
B1WS-0985-04ENZ0(00)
April 2013

Systemwalker
Service Catalog Manager V15.2.1
(Business Support System)

Developer's Guide

Trademarks LINUX is a registered trademark of Linus Torvalds.
Microsoft and Windows are either registered trademarks
or trademarks of Microsoft Corporation in the United
States and/or other countries.
Oracle, GlassFish, Java, and all Java-based trademarks
and logos are trademarks or registered trademarks of
Oracle Corporation and/or its affiliates.
Apache Ant, Ant, and Apache are trademarks of The
Apache Software Foundation.
UNIX is a registered trademark of the Open Group in the
United States and in other countries.
Other company names and product names are
trademarks or registered trademarks of their respective
owners.

Copyright (c) FUJITSU
LIMITED 2010-2013

All rights reserved, including those of translation into other
languages. No part of this manual may be reproduced
in any form whatsoever without the written permission of
FUJITSU LIMITED.

High Risk Activity

The Customer acknowledges and agrees that the Product is designed, developed
and manufactured as contemplated for general use, including without limitation,
general office use, personal use, household use, and ordinary industrial use, but is not
designed, developed and manufactured as contemplated for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could lead directly to
death, personal injury, severe physical damage or other loss (hereinafter "High Safety
Required Use"), including without limitation, nuclear reaction control in nuclear facility,
aircraft flight control, air traffic control, mass transport control, medical life support
system, missile launch control in weapon system. The Customer shall not use the
Product without securing the sufficient safety required for the High Safety Required Use.
In addition, FUJITSU (or other affiliate's name) shall not be liable against the Customer
and/or any third party for any claims or damages arising in connection with the High
Safety Required Use of the Product.

Contents

Developer's Guide 3

Contents
About this Manual... 5

1 Introduction.. 8

1.1 The Developer's Tasks in BSS...8

1.2 Web Services Concepts..9

2 Platform Services...11

3 Integrating Applications with BSS...15

3.1 Prerequisites...15

3.2 Implementing a Provisioning Service..15
3.2.1 Implementing the Service as a Java Client...16
3.2.2 Implementing the Service as a Non-Java Client... 18
3.2.3 Implementation Details.. 18

3.3 Adapting the Login/Logout Implementation... 20

3.4 Integrating with BSS Event Management... 25

3.5 Implementing Technical Service Operations.. 25

4 Integrating External Process Control.. 27

5 Integrating Certificates for Trusted Communication..................29

5.1 Introduction.. 29

5.2 Requirements for Web Service Calls from BSS... 30

5.3 Requirements for Web Service Calls to BSS..30

5.4 Certificate Integration Procedures...31
5.4.1 Creating a Certificate and a Signing Request...31
5.4.2 Importing the Signed Certificates.. 32
5.4.3 Importing the BSS Server Certificate.. 33

Appendix A Customer Billing Data... 34

Appendix B Revenue Share Data..50

B.1 Common Elements.. 50

B.2 Broker Revenue Share Data... 51

Contents

Developer's Guide 4

B.3 Reseller Revenue Share Data...53

B.4 Marketplace Owner Revenue Share Data..56

B.5 Supplier Revenue Share Data.. 62

Glossary ... 69

About this Manual

Developer's Guide 5

About this Manual
This manual describes the public Web service interface of Systemwalker Service Catalog
Manager - hereafter referred to as Business Support System (BSS) - and how to use it to integrate
applications and external systems with BSS.
The manual is structured as follows:

Chapter Description

Introduction on page 8 Provides an overview of a developer's tasks, and
describes the basic concepts of Web services.

Platform Services on page 11 Describes the BSS platform services as well as their
purpose and usage.

Integrating Applications with BSS on
page 15

Describes how to implement the interfaces between
an application and BSS.

Integrating External Process Control on
page 27

Describes how to integrate an external process control
system with BSS.

Integrating Certificates for Trusted
Communication on page 29

Provides an introduction to the usage of certificates for
securing communication between BSS applications or
external systems.

Customer Billing Data on page 34 Describes the elements of an XML file created by
exporting customer billing data.

Revenue Share Data on page 50 Describes the elements of XML files created by
exporting revenue share data.

Readers of this Manual
This manual is directed to developers who carry out tasks for different organizations involved in
the usage of BSS, for example, integrate applications or external process control systems with
BSS.
This manual assumes that you are familiar with the following:
• BSS concepts as explained in the Overview manual
• Basic Web service concepts
• XML and the XSD language
• Web services standards SOAP and WSDL
• A programming language that can be used to create and invoke Web services, for example,

Java
• Java, Java servlets, and Java server pages
• Installation and basic administration of Web servers

Notational Conventions
This manual uses the following notational conventions:

About this Manual

Developer's Guide 6

Add The names of graphical user interface elements like menu options are shown
in boldface.

init System names, for example, command names, and text that is entered from
the keyboard are shown in Courier font.

<variable> Variables for which values must be entered are enclosed in angle brackets.

[option] Optional items, for example, optional command parameters, are enclosed in
square brackets.

one | two Alternative entries are separated by a vertical bar.

{one | two} Mandatory entries with alternatives are enclosed in curly brackets.

Abbreviations
This manual uses the following abbreviations:

APP Asynchronous Provisioning Platform

BSS Business Support System

CA Certification authority

IaaS Infrastructure as a Service

JAX-WS Java API for XML Web services

JSP Java Server Pages

PaaS Platform as a Service

PSP Payment service provider

RPC Remote Procedure Calls

SaaS Software as a Service

SOAP Simple Object Access Protocol

WSDL Web Services Description Language

XSD XML Schema Definition

Available Documentation
The following documentation on BSS is available:
• Overview: A PDF manual introducing BSS. It is written for everybody interested in BSS and

does not require any special knowledge.
• Online Help: Online help pages describing how to work with the administration portal of BSS.

The online help is directed and available to everybody working with the administration portal.
• Installation Guide: A PDF manual describing how to install and uninstall BSS. It is directed to

operators who set up and maintain BSS in their environment.
• Operator's Guide: A PDF manual for operators describing how to administrate and maintain

BSS.

About this Manual

Developer's Guide 7

• Technology Provider's Guide: A PDF manual for technology providers describing how to
prepare applications for usage in a SaaS model and how to integrate them with BSS.

