for each search word, and then output them.

-71-

Filterrules

Weighting based on event content

/EEP engine

~N

Input event
Event A-1 High-speed filter EventB-1 Complex event
ID=00001 ID=00001 processing

subject="\Weather
forecast
message=Itwill
besunnyor
cloudy

Ruleto becreated

Master data

processing

waord weight
sunny 10
cloudy

rainy 3

L

subject=\Weather

forecast
*wnrd:"sunn:.r:

cloudy”
weight="10,5"
count_word=2
sum_weight=15

—

The rule to be created in the example above is as follows:

on inputEventTypelD {
join(C'masterDefinitionlID", $message = $word)
output($ID,
$subject,
"masterDefinitionID"_$word,
"masterDefinitionID"_$weight,
lookup_count(*'masterDefinitionID"._$word),
lookup_sum(*'masterDefinitionID" _$weight)) as outputEventTypelD;

- inputEventTypelD is the development asset ID of the event type definition that is the rule target.

- masterDefinitionlD is the development asset ID of the master definition that corresponds to the master data to be referenced.

- outputEventTypelD isthe development asset ID of the event type definition (filtered) that represents the results of joining.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.4.4.2 Complex Event Processing

Define the rules to be used by complex event processing.

Considerations when creating complex event processing rules

The items to consider when creating complex event processing rules are as follows:

- Unit of rule creation

Create a complex event processing rule for each use application or for each purpose of performing event pattern detection. Decide on

a unit of creation in which an event pattern detection described in a certain rule will not affect other rules.

Itis also possible to describe multiple processes in one rule definition, but this will create large rule definitions and may lead to reduced
maintainability.
For example, if events relating to home electronic equipment are to be processed and the content to be detected varies significantly

between domestic appliances and information devices, create the following two rule definitions:

- Rule definition to detect patterns in events relating to domestic appliances

-72-

- Rule definition to detect patterns in events relating to information devices
- Referencing external data

Consider whether referencing external data is necessary in event processing. A Terracotta cache and a relational database (RDB) can
be used as external data.

Refer to "5.4.4.3 Terracotta Collaboration™ for information on referencing a Terracotta cache.
Refer to "5.4.4.4 RDB Collaboration" for information on referencing a relational database.
- Whether processing results are to be sent or logged

The processing results of complex event processing rules can be sent to an external Web service using SOAP but they can also be
processed using a Java class deployed to a CEP engine, or logged in an event log using logging. Apply the SOAP listener, custom
listener, and logging listener, respectively, to the complex event processing rules in these cases.

Refer to "5.4.4.5 SOAP Listener" for information on how to use the SOAP listener.

Refer to "5.4.4.6 Custom Listener" for information on how to use the custom listener.

Refer to "5.4.4.7 Logging Listener" for information on how to use the logging listener.
- Rule creation procedure

Design complex event processing rules in stages, without describing statements from the outset, and develop them so that the intended
events will be reliably detected. The creation procedure for complex event processing rules is shown below.

Creation procedure for complex event processing rules
This section uses examples to explain the following creation procedure for complex event processing rules:
1. Consider what isto be achieved by using complex event processing.

Decide on what is to be achieved by using complex event processing. If this is unclear at this point, analyzing the collected events
can sometimes clarify this.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Exampleof arule

"When someone is home, if rain is likely, recommend using the drying feature of the washing machine.”

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

2. Consider the events, external datato bereferenced, and output content.

Consider the events, the external data for referencing, and the output content required to create the rule. Also consider using a named
window for retaining events in memory.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Examples of events, external data, output, and named window
The rule example above uses the following events, external data, output content, and named window:
- Events

- TV control event
For the household appliance event data sent from the home gateway of each household, the value of the device category
property is to be "Television™.

- Weather forecast event
The forecast is to be represented by the time and weather.

- External data

- Washing machine model information (whether it has a drying feature)
Whether the washing machine in that household has a drying feature is to be apparent from the home gateway ID.

-73-

- Output content
- Home gateway ID of the
- Recommendation details
- Named window

- Named window for weat

household to be given the recommendation

her forecast events

The weather forecast events for each time are to be retained for one day.

@000 0c000000000000000000 0

. Refine the processing content.

© 0000000000000 000600000S0

Refine the content of the events and of the complex event processing for detecting them.

Here, "refine" is the task of using events and specific information such as complex event processing conditions and external data
ressed in everyday language as "what is to be achieved" into a representation closer to the rule to

to make what was previously exp
be created.

jﬂ Example

@000 c0c00000000000000000 00

© 00 0000000000000 00S0

Example of refining the content of complex event processing

The table below shows the results of refining the "When someone is home, if rain is likely, recommend using the drying feature of

the washing machine" rule.

Element of the rule

Refined processing content

"When someone is home"

Determine that someone is home in the household where the TV was controlled
(detect a TV control notifying event).

"If rain is likely"

Reference the weather forecast information stored in the named window and, from
the time of the weather forecast and the time of the TV control, check whether or not
there is a forecast of rain after this time.

"Drying feature of the
washing machine"

Obtain product information on the washing machine connected to the home gateway
from the Terracotta cache.

"Recommend”

If there is a forecast of rain and if the washing machine has no drying feature,
recommend hanging the clothes inside the house.

If there is a forecast of rain and if the washing machine has a drying feature,
recommend using it.

@000 0c000000000000000000 0

. Create an event flowchart.

After refining the processing content is completed, summarize the event processing flow to create an event flowchart. An event
flowchart associates events and their processing content in chart form. Create an event flowchart before describing the processes

© 0000000000000 000600000S0

using complex event processing rule language, as it is useful for checking the processing content to be achieved.

;ﬂ Information

L egend of event flowchart

This is the legend for the event flowcharts to be used in this manual.

-74 -

Legend Complex event processing
Event statement (SELECT statement,
ven named window operation)

. User-developed Web senvice
>> Named window >> User-developed Java class
“.::::::::::\

~ Terracotta cache
‘:, Virtual data window ,:" RDB '
é’: = =======%

——————— Process flow

———————— -» Data reference

© 00 0000000000000 0000000000000000000000000000000000O0CO0C0CL0C0COCOCOCOCOCOCOCOCOC0C0C000000000000000000000000000

N Example

Example of an event flowchart

Thisis an event flowchart for "When someone is home, if rain is likely, recommend using the drying feature of the washing machine".

Weather forecast Weather forecast
event window

Weather (3) Register Weather (1) Create
Faoracast weather forecastj=» »» Forecast weather forecast
Event window Win window
7
I

Home electronics] TV operation event (rain
event TV aperation event I forecasted)

(5} Filter only
(4) Detect TV . VContral
> HEEvent > operation event %> WControl)% v%rgreencrajtr;és = e >—)®

Event with information
regarding the existence
of the dryer feature

i(ET}UFrlr;]Uaﬂiiﬁ acoording = (7) Userdeveloped Web senvices
(> to the existence ofthe * Recommend to use the dryer

dryer feature of feature if any.
washing machines + Otherwise, recommend to dry
: inside the house.
1 + Control that the same
Washing machine recommendation will nat be
feature window offered to the same house fora
(2) Create washing A= Ern_m_ct- = . certain period of time

ProductFunc
Cache

Create a named window for retaining weather forecast events.
Create a Virtual Data Window (Terracotta cache) to see whether the washing machine has a drying feature.
Store weather forecast events in the weather forecast window.

Detect any TV control events from among the household appliance events.

o c W N oE

Check the weather forecast from after the time that the TV control events occurred and leave only those events with a forecast
of rain.

-75-

6. Search the washing machine feature window for the households for which a TV control was performed and for which there
is a weather forecast of rain, and then add recommendation information according to whether the washing machine has a
drying feature and send it to the user-developed Web service.

7. Based on the information received by the user-developed Web service, send a recommendation to the household. Control the
user-developed Web service so that the same recommendation is not made to the same household twice within a fixed time
period.

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

. Create complex event processing rules.

Describe complex event processing rules that correspond to the respective elements in the event flowchart.

jﬂ Example

© 00 0000000000000 0000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCO000C0C0C0C0000000000000000000000000000

Example of complex event processing rulesthat correspond to the event flowchart

Refer to Chapter 1, "Complex Event Processing Language Reference" in the Developer's Reference for information on the meanings
of rules.

1 // 1. Create a named window for retaining weather forecast events.

2 @Name("WeatherWin®)

3 create window WeatherForecastWin.std:unique(FORCASTIME) .win:time(1 day)

4 (FORCASTIME long, WEATHER string);

5

6 // 2. Create a Virtual Data Window to check whether the washing machine

7 // has a drying feature.

8 @vDW(cacheName="ProductFuncCache®, keyProperty="gatewayld")

9 create window ProductFuncWin.vdw:ehcache("ProductFuncCache®, "gatewayld®)
10 as (gatewayld string, dryFunc string);

11

12 // 3. Store weather forecast events in the named window.

13 @Name (" InputWeather*®)

14 insert into WeatherForecastWin

15 select weathfore.FORCASTIME as FORCASTIME, weathfore.WEATHER as WEATHER
16 from WeatherForecastEvent as weathfore;

17

18 // 4. Detect TV control events.

19 @Name("ChkTVEvent*®)

20 insert into TVControl

21 select heevnt.gatewayld as gatewayld, heevnt.updateTime as updateTime
22 from HEEvent as heevnt

23 where heevnt.deviceCategory = "Television”;

24

25 // 5. Check the weather when TV control events occurred (detect forecast
26 // of rain).

27 // Use the following expression to evaluate the time zone of weather

28 // forecasts. Assume FORCASTIME is "long" (milliseconds):

29 // timeOfWeatherForecast

30 // <= updateTimeOfTVcontrolEvent

31 // <= timeOfWeatherForecast + 1 hour (3600000 milliseconds)

32 @Name (" GetRainyEvent*®)

33 insert into TVControlRain

34 select tvevnt.gatewayld as gatewayld

35 from TVControl as tvevnt unidirectional, WeatherForecastWin as weather
36 where updateTimeToMillis(tvevnt._updateTime) between weather.FORCASTIME
37 and (weather.FORCASTIME + 3600000)

38 and weather WEATHER = “rainy”;

39

40 // 6. Check whether the washing machine has a drying feature and send the
41 // recommendation.

42 // Check whether ProductFuncWin dryFunc property has drying feature ("'1": Yes).
43 // Use the SOAP listener to send the output to the application.

-76 -

44 // "USE_DRY_FUNC" = Recommendation ID if there is drying feature

45 // "HANG_LAUNDRY_INSIDE®" = Recommendation ID if there is no drying feature
46 // Use the logging listener to log the output.

47 // table : set log storage area.

48 // properties : set property names output (output results)

49 // by delimiting with commas.

50 @Name (" PutRecommend*®)

51 @SoapListener("soap-001%)

52 @LoggingListener(table="/logsoap” ,properties="gatewayld, recommendid®)

53 select tvevnt.gatewayld as gatewayld,

54 case when product.dryFunc = "1°*

55 then "USE_DRY_FUNC*®

56 else "HANG_LAUNDRY_INSIDE"end as recommendld

57 from TVControlRain as tvevnt unidirectional, ProductFuncWin as product
58 where product.gatewayld = tvevnt.gatewayld;

© 0 0000000000000 00000000000000000000000000000000000O0C0C0C0COCOCOCOCOCOCOCOCCOCOC00C0C00C000000000000000000000000

5.4.4.3 Terracotta Collaboration

This section explains considerations when performing Terracotta collaboration, and explains how to use Terracotta collaboration, as
follows:

- Considerations when using Terracotta collaboration
- Preparing a configuration information file for Terracotta cache
- Using Terracotta cache

- Creating a Virtual Data Window

- Using a Virtual Data Window

5.4.4.3.1 Considerations when using Terracotta collaboration

This section explains the items to consider when using Terracotta collaboration for referencing external data in complex event processing,
as follows:

- Checking the necessity of Terracotta collaboration

Unlike when master data is used by the high-speed filter, Terracotta collaboration allows data that is being continually updated to be
referenced. (When the high-speed filter is used, master data can be updated using dynamic change, but it cannot be updated continually
from a program).

Data in an external cache can also be added, updated, and deleted when an event occurs.
- Structure of the Terracotta cache

Data in the Terracotta cache to be referenced by complex event processing rules is managed as entries where each entry is made up
of a key and a value. Refer to "5.5.3 Terracotta Cache" for information on the key-value format used for storing in the cache to be
used by complex event processing rules.

- Using Terracotta cache

Use the Virtual Data Window feature to use Terracotta cache with complex event processing. Refer to "5.4.4.3.3 Using Terracotta
cache" for information on how to create a Virtual Data Window and how to use a cache via the created Virtual Data Window.

5.4.4.3.2 Preparing a configuration information file for Terracotta cache

To use Virtual Data Window in order to use a Terracotta cache (known as Ehcache), you must place an Ehcache configuration file
(ehcache.xml) on the CEP Server. Place the Ehcache configuration file in the following location:

/etc/opt/FJISVcep/config/ehcache.xml

Refer to the Terracotta manual for information on the Ehcache configuration file. The table below explains the settings required for
Terracotta Collaboration.

-77-

Element or attribute Description

ehcache Root element of the configuration file.
name Specify the name of the cache manager specified when creating the cache.
maxBytesLocalHeap Size of the data pool to be used.
terracottaConfig Element for defining a Terracotta server.
url List of Terracotta servers in the format " hostNameOrlpAdadress.portNumber",

delimited with a comma (,).

cache Element for defining cache.

Multiple <cache> elements can be specified in a single <ehcache> element.

name Name of the cache. This is the cache name specified using vdw:ehcache.
terracotta Defined for using a Terracotta server.
nonstop Defined for use as nonstop cache.
immediateTimeout Specify whether to respond with a timeout when a network disconnection is
detected. Specify "true" as the value.
timeoutMillis Specify the standby time until timeout.
timeoutBehavior Specify operation to be performed if a timeout occurs.
type Specify "exception" as the value.
searchable Defined for searching the cache.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

The following example uses the cache "Cache001" configured on two Terracotta servers (192.168.1.1 and 192.168.1.2) using Terracotta
collaboration.

<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalLocation=""http://ehcache.org/ehcache.xsd"
name=""SearchConfig">
maxBytesLocalHeap=""64M">
<terracottaConfig url="192.168.1.1:9510,192.168.1.2:9510"/>
<cache name=''"Cache001'>
<terracotta>
<nonstop immediateTimeout=""true" timeoutMillis="3000"">
<timeoutBehavior type='exception'/>
</nonstop>
</terracotta>
<searchable />
</cache>
</ehcache>

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.4.4.3.3 Using Terracotta cache

This section explains how to create a Virtual Data Window and how to use the created Virtual Data Window.

Creating a Virtual Data Window

Create a Virtual Data Window (hereafter referred to as a "VDW") within complex event processing rules in order to use a Terracotta cache
from the rules.

Specifically, describe this as follows:

Syntax: If an event type ID is used

-78 -

create window windowName.vdw:ehcache(''cacheName",'keyPropertyName') as eventTypelD;

Syntax: If type information is specified directly

create window windowName.vdw:ehcache("'cacheName","keyPropertyName') as (propertyName type,
propertyName type, ...);

- Create a VDW using vdw:ehcache() in a CREATE WINDOW statement.

To reference the cache entity, the cacheName and the keyPropertyName for referencing the data must be set. Set them as
arguments of vdw:ehcache().

- In cacheName, specify the name of the cache to be used.

- In keyPropertyName, specify the property name for identifying the entry. If an event type ID is to be used, specify the property
name of the specified event type. If type information is to be specified directly, any name can be specified. The type of the specified
property must be a type that corresponds to the "Key" class in the cache.

- InwindowName, specify any name. The name specified here will be used to access the cache from the SELECT statement (INSERT
INTO clause, FROM clause), ON SELECT statement, ON UPDATE statement, ON DELETE statement, ON MERGE statement, or
subquery in complex event processing rules.

- IneventTypelD, specify the event specified in the CSV format event type definition. (An XML format event type definition cannot
be specified.)

- In propertyName type, the property name and type that corresponds to the "java.util. HashMap" key to be set in "Value" in the
cache must be specified. The property name and its type specified in keyPropertyName must also be specified.

- If the specified propertyName has not been set in "java.util. HashMap" to be set in "Value" in the cache, it will be treated as a null
by the complex event processing rules.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Definition examplefor creating a Virtual Data Window (VDW)

This is an example of creating a VDW (MarketWindow) to reference a Terracotta cache (MARKET).

create window MarketWindow.vdw:ehcache(*'"MARKET", "code') as (code string, high int, low int);

- "code" is specified as a key property.

- "code (string type)", "high (int type)", and "low (int type)" are defined as the properties.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

Using a Virtual Data Window

Use a created Virtual Data Window in the same way as an ordinary window. However, to access cache data, use an INSERT INTO clause,
join that specifies UNIDIRECTIONAL, ON SELECT statement, ON UPDATE statement, ON DELETE statement, ON MERGE
statement, or subquery.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of using a created Virtual Data Window (VDW)

This example inserts a MarketEvent event into a VDW.

insert into MarketWindow select code, high, low from MarketEvent;

This example references a VDW MarketWindow when a TicketEvent event occurs to obtain the data of the VDW events (cache
entries) that meet the condition. This example uses TicketEvent as a trigger, so UNIDIRECTIONAL is specified in TicketEvent
for joining the events.

-79-

select W.high, W.low from TicketEvent as Input unidirectional, MarketWindow as W
where W.code = Input.code;

This example references a VDW (MarketWindow) when a TicketEvent event occurs to obtain the data of the VDW events (cache
entries) that meet the condition. This example uses an ON SELECT statement.

on TicketEvent as Input
select W._high, W_.low from MarketWindow as W
where W.code = Input.code;

This example references a VDW (MarketWindow) when a TicketEvent event occurs to obtain the data of the VDW events (cache
entries) that meet the condition. This example uses a subquery.

select (select W.high from MarketWindow as W where W.code = Input.code) as high from TicketEvent as
Input;

This example updates an event that has the same code in a VDW when a MarketEvent event occurs.

on MarketEvent as New
update MarketWindow as W
set high = New.high, set low = New.low
where W.code = New.code;

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

gn Note

Notes on using a Virtual Data Window
- Do not specify another view.

Do not specify another view such as win:length(1) at the same time as the vdw:ehcache() specification in a CREATE WINDOW
statement that defines a Virtual Data Window. Specifying another view does not cause a syntax error, but the view specification cannot
be used to operate Terracotta cache data (even if you specify win:length(1), the number of events in the cache will not be "1").

- An INSERT INTO clause is not merely an insertion.

A Terracotta cache holds only one event (cache entry) for the value of a key property. Therefore, if a new event is inserted into a
Virtual Data Window using an INSERT INTO clause and the cache already contains an event that has the same key property value,
the event is updated using the new event.

- Cache entries added outside the CEP engine do not propagate.

For a simple SELECT statement that specifies Virtual Data Window in a FROM clause or a join that does not specify
UNIDIRECTIONAL, an event inserted into the Virtual Data Window by the INSERT INTO clause using the complex event processing
rules on the same CEP engine propagates. However, an event (cache entry) added from a Terracotta application or a different CEP
engine does not propagate. To access cache data, use an ON SELECT statement, a subquery, or a join that specifies
UNIDIRECTIONAL.

The following example shows a simple SELECT statement:

select W.high, W_.low from MarketWindow;

The following example shows a join that does not specify UNIDIRECTIONAL:

select W.high, W.low from TicketEvent.std:lastevent() as Input, MarketWindow as W
where W.code = Input.code;

Ifthe INSERT INTO clause inserts an event into MarketWindow, the inserted event propagates to the SELECT statements. However,
events added outside the CEP engine does not propagate.

- A WHERE clause must uniquely identify cache entries.

The WHERE clause, which can be used for accessing information stored in a Virtual Data Window, must contain a condition for
uniquely identifying cache entries. This condition uses "=" to perform a comparison with the key property specified using
vdw:ehcache(). An example is shown below.

-80-

In the following example, W.code = T.code is valid, because it uniquely identifies a cache entry.

create window MarketWindow.vdw:ehcache(*'"MARKET", "code') as (code string, high int, low int);

on TicketEvent as T
select W.high, W.low from MarketWindow as W
where W.code = T.code and (T.price > W._high or T.price < W.low);

The table below shows valid and invalid definition examples of using the above rule to change the WHERE clause only.

No. Definition example Valid/ Explanation
Invalid
1 where W.code = "1111° Valid Valid because the condition can uniquely identify a

cache entry by using "=" to perform a comparison
with the key property

2 where (T.price > W_high or Valid Preceded by a different condition but valid because
T.price < W.low) and W.code = itincludes "=" for performing a comparison with the
T.code key property and can uniquely identify a cache entry

3 where W_high = 1000 Invalid Invalid because a comparison using "=" is not

performed for the key property.

4 where W.code > "1111° Invalid Invalid because an operation other than "=" is
performed for the key property.
5 where W.code = "1111" or W._high = | Invalid Includes "=" for performing a comparison with the
1000 key property but is invalid because there is an OR
condition and a cache entry cannot be uniquely
identified

5.4.4.4 RDB Collaboration

This section explains the items to consider when implementing RDB collaboration and how to use it.

To reference a relational database as external data, create an RDB reference definition that contains information about connection to the
relational database.

This section explains the following items:
- Considerations when using RDB collaboration

- Specifying RDB referencing in complex event processing rules

5.4.4.4.1 Considerations when using RDB collaboration
The items to consider when using RDB collaboration are as follows:
- Creating an RDB collaboration definition

Using RDB collaboration requires an RDB reference definition in addition to a rule definition. Refer to "5.4.7 Designing an RDB
Reference Definition" for information on the RDB reference definition.

- Contents of the relational database

You must consider the contents of the relational database from the viewpoint of which data, out of the data that cannot be obtained
from an input event and the static data that relates to the properties of an event, is also required for checking rules. You can reference
RDB data by issuing a complex event processing rule (SELECT statement).

jJJ Example

© © 0000000000000 006006060COCOCEOESE

Example of information to be prepared for arelational database

Information that is likely to be required is localities (addresses).

-81-

Even if an ID for identifying a customer can be obtained from the contents of an event, the locality (address) of the customer is not
always contained in the contents of the event.

In this case, preparing a relational database that registers the relationship between the customer ID and the locality (address) makes
it possible to use a customer ID from an event to reference the locality (address) of the customer. The relational database can also be
used for processing based on locality (address).

© 0000000000000 00000000000000000000000000O0O0C0C0COCOCOCOCEOCEOCEOCEOCEOCIOCEOCIOCOCEOCEOCOCIOCI0CIOCI0C0CI0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCQCCQCCOCQOCEOCEECEEETS

Notes on using multibyte characters

Multibyte characters cannot be used for definition names in a relational database such as table names and table item names to be
referenced from the complex event processing language. The same applies to other names such as database names, schema names,
and user names specified in an RDB reference definition.

Multibyte characters can be used for item values. In this case, set unicode as the character encoding (or character set) of the relational
database. Refer to the manual for the collaboration destination RDB for details.

Use of a time-limited cache

When a relational database is referenced for the first time, a query key and the results are stored in a time-limited cache of the CEP
engine. Subsequent RDB referencing using the same key entails obtaining the data from the cache. To use a time-limited cache, you
must set a cache retention period and a cache purge interval in the RDB reference definition. Refer to "5.4.7 Designing an RDB
Reference Definition" for information on the RDB reference definition.

5.4.4.4.2 Specifying RDB referencing in complex event processing rules

You can use the results of a query to a relational database by specifying them using the following syntax in a FROM clause of complex
event processing rules.

Syntax:

sql :databaseName [sqlQuery '] or
sql :databaseName [* SqlQuery "]

In databaseName, specify the "development asset ID" specified in the RDB reference definition.

Enclose sqlQuery in double quotation marks (") or single quotation marks ("), and enclose this specification in square brackets "["" and
e,

Alternate parameters can be included in sqlQuery. Specify alternate parameters in the ${ expression} format. The expression is evaluated
when the statement is executed.

L:n Note

- Minimize RDB referencing, because it may cause a decline in the performance of Complex Event Processing.

- Multibyte characters cannot be used for definition names in a relational database, such as table names and table item names to be
referenced from the complex event processing language. Multibyte characters can be used for item values.

- To specify a nonnumeric literal enclosed in single quotation marks (') in an SQL query that is further enclosed in single quotation
marks ('), use the escape notation (\') or the Unicode notation (\u0027).

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of using RDB referencing

This example uses RDB referencing in a complex event processing rule (SELECT statement).

@Name (*'"PutRecommend™)
@SoapListener(‘'soap-001")
select tvevnt.gatewayld as gatewayld,
case when db.DRY_FUNC = *"1" then “"USE_DRY_FUNC" else "HANG_LAUNDRY_INSIDE" end as recommendld
from TVControlRain as tvevnt,
sql:app_db["SELECT DRY_FUNC FROM PRODUCTFUNC_TBL WHERE HGW_ID=${tvevnt.gatewayld}"] as db;

-82 -

The development asset ID of the RDB reference definition to be used is set to "app_db".

The relational database table being referenced is "PRODUCTFUNC_TBL".

The alternate parameter "${tvevnt.gatewayld}" is specified in the condition for referencing the relational database table.

The alias "db" is assigned to the reference results and is used in a SELECT statement.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.4.4.5 SOAP Listener
Use the SOAP listener to send the processing results of complex event processing statements to a user-developed Web service using SOAP.

To use the SOAP listener, assign the @SoapListener annotation in front of the complex event processing statement (SELECT
statement) for which the processing results are to be sent.

Refer to "5.4.8 Designing a SOAP Listener Definition" for information on the send destination of processing results and the contents of
SOAP messages.

Syntax

@SoapListener(‘'soapListenerDefinitionld™)
complexEventProcessingStatement(selectStatement)

soapListenerDefinitionld

Specify the development asset ID in the SOAP listener definition that defines information such as the URL that is the send destination
of the Web service to which the processing results are to be sent.

complexEventProcessingStatement (selectStatement)

Specify the complex event processing statement (SELECT statement) for which the processing results are to be sent.

5.4.4.6 Custom Listener

Use the custom listener to pass the results of complex event processing statements to a Java program (hereafter referred to as a user-
developed Java class) for processing.

To use the custom listener, assign the @CustomListener annotation in front of the complex event processing statement (SELECT
statement) to which you want to pass the processing result.

Refer to "5.6.3 Designing a User-developed Java Class" for information on user-developed Java classes.

Syntax

@CustomListener(mainClass="nameOfUserDevelopedJavaClass"™ [, args={"argumentl®, "argument2", ...}])
complexEventProcessingStatement(selectStatement)

Alternatively, the format may use single quotation marks (') instead of double quotation marks (™).
nameOfUserDevelopedJavaClass

Specify the name of the Java class that receives the results of complex event processing statements. Use FQCN format (format that
includes the package name) for specifying this name. The CustomListener interface must have been implemented for this Java class.

argumentl, argument2, ...

Specify these arguments for the user-developed Java class. If there is no need to pass arguments, omit the "args" parameter.

5.4.4.7 Logging Listener
Use the logging listener to log the processing results of complex event processing statements in the event log using Logging.

To use the logging listener, assign the @LoggingListener annotation in front of the complex event processing statement (SELECT
statement) for which the processing results are to be logged.

-83-

Syntax

@LoggingListener(table="l1ogStorageArea'™, properties="propertyNameToBeOutput')
complexEventProcessingStatement(selectStatement)

logStorageArea

Use an absolute path to specify the path in the Hadoop system in which the event log is logged.

Even if events are to be logged in the engine log of the CEP Server (if "Fi le" is specified in the "type" element of the engine
configuration file), specify a virtual path name that begins with a slash (/) (for example, ZeventName) to identify the events.

Ln Note

The "table" specification is mandatory. Even if a null value is specified, such as ‘table="""", the CEP engine will start normally
but logging will not be performed.

propertyNameToBeOutput

Out of the processing results of the SELECT statement, specify the property name to be logged. Multiple properties can also be specified
if delimited using commas (,).

For a property with nested processing results, use periods (.) between the nested properties to join them.

jJJ Example

If a"child" property isnested in a" parent” property

If a "child" property is nested in a "parent" property, as shown below, specify the "child" property by describing "parent.child".

<root>
<parent>
<child>aaa</child>
</parent>
</root>

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Qﬂ Note

The "properties" specification is mandatory. Even if a null value is specified, such as 'properties=
start normally but logging will not be performed.

, the CEP engine will

complexEventProcessingStatement (selectStatement)

Specify the complex event processing statement (SELECT statement) for which the processing results are to be logged using logging.

L:n Note

The logging to be defined in an event type definition and the logging to be defined in a rule definition (logging listener) can have
separate log storage areas as output destinations. However, note that logging to a different Hadoop system is not possible.

If the value of the output property is "nul 1", this is converted to a blank space before being output to the event log.

If the output property is a numeric item, this undergoes string conversion before being output to the event log.

If an output property name that does not exist is specified, a blank space is output to the event log.

If there are double quotation marks (**) in data, these will be output in duplicate within double quotation marks in the data.

Output example of 'aa"bb"aa":

-84 -

"aa""'bb"""aa"

5.4.5 Designing a Master Definition

If master data is to be used by high-speed filter rules, design a master definition.

This section explains the items to consider when designing a master definition:
- Timing of updates to the master data
Updates to the master data will be reflected when the CEP engine is next started.
Updates will also be reflected when the master data is dynamically changed.
- Amount of memory used by the master data

The master data is loaded in the CEP engine memory when the CEP engine starts. Refer to “3.3.1.2 Amount of Memory when Master
Data is used by the High-speed Filter" for information on the memory required.

5.4.6 Designing an Event Type Definition (Filtered)

If filtered events are to be passed to complex event processing in a format that is different from their original format, due to processes
such as join processing with the master data using the high-speed filter, they require an event type definition that corresponds to the format
used when they are passed to complex event processing.

This section explains the items to consider when designing an event type definition (filtered):
- Items that make up the filtered events
Check the items of the events output by high-speed filter rules.
The number of items specified in the output expression must match the number of items defined in the CSV column information.
- Event format

The event format can be specified only in CSV format.

5.4.7 Designing an RDB Reference Definition

To reference a relational database as external data, create an RDB reference definition that contains information about connection to the
relational database.

This section explains the following items:
- Considerations when Designing an RDB Reference Definition

- Settings for Cache Retention Period and Cache Purge Interval

5.4.7.1 Considerations when Designing an RDB Reference Definition
The items to consider when designing an RDB reference definition include:
- Unit of creation
Only one RDB reference definition can be deployed per CEP engine.
- Use of a time-limited cache

When a relational database is referenced for the first time, a query key and the results are stored in a time-limited cache of the CEP
engine. Subsequent RDB referencing using the same key entails obtaining the data from the cache. To use a time-limited cache, you
must set a cache retention period and a cache purge interval in the RDB reference definition.

Before using a time-limited cache, you must estimate the memory space required for the cache.

-85 -

5.4.7.2 Settings for Cache Retention Period and Cache Purge Interval

As the volume of data to be stored in the cache increases, memory usage in the CEP engine increases, so you must carefully consider the
values to be specified for the cache.

The cache retention period is the period for which data is to be held in the cache. Specify a value in seconds from 0 to 2147483647.

The cache purge interval is the interval at which the cache is checked for the purpose of flushing the cache if the retention period has
elapsed. Specify a value in seconds from 1 to 2147483647.

The concept behind the cache retention period and the cache purge interval is explained below.

If RDB data will not be updated

Setting a high value for the cache retention period poses no problem. Flushing a large volume of data from the cache causes garbage
collection, and processing performance is temporarily degraded. Take into account the volume of data to be input to the cache, and set a
cache purge interval that is unlikely to cause garbage collection.

If update of RDB data is expected

Even when RDB data is updated, the old cache data may be used for up to the cache retention period + cache purge interval. Set the cache
retention period and cache purge interval according to the length of time for which the old data is to be used after the RDB data is updated.
Data is held in the cache at each query, so it is possible that old data held in the cache may be obtained for some queries, and new updated
data may be obtained for other queries. When designing rules for referencing a relational database, consider whether this situation is
possible.

5.4.8 Designing a SOAP Listener Definition

A SOARP listener definition specifies the interface of the user-developed Web service to which the processing results of complex event
processing rules are to be sent. This section explains the points to consider in a SOAP listener definition, as follows:

- Unit of creation

Create a SOAP listener definition for each user-developed Web service. One SOAP listener definition can be used when a generic
application is created, and an application can also be separated by pattern matching.

- Development asset ID

Specify a name for the SOAP listener definition that is unique in the CEP engine in which it will be deployed and that suggests the
processing content called when rule matching finds a match.

A simple example is where a name such as powerOn is used for a process to notify when the power is on.
- Association between a SOAP listener definition and a user-developed Web service

Check that the property value of the corresponding complex event processing rule matches the user-developed Web service to be
called, based on the WSDL (interface definition) of the application. Even if an existing Web service is to be used, consider factors
such as whether the interface can be used as it is or if it needs to be changed. The aspects that must match are as follows:

- Parameter names

The parameter names to be passed to the user-developed Web service must match the property names selected from within the
complex event processing rules.

If the property names selected from within the complex event processing rules are to be used as the parameter names to be passed
to the user-developed Web service, use them by defining aliases within the rules.

- Parameter types
The parameter types must also match the types used from within the complex event processing rules.
- Parameter order

The order of parameters in a SOAP message output by the SOAP listener will not necessarily be the order of properties specified
in the SELECT statement. If a user-developed Web service is to check the order of the parameters, you must first check the SOAP
message output by the SOAP listener and ensure that the order is the same.

-86 -

Below is an example of the association between a rule definition and a SOAP listener definition. The SOAP messages to be sent to a user-
developed Web service are generated from the rule definition and from the SOAP listener definition associated with it.