• Supplier's Guide: A PDF manual for suppliers describing how to define and manage service
offerings for applications that have been integrated with BSS.

• Reseller's Guide: A PDF manual for resellers describing how to prepare, offer, and sell services
defined by suppliers.

• Broker's Guide: A PDF manual for brokers describing how to support suppliers in establishing
relationships to customers by offering their services on a marketplace.

• Marketplace Owner's Guide: A PDF manual for marketplace owners describing how to
administrate and customize marketplaces in BSS.

• Developer's Guide: A PDF manual for application developers describing the public Web service
interface of BSS and how to use it to integrate applications and external systems with BSS.

• Javadoc documentation for the public Web service interface of BSS and additional resources
and utilities for application developers.

1: Introduction

Developer's Guide 8

1 Introduction
Business Support System (BSS) is a set of services which provide all business-related functions
and features required for turning on-premise software applications into Software as a Service
(SaaS) offerings and using them in the Cloud. This includes ready-to-use account and subscription
management, online service provisioning, billing and payment services, and reporting facilities.
With its components, BSS covers all the business-related aspects of a Platform as a Service
(PaaS) or Cloud platform. It supports software vendors as well as their customers in leveraging
the advantages of Cloud Computing.
The basic scenario of deploying and using applications as services in the BSS framework involves
the following users and organizations:
• Technology providers (e.g. independent software vendors) technically prepare their

applications for usage in the Cloud and integrate them with BSS. They register the applications
as technical services in BSS.

• Suppliers (e.g. independent software vendors or sales organizations) define service offerings,
so-called marketable services, for the technical services in BSS. They publish the services to a
marketplace.

• Customers register themselves or are registered by an authorized organization in BSS and
subscribe to one or more services. Users appointed by the customers work with the underlying
applications under the conditions of the corresponding subscriptions.

• Marketplace owners are responsible for administrating and customizing the marketplaces to
which services are published.

• Operators are responsible for installing and maintaining BSS.

In extended scenarios, the suppliers who define marketable services may involve additional users
and organizations in offering and selling these services:
• Brokers support suppliers in establishing relationships to customers by offering the suppliers'

services on a marketplace. A service subscription is a contract between the customer and the
supplier.

• Resellers offer services defined by suppliers to customers applying their own terms and
conditions. A service subscription establishes a contract between the customer and the
reseller.

Developers in different organizations can use the BSS Web service interface for implementing
applications that make use of BSS features or for integrating external systems with BSS.

1.1 The Developer's Tasks in BSS
As a developer, you integrate external applications and systems with BSS. You typically do this for
the following organizations and purposes:
• Technology provider: You technically prepare applications for usage in a SaaS model and

implement the services and interfaces required to integrate the applications with BSS.
Depending on the application, this may involve: Implementing a provisioning service, adapting
the application's login and logout behavior, providing for the generation and sending of events,
implementing operations that can be carried out from BSS.

• Supplier or customer: You integrate BSS with an external process control system in order to
control the execution of specific BSS actions. This involves implementing a notification service
which is invoked through appropriate triggers configured in BSS. The triggers are defined and

1: Introduction

Developer's Guide 9

managed by the administrator of the affected organization. For details, refer to the BSS online
help.

For performing these tasks, you use the public Web service interface of BSS. This interface, its
documentation and additional resources, templates, samples, and utilities are provided in the
BSS integration package (fujitsu-bss-integration-pack.zip file). A detailed documentation
for these resources is provided as Javadoc. By opening the readme.htm file of the integration
package, you can access the available Javadoc documentation as well as the resources
themselves.
In order to provide for secure communication between BSS and the applications or external
systems integrated with it, you can make use of certificates.
An additional task of a developer in the BSS context is the processing of billing data, for example,
in an external accounting system. BSS allows suppliers, brokers, resellers, marketplace owners,
and operators to export customer billing data and revenue share data to XML files. From these
files, the required data can be extracted for further processing.

1.2 Web Services Concepts
A Web service is a software module performing a discrete task or a set of tasks that can be
accessed and invoked over a network, especially the World Wide Web. A provider makes Web
services available to client applications that want to use them. A client application can invoke
Web services through remote procedure calls (RPC). A published Web service is described in a
WSDL file that allows you to locate it and evaluate its suitability for your needs. As an example, a
company could provide a Web service to its customers to check an inventory on products before
they order them.
Web services as well as the client applications can be written in different languages and run on
different platforms.
BSS provides its functionality as Web services. The public Web services as well as additional
resources, templates, samples, and utilities can be used to integrate applications with BSS in
order to make them available as services to customers.
The BSS Web services are written in Java using JAX-WS.

Web Services Standards
The development of Web services is based on the following standards:
• SOAP (Simple Object Access Protocol)

SOAP is a transport-independent messaging protocol. SOAP messages are XML documents
that are sent back and forth between a Web service and the calling application. SOAP uses
one-way messages, although it is possible to combine messages into request-response
sequences. The SOAP specification defines the format of the XML message but not its content
and how it is actually sent. However, the SOAP specification defines how SOAP messages are
routed over HTTP.
The BSS Web services use SOAP for the XML payload (XML data part) and HTTP as the
transport protocol for the SOAP messages. The BSS Web services support the SOAP 1.1
protocol.

• WSDL (Web Service Description Language)
WSDL is an XML-based language used to define Web services and describe how to access
them. Specifically, it describes the data and message contracts a Web service offers. By

1: Introduction

Developer's Guide 10

examining a Web service's WSDL document, developers know what methods are available and
how to call them using the proper parameters.

For more information about SOAP and WSDL, refer to the SOAP and WSDL documents on the
website of the World Wide Consortium website (www.w3c.org).

2: Platform Services

Developer's Guide 11

2 Platform Services
BSS exposes its basic functionality at a public Web service interface which consists of the
so-called platform services. An application that integrates with BSS invokes the functionality of the
platform services.
The following platform services are available:
• Account management service
• Billing service
• Categorization service
• Discount service
• Event management service
• Identification service
• Marketplace management service
• Reporting service
• Review service
• SAML service
• Search service
• Service provisioning service
• Session service
• Subscription management service
• Tag service
• Trigger service
• Trigger definition service
• VAT service

The platform services are available in the BSS integration package.
The following sections contain a description of the purpose and usage of each service. For details
on the methods of the services and the related data objects, refer to the Javadoc documentation.