Figure 5.4 Example of the association between a rule definition and a listener definition, and the SOAP messages
to be sent

Rule definition S0AP listener definition

b—“* Cevelopment asset 1D List:,-neﬂ
@Name(Output) / P
{@Soaplistener(Listenar’) Connection URL hitp:fexample.comy...
select ropl as propefty
grngz as gmp %\ Mamespace hitp:fexample.com/exampleMamespace
from ... Mamespace prefix ns \
Foot element / rootElement

SOAP message

<spapenv.Envelope
xmins: gpapenv="http://sch
xmins:ns="http://example
Zspapenv:Headers
“/soapenv:Headers
<soapeny: Body>

\\‘h:_:ﬁ:rc-c-tElen'er-tb
<ns:property1>value1</ns; property 1>
Rh"“"‘"—-) <ns: propertyZ>value2<ns: property 2=

</ns:roctElement=
</soapenv:Body>
<lsoapenv: Envelope=

as.xmlsoap.org/gpapienvelope)
miexampleMamespaca™s

5.5 Design (Data)

This section explains how to design each type of data.

5.5.1 Event Data (for Testing)

Consider using event data sent from an event sender application to check the operation of created rules.

Pay attention to the following points when considering this:
- Testing scenario (content of event data required)
Provide event data based on the scenario envisaged for the rules being designed and developed.
Provide data by envisaging that abnormal data as well as normal data will be sent.
- Format of event data
Provide event data using a format that suits the event sender application to be used.

Provide data in CSV format if the event sender sample program included in the samples for BDCEP is to be used as an event sender
application for testing.

5.5.2 Master Data (for the High-speed Filter)

Pay attention to the following points when considering the use of master data by the high-speed filter:

- Format of the master data

Refer to "5.5.2.1 Format of Master Data".

-87 -

5.5.2.1 Format of Master Data
The master data consists of data files in CSV format and a schema file.
Refer to "9.7 CSV Format Supported"” for information on the CSV format.
The character code that can be used is UTF-8.
Specify LF or CRLF as the newline code to be described at the end of records.
Schema file
This is a file in which only lines of item names are described.
If a schema file contains information other than item names, an error will occur.
Data file

This is a file in which data is stored. If the item names are described in the first line of the data file, skipping the first line can be set
in the master definition. Refer to "9.2.3 Master Definition File" for details.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of a schemafile

"Kbn",""Number*,"Code", ""Name",""Value',"Total", ""Comment"

Example of a datafile

"'01",""1001",""AAA", ""BlockA™,""1,000™,"1,000",""Comment: Memo number 4023"
*02',"1001","BBB","BlockB",""**,""1,200", ""Comment: Memo number 4023"
03,1002, "Cccc, "BlockC™, 800", 800", ""Comment: Memo number 4023"

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.5.3 Terracotta Cache

Pay attention to the following points when considering using Terracotta collaboration to reference an external Terracotta cache from
complex event processing rules:

- Initial data of the cache

Initial data must be provided for the cache as required.

Select a data format according to the specifications of the Terracotta application for update to be used.
- Format of the Terracotta cache

A Terracotta cache must follow a prescribed format.

If an existing cache is to be used, check that it is consistent with "5.5.3.1 Terracotta Cache Compatible Formats".

5.5.3.1 Terracotta Cache Compatible Formats

A Terracotta cache consists of key-value pairs. The cache referenced by BDCEP must have the following configuration:

Type used for the key Type used for the value

java.lang.String java.util. HashMap<java.lang.String, java.lang.Object>

Each property to be specified in a complex event processing rule corresponds to each "HashMap" element above.

The table below shows the type that is compatible for the value of each "HashMap" element and the corresponding type in complex event
processing rules.

Type used in each "HashMap" element Corresponding type in complex event processing
rules

java.lang.String string

-88 -

Type used in each "HashMap" element Corresponding type in complex event processing
rules
java.lang.Character char/character
java.lang.Boolean bool/boolean
java.lang.Byte byte
java.lang.Short short
java.lang.Integer int/integer
java.lang.Long long
java.lang.Float float
java.lang.Double double

The Terracotta cache key and "HashMap" to be specified for the value must have the following relationship:
- Ensure that the name of the property to be specified as the cache key is the same as the key of the corresponding "HashMap" element.
- Set the value of the above "HashMap" element as the value of the cache key.

The following figure illustrates this relationship.

create window CustomerWindow.vdw:ehcache ("CustomerCache™, "id%)
as (id string, name string, addreszs string):

1

CustomerCache

Key (String) Value [HasW

Haolds an element
ofthe same name

——
id 1
1 namyﬂmhn
A ad)ﬂf{ﬂs Tokyo
7

P

Set the same value

Refer to "5.6.5 Designing a Terracotta Application™ for information on the actual method of use.

5.5.4 Relational Database (RDB)

If referencing an external relational database from the complex event processing rules using RDB collaboration, consider the following
points:

- Notes on using multibyte characters

Multibyte characters cannot be used for definition names in a relational database such as table names and table item names to be
referenced from the complex event processing language. The same applies to other names such as database names, schema names,
and user names specified in an RDB reference definition.

Multibyte characters can be used for item values. In this case, set unicode as the character encoding (or character set) of the relational
database. Refer to the manual for the collaboration destination RDB for details.

-89 -

- Characters and maximum length of user names (or access IDs in an RDB reference definition)
Depending on the type of relational database to be used, there may be restrictions on user names (access IDs).

For example, if using Symfoware Server with the native interface, specify the user name (access ID) to be set when connecting from
the CEP Server in up to 36 alphanumeric characters starting with an alphabetic character. You cannot use a period (.) or multibyte
characters.

Similarly, there are restrictions on the characters and length of database names, schema names, database URLS, and access passwords.
Refer to "9.2.4 RDB Reference Definition File" for information on the characters and length of each item.

- Format of relational database tables

The tables of the relational database to be used must conform to the prescribed format.

If using an existing relational database, ensure that it matches "5.5.4.1 Supported RDB Table Formats".
- Initial data of a relational database

If preparing a new relational database, you must prepare initial data.

You need not prepare initial data if using an existing relational database.

The format of initial data must conform to the specifications for the RDB commands to be used for storing data. Refer to the manual
for the collaboration destination RDB for details.

5.5.4.1 Supported RDB Table Formats

Enter the table names and table item names of the relational database in an alphanumeric string containing up to 36 characters and starting
with an alphabetic character.

The table below lists the types that can be used in each item of a relational database table. Refer to the manual for the collaboration
destination RDB for information on each type.

Table 5.7 Types that can be used in RDBs

CHAR VARCHAR NCHAR NCHAR VARYING
NUMERIC DECIMAL INTEGER SMALLINT
FLOAT REAL DOUBLE PRECISION DATE

TIME TIMESTAMP BLOB

gn Note

Multibyte characters cannot be used for definition names in a relational database such as table names and table item names to be referenced
from the complex event processing language. Multibyte characters can be used for item values.

5.6 Design (Collaboration Application)

This section explains how to design each type of collaboration application.

5.6.1 Designing an Event Sender Application

Consider which method to use to send events to the CEP engine.

Here, consideration must be given to which communication method to use for the input events and which application to use to send the
events, according to that communication method.

Communication method for input events

Consider which communication method to use when the CEP engine is receiving events, according to the characteristics of the input
events.

-90 -

If an existing system that is to be used as the event issuer has an event sending feature, check which communication methods the existing
system can use.

With BDCEP, the following three communication methods can be selected:
- SOAP
- HTTP
- Socket

Select a communication method according to the characteristics of the system or device that is to be used as the event sender, and the
desired processing performance. Characteristics of each communication method are described below.

Communication Characteristic
method

SOAP A generic communication protocol. This method allows sending XML or CSV event data to the CEP
engine as SOAP messages. WSDL can be used to define an interface and an event sender application
can be developed using the existing Web service development tool.

HTTP A generic communication protocol. This method allows sending XML or CSV event data to the CEP
engine connected via HTTP without modification. There is no unnecessary header information so
that the communication load can be less than that of SOAP. This means that this method is not only
more suitable for sending large amounts of event data but also enables sending event data from
devices supporting the REST communication.

Socket A communication protocol unique to BDCEP, which is used for TCP/IP socket communication.
This method allows simultaneously sending multiple XML or CSV event data. There is no HTTP
header so the communication load can be less than that of HTTP, making this method most suitable
for sending large amounts of event data.

Event sender application

Consider which system or application to use to send events to the CEP Server.

- There are two types of event sender applications: systems that send events during normal business operation and those that send events
at any time during rule testing. For the latter, consider using the event sender sample program supplied with BDCEP, if the volumes
of event data are small. Refer to "5.11.6 Event Sender Sample Program" for details.

- If the system issuing the events can send the events using a communication method supported by BDCEP, check that the CEP engine
can receive events using that feature.

- Ifthe eventissuer has no event sending feature, or if it does not support a communication method of the BDCEP input adapter, consider
developing an application to send events to the CEP Server (event sender application).

- The design and development of an event sender application must be carried out according to the specifications of the server or device
that is to be used as the event sender. Refer to Chapter 3, "Input Adapter Reference" in the Developer's Reference for detailed
specifications on each communication method and for information on the sample event sender application.

5.6.2 Designing a User-developed Web Service

Refer to the application server manuals for information on designing and developing a user-developed Web service. This section explains
the points to consider when designing a user-developed Web service, as follows.

- Integrating similar processes

If multiple recommendations are to be made to an individual, rather than separating Web services by recommendation, group them
into one Web service to create one SOAP listener definition, and then use calling parameters to divide up the Web service processes
to be executed.

- Separating processes with different responses or targets

If processes have different responses or targets, as with "recommend to a person” and "control a device", the internal logic of the Web
service and testing methods will differ, so consider developing such processes as separate applications.

-01-

- Execution environment of a Web service with operation checked

BDCEP checks the operation of user-developed Web services in the Web service execution environments below. If executing using
another product, perform sufficient connection testing.

Product name Details

Interstage Application Server Checked if a Java EE Web service is used.

Apache Axis2 Open source Web service execution framework. The URL is as follows:

http://axis.apache.org/axis2/java/core/

If a product other than those above is to be used, check that "Content-Length", "Content-Type", and each value have been
set correctly in the HTTP header that will form the response from the user-developed Web service to the CEP engine.

5.6.3 Designing a User-developed Java Class

The custom listener passes the results of complex event processing to a user-developed Java class. This section provides an overview of
the user-developed Java classes and the considerations required when designing it.

Implement the following interface for a user-developed Java class:

com.fujitsu.cspf.cep.CustomListener

The following two methods must be implemented using this interface:

Type of the Method name

return value

Argument Explanation

void setArgs String[] args The args parameter specified using the
@CustomListener annotation is passed.
String The name (specified using @Name) of the complex event
statementName processing statement to which the @CustomListener
annotation was attached is passed.
void update Map[] newEvents The processing result (output event) of the complex event

processing statement to which the @CustomListener
annotation was attached is passed as an array of the
java.util.Map object.

The output event passed as a java.util.Map object contains
a property name and value pair.

If the rules output events periodically, the update method
may be called even if there is no output event.

The following processes are performed for the user-developed Java class each time there is an output from a complex event processing
statement:

1. Aninstance of the user-developed Java class is generated.
2. The setArgs method is called.
3. The update method is called.
In addition, an instance of a user-developed Java class is generated when the CEP engine is started.

If an exception occurs during custom listener processing, the CEP engine catches the exception and outputs it to the engine log and the
system log. Processing of other events continues.

4}1 Note

A user-developed Java class runs on the same Java VM as the CEP engine. Take the following points into account when designing a user-
developed Java class.

-02-

- Design a user-developed Java class so there is no bottleneck in processing time

Design a user-developed Java class so that it takes only a short time to generate an instance of the user-developed Java class and to
call the setArgs and update methods. If these processes take time, events awaiting processing may accumulate in the CEP engine and
adversely affect the processing performance of the entire CEP engine. Particularly if a large volume of events is to be output, the
impact will be greater.

- Create a thread-safe design

Processing of a user-developed Java class is called from multiple threads, so create a thread-safe design. For example, if using class
variables, you must consider the fact that the user-developed Java class will be called from multiple threads.

However, an instance of a user-developed Java class is generated each time an output event occurs, and one instance runs on only one
thread. Therefore, if processing involves merely operating the instance variables, there is no need to consider multiple threads.

- Throw errors that must be monitored as exceptions

To monitor errors that occur in a user-developed Java class, throw details of the error as an exception outside the user-developed Java
class. An exception that is thrown is caught by the CEP engine and output to the engine log and the system log.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Sample source code of a user-developed Java class is stored in the following directory:

/opt/FJSVcep/sample/CustomListener

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.6.4 Designing an Event Log Analysis Application

If logging is to be used to accumulate event logs in a Hadoop system, design an application to analyze the content of the accumulated
event logs. The application will use the Hadoop API and operate on the Hadoop system.

Refer to the Interstage Big Data Parallel Processing Server (hereafter, referred to as "BDPP") manuals for information on designing and
developing applications to operate on a Hadoop system.

The data formats of the event logs to be analyzed by this application are shown below.

5.6.4.1 Output Destination and File Format of an Event Log

Event logs are output to a log storage area specified in the event type definition or in the logging listener in a complex event processing
statement. The log storage area that will be the output destination is generated automatically.

If the output destination is a Hadoop system, the details are as follows:
Output destination
The output destination can be changed using the value specified in the di rectory element of the engine configuration file.
If a directory name is specified in the di rectory element, the output destination will be a path made by joining the following values:
- Value setin "pdfs.fs.local .basedir" (*1)
- Directory name specified in the engine configuration file
- Log storage area specified in the event type definition or logging listener
- Automatically generated log file name
*1: "pdfs.fs_local .basedir" is the Hadoop mount directory. Refer to the BDPP manuals for details.
If aslash (/) only is specified in the di rectory element, the output destination will be a path made by joining the following values:
- Value setin "pdfs.fs._local .basedir"
- Log storage area specified in the event type definition or logging listener

- Automatically generated log file name

-03-

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Example of output destination

The output destination will be */mnt/pdfs/hadoop/tmp/1ogFi leName “for the following conditions:
- If the value set in "pdfs.fs. local .basedir" is"/mnt/pdfs"; and
- If "hadoop" is specified as the directory name in the engine configuration file; and

- If "/tmp" is specified as the log storage area specified in the event type definition or logging listener of the complex event
processing statement

The output destination will be "/mnt/pdfs/tmp/1ogFi leName" for the following conditions:
- If the value set in "pdfs.fs.local .basedir" is"/mnt/pdfs"; and
- If aslash (/) is specified as the directory name in the engine configuration file; and

- If "/tmp" is specified as the log storage area specified in the event type definition or logging listener of the complex event
processing statement

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Qﬂ Note

If the output destination of the event log is duplicated and the format of the event data is the same, event data of a different event type
will be output to the same file. If analysis is to be performed by event type or by output by logging listener, separate the output
destinations.

Log file format

The format will be Hadoop SequenceFile (binary file) format.

Log file name

A log file will be automatically generated in the log storage area using the file name shown below.

This file will be renamed with the " . done" extension in 300 seconds by default.

dateTime_vmName_branchNumber

- dateTime: yyyyMMddHHmMmMssSSS
- vmName: processID@ cepServerHostName
- branchNumber: 0000000001 to 0000000122

E) Point

© 0000000000000 000000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCOCOCOCO00COC0C00000000000000000000000000000

A file with the " . done" extension will be analyzed by the event log analysis application. Move it to an arbitrary directory to analyze
it.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Qﬂ Note

A file with an extension other than *_done" is a file that is being output, so do not perform an operation on it.

Upper limit of file size

The upper limit of the file size is LONG MAX (2% - 1).

-94 -

Upper limit of number of files
None
Key of SequenceFile

The date and time information (yyyyMMddHHmmss) will be the key. The corresponding Hadoop type (API) is
"org.apache.hadoop.io.Text".

The date and time above will be the date and time at which the event data was written. (This may differ from the date and time at which
the CEP engine received the events.)

Value of SequenceFile

Input events are output as they are. The corresponding Hadoop type (API) is "org.apache.hadoop.io.BytesWritable".
Compression format of SequenceFile

Record compression
Versions of SequenceFile

6

,ﬂ Information

If outputting to the enginelog

Input events are output to the engine log unchanged.

5.6.5 Designing a Terracotta Application

If a Terracotta cache is to be referenced in complex event processing rules, consideration must be given to an application for storing initial
data in the Terracotta cache. If an existing cache can be used, use an existing Terracotta application.

Refer to the Interstage Terracotta BigMemory Max manuals for information on designing and developing a Terracotta application.
Refer to "5.5.3.1 Terracotta Cache Compatible Formats" for information on the format of the cache to be updated.
Each "HashMap" to be specified in a key and value for a Terracotta cache must be associated as follows:

- Ensure that the name of the property to be specified as the cache key is the same as the key of the element corresponding to HashMap.

- In the key value in the cache, set the value as that of the "HashMap" element above.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of a Virtual Data Window

create window windowName.vdw:ehcache(''CacheA™, "key') as (key string, address string);

Example of a program to add entriesto a Terracotta cache

import net.sf._ehcache.*;
import java.util_HashMap;
-9
CacheManager cacheManager

= CacheManager .newlnstance(Crud.class.getResource(''/xxx/ehcache.xml')); ... 1.
Ehcache cache = cacheManager.getCache(*'CacheA™); ... 1.
String keyProperty = "key"; - 2.
String keyvalue = "1";
HashMap value = new HashMap(Q);
value.put(keyProperty, keyValue);
value.put(“address', "Boston'); .
cache.put(new Element(keyVvalue, value)); ... 4.

G-

W wwnN

-05-

1. Specify the configuration file of the Terracotta cache (Ehcache) to obtain CacheManager, and obtain the cache to be used by the

Virtual Data Window.

2. Create the key property name and its value to be specified in "keyProperty" of the Virtual Data Window. Here, "key" is set as

the "keyProperty".

3. Create the "java.util.HashMap" object to be stored as the value of the cache. Here, a "java.lang.String" type value is set in the

"address" property. Also, ensure that the key property name and its value created in "2." are set in the "HashMap" element.

4. Add entries to the cache.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.7 Implementation

This section explains the implementation tasks (such as coding) for development assets.

5.7.1 Creating a Definition File

This section explains how to create a definition file, as follows:

Creating an Event Type Definition File
- Creating a Rule Definition File
- Debug log listener

- Creating a Master Definition File

Creating an RDB Reference Definition File

- Creating a SOAP Listener Definition File

5.7.1.1 Creating an Event Type Definition File
Create an event type definition file similar to the items of the event type definition designed previously.

Refer to "9.2.1 Event Type Definition File" for information on the format of an event type definition file.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of an event type definition

Below is an example of an event type definition for an event in XML format.

<?xml version="1.0" encoding="UTF-8" standalone="yes'"?>
<eventType xmlns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="EVENTTYPE_01">
<comment>Event type definition 0l</comment>
<type>XML</type>
<xmlSchema>
<V [CDATAL
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmIns="http://dataaccesscontrol .sspf.fujitsu.com/namespace/xmlmessage"
targetNamespace="http://dataaccesscontrol.sspf.fujitsu.com/namespace/xmlmessage’>
<xs:element name="messagedata''>
<xs:complexType>
<xs:sequence>
<xs:element name="memberID" type=''xs:string" />
<xs:element name="arealD" type="xs:string" />
<xs:element name='status' type=''xs:string" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

11>

-06 -

</xmlSchema>
<root>messagedata</root>
<uselLogging>true</uselLogging>
<loggingTableName>/echonet</loggingTableName>
<useCep>true</useCep>

</eventType>

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.7.1.2 Creating a Rule Definition File
Create a rule definition file similar to the items of the rule definition designed previously.
Refer to "9.2.2 Rule Definition File" for information on the format of a rule definition file.

Also assign a debug log listener (@DebugLogL i stener) in complex event processing rules, to check operation in an integration test.
Refer to "5.7.1.2.1 Debug log listener" for information on the debug log listener.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of a rule definition

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<rule xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="RULE_O01">
<comment>Rule definition 0l</comment>
<filter>
<!V [CDATAL
on EVENTTYPE_O01 {
if ($status == "Walking") then output() as EVENTTYPE_O01;
}
11>
</filter>
<statements>
<V [CDATAL
@SoapListener("LISTEN_01")
@DebugLogListener
select * from EVENTTYPE_O1 where arealD = "1010%;
11>
</statements>
</rule>

This example describes the following rules:

High-speed filter rule
If the status item contents (string) extracted from the "EVENTTYPE_01" event type input event is "Walking", it is transferred to
Complex Event Processing.

Complex event processing rule

This rule notifies the SOAP listener of event data with the "EVENTTYPE_01" event type, and simultaneously outputs debug
information to the engine log.

5.7.1.2.1 Debug log listener

Using the debug log listener allows logs for debugging to be output to the engine log when a complex event processing statement is
executed.

Specifically, assign the @DebuglLogL i stener annotation in front of the target complex event processing statement.

Also, using the @Name annotation to give a name to the target complex event processing statement at the same time will allow the output
information of the engine log to be found easily.

-97 -

Syntax

@Name(*'name')
@DebuglLogListener
complexEventProcessingStatement

name
This is output at the same time as debug log output and allows the output information to be found easily.

If the same name is given to multiple complex event processing statements, names will be automatically assigned using a format of
two hyphens (--) and a numeric will be appended to the end of each name.

complexEventProcessingStatement

This is the complex event processing statement to be the target of debug log output.

gﬂ Note

The debug log listener may cause a decline in performance, so avoid use during normal business operation.

;ﬂ Information

If the @Name annotation is not specified

If the @Name annotation is not specified, an automatically assigned unique name such as "Ob0562a2-56e7-4cf3-a520-
cblel6et2992" will be output in place of the value of the @Name annotation.

Example of output when the @Name annotation is specified (@Name ("EPL ") specified)

2012-07-09 19:32:35,495 [DEBUG] EPL:length=1
EPL[O]

Example of output when the @Name annotation is not specified

2012-07-09 19:35:55,244 [DEBUG] 34b1785f-900c-4420-b2bf-ea53aa368b07: length=1
34b1785F-900c-4420-b2bf-ea53aa368b07[0]

5.7.1.3 Creating a Master Definition File
Create a master definition file similar to the items of the master definition designed previously.

Refer to "9.2.3 Master Definition File" for information on the format of a master definition file.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of a master definition

This is an example of a master definition (development asset ID: MASTER_O01) where the schema file is "/var/tmp/
SchemaFile01.csv" and the data file is "/var/tmp/MasterFile0l._csv".

<?xml version="1.0" encoding="UTF-8" standalone="yes'?>

<master xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="MASTER_01">
<comment>Master definition 0l</comment>
<schemaFile>/var/tmp/SchemaFile0l.csv</schemaFile>
<dataFile>/var/tmp/MasterFileOl.csv</dataFile>
<skipHeader>false</skipHeader>

</master>

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

-08 -

5.7.1.4 Creating an RDB Reference Definition File
Create an RDB reference definition file in accordance with the items of the RDB reference definition you designed.

Refer to "9.2.4 RDB Reference Definition File" for information on the format of the RDB reference definition file.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Definition examplefor referencing Symfowar e (Open I nterface)

This example connects to a Symfoware (Open Interface) RDB server (host name: RERDB0OO1, port number: 20001) using the database
name "dbms1" and user name "user01". It also caches the results referenced from the RDB server for 1 minute, and every 2 minutes
flushes a cache for which the retention period has elapsed.

Refer to "9.2.4 RDB Reference Definition File" for definition examples referencing other relational databases.

<?xml version="1.0" encoding="UTF-8" standalone="yes'?>

<database xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1" id="RDBREF_01">
<comment>RDB reference definition_0l</comment>
<jdbcClass>org.postgresql .Driver</jdbcClass>
<url>jdbc:postgresql : //RERDB001:20001/mydb?loginTimeout=20</url>
<user>user0l</user>
<password>passl23</password>
<maxAge>60</maxAge>
<purgelnterval>120</purgelnterval>

</database>

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.7.1.5 Creating a SOAP Listener Definition File

Create a SOARP listener definition file similar to the items of the SOAP listener definition designed previously.

Refer to "9.2.5 SOAP Listener Definition File" for information on the format of a SOAP listener definition file.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of a SOAP listener definition

This example defines the notification of a message (event) that includes a SOAP body saying that the root element is "cep™ in the user-
developed Web service with the connection destination URL "http://192.168.11.249/WebServWAR/MyApplService".

<?xml version="1.0" encoding="UTF-8" standalone="yes'?>

<soapListener xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="LISTEN_01">
<comment>SOAP listener definition 0l</comment>
<url>http://192.168.11.249/WebServWAR/MyApplService</url>
<nameSpace>http://webservice/</nameSpace>
<prefix>ns</prefix>
<method>cep</method>

</soapListener>

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.7.2 Preparing Data

This section explains how to prepare the data to be referenced from rules.

5.7.2.1 Preparing Event Data (for Testing)
Prepare (create) event data to be used in checking the operation of rules.

Use an event data format that suits the event sender application to be used.

-99-

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

This is an example of event data for the event sender sample program supplied with the samples of BDCEP.

/opt/FISVcep/sample/samplel/event/CouponEvent.csv

""STROOO1","*CPNOOO1", 30"

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.7.2.2 Preparing Master Data (for the High-speed Filter)
Prepare (create) a schema file and data files of the master data for the high-speed filter.

Refer to "9.2.3 Master Definition File" for information on the schema file and data files.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of a schemafile

“Kbn",**Number*,"'Code",""Name',"'Value","Total", ""Comment"

Example of a datafile

01,1001, AAA","BlockA™, 1,000 ,"1,000","Comment: Memo number 4023"
'02',"1001","BBB",""BlockB",""",""1,200", ""Comment: Memo number 4023"
03,1002 ,""Cccc","BlockC",""800","'800", ""Comment: Memo number 4023"

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.7.2.3 Preparing Data to be Stored in a Terracotta Cache

If required, prepare (create) the data that is to be initially stored in the Terracotta cache to be referenced from complex event processing
rules.

If an existing cache is to be used, this data need not be prepared (created).

Select a data format according to the specifications of the Terracotta application for update to be used.

5.7.2.4 Preparing a relational database

Prepare (create) a relational database to be referenced from the complex event processing rule, and the data to be stored first. You need
not prepare (create) data if using an existing relational database.

Create an RDB schema definition and storage data according to the specifications for the RDB commands to be used for storing data.
Refer to the manual for the collaboration destination RDB for details.

5.7.3 Implementing a Collaboration Application

This section explains how to implement a collaboration application, as follows:

- Implementing an Event Sender Application

Implementing a User-developed Web Service

Implementing a User-developed Java Class (Custom Listener)

Implementing an Event Log Analysis Application

- Implementing a Terracotta Application

5.7.3.1 Implementing an Event Sender Application
Implement an application to send events to the CEP engine.

Implement the application according to the type of input adapter to be used.

-100 -

Refer to Chapter 3, "Input Adapter Reference" in the Developer's Reference for information on sample programs by input adapter type.

5.7.3.2 Implementing a User-developed Web Service

Implement a Web service application to be called from the SOAP listener.

5.7.3.2.1 Web service implementation procedure

This section explains the Web service implementation procedure.

1. CreateaWSDL.

Create a WSDL (interface definition) for a user-developed Web service from the interface information (Web service URL,
namespace, prefix, and method) of the Web service to be called, that was defined in the SOAP listener definition, and from the
parameters that are specified in the complex event processing statements (SELECT statements).

Below is an example of the association between the complex event processing statement (SELECT statement) for detecting the
target events, the SOAP listener definition associated with that rule, and SOAP messages generated from the SOAP listener.

Figure 5.5 Association between a rule definition, listener definition, and SOAP messages to be sent

Rule definition SOAP listener definition

L Y
@mMameCutput’)
@SoapUstenerUstenart’)

select propl as propety1,
prop2 as pro
from ... ;

SOAP message

Development asset ID

Y
Listenen

Connection URL

hitp:flexample.comi...

Mamespace

hitp:fexample comi/exampleMamespace

Mamespace prefix

ns \
i

Root element

o

rootElement

“soapenv:Envelope
xmins:ggapenv="http://sch
xmins:ns="http://example
“spapenyv:Headers
</soapenv:Header>
“<soapeny: Body>

““xhhj:5”3“HEWEF”
<ns:property1=value1</ns; property 1>
“H‘“"""—-) <ns: propertyZ=value2</ns: property2=

</ns:roctElement-
</soapenv:Body>
</soapenv:Envelope>=

as.xmlsocap.org/geapenvelopes
ymiexampleMamespaca™s

A sample WSDL for a Web service for receiving these SOAP messages is shown below. This WSDL defines a message receive-
only (one-way) Web service. If it is implemented as a Web service that returns a response to the CEP engine (request-response),

the CEP engine ignores this response.

Table 5.8 Sample WSDL

-101-

001 <?xml version="1.0" encoding="UTF-8"?7>

002 <definitions

003 targetNamespace="http://example.com/exampleNamespace"
004 xmIns="http://schemas.xmlsoap.org/wsdl/"

005 xmlns:tns="http://example.com/exampleNamespace"

006 xmIns:soapbind="http://schemas.xmlsoap.org/wsdl/soap/"
007 xmIns:xs="http://www.w3.0rg/2001/XMLSchema"">

008

009 <types>

010 <xs:schema elementFormDefault="qualified"

011 targetNamespace="http://example.com/exampleNamespace" >

012 <xs:element name="rootElement'">

013 <xs:complexType>

014 <XSs:sequence>

015 <xs:element name="propertyl"” type=''xs:string" />

016 <xs:element name="property2"” type='xs:string"” />

017

018 </Xs:sequence>

019 </xs:complexType>

020 </xs:element>

021 </xs:schema>

022 </types>

023

024 <message name='‘notifyMessage''>

025 <part name="body" element="tns:rootElement" />

026 </message>

027

028 <portType name="eventReceiverPortType'>

029 <operation name="notifyOperation'>

030 <input message='""tns:notifyMessage" />

031 </operation>

032 </portType>

033

034 <binding name="eventReceiverSOAPBinding" type='"tns:eventReceiverPortType'>
035 <soapbind:binding transport="http://schemas.xmlsoap.org/soap/http"
036 style="document" />

037 <operation name="notifyOperation'>

038 <soapbind:operation soapAction=""" />

039 <input>

040 <soapbind:body use="literal" />

041 </input>

042 </operation>

043 </binding>

044

045 <service name="eventReceiverService'">

046 <port name="eventReceiverSOAPPort"” binding="tns:eventReceiverSOAPBinding'>
047 <soapbind:address location="http://example.com/serviceEndPoint" />
048 </port>

049 </service>

050 </definitions>

Modifying, as follows, the underlined parts according to a rule definition or SOAP listener definition allows the WSDL above to

be used to generate a template of the Web service to be created:

- Line numbers 003, 005, and 011

Use the value of the namespace in the SOAP listener definition as the target namespace of the WSDL ("targetNamespace"
attribute of the "definitions" element), the declaration of the target namespace prefix ("xmlIns:tns" attribute of the
"definitions" element), and the target namespace of the XML schema in the WSDL ("targetNamespace" attribute of
the "xs :schema" element in the "types" element).

- Line numbers 012 and 025

Use the value of the root element in the SOAP listener definition as the name of the root element of messages to be defined in
the XML schema in the WSDL ("name" attribute of the "xs:element" element in "Xs:schema" element in the "types"
element) and the element defined as a message of the WSDL ("element" attribute of the "part" element in the "message"
element).

- Line numbers 015 and 016

Use the output property name of the complex event processing statement (SELECT statement) as the name of the subelement
of the root element to be defined in the XML schema in the WSDL ("name" attribute of the "xs:element" element under
the root element definition in the "types" element).

-102 -

Create as many similar lines as the number of properties to be output. In the example above, this element type (“type" attribute
of the "xs:element" element) is specifying a string ("Xs:string"). Setting this to suit the property type will, depending
on the tool used, generate source code according to the type, so type conversion will no longer be required in the program.

- Line number 047

In the final WSDL for service publishing, the actual URL of the service will be entered in the "location" attribute of the
"soapbind:address" element under the "service" element, and this will also be the value of the connection URL in the
listener definition. However, this connection URL is often unsure at development, so there is no problem with leaving it as in
the sample above.

2. Implement the Web service application.

Based on the created WSDL, output a template for the Web service application from the development tool being used, and then add
the application logic to it.

5.7.3.3 Implementing a User-developed Java Class (Custom Listener)

Implement a user-developed Java class to be called via the custom listener of the CEP engine.

5.7.3.3.1 CustomListener interface

A user-developed Java class must implement the following Java interface:

com.fujitsu.cspf.cep.CustomListener

The interface is contained in /opt/FISVcep/cep/lib/CepServerCustom.jar on the CEP Server. Copy CepServerCustom.jar to the Java
development environment you are using, set the class path, and develop the Java class.

5.7.3.3.2 Custom log

Logs can be output from a user-developed Java class to the log file (custom log) for the custom listener. The output destination of the
custom log is as follows:

/var/opt/FJISVcep/cep/cep/logs/EngineLog/cepEngineName/custom. log

Output
Use the Apache Log4j class (org.apache.log4j.Logger) for implementation.

Obtain a log output instance using the following method (the argument must be "custom"™):

Logger myLogger = Logger.getLogger (*'‘custom™);

ﬂ Information

Use the fatal, error, warn, and info methods of the Logger class to output logs.

myLogger .error (*"xXxxxxx');

4}1 Note

You cannot use the trace or debug methods of the org.apache.log4j.Logger class.

5.7.3.3.3 Compilation
Compile the source code you created, and generate a class file or jar file.

If using javac of JDK?7 or later, specify the "-target 1.6" option when compiling the source code.

-103 -

5.7.3.4 Implementing an Event Log Analysis Application

Implement an application to analyze event logs. Implement the application using the Hadoop API. Refer to the Interstage Big Data Parallel
Processing Server manuals for details.

5.7.3.5 Implementing a Terracotta Application

Implement a Terracotta application. Refer to the Interstage Terracotta BigMemory Max manuals for details.

5.8 Deploying Development Assets

This section explains how to deploy development assets. The deployment tasks are as follows:

- Deploying Definition Information
- Providing Data

- Deploying a Collaboration Application

5.8.1 Deploying Definition Information

Store the developed definition information in the CEP Server, and then use cepdeployrsc to deploy the definition information. Refer to
"6.1.3.1 Deploying Definition Information” for information on how to deploy definition information.

Below is an example of deploying definition information.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of deploying definition information

This is an example of command execution when the following definition information (definition file) is deployed in a CEP engine
(CepEngine):

/application

+-- EVENTO1.xml ... Event type definition (development asset ID: EVENTO1)
+-- RULEO1.xml --- Rule definition (development asset ID: RULEO1)

+-- MASTERO1.xml ... Master definition (development asset ID: MASTERO1)
+-- RDBREFO1.xml ... RDB reference definition (development asset ID: RDBREFO1)
+-- LISTENERO1.xml ... SOAP listener definition (development asset ID: LISTENERO1)

The example of command execution is as follows:

$ cepdeployrsc eventtype -e CepEngine -f /application/EVENTOL1.xmI<ENTER>

Are you sure you want to deploy the event type definition?(default: y) [y,n,q]:<ENTER>
Command cepdeployrsc executed successfully.

$ cepdeployrsc rule -e CepEngine -f /application/RULEOL.xmI<ENTER>

-9

$ cepdeployrsc master -e CepEngine -f /application/MASTERO1.xmI<ENTER>
-9

$ cepdeployrsc rdb_ref -e CepEngine -f /application/RDBREFO1.xmI<ENTER>
-9

$ cepdeployrsc listener -e CepEngine -f /application/LISTENEROL.xmI<ENTER>
-9

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

5.8.2 Providing Data

Provide the data required for rule operation.

Event data (for testing)
Store event data (for testing) in the event sender system.

If an event sender sample program is to be used as the event sender application, store this data in the CEP Server.

-104 -

Log storage area

Create adirectory to be used as the log storage area, and set the write permission for the engine execution user created during installation.
This task is usually performed by the system administrator of the CEP Server.

;ﬂ Information

If the directory to be used as the log storage area does not exist, it will be generated automatically at logging.

Use the engine execution user permission to create the directory.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Directory creation

This is an example of creating a directory when the engine execution user and group are "isbdcep".

Log in as a superuser and execute the hadoop command to perform these tasks.

If a user-defined directory nameis specified in the directory element in the engine configuration file
Create a directory with the specified name in the root directory of the Hadoop file system.

Change the owner of created directory to give write permissions to the engine execution user.

The log storage area to be specified in the event type definition or logging listener will be created automatically.

Below is an example when "hadoop" is specified in the directory element.

hadoop fs -mkdir /hadoop <ENTER>
hadoop fs -chown isbdcep:isbdcep /hadoop <ENTER>

If aslash (/) only is specified in the directory element in the engine configuration file
No further action is required if the engine execution user can write to the root directory of the Hadoop file system.

If the engine execution user does not have write permissions, create a directory with the same name as the log storage area to be
specified in the event type definition or logging listener.

Change the owner of created directory to give write permissions to the engine execution user.

Below is an example when "/tmp" is specified as the log storage area to be specified in the event type definition or logging listener.

hadoop fs -mkdir /tmp <ENTER>
hadoop fs -chown isbdcep:isbdcep /tmp <ENTER>

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Master data

Store a schema file and data files in the path specified in the master definition.

The stored files must have the file read permission set for the engine execution user created during installation.
Terracotta cache

If a new Terracotta cache is to be provided, use the Terracotta application that was developed separately to store the initial data in the
cache.

Note that the Terracotta server must be set beforehand and a cache to be used as the storage destination must also be created beforehand.
Refer to the Interstage Terracotta BigMemory Max manuals for information on how to create a cache.

If an existing cache is to be used as it is, no further action required.
Relational database
If preparing a new relational database, use the RDB commands to store initial data in the database.

The relational database where initial data is to be stored must be created in advance. Refer to the manual for the collaboration destination
RDB for information on how to create a relational database.

-105 -

No operation is required if you use an existing relational database as is.

5.8.3 Deploying a Collaboration Application

Deploy the developed collaboration application.

Event sender application

Deploy an event sender application in the event sender system. Perform the deployment according to the application deployment
method of the event sender system.

If an event sender sample program is to be used as the event sender application, no deployment is required.
User-developed Web service

Deploy a user-developed Web service in an application server. Perform the deployment according to the method in the manual of the
application server to be used.

User-developed Java class

Store the created class file in the following directory:

/etc/opt/FJISVcep/config/custom/engineName/classes

Store the created jar file in the following directory:

/etc/opt/FJISVcep/config/custom/engineName

& Note

- Grant access permissions so that the engine execution user can read the stored class file and jar file.

- Forstoring aclass file, create a directory corresponding to the class package name in the classes directory. Grant access permissions
also for the created directory so that the engine execution user can read it.

- The class file and the jar file stored while the CEP engine is running are not enabled until the CEP engine is restarted.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Example of storing a classfile

Create a directory named com/examp I e as shown below for storing the com.example .Example class.

cd /etc/opt/FJISVcep/config/custom/engineName/classes <ENTER>
mkdir -p com/example <ENTER>

chmod 755 com <ENTER>

chmod 755 com/example <ENTER>

cp pathOfClassFileToBeStored com/example/ <ENTER>

chmod 644 com/example/classFileName <ENTER>

HOH O B R H

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Event log analysis application

Deploy an event log analysis application in a Hadoop system. Perform the deployment according to the method in the Interstage Big
Data Parallel Processing Server manual.

Terracotta application

Deploy a Terracotta server. Perform the deployment according to the method in the Interstage Terracotta BigMemory Max manual.

5.9 Integration Test

Send test data to a CEP engine in which development assets have been deployed in order to check operation.

- 106 -

5.9.1 Integration Test Flow

Perform an integration test when the CEP engine is running. Below is the test flow.

Figure 5.6 Integration test flow

Check the status of a user- =
developed Web service

¥
Start the CEP engine]

L] i

Start

in filter rules

*
Check for syntax errors in
complex event processing rules

When an error acours
(CEP engine fails to start)

[Check for syntax errors

Send event data for testing]

of filter rules
L]
Check the operation of complex
event processing rules

¥
[Check the operation]

Inteqgration

k. J
Check the operation of a user- z]
test

developed Web service

¥
[Check the operation of a user- z]
developed Java class
¥

[Check the event logs "]

¥
l Check the operation of an event *

log analysis application

Stop an event *
sender application

¥

L Carrect development assets * e

(L *):Tasks performed as required

5.9.2 Checking an Engine Log

The debug information of a CEP engine and the error messages generated at its start or during its operation will be output to an engine
log. Rule errors checked when the CEP engine starts will also be output to the engine log.

One CEP engine outputs two engine logs. One is used for output relating to input adapter and high-speed filter processing, and the other
is used for output relating to complex event processing and output adapter processing. The engine logs have no predetermined format.

The output destination of each engine log is shown below.

Engine log of the high-speed filter

/var/opt/FJISVcep/cep/Tlt/logs/EngineLog/cepEngineName/engine. log

Engine log of complex event processing

/var/opt/FJSVcep/cep/cep/logs/EngineLog/cepEngineName/engine. log

-107 -

If "DebugLogListener™ is used in complex event processing rules, processing results will be output to the engine log of complex
event processing.

QJT Note

Engine log splitting

If a "DebugLogListener” log of more than 102,400 characters is to be output at once to the engine log, the log will be split and then output.
Refer to "Checking when a DebugLogListener log has been split" below for details.

Checking when a DebuglLogListener log has been split

If the output results of hits for complex event processing statement conditions exceed 102,400 characters, the output results will be split
every 102,400 characters and then output.

At split output, beginning and end identifiers will be added to the split output log. When this happens, only the end identifier will be output
in the first output result of the split log, and only the beginning identifier will be output in the last output result.

Beginning identifier

The following content will be output:

YYYY-MM-DD hh:mm:ss,sss [DEBUG]
*****CUT_threadlD_nanosecond*****

End identifier

The following content will be output. threadID and nanosecond will have the same values as those of the beginning identifier.

*x***CUT_threadlD_nanosecond*****

gn Note

Possibility of log output getting out of sequence

There is a possibility that the processing results of other events being executed simultaneously will interrupt the units into which the log
was split. Reference the log according to "Example of output when a log has been split" below.

jJJ Example

© © 0000000000 00COCOCOCOCEOCEOCE

Example of output when alog has been split

2011-12-07 14:01:13,720 [DEBUG] 6e1619bd-a048-4c64-9efb-306e9f2b88d6: 1ength=100000
6e1619bd-a048-4c64-9eth-306e912b88d6[0]

residence :12: String
value ON: String
gatewayld -00000001: String

-9
6e1619bd-a048-4c64-9efb-306e9F2b88d6[123]
residence:30: String
val
FrRAAXCUT_94_19131119552293***** .-.-1(end of the first portion of the split log)

~~~ log of other events ~~~

2011-12-07 14:01:13,720 [DEBUG] ...2(start of the continuing portion of the split log)
FAAFXCUT_94_19131119552293*****
ue ON: String

gatewayld -00000001: String

6e1619bd-a048-4c64-9efhb-306e9F2b88d6[124]

-108 -



residence :38: String
value :ON: String
gatewayld -00000001: String
G-
6e1619bd-a048-4c64-9efh-306e9F2b88d6[247]
residence :30: String
val
FHRIFXCUT_94_19131119552293***** ...3(end of the continuing portion of the split log)