Account Management Service
Java class name: com.fujitsu.bss.intf.AccountService
This service is used for managing the account data of organizations, including billing and payment
information and custom attributes.

Billing Service
Java class name: com.fujitsu.bss.intf.BillingService
This service is used for exporting billing data and revenue share data.
Operators, suppliers, resellers, brokers, and marketplace owners can export customer billing data
and revenue share data from BSS and process it using accounting, billing, and payment facilities
that have already been established in their organization. This is useful, for example, to create
invoices for customers who decide to pay on receipt of invoice, or for managing the revenue
shares of the different organizations involved in offering and selling services.

2: Platform Services

Developer's Guide 12

The results of export operations are stored in XML files. For detailed information on the elements
of the XML files, refer to Customer Billing Data on page 34 and Revenue Share Data on
page 50.

Categorization Service
Java class name: com.fujitsu.bss.intf.CategorizationService
This service is used for defining and managing service categories.
A marketplace owner organization can create any number of categories for its marketplace.
Suppliers, brokers, and resellers can assign these categories to the services they publish on the
marketplace. Customers can use the categories for browsing the service catalog and searching for
services on the marketplace.

Discount Service
Java class name: com.fujitsu.bss.intf.DiscountService
This service is used for retrieving discount values.

Event Management Service
Java class name: com.fujitsu.bss.intf.EventService
This service is used for recording events which are generated during the operation of applications
that are integrated with BSS. Events can be used for billing and reporting. Examples of events are
the completion of a specific transaction, or the creation or deletion of specific data.
For details on how to integrate an application with the BSS event management, refer to Integrating
with BSS Event Management on page 25.

Identification Service
Java class name: com.fujitsu.bss.intf.IdentityService
This service is used for managing user accounts, user roles, and logins.

Marketplace Management Service
Java class name: com.fujitsu.bss.intf.MarketplaceService
This service is used for managing marketplaces and the marketable services published on them.

Reporting Service
Java class name: com.fujitsu.bss.intf.ReportingService
This service is used for retrieving a list of available reports.
BSS offers comprehensive reports for different purposes and at different levels of detail. Different
types of report satisfy the needs of all participating parties. Reports can be displayed at the BSS
user interface and exported to different file formats.

Review Service
Java class name: com.fujitsu.bss.intf.ReviewService
This service is used for creating and retrieving service reviews and ratings on a marketplace.

SAML Service
Java class name: com.fujitsu.bss.intf.SamlService

2: Platform Services

Developer's Guide 13

This service is used for the SAML-based single sign-on mechanism. It creates a SAML assertion
based on the credentials of the logged-in user, which can be sent to a service provider or
application to grant access to specific resources. To use the SAML-based single sign-on
mechanism for an application integrated with BSS, the user access type must be defined and
implemented for it. For details on access types, refer to the Technology Provider's Guide.

Search Service
Java class name: com.fujitsu.bss.intf.SearchService
This service is used for searching for services published on a marketplace.

Service Provisioning Service
Java class name: com.fujitsu.bss.intf.ServiceProvisioningService
This service is used for managing technical and marketable services in BSS in order to make
applications available in service offerings.

Session Service
Java class name: com.fujitsu.bss.intf.SessionService
This service is used for storing, retrieving, and deleting BSS session data. If you need to
implement your own token handler and logout listener for an application integrated with BSS, you
have to implement calls to methods of this service. For details, refer to Adapting the Login/Logout
Implementation on page 20.

Subscription Management Service
Java class name: com.fujitsu.bss.intf.SubscriptionService
This service is used for managing subscriptions. Depending on the instance provisioning
mechanism of your applications integrated with BSS, you may have to implement calls to
methods of this service in the provisioning service. For details, refer to Implementation Details on
page 18.

Tag Service
Java class name: com.fujitsu.bss.intf.TagService
This service is used for retrieving the tags (search terms) of the tag cloud of a marketplace. The
tag cloud is the area of a marketplace containing defined search terms (tags).
The operator can set a value for the maximum number of tags composing the tag cloud, and the
minimum number of times a tag must be used in services to be shown in the tag cloud. The more
often a specific tag is used for services, the bigger the characters of the tag are displayed at the
user interface.

Trigger Service
Java class name: com.fujitsu.bss.intf.TriggerService
This service is used for retrieving and manipulating trigger process data. These data are used in
a notification service to approve or reject BSS actions in a process control system. For details on
how to integrate external process control systems, refer to Integrating External Process Control on
page 27 and the online help.

2: Platform Services

Developer's Guide 14

Trigger Definition Service
Java class name: com.fujitsu.bss.intf.TriggerDefinitionService
This service is used for managing the definitions of triggers which are used to interact with
external process control systems. The triggers are defined and managed by the administrator of
the affected organization. For details, refer to the BSS online help.

VAT Service
Java class name: com.fujitsu.bss.intf.VatService
This service is used for handling VAT-related tasks.
Suppliers can enable VAT rate support for their services and customers in order to invoice usage
charges for subscriptions as gross prices. The suppliers are responsible for setting the correct VAT
rates. For details on billing and payment, refer to the Supplier's Guide.

Addressing the Platform Services
Once deployed, the platform services can be addressed via WSDL URLs. In the application
server administration console, the fujitsu-adm-um-webservices.jar subcomponent of the
fujitsu-bss application includes a descriptor file with all the information needed for finding out
the WSDL URL of a platform service:
1. In the GlassFish administration console, go to Common Tasks -> Applications ->

fujitsu-bss.

2. On the Descriptor tab, open the META_INF/sun-ejb-jar.xml descriptor file of the
fujitsu-adm-um-webservices.jar subcomponent.
For every Web service, the endpoint address URI shows the Web service name, its version,
and whether it is to be addressed through basic authentication (BASIC) or certificate-based
authentication (CLIENTCERT). Refer to Introduction on page 29 for details on the
authentication types.
The URL pointing to the WSDL definition of a platform service is constructed as follows:
<base URL>/<endpoint-address-uri>?wsdl

where
<base URL> points to the server and port where the platform services have been deployed.
<endpoint-address-uri> is the address as defined in the sun-ejb-jar.xml descriptor file.
?wsdl is the suffix to be used for identifying a WSDL file.
Example: https://myserver:8081/AccountService/v1.4/BASIC?wsdl

3: Integrating Applications with BSS

Developer's Guide 15

3 Integrating Applications with BSS
Integrating an application with BSS involves the following implementation tasks:
• Implement a provisioning service
• Adapt the login/logout implementation
• Integrate the application with the BSS event management
• Implement service operations

The sections of this chapter describe the required implementation steps in detail.

3.1 Prerequisites
Before you can start integrating an application with BSS, you have to set up your development
environment. The following prerequisites must be fulfilled:
• You have installed a servlet container or application server, where you can deploy your

application and the provisioning service, if any.
• You have installed a Web service framework, for example JAX-WS (Java API for XML Web

Services), to deal with the Web services.
JAX-WS is a Java API for creating and using Web services. It is part of the Java EE platform
from Oracle.

• You have decided on the authentication type to be used. For details refer to Introduction on
page 29.

3.2 Implementing a Provisioning Service
As a first integration step, you implement a so-called provisioning service that exposes its
operations as a Web service. A provisioning service is required for integrating an application with
the subscription management of BSS. The provisioning service is called by BSS when customers
subscribe to a service and manage their subscriptions. Additionally, the provisioning service may
be called for creating and managing users.
You do not need to implement a provisioning service if you have chosen to use the external
access type. With this access type, users access an application directly after subscribing to a
corresponding service. They are redirected immediately to the underlying application. Any further
interaction takes place directly between the user and the application without involving BSS in any
way.
For the implementation of a provisioning service, you need to consider the following:
• Instance provisioning

When a customer subscribes to a service, the underlying application is supposed to perform
specific steps required for the subscription and return an identifier to BSS for future reference.
The term 'instance' denotes all the items that the application has provisioned for a subscription.
The actions to be performed and the items to be created, if any, depend entirely on the
concepts and functionality of your application. For example, if a customer creates and stores
data when using your application, your application may create a separate workspace in a data
container or a separate database instance.

• Provisioning mode
Instance provisioning can be performed in synchronous or asynchronous mode.

3: Integrating Applications with BSS

Developer's Guide 16

Synchronous mode is used if provisioning can be completed right away. The provisioning
service triggers the application to perform all the required actions and confirms the operation as
complete. BSS then sets the subscription to active, which means that the service is ready to be
used by the customer.
Asynchronous mode is used if provisioning operations take a long time because long-running
processes or manual steps are involved, or when huge amounts of data or virtual machines
need to be set up. In this case, the provisioning service notifies BSS that the provisioning
is pending. Required actions may have started on the application side, but have not
been completed yet. The provisioning service needs to notify BSS using the subscription
management service when provisioning is either complete or cannot be completed.
BSS supports the development of asynchronous provisioning services with the asynchronous
provisioning platform (APP). This is a framework which provides a provisioning service as
well as functions, data persistence, and notification features which are always required
for integrating applications in asynchronous mode. The framework, samples, and
documentation are provided in the integration package for asynchronous provisioning
(fujitsu-bss-integration-app-pack.zip file).

• Application parameters
An application may have parameters that are of relevance for the service provisioning in BSS.
Parameters can be used to define different feature configurations or service restrictions, for
example, the maximum number of folders, files, or objects that can be created. Application
parameters are specified in the technical service definition.
BSS can pass parameters to your application through the instance provisioning call. Any
further processing must be carried out by your application. Especially if parameters are used to
impose restrictions on service usage, the application needs to ensure that the restrictions are
met. For example, if there is a parameter to restrict the maximum number of files created for a
subscription, the application needs to track the actual number and ensure that the maximum
number is not exceeded.
For details on how to define parameters in the technical service definition, refer to the
Technology Provider's Guide.

• User management
If users access your application through BSS, you need to implement user management
operations. These operations are called when a customer assigns users to a subscription in
BSS, when users are deassigned from a subscription, or when user profiles are updated. Your
application may take corresponding actions, for example, create corresponding user accounts
in its own user management system.

To implement a provisioning service, you have two options:
• Implementing the service as a Java client (see Implementing the Service as a Java Client on

page 16)
• Implementing the service as a non-Java client (see Implementing the Service as a Non-Java

Client on page 18)

3.2.1 Implementing the Service as a Java Client
It is recommended to use the JAX-WS framework for implementing a provisioning service.
BSS ships the Java interfaces for its Web services as a .jar file. You can directly write your Java
code and include this .jar file for calls from BSS to the application (outbound calls), or implement

3: Integrating Applications with BSS

Developer's Guide 17

the Java interfaces for calls from the application to BSS (inbound calls). No code generation is
required.
Both call directions can be deployed in Java EE environments:
• Outbound calls:

For outbound Web service calls, JAX-WS offers APIs to directly address a Web service
specified by a WSDL file and to obtain a proxy implementation of the interface.
The following code creates a client for the Web service with a given WSDL:

final URL wsdlLocation = new URL("https://myServer:8081/
ServiceProvisioningService/v1.4/BASIC?wsdl")
final javax.xml.namespace.QName serviceName = new QName
 ("http://bss.fujitsu.com/xsd/v1.4", "SessionService");
final javax.xml.ws.Service service = Service.create
 (wsdlLocation, serviceName);
final SessionService sessionService = service.
 getPort(SessionService.class);

//now the service can be directly called just as if the implementation
//were locally available.
sessionService.resolveUserToken(...);

• Inbound calls:
Providing a Web service implementation that can be used for inbound calls means that you
implement the service and annotate the implementation to get published.
If the application is deployed in a Java EE-compliant application server, the provisioning
service can be deployed as an annotated bean. The service implementation can be
either a stateless session bean when deployed as J2EE application, or a plain Java
object when deployed as part of a Web application. In both cases, the annotation is
javax.jws.WebService with a reference to the service definition.
Your provisioning service must implement the provisioning API of BSS, for example, as shown
here:

@WebService(serviceName = "ProvisioningService",
 targetNamespace = "http://bss.fujitsu.com/xsd/v1.3",
 endpointInterface =
 "com.fujitsu.bss.provisioning.intf.ProvisioningService")
public class MyProvisioningServiceImpl implements ProvisioningService
 {
 //...
}