~~~log of other events ~~~

2011-12-07 14:01:13,720 [DEBUG] ...4(start of the last portion of the split log)
FHAXIXCUT_94_19131119552293*****
ue :ON: String
gatewayld -00000001: String
6e1619bd-a048-4c64-9efb-306e912b88d6[248]
residence :38: String
value :ON: String
gatewayld :00000001: String ...5(end of the last portion of the split log)

~~~log of other events ~~~

Explanation of output example:
1. End of the first part of the split output log. Check the identifier (*****CUT_94_19131119552293*****),

2. Next beginning of the continuing part of the split output log. This is started using the same identifier
(F****CUT_94_19131119552293*****),

3. Next end of the continuing part of the split output log. This is split using the same identifier.
4. Similarly, this is split up to the last part using the same identifier.

5. The end of the last part of the split output log has no identifier.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

5.9.3 Starting

Start the deployed user-developed Web service and the CEP engine in which definition information has been deployed.

Also check syntax errors along with starting the CEP engine.
The procedure for the starting tasks is as follows:
1. Checking the Status of a User-developed Web Service
2. Starting the CEP Engine
3. Checking for Syntax Errors in Filter Rules
4

. Checking for Syntax Errors in Complex Event Processing Rules

5.9.3.1 Checking the Status of a User-developed Web Service

If the application server in which a user-developed Web service has been deployed is not running, start the server. After starting the server,
check that the deployed user-developed Web service has the status of receiving requests from outside.

Refer to the application server manuals for information on how to start the application server and how to check the status of the Web
service.

5.9.3.2 Starting the CEP Engine

After deployment of development assets, use cepstarteng to start the CEP engine.
Refer to "5.8 Deploying Development Assets™ for information on deploying development assets.

Refer to "8.9 cepstarteng” for information on the cepstarteng command.

-109 -



Qn Note

If implementing RDB collaboration or Terracotta collaboration, ensure that all collaboration destination servers are started before the CEP
engine is started.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of executing cepstarteng

$ cepstarteng -e CepEngine<ENTER>
Command cepstarteng executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

5.9.3.3 Checking for Syntax Errors in Filter Rules

If the filter rules in the rule definition contain syntax errors, the CEP engine start will fail. If this happens, the cause of the error will be
notified to the engine log of the high-speed filter. Correct the syntax error based on the notified error content.

Redeploy the corrected rule definition in the CEP engine. Refer to "6.1.3.3 Updating Deployed Definition Information” for information
on redeploying. After redeploying the rules, repeat the operations from "5.9.3.2 Starting the CEP Engine".

5.9.3.4 Checking for Syntax Errors in Complex Event Processing Rules

If the complex event processing statements in the rule definition contain syntax errors, the CEP engine start will fail with a "cep20201e™
error.

If this happens, the cause of the error will be notified to the engine log of complex event processing using the error message in the
"cep20201e” ERRORINFO parameter.

Below is an example of an error message in the ERRORINFO parameter. Correct the syntax error based on this content.

Incorrect syntax near xxxxxxxx at line X column Y

XXXXXXXX: Keyword near the abnormality
X: Number of lines from the beginning of the complex event processing statement in which the error occurred
Y: Number of characters from the beginning of the line of the complex event processing statement in which the error occurred

Redeploy the corrected rule definition in the CEP engine. Refer to "6.1.3.3 Updating Deployed Definition Information” for information
on redeploying. After redeploying the rules, repeat the operations from "5.9.3.2 Starting the CEP Engine".

Qn Note

Depending on the content of the error message, the location of the error (line and column information) may not be displayed.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

L og output example of a syntax error in a complex event processing statement

Target complex event processing statement

@Name("EPL3")
@DebugLogListener
select * from FilteredCouponEvent (storelD="STR0O001") wherer cast(targetAge, int)>20;

Log output (Note that in the example below, newlines have been added for readability only (lines 1 to 6). The actual output does not have
newlines.)

-110-



2012-07-15 13:51:18,843 [ERROR] CSPF_CEP: ERROR: cep2020le: EPL module file access
failure. Engineld=CepEngine, FILE=/etc/opt/FJSVcep/resources/CepEngine/rules/SampleRule.
epl, ERRORINFO=com.espertech._esper.client.deploy.DeploymentActionException: Compilation
failed in module url "/etc/opt/FJSVcep/resources/CepEngine/rules/SampleRule.epl™ in
expression “@Name("EPL3")@DebuglLogListenerselect * from Filt...(115 chars)® : Incorrect
syntax near "cast” (a reserved keyword) at line 3 column 61, please check the from
clause [@Name("EPL3")

@DebugLoglListener

select * from FilteredCouponEvent (storelD="STR0O001") wherer cast(targetAge,int)>20]

Explanation of log output:
- ERRORINFO=. ..
Error information will be output following this ERROR INFO parameter.
- Compilation failed...
This is a broad error classification. "Compi lation failed" or "Deployment failed" will be output.
- SampleRule
This is the development asset ID of the rule definition in which the error occurred.
- Incorrect syntax...

This is the error message. It indicates that there is a syntax error near "cast" in line 3, column 61 from the beginning of complex
event processing statement in which the error occurred.

- @Name("EPL3") ...

This is the complex event processing statement in which the error occurred. In this example, the "wherer" before "cast" should
actually be "where", and the extra "r" has caused a syntax error.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

5.9.4 Integration Test

The flow of the integration test tasks is as follows:

1. Sending Event Data for Testing
. Checking the Operation of Filter Rules

. Checking the Operation of Complex Event Processing Rules

2
3
4. Checking the Operation of a User-developed Web Service
5. Checking the Operation of a User-developed Java Class
6. Checking the Event Log

7

. Checking the Operation of an Event Log Analysis Application

5.9.4.1 Sending Event Data for Testing
Send event data for testing to the CEP engine.
Execute the deployed event sender application or the event sender sample program supplied with the samples.
After sending the events, check the engine log to see if event sending is operating as expected.

Refer to "5.11.6 Event Sender Sample Program" for information on how to use an event sender sample program.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Sending event data for testing

-111-



This is an example of sending the "/appl ication/test.csv" data for testing, which is in CSV format, to a CEP engine (CepEngine)
as event data with the event type "EVENTO1".

$ /opt/FJISVcep/sample/samplel/bin/sendevent.sh EVENTO1l /application/test.csv<ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

5.9.4.2 Checking the Operation of Filter Rules

Check whether any errors have been notified to the engine log of the high-speed filter, and correct the error based on the notified error
content.

In addition to errors, also check whether any content on input events (those with logging enabled in the event type definition) was logged
in the engine log, if logging with the "Fi le" logging type is being used.

5.9.4.3 Checking the Operation of Complex Event Processing Rules

Check whether any errors have been output to the engine log of complex event processing, and correct the error based on the notified error
content.

In addition to errors, also check the operation of the complex event processing rules by checking the engine log for any content output
using the @DebugLogL i stener annotation described in a complex event processing statement.

If the conditions in the complex event processing rule with the @DebuglLogL i stener annotation have a hit, the property value of the
output event will be output to the log.

Also check whether any content output using the @LoggingListener annotation was logged in the engine log, if logging with the
"File" logging type is being used.

4}1 Note

The following considerations relate to the operation results of complex event processing rules:

- Once checking the operation results of the rules is complete, before deploying the rule definition in the production environment, edit
it to delete the @DebuglLogL i stener annotation from the rule definition.

- To correct and replace a rule definition during testing, first stop the CEP engine, then redeploy the rule definition, and then restart the
CEP engine.

- When the CEP engine is stopped, any data that was in the windows generated by rules before it was stopped will disappear.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

L og output example of " DebugL ogL istener™

Below is an example of engine log output using the @DebugLogL i stener annotation, and will be the execution result of the following
complex event processing statement:

Complex event processing statement to be used

@Name("EPL3")
@DebuglLogListener
@LoggingListener(table="/EPL3", properties="arealD, couponlD®)
@SoapListener("LISTENO1™)
select arealD, targetAge, storelD, couponiD
from FilteredCouponEvent (storelD="STR0001") where cast(targetAge, int)>20;

L og output example of " DebugL ogL istener™

2012-07-15 14:21:11,854 [DEBUG] EPL3:length=1 I

EPL3[0] -.- 2.
arealD :2222: String .- 3.
targetAge :30: String

storelD :STROOO1l: String

-112 -



couponlD :CPNOOO1: String

Explanation of output example:

1. This displays the number of records that are a hit from the SELECT statement condition. The value specified using the @Name
annotation appears in the underlined part.

2. This displays the record index. The value specified using the @Name annotation appears in the underlined part.

3. This line onwards displays the properties, property values, and property types of the output event.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

ﬂ Information

Example of an engine log output by other output adapters

An engine log output by other output adapters can also be used as debug information because it shows whether listener calling succeeded.

Example of enginelog output of the SOAP listener

If the conditions in the complex event processing statement associated with the @SoapL i stener annotation have a hit, the successful
listener calling will be output to the engine log. (Note that in the example below, newlines have been added for readability only. The actual
output does not have newlines.)

2012-07-15 14:44:42,556 [DEBUG] i1d=LISTENO1 destination=http://xxx.xxx.xx.xxx/WebServWAR
/MyApplService methodName=root<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.
org/soap/envelope/'><SOAP-ENV:Header/><SOAP-ENV:Body><ns:root xmlns:ns="http://webservic
e/'"><ns:arealD>2222</ns:arealD><ns:targetAge>30</ns:targetAge><ns:storelD>STR0O001</ns:st
orelD><ns:couponlD>CPN0001</ns: couponlD></ns:root></SOAP-ENV:Body></SOAP-ENV:Envelope>

Explanation of output example:
- LISTENO1
This is the development asset ID of the SOAP listener definition that was used.
- http://xxx.xxx.xx.xxx/WebServWAR/MyApplService
This is the connection URL. This will be the value specified in the "ur 1" tag in the SOAP listener definition.
- root
This is the root element name. This will be the value specified in the "method" tag in the SOAP listener definition.
- From "root" onwards

This is the SOAP message that was sent.

Example of enginelog output of the logging listener

If the conditions in the complex event processing statement associated with the @Logg i ngL i stener annotation have a hit, the successful
logging will be output to the engine log.

2012-07-26 00:05:18,692 [DEBUG] Write Log message'2222","CPNO0O01"

If the engine log was used as the logging destination (by specifying "File" in "type" in the engine configuration file), the processing
results of the complex event processing rules will also be output.

2012-07-26 00:05:18,692 [DEBUG] TableName:/EPL3; eventdata:''2222",'CPNO0O1"
2012-07-26 00:05:18,692 [DEBUG] Write Log message'2222","CPNO0O01"

-113 -



5.9.4.4 Checking the Operation of a User-developed Web Service
Perform this only if a user-developed Web service has been designed and developed.

Check the operation of a user-developed Web service based on information such as the logs it outputs.

5.9.4.5 Checking the Operation of a User-developed Java Class

Perform this step only if you designed and developed a user-developed Java class. Check the operation based on the custom log output
by the user-developed Java class. The output destination of the custom log is as follows:

/var/opt/FJSVcep/cep/cep/logs/EnginelLog/cepEngineName/custom. log

5.9.4.6 Checking the Event Log

If a setting to perform logging using Hadoop collaboration has been specified, check that an event log has been logged in the Hadoop
system.

5.9.4.7 Checking the Operation of an Event Log Analysis Application
Perform this only if an event log analysis application has been designed and developed.

Use a recorded event log to check the operation of an event log analysis application.

5.9.5 Stopping

Stop the deployed event sender application and the CEP engine in which definition information has been deployed.

5.9.5.1 Stopping an Event Sender Application

If an event sender application is still sending events, stop the event sender application.

5.9.5.2 Stopping the CEP Engine

Stop the CEP engine. Use cepstopeng to stop the CEP engine.

Refer to "8.11 cepstopeng” for details.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of command execution

This is an example of command execution when stopping a CEP engine (CepEngine).

$ cepstopeng -e CepEngine<ENTER>
Command cepstopeng executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

5.9.6 Correcting Development Assets

If the checked operation results have a problem, correct the development asset.

After correcting it, first undeploy the development asset, then redeploy it, and then perform an integration test again.

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

Updating definition information by overwriting

If only part of the definition information is to be corrected, using the —o option of the cepdeployrsc command allows the definition
information to be updated by overwriting (and redeployed).

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-114 -



5.10 Undeploying Development Assets

Undeploy any development assets that are no longer required.

5.10.1 Undeploying Definition Informations

Execute cepundeployrsc to undeploy definition information that is no longer required.

Refer to "8.13 cepundeployrsc” for details.

Below is an example of undeploying.

4}1 Note

Note on executing cepundeployrsc

Definition information cannot be undeployed while the CEP engine is running.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of undeploying definition information

This is an example of command execution when the following definition information that has been deployed in a CEP engine (CepEngine)
is to be undeployed:

Type of definition information Development asset ID
Event type definition EVENTO1
Rule definition RULEO1
Master definition MASTERO01
RDB reference definition RDBREFO01
SOAP listener definition LISTENERO1

The command execution example is as follows:

$ cepundeployrsc eventtype -e CepEngine -n EVENTO1l<ENTER>

Are you sure you want to undeploy the event type definition?(default: y) [y,n,q]:<ENTER>
Command cepundeployrsc executed successfully.

$ cepundeployrsc rule -e CepEngine -n RULEO1<ENTER>

-9

$ cepundeployrsc master -e CepEngine -n MASTERO1<ENTER>
-9

$ cepundeployrsc rdb_ref -e CepEngine -n RDBREFO1<ENTER>
-9

$ cepundeployrsc listener -e CepEngine -n LISTENERO1<ENTER>
-

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

5.10.2 Undeploying a Collaboration Application

Undeploy any collaboration application that is no longer required.

Event sender application
Undeploy an event sender application according to the application undeployment method of the event sender system.
If an event sender sample program is being used as the event sender application, no undeployment is required.
User-developed Java class

Manually delete the class file and the jar file of the user-developed Java class from the deployment destination directory.

-115-



User-developed Web service

Undeploy a user-developed Web service from the application server. Perform the undeployment according to the method in the
application server manual.

Event log analysis application

Undeploy an event log analysis application from the Hadoop system. Perform the undeployment according to the method in the
Interstage Big Data Parallel Processing Server manual.

Terracotta application

Delete the application from the Terracotta server. Perform the deletion according to the method in the Interstage Terracotta BigMemory
Max manual.

5.10.3 Deleting Data

Delete any data that is no longer required.

Event data (for testing)
Delete event data for testing from the event sender system.

If an event sender sample program is being used as the event sender application, delete the event data for testing that was stored on
the CEP Server.

Logging storage destination
Delete the directory that was used as the logging storage destination.
If the data in the directory is required, store the data in another location and then delete the directory.
Master data
Delete the master data that was stored in the path specified in the master definition.
Terracotta cache
Refer to the Terracotta manuals for information on how to delete a Terracotta cache.
Relational database

Refer to the manual for the collaboration destination RDB for information on how to delete a relational database.

5.11 Sample Application

This section explains the sample application supplied with BDCEP.

5.11.1 Overview of the Sample Application

This sample is an application for detecting members walking in the vicinity of a registered store and issuing them with coupons that have
a time limit.

The application for this service consists of the definition information, which is the part to be processed by the CEP engine, and the master
data, which is to be used by the rules. Sample event data and an event sender sample program are also supplied for checking the operation
of the application.

The following is an overview of the coupon delivery service contained in the sample application.

Entities

The main entities of the service are as follows:
- The coupon delivery service
- Registered service members

- Registered service stores

-116 -



Overview of the coupon delivery service
Process flow of the assumed service is as follows:
- Location information of the registered members is periodically sent to the service from their smartphones.
- The registered stores send a request to issue coupons usable during a specific time to the service.
- Once the service receives this request, it will issue the coupons to the members walking around the stores.

In the sample, the event sender sample program is used to send sample event data instead of actual registered users and stores sending
events, and the performance is checked using CEP engine logs.

Data type

Data handled by the service is as follows:
- Event data
- Location information (location information event)

Contains information such as member IDs, IDs of the area where the member is currently at, and the member status (walking,
moving on train etc.).

- Coupon issue request (coupon issue event)
Contains information such as store IDs, coupon IDs, and delivery target age groups.
- Master data
- Member information (member master data)
Contains information such as member IDs and age groups.
- Store information (store master data)

Contains information such as store IDs and IDs of the area where the store is located.

5.11.2 Structure of the Sample

The table below shows the structure of the development assets (and what is provided) in this sample.

Development asset Development asset What is provided
type
Definition file Event type definition Location information event definition

Coupon event definition

Rule definition Sample rule definition

Event type definition (filtered events) | Filtered location information event definition

Filtered coupon event definition

Master definition Member master definition

Store master definition

Data Master data (CSV file) Member master data

Store master data

Event data Sample data for location information events

Sample data for coupon events

Collaboration Event sender application Event sender sample program

application (Binary and source code)

Below is an example of how the sample operates.

-117 -



Figure 5.7 Example of how the sample operates

CEP Server CER e
Input
adapter
(HTTP)
Event
sender
sample

program Location

information
event
Event
sender
sample
program

High-speed Complex Cutput
filter avent adapter
processing
Rules
Filtered —
!ufc;atlun : Rules TEEII”E
n rTatmn Debug log
SVEn output
b
Filtered 4'; )
y

coupon

event
Member Store
master master
(C3V) (C3V)

5.11.3 Events

5.11.3.1 Location Information Events

The table below shows the content of the event type definition for location information events.

Identifier Format Column
(development asset ID) e Description
LocationEvent Csv memberID Member ID. The format of the sample data is "MEM"

followed by four digits.

arealD Avrea code of the area where the member is currently
located. The format of the sample data is four digits.

status Current status of the member (walking: 1", moving on
train: "2").

5.11.3.2 Coupon Events

The table below shows the content of the event type definition for coupon events.

Identifier Format Column
(development asset ID) Name Description
CouponEvent CsVv storelD Store ID. The format of the sample data is "STR" followed
by four digits.
couponiD Coupon ID. The format of the sample data is "CPN"
followed by four digits.
targetAge Delivery target age.
(10's: "10", 20's: "20", 30's: 30", 40's: "40", 50's: "50", 60
and over: "60")

-118 -




5.11.3.3 Filtered Location Information Events
Filter rules for location information events perform the following processes:

- Extracts only events where the status is "walking".

Extracts only events that occurred in an area where registered stores exist, based on the "arealD" and store master information.

- Joins the member age information from the member information master for complex event processing with the location events.

Does not output the status information as it is no longer used after filter processing.

The table below shows the content of the event type definition for filtered location information events.

Identifier Format Column
(development asset ID) Name Description
FilteredLocationEvent CsVv memberID Member ID.

arealD Area code of the area where the member is currently
located.

age Member age.
(10's: 10", 20's: 20", 30's: 30", 40's: 40", 50's: "50", 60
and over: "60")

5.11.3.4 Filtered Coupon Events
Filter rules for coupon events perform the following process:
- Joins the store area code from the store information master for complex event processing with the coupon information events.

The table below shows the content of the event type definition for filtered coupon events.

Identifier Format Column
(development asset ID) Name Description
FilteredCouponEvent Csv storelD Store ID.
couponID Coupon ID.
targetAge Delivery target age.

(10's: "10", 20's: "20", 30's: 30", 40's: "40", 50's: 50", 60
and over: "60")

arealD Area code of the area where the store is located.

5.11.4 Master Information

This section explains the master data to be used by this sample.

5.11.4.1 Member Information Master
This is the master data of the registered member, which stores the member 1D and member age data.

The table below shows the content of the member information master definition.

Identifier Column
(development asset ID) Name Description
Memberinfo ID Member ID.
age Member age.

-119 -



Identifier Column
(development asset ID)

Name Description

(10's: "10", 20's: 20", 30's: "30", 40's: "40", 50's: "50", 60
and over: "60")

5.11.4.2 Store Information Master
This is the master data of the registered store, which stores the store ID and area code of the area where the store is located.

The table below shows the content of the store information master definition.

Identifier Column
(development asset ID) Name Description
Storelnfo ID Store ID.
arealD Area code of the area where the store is located.

5.11.5 Rule Definition

The rule definition processes two types of events. It consists of filter rules and complex event processing rules.

5.11.5.1 Filter Rules (IF-THEN Format)

These filter rules are for two types of events.

1 on LocationEvent {

2 if ($status == "1" AND lookup(*'Storelnfo', $arealD == $arealD) = true()) then

3 join('MemberiInfo", $member1D==$1D)

4 output($memberlD, $arealD, "MemberInfo'.$age) as FilteredLocationEvent;

5 ¥

6

7 on CouponEvent {

8 join('Storelnfo", $storelD == $ID)

9 output($storelD, $couponlD, $targetAge, "Storelnfo'.$arealD) as FilteredCouponEvent;
10 3}

Below is an explanation of each line.
- Linel
This is a filter rule for a location information event (LocationEvent).
- Line2

This search expression extracts only the events where a registered store can be found in the area (one with an "arealD" equal to the
"arealD" in the "storelnfo" store master) while walking ("status" is "1"). The left side of "$arealD == $arealD" isthe
"arealD" of the input events, and the right side is the "areal D" of the master data.

- Line3

To assign member master information to the input events, this uses the data of the member master "Member Info" to join the events
that have equal member IDs.

- Line 4

This outputs the member ID and area ID that are in the input events, as well as the age information of the member master, as a
"FilteredLocationEvent".

- Line?7

This is a filter rule for a coupon event (CouponEvent).

-120 -



Line 8

This uses the store master "Store Info" data to join the events that have equal store IDs.

Line 9

This outputs the store ID, coupon ID, and target age that are in the input events, as well as the area ID of the store master, as a
"FilteredCouponEvent".

5.11.5.2 Complex Event Processing Rules (SQL Format)

These complex event processing rules are for the two types of events processed by the filter rules.

©O© 0O ~NO O~ WNPRE

NNBRPRRERRRRRR
PO O©WOW~NOOUDMWNLERO

create window outEventWin.std:firstunique(memberlID,couponlD).win:time(3 min)

as (memberlID string, storelD string, couponlD string);
@Name("EPL1")
insert into outEventWin

select loc.memberID as memberlID,cpn.storelD as storelD,cpn.couponlD as couponlD

from FilteredLocationEvent as loc unidirectional
inner join FilteredCouponEvent.win:time(3 min) as cpn
on loc.arealD=cpn.arealD and loc.age=cpn.targetAge;

@Name("EPL2")
@DebugLogListener

select * from outEventWin;

@Name("filterOutl®)
@DebugLogListener
select * from FilteredLocationEvent;

@Name (" filterOut2*)
@DebugLogListener
select * from FilteredCouponEvent;

Below is an explanation of each line.

Linel

This is a complex event processing statement that creates a named window to retain the output events for a set time period and to
ensure that the same coupon is not sent to the same person twice within that period. This retains the first output events for member
ID and coupon ID pairs, one at a time. After the set period (3 minutes in the sample) has elapsed, they are deleted from the window.

Line 2

This defines the format of events held in a named window.

Line 4

This defines the complex event processing statement to perform the main process. Its name is "EPL1".
Line 5

This inserts the output of the main process in the named window.

Line 6

This outputs the member IDs of location information events and the store IDs and coupon 1Ds of coupon events, as the results of the
main process.

Line 7

This is for the "Fi IteredLocationEvent", which is one source of input for the main process. When "unidirectional” is
specified, the reception of this event will be the trigger for operating this process ("Fi I teredCouponEvent" will not be the trigger).

-121-



- Line 8

This is for the "FilteredCouponEvent", which is the other source of input for the main process. This event is retained in memory for
a set period only (3 minutes in the sample) and is joined to "FilteredLocationEvent".

- Line9

The join condition for "FilteredLocationEvent" and "FilteredCouponEvent" is that the "arealDs" are equal and that "age" and
"targetAge" are equal.

- Line11

This is a complex event processing statement for outputting the processing results of "EPL1" (line 5 onwards). Its name is "EPL2".
- Line 12

By assigning a debug log listener, this outputs the output events to the engine log.
- Line 13

This outputs only the new events registered in the named window. Even if there are more than one of the same event entered in the
named window, specifying "std: firstunique” (in "create window") will ensure that only the first event will actually be
stored.

- Lines15t0 17

This is a complex event processing statement for performing debug log output of a filtered location information event
(FilteredLocationEvent). This is for checking the filtering process and can safely be deleted.

- Lines 19to 21

This is a complex event processing statement for performing debug log output of a filtered coupon event
(FilteredCouponEvent). This is for checking the filtering process and can safely be deleted.

5.11.6 Event Sender Sample Program

The event sender sample program is an event sender application that sends event data for testing in CSV format to an HTTP adapter.

Execution format

The execution format of the program is as follows:

/opt/FJSVcep/sample/samplel/bin/sendevent.sh eventType dataFilePath [ sendDestinationURL ]

Arguments

eventType
Specify which event type is to be used to send the data.
Specify the development asset 1D of the target event type.

dataFilePath
Specify the path of the CSV format file that contains the event data.

sendDestinationURL
Specify the endpoint address of the HTTP adapter.
If this is omitted, the default is "http://localhost/CepEngineFrontServerService/HttpReceiver".

ﬂ Information

Endpoint address of the CEP engine

The send destination URL of the CEP engine is as follows:

http://CEPengineAddress/cepEngineNameFrontServerService/HttpReceiver

-122 -



The send destination URL of the CEP engine (CepEngine) of the CEP Server (“cephost.example.com”) is as follows:

http://cephost.example.com/CepEngineFrontServerService/HttpReceiver

Source code
Below is the source code of the event sender sample program.

/opt/FISVcep/sample/samplel/src/sample/HttpClient.java

1 package sample;

2

3 import java.io.BufferedOutputStream;

4 import java.io.BufferedReader;

5 import java.io.FilelnputStream;

6 import java.io.lnputStreamReader;

7 import java.net.HttpURLConnection;

8 import java.net.URL;

9

10 public class HttpClient {

11

12 static String DEFAULT_URL = *"http://localhost/CepEngineFrontServerService/HttpReceiver";
13

14 public static void main(String[] args) {

15 if (args.length 1= 2 && args.length 1= 3) {

16 System.err.printIn("'Requires two or three arguments: event-type, file name, [URL]"™);
17 System.exit(1);

18 }

19 String eventType = args[0];

20 String fileName = args[1];

21 String url = DEFAULT_URL;

22 if (args.length == 3) {

23 url = args[2];

24 }

25

26 try {

27 BufferedReader br0 =

28 new BufferedReader(new InputStreamReader(new FilelnputStream(FfileName)));
29

30 String str;

31 while ((str = brO.readLine()) != null) {

32 URL TestURL = new URL(url);

33 HttpURLConnection con = (HttpURLConnection) TestURL.openConnection();
34

35 con.setRequestMethod(*"POST™);

36 con.setRequestProperty(*"TYPE", "CSV');

37 con.setRequestProperty(""EVENT-TYPE-ID", eventType);

38 con.setRequestProperty(*'Content-Type", "text/plain; charset=utf-8");
39 con.setDoOutput(true);

40

41 BufferedOutputStream bos = new BufferedOutputStream(con.getOutputStream());
42 bos.write(str.getBytes("'utf-8"));

43 bos.flush(Q);

44 bos.close();

45

46 BufferedReader brl = new BufferedReader(new InputStreamReader(con.getlnputStream()));
47

48 String line;

49 while ((line = brl.readLine()) != null) {

50 System.out.printin(line);

51 }

52 bri.close();

-123 -




53 con.disconnect();
54 }

55 brO.close();

56 } catch (Exception e) {
57 e.printStackTrace();
58 }

59 }

60 }

5.11.7 Directory Structure

This sample is stored in "/opt/FJSVcep/sample" using the following structure:

samplel
+-- client.jar Jar file to be used by the event sender sample program
+-- bin Directory for shell scripts
| +-- deployall.sh Shell script to deploy all sample development assets
| +-- undeployall.sh Shell script to undeploy all sample development assets
| +-- sendevent.sh Event sender sample program
+-- src Directory for source code
| +-- sample
| +-- HttpClient.java Source code of jar to be used by the event sender sample program
+-- master Directory for master data
| +-- MemberData.csv Sample data of member master
| +-- MemberDataSchema.csv Schema file of member master
| +-- StoreData.csv Sample data of store master
| +-- StoreDataSchema.csv Schema file of store master
+-- event Directory for event data
| +-- CouponEvent.csv Sample data of coupon event
| +-- LocationEvent.csv Sample data of location information event
+-- resources Directory for definition files
+-- CouponEvent._xml Event type definition of coupon event
+-- FilteredCouponEvent.xml Event type definition of filtered coupon event
+-- LocationEvent.xml Event type definition of location information event
+-- FilteredLocationEvent.xml Event type definition of filtered location information event
+-- MemberInfo.xml Master definition of member master
+-- Storelnfo.xml Master definition of store master
+-- SampleRule.xml Rule definition

5.11.8 Execution

This section explains how to execute the sample application.

Use general user permissions to execute the commands in the tasks below
Perform the tasks in the following sequence:

1. Deploying Development Assets

2. Starting the CEP Engine

3. Sending Events and Checking the Results
4. Stopping the CEP Engine
5

. Undeploying Development Assets

5.11.8.1 Deploying Development Assets

Deploy the development assets when only one CEP engine has been deployed (for example, immediately after the initial setup of BDCEP
has completed).

Execute "/opt/FJSVcep/sample/samplel/bin/deployall._sh".

During this process, a number of queries will be made, so press "Enter" for all of them.

-124-



$ cd /opt/FISVcep/sample/samplel/bin <ENTER>

$ ./deployall.sh <ENTER>

Are you sure you want to deploy the event type definition?(default: y) [y,n,q]:<ENTER>
Command cepdeployrsc executed successfully.

Are you sure you want to deploy the event type definition?(default: y) [y,n,q]:<ENTER>
Command cepdeployrsc executed successfully.

Are you sure you want to deploy the event type definition?(default: y) [y,n,q]:<ENTER>
Command cepdeployrsc executed successfully.

Are you sure you want to deploy the event type definition?(default: y) [y,n,q]:<ENTER>
Command cepdeployrsc executed successfully.

Are you sure you want to deploy the rule definition?(default: y) [y,n,q]:<ENTER>
Command cepdeployrsc executed successfully.

Are you sure you want to deploy the master data definition?(default: y) [y,n,q]:<ENTER>
Command cepdeployrsc executed successfully.

Are you sure you want to deploy the master data definition?(default: y) [y,n,q]:<ENTER>
Command cepdeployrsc executed successfully.

In this shell script, the following commands are executed:

- Deploying event type definitions

cepdeployrsc eventtype -f /opt/FJSVcep/sample/samplel/resources/LocationEvent.xml
cepdeployrsc eventtype -f /opt/FJSVcep/sample/samplel/resources/CouponEvent._xml
cepdeployrsc eventtype - /opt/FJSVcep/sample/samplel/resources/FilteredLocationEvent.xml
cepdeployrsc eventtype -f /opt/FJSVcep/sample/samplel/resources/FilteredCouponEvent.xml

- Deploying master definitions

cepdeployrsc master -f /opt/FJSVcep/sample/samplel/resources/MemberInfo.xml
cepdeployrsc master -f /opt/FJSVcep/sample/samplel/resources/Storelnfo.xml

- Deploying the rule definition

cepdeployrsc rule -f /opt/FJSVcep/sample/samplel/resources/SampleRule._xml

5.11.8.2 Starting the CEP Engine

Execute the following command to start the CEP engine:

$ cepstarteng<ENTER>

5.11.8.3 Sending Events and Checking the Results

Use the event sender sample program (/opt/FJSVcep/sample/samplel/bin/sendevent. sh) to send the sample data and use
the engine log to check the rule operation.

1. Sending location information events and checking the results

$ ./sendevent.sh LocationEvent /opt/FJSVcep/sample/samplel/event/LocationEvent.csv<ENTER>

Check that "fi I'terOutl" events have been output to the engine log.

Output example

2012-07-09 11:11:57,409 [DEBUG] filterOutl:length=1
FilterOutl[O]

arealD :2222: String

age :30: String

member D :MEMO0O08: String

2012-07-09 11:11:57,413 [DEBUG] filterOutl:length=1
FilterOutl[O]

arealD :2222: String

age :20: String

-125-



member 1D :MEMO003: String

. Sending coupon events and checking the results

$ ./sendevent._sh CouponEvent /opt/FJSVcep/sample/samplel/event/CouponEvent.csv<ENTER>

Check that "fi 1terOut2" events have been output to the engine log.

Output example

2012-07-09 11:15:38,054 [DEBUG] filterOut2:length=1
filterOut2[0]
arealD :2222: String

targetAge :30: String
storelD :STROOO1l: String
couponlD :CPNOOO1: String

. Sending location information events and checking the results

Send location information events within 3 minutes of sending coupon events.

$ ./sendevent.sh LocationEvent /opt/FJSVcep/sample/samplel/event/LocationEvent.csv<ENTER>

Check that events indicating a coupon issue ("EPL2" event) have been output to the engine log.

Output example

2012-07-09 11:17:25,314 [DEBUG] filterOutl:length=1
filterOutl[O]

arealD :2222: String

age :20: String

memberID :MEMOOO03: String

2012-07-09 11:17:25,321 [DEBUG] filterOutl:length=1
filterOutl[O]

arealD :2222: String

age :30: String

memberID :MEMOOO08: String

2012-07-09 11:17:25,323 [DEBUG] EPL2:length=1

EPL2[0]
storelD :STROOO1: String
memberID :MEMOO08: String
couponlD :CPNOOO1: String

. Sending location infor mation events and checking the results

Send location information events again within 3 minutes of sending coupon events.

$ ./sendevent.sh LocationEvent /opt/FJSVcep/sample/samplel/event/LocationEvent.csv<ENTER>

Check that events indicating coupon issue ("EPL2" event) have not been output to the engine log.

Output example

2012-07-09 11:18:00,691 [DEBUG] filterOutl:length=1
filterOutl[O]

arealD :2222: String

age :20: String

memberID :MEMOOO03: String

2012-07-09 11:18:00,691 [DEBUG] filterOutl:length=1
filterOutl[O]

-126 -




arealD :2222: String
age :30: String
memberID :MEMOO08: String

5.11.8.4 Stopping the CEP Engine

Execute the following command to stop the CEP engine:

$ cepstopeng<ENTER>

5.11.8.5 Undeploying Development Assets
Execute "/opt/FJSVcep/sample/samplel/bin/undeployall.sh" to undeploy the development assets in batch.

During this process, a number of queries will be made, so press "Enter" for all of them.

$ _/undeployall.sh<ENTER>

Are you sure you want to undeploy the event type definition?(default: y) [y,n,q]:<ENTER>
Command cepundeployrsc executed successfully.

Are you sure you want to undeploy the event type definition?(default: y) [y,n,q]:<ENTER>
Command cepundeployrsc executed successfully.

Are you sure you want to undeploy the event type definition?(default: y) [y,n,q]:<ENTER>
Command cepundeployrsc executed successfully.

Are you sure you want to undeploy the event type definition?(default: y) [y,n,q]:<ENTER>
Command cepundeployrsc executed successfully.

Are you sure you want to undeploy the rule definition?(default: y) [y,n,q]:<ENTER>
Command cepundeployrsc executed successfully.

Are you sure you want to undeploy the master data definition?(default: y) [y,n,q]:<ENTER>
Command cepundeployrsc executed successfully.

Are you sure you want to undeploy the master data definition?(default: y) [y,n,q]:<ENTER>
Command cepundeployrsc executed successfully.

-127 -



|Chapter 6 Operation and Maintenance

This chapter explains how to operate the CEP Server.

If Interstage Big Data Complex Event Processing Server (hereafter referred to as "BDCEP") is to be operated using a reliable configuration,
refer to "7.2.4 Operating a Cluster Service".

6.1 Operating the CEP Server

This section explains how to operate the CEP Server.

a

Start the collaboration system *
Start the CEP service
I
Ceploy and undeploy definition
Information )
Start the CEP engine
Perform typical operation tasks
Stop the CEP engine
Stop the CEP service
, l |
*
Stop the collaboration system

| * | - Tasks performed as required

6.1.1 Starting the Collaboration System

If Terracotta collaboration, RDB collaboration, or Hadoop collaboration is to be performed, first start the relevant collaborating system.

Refer to the manual for the relevant product for information on how to start the system.

6.1.2 Starting the CEP Service

Execute cepstartserv as a superuser to start the CEP service.

;ﬂ Information

- The CEP service consists of multiple services listed below. Execute cepstartserv to start all the services simultaneously.
- Interstage Java EE DAS service

- Interstage Java EE Node Agent service

-128 -



- Interstage Management Console

- Interstage HTTP Server

PostgreSQL

- Apache Tomcat

Automatic start of the CEP service and CEP engine

- The CEP service starts automatically when the operating system starts. The CEP engine that was running the last time the operating
system shut down also starts automatically.

- If cepstopeng or cepstopserv has been used to stop the CEP engine and the operating system is then restarted, the CEP engine will not
start automatically when the operating system starts. To start the CEP engine, execute cepstarteng again.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Starting the service

When cepstartserv is used to start the CEP service.

# cepstartserv<ENTER>

G-

Interstage Java EE DAS started

G-

Interstage Java EE Node Agent started

-9

UX:ismngconsolestart: INFO: 1s40041: The service has been activated normally.
G-

UX:IHS: INFO: ihs01000: The command terminated normally.
G-

LOG: database system is ready to accept connections

-9
Starting Tomcat: [ OK 1]

Command cepstartserv executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.1.3 Deploying and Undeploying Definition Information

This section explains how to deploy the definition information stored on the CEP Server, and how to undeploy definition information no
longer required.

6.1.3.1 Deploying Definition Information
Execute cepdeployrsc to deploy the definition information on the CEP Server.
General user permissions can be used to execute this command.

If the CEP engine is not stopped, then you must stop it (refer to "6.1.6 Stopping the CEP Engine" for details).

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Deploying definition information

When deploying the following definition information (definition file) to a CEP engine (CepEngine).

-129 -



/application

+-- EVENTO1.xml ... Event type definition (development asset ID: EVENTO1)
+-- RULEO1.xml ... Rule definition (development asset ID: RULEO1)

+-- MASTERO1.xml ... Master definition (development asset ID: MASTERO1)
+-- RDBREFO1.xml ... RDB reference definition (development asset ID: RDBREFO1)
+-— LISTENERO1.xml ... SOAP listener definition (development asset ID: LISTENERO1)

An example of command execution is shown below.

$ cepdeployrsc eventtype -e CepEngine -f /application/EVENTO1.xmI<ENTER>

Are you sure you want to deploy the event type definition?(default: y) [y,n,ql: <ENTER>
Command cepdeployrsc executed successfully.

$ cepdeployrsc rule -e CepEngine -f /application/RULEOL.xmI<ENTER>

G-

$ cepdeployrsc master -e CepEngine -f /application/MASTEROL.xmI<ENTER>
-9

$ cepdeployrsc rdb_ref -e CepEngine -f /application/RDBREFO1.xmI<ENTER>
-9

$ cepdeployrsc listener -e CepEngine -f /application/LISTENEROL.xmI<ENTER>
G-

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.1.3.2 Checking Deployed Definition Information
Execute cepdispeng and cepgetrsc to check deployed definition information.

Execute cepdispeng with the -1 option to list the definition information deployed in the CEP engine, and cepgetrsc to check details of the
deployed definition information.

General user permissions can be used to execute these commands. The definition information can be checked regardless of whether the
CEP engine is stopped or running.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Listing the deployed definition information
When listing the definition information deployed to a CEP engine (CepEngine).

$ cepdispeng -i -e CepEngine<ENTER>
engineld :CepEngine

eventtype EVENTO1

rule :RULEO1

master “MASTERO1

rdb_ref -RDBREFO1

listener :LISTENERO1

Command cepdispeng executed successfully.

Listing details of the deployed definition infor mation
When listing the details of an event type definition (EVENTO1) deployed to a CEP engine (CepEngine).

$ cepgetrsc eventtype -e CepEngine -n EVENTO1<ENTER>
<?xml version="1.0" encoding="UTF-8" standalone="yes'?>
<eventType xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="EVENTO1'>
<comment>Event type definition</comment>
<type>CSV</type>
<xmlSchema></xmlSchema>
<csvColumn>
<column name="memberID" type='string'/>
<column name="arealD" type="'string"/>
<column name='"status" type="'string"/>
</csvColumn>
<root></root>
<uselLogging>false</uselLogging>

-130 -



<loggingTableName></loggingTableName>
<useCep>true</useCep>
</eventType>

Command cepgetrsc executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Qﬂ Note

- If redirecting the command output of the detailed display (XML format), modify each item accordingly.

- In addition to XML format data, the results of cepgetrsc also include output messages. If redirecting the command output to a file,
delete unnecessary messages before using the results.

6.1.3.3 Updating Deployed Definition Information
Execute cepdeployrsc with the —o option to update the deployed definition information.
General user permissions can be used to execute this command.
If the CEP engine is not stopped, then you must stop it (refer to "6.1.6 Stopping the CEP Engine" for details).

Refer to "6.1.5.5 Dynamically Changing Rule Definitions and Master Data" to update rule definitions or the master data while the CEP
engine is running.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Updating the deployed definition information
When updating an event type definition (EVENTO01) of a CEP engine (CepEngine) with new details.
The path of the event type definition with the new details (development asset ID: EVENTO1) is shown below.

/application/EVENTO1_new.xml

An example of command execution is shown below.

$ cepdeployrsc eventtype -o -e CepEngine -f /application/EVENTO1_new.xmI<ENTER>
Are you sure you want to deploy the event type definition?(default: y) [y,n,q]: <ENTER>
Command cepdeployrsc executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.1.3.4 Undeploying Definition Information
Execute cepundeployrsc to undeploy definition information no longer required.
General user permissions can be used to execute this command. Release the definition information while the CEP engine is stopped.

Refer to "6.1.6 Stopping the CEP Engine" if the CEP engine needs to be stopped.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Undeploying the definition information
When undeploying the following definition information deployed to a CEP engine (CepEngine).

Definition information type Development asset ID
Event type definition EVENTO1
Rule definition RULEO1
Master definition MASTERO1

-131-



Definition information type Development asset ID

RDB reference definition RDBREF01

SOAP listener definition LISTENERO1

An example of command execution is shown below.

$ cepundeployrsc eventtype -e CepEngine -n EVENTO1<ENTER>

Are you sure you want to undeploy the event type definition?(default: y) [y,n,ql: <ENTER>
Command cepundeployrsc eventtype executed successfully.

$ cepundeployrsc rule -e CepEngine -n RULEO1<ENTER>

G-

$ cepundeployrsc master -e CepEngine -n MASTERO1<ENTER>
-9

$ cepundeployrsc rdb_ref -e CepEngine -n RDBREFO1<ENTER>
-9

$ cepundeployrsc listener -e CepEngine -n LISTENERO1<ENTER>
G-

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.1.4 Starting the CEP Engine

Execute cepstarteng to start all CEP engines to be used - starting will be performed one CEP engine at a time.

General user permissions can be used to execute this command.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When the command is executed.

$ cepstarteng -e CepEngine<ENTER>
Command cepstarteng executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Qn Note

Starting the CEP engine will fail in the following cases:
- If there has been no deployment of at least one event type definition.
- If an XML schema specified in an event type definition contains an error.

- If the syntax of a filter rule or complex event processing rule specified in a rule definition contains an error.

;ﬂ Information

How to check the CEP engine name

Execute cepdispeng to list the CEP engines that have been set up.

6.1.5 Typical Operation Tasks

This section explains the following operation tasks performed after the CEP engine is started:

Displaying the operation status of the CEP service

Displaying the operation status of the CEP engine

Monitoring abnormalities using logs

Checking the resource usage of the CEP engine

-132 -



- Dynamically changing rule definitions and master data

6.1.5.1 Displaying the Operation Status of the CEP Service
Execute cepdispserv as a superuser to display the status of the CEP service.

This allows you to check that the CEP service is running normally at any time, such as immediately after operation starts or during peak
business hours. Execute cepstartserv as a superuser to start any service that is not running.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Using cepdispserv to check the operation status of the CEP service

Check that the content below is output (nnnn indicates the process number, cepEngine indicates the created CEP engine name):

# cepdispserv<ENTER>

-9
Interstage Java EE DAS started
-9
Interstage Java EE Node Agent started
-9

CEPAgentlJServerCluster running
cepEngine_flt not running
cepEngine_cep not running

-9

Status : Running

-9

jsvc (pid nnnn nnnn) s running...
G-

pg_ctl: server is running (PID: nnnn)
-9

Command cepdispserv executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

;ﬂ Information

The CEP service entity

A CEP service is made up of multiple processes. Refer to 8.5 cepdispserv" for details.
6.1.5.2 Displaying the Operation Status of the CEP Engine

Execute cepdispeng to display the status of the CEP engine.

This allows you to check that the CEP engine is running normally at any time, such as immediately after operation starts or during peak
business hours (refer to Chapter 5, "Errors during Operation" in Troubleshooting if the CEP engine has ABNORMAL or STOP status
when it should be running).

General user permissions can be used to execute this command.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Checking the operation status of the CEP engine

When checking the operation status of a CEP engine (CepEngine) - information such as the number of input and output events is also
displayed.

$ cepdispeng -e CepEngine<ENTER>

engineld :CepEngine
-9

status_filter -RUN
status_cep RUN

-133-



inEvent_Tfilter :100

inEvent_cep :100
outEvent_filter :100
outEvent_cep 100
G-

Command cepdispeng executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.1.5.3 Monitoring Abnormalities Using Logs
When an abnormality occurs in the CEP service and the CEP engine, a message will be output to the system log and to the engine logs.

The system log and the engine logs are used differently. For example, in addition to the messages reporting abnormalities, the engine logs
also contained more detailed information on CEP engine operation, such as records sent using the SOAP listener and debug information.
Therefore, the usual abnormality monitoring monitors only the system log and, when an abnormality occurs, references the engine logs
to analyze its cause.

When an abnormality occurs, respond on the basis of the messages output to each log. Refer to Messages for information on specific
responses.

The details of log output are explained as follows:
- Output destinations of the system log and the engine logs

- Message format

Output destinations of the system log and the engine logs
The output destinations of the system log and the engine logs are shown below.

One CEP engine outputs two engine logs - one contains output relating to input adapter and high-speed filter processing, and the other
contains output relating to complex event processing and output adapter processing. The engine logs have no predetermined format.

System log

/var/log/messages

Engine log for the high-speed filter

/var/opt/FJISVcep/cep/flt/logs/EnginelLog/cepEngineName/engine. log

Engine log for complex event processing

/var/opt/FJISVcep/cep/cep/logs/EngineLog/cepEngineName/engine. log

The engine logs of the high-speed filter and complex event processing undergo rotation as follows:
- File size: 10 MB

- Rotation generations: 9 generations

& Note

Engine logs older than 9 generations are automatically deleted. If they are required, periodically store them in a separate location.

Message format
The format of the messages output by BDCEP is shown below.

Refer to Section 1.1, "Message Format™ in Messages for details.

CSPF_CEP: errorType: messageNumber: messageText

- Each element is delimited by a colon (:).

-134-



jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

An example message is shown below.

CSPF_CEP: ERROR: cepl0108e: Event type is not found. Engineld=CepEngine, eventType=EVENTO1l

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.1.5.4 Checking the Resource Usage of the CEP Engine

The resource usage of the CEP engine (such as the heap memory usage of Java VM) is recorded in the resource logs. The logs are output
in CSV format and therefore can be analyzed using a tool such as Excel, in order to detect resource excesses or deficiencies in the CEP
engine.

The details of the resource logs are explained as follows:

- Output destinations of the resource logs

Format of the resource log for the high-speed filter

- Format of the resource log for complex event processing

Collection interval for the resource usage

Output destinations of the resource logs

Two resource logs are output for each CEP engine - one contains output relating to input adapter and high-speed filter processing, and the
other contains output relating to complex event processing and output adapter processing.

The output destination of each resource log is shown below.

Resource log for the high-speed filter

/var/opt/FJSVcep/cep/flt/logs/ResourcelLog/cepEngineName/resource. log

Resource log for complex event processing

/var/opt/FJSVcep/cep/cep/logs/ResourcelLog/cepEngineName/resource. log

The resource logs of the high-speed filter and complex event processing undergo rotation as follows:
- Point of rotation: One day's worth (specific point of rotation is set using cron)

- Rotation generations: 13 generations

L:n Note

Resource logs older than 13 generations are automatically deleted. If they are required, periodically store them in a separate location.

Format of the resource log for the high-speed filter
This section explains the format of the resource log for the high-speed filter.

The format is shown below:

time,resourceld, jheapNewUsed, jheapNewFree, jheapNewTotal , jheapOldUsed, jheapOldFree,
JjheapOldTotal, jheapNewPlusOldTotal, jheapPermUsed, jheapPermFree, jheapPermTotal ,VSZ,
numOfInEvents, numOfOutEvents, numOfLogs, numOfRulesDeployed, numOfSocketConnections

Note that in the format above, newlines have been added for readability only. The actual log does not have newlines.

The table below explains each item:

-135-



Item name Content

time Output date and time of the resource log. The format is as follows:

yyyy-MM-dd HH:mm:ss

- yyyy. Year
- MM: Month

- dd Day
- HH Hour
- mm. Minute

- ss. Second

resourceld Resource ID. The format is as follows:

CSPF_CEP_hostName_engineld_fIlt

JheapNewUsed Java VM heap memory usage (new generation area) for the high-speed filter (unit:
bytes) (*1)

JheapNewFree Java VM heap free memory (new generation area) for the high-speed filter. (unit:
bytes) (*1)

JheapNewTotal Java VM heap memory (new generation area) for the high-speed filter. (unit: bytes)
(*1)

JheapOldUsed Java VM heap memory usage (old generation area) for the high-speed filter. (unit:
bytes) (*1)

JheapOldFree Java VM heap free memory (old generation area) for the high-speed filter. (unit:
bytes) (*1)

JheapOldTotal Java VM heap memory (old generation area) for the high-speed filter. (unit: bytes)
(*1)

JheapNewPlusOldTotal Java VM heap memory (new generation area + old generation area) for the high-

speed filter. (unit: bytes) (*1)

JheapPermUsed Java VM heap memory usage (permanent generation area) for the high-speed filter.
(unit: bytes) (*1)

JheapPermFree Java VM heap free memory (permanent generation area) for the high-speed filter.
(unit: bytes) (*1)

JheapPermTotal Java VM heap memory (permanent generation area) for the high-speed filter. (unit:
bytes) (*1)

vsz Process memory usage for the high-speed filter. (unit: KB) (*1)

numOfinEvents Number of events input from devices on which events are occurring. (*1)

numOfOutEvents Number of events sent to the engine on the complex event processing side. (*1)

numOfLogs Number of logs in the input adapter. (*1)

numOfRulesDeployed Number of rules deployed to the high-speed filter (number of high-speed filter

statements). (*1)

numOfSocketConnections Number of simultaneous socket connections. (*1)

*1: If the CEP engine status is not RUN (running normally), an empty string (

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

) will be output.

Content of theresource log (high-speed filter)

-136 -



2012-08-01 14:00:04,CSPF_CEP_cepsv_CepEngine_fIt,30130928,9125136,39256064,39224768,
475888192,515112960, 554369024 , 68207736, 17292168, 85499904, 3670240,0,0,0,2,0

Note that in the example above, a newline has been added for readability only. The actual log does not have newlines.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Format of the resource log for complex event processing
This section explains the format of the resource log for complex event processing.

The format is shown below:

time, resourceld, jheapNewUsed, jheapNewFree, jheapNewTotal , jheapOldUsed, jheapOldFree,
jheapOldTotal, jheapNewPlusOldTotal, jheapPermUsed, jheapPermFree, jheapPermTotal ,VSZ,
reservel,reserve2,reserve3,reserve4,reserve5,reserve6,numOfInEvents, numOfOutEvents,
numOfLogs, numOfRulesDeployed, numOfListenersDeployed

Note that in the format above, newlines have been added for readability only. The actual log does not have newlines.

The table below explains each item:

Item name

Content

time

Output date and time of the resource log. The format is as follows:

yyyy-MM-dd HH:mm:ss

- yyyy. Year
MM: Month

- dd: Day
- HH: Hour

mm. Minute

- sis: Second

resourceld

Resource ID. The format is as follows:

CSPF_CEP_hostName_engineld_cep

JheapNewUsed

Java VM heap memory usage (new generation area) for complex event processing.
(unit: bytes) (*1)

JheapNewFree

Java VM heap free memory (new generation area) for complex event processing.
(unit: bytes) (*1)

JheapNewTotal

Java VM heap memory (new generation area) for complex event processing. (unit:
bytes) (*1)

JheapOldUsed

Java VM heap memory usage (old generation area) for complex event processing.
(unit: bytes) (*1)

JheapOldFree

Java VM heap free memory (old generation area) for complex event processing.
(unit: bytes) (*1)

JheapOldTotal

Java VM heap memory (old generation area) for complex event processing. (unit:
bytes) (*1)

JheapNewPlusOldTotal

Java VM heap memory (new generation area + old generation area) for complex
event processing. (unit: bytes) (*1)

JheapPermUsed

Java VM heap memory usage (permanent generation area) for complex event
processing. (unit: bytes) (*1)

JheapPermFree

Java VM heap free memory (permanent generation area) for complex event
processing. (unit: bytes) (*1)

-137 -




Item name Content

JheapPermTotal Java VM heap memory (permanent generation area) for complex event processing.
(unit: bytes) (*1)

vsz Process memory usage for complex event processing. (Unit: KB) (*1)

reservel Reserved areas. Empty strings (") will be output for all of these.

reserve2

reserve3

reserve4

reserves

reserve6

numOfinEvents Number of events input from high-speed filter processing. (*1)

numOfOutEvents Number of events sent to user-developed Web services. (*1)

numOfLogs Number of logs in complex event processing. (*1)

numOfRulesDeployed Number of rules deployed to complex event processing (number of complex event
processing statements). (*1)

numOfListenersDeployed Number of deployed SOAP listener definitions. (*1)

*1: If the CEP engine status is not RUN (running normally), an empty string (") will be output.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Content of the resour ce log (complex event processing)

2012-08-01 14:00:04,CSPF_CEP_cepsv_CepEngine_cep,14042608,25213456,39256064 ,41802024,
473310936,515112960,554369024,76981880,8481160,85463040, 3385020, ,,,,,,0,0,0,6,0

Note that in the example above, a newline has been added for readability only. The actual log does not have newlines.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Collection interval for resource usage
The resource usage is collected in 10-minutes intervals and is output to the resource log.
This process is performed by using cron to periodically call an obtain process.

The cron setting is set in the following file. The engine execution user is the user name specified at installation:

/var/spool/cron/engineExecutionUser

L:n Note

Do not change the contents of the above cron setup file.

6.1.5.5 Dynamically Changing Rule Definitions and Master Data

You can change (using dynamic change) the rule definitions and the master data of a CEP engine while it is running without stopping it.
Doing this simplifies the process for maintaining rule definitions and master data, because the CEP engine need not be restarted.

To dynamically change rule definitions and the master data, use the -h option of cepdeployrsc.
Refer to "8.3 cepdeployrsc” for information on the cepdeployrsc command.

Users with general user permissions can execute this command. Dynamic change of rule definitions and the master data is performed
while the CEP engine is running.

-138 -



Qn Note

If there is a change in a complex event processing rule when a rule definition is dynamically changed, the information held in a window
by the complex event processing rule is lost. Refer to "8.3 cepdeployrsc™ for additional notes on dynamic changes.

jJJ Example

Dynamically changing a rule definition
When dynamically changing a rule definition (RULEOQ1) of a CEP engine (CepEngine) with new details.

The path of the rule definition with the new details (development asset ID: RULEOL1) is shown below.

/tmp/RULEO1_new.xml

An example of command execution is shown below.

$ cepdeployrsc rule -h -e CepEngine -f /tmp/RULEO1_new.xmI<ENTER>
Are you sure you want to hotdeploy the rule definition?(default: y) [y,n,q]:<ENTER>
Command cepdeployrsc executed successfully.

Dynamically changing master data

When dynamically changing the contents of a data file specified in a master definition deployed to a CEP engine (CepEngine).

$ cepdeployrsc master -h -e CepEngine<ENTER>
Are you sure you want to hotdeploy the master data?(default: y) [y,n,q]:<ENTER>
Command cepdeployrsc executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.1.5.6 Storing the Custom Log

If a user-developed Java class is used, it may output logs to the custom log. The output destination of the custom log is shown below.

/var/opt/FJISVcep/cep/cep/logs/EnginLog/engineName/custom. log

The custom log is rotated as shown below. Old custom logs are automatically deleted. Therefore, if you need to retain old custom logs,
periodically store them in a separate location.

- File size: 10 MB

- Rotation generations: 9 generations

6.1.6 Stopping the CEP Engine

Execute cepstopeng to stop the CEP engine.

General user permissions can be used to execute this command.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When a CEP engine (CepEngine) is stopped.

$ cepstopeng -e CepEngine<ENTER>
Command cepstopeng executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

When cepstopserv is used, all CEP engines running will also be stopped.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-139 -



6.1.7 Stopping the CEP Service

Execute cepstopserv as a superuser to stop the CEP service. Note that the command also stops all CEP engines running.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When the command is executed.

# cepstopserv<ENTER>

Stopping Engines.

-9

Command cepstopeng executed successfully.

-9

Shutting down Tomcat: [ oK ]
-9

server stopped

-9

UX:IHS: INFO: 1hs01000: The command terminated normally.

-9
UX:ismngconsolestop: INFO: is40042: The service has been terminated normally.
-9

Interstage Java EE Node Agent stopped

-9

Interstage Java EE DAS stopped

-9

UX:isstop: INFO: is30160: INTERSTAGE terminated normally.

Command cepstopserv executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

ﬂ Information

6.1.8 Stopping the Collaboration System

If Terracotta collaboration, RDB collaboration, or Hadoop collaboration is being performed, stop the relevant collaborating system after
stopping the CEP Server.

Refer to the manual for the relevant product for information on how to stop the system.

6.2 Security

This section provides information required to operate BDCEP securely.

6.2.1 Operation Model

A typical operation model of BDCEP is shown below.

- 140 -



Figure 6.1 Typical operation model of BDCEP

i i
- ~ : DMZ : Secure segment
- | | II| | I
|
D | I|
[k}
—‘ =
m — Secure senver segment
- | £ -
TN II'. JIlu'l Business server segment
A ' -

Web server, efc.
I [ | CEF Server Hadoop system

(Interstage BOPP Server)

Application server

Terracotta servers
(Interstage Terracotta
BigMemaory Max)

ROB server

6.2.2 Prerequisite Knowledge for Designing Security

Take the following elements into consideration when designing, in order to achieve secure system operations using BDCEP:

- Security roles

Protected resources

- Threats to protected resources and their countermeasures

Overview of countermeasures for threats to protected resources

Security roles

The table below lists the types of system users that use BDCEP, their security roles, and the corresponding operating system user:

User type Security role Operating system user

System administrator Can perform all operations. Superuser

Can perform operations involving CEP Server, such as
starting and stopping the CEP Server or reconfiguring a CEP

engine.
Engine execution user Can run a CEP engine process. Engine execution user
(create at installation)
Developer Can deploy definition information to a CEP engine and General user who can login to
undeploy it (to check the operation of definition the CEP Server

information), as well as start and stop a CEP engine.

Protected resources

The table below lists the resources to be protected by the CEP Server.

- 141 -



SOAP messages sent from an output adapter

Communication when Terracotta collaboration is
used to remotely access a cache

Communication when Hadoop collaboration is
used to remotely access a Hadoop system

Communication when RDB collaboration is used
to remotely access a relational database

Type Protected resource Description

File Engine configuration file File used to reconfigure a CEP engine.
Deployed definition information Definition information deployed to a CEP engine.
Master data CSV files to be referenced by the high-speed filter.
Resource log Output file used to investigate the resource usage.
Engine log File to which the detailed operation status of a CEP

engine is output.

Custom log Log file output by a user-developed Java class
Data for investigation File collected to investigate faults.

Network Event data sent to an input adapter Packets traveling across the network.

Threats to protected resources and their countermeasures

The table below lists the possible threats to protected resources, and their respective countermeasures:

Type of protected resource Threat Security countermeasure
File Tampering or destroying Setting permissions
Authenticating operation permissions
for the CEP Server
Network Sniffing Placing on a secure segment

Overview of countermeasures for threats to protected resources

The table below provides an overview of each possible security countermeasure:

Security countermeasure

Overview of countermeasure

Setting permissions

Set operating system permissions for files included in the protected resources.
Set appropriate permissions to suit the security roles.

Authenticating operation permissions for
the CEP Server

Use operating system authentication. Only allow suitable users to login to the
operating system.

BDCEP assumes that users who are given authentication to login to the CEP
Server can be trusted with operating a CEP engine and referencing an engine
log.

In addition, some operations, such as reconfiguring a CEP engine and starting
and stopping the CEP service, can only be performed by a superuser.

Placing on a secure segment

To inhibit data sniffing and hacking, place the CEP Server on a secure
segment.

6.2.3 Designing Security for BDCEP

This section explains how to design security for the systems using BDCEP, as follows:

-142 -




- Authenticating for the CEP Server
- Designing suitable access permissions

- Designing the network

Authenticating for the CEP Server
A superuser of the operating system of the server to which BDCEP is applied can operate the CEP Server.

In addition, authentication is not performed when events are sent to the CEP Server from outside the system. Build a firewall or use event
sender business applications to build a system in which authentication is performed when events are sent to the CEP Server.

Designing suitable access permissions
Set suitable access permissions for the files below as a countermeasure to prevent file tampering and destruction.

The table below describes the access permissions to be set for each file.

File Reference permission Write permission
Engine configuration file Superuser Superuser
Master data Engine execution user None
Data for investigation Superuser Superuser

The access permissions for files generated by a CEP engine, such as the event log and resource log, will be set automatically.

Designing the network

If the system has been located according to the system configuration supported by BDCEP, a third party will be unable to reference data
transmitted over the network.

6.3 Maintenance

This section explains the operations required when maintaining BDCEP.

6.3.1 Collecting Data for Investigation when a Problem Occurs

BDCEP provides a command to collect data for investigation when a problem occurs (refer to Chapter 1, "Collecting Diagnostics Data"
in Troubleshooting for details).

6.3.2 Backup and Restore

Resources must be backed up periodically, in case the system on the CEP Server fails.

The table below lists the resources to be backed up.

Resource name Content When to back up

Engine configuration file File defining the CEP engine When settings are changed.
configuration

Master data Master data to be stored in the CEP When storing on the CEP Server.
engine When editing on the CEP Server.

Definition information (definition file) | Definition information to be deployed | When storing on the CEP Server.
to the CEP engine When editing on the CEP Server.

User-developed Java class jar file or class file of the user- When storing on the CEP Server.

developed Java class

Setup files for Terracotta collaboration | Files required for Terracotta When changing settings
collaboration

-143-



Resource name Content When to back up

Setup file for RDB collaboration File required for RDB collaboration When changing settings

- The event log stored on the CEP Server is for checking operation, so it does not need to be backed up or restored.

- If the master data is backed up by the data provider, it does not need be backed up.

- If the definition information is backed up by the definition information developer, it does not need to be backed up.
- If the user-developed Java class has been backed up by the developer, it need not be backed up.

- Refer to the manual of the relevant collaboration product for information on the backup and restore of resources in the collaboration
system.

6.3.2.1 Backup Procedure
Follow the steps below as a superuser to back up the resources:

1. Back up the engine configuration file
2. Back up the master data
3. Back up the definition information (definition file)
4. Back up the user-developed Java class
5. Back up the setup files for Terracotta collaboration
6. Back up the setup file for RDB collaboration

This explanation uses the following directory to back up the resources:

/backup

Back up the engine configuration file

Back up the engine configuration file specified during execution of cepconfigeng.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When the engine configuration file is "/etc/opt/FISVcep/Engine .. xml".

# cp -p /etc/opt/FJISVcep/Engine.xml /backup/<ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Back up the master data

Back up the master data stored on the CEP Server.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When the master data is stored in "/masterdata".

# cp -rp /masterdata /backup/<ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Back up the definition information (definition file)

Back up the definition information (definition file) stored on the CEP Server.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When the definition file is stored in "/application".

- 144 -



# cp -rp /application /backup/<ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

gﬂ Note

RDB reference definition file

The RDB reference definition file contains the password, so for security reasons you must take measures before backing up the file to
ensure that the password cannot be referenced. Do this by deleting the access password from the definition file, or encrypting the entire
definition file.

Back up the user-developed Java class
Back up /etc/opt/FISVcep/config/custom.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When backing up the definition information of the user-developed Java class.

# cp -rp /etc/opt/FJISVcep/config/custom /backup/ <ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Back up the setup files for Terracotta collaboration
Back up /etc/opt/FISVcep/config/ehcache.xml and /etc/opt/FISVcep/config/terracotta_conf.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When backing up the definition information of the setup files for Terracotta collaboration.

# cp -p /etc/opt/FJISVcep/config/ehcache.xml /backup/<ENTER>
# cp -p /etc/opt/FISVcep/config/terracotta_conf /backup/<ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Back up the setup file for RDB collaboration

Back up /etc/opt/FISVcep/config/rdb_conf.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When backing up the definition information of the setup file for RDB collaboration.

# cp -p /etc/opt/FISVcep/config/rdb_conf /backup/<ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.3.2.2 Restore Procedure
Follow the steps below as a superuser to restore the resources:
1. Restore the engine configuration file
. Restore the master data
. Restore the definition information

2

3

4. Restore the user-developed Java class

5. Restore the setup files for Terracotta collaboration
6

. Restore the setup file for RDB collaboration

- 145 -



This section assumes that BDCEP has been installed and set up (refer to "Chapter 4 Installation and Setup" for details).

It also assumes that the following resource backup directory exists:

/backup

Restore the engine configuration file

Restore the engine configuration file (refer to "Chapter 4 Installation and Setup™ for information on how to reconfigure a CEP engine
using a restored engine configuration file).

jJJ Example

When the engine configuration file that is the backup source is in "/etc/opt/FJISVcep/Engine.xml" and the backed up engine
configuration file is "/backup/Engine . xml".

# cp -p /backup/Engine.xml /etc/opt/FJISVcep/<ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Restore the master data

Restore the master data.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When the master data that is the backup source is in "/masterdata” and the backed up master data is "/backup/masterdata".

# cp -rp /backup/masterdata /<ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Restore the definition information (definition file)

Restore the definition information (definition file) (refer to "6.1.3.1 Deploying Definition Information" for information on how to redeploy
restored definition information).

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When the definition information (definition file) that is the backup source isin"/appl i cation" and the backed up definition information
is"/backup/application".

# cp -rp /backup/application /<ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Restore the user-developed Java class

Restore the user-developed Java class.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When the backed up user-developed Java class is stored in "/backup/custom".

# cp -rp /backup/custom /etc/opt/FJISVcep/config/ <ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Restore the setup files for Terracotta collaboration

Restore the setup files for Terracotta collaboration.

- 146 -



jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When the backed up setup file is "/backup/ehcache.xml" or "/backup/terracotta_conf".

# cp -p /backup/ehcache.xml /etc/opt/FJSVcep/config/ <ENTER>
# cp -p /backup/terracotta_conf /etc/opt/FJSVcep/config/ <ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Restore the setup file for RDB collaboration

Restore the setup file for RDB collaboration.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When the backed up setup file is "/backup/rdb_conf".

# cp -p /backup/rdb_conf /etc/opt/FJSVcep/config/ <ENTER>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.3.3 Applying Updates

Update information provided by software products including BDCEP can be obtained from "UpdateSite", which is an integrated software
update information provision site.

For BDCEP, apply the updates released from the products below:

Product name Version
Interstage Big Data Complex Event Processing Server V1.1.0
Interstage Application Server Enterprise Edition (64-bit) V11.1.0

Follow the steps below as a superuser to apply an update to BDCEP:

1. Stop cron.

# service crond stop<ENTER>

2. Execute cepstopserv.

# cepstopserv<ENTER>

3. Apply the update.
Apply the update according to the update information file.

4. If Terracotta collaboration has been set up and Interstage Application Server Enterprise Edition (64 bit) updates have been applied,
the files below saved by the procedure in "4.4.3 Setup of Terracotta Collaboration” may be restored. In this case, re-execute the
procedure for modifying the names of the restored files.

lopt/FISVisjee/lib/jersey-bundle-1.0.3.1.jar

Jopt/FISVisjee/lib/jsr311-api-1.0.jar

lopt/FISVisjee/lib/jettison-1.0.1.jar
- lopt/FISVisjee/lib/jackson-asl-0.9.4.jar

5. Execute cepstartserv.

# cepstartserv<ENTER>

6. Start cron.

# service crond start<ENTER>

- 147 -



Qn Note

Note on when cron is stopped
BDCEP uses cron to obtain the resource usage, which is configured by BDCEP using the crontab of the engine execution user.

When the CEP service is stopped, and when the process to obtain the resource usage from the cron service is executed, an error may be
output using the execution cycle set in the cron service (for obtaining the resource usage, 10-minutes intervals). This error is canceled by
starting the CEP service again.

When cron is stopped, both the cron setting for the process to obtain the resource usage and the cron setting for other than the engine
execution user stop. Therefore, when applying updates, select a time period when stopping cron will not cause problems.

If the manual is also being updated according to the update information file attached to the update, obtain the latest manual from the
following site:

http://www.fujitsu.com/support/software/manual/ (as at December 2013)

6.3.4 Tuning

This section explains tuning for BDCEP, as follows:

- Tuning JVM options
- Tuning file descriptors

- Tuning trace logs

6.3.4.1 Tuning JVM Options

Two Java VMs (hereafter, referred to as "JVMs") operate within one CEP engine - one performs input adapter and high-speed filter
processing, and the other performs complex event processing and output adapter processing.

If analysis of the resource log has revealed an excess or insufficiency of JVM heap memory, tune the JVM options of the CEP engine.
This will avoid problems such as decline in performance caused by garbage collections in the CEP engine.

The table below lists the JVM options that can be tuned:

JVM option Initial value at CEP engine creation
Maximum value of the memory allocation 2048MB
pool
Initial value of the memory allocation pool 512MB
Maximum value of the permanent generation 192MB
area

Follow the steps below to tune the JVM options:
1. Check the current JVM option settings.
. Using the resource log, check the heap memory usage.

. Calculate the heap memory size required - if there is enough memory, there is no need to tune.

2

3

4. Change the JVM option settings.

5. Start or restart the CEP engine (to reflect the changed settings).
6

. Follow these steps again to check the changed settings.

Check the current JVM option settings
Execute cepgetjvmopt to check the JVM option settings of the CEP engine.

- 148 -



General user permissions can be used to execute this command.

jJJ Example

Executing cepgetjvmopt

When checking the JVM options of complex event processing for a CEP engine (CepEngine).

$ cepgetjvmopt cep -e CepEngine<ENTER>

xmxSize -5120m
xmsSize -256m
maxPermSize -96m

Command cepgetjvmopt executed successfully.

Note that "m" stands for "MB".

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Using the resource log, check the heap memory usage

Analyze the resource log to check the maximum value of the Java VM heap memory usage for the CEP engine. Specifically, check the
new generation area, old generation area, and permanent generation area.

The following table provides items output by the resource log that are related to JVM heap memory.
This applies to the resource log of the high-speed filter and the resource log of complex event processing.

Refer to "6.1.5.4 Checking the Resource Usage of the CEP Engine" for information on the format of the resource log.

Heap memory-related item Description

JheapNewUsed Java VM heap memory usage (new generation area) for the high-speed filter.

JheapNewFree Java VM heap free memory (new generation area) for the high-speed filter.

JheapNewTotal Java VM heap memory (new generation area) for the high-speed filter.

JheapOldUsed Java VM heap memory usage (old generation area) for the high-speed filter.

JheapOldFree Java VM heap free memory (old generation area) for the high-speed filter.

JheapOldTotal Java VM heap memory (old generation area) for the high-speed filter.

JheapNewPlusOldTotal Java VM heap memory (new generation area + old generation area) for the high-
speed filter.

JheapPermUsed Java VM heap memory usage (permanent generation area) for the high-speed
filter.

JheapPermFree Java VM heap free memory (permanent generation area) for the high-speed filter.

JheapPermTotal Java VM heap memory (permanent generation area) for the high-speed filter.

Calculate the heap memory size required

If the resource log has been used to analyze the respective maximum values of the new generation area, old generation area, and permanent
generation area, calculate the heap memory size required, as shown below.

If the heap memory size required is less than the setting value, then there is no need to tune.

Calculate the maximum value of the memory allocation pool

(maxvValOfNewGenerationArea + maxValOfOldGenerationArea + maxValOfPermanentGenerationArea) x 1.2

1.2 is the safety factor - if heap memory usage can vary widely with the time of the year or time period, set a higher safety factor.

Calculate the maximum value of the permanent generation area

maxValOfPermanentGenerationArea x 1.2

- 149 -



1.2 is the safety factor - if heap memory usage can vary widely with the time of the year or time period, set a higher safety factor.

Change the JVM option settings

Execute cepsetjvmopt as a superuser to change the JVM option settings of the CEP engine.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Executing the cepsetjvmopt command

When changing the maximum value of the memory allocation pool in the JVM options for complex event processing of a CEP engine
(CepEngine) to 512 MB. The respective defaults are used for the initial value of the memory allocation pool and the maximum value of
the permanent generation area.

# cepsetjvmopt cep -xmx 512m -e CepEngine<ENTER>
Command cepsetjvmopt executed successfully.

Note that "m" stands for "MB".

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Qn Note

If an option of cepsetjvmopt (-xmx, -xms, or -xxmp) is omitted, the default value for that option will be used.

Start or restart the CEP engine.
Start or restart the CEP engine in order to reflect the changed JVM option settings in the CEP engine.
If the CEP engine is running, it must be stopped (refer to "6.1.6 Stopping the CEP Engine" for details).
Refer to "6.1.4 Starting the CEP Engine" for details.

General user permissions can be used to perform this task.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Restarting the CEP engine
When restarting a running CEP engine (CepEngine).

$ cepstopeng -e CepEngine<ENTER>
Command cepstopeng executed successfully.
$ cepstarteng -e CepEngine<ENTER>
Command cepstarteng executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.3.4.2 Tuning File Descriptors

The number of file descriptors required for operating one CEP engine depends on the number of simultaneous socket connections or high-
speed filter statements described in the rule definition filter rules.

If an error occurs due to insufficient filter descriptors, or file descriptors are found to be excessive or inadequate according to resource log
analysis, it is necessary to specify the file descriptor upper limit.

The required number of file descriptors for each CEP engine is calculated as follows:

numOfFileDescriptorsRequired = A + (8 x B) + 371

-150 -



Table 6.1 Placeholders in the file descriptor number tuning formula