Note that the target namespace must be exactly the same as defined in the interface.
The endpointInterface attribute refers to the Java interface defining the Web service. This
allows the implementation class to provide the respective Java method implementations. All
Web service-related annotations are taken from the interface.
If the application is a Java application but not deployed in a Java EE-compliant application
server, JAX-WS offers APIs to publish the Web services:

import javax.xml.ws.Endpoint;
public static void main(String[] args) {
 Endpoint.publish(
 "https://www.example.com/MyService/provisioningServices",
 new MyProvisioningServiceImpl());

3: Integrating Applications with BSS

Developer's Guide 18

}

3.2.2 Implementing the Service as a Non-Java Client
Non-Java clients need to conform to the WSDL and XSD files shipped with BSS: You create a
Web service based on the ProvisioningService.wsdl document.
Depending on the platform and the Web services framework you are using, code generation will
be required or dynamic usage will be possible. For example, dynamic languages like PHP or
Python allow generating proxy object instances directly from a WSDL at runtime.

3.2.3 Implementation Details
The following steps provide an overview of the methods you need to implement for a provisioning
service.

Note: If you are using the asynchronous provisioning platform for developing a provisioning
service, you do not need to implement these methods. Instead, you develop a service
controller.
For details, refer to the documentation provided with the integration package for
asynchronous provisioning (fujitsu-bss-integration-app-pack.zip file).

1. Implement at least the following methods:
• createInstance for the synchronous provisioning of an instance or asyncCreateInstance

for the asynchronous provisioning of an instance.
• deleteInstance

2. If your application has parameters that are set during instance provisioning, implement the
modifyParameterSet method.

3. If users access your application through BSS, implement the following methods:
• createUsers

• deleteUsers

• updateUsers

4. If you are using asynchronous instance provisioning, you need to implement calls to the
following methods of the subscription management service (see Platform Services on
page 11):
• abortAsyncSubscription

• completeAsyncSubscription

5. Deploy your provisioning service and make sure that it is operational.

For each organization role, the following tables list the methods of the provisioning service which
are called when specific user actions are executed in BSS. The dependencies on the chosen
access type and other parameters are also described, if applicable.
For details on access types, refer to the Technology Provider's Guide.
Technology Provider

3: Integrating Applications with BSS

Developer's Guide 19

User Action Method Behavior

Import service definition
Click a service entry to
view the details in the BSS
administration portal.

sendPing() sendPing() is called for all access
types except external.

Supplier/Reseller/Broker

User Action Method Behavior

Terminate a subscription deleteInstance() deleteInstance() is called for
each deleted subscription and for
all access types except external.

Activate or deactivate
services
Activate a service.

sendPing() sendPing() is called for all access
types except external.

Manage payment types
Deactivate/reactivate a
payment type for a customer.

deactivateInstance()

activateInstance()

deactivateInstance() and
activateInstance() are called
for all access types except
external.
deactivateInstance() is
called if the customer uses
the deactivated payment type
to pay for his subscriptions.
activateInstance() is called if
a deactivated payment type used
by the customer is made available
again. The methods are called for
each affected subscription.

Customer

User Action Method Behavior

Subscribe to a service createInstance()

asyncreateInstance()

createInstance() is called for
login, direct, and user access in
synchronous mode.
asyncreateInstance() is called
for login, direct, and user access in
asynchronous mode.
A list of all parameters and values
of a service can be retrieved with
the getParameterValue() method
of the instanceRequest class.

Manage Users
Modify user profiles, no
changes in assignments to
subscriptions

updateUsers() updateUsers() is called for login
and user access.
The method is called independent
of any changes in the user profile.

3: Integrating Applications with BSS

Developer's Guide 20

User Action Method Behavior

Assign users to a
subscription
Assign one or more users to
the selected subscription

createUsers() createUsers() is called for login
and user access.
The method is called for each
assigned user. The users
parameter contains the list of users
who are to be assigned to the
selected subscription.

Deassign users from a
subscription
Deassign one or more
users from the selected
subscription

deleteUsers() deleteUsers() is called for login
and user access.
The method is called for each
deassigned user. The users
parameter contains the list of users
who are to be deassigned from the
selected subscription.

Modify a subscription modifyParameterSet() modifyParameterSet() is
called for all access types except
external.
The method is called only if
customizable parameters are
changed by the customer.

Up/Downgrade a
subscription

modifyParameterSet() modifyParameterSet() is
called for all access types except
external.

Terminate a subscription deleteInstance() deleteInstance() is called for all
access types except external.

If a subscription expires, the deactivateInstance() method is called and the instances related
to the subscription are deactivated. If the subscription is updated and activated again, the
activateInstance() method is called.
For details on the methods and data objects, refer to the Javadoc for the BSS provisioning API
shipped in the BSS integration package.

3.3 Adapting the Login/Logout Implementation
If you opt for access through BSS (login access), you need to adapt the login/logout
implementation of your application and implement the relevant methods defined by the
provisioning service.
The required functionality for login and logout is distributed between a token handler, a custom
login module, a custom logout module, and a logout listener:
• The token handler is responsible for requesting BSS to resolve a user token into a user

ID. It takes up the task of creating a session object and storing the user ID in that object.
Additionally, it forwards requests containing a resolved user token to a custom login module.

• The custom login module lets users log in to the application without requesting any further
credentials. Users are trusted because they have been authenticated by BSS. For example, a
custom login module might pass the user ID and a default password to the application.

3: Integrating Applications with BSS

Developer's Guide 21

To ensure that any login takes place through BSS, a direct login to your application must be
bypassed.

• The custom logout module closes user sessions on the application side and redirects
users to the logout page of the application. The URL of the logout page is returned by the
deleteServiceSession method of the BSS session service.

• The logout listener notifies BSS when a user logs out or a session timeout occurs.

As for the custom login and logout modules, you need to analyze the existing functionality of your
application and adapt it to match the required behavior.
As for the remaining functionality, BSS provides a Web application package
(Integrationhelper.war) implemented in Java, the so-called integration helpers. The package
supports you in adapting the login/logout implementation of a Java-based Web application. It
contains a token handler and a logout listener ready to use. The integration helpers are available
in the BSS integration package.
The Integrationhelper.war package has the following contents:

Package Contents Description

tokenhandler.jsp Token handler implemented as JSP.