Item Description Required Number

A Number of simultaneous socket Use the largest number of assumed simultaneous connections.

nnection . .
connections Refer to the CEP engine operation status or the resource log output of the number

of simultaneous connections to check the change in the current or previous
number of simultaneous connections.

Refer to "8.4 cepdispeng” or "6.1.5.4 Checking the Resource Usage of the CEP
Engine" for information on how to reference it.

B Total number of IF-THEN Refer to the CEP engine operation status or the resource log output of the number
statements described in the filter | of high-speed filter statements to check the current number of IF-THEN
rules statements.

Refer to 8.4 cepdispeng" or "6.1.5.4 Checking the Resource Usage of the CEP
Engine" for information on how to reference it.

gn Note

When the file descriptors are exhausted, operations might no longer be able to continue. Therefore, specify a value with some allowance
for the number of simultaneous connections in A.

Compare the value calculated above with the actual number of file descriptors that can be used by the engine execution user. If there are
multiple CEP engines, compare the largest value of the calculation result from each CEP engine.

Execute the command below as a superuser to display the maximum number of file descriptors that the engine execution user can use:

# /bin/su -c “ulimit -n" engineExecutionUserName <ENTER>

If the calculated value is larger, then change Zetc/security/l1imits.conf with it and restart the OS (refer to OS documentation
for information on how to change the value) .

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Setting /etc/security/limits.conf

This example changes the maximum number of file descriptors that the engine execution user "ishdcep” can use from the default value of
1024 to 2048.

isbdcep soft nofile 2048
isbdcep hard nofile 2048

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

6.3.4.3 Tuning Trace Logs

In BDCEP, the input-output information for event sender applications and receipt processing states for event sender application requests
are output to trace logs.

By stopping the output of trace logs, it is possible to improve the efficiency of event processing when the HTTP adapter and SOAP adapter
are used.

Qn Note

Stopping the output of trace logs will mean that more time will have to be spent to determine the cause of eventual problems. If efficiency
is not a problem, it is recommended to output the trace logs.

The flow to stop (or resume) trace log output is as follows (perform these operations as superuser):

(1) Stop (or Resume) Logging Event Sender Application I/O Information

-151-



(2) Stop (or Resume) Receipt Processing State of Event Sender Application Requests Log Output
(3) Restarting the CEP Service
(4) Starting the CEP Engine

(1) Stop (or Resume) Logging Event Sender Application I/O Information
Edit /var/opt/FJISVihs/servers/FJapache/conf/httpd.conf and set the IHSTracelog setting value to "off".

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Setting /var/opt/FISVihs/ser ver s/FJapache/conf/httpd.conf
Before changing

IHSTraceLog "'|/opt/FJSVihs/bin/ihsrlog -s logs/tracelog 2 5"

After changing

#1HSTraceLog "|/opt/FJSVihs/bin/ihsrlog -s logs/tracelog 2 5"
IHSTraceLog off

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

When resuming log output, also edit the httpd.conf file and revert the contents to its previous state.

(2) Stop (or Resume) Receipt Processing State of Event Sender Application Requests Log Output

Execute the commands below to stop the receipt processing state log output contents of the event sender application request. Note that in
the command line example below, a backslash (*\"") and newline have been added for readability only. The actual command line does not
have backslash or newlines.

# /opt/FISVisjee/bin/asadmin set \
cepEngineName_flt-config.http-service.property. ISJEELogHttpTraceEnable=false <ENTER>

To resume log output, perform the following:

# /opt/FJISVisjee/bin/asadmin set \
cepEngineName_flt-config.http-service.property. 1SJEELogHttpTraceEnable=true <ENTER>

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Executing the command

If the CEP engine name is "CepEngine", perform the following to deter log output. Note that in the example below, a backslash ("\")
and newline have been added for readability only. The actual command line does not have backslash or newline.

# /opt/FISVisjee/bin/asadmin set \
CepEngine_flt-config.http-service.property. 1SIJEELogHttpTraceEnable=false <ENTER>
CepEngine_flt-config.http-service.property.1SIJEELogHttpTraceEnable=false

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

(3) Restarting the CEP Service

To reflect your changes, execute cepstopserv and then cepstartserv to restart the CEP service for the log output.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Restarting the CEP service

# cepstopserv <ENTER>
G-

-152 -



# cepstartserv <ENTER>
-9

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

(4) Starting the CEP Engine

Execute cepstarteng to start the CEP engine.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Executing cepstarteng

# cepstarteng -e CepEngine <ENTER>
Command cepstarteng executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

- 153 -



|Chapter 7 Extended System Operations

This chapter explains how to operate Interstage Big Data Complex Event Processing Server (hereafter referred to as "BDCEP") on multiple
servers.

7.1 Scalable System Operations

This section explains scalable BDCEP operations using Terracotta Collaboration.

7.1.1 Scaleout of Complex Event Processing

If individual input events are simply to be filtered and output, you can install BDCEP on multiple servers and distribute input events using
the front-end load balancer for processing them.

In some cases processing may not simply entail filtering but may instead specify a view, named window, OUTPUT clause, pattern
expression, and aggregate function in the complex event processing rule. The input event information and the information generated as a
result of processing the input event information are held in the memory. The information held in memory is then used to perform subsequent
processing. In such cases, if a load balancer is used to simply distribute input events to multiple servers for processing, the information
used for subsequent processing may not exist in the memory of the same server, and the anticipated output may not be achieved.

7.1.2 Scaleout Using Terracotta Collaboration

Terracotta collaboration provided by BDCEP enables the input event information and the information generated as a result of processing
the input event information to be stored and referenced in the cache of an external Terracotta server. The cache of the Terracotta server
can be accessed from multiple CEP servers.

You can operate BDCEP in a scaleout configuration where input events are distributed by a load balancer at the front-end of multiple CEP
servers, and the cache on the same Terracotta server is referenced. To do this, use a Virtual Data Window to store the input event information
and the information generated by processing the input event information in the cache of the Terracotta server, and then specify in a complex
event processing rule that a Virtual Data Window is to be used to reference the stored information.

Figure 7.1 Example of referencing an event distributed to a different CEP Server by Terracotta collaboration

[ CEP Server #1 [ Temacola |
A (1) Rules for storing | . Server
3 events in a window A E Virtual 5““- A Cache
Input events (2} Rules for using . WDEIIIE | -
. ‘ infermation in a ! INaow |
window for ?- !
ﬁ Load \ processing  |@ T . \‘
balancer
[ CEP server#2 ) D
Assign input events (1) Rules for storing Y — ® /
to a CEP Server by i > .

events in a window —
3 Virtual

round robin . ! /
(2} Rules for using | Data | A

information in a Window
window for €

processing

gn Note

- When using a Virtual Data Window to reference the Terracotta cache, you must use a join that specifies UNIDIRECTIONAL, ON
SELECT statement, or subquery. Refer to "'5.4.4.3.3 Using Terracotta cache™ for details.

- 154 -



- Data in the cache of the Terracotta server is managed as entries, with each entry made up of a key and a value. Only one entry is held
for the value of a property specified as a key. You must take this into account when designing rules.

- The process of referencing a Virtual Data Window for updating the data (value) in an entry is not a transaction process, so while one
server is being used to reference and update data, a different server can perform an update.

7.2 Operating a Highly Reliable System Using PRIMECLUSTER

This section explains how to operate BDCEP in a reliable configuration using the highly reliable PRIMECLUSTER infrastructure software.

7.2.1 Overview of Reliable System Operations

The Cluster Service of BDCEP can be used to build a reliable system using PRIMECLUSTER, in order to prevent a long-term suspension
of business due to hardware faults in the CEP Server.

This feature can be used to allow the events that occur after a cluster switch has completed to be processed by a CEP Server on the standby
node.

Knowledge of PRIMECLUSTER is required to use the Cluster Service (refer to the PRIMECLUSTER manuals for details).

The range of application of the Cluster Service is shown below:
Operation form of a cluster service
1:1 standby operation
Cluster products that can be used
- PRIMECLUSTER Enterprise Edition 4.3A10 or higher
- PRIMECLUSTER HA Server 4.3A10 or higher
Features that can be used in a cluster system

All BDCEP features can be used.

gn Note

- The statuses of high-speed filter rules and complex event processing rules that exist on the active node prior to or during a cluster
switch are not transferred to the CEP Server on the standby node.

- Events that occur during a switch are not received.

7.2.2 Cluster Service Configuration

To operate BDCEP in a cluster system, the CEP engine must be configured and the development assets (such as definition information
and master data) must be deployed so that the respective servers on the active node and standby node will have the same resource
configuration.

Set up PRIMECLUSTER so that the operating system also operates on the active node and the standby node using the same IP address,
through IP address takeover.

There is no need to deploy BDCEP resources such as the definitions and engine log to a shared disk - instead, use the local disks of the
active node and standby node.

7.2.3 Building a Cluster Service Environment

Follow the steps below to set up the environment to run BDCEP in a cluster system (refer to the PRIMECLUSTER manuals for information
on installing and operating PRIMECLUSTER):

-155-



. Install and set up PRIMECLUSTER.
Install PRIMECLUSTER for both the active node and the standby node.
. Set up IP addresstakeover.

Set up PRIMECLUSTER so that the active node and standby node can use IP address takeover to switch and then operate using the
same IP address.

. Install and set up BDCEP in the active node.

Activate IP address takeover in the active node, and then install and set up (for example, create a CEP engine) BDCEP, as usual
(refer to "Chapter 4 Installation and Setup” for details).

Note that you must register the active node server information in the master server connection authorization list when performing
Hadoop collaboration (refer to Section 6.4, "Installing to a Development Server" in the User's Guide of the Interstage Big Data
Parallel Processing Server VV1.0.1 for details).

. Deploy development assetsto the active node.

Deploy the required development assets, such as rule definitions, to the active node (refer to "5.8 Deploying Development Assets"
for details).

When a status in which events can be processed is reached, stop the CEP engine and the CEP service of the active node.
. Savethe RC procedures of the active node.
Save the start shell script "S99startis" stored in the directories below to any directory for storing backup resources:

- letc/rc2.d

- letc/rc3.d

[etc/rcd.d
- letc/rc5.d
Save the stop shell script "KO0Ostopis" stored in the directories below to any directory for storing backup resources:
- letc/rc.d/rc0.d
- letc/rc.d/rcl.d
- /letc/rc.d/rc6.d

Disable the automatic start of the Interstage Java EE DAS service:

# /sbin/chkconfig --del FJSVijdas <ENTER>

. Switch to the standby node.
Use a PRIMECLUSTER cluster switch operation to switch to the standby node.
. Install and set up BDCEP in the standby node.

With IP address takeover activated in the standby node, install and set up BDCEP in it. Make the CEP engine settings the same as
those in the active node (refer to "Chapter 4 Installation and Setup™ for details).

Note that you must register the standby node server information into the master server connection authorization list when performing
Hadoop collaboration (refer to Section 6.4, "Installing to a Development Server" in the User's Guide of the Interstage Big Data
Parallel Processing Server VV1.0.1 for details).

. Deploy development assetsto the standby node.

Deploy the same development assets as those in the active node to the standby node (refer to "5.8 Deploying Development
Assets" for details).

There is no need to perform work that duplicates that in step 4, "Deploy development assets to the active node", such as providing
data and deploying collaboration applications. Note, however, that if master data is being placed in the local disk of the CEP Server,
it must be stored at the standby node in the same way as it was stored at the active node.

When a status in which events can be processed is reached, stop the CEP engine and the CEP service of the standby node.

- 156 -



9. Savethe RC procedures of the standby node.
Perform the same operation at the standby node as was performed at the active node.
10. Changeand register the Cmdline resource.

Edit the Cmdline resource sample file below and register it in the cluster system, so that the CEP engine will start automatically at
a cluster switch:

/opt/FJISVcep/HA/sample/SERVICE_BDCEP

Edit the sample file as shown below, and then register it in the cluster system using a PRIMECLUSTER operation.

- Change the Engine-Name part in the Cmdline resource below to the CEP engine name created at the active node and standby
node, and then register it.

STARTCMDE="/0opt/FJSVcep/bin/cepstarteng -e Engine-Name*

- To use multiple CEP engines, describe as many CEP engines as cepstarteng is to start.

jJJ Example

© 000000000000 00000000000000000000000000000000000O0CO0C0C0C0COCOCOCOCOCOCOCCO0C0C0C00C0C0C0C000000C0C00000000000000S0

Definition example when multiple CEP engines areto be used

G-
STARTCMDE="/0opt/FJSVcep/bin/cepstarteng -e CepEnginel”
STARTCMDE2="/0pt/FJSVcep/bin/cepstarteng -e CepEngine2*
.9
start() {
${STARTCMD} > /dev/null 2>&1
${STARTCMDE} > /dev/null 2>&1
${STARTCMDE2} > /dev/null 2>&1
3
..

© 000000000000 0000000000000000000000000000000000O0CO0C0CL0COCOCOCOCOCOCOCOCCOCOCCOC00C0C00C00000000000000000000000

7.2.4 Operating a Cluster Service

This section explains some points to consider in cluster service operation.

Starting and stopping
- When the active node is started, the CEP service and CEP engine will start.

- PRIMECLUSTER process monitoring will be performed for the CEP service. Therefore, do not execute cepstopserv unless it is for
a cluster switch.

Sending events

- Send events to the takeover IP address.

Changing CEP engines and development assets

- Set up the CEP engine configurations and deploy the development assets (such as definition information and master data) so that the
active node and the standby node have the same resource configuration.

Cluster operation and response at an active node fault

- When a hardware fault occurs at the active node and the cluster service detects the abnormality, the active node will be stopped and
the CEP engine and CEP service will stop.

- After a switch to the standby node, event sending to the takeover IP address can restart.

- 157 -



- When an abnormality occurs at the active node, take action to resolve the hardware fault that caused the cluster switch, and then take
action to allow a switch back in case an abnormality occurs at the standby node.

- 158 -



IChapter 8 Command Reference

This chapter explains the commands that the Interstage Big Data Complex Event Processing Server (hereafter referred to as "BDCEP")
provides.

Command name Function Administrator
permission
cepcollectinfo Collects data for investigation in batch Yes
cepconfigeng Configures a CEP engine (*1) Yes
cepdeployrsc Deploys development assets, and dynamically changes rule No
definitions and the master data (*1)
cepdispeng Displays the status of a CEP engine No
cepdispserv Displays the status of the CEP service Yes
cepgetjvmopt Displays JVM options No
cepgetrsc Displays development assets No
cepsetjvmopt Sets JVM options (*1) Yes
cepstarteng Starts a CEP engine (*1) No
cepstartserv Starts the CEP service (*2) Yes
cepstopeng Stops a CEP engine (*1) No
cepstopserv Stops the CEP service (*2) Yes
cepundeployrsc Undeploys a development asset (*1) No

Yes: Must be executed by a superuser

gn Note

- Commands marked *1 cannot be executed simultaneously with other commands marked *1 or *2. They can be executed simultaneously
with commands not marked with an asterisk.

- Commands marked *2 cannot be executed simultaneously with any other command.

- If commands are executed simultaneously (including simultaneous execution of the same command), commands executed after the
first instance will end abnormally.

8.1 cepcollectinfo

Name

cepcollectinfo - Data investigation collection

Format

cepcollectinfo [path]

Function description
This command collects data for investigation for the Interstage Big Data Complex Event Processing Server, in batch.

The compressed file (tar.gz format) below will be generated in the path specified in the command.

-159 -



path/collect’yyyyMMddHHmMmss
YyyyMMddHHmmss indicates the date and time the data was collected.

Arguments
path
Specify the directory for storing the data for investigation.
If this option is omitted, the data will be stored in /tmp.

If the specified path does not exist, the command will return an error without collecting the data for investigation.

End status
The following status codes are returned:
0

Normal end

Abnormal end

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Execution example

When a path is specified:

# cepcollectinfo /var/tmp <ENTER>

Compressing collect data is started.

Compressing collect data is finished.

Collecting is finished. (/var/tmp/collect/BDCEP_20120413141134 . tar.gz)
Command cepcollectinfo executed successfully.

When a path is not specified (data is stored under /tmp):

# cepcollectinfo <ENTER>

Compressing collect data is started.

Compressing collect data is finished.

Collecting is finished. (/tmp/collect/BDCEP_20120413141134.tar.gz)
Command cepcollectinfo executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

8.2 cepconfigeng

Name

cepconfigeng - CEP engine configuration

Format

cepconfigeng -f xmlFilePath

Function description
This command configures a CEP engine.

It compares the content of the specified engine configuration file with that of a current CEP engine that has been configured, and then
creates, changes the settings of, or deletes the CEP engine according to the differences between them.

- 160 -



Always save the engine configuration file for the next time the configuration content is to be changed.

When the command is executed, the prompt below is displayed - type "y" and press the Enter key to execute the change. Execution
can be canceled by typing "n" or "g" and pressing the Enter key.

Are you sure you want to change the CEP Engine configuration? [y,n,q]:

Creating a CEP engine
This command creates a new CEP engine.
After the CEP engine is created, it must be started separately.
Changing CEP engine settings
This command changes the settings (Items other than CEP engine name) of a CEP engine that has been configured.

The CEP engine that is to be changed must be stopped beforehand. After this command is executed, the CEP engine must be started
separately.

Deleting a CEP engine
This command deletes a CEP engine that has been configured.
The CEP engine that is to be deleted must be stopped beforehand.

If development assets have been deployed to the CEP engine that is to be deleted, the CEP engine can be deleted even if the
development assets are not undeployed beforehand.

i, See

© 0000000000000 000000000000000000000000000000000O0CO0C0C0COCOCOCOCOCOCOCOCOCOCOC00C0C0C0000000000000000000000000000Ss

Refer to "8.9 cepstarteng™ and "8.11 cepstopeng"” for information on starting and stopping a CEP engine.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Arguments
-f xmlIFilePath

Specify the engine configuration file that describes the definition content of the CEP engine. We recommend specifying an absolute
path to avoid specification error.

2 See

© 0000000000000 000000000000000000000000000000000000OCOC0COCOCOCOCOCCCOCOCOCOCOCOCOCOC0C0CC0C0C00C0C0COCOCOCOCO0CO0C0CO0CIO0CIO0CIOCOCOCEEOEE

Refer to "9.1.1 Engine Configuration File" for details.

End status
The following status codes are returned:
0

Normal end

Abnormal end

Qn Note

- A maximum of five CEP engines can be created. If six or more CEP engines are defined, this command ends abnormally.

- Specify the CEP engine name so as not to be confused with other CEP engine names. If the CEP engine in the CEP configuration file
has the same name, this command will end abnormally.

- When creating a new CEP engine, always include in the engine configuration file the configured content of the CEP engine that has
already been configured in order to retain that CEP engine. If this content is not included, the CEP engine that has been configured
will be deleted.

-161 -



Similarly, when changing CEP engine settings, always change the target settings only, and be sure to leave the other settings in the
engine configuration file.

- If this command ends abnormally due to an error, it is possible that the CEP engine configuration has an inconsistency. To complete
changing the CEP engine settings, remove the cause of the error and then execute the command again.

- If a CEP engine is deleted, development assets that have been deployed are undeployed automatically.
If this command ends abnormally due to an error during execution, the status of the development asset which was undeployed prior
to the error is returned to the one before execution of this command, however there may be a CEP engine configuration inconsistency.
To complete the deletion of the CEP engine, remove the cause of the error and then execute the command again.

- If this command is executed while sending an event, it may end abnormally. After stopping all CEP Server event senders, execute the
command again.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end
When CEP engines (CepEnginel and CepEngine2) are created:
/etc/opt/FISVcep/Engine.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<subSystemConfig xmIns=""urn:xmlIns-fujitsu-com:cspf:bdcep:v1">
<engineConfig id="CepEnginel'>
<logging>
<type>bdpp</type>
<directory>hadoop</directory>
<loggingMaxOpenFi le>6</loggingMaxOpenFile>
<loggingRotationCycle>300</loggingRotationCycle>
</logging>
<socketAdapterPort>9600</socketAdapterPort>
</engineConfig>
<engineConfig id="CepEngine2">
<logging>
<type>file</type>
</logging>
<socketAdapterPort>9601</socketAdapterPort>
</engineConfig>
</subSystemConfig>

Command execution result:

# cepconfigeng -f /etc/opt/FJISVcep/Engine.xml <ENTER>
Are you sure you want to change the CEP Engine configuration? [y,n,ql:y <ENTER>
Command cepconfigeng executed successfully.

When CepEnginel is deleted from the CEP engines that have been configured (leaving CepEngine2):
Jetc/opt/FISVeep/Engine.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<subSystemConfig xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l'>
<l--
<engineConfig id=""CepEnginel>
<logging>
<type>bdpp</type>
<directory>hadoop</directory>
<loggingMaxOpenFi le>6</loggingMaxOpenFile>
<loggingRotationCycle>300</loggingRotationCycle>
</logging>
<socketAdapterPort>9600</socketAdapterPort>
</engineConfig>

-162 -



<engineConfig id="CepEngine2'>
<logging>
<type>file</type>
</logging>
<socketAdapterPort>9601</socketAdapterPort>
</engineConfig>
</subSystemConfig>

Command execution result:

# cepconfigeng -f /etc/opt/FJSVcep/Engine.xml <ENTER>
Are you sure you want to change the CEP Engine configuration? [y,n,q]:y <ENTER>
Command cepconfigeng executed successfully.

Example of output at abnormal end

When an attempt is made to delete a CEP engine that is running.

# cepconfigeng -f /etc/opt/FJSVcep/Engine.xml <ENTER>

Are you sure you want to change the CEP Engine configuration? [y,n,q]:y <ENTER>

The setup processing failed. Engineld=(CepEngine) Reason=(The job is already running.)
Command cepconfigeng execution failed.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

8.3 cepdeployrsc

Name

cepdeployrsc - Development asset deployment, and dynamic change of rule definitions and the master data

Format

Format 1:
cepdeployrsc resource [-0] [-e engineName] -f xmlFilePath

Format 2:
cepdeployrsc rule -h [-e engineName] -f xmlFilePath

Format 3:
cepdeployrsc master -h [-e engineName]

Function description
If format 1 is used, this command deploys a development asset to a CEP engine.

Specify the type of development asset (event type definition, rule definition, master definition, RDB reference definition, or SOAP
listener definition) to be deployed.

If format 2 is used, this command applies the updated rule definition without stopping the CEP engine. (dynamic change of a rule
definition).

If format 3 is used, this command applies the updated master data without stopping the CEP engine. (dynamic change of the master
data).

When the command is executed, a prompt for confirming the deployment and dynamic change is displayed. Type "y" and press the
Enter key to execute the deployment and dynamic change. Execution can be canceled by typing "n" or "q" and pressing the Enter key.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Example of query (for a SOAP listener definition to be deployed):

Are you sure you want to deploy the SOAP listener definition?(default: y) [y,n,q]:

Example of query (for dynamic change of a rule definition):

- 163 -



Are you sure you want to hotdeploy the rule definition?(default: y) [y,n,q]:

Example of query (for dynamic change of the master data):

Are you sure you want to hotdeploy the master data?(default: y) [y,n,q]:

Arguments
resource

Specify the type of development asset. You can specify only "rule” or "master” when performing a dynamic change.

eventtype

Event type definition
rule

Rule definition
master

Master definition
rdb_ref

RDB reference definition
listener

SOAP listener definition

For deployment of a development asset, this option is used to overwrite the definition content. It cannot be specified for a dynamic
change.

If this option is omitted at deployment of a development asset, and if a development asset with the same 1D as that specified in the
definition file has already been deployed, an error message will be output and the deployment will fail.

-e engineName
Specify the name of the CEP engine to which the development asset is to be deployed or a dynamic change is to be made.
If only one CEP engine has been configured, this option can be omitted.

If this option is omitted, and if there are two or more configured CEP engines, an error message will be output and the deployment
or dynamic change will fail.

-f xmlFilePath

When deploying a development asset or dynamically changing a rule definition, specify the definition file that describes the
definition content of the development asset. We recommend specifying an absolute path. This option cannot be specified for
dynamic change of the master data.

-h
This option dynamically changes a rule definition or the master data.

i See

© 0000000000000 000000000000000000000000000000000000OCOC0COCOCOCOCOCCCOCOCOCOCOCOCOCOC0C0CC0C0C00C0C0COCOCOCOCO0CO0C0CO0CIO0CIO0CIOCOCOCEEOEE

Refer to "9.2 Defining Development Assets™ for information on the definition file.

© 000000000000 0000000000000000000000000000000000000000OCOCL0COCOCOCOCOCCCCOCOCOCOCOCOCOC0C0C0CO00C0C0C0C0C0COCOCOCOCO0CO0CIOCIOCIOCESS

- 164 -



End status

The following status codes are returned:

0

Normal end

Abnormal end

Qn Note

- A file storing detailed display results (XML format) output by cepgetrsc can also be specified as the definition file (refer to "8.7
cepgetrsc” for details).

- If format 1 is used, development asset deployment cannot be performed while the CEP engine that is the deployment target is running.

- Take the following points into account when performing dynamic change using format 2 or 3:

If the target CEP engine is stopped, dynamic change cannot be performed.

The only development assets that can be dynamically changed are rule definitions. You cannot dynamically change rule definitions
that reference an undeployed event type definition, master definition, RDB reference definition, or SOAP listener definition.

For dynamically changing a rule definition, the rule definition with the same development asset ID as the new rule definition must
have already been deployed.

If there is a change in the high-speed filter rule when a rule definition is dynamically changed, all master data being used on the
target CEP engine is reloaded.

If there is a change in a complex event processing rule when a rule definition is dynamically changed, the information held in a
window by the complex event processing rule is lost.

In the following cases, the dynamic change process is canceled and the cepdeployrsc command ends normally with a message
output to the screen:

- If a rule definition file not requiring any change is specified, the dynamic change process for the rule definition is canceled.

- If the rule definition has not been deployed, or if a deployed rule definition does not contain a high-speed filter rule, the
dynamic change process for the master data is canceled.

- If the master definition has not been deployed, the dynamic change process for the master data is canceled.

While dynamic change is executing, the events to be processed are accumulated in an internal queue and processing is resumed
after dynamic change succeeds.

If dynamic change fails due to a syntax error in a rule or any other reason, the CEP engine stops. To perform dynamic change
during operations, check the operation on a different CEP engine beforehand and then perform dynamic change.

jJJ Example

eeoc e

© 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000Ss

Example of output at normal end

When a SOAP listener definition file (listenerdeploy.xml) is deployed to a CEP engine (CepEnginel):

$ cepdeployrsc listener -o -e CepEnginel -f /tmp/listenerdeploy.xml <ENTER>
Are you sure you want to deploy the SOAP listener definition?(default: y) [y,n,ql:y <ENTER>
Command cepdeployrsc executed successfully.

When a rule definition file (rule.xml) is dynamically changed on a CEP engine (CepEnginel):

- 165 -



$ cepdeployrsc rule -h -e CepEnginel -f /tmp/rule.xml <ENTER>
Are you sure you want to hotdeploy the rule definition?(default: y) [y,n,ql:y <ENTER>
Command cepdeployrsc executed successfully.

When the master data is dynamically changed on a CEP engine (CepEnginel):

$ cepdeployrsc master -h -e CepEnginel <ENTER>
Are you sure you want to hotdeploy the master data?(default: y) [y,n,ql:y <ENTER>
Command cepdeployrsc executed successfully.

Example of output at abnormal end

When an attempt is made to deploy a SOAP listener definition during the execution of a command that cannot be executed at the same
time:

$ cepdeployrsc listener -o -e CepEnginel -f /tmp/listenerdeploy.xml <ENTER>

Are you sure you want to deploy the SOAP listener definition?(default: y) [y,n,q]:<ENTER>
Processing cannot be performed because another command is executing.

Command cepdeployrsc execution failed.

When the rule to be dynamically changed contains a syntax error:

$ cepdeployrsc rule -h -e CepEnginel -f /tmp/rule.xml <ENTER>

Are you sure you want to hotdeploy the rule definition?(default: y) [y,n,q]:<ENTER>
The definition file contents are incorrect. Filename=(/tmp/rule._.xml)

Command cepdeployrsc execution failed.

When an attempt is made to dynamically change a rule definition that has the ID of an undeployed development asset:

$ cepdeployrsc rule -h -e CepEnginel -f /tmp/rule.xml <ENTER>

Are you sure you want to hotdeploy the rule definition?(default: y) [y,n,q]:<ENTER>
The rule definition has not been deployed. 1d=(RULEO1)

Command cepdeployrsc execution failed.

When an attempt is made to dynamically change the master data while the CEP engine is stopped:

$ cepdeployrsc master -h -e CepEnginel <ENTER>

Are you sure you want to hotdeploy the master data?(default: y) [y,n,q]:<ENTER>
CEP Engine is not started. Engineld=(CepEnginel)

Command cepdeployrsc execution failed.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

8.4 cepdispeng

Name

cepdispeng - CEP engine information display

Format

cepdispeng [-i] [-a | -e engineName]

Function description

This command displays the basic information or the operation status of a CEP engine.

- 166 -



Arguments

This option is used to display the basic information of a CEP engine.

If this option is not specified, the operation status of the CEP engine will be displayed.

The table below explains the items displayed:

Basic information

Item name Content Displayed?
engineld CEP engine name Yes
eventtype Development asset ID of the deployed event type definition Conditional
rule Development asset 1D of the deployed rule definition Conditional
master Development asset ID of the deployed master definition Conditional
rdb_ref Development asset 1D of the deployed RDB reference Conditional

definition
listener Development asset ID of the deployed SOAP listener Conditional
definition

Yes: Always displayed

Conditional: Displayed if the development asset has been deployed

E) Point

© 00 0000000000000 0000000000000000000000000000000000000000000000000000000000000000000000000S

If two or more development assets of the same definition are deployed, they are displayed in multiple lines.

© 00 0000000000000 0000000000000000000000000000000000000000000000000000000000000000000000000S

Operation status

communication.

Item name Content Displayed?
engineld CEP engine name. Yes
port Port number for socket communication (socket adapter port). | Conditional (*1)
socket Number of simultaneous connections in socket Conditional (*1)

status_filter

Status of the CEP engine (high-speed filter).
RUN: Running normally

STARTING: Starting

STOP: Stopped

STOPPING: Stopping

ABNORMAL: Abnormal

Yes

status_cep

Status of the CEP engine (complex event processing).
RUN: Running normally

STARTING: Starting

STOP: Stopped

STOPPING: Stopping

ABNORMAL : Abnormal

Yes

- 167 -




Item name

Content

Displayed?

inEvent_filter

Number of input events for the CEP engine (high-speed
filter).

Indicates the number of events input to the high-speed filter.
Displays a cumulative value from when the CEP engine
started.

Conditional (*2)

inEvent_cep

Number of input events for the CEP engine (complex event
processing).

Indicates the number of events input to complex event
processing. Displays a cumulative value from when the CEP
engine started.

Conditional (*3)

outEvent_filter

Number of output events for the CEP engine (high-speed
filter).

Indicates the number of events sent to complex event
processing. Displays a cumulative value from when the CEP
engine started.

Conditional (*2)

outEvent_cep

Number of output events for the CEP engine (complex event
processing).

Indicates the number of events sent to a user-developed Web
service. Displays a cumulative value from when the CEP
engine started.

Conditional (*3)

logging_filter Number of loggings for the CEP engine (high-speed filter). | Conditional (*2)
logging_cep Number of loggings for the CEP engine (complex event Conditional (*3)
processing).
heap_filter Java heap usage and area size for the CEP engine (high-speed | Conditional (*2)
filter).
Displayed in the following format:
Java heap usage (bytes)/area size (bytes)
heap_cep Java heap usage and area size for the CEP engine (complex | Conditional (*3)

event processing).
Displayed in the following format:

Java heap usage (bytes)/area size (bytes)

useMemory_filter

Memory usage of CEP engine (high-speed filter) processes
(kilobytes).

Conditional (*2)

useMemory_cep

Memory usage of CEP engine (complex event processing)
processes (kilobytes).

Conditional (*3)

countRule_filter

Number of rules applied to the CEP engine (high-speed
filter).

Conditional (*2)

countRule_cep

Number of rules applied to the CEP engine (complex event
processing).

Conditional (*3)

countListener

Number of applied listeners.

Indicates the number of SOAP listener definitions applied to
the CEP engine (complex event processing).

Conditional (*3)

Yes: Always displayed
Conditional: Displayed in the following cases:

*1: If socket communication is being used (if a socket adapter is being used by the CEP engine)

- 168 -



*2: If the CEP engine (high-speed filter) is running normally (if status_filter is "RUN")

*3: If the CEP engine (complex event processing) is running normally (if status_cep is "RUN")

This option is used to display information on all configured CEP engines.

-e engineName
Specify the name of the CEP engine for which information is to be displayed.
If only one CEP engine has been configured, this option can be omitted.

If this option is omitted, and if there are two or more configured CEP engines, an error message will be output and the display will
fail.

End status
The following status codes are returned:
0

Normal end

Abnormal end

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end

When the operation statuses of all configured CEP engines are displayed:

$ cepdispeng -a <ENTER>

engineld :CepEnginel

port 9600

socket t1

status_filter RUN

status_cep RUN

inEvent_Tfilter :100

inEvent_cep :100

outEvent_filter :100

outEvent_cep 100

logging_filter 100

logging_cep :100

heap_filter 198,725,088 / 532,545,536
heap_cep 198,725,088 / 532,545,536

useMemory_filter :823,493,339
useMemory_cep :823,493,339
countRule_filter :1

countRule_cep :1
countListener :1

engineld :CepEngine2
port 9601
status_filter -STOP
status_cep :STOP

Command cepdispeng executed successfully.

- 169 -



When the basic information of a CEP engine (CepEnginel) is displayed:

$ cepdispeng -i -e CepEnginel <ENTER>
engineld :CepEnginel

eventtype EVENT_O1

rule RULE_0O1

master MASTER_01

rdb_ref :RDBREF_01

listener tLISTEN_O1

listener :LISTEN_02

Command cepdispeng executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

8.5 cepdispserv

Name

cepdispserv - CEP service status display

Format

cepdispserv

Function description

This command displays the status of the CEP service - it displays the status of each of the multiple services that make up the CEP
service entity.

The services that make up the CEP service are as follows:

- Interstage Java EE DAS service

Interstage Java EE Node Agent service

- 1JServer cluster

Interstage HTTP Server

Apache Tomcat

PostgreSQL

The status of each service is explained below.

Interstage Java EE DAS service

Display Explanation
started Running status
stopped Stopped status
starting Undergoing start processing
stopping Undergoing stop processing
unknown Unknown status

-170 -



Qﬂ Note

"unknown" (unknown status) indicates that the status of the service could not be confirmed.

Some kind of abnormality, such as a service hang-up, is occurring, so wait for a few moments and then execute the command again
to confirm the status.

Interstage Java EE Node Agent service

The display is the same as that of the Interstage Java EE DAS service.

1JServer cluster

Display Explanation
starting Undergoing start processing
running Running status
stopping Undergoing stop processing
not running Stopped status
partially running Degraded operation status

;JT Note

When executing this command after cepstopserv, the message below is output, but the 1JServer Cluster is stopped, so no action is
required:

asadmin: ERROR: ISJEE_OM2997: Unable to connect to admin-server at given host:
[localhost] and port: [12001]. Please check if this server is up and running and
that the host and port provided are correct.

asadmin: ERROR: ISJEE_CL1137: Command list-clusters failed.

Note that in the example above, newlines have been added (lines 1 and 2) for readability only. The actual message does not have
newlines.

Interstage HTTP Server

Item name

Content

Web Server Name

Web server name.

Status

Status of the Web server.
Running: Running

Stopped: Stopped

Configuration File

Environment configuration file.

Server Version

Server version of the Interstage HTTP Server.

Current Time

Current date and time.

Start Time

Start date and time.

Daemon Process ID

Process ID of the daemon process.

Listening Port

IP address and port number of the Web server that is to receive
connection requests.

-171-




Item name Content

For communication using SSL protocol, "HTTPS" will be displayed for
the port number.

An IPv6 address will be displayed within brackets "[" and "]".

requests currently being Number of requests being processed.
processed
idle servers Number of communication processes (threads) on standby.

Qﬂ Note

If "Status” is "Stopped", from "Configuration File" onwards will not be displayed.

Also, when executing this command after cepstopserv, the message below is output, but the Interstage HTTP Server is stopped, so
no action is required:

UX:IHS: ERROR: 1hs81517: The Web Server (Interstage HTTP Server) did not start. [FJapache]

Apache Tomcat

Display Explanation

jsve(pid nnnn nnnn) is running... Executing.

The IDs of the processes that are running will be displayed

in nnnn.
jsvc is stopped Stopping.
PostgreSQL
Display Explanation
pg_ctl: server is running (PID: nnnn) Executing.
/..../bin/postgres -D /..../data The ID of the process that is running will be displayed in
nnnn.
pg_ctl: no server running Stopping.
Arguments
None
End status

The following status codes are returned:
0

Normal end

Abnormal end

-172 -



jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end

When all services are running normally:

# cepdispserv <ENTER>
Interstage Java EE DAS service status.

i jdasstat
Name Status
Interstage Java EE DAS started

Interstage Java EE Node Agent service status.
ijnastat
Name Status

Interstage Java EE Node Agent started

1JServer Cluster status.
CEPAgentlJServerCluster running
CepEngine_fIt not running

CepEngine_cep not running

Command list-clusters executed successfully.

Interstage HTTP Server status.

ihsdisp
Web Server Name FJapache
Status Running

Configuration File: /opt/FJSVihs/servers/FJapache/conf/httpd.conf
Server Version : FJapache/10.0
Current Time : Monday, 09-Jul-2012 01:25:17
Start Time : Sunday, 08-Jul-2012 15:20:31
Daemon Process ID : 2267

Child Process ID : 2272 2273 2274 2275 2276

Listening Port : [::]:80

0 requests currently being processed, 5 idle servers

Apache Tomcat status.
/sbin/service FJSVcep-rest status
Jsvc (pid 2099 2096) is running...

PostgreSQL status.

su - bdcep_postgres -c "/opt/FJSVcep/postgres/packages/FJSVpgs83/bin/pg_ctl -D /var/opt/FJSVcep/
postgres/data status"

pg_ctl: server is running (PID: 2088)

/opt/FJISVcep/postgres/packages/FISVpgs83/bin/postgres "-D* "'/var/opt/FJSVcep/postgres/data™

Command cepdispserv executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

8.6 cepgetjvmopt

Name