WEB-INF/lib A folder containing all JAR files required by the
BSS integration helpers.

WEB-INF/classes/
tokenhandler.properties

A property file specifying the fully qualified
URL (e.g. https://myServer:8081/
ServiceProvisioningService/v1.4/BASIC?
wsdl) to the BSS platform services and the relative
URL to the custom login module of your application.
The custom login module must be on the same
machine and in the same context as the token
handler.

WEB-INF/web.xml A sample configuration file with entries for the token
handler servlet and the logout listener.

WEB-INF/classes/com/fujitsu/
bes/integrationhelper/
LogoutListener.class

Logout listener class.

3: Integrating Applications with BSS

Developer's Guide 22

The following figure illustrates the functionality of the token handler and the logout listener
provided with the integration helpers (components provided by BSS are shown in gray):

The integration helpers can be used with any Java-based Web application. The token handler
is implemented as a Java servlet and as a JSP; the logout listener is implemented as a session
listener.
If your application is based on a different technology, you need to implement your own token
handler and logout listener by calling the following methods of the session service (see Platform
Services on page 11):
• resolveUserToken for requesting BSS to resolve a user token
• deleteServiceSession for notifying BSS of a logout or session timeout

HTTP Parameters of the Login Request
The login request sent by BSS contains the following HTTP parameters:
• usertoken (String)

User token that can be resolved to a user ID in conjunction with the saasId parameter.

• saasId (String)

3: Integrating Applications with BSS

Developer's Guide 23

ID needed by the application for further communication with BSS. The ID is generated by BSS.

• instanceId (String)
Identifies any items that belong to a subscription on the application side. The ID is generated
by the application and returned to BSS by the instance provisioning call. When you implement
a provisioning service, the instance ID must be generated by your provisioning service.

• subKey (String)
Identifies a subscription. This key can be used for the recordEventForSubscripton method
when integrating with the BSS event management.

• language (String)
Language to be used for the interaction with the user.

• contextPath (String)
Optional. Local application-specific context.

To integrate the BSS integration helpers into your Web application:
1. Extract the Integrationhelper.war package from the BSS integration package to a location

of your choice.
2. Adapt the following information in the tokenhandler.properties file to your needs:

• Server and port where the BSS platform services have been deployed
• Path to your custom login module

3. Copy the contents of the WEB-INF/lib and WEB-INF/classes folders to the corresponding
folders of your Web application.

4. Do one of the following:
• If you want to use the JSP-based token handler, copy the Tokenhandler.jsp file to your

Web application.
• If you want to use the servlet-based token handler, register it in the web.xml file of your Web

application.
To do this, you can copy the servlet and servlet-mapping sections from the sample
web.xml file, which is part of the Integrationhelper.war package, to the web.xml file of
your Web application.

5. Register the logout listener in the web.xml file of your Web application.
To do this, you can copy the listener section from the sample web.xml file, which is part of
the Integrationhelper.war package, to the web.xml file of your Web application.

In the technical service definition of the application, the path to the token handler must be
specified in the loginPath attribute for login access.
For details on the technical service definition, refer to the Technology Provider's Guide.

Example
Suppose you implemented a JSP-based or servlet-based custom login module for your
application, which is to be called after the user token has been resolved. The custom login module
is available as a Web resource at /DoAutoLogin. Your Web application is running on myserver at
port 7777 using the context myapplication. The BSS platform services are listening at port 8081 .
Depending on whether you use the servlet-based or the JSP-based token handler, the
configuration files look as shown below.

3: Integrating Applications with BSS

Developer's Guide 24

Servlet-Based Token Handler
• tokenhandler.properties

TOKENHANDLER_BSS_HOST=https://myserver:8081/SessionService/v1.4/BASIC?wsdl
TOKENHANDLER_FORWARD=/DoAutoLogin

• web.xml

...
<servlet>
 <display-name>TokenhandlerServlet</display-name>
 <servlet-name>TokenhandlerServlet</servlet-name>
 <servlet-class>com.fujitsu.bss.integrationhelper.TokenhandlerServlet
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>TokenhandlerServlet</servlet-name>
 <url-pattern>/resolveToken</url-pattern>
</servlet-mapping>

<listener>
 <listener-class>com.fujitsu.bss.integrationhelper.LogoutListener
 </listener-class>
</listener>
...

• Technical service definition

...
<TechnicalService
 id="SampleService"
 baseUrl="https://myserver:7777/myservice"
 loginPath="/resolveToken"
 ...
>
...

JSP-Based Token Handler
• tokenhandler.properties

TOKENHANDLER_BSS_HOST=https://myserver:8081/SessionService/v1.4/BASIC?wsdl
TOKENHANDLER_FORWARD=/DoAutoLogin

• web.xml

...
<listener>
 <listener-class>com.fujitsu.bss.integrationhelper.LogoutListener
 </listener-class>
</listener>
...

• Technical service definition

...
<TechnicalService
 id="SampleService"
 baseUrl="https://myserver:7777/myservice"
 loginPath="/Tokenhandler.jsp"

3: Integrating Applications with BSS

Developer's Guide 25

 ...
>
...

3.4 Integrating with BSS Event Management
The event management service in BSS collects specific events generated during application
operation. These events can be used for price models, billing, and reporting. Examples of events
are the completion of a specific transaction, or the creation or deletion of specific data.
Your application can send events to BSS at runtime through the event management service, which
is one of the BSS platform services.
To integrate an application with BSS event management:
1. If your application does not generate the required events yet, implement the generation of

events.
2. Depending on the information available for a subscription, implement the sending of events to

BSS by calling one of the following methods of the event management service (see Platform
Services on page 11):
• recordEventForSubscription (subscription key must be specified)
• recordEventForInstance (ID of the technical service and instance ID must be specified)
For details on the methods, refer to the Javadoc for the BSS platform services.

3. When preparing the technical service definition, declare the events that your application will
send.

Note: BSS comes with two predefined events, which can be used with login access: login to a
service and logout from a service. These events are generated automatically and need
not to be implemented in the application or defined in the technical service definition. To
use the logout event, you must implement a logout listener. For details refer to Adapting
the Login/Logout Implementation on page 20.

3.5 Implementing Technical Service Operations
You may wish that your technical service offers additional operations or functions that are to be
accessible via BSS without opening the application. In a SaaS environment, applications are not
installed locally but provisioned as services. Therefore, users cannot access the system resources
the applications are using, for example, to perform administrative tasks such as system backup or
shutdown. Providing such operations in your technical service simplifies the integration without the
need to enhance the application by another interface that is reachable via the Web.
The information about the operations provided by the technical service must be added to its XML
definition. For details, refer to the Technology Provider's Guide.
To integrate a technical service operation:
1. Implement the executeServiceOperation method in a Web service definition using the

OperationService interface of the operation API, which is part of the BSS integration
package.
The following information is provided as parameter settings:
• The user identifier. This ID is unique in the instance context and allows the technical service

to perform built-in security checks.

3: Integrating Applications with BSS

Developer's Guide 26

• The instance identifier. This ID uniquely identifies the application instance that is to be
affected by the operation.

• The transaction identifier. Currently, this ID is always set to 0; it serves as a reference to a
BSS internal transaction.

• The operation identifier. This ID uniquely identifies the operation to be executed as defined
in the technical service definition. For details, refer to the Technology Provider's Guide.

You need to provide the operation in a WSDL file that is accessible by a URL.

2. Edit the technical service definition XML file and include the operation.
For details, refer to the Technology Provider's Guide.

When implementing service operations, be aware of the following:
• The return type is not configurable; currently it can only be String.
• Additional parameters are not allowed.
• BSS does not provide for any access control. Every user who can use the subscription can

also execute the operations.
• The operations can only be executed in synchronous mode.

4: Integrating External Process Control

Developer's Guide 27

4 Integrating External Process Control
Organizations often have specific processes for registering users, subscribing to services, or
defining prices. Usually, such processes include approval processes and are modeled and
automated with a process control system.
Certain actions of customers and suppliers can be carried out under the control of an external
process control system. You can configure so-called triggers which are invoked when these
actions are carried out. The triggers start the corresponding process in the process control
system. If approval for the action is required, it is suspended until it is approved in the process
control system. If no approval is required, the process control system is informed about the
execution of the action.
As a prerequisite for controlling actions by processes, a notification service must exist and be
deployed. This service forms the interface between the platform and the process control system.
Users can see all pending actions at the BSS user interface, cancel them, or delete aborted ones.

Process-Controlled Actions
The following actions may be subject to process control and thus to approval in an external
process control system before they are executed in BSS:
• For any type of organization, the following triggers can be configured:

• A subscription is to be changed, for example, renamed (Modify subscription).
• A billing run is completed, and the billing data for a billing period is calculated (Start

billing run).
• A subscription is to be added (Subscribe to service).
• A user is to be assigned to or removed from a subscription (Assign users to

subscription).
• A subscription is to be upgraded or downgraded (Up/Downgrade subscription).
• A subscription is to be terminated (Terminate subscription).
• A user is to be registered (Register user).

• For suppliers, the following additional triggers can be configured:
• A customer is to be registered (Register customer).
• The payment types for a customer are to be changed (Manage payment types for

customer).
• A marketable service is to be activated (Activate service).
• A marketable service is to be deactivated (Deactivate service).
• A user of an organization subscribes to a service offered by the supplier (Subscription

created (any user)).
• A user of a customer modifies a subscription to a service of the supplier (Subscription

modified (any user)).
• A user of a customer terminates a subscription to a service of the supplier (Subscription

terminated (any user)).

4: Integrating External Process Control

Developer's Guide 28

Connecting to an External Process Control System
If you want BSS to connect to an external system to handle notifications and thus make use of the
trigger processing feature of BSS, the following steps are required:
1. Implement a notification service:

An external system that is to be notified about certain actions must implement a Web service
for the com.fujitsu.bss.notification.intf.NotificationService interface. This
interface and the required data objects are provided with the BSS integration package.

2. Deploy the notification service in your environment. You can do this on the system hosting the
process control system you want to use, or on any other system.

3. Configure the relevant triggers in BSS. To do this, you must be an administrator of your
organization in BSS.
When defining a trigger, you need to provide the URL of the notification service WSDL file, for
example: https://myServer:8280/NotificationService?wsdl.
For details on how to define and manage triggers in BSS, refer to the BSS online help.
As soon as the notification service is deployed and the process triggers have been configured
in BSS, every action for which a process trigger has been configured results in a notification to
your notification service. The triggerProcessKey is sent for all actions that require a callback
from the external system. This key is necessary to approve or reject an action.
The process triggers are queued and executed asynchronously. They are not called inside the
transaction initiated by the user.

4. For approval or rejection, the process control system needs to call one of the methods provided
by the trigger service (see Platform Services on page 11), and send its response back to BSS.
As a result, the interrupted action is continued or canceled. When rejecting an action, the
reason for the rejection can be passed.

5: Integrating Certificates for Trusted Communication

Developer's Guide 29

5 Integrating Certificates for Trusted
Communication
Certificates are required for BSS to allow for trusted communication between BSS and an
application underlying a technical service or a payment service provider (PSP).
The following organizations are involved when using certificates:
• Operator
• Technology providers integrating their applications with BSS
• PSPs whose services are to be integrated with BSS for invoicing and payment collection.
• Organizations integrating an external process control system.
• Any other organization using Web service calls to or from BSS

5.1 Introduction
Web service calls coming from BSS (e.g. for provisioning application instances for services, or for
integrating a process control system) or sent to it (e.g. by an application such as a PSP system)
can be secured with SSL. SSL is used for authentication and for encryption at the transport level.
Every HTTPS connection involves a client and a server. Depending on the calling direction, BSS
can act as a server (Web service calls to BSS) or as a client (Web service calls from BSS).
When BSS acts as a server, the client must provide its authenticating data to the server. Two
options are available:
• Basic authentication:

The caller sends the key and password of a BSS user and addresses the BSS Web services
with the BASIC suffix. This mechanism does not apply certificates for user authentication.
However, certificates are involved because the communication between the client and BSS
must be secured using TLS/SSL and HTTPS. You should also configure your network's firewall
to block JNDI lookups from the outside when using basic authentication.
Basic authentication must be used for calling BSS functions that require the specification of a
user role. The user role determines whether the user is allowed to execute the function.