cepgetjvmopt - JVM options display

-173 -



Format

cepgetjvmopt function -e engineName

Function description
This command displays the JVM options of a CEP engine.

The JVM options that are displayed are shown below.

ltem Content
xmxSize Maximum value of memory allocation pool
xmsSize Initial value of memory allocation pool
maxPermSize Maximum value of permanent generation area

Arguments
function

Specify the feature for which the JVM options are to be displayed.

filter
High-speed filter
cep

Complex event processing

-e engineName

Specify the name of the CEP engine for which the JVM options are to be displayed.

End status
The following status codes are returned:
0

Normal end

Abnormal end

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end

When the JVM options of the high-speed filter of a CEP engine (CepEnginel) are displayed:

$ cepgetjvmopt filter -e CepEnginel <ENTER>

XmxSize :5120m
xmsSize -256m
maxPermSize -96m

Command cepgetjvmopt executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-174 -



8.7 cepgetrsc

Name

cepgetrsc - Development assets display

Format

cepgetrsc resource [-e engineName] [-n resourceld]

Function description

This command displays a list of or details of the development assets that have been deployed.

Arguments
resource

Specify the type of development asset.

eventtype

Event type definition
rule

Rule definition
master

Master definition
rdb_ref

RDB reference definition
listener

SOARP listener definition

-e engineName
Specify the name of the CEP engine for which the development assets are to be displayed.
If only one CEP engine has been configured, this option can be omitted.

If this option is omitted, and if there are two or more configured CEP engines, an error message will be output and the display will
fail.

-n resourceld
Specify the development asset ID to be displayed in detail.
When this option is specified, the definition content of the development asset is displayed in XML format.

i See

© 0000000000000 000000000000000000000000000000000000OCOC0COCOCOCOCOCCCOCOCOCOCOCOCOCOC0C0CC0C0C00C0C0COCOCOCOCO0CO0C0CO0CIO0CIO0CIOCOCOCEEOEE

Refer to "9.2 Defining Development Assets" for information on display results in XML format.

© 000000000000 0000000000000000000000000000000000000000OCOCL0COCOCOCOCOCCCCOCOCOCOCOCOCOC0C0C0CO00C0C0C0C0C0COCOCOCOCO0CO0CIOCIOCIOCESS

-175-



End status
The following status codes are returned:
0

Normal end

Abnormal end

Qn Note

- If diverting the results of the detailed display (XML format), modify each item accordingly.

- The results of this command include output messages in addition to XML format data.
If diverting the command results by redirecting them to a file, delete unnecessary messages before using the results.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end

When the SOAP listener definitions that have been deployed to a CEP engine (CepEnginel) are displayed as a list:

$ cepgetrsc listener -e CepEnginel <ENTER>
LISTEN_O1

LISTEN_02

Command cepgetrsc executed successfully.

When the event type definitions that have been deployed to a CEP engine (CepEnginel) are displayed in detail:

$ cepgetrsc eventtype -e CepEnginel -n EVENTO1l <ENTER>
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<eventType xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="EVENTO1'>
<comment>Event type definition</comment>
<type>CSV</type>
<xmlSchema></xmlSchema>
<csvColumn>
<column name="memberID" type="'string"/>
<column name="arealD" type='string"/>
<column name="status" type="'string"/>
</csvColumn>
<root></root>
<uselLogging>false</uselLogging>
<loggingTableName></loggingTableName>
<useCep>true</useCep>
</eventType>

Command cepgetrsc executed successfully.

Example of output at abnormal end

When an attempt is made to display an event type definition that has not been deployed to a CEP engine (CepEngine2):

$ cepgetrsc eventtype -e CepEngine2 -n EVENTO2 <ENTER>
The event type definition does not exist. 1d=(EVENTO02)
Command cepgetrsc execution failed.

The following information will be added to the error message in this example:

-176 -



Id

Development asset ID that was specified

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

8.8 cepsetjvmopt

Name

cepsetjvmopt - JVM options set

Format

cepsetjvmopt function [-xmx xmxSize] [-xms xmsSize] [-xxmp permSize] -e engineName

Function description

This command sets the JVM options of a CEP engine.

Arguments
function
Specify the feature for which the JVM options are to be set.
filter
High-speed filter
cep

Complex event processing

-Xmx xmxSize
This option is used to set the maximum value of the memory allocation pool.
If this option is omitted, the default (2048m) will be used.

If the value specified here is less than the value specified in the -xms option, an error message will be output when the CEP engine
is started, and the start will fail.

The following characters can be specified as units:
To specify KB (kilobytes): "k" or "K™
To specify MB (megabytes): "m" or "M"

If the unit is omitted, the specification will be in bytes. Specify a value greater than 1 MB that is a multiple of 1024.

-Xxms xmsSize
This option is used to set the initial value of the memory allocation pool.
If this option is omitted, the default (512m) will be used.

If the value specified here is less than 2624 KB, an error message will be output when the CEP engine is started, and the start will
fail.

The following characters can be specified as units:

To specify KB (kilobytes): "k" or "K"

-177 -



To specify MB (megabytes): "m™ or "M"
If the unit is omitted, the specification will be in bytes. Specify a value greater than 1 MB that is a multiple of 1024.

-XxxXmp permsSize
This option is used to set the maximum value of the permanent generation area.
If this option is omitted, the default (192m) will be used.
If the value specified here is less than 20.75 MB, then 20.75 MB will be used.

The following characters can be specified as units:
To specify KB (kilobytes): "k" or "K"
To specify MB (megabytes): "m" or "M"

If the unit is omitted, the specification will be in bytes. Specify a value greater than 1 MB that is a multiple of 1024.

-e engineName

Specify the name of the CEP engine for which the JVM options are to be set.

End status
The following status codes are returned:
0

Normal end

Abnormal end

4}1 Note

This command may be used for the running CEP engine, however, to apply settings, the target CEP engine must be restarted.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end

When the JVM options of the high-speed filter of a CEP engine (CepEnginel) are set:

# cepsetjvmopt filter -xmx 5120m -xms 256m -xxmp 96m -e CepEnginel <ENTER>
Command cepsetjvmopt executed successfully.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

8.9 cepstarteng

Name

cepstarteng - CEP engine start

Format

cepstarteng [-e engineName]

-178 -



Function description

This command starts a CEP engine.

Arguments
-e engineName
Specify the name of the CEP engine to be started.
If only one CEP engine has been configured, this option can be omitted.

If this option is omitted, and if there are two or more configured CEP engines, an error message will be output and the start will
fail.

End status
The following status codes are returned:
0

Normal end

Abnormal end

gn Note

- Before this command is executed, cepdeployrsc must be used to deploy at least one event type definition. If an event type definition
has not been deployed, an error message will be output when the CEP engine is started, and the start will fail.

- If RDB collaboration or Terracotta collaboration is implemented, the collaboration destination server must have been started before
this command is executed. If the collaboration destination server is stopped, an error message will be output when the CEP engine is
started, and the start will fail.

- This command monitors the start of the CEP engine until it has completed, and the command ends normally if it can confirm that the
start has completed.

- If this command is not completed within 180 seconds, force the CEP engine to stop. If the forced stop is then completed within 180
seconds, a message is output stating that the startup processing has timed out and that this command has ended abnormally. If the
forced stop is not completed within 180 seconds, a message is output stating that the forced stop has failed and that this command has
ended abnormally.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end

When a CEP engine (CepEnginel) is started:

$ cepstarteng -e CepEnginel <ENTER>
Command cepstarteng executed successfully.

Example of output at abnormal end

When an attempt is made to start a CEP engine that does not exist:

-179 -



$ cepstarteng -e CepEngine2 <ENTER>
An incorrect value was entered. Reason=(The engine does not exist.)
Command cepstarteng execution failed.

The following information will be added to the error message in this example:
Reason

Cause of the error (reason for the failure to start the CEP engine)

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

8.10 cepstartserv

Name

cepstartserv - CEP service start

Format

cepstartserv

Function description
This command starts the CEP service - it starts in batch the multiple services that make up the CEP service entity.

Start processing for services that are already started will be skipped.

The services started by this command are as follows:

- Interstage Java EE DAS service

Interstage Java EE Node Agent service

Interstage Management Console

Interstage HTTP Server
- PostgreSQL

Apache Tomcat

Arguments

None

End status
The following status codes are returned:
0

Normal end

Abnormal end

-180 -



Qn Note

- If the start of even one of the services that make up the CEP service fails, an error message will be output and the start of the CEP
service will fail.
To complete the start of the CEP service, remove the cause of the error and then execute the command again.

- The CEP engine is not started by this command.

- BDCEP uses cron for CEP engine resource usage acquisition. This command does not start cron, it is normally started automatically
when OS starts (refer to "6.3.3 Applying Updates" for information on how to start cron manually).

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end

When all services start successfully:

# cepstartserv <ENTER>

Starting Interstage Java EE DAS service.

ijdasstart: INFO: ijdas10000: Interstage Java EE DAS service has started.
Name Status

Interstage Java EE DAS started

Starting Interstage Java EE Node Agent service.
ijnastart: INFO: ijnalO000: Interstage Java EE Node Agent service has started.
Name Status

Interstage Java EE Node Agent started

Starting Interstage Management Console.
UX:ismngconsolestart: INFO: 1s40041: The service has been activated normally.

Starting Interstage HTTP Server.
UX:IHS: INFO: i1hs01000: The command terminated normally.

Starting PostgreSQL.
su - bdcep_postgres -c "/opt/FJSVcep/postgres/packages/FJSVpgs83/bin/pg_ctl -D /var/opt/FJSVcep/
postgres/data -w start"
waiting for server
to start..._L0OG: database system was shut down at 2011-11-21 15:03:21 JST
LOG: database system is ready to accept connections
LOG: autovacuum launcher started
done
server started

Starting Apache Tomcat.
/etc/init.d/FJSVcep-rest start
Starting Tomcat: [ oK 1]

Command cepstartserv executed successfully.

Example of output at abnormal end

When the Interstage Java EE DAS service cannot be started:

# cepstartserv <ENTER>
Starting Interstage Java EE DAS service.

-181-



ERROR: ijdas10002: Interstage Java EE DAS service cannot be started.
Command cepstartserv execution failed.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

8.11 cepstopeng

Name

cepstopeng - CEP engine stop

Format

cepstopeng [-e engineName]

Function description

This command stops a CEP engine.

Arguments
-e engineName
Specify the name of the CEP engine to be stopped.
If only one CEP engine has been configured, this option can be omitted.

If this option is omitted, and if there are two or more configured CEP engines, an error message will be output and the stop will
fail.

End status
The following status codes are returned:
0

Normal end

Abnormal end

QJT Note

This command monitors the stop of the CEP engine until it has completed, and the command ends normally if it can confirm that the stop
has completed.

If the stop has not completed within a predetermined time (within 180 seconds), an error message will be output and the stop will fail with
a timeout.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end

When a CEP engine (CepEnginel) is stopped:

$ cepstopeng -e CepEnginel <ENTER>
Command cepstopeng executed successfully.

-182 -



Example of output at abnormal end

When stop processing has not completed within a predetermined time (when a timeout has occurred):

$ cepstopeng -e CepEngine2 <ENTER>

ERROR: cep30203e: Failed to stop Collection Engine. Engineld=(CepEngine2) Jobld=(CepEngine2
-cepjobnet-20120710130118-CepEngine2) Reason=(A timeout occurred.(localhost_FRT))

Command cepstopeng execution failed.

Note that in the example above, a newline has been added (line 2) for readability only. The actual message does not have newlines.
The following information will be added to the error message in this example:
Engineld
Name of the CEP engine to be stopped
Jobld
The Job ID, in the following format:

cepEngineName-cepjobnet-cepEngineStartDatetime(yyyyMMddHHmmss)-cepEngineName

Reason

Error details (reason for the failure to stop the CEP engine)

© ©00000000000000000000000000000000000000000000O0COCOCOCOCEOCIOCIOCEOCIOCEOCEOCOC0C0C0C0C0COCIOC0COCIOCIOCOC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCQOCEOCEECEEETS

8.12 cepstopserv

Name

cepstopserv - CEP service stop

Format

cepstopserv

Function description
This command stops the CEP service - it stops in batch the multiple services that make up the CEP service entity.
Stop processing for those services that are already stopped will be skipped.

This command also stops a CEP engine that has been started.

The services stopped by this command are as follows:
- CEP engine
- Apache Tomcat
- PostgreSQL
- Interstage HTTP Server
- Interstage Management Console
- Interstage Java EE Node Agent service
- Interstage Java EE DAS service

- Interstage

-183 -



Arguments

None

End status
The following status codes are returned:
0

Normal end

Abnormal end

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

Executing this command will stop all CEP engines that are running.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Q)j Note
- If the stop of one or more of the services fails, an error message will be output and the stop of the CEP service will fail.

To complete the stop of the CEP service, remove the cause of the error and then execute the command again.

- BDCEP uses cron for CEP engine resource usage acquisition. This command does not stop cron (refer to "6.3.3 Applying Updates"
for information on how to stop cron).

- If this command is executed twice in a row, the message below is output, but the CEP engine or Apache Tomcat is stopped, so no
action is required:

Stopping Engines.

asadmin: ERROR: ISJEE_OM2997: Unable to connect to admin-server at given host:
[localhost] and port: [12001]. Please check if this server is up and running and
that the host and port provided are correct.

asadmin: ERROR: ISJEE_CL1137: Command list-clusters failed.

Stopping Apache Tomcat.
/etc/init.d/FJSVcep-rest stop
Shutting down Tomcat: [Fail]

Note that in the example above, newlines have been added (lines 2 and 3) for readability only. The actual message does not have
newlines.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end

When all services stop successfully:

# cepstopserv <ENTER>

Stopping Engines.

The engine is not started. Engineld=(CepEngine)
Command cepstopeng executed successfully.

Stopping Apache Tomcat.
/etc/init.d/FJSVcep-rest stop
Shutting down Tomcat: [ oK ]

Stopping PostgreSQL.

-184 -



su - bdcep_postgres -c "/opt/FJSVcep/postgres/packages/FJSVpgs83/bin/pg_ctl -D /var/opt/FJSVcep/
postgres/data stop"

waiting for server to shut down.... done

server stopped

Stopping Interstage HTTP Server.
UX:IHS: INFO: i1hs01000: The command terminated normally.

Stopping Interstage Management Console.
UX:ismngconsolestop: INFO: §s40042: The service has been terminated normally.

Stopping Interstage Java EE Node Agent service.
ijnastop: INFO: ijnalO001l: Interstage Java EE Node Agent service has stopped.
Name Status

Interstage Java EE Node Agent stopped

Stopping Interstage Java EE DAS service.
ijdasstop: INFO: ijdas10001: Interstage Java EE DAS service has stopped.
Name Status

Interstage Java EE DAS stopped

Stopping Interstage.
UX:isstop: INFO: is30160: INTERSTAGE terminated normally.

Command cepstopserv executed successfully.

Example of output at abnormal end

When the Interstage Java EE DAS service cannot be stopped.

# cepstopserv <ENTER>

-9

Stopping Interstage Java EE DAS service.

ERROR: 1jdas10003: Interstage Java EE DAS service cannot be stopped.
Command cepstopserv execution failed.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

8.13 cepundeployrsc

Name

cepundeployrsc - Development asset undeployment

Format

cepundeployrsc resource [-e engineName] -n resourceld

Function description
This command undeploys a development asset that has been deployed.

Specify the type of development asset (event type definition, rule definition, master definition, RDB reference definition, or SOAP
listener definition) to be undeployed.

When the command is executed, a prompt is displayed - type "y" and press the Enter key, or simply press the Enter key, to execute
the undeployment. Execution can be canceled by typing "n" or "q" and pressing the Enter key.

-185-



jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Example of query (for an event type definition):

Are you sure you want to undeploy the event type definition?(default: y) [y,n,q]:

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Arguments
resource

Specify the type of development asset.

eventtype

Event type definition
rule

Rule definition
master

Master definition
rdb_ref

RDB reference definition
listener

SOAP listener definition

-e engineName
Specify the name of the CEP engine to which the development asset to be undeployed has been deployed.
If only one CEP engine has been configured, this option can be omitted.

If this option is omitted, and if there are two or more configured CEP engines, an error message will be output and the undeployment
will fail.

-n resourceld

Specify the development asset 1D to be undeployed.
End status
The following status codes are returned:
0
Normal end
Abnormal end

Qn Note

If the CEP engine that is the undeployment target is running, undeployment cannot be performed.

- 186 -



jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of output at normal end

When an event type definition that has been deployed to a CEP engine (CepEnginel) is undeployed:

$ cepundeployrsc eventtype -e CepEnginel -n EVENT_01 <ENTER>
Are you sure you want to undeploy the event type definition?(default: y) [y,n,q]:y <ENTER>
Command cepundeployrsc executed successfully.

Example of output at abnormal end

When an attempt is made to undeploy an event type definition that has been deployed to a CEP engine (CepEngine2) that is running:

$ cepundeployrsc eventtype -e CepEngine2 -n EVENT_02 <ENTER>

Are you sure you want to undeploy the event type definition?(default: y) [y,n,ql:y <ENTER>

Because the definition is used, it cannot be deleted. Definition=(instream) Id=(EVENT_02-CepEngine2)
Command cepundeployrsc execution failed.

The following information will be added to the error message in this example:
Id

Development asset 1D and target CEP engine name to be undeployed.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-187 -



|Chapter 9 Definition File Reference

This chapter explains the definition files that the Interstage Big Data Complex Event Processing Server (hereafter referred to as "BDCEP")
uses.

9.1 Defining a CEP Engine

This section explains the definition file for configuring a CEP engine (engine configuration file).

An engine configuration file for use by the initial CEP engine (/etc/opt/FISVcep/cep/sample_eng.xml) is created automatically at
installation. To change the configuration details, make a copy of this file and then edit the copy.

Creating, deleting or changing the setting of CEP engine is done by executing cepconfigeng with specified engine configuration file.

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- The engine configuration file is a text file in XML format.
- The items to be set are specified as XML element and attribute values.

- The character encoding for the engine configuration file is UTF-8.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Qn Note

Creating, deleting, or changing the settings of a CEP engine can also be done by editing the engine configuration file of the initial CEP
engine, but to prevent configuration details being lost due to an editing mistake, do not use this method.

9.1.1 Engine Configuration File

This section explains the settings of the engine configuration file.

The engine configuration file is an XML file that has "subSystemConfig" as the root element. The configuration information of one CEP
engine is described in an "engineConfig" element. When multiple CEP engines are being created, the configurations of all the CEP engines
must be described in one engine configuration file (using consecutive “engineConfig" elements).

Also, if Logging is to be used in the input adapter, describe the "logging" subelement in the "engineConfig" element.

The items to be set in the engine configuration file are shown below:

Element or attribute Item name Explanation Allowed values Mandatory/
Optional
id CEP engine name | ID that uniquely identifies the Upto 20 Mandatory
CEP engine. alphanumeric

(attribute of the

“engineConfig" element) characters, including

underscores ().

Note: The first
character must be a

letter.
type Logging type Log destination. See Explanation. (*2)
(*1) bdpp: Output to a Hadoop
system.
file: Output to the engine log.
directory Directory name Directory of the Hadoop system | Up to 1023 (*3)
that is the log destination. alphanumeric

1)

Specify one of the following:

-188 -



Element or attribute Iltem name Explanation Allowed values Mandatory/
Optional
- Name of the directory (not | characters, including
its full path). forward slashes (/).
-y Note: Use only
alphanumeric
characters for
subdirectory names.
loggingMaxOpenFile Number of open Number of files to be 1to 122. (*4)
(*1) log files simultaneously opened for the
Hadoop system.
The default is 6.
loggingRotationCycle Logging cycle Time from when the event log 1 to 2592000. (*4)
(*1) time files are opened gntll those files (unit: seconds)
are renamed as files that can be
analyzed (using the ".done"
extension).
The default is 300 (seconds).
socketAdapterPort Socket adapter Reception port number to be 1 to 65535. (*5)
port used by the socket adapter.

*1: Subelement of the logging element

*2: Mandatory if logging is to be used

*3: Mandatory if logging is to be used and the logging type is "bdpp"
*4: Optional if logging is to be used and the logging type is "bdpp"

*5: Specified if socket communication is to be used by the input adapter

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- The log destination (path) in a Hadoop system is specified in the event type definition. Therefore, if "bdpp" is specified in the logging
type, there is no need to specify the log destination (path).

- If "bdpp" is to be specified in the log destination, the Interstage Big Data Parallel Processing Server (hereafter, referred to as "BDPP")
must be set up beforehand (refer to "4.4.2 Setup of Hadoop Collaboration" for details).

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

QJT Note

- Up to five CEP engines ("engineConfig" elements) can be described in the engine configuration file.

- Specify a CEP engine name that is different from other CEP engine names described in the engine configuration file. CEP engine
names that differ only in the capitalization of letters are treated as duplicate names. The following example specifies duplicate names:

<engineConfig i1d="CEPEngine'>

</engineConfig>
<engineConfig id="CepEngine'>

</engineConfig>

-189 -



- Do not specify a name that is identical to an existing CEP engine name, except for the capitalization of letters.

The following example specifies the name "CepEngine”, which differs from the existing CEP engine name "CEPEngine™ only in terms

of capitalization:

Qriginal name Maodified name

</engineConfig> <fengiqg:enf{g>

S

<engineConfig id="ﬂEngine"} )( <engineConfig id="CepEngine™>
T

e

Capitalization of a name cannot be changed

- Specify a port number that is not being used by the system as the socket adapter port.

- The same port number can be specified for the socket adapter port of multiple CEP engines, but the CEP engines cannot be started

simultaneously.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When two CEP engines (CepEnginel and CepEngine2) are configured

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<subSystemConfig xmIns=""urn:xmlIns-fujitsu-com:cspf:bdcep:v1">
<engineConfig id="CepEnginel'>
<logging>
<type>bdpp</type>
<directory>hadoop</directory>
<loggingMaxOpenFi le>6</loggingMaxOpenFile>
<loggingRotationCycle>300</loggingRotationCycle>
</logging>
<socketAdapterPort>9600</socketAdapterPort>
</engineConfig>
<engineConfig id="CepEngine2">
<logging>
<type>file</type>
</logging>
<socketAdapterPort>9601</socketAdapterPort>
</engineConfig>
</subSystemConfig>

In this example, the following settings are used to configure the CEP engines:

CepEnginel

Uses logging and records events in a Hadoop system (Directory name: hadoop). The number of logging files that can be opened is

6, and the logging cycle time is 300 seconds.

Uses the socket adapter listening at port 9600 .
CepEngine2

Uses logging and records events in the engine log.

Uses the socket adapter listening at port 9601 .

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

9.2 Defining Development Assets

This section explains the definition files (development assets) for using the various CEP service features.

-190 -



There are four kinds of development assets, as shown below, and each has an identifier known as a development asset 1D, which must be

unique per definition type.

cepdeployrsc deploys a development asset to a CEP engine, and cepundeployrsc undeploys a development asset.

Definition Definition overview Used by feature Mandatory/
e Input High-speed Complex Output CRIEIS
adapter filter event adapter
processing

Event type Defines the data structure of the Used Used Used (*1)
definition input event data.

Also sets Logging in the input

adapter.
Rule Describes high-speed filter rules Used Used Used (*2)
definition and complex event processing

rules.
Master Sets the master data used by the Used (*3)
definition High-speed Filter.
RDB Sets the connection destination Used (*4)
reference information about the database to
definition be referenced using RDB

Collaboration.
SOAP Sets the send destination Used (*5)
listener information when SOAP
definition communication is to be used to

notify user-developed Web

service events.

*1: At least one development asset must be deployed.

*2: Deploy if the high-speed filter or complex event processing is to be used.
*3: Deploy if the master data is to be referenced in the high-speed filter.

*4: Deploy if RDB collaboration is to be used in Complex Event Processing.

*5: Deploy if the SOAP listener is to be used in the output adapter.

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- Each definition file is a text file in XML format (except for the master data).
- The items to be set are specified as XML element and attribute values.
- The character encoding for each definition file is UTF-8.

9.2.1 Event Type Definition File

This section explains the setup file for describing the event type definition (event type definition file).

The event type definition file is an XML file that has "eventType" as the root element. An event type definition file is created for each
event type. The items to be described will vary according to the format of the event data (CSV or XML format).

The items to be set in the event type definition file are shown below:

-191-



Element or Item name Explanation Allowed values Mandatory/
attribute Optional
id Development ID unique in the deployment CEP Up to 39 alphanumeric Mandatory
(attribute of asset ID engine. Z?a;}rac’;}zr{;tzn)derscores Q).
"eventType") Used as the event type name P '
specified in high-speed filter rules Note: The first character
and as the event stream name must be a letter.
specified in complex event
processing rules.
comment Comment Explanation of this definition. Up to 1,000 characters. Optional
type Format Format of the event data. See Explanation. Mandatory
XML: Events are in XML format.
CSV: Events are in CSV format.
xmlSchema XML schema XML schema that represents the Upto 1,048,576 characters. (*1)
structure of the event data.
This is described in XML schema
language. Therefore, escape must be
performed in a way that cannot be
interpreted as a markup
specification. For simple
description, describe using a
CDATA section instead of escaping.
root Root element Name of the root element of the Up to 512 characters. (*1)
event.
The root element is one of the
elements defined in the XML
schema.
Specify unique root element names
for all event type definitions.
csvColumn CSV column Column information that represents | Follows the column (*2)
information the structure of the event data. element (as described
Describe at least one "column™ below).
element (as described below). There is no limit to the
number of column
elements.
useLogging Whether to use Whether to use logging for pre- See Explanation. Mandatory
logging processing events of the high-speed
filter received from the input
adapter.
true: Use.
false: Do not use.
loggingTableNa | Log storage area | Absolute path of the log storage area | Up to 255 characters. (*3)

me

for storing events.

This is used to store events received
by the input adapter.

Eveniflogginganeventinanengine
log (when the engine structure file
type element is set as file), for event
identification set the virtual path

-192 -




complex event
processing

event processing.
true: Use.

false: Do not use.

Element or Item name Explanation Allowed values Mandatory/
attribute Optional
name (for example, "/
eventTypelD").
useCep Whether to use Controls whether to use complex See Explanation. Mandatory

*1: Mandatory if "XML" is specified as the format

*2: Mandatory if "CSV" is specified as the format

*3: Mandatory if logging is to be used

If "CSV" is specified as the format, describe the CSV column information shown below in the "csvColumn" element:

Element or Item name Explanation Allowed values Mandatory/
attribute Optional
column column Describe as many of these as the number | (empty element) Mandatory
of event (CSV format) columns.
The column elements must be specified in
the same order as in the event data.
name Item name Item name of the CSV column. Refer to "9.6 Mandatory
(attribute of Used as the item name specified in high- _Characters Allowed
" “ . in Item, Tag and
column) speed filter rules and as the property name . "
R . Attribute Names".
specified in complex event processing
rules.
type Item type Data type of the CSV column. See Explanation. Mandatory
(attribute of string: String.
column*) boolean: Boolean value (true/false).
byte: 8-bit signed integer.
int: 32-bit signed integer.
long: 64-bit signed integer.
float: 32-bit float.
double: 64-bit double precision float.

The data types of CSV columns are converted to the appropriate type for complex event processing rules, as shown below:

Data type of CSV column Data type in complex event processing rules
string string
boolean bool/boolean
byte byte
int int/integer
long long
float float

-193 -




Data type of CSV column Data type in complex event processing rules
double double

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

If the high-speed filter is being used, the event types of the events passed to complex event processing and of the input events will vary,
unless only extraction (filtering) is being used. In this case, a separate event type definition for complex event processing must be deployed.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

L:n Note

- Up to 32 event type definitions can be deployed to one CEP engine.

- You can choose whether to include XML declarations in the XML schema. If you include them, do not insert newlines or whitespace
characters between the xmlISchema start tag and the XML declaration.

- You can define the order of elements by using the "sequence"” element in the XML schema, but no error occurs even if the XML
elements in input events do not conform to the order specified in the "sequence" element.

- Regardless of the CEP engine to deploy event type definitions, set a unique root element name for all event type definitions.
- Regarding the useCep attribute (which determines whether to use complex event processing):

Set "false" if only logging is to be used by the input adapter. An investigation of the content of input event data is considered prior to
starting operation.

- The column elements must be specified in the same order as in the event data.

- When using cepgetrsc to display details of the development asset, the displayed XML schema uses the same format as used by the
CDATA section.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

When XML format is selected
Target event data (XML):

<?xml version="1.0" encoding="UTF-8"?><messagedata xmlns="http://dataaccesscontrol.sspf.
fuj itsu.com/namespace/xmlmessage''><member ID>MEMO0OO1</member ID><arealD>1010</arealD><sta
tus>1</status></messagedata>

Note that in the example above, newlines have been added for readability only. The actual data does not have newlines.

Event type definitions:

<?xml version="1.0" encoding="UTF-8" standalone="yes'?>
<eventType xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" 1d="EVENTTYPE_O1'>
<comment>Event type definition_01</comment>
<type>XML</type>
<xmlSchema>
<V [CDATAL
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://dataaccesscontrol .sspf.fujitsu.com/namespace/xmlmessage"
targetNamespace=""http://dataaccesscontrol .sspf.fujitsu.com/namespace/xmlmessage’'>
<xs:element name="messagedata''>
<xs:complexType>
<xs:sequence>
<xs:element name='"memberID" type=''xs:string" />
<xs:element name="arealD" type="xs:string" />
<xs:element name="'status" type="xs:string" />

-194 -



</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
11>
</xmlSchema>
<root>messagedata</root>
<uselogging>true</uselLogging>
<loggingTableName>/echonet</loggingTableName>
<useCep>true</useCep>
</eventType>

When CSV format is selected
Target event data (CSV):

""MEMOOO1'","'1010™",""1""

Event type definitions:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<eventType xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" 1d="EVENTTYPE_02">
<comment>Event type definition_02</comment>
<type>CSV</type>
<xmlSchema></xmlSchema>
<csvColumn>
<column name="memberID" type="'string" />
<column name="arealD" type='string" />
<column name="'status" type=''string" />
</csvColumn>
<uselLogging>false</uselLogging>
<useCep>true</useCep>
</eventType>

In this example, the event types below are defined.

EVENTTYPE_O1
Using the input adapter, the event data is output to a log in "/echonet".

This event data is passed to complex event processing (only if it is not being filtered by the high-speed filter).

EVENTTYPE_02
In the input adapter, the event data is not output to a log.

This event data is passed to complex event processing (only if it is not being filtered by the high-speed filter).

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

9.2.2 Rule Definition File

This section explains the setup file for describing a rule definition (rule definition file).

The rule definition file is an XML file that has "rule” as the root element. The rule definition file describes the rules for the high-speed
filter and complex event processing.

The items to be set in the rule definition file are shown below:

-195-



Element or attribute Item name Explanation Allowed values Mandatory/
Optional
id Development ID unique in the deployment CEP | Up to 39 Mandatory
(attribute of "rule") asset ID engine. alphanumeric
characters,
underscores (_), or
hyphens (-).
Note: The first
character must be a
letter.
comment Comment Explanation of this definition. Up to 1,000 Optional
characters.
filter Filter rule Description of a high-speed filter | Up to 1,048,576 (*1)
rule. characters.
Use a method such as a CDATA
section if any part of the
description can be interpreted as a
markup specification.
statements Complex event Description of a complex event Up to 1,048,576 (*2)
processing rule processing rule. characters.
Use a method such as a CDATA
section if any part of the
description can be interpreted as a
markup specification.

*1: Mandatory if a high-speed filter rule is to be described.

*2: Mandatory if a complex event processing rule is to be described.

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- Filter rule options (such as "SkipChar", which specifies strings to be excluded as search targets), must be described at the beginning
of the filter rule (refer to Chapter 2, "Filter Rule Language Reference" in the Developer's Reference for information on filter rule

options).

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<comment>Rule definition_02</comment>
<filter>
<V [CDATAL
@SkipChar(*'\n")
@SeparateChar (''\t')
@ANKmix(true)
@KNImix(true)

on EVENTTYPE_02 {
(G
b
11>
</filter>
</rule>

<rule xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="RULE_02">

- A huge number of rules can be described in a single rule definition (as long as the number of characters is not exceeded), but when
rules become complex, this can negatively affect their ability to be maintained and referenced. When creating rule definitions, consider

-196 -



creating separate rule definitions for the high-speed filter and for complex event processing, and dividing rule definitions into smaller
ones that are meaningful and cohesive.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Qn Note

- Up to 32 rule definitions can be deployed to one CEP engine.

- When deploying multiple rule definitions to one CEP engine, specify one complex event processing rule where there is a dependency
relationship (for example, a SELECT statement that specifies an event stream using an INSERT INTO clause, and a SELECT statement
containing a FROM clause that specifies the event stream) in one rule definition.

- When using cepgetrsc to display details of the development asset, the displayed filter rules and complex event processing rules use
the same format as used by the CDATA section.

2, See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

- Refer to Chapter 2, "Filter Rule Language Reference" in the Developer's Reference for information on how to describe filter rules.

- Referto Chapter 1, "Complex Event Processing Language Reference" in the Developer's Reference for information on how to describe
complex event processing rules.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Definition example

<?xml version="1.0" encoding="UTF-8" standalone="yes'?>
<rule xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="RULE_01">
<comment>Rule definition_0l</comment>
<filter>
<I[CDATAL
on EVENTTYPE_O1 {
if ($status == "Walking®") then output() as EVENTTYPE_O1;
3
11>
</filter>
<statements>
<I[CDATAL
@SoapListener("LISTEN_01")
@DebuglLoglListener
select * from EVENTTYPE_O1 where arealD = "1010°;
11>
</statements>
</rule>

In this example, the rules shown below are described.

High-speed filter rule

If the status item contents (string) extracted from the "EVENTTYPE_O01" event type input event is "Walking", it is transferred to
Complex Event Processing.

Complex event processing rule

This rule notifies the SOAP listener of event data with the "EVENTTYPE_O1" event type, and simultaneously outputs debug
information to the engine log.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-197 -



9.2.3 Master Definition File

This section explains the setup file for describing the master definition (master definition file).

The master definition file is an XML file that has "master" as the root element. A master definition file is created for each unit of master

data. The master data consists of a schema file and at least one data file, and is matched to a master definition file.

The master data is read when the CEP engine to which the master definition is deployed starts.

The items to be set in the master definition file are shown below:

Element or Item name Explanation Allowed values Mandatory/
attribute Optional
id Development ID unique in the deployment CEP | Up to 39 alphanumeric Mandatory
(attribute of asset ID engine. grrle;]rac:]ir;;u(n)derscores O,
"master") yp '
Note: The first character
must be a letter.
comment Comment Explanation of this definition. Up to 1,000 characters. Optional
schemaFile Schema file Full name the schema file. Up to 1,023 bytes. Mandatory
dataFile Data file Full name of the data file. Up to 1,023 bytes. Mandatory
If there are multiple data files, Note: If specifying a
specify multiple "dataFile" directory, set this so that the
elements. directory name plus the file
Alternatively, using an absolute Ta()n;: céo&:zsnot exceed
path, specify the directory where ' yies.
the data file is located. In this
case, all files in the directory will
be read as data files.
skipHeader Skip Whether to skip the first lineinthe | See Explanation. Optional
specification data file when the item name is
described in the first line of the
data file.
true: Assume the first line is not
data (ignore).
false: Assume the first line is data
(default).

The schema file and data file are text files in CSV format (refer to "9.7 CSV Format Supported" for details). The character encoding for

the files is UTF-8.

Schema file

In a schema definition file, one or more item names are described using one record.

Refer to "9.6 Characters Allowed in Item, Tag and Attribute Names" for information on the characters that can be specified in item

names.

Data file

In a data file, one line corresponds to one entry of master data.

In each line, describe values (data) that correspond to the schema file items.

If the number of data items is greater than the number of schema information items, the data will be regarded invalid.

-198 -




Qn Note

- Up to 32 master definitions can be deployed to one CEP engine.

- Up to 100 "dataFile" elements can be specified in one master definition. If this limit is exceeded, locate the data files in any directory
and then specify the path of the directory.

- If the number of data file items is less than the number of schema file items, empty strings (
the number of data file items is greater, the CEP engine will fail to start.

) will be used in the missing items. If

- If data files are specified using a directory path, ordinary files and symbolic links (with link destinations of ordinary files) located in
the directory are read as data files. Aside from subdirectories, do not locate files other than ordinary files and symbolic links (such as
named pipes and special files) in the directory.

- The master data is opened in memory when the CEP engine starts. Therefore, memory is consumed in proportion to the master data
size.

- After updating the master data, you must restart (stop and then start) the CEP engine or dynamically change the master data using the
cepdeployrsc command in order to reflect the update.

- Read permissions for the engine execution user must be given in the schema file and data files.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

- Example of a schema file

Ivar/tmp/SchemaFile01.csv

"Kbn'",""Number","Code",""Name",""Value","Total","Biko"

- Example of a data file

Ivar/tmp/MasterFile01.csv

*01","1001","AAA™" ,"BlockA™, 1,000, 1,000, ""Comment: Memo number 4023"
"02'","1001","BBB",""BlockB"","""",""1,200",""Comment: Memo number 4023"
*03',"1002","Cccc","BlockC™, 800", 800", ""Comment: Memo number 4023

- Example of a master definition file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<master xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" §d="MASTER_01'>
<comment>Master definition_0l</comment>
<schemaFile>/var/tmp/SchemaFile0l.csv</schemaFile>
<dataFile>/var/tmp/MasterFileOl.csv</dataFile>
<skipHeader>false</skipHeader>

</master>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

9.2.4 RDB Reference Definition File

This section explains the setup file for describing the RDB reference definition (RDB reference definition file).

The RDB reference definition file is an XML file that has "database" as the root element. An RDB reference definition file is created for
each RDB server.

The items required in the RDB reference definition file depend on the RDB to be referenced.

-199 -



Table 9.1 Symfoware Server referenced with the native interface

interval

of RDB reference results will be flushed.

A cache that is older than the cache retention
period is flushed at this interval.

If not caching results, omit the element or
specify an empty value.

2147483647

Element or Item name Explanation Allowed values Mandatory/
attribute Optional
id Development | ID that uniquely identifies the RDB Up to 39 alphanumeric Mandatory
. asset ID reference definition. characters, underscores
(attribute of (). or hyphens ()
"database") Used as the database name in complex event ' yP '
processing rules. Note: The first character
must be a letter.
comment Comment Explanation of this definition. Up to 1,000 characters. Optional
dbName Database Database name. Up to 36 alphanumeric Mandatory
name characters, underscores
(), or hyphens (-).
Note: The first character
must be a letter.
schema Schema name | Schema name. Up to 36 alphanumeric Mandatory
characters.
Note: The first character
must be a letter.
url Database URL | Specify the following values: Up to 512 alphanumeric Mandatory
characters, hyphens (-),
hostNameOr 1 pAddress: portNumber periods (), or colons (2).
If the host name of the server to be
connected is in FQDN (Fully Qualified
Domain Name) format, specify the name
excluding the domain name.
user Access ID Name of the user who will connect to the Up to 36 alphanumeric Mandatory
RDB server. characters.
Note: The first character
must be a letter.
password Access Password of the user who will connectto the | Up to 512 alphanumeric Mandatory
password RDB server. characters and the
When the cepgetrsc command is used to following symbols:
reference definition information, this 1% #
password is replaced by "*****" in the
displayed output.
maxAge Cache Time period (in seconds) for which RDB Integer from 0 to Optional
retention reference results are cached. 2147483647
period If not caching results, omit the element,
specify an empty value, or specify 0.
purgelnterval Cache purge Time interval (in seconds) at which a cache | Integer from 1 to Optional

- 200 -




Table 9.2 Symfoware Server (Open Interface) and PostgreSQL

A cache that is older than the cache retention
period is flushed at this interval.

If not caching results, omit the element or specify
an empty value.

Element or Item name Explanation Allowed values Mandatory/
attribute Optional
id Development | 1D that uniquely identifies the RDB reference Upto 39 Mandatory
(attribute of asset ID definition. ilhzr:zzfer;enc
"database") Used as the database name in complex event '
. underscores (), or
processing rules.
hyphens (-).
Note: The first
character must be a
letter.
comment Comment Explanation of this definition. Up to 1,000 Optional
characters.
jdbcClass JDBC driver | Class of the JDBC driver. Up to 1,023 Mandatory
class Set the following value: alphanumeric
characters and
org.postgresql .Driver symbols.
url Database URL of the database to be connected. Up to 512 Mandatory
URL alphanumeric
characters and the
following symbols:
%:/?#[]0!
$&"(
*+ , ; - __~
user Access ID Name of the user who will connect to the RDB Up to 512 Mandatory
server. characters.
password Access Password of the user who will connecttothe RDB | Up to 512 Mandatory
password server. characters.
When the cepgetrsc command is used to reference
definition information, this password is replaced
by "*****" in the displayed output.
maxAge Cache Time period (in seconds) for which RDB Integer from 0 to Optional
retention reference results are cached. 2147483647
period If not caching results, omit the element, specify
an empty value, or specify 0.
purgelnterval Cache purge | Time interval (in seconds) at which a cache of Integer from 1 to Optional
interval RDB reference results will be flushed. 2147483647

QJT Note

- Ifyou use the cepgetrsc command to reference definition information, the access password will be replaced by "*****" in the displayed
output. However, if you directly enter the access password in the database URL, the password is displayed on the screen. For security

reasons, do not directly enter the access password in the database URL.

-201-




- If you specify the password in the RDB reference definition file, for security reasons you should delete the access password from the
definition file after deployment to the CEP engine is complete, or alternatively delete the entire definition file.

- Even when backing up the RDB reference definition file, delete the access password from the definition file or encrypt the entire
definition file to ensure that the password cannot be referenced.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Definition examples of the RDB reference definition

Below are definition examples for connecting to the various RDB types. In each example, the results of referencing the database "MyDB"
on the RDB server "RERDBO1" are held in the cache for 1 hour (3600 seconds). The cache is checked every 10 minutes (600 seconds) to
see if the retention period has elapsed.

Symfoware Server (referenced with the native interface) definition example

This example connects to a relational database using the schema name **'user01", port number **26551", access ID "*user01", and
access password "bdcep".

<?xml version="1.0" encoding="UTF-8" standalone="yes'?>
<database xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1" id="RDBREF_01">
<comment>RDB reference definition_0l</comment>
<dbName>MyDB</dbName>
<schema>user01</schema>
<urI>RERDB001:26551</url>
<user>user0l</user>
<password>bdcep</password>
<maxAge>3600</maxAge>
<purgelnterval>600</purgelnterval>
</database>

Symfoware Server (Open Interface) definition example

This example connects to a relational database using the port number *26500", access ID "user01", and access password "bdcep".

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<database xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="RDBREF_01">
<comment>RDB reference definition_0l</comment>
<jdbcClass>org.postgresqgl .Driver</jdbcClass>
<url>jdbc:postgresql : //RERDBO1:26500/MyDB</url>
<user>user0l</user>
<password>bdcep</password>
<maxAge>3600</maxAge>
<purgelnterval>600</purgelnterval>

</database>

PostgreSQL definition example

This example connects to a relational database using the port number "26500", access ID "user01", and access password "bdcep".

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<database xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="RDBREF_01">
<comment>RDB reference definition_0l</comment>
<jdbcClass>org.postgresqgl .Driver</jdbcClass>
<url>jdbc:postgresql : //RERDBO1:26500/MyDB</url>
<user>user0l</user>
<password>bdcep</password>
<maxAge>3600</maxAge>
<purgelnterval>600</purgelnterval>

</database>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-202 -



9.2.5 SOAP Listener Definition File

This section explains the setup file for describing the SOAP listener definition (SOAP listener definition file).

The SOAP listener definition file is an XML file that has "soapListener" as the root element. A SOAP listener definition file is created
for each user-developed Web service.

The items to be set in the SOAP listener definition file are shown below:

Element or Item name Explanation Allowed values Mandatory/
attribute Optional
id Development ID unique in the deployment CEP Up to 39 alphanumeric Mandatory
(attribute of asset 1D engine ((:i])arztr:tﬁrs,huerr]](ie(rs)cores
"soapListener") Used as the output adapter (SOAP ' yp '
listener) in complex event processing Note: The first
rules. character must be a
letter.
comment Comment Explanation of this definition. Up to 1,000 characters. Optional
url Connection URL | Connection URL for the user-developed | Up to 512 Mandatory
Web service. alphanumeric
characters and
symbols.
nameSpace Namespace Namespace of the body of the SOAP Up to 512 characters. Mandatory
message (SOAP body) to be sent to the
user-developed Web service.
prefix Namespace Namespace prefix to be used in the body | Up to 20 characters. Optional
prefix of the SOAP message (SOAP body).
When omitted, "ns" is used.
method Root element Root element name of the body of the Up to 512 characters. Mandatory
SOAP message (SOAP body).

4}1 Note

Up to 32 SOAP listener definitions can be deployed to one CEP engine.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Definition example

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<soapListener xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="LISTEN_01'>
<comment>SOAP listener definition_0l</comment>
<url>http://192.168.11.249/WebServWAR/MyApplService</url>
<nameSpace>http://webservice/</nameSpace>
<prefix>ns</prefix>
<method>cep</method>

</soapListener>

This example defines the notification of a message (event) that includes a SOAP body specifying that the root element is "cep" in the
user-developed Web service with the connection destination URL “"http://192.168.11.249/WebServWAR/
MyApplService".

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

- 203 -



9.3 Setup Files for Terracotta Collaboration

This section explains the setup files required when Terracotta collaboration is used. The following two files are required for Terracotta
collaboration:

- Terracotta Cache Configuration File

- Terracotta Collaboration Setup File

9.3.1 Terracotta Cache Configuration File

To use Virtual Data Window in order to use a Terracotta cache (known as Ehcache), you must place an Ehcache configuration file
(ehcache.xml) on the CEP Server. Place the Ehcache configuration file in the following location:

/etc/opt/FISVcep/config/ehcache . xml

Refer to the Terracotta manual for information on the Ehcache configuration file. The table below explains the settings required for
Terracotta Collaboration.

Element or attribute Description
ehcache Root element of the configuration file.
name Specify the name of the cache manager specified when creating the
cache.
maxBytesLocalHeap Size of the data pool to be used.
terracottaConfig Element for defining a Terracotta server.
url List of Terracotta servers in the format

" hostNameOrlpAddress.portNumber”, delimited with a comma (,).

cache Element for defining a cache.

Multiple <cache> elements can be specified in a single <ehcache>
element.

name Name of the cache. This is the cache name specified using
vdw:ehcache.

terracotta Defined for using a Terracotta server.
nonstop Defined for use as a nonstop cache.
immediateTimeout Specify whether to respond with a timeout when a network
disconnection is detected. Specify "true" as the value.
timeoutMillis Specify the standby time until timeout.
timeoutBehavior Specify the operation to be performed if a timeout occurs.
type Specify "exception” as the value.
searchable Defined for searching a cache.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

The following example uses the cache "Cache001"* configured on two Terracotta servers (192.168.1.1 and 192.168.1.2) using Terracotta
collaboration:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation=""http://ehcache.org/ehcache.xsd"

-204 -



name=""SearchConfig"
maxBytesLocalHeap=""64M">
<terracottaConfig url="192.168.1.1:9510,192.168.1.2:9510"/>
<cache name="Cache001"">
<terracotta>
<nonstop immediateTimeout="true" timeoutMillis="3000">
<timeoutBehavior type="exception'/>
</nonstop>
</terracotta>
<searchable />
</cache>
</ehcache>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Qn Note

If you edit the file while the CEP engine is running, you must restart the CEP engine to enable the contents.

9.3.2 Terracotta Collaboration Setup File

Set information, such as the class path and the license key, to be used for Terracotta collaboration.

When you execute the cepstarteng command after creating this file, the class path is set and the CEP engine starts.

Create the Terracotta Collaboration setup file in /etc/opt/FISVcep/config/terracotta_conf.

Format
Below is a definition example of the Terracotta Collaboration setup file. It comprises the lines described below.
Parameter definition line

A parameter definition line has the parameterName=specifiedValueformat, where the value on the right side is assigned to the parameter
on the left side. Tabs and spaces at the beginning and end of the line are ignored.

Qﬂ Note

Do not enter any spaces or tabs around the equals sign (=).

Blank line

A blank line consists of spaces and tabs only. The entire line is ignored by Terracotta Collaboration.

Parameters that can be set

Parameters that can be set are described below (all of them are mandatory):

Parameter name Item name Explanation Allowed values | Mandatory/
Optional
BDCEP_TERRACOTTA_CLASS | Terracotta Path of the Terracotta jar files | Up to 1,023 Mandatory
PATH Collaboration | used for Terracotta alphanumeric
class path collaboration. Delimit characters and
multiple jar file paths witha | the following
colon (3). symbols:
/i—_.
BDCEP_TERRACOTTA_LICEN | Terracotta Path of the Terracotta license | Up to 1,023 Mandatory
SEKEY license key key. alphanumeric
characters and

- 205 -



Parameter name Item name Explanation Allowed values | Mandatory/
Optional

the following
symbols:

/-_.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Below is a definition example of the setup file when Terracotta is installed in /opt/bigmemory-max-4.0.1.

Refer to the Terracotta manual for information on the jar file to be specified for the Terracotta Collaboration class path.

BDCEP_TERRACOTTA_CLASSPATH=/opt/bigmemory-max-4.0.1/apis/ehcache/lib/ehcache-ee-2.7.1_jar:/opt/
bigmemory-max-4.0.1/apis/ehcache/lib/slf4j-api-1.6.6.jar:/opt/bigmemory-max-4.0.1/apis/ehcache/lib/
sif4j-jdk1l4-1.6.6._jar:/opt/bigmemory-max-4.0.1/common/lib/bigmemory-4.0.1_jar:/opt/bigmemory-
max-4.0.1/7apis/toolkit/lib/terracotta-toolkit-runtime-ee-4.0.1_jar
BDCEP_TERRACOTTA_LICENSEKEY=/var/bigmemory/terracotta-1license.key

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Qn Note

- Before using Terracotta Collaboration, the five jar files listed below must be set in the class path for Terracotta Collaboration.

Note that the file names may differ depending on the Terracotta version and the environment, so check the file names in the version
of Terracotta to be used before setting the jar files. Insert the version of each jar file in place of "x".

- bigmemory-x.x.xjar

- ehcache-eex.x.x.jar

- slf4j-api-x.x.xjar

- slf4j-jdk14-x.x xjar

- terracotta-toolkit-runtime-ee-x.x.x.jar

- If you edit the files while the CEP engine is running, you must restart the CEP engine to enable the contents.

9.4 Setup File for RDB Collaboration

This section explains the setup file required when RDB collaboration is used.

9.4.1 RDB Collaboration Setup File

Set the class path of the JDBC driver to be used for RDB collaboration.

When you execute the cepstarteng command after creating this file, the class path is set and the CEP engine starts.

Create the RDB Collaboration setup file in /etc/opt/FISVcep/config/rdb_conf.

Format
Below is a definition example of the RDB Collaboration setup file. It comprises the lines described below.
Parameter definition line

A parameter definition line has the parameterName=specifiedValueformat, where the value on the right side is assigned to the parameter
on the left side. Tabs and spaces at the beginning and end of the line are ignored.

- 206 -



Qﬂ Note

Do not enter any spaces or tabs around the equals sign (=).

Blank line

A blank line consists of spaces and tabs only. The entire line is ignored by RDB Collaboration.

Parameters that can be set

Parameters that can be set are described below (all of them are mandatory):

Parameter name Item name Explanation Allowed values | Mandatory/
Optional
BDCEP_RDB_CLASSPATH RDB Set the jar file of the JDBC Up to 1,023 Mandatory
Collaboration | driver to be used for RDB alphanumeric
class path collaboration. Delimit multiple | characters and
jar files with a colon (3). the following

symbols:
VAT

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Below is a definition example of the setup file when Symfoware (Open Interface) is used as the relational database to be referenced.

BDCEP_RDB_CLASSPATH=/opt/symfoclient64/jdbc/l1ib/postgresql-jdbc4.jar

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

4}1 Note

You need not set the class path if using Symfoware Server with the native interface as the relational database to be referenced.

If referencing Symfoware Server (Open Interface) or PostgreSQL, set the JDBC driver in the class path. Refer to the manual for the
relational database to be referenced for information on the jar files to be specified in the class path.

If multiple jar files or class files with the same class name are set at the same time, the file set first has priority.

If you edit the file while the CEP engine is running, you must restart the CEP engine to enable the contents.

9.5 Setting up for Installation

This section explains the setup file to be used at unattended installation of BDCEP (installation file).

9.5.1 Installation File

This section explains the format of and parameters that can be set in the installation file.

Format
Below is a definition example of the installation file - it consists of the line types below:
Parameter definition line

A parameter definition line has the parameterName=specifiedValueformat, where the value on the right side is assigned to the parameter
on the left side. Tabs and spaces at the beginning and end of the line or around the equals sign (=) are ignored.

- 207 -



Blank line

A blank line consists of spaces and tabs only. The entire line is ignored by the Installer.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Below is a definition example of the installation file.

BDCEP_USER_NAME=isbdcep
BDCEP_GROUP_NAME=isbdcep
BDCEP_INITIAL_ENGINE_NAME=CepEngine

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Parameters that can be set

Parameters that can be set are described below (all of them are mandatory):

Parameter name Item name Explanation Allowed values Mandatory/
Optional
BDCEP_USER_NAME Engine User name of the engine Registered user Mandatory
execution user execution user. name, up to 8
name alphanumeric
characters.
BDCEP_GROUP_NAME Group name Group name of the group to Registered group Mandatory
which the engine execution name, up to 8
user belongs. alphanumeric
characters.
BDCEP_INITIAL_ENGINE_ | Initial CEP Name of the CEP engine tobe | Up to 20 Mandatory
NAME engine name created at initial setup. alphanumeric
characters.

& Note

Before executing unattended installation, ensure that the user and group specified in the installation file are registered in the system.

9.6 Characters Allowed in Item, Tag and Attribute Names

This section explains the characters that can be specified in item names, tag names, and attribute names.

9.6.1 For High-Speed Filter Rules and Master Definitions

For high-speed filter rules and master definitions, the characters that can be specified in CSV column item names, XML tag names, and
attribute names are the single-byte characters shown below as well as multi-byte characters:

! - 0 1 2 3 4 5 6 7 8 9

@ A B C D E F G H | J K L M

N o} P Q R S T U \Y w X Y z _
a b c d e f g h i i k | m

n 0 p q r s t u v w X y z

- 208 -



Qn Note

- A hyphen (=) or period (.) cannot be specified at the beginning of a line.

- A space () cannot be specified (the bottom rightmost cell of the table above does not signify a space).

9.6.2 For Complex Event Processing Rules

For complex event processing rules, the characters that can be specified in CSV column item names, XML tag names, and attribute names
have the following constraints:

- The first character must be a letter (ato z or A to Z).
- The second and subsequent characters must be letters (a to z or A to Z), digits (0 to 9), or underscores ().
- The reserved words of complex event processing rules cannot be used, regardless of case.

Refer to Chapter 1, "Complex Event Processing Language Reference" in the Develgper's Reference for information on the reserved
words of complex event processing rules.

Please note that the rules are case-sensitive.

9.7 CSV Format Supported

This section explains the CSV format supported.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

CSV example

01,1001 ,"AAA","BlockA™, 1,000 ,""1,000","Comment: Memo number 4023"
02'","1001","BBB","BlockB",""",""1,200", ""Comment: Memo number 4023"
**03","1002","ccc”,"BlockC", 800", *800", ""Comment: Memo number 4023"

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Use commas (, ) to delimit the items in the columns in one record.

Records are separated by newline characters.

- Items can be enclosed by double quote marks (****). If a comma or newline needs to be specified in an item, enclose the item in double
quote marks.

- If a double quote mark (**) needs to be specified in the content of an item, enclose the item in double quote marks and then add a
double quote mark before the one that is part of the item (that is, specify two consecutive double quote marks).

jJJ Example

© © 0000000000000 0000000000000000000000000000000000000000000000000000000000000000000000006006060COCOCEOESE

When items ‘A, AA', 'Bnewl ineBB', and 'C*"CC' are included in a record

"A,AA","B
BB™","C"""CC"

© 0000000000000 00000000000000000000000000O0O0C0C0COCOCOCOCEOCEOCEOCEOCEOCIOCEOCIOCOCEOCEOCOCIOCI0CIOCI0C0CI0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCQCCQCCOCQOCEOCEECEEETS

- When data is enclosed by double quote marks, an error will occur if a character other than a comma (, ) is used between items. Delete
any excess characters around delimiting commas (, ).

jJJ Example

© © 0000000000000 0000000000000000000000000000000000000000000000000000000000000000000000006006060COCOCEOESE

Incorrect: There are unnecessary spaces (underlined) between items (around the comma).

"AAA", "BlockA"

- 209 -



Correct: There are no unnecessary spaces between items.

"AAA™,"BloCckA™

© 0000000000000 00000000000000000000000000O0O0C0C0COCOCOCOCEOCEOCEOCEOCEOCIOCEOCIOCOCEOCEOCOCIOCI0CIOCI0C0CI0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCQCCQCCOCQOCEOCEECEEETS

- The maximum size of one record is 32 MB (megabytes).

- For input events, records do not need to be separated by newlines. Multiple records cannot be handled in one input event.

-210 -



Glossary

Apache Hadoop
Open-source Hadoop software developed by the Apache Software Foundation (ASF).

BDCEP (Interstage Big Data Complex Event Processing Server)

Fujitsu software for analyzing and assessing massive volumes of event data in real time by using the complex event processing
technology.

BDPP (Interstage Big Data Parallel Processing Server)

Fujitsu software for processing massive data volumes by using the Apache Hadoop with Fujitsu proprietary technology incorporated.

Cache (RDB Collaboration)

In complex event processing, a feature that temporarily accumulates queries referenced using RDB Collaboration and their results in
a CEP engine and processes previously referenced queries at high speed.

CEP (Complex Event Processing)

Refer to "complex event processing"”.

CEP engine

Refer to "high-performance CEP engine".

CEP Server

The server on which BDCEP runs.

CEP service

Service that runs on the CEP Server and manages the CEP engine.

complex event processing

Technique of rapidly analyzing, assessing and processing in real time the content and status of massive volumes of event data being
sent continuously.

It is used in the Complex Event Processing feature provided by BDCEP.

complex event processing language
Language for specifying the rules of complex event processing.

It allows the use of SQL format.

complex event processing rule

Rule described using the complex event processing language, consisting of at least one complex event processing statement.

complex event processing statement
Structural unit of rules specified using the complex event processing language.

A complex event processing statement describes processing using statements such as the SELECT statement and the CREATE
WINDOW statement.

Custom Listener

Feature that processes the results of a complex event processing statement by using a user-developed Java class.

-211-



Debug Listener

Feature that outputs debug messages to the engine log when a complex event processing statement is executed.

engine execution user

User of the operating system when a CEP engine is running.

engine log

File containing the output of CEP engine system messages and debug messages defined in the rules.

event data

Time-series data, such as sensing data or location information about people, and that shows when something occurred.

event log

File containing event data which is recorded by Logging.

event log analysis application

Application that analyzes event logs in the Hadoop system.

event sender application

Application that sends event data to a CEP engine.

event type definition
Definition information about the format of event data.

The event data can be specified in XML or CSV format.

filter language

Refer to "high-speed filter language".

filter rule

Refer to "high-speed filter rule”.

filter statement

Refer to "high-speed filter statement™.

Hadoop

Technique for effectively performing distributed and parallel processing of data accumulated in massive volumes. It basically consists
of the HDFS (Hadoop Distributed File System) and the MapReduce which is known as a parallel distributed processing technique.

Refer to "Apache Hadoop".

Hadoop Collaboration

In BDCEP Logging context, a feature for recording event data from the CEP Server directly in the Hadoop system.

Hadoop system

System on which Hadoop is running.

HDFS (Hadoop Distributed File System)
Distributed file system used by Hadoop.

For the placement of big data, HDFS creates multiple replicas of data blocks and distributes them on nodes called DataNodes, which
are then managed by nodes called NameNodes.

-212 -



high-performance CEP engine
The processing unit in BDCEP.

It allows massive volumes of event data to be processed rapidly by combining High-speed Filter with conventional complex event
processing.

High-speed Filter

Feature that uses a technique unique to Fujitsu to allow high-speed filtering of massive volumes of event data while matching the
event data with the master data.

high-speed filter language
Language for specifying the rules in High-speed Filter.

It allows the use of IF-THEN format.

high-speed filter rule

Rule described using the high-speed filter language, consisting of at least one high-speed filter statement.

high-speed filter statement
Structural unit of rules specified using the high-speed filter language.

A high-speed filter statement is described for each event type definition.

HTTP adapter
Input Adapter that allows event data to be received using HTTP communication.

It allows more lightweight communication when compared to a SOAP adapter.

initial CEP engine

CEP engine created at installation.

Input Adapter

Feature that receives event data from outside the CEP Server.

Logging

Feature that records event data in a Hadoop system or in the engine log.

Logging Listener

Feature that Logging the processing results of a complex event processing statement.

master data
Data used by BDCEP to match event data in High-speed Filter processing.

It is deployed in the CEP Server in CSV format, and consists of schema files (where the item names for each column are defined), and
data files (where the data rows are stored).

master definition

Definition information of the master data to be referenced during High-speed Filter processing.

Output Adapter

Feature that sends the processing results of complex event processing outside the CEP Server.

-213-



RDB reference definition

RDB connection information used with RDB Collaboration.

RDB Collaboration

In complex event processing provided by BDCEP, a feature that references data stored in a relational database that is external to the
CEP Server.

resource log
Log containing the resource usage of a CEP engine.

It is stored in CSV format, so it can be analyzed using a tool such as Excel.

rule definition

Processing details for the High-speed Filter (high-speed filter rule) and complex event processing (complex event processing rule)
features.

sensing data
Data sent from a variety of sensors.

Sensing data is a type of event data.

SOAP (Simple Object Access Protocol)
Lightweight protocol, which is subject to ongoing standardization work by the World Wide Web Consortium (W3C).

For its communication infrastructure, SOAP uses the Internet standards of Hyper Text Transfer Protocol (HTTP) and (eXtensible
Markup Language (XML).

SOAP adapter

Input Adapter that allows event data to be received using SOAP.

SOAP Listener

Feature that uses SOAP to send the processing results of a complex event processing statement to an external system.

SOARP listener definition
Defines information required to perform communication using a SOAP Listener.

It defines information such as the URL of the external system that is to be the communication target.

social media

Services and applications that provide open communication generated by diverse content (such as text, voice and video) exchanged
and shared on the Internet by a variety of people, in contrast to the traditional information media (such as newspapers and television).

socket adapter
Input Adapter that performs communication using a format unique to BDCEP.

Socket adapters are more suitable for receiving massive volumes of event data than a SOAP adapter or HTTP adapter.

Terracotta application

Client application in Interstage Terracotta BigMemory Max. It updates data in a cache by, for example, storing initial data in the cache
on a Terracotta server.

Terracotta server

Terracotta server in Interstage Terracotta BigMemory Max.

-214 -



Terracotta Collaboration

In complex event processing provided by BDCEP, a feature that references the cache of a Terracotta server external to the CEP
Server. It is used for referencing frequently updated data from a complex event processing rule.

user-developed Java class

Java class that runs when event data is passed from the custom listener.

user-developed Web service

Application that uses SOAP to receive processing results of a complex event processing statement sent from a SOAP Listener.

WSDL (Web Services Description Language)

Interface description language in Web services, which allows the description of information such as the access point in Web services
(URL), the protocol to be used (SOAP, HTTP, or MIME), and the message format (XML Schema).

It is used in the development of a user-developed Web service, which is an application for collaborating with BDCEP.

-215-



	Title Page
	Preface
	Contents
	Chapter 1 Overview
	1.1 What is Interstage Big Data Complex Event Processing Server?
	1.2 Product Features
	1.2.1 High-performance CEP Engine
	1.2.2 Simple Rule Description
	1.2.3 Simple Collaboration with External Systems
	1.2.3.1 Distributed Cache Collaboration (Terracotta Collaboration)
	1.2.3.2 Hadoop Collaboration


	1.3 Overview of Features Provided
	1.3.1 Features of the CEP Engine
	1.3.2 Features for Development and Operating Environments
	1.3.3 Features for Status Monitoring

	1.4 What is Complex Event Processing?
	1.4.1 Complex Event Processing


	Chapter 2 Features Provided
	2.1 Input Adapter
	2.1.1 SOAP Adapter
	2.1.2 HTTP Adapter
	2.1.3 Socket Adapter

	2.2 Logging
	2.3 High-speed Filter
	2.3.1 Filter Rules
	2.3.2 Master Data

	2.4 Complex Event Processing
	2.4.1 Features of Complex Event Processing

	2.5 External Data Access
	2.5.1 Terracotta Collaboration
	2.5.2 RDB Collaboration

	2.6 Output Adapter
	2.6.1 SOAP Listener
	2.6.2 Custom Listener
	2.6.3 Logging Listener
	2.6.4 Debug Log Listener

	2.7 Operation Commands
	2.7.1 Dynamically Changing Rules and Master Data

	2.8 Engine Log
	2.9 Resource Log
	2.10 Cluster Service

	Chapter 3 System Configuration and Design
	3.1 System Configuration
	3.2 Designing the System Configuration
	3.2.1 Designing the System Configuration
	3.2.2 Aspects of Designing the CEP Server
	3.2.2.1 Overall Design
	3.2.2.2 Designing the Input Adapter
	3.2.2.3 Designing the High-speed Filter
	3.2.2.4 Designing Complex Event Processing
	3.2.2.5 Designing the Output Adapter

	3.2.3 Aspects of Designing a Hadoop System for Collaboration
	3.2.4 Aspects of Designing a Terracotta Server for Collaboration
	3.2.5 Aspects of Designing an RDB Server for Collaboration

	3.3 Designing System Resources
	3.3.1 Estimating Memory Usage
	3.3.1.1 Amount of Memory when Using High-speed Filter Rules
	3.3.1.2 Amount of Memory when Master Data is used by the High-speed Filter

	3.3.2 Estimating Disk Usage


	Chapter 4 Installation and Setup
	4.1 Installation Overview
	4.1.1 Installation Methods
	4.1.2 Installed Packages

	4.2 Installation Requirements
	4.2.1 Hardware Environment
	4.2.2 Software Environment
	4.2.2.1 Required Operating System
	4.2.2.2 Mandatory Patch
	4.2.2.3 Required Packages
	4.2.2.4 Mutually Exclusive Software

	4.2.3 Resources Required at Installation
	4.2.4 Resources Required at Operation

	4.3 Installation
	4.3.1 Pre-installation Procedure
	4.3.1.1 Setting /etc/hosts
	4.3.1.2 Checking the Port Numbers to be Used
	4.3.1.3 Checking Free Disk Capacity
	4.3.1.4 Creating the Engine Execution User and Group
	4.3.1.5 Checking Kernel Parameters
	4.3.1.6 Checking Resource Limitations
	4.3.1.7 Modifying /etc/cron.daily/tmpwatch in Red Hat Enterprise Linux 5.4 or an Earlier Version
	4.3.1.8 Deleting FJSVsmee64 and FJSVsclr64 Packages

	4.3.2 Installation Procedure
	4.3.2.1 Attended Installation
	4.3.2.2 Unattended Installation

	4.3.3 Post-installation Procedure
	4.3.3.1 Setting Environment Variables
	4.3.3.2 Reinstalling FJSVsmee64 and FJSVsclr64 Packages
	4.3.3.3 Applying Updates

	4.3.4 If an Error Occurs during Installation

	4.4 Setup
	4.4.1 Setup Overview
	4.4.2 Setup of Hadoop Collaboration
	4.4.3 Setup of Terracotta Collaboration
	4.4.4 Setup of RDB Collaboration
	4.4.5 Setup of the CEP Engine
	4.4.5.1 Status Immediately after Installation
	4.4.5.2 Changing CEP Engine Settings
	4.4.5.3 Creating a New CEP Engine


	4.5 Canceling Setup
	4.5.1 Deleting a CEP Engine
	4.5.2 Canceling RDB Collaboration
	4.5.3 Canceling Terracotta Collaboration
	4.5.4 Canceling Hadoop Collaboration

	4.6 Uninstallation
	4.6.1 Pre-uninstallation Procedure
	4.6.1.1 Stopping Event Sending
	4.6.1.2 Backing up User Assets
	4.6.1.3 Stopping the CEP Service
	4.6.1.4 Deleting Updates

	4.6.2 Uninstallation Procedure
	4.6.2.1 Attended Uninstallation
	4.6.2.2 Unattended Uninstallation

	4.6.3 Post-uninstallation Procedure
	4.6.3.1 Uninstalling FJSVod
	4.6.3.2 Uninstalling FJSVsmee64 and FJSVsclr64
	4.6.3.3 Removing Environment Variables
	4.6.3.4 Engine Execution User Specified at Installation
	4.6.3.5 Uninstall (middleware)

	4.6.4 If an Error Occurs during Uninstallation


	Chapter 5 Development
	5.1 Overview of BDCEP Event Processing
	5.2 List of Development Assets
	5.3 Task Overview
	5.4 Design (Definition File)
	5.4.1 Overview of Definition Information
	5.4.1.1 Event Type Definition
	5.4.1.2 Rule Definition
	5.4.1.3 Master Definition
	5.4.1.4 RDB Reference Definition
	5.4.1.5 SOAP Listener Definition

	5.4.2 Association between the Development Asset ID and Definition Information
	5.4.3 Designing an Event Type Definition
	5.4.3.1 Features of Input Events
	5.4.3.2 Recording and Analyzing Events

	5.4.4 Designing a Rule Definition
	5.4.4.1 High-speed Filter Processing
	5.4.4.1.1 Extraction process
	5.4.4.1.2 Extraction process using master data matching
	5.4.4.1.3 Join processing with master data
	5.4.4.1.4 Weighting processing of text

	5.4.4.2 Complex Event Processing
	5.4.4.3 Terracotta Collaboration
	5.4.4.3.1 Considerations when using Terracotta collaboration
	5.4.4.3.2 Preparing a configuration information file for Terracotta cache
	5.4.4.3.3 Using Terracotta cache

	5.4.4.4 RDB Collaboration
	5.4.4.4.1 Considerations when using RDB collaboration
	5.4.4.4.2 Specifying RDB referencing in complex event processing rules

	5.4.4.5 SOAP Listener
	5.4.4.6 Custom Listener
	5.4.4.7 Logging Listener

	5.4.5 Designing a Master Definition
	5.4.6 Designing an Event Type Definition (Filtered)
	5.4.7 Designing an RDB Reference Definition
	5.4.7.1 Considerations when Designing an RDB Reference Definition
	5.4.7.2 Settings for Cache Retention Period and Cache Purge Interval

	5.4.8 Designing a SOAP Listener Definition

	5.5 Design (Data)
	5.5.1 Event Data (for Testing)
	5.5.2 Master Data (for the High-speed Filter)
	5.5.2.1 Format of Master Data

	5.5.3 Terracotta Cache
	5.5.3.1 Terracotta Cache Compatible Formats

	5.5.4 Relational Database (RDB)
	5.5.4.1 Supported RDB Table Formats


	5.6 Design (Collaboration Application)
	5.6.1 Designing an Event Sender Application
	5.6.2 Designing a User-developed Web Service
	5.6.3 Designing a User-developed Java Class
	5.6.4 Designing an Event Log Analysis Application
	5.6.4.1 Output Destination and File Format of an Event Log

	5.6.5 Designing a Terracotta Application

	5.7 Implementation
	5.7.1 Creating a Definition File
	5.7.1.1 Creating an Event Type Definition File
	5.7.1.2 Creating a Rule Definition File
	5.7.1.2.1 Debug log listener

	5.7.1.3 Creating a Master Definition File
	5.7.1.4 Creating an RDB Reference Definition File
	5.7.1.5 Creating a SOAP Listener Definition File

	5.7.2 Preparing Data
	5.7.2.1 Preparing Event Data (for Testing)
	5.7.2.2 Preparing Master Data (for the High-speed Filter)
	5.7.2.3 Preparing Data to be Stored in a Terracotta Cache
	5.7.2.4 Preparing a relational database

	5.7.3 Implementing a Collaboration Application
	5.7.3.1 Implementing an Event Sender Application
	5.7.3.2 Implementing a User-developed Web Service
	5.7.3.2.1 Web service implementation procedure

	5.7.3.3 Implementing a User-developed Java Class (Custom Listener)
	5.7.3.3.1 CustomListener interface
	5.7.3.3.2 Custom log
	5.7.3.3.3 Compilation

	5.7.3.4 Implementing an Event Log Analysis Application
	5.7.3.5 Implementing a Terracotta Application


	5.8 Deploying Development Assets
	5.8.1 Deploying Definition Information
	5.8.2 Providing Data
	5.8.3 Deploying a Collaboration Application

	5.9 Integration Test
	5.9.1 Integration Test Flow
	5.9.2 Checking an Engine Log
	5.9.3 Starting
	5.9.3.1 Checking the Status of a User-developed Web Service
	5.9.3.2 Starting the CEP Engine
	5.9.3.3 Checking for Syntax Errors in Filter Rules
	5.9.3.4 Checking for Syntax Errors in Complex Event Processing Rules

	5.9.4 Integration Test
	5.9.4.1 Sending Event Data for Testing
	5.9.4.2 Checking the Operation of Filter Rules
	5.9.4.3 Checking the Operation of Complex Event Processing Rules
	5.9.4.4 Checking the Operation of a User-developed Web Service
	5.9.4.5 Checking the Operation of a User-developed Java Class
	5.9.4.6 Checking the Event Log
	5.9.4.7 Checking the Operation of an Event Log Analysis Application

	5.9.5 Stopping
	5.9.5.1 Stopping an Event Sender Application
	5.9.5.2 Stopping the CEP Engine

	5.9.6 Correcting Development Assets

	5.10 Undeploying Development Assets
	5.10.1 Undeploying Definition Informations
	5.10.2 Undeploying a Collaboration Application
	5.10.3 Deleting Data

	5.11 Sample Application
	5.11.1 Overview of the Sample Application
	5.11.2 Structure of the Sample
	5.11.3 Events
	5.11.3.1 Location Information Events
	5.11.3.2 Coupon Events
	5.11.3.3 Filtered Location Information Events
	5.11.3.4 Filtered Coupon Events

	5.11.4 Master Information
	5.11.4.1 Member Information Master
	5.11.4.2 Store Information Master

	5.11.5 Rule Definition
	5.11.5.1 Filter Rules (IF-THEN Format)
	5.11.5.2 Complex Event Processing Rules (SQL Format)

	5.11.6 Event Sender Sample Program
	5.11.7 Directory Structure
	5.11.8 Execution
	5.11.8.1 Deploying Development Assets
	5.11.8.2 Starting the CEP Engine
	5.11.8.3 Sending Events and Checking the Results
	5.11.8.4 Stopping the CEP Engine
	5.11.8.5 Undeploying Development Assets



	Chapter 6 Operation and Maintenance
	6.1 Operating the CEP Server
	6.1.1 Starting the Collaboration System
	6.1.2 Starting the CEP Service
	6.1.3 Deploying and Undeploying Definition Information
	6.1.3.1 Deploying Definition Information
	6.1.3.2 Checking Deployed Definition Information
	6.1.3.3 Updating Deployed Definition Information
	6.1.3.4 Undeploying Definition Information

	6.1.4 Starting the CEP Engine
	6.1.5 Typical Operation Tasks
	6.1.5.1 Displaying the Operation Status of the CEP Service
	6.1.5.2 Displaying the Operation Status of the CEP Engine
	6.1.5.3 Monitoring Abnormalities Using Logs
	6.1.5.4 Checking the Resource Usage of the CEP Engine
	6.1.5.5 Dynamically Changing Rule Definitions and Master Data
	6.1.5.6 Storing the Custom Log

	6.1.6 Stopping the CEP Engine
	6.1.7 Stopping the CEP Service
	6.1.8 Stopping the Collaboration System

	6.2 Security
	6.2.1 Operation Model
	6.2.2 Prerequisite Knowledge for Designing Security
	6.2.3 Designing Security for BDCEP

	6.3 Maintenance
	6.3.1 Collecting Data for Investigation when a Problem Occurs
	6.3.2 Backup and Restore
	6.3.2.1 Backup Procedure
	6.3.2.2 Restore Procedure

	6.3.3 Applying Updates
	6.3.4 Tuning
	6.3.4.1 Tuning JVM Options
	6.3.4.2 Tuning File Descriptors
	6.3.4.3 Tuning Trace Logs



	Chapter 7 Extended System Operations
	7.1 Scalable System Operations
	7.1.1 Scaleout of Complex Event Processing
	7.1.2 Scaleout Using Terracotta Collaboration

	7.2 Operating a Highly Reliable System Using PRIMECLUSTER
	7.2.1 Overview of Reliable System Operations
	7.2.2 Cluster Service Configuration
	7.2.3 Building a Cluster Service Environment
	7.2.4 Operating a Cluster Service


	Chapter 8 Command Reference
	8.1 cepcollectinfo
	8.2 cepconfigeng
	8.3 cepdeployrsc
	8.4 cepdispeng
	8.5 cepdispserv
	8.6 cepgetjvmopt
	8.7 cepgetrsc
	8.8 cepsetjvmopt
	8.9 cepstarteng
	8.10 cepstartserv
	8.11 cepstopeng
	8.12 cepstopserv
	8.13 cepundeployrsc

	Chapter 9 Definition File Reference
	9.1 Defining a CEP Engine
	9.1.1 Engine Configuration File

	9.2 Defining Development Assets
	9.2.1 Event Type Definition File
	9.2.2 Rule Definition File
	9.2.3 Master Definition File
	9.2.4 RDB Reference Definition File
	9.2.5 SOAP Listener Definition File

	9.3 Setup Files for Terracotta Collaboration
	9.3.1 Terracotta Cache Configuration File
	9.3.2 Terracotta Collaboration Setup File

	9.4 Setup File for RDB Collaboration
	9.4.1 RDB Collaboration Setup File

	9.5 Setting up for Installation
	9.5.1 Installation File

	9.6 Characters Allowed in Item, Tag and Attribute Names
	9.6.1 For High-Speed Filter Rules and Master Definitions
	9.6.2 For Complex Event Processing Rules

	9.7 CSV Format Supported

	Glossary