• Certificate-based authentication:
The caller provides a certificate to the BSS server. It addresses the BSS Web services with the
CLIENTCERT suffix. In this case, the following requirements must be fulfilled:
• The distinguished name (DN) of the client's certificate must correspond to the DN

configured and stored in BSS for the corresponding organization.
• BSS must trust the client's certificate: The BSS truststore must contain a certificate with a

valid signing chain to the certificate presented by the client.
Certificate-based authentication must be used when integrating a PSP such as Heidelpay. Web
services calling PSP-related functions of BSS do not require the specification of a user role.

Note: Both, the server and the client certificates must be created and signed using the same
JRE/JDK. Otherwise, the communication may fail.

Terminology
BSS uses an X.509 certificate to prove the identity of an entity. This certificate is always used to
prove the server's identity and optionally to prove the client's identity.

5: Integrating Certificates for Trusted Communication

Developer's Guide 30

A certificate has a subject which usually identifies the owner of the certificate, and an issuer who
signed the certificate. A certificate also includes a validity period. Cryptographic algorithms ensure
that the information contained in the certificate cannot be changed without breaking the signature
of the certificate.
The subject as well as the issuer is given as a distinguished name (DN) consisting of a list
of key-value pairs. One of the standardized keys is called common name (CN). The CN is of
particular importance to HTTPS servers: The CN must contain the server's domain; otherwise the
client will refuse the connection.
The process of issuing a certificate for another entity is called signing. Certificates always form a
chain up to a certain root certificate. In a root certificate, the subject and the issuer are one and
the same entity. Such certificates are called "self-signed".
Signing certificates or proofing that someone is the owner of a certificate requires the possession
of the corresponding private key. While certificates can be distributed to other parties, special
care must be taken to keep the private key secret.
Each client and server may have a keystore and a truststore. A keystore is used to keep
certificates along with the corresponding private key. This means that a keystore is used to prove
your own identity or to sign certificates. A truststore contains public certificates of other entities.

5.2 Requirements for Web Service Calls from BSS
For the provisioning of application instances and for integrating external process control or PSP
systems, BSS calls other Web services which can be addressed by HTTPS. In this scenario, BSS
is the Web service client while the other entity is the HTTPS server. The following requirements
must be fulfilled to establish a connection to the server:
• The server must present a valid certificate: The CN (common name) must correspond to the

server's domain name and it must be valid at the time of calling.
• The client (BSS) must trust the server's certificate. To this end, the server's certificate must

have been imported into the client's truststore, or the client's truststore must contain a root
certificate with a valid signing chain to the certificate presented by the server.

5.3 Requirements for Web Service Calls to BSS
BSS provides Web services (platform services) that can be called by other systems, such as
an external process control or a PSP system. In this scenario, BSS is the HTTPS server while
the other system is a Web service client. The following requirements must be met to establish a
connection to BSS:
• The BSS server must present a valid certificate: The CN (common name) must correspond to

the server's domain name and it must be valid at the time of calling.
• The clients must trust the BSS server certificate for SSL connections: The clients' truststore

must contain the BSS server certificate.
• In case of certificate-based authentication, BSS must trust the client's certificate: The BSS

truststore must contain a certificate with a valid signing chain to the certificate presented by the
client.

5: Integrating Certificates for Trusted Communication

Developer's Guide 31

5.4 Certificate Integration Procedures
The following figure illustrates the process and tasks involved in using custom root certificates for
secure communication:

As a developer who integrates an application or external system with BSS and wants to make use
of certificates, you need to perform the tasks depicted in gray. These tasks are described in detail
in the subsequent sections. The operator tasks are described in the Operator's Guide.

5.4.1 Creating a Certificate and a Signing Request
The following command creates a certificate:

%JAVA_HOME%\bin\keytool -genkey -alias tpcert -keysize 1024
-keystore keystore.jks

You will be prompted for a password for the keystore.jks keystore that will be created containing
the certificate identified by the alias tpcert. In addition, you need to specify detailed information
on your organization and its location.

5: Integrating Certificates for Trusted Communication

Developer's Guide 32

Create a certificate signing request (CSR) by executing the following command:

%JAVA_HOME%\bin\keytool -certreq -alias tpcert -file tpcert.csr
-keystore keystore.jks

The alias tpcert refers to the created certificate. The result of the above command is a file name
tpcert.csr. Send this file to the certification authority (CA), for example, the operator.

5.4.2 Importing the Signed Certificates
When the signing process is completed, you will receive the following from the operator:
• CA public (root) certificate for BSS
• Self-signed domain certificate
• Your own, signed certificate

You have to import the certificates into your application server's keystore and truststore as follows:
1. Import the CA public certificate into the client's keystore by executing the following command:

%JAVA_HOME%\bin\keytool -import -alias cacert -file ca.crt
-keystore keystore.jks

2. Update your certificate (signed by the operator) in the keystore so that the certificate chain will
be stored in the keystore:

%JAVA_HOME%\bin\keytool –import –file <bssDomain>
-keystore cacerts.jks –alias bssDomain

For checking which entries are contained in your keystore, you can execute the following
command:

%JAVA_HOME%\bin\keytool -list -keystore keystore.jks

The result should look like

Keystore type: jks
Keystore provider: SUN

Your keystore contains two entries.

tpcert, 2010-05-21, keyEntry,
Certificate finger print (MD5):
 FA:E7:AF:99:33:A5:C9:8E:4F:28:50:04:08:0F:3F:4A
mykey, 2010-05-21, trustedCertEntry,
Certificate finger print (MD5):
 33:E5:B9:77:C3:34:8R:9F:34:99:1G:78:D5:3H:4B:22

3. Import the domain certificate into the client's truststore by executing the following command:

%JAVA_HOME%\bin\keytool –import –file <bssDomain>
-keystore cacerts.jks –alias bssDomain

5: Integrating Certificates for Trusted Communication

Developer's Guide 33

5.4.3 Importing the BSS Server Certificate
To secure the calls from BSS to the provisioning service of an application, the BSS server
certificate has to be imported into the truststore valid for the provisioning service so that the
service can identify BSS as a client.
Execute the following command:

%JAVA_HOME%\bin\keytool -import -file bsssrv.crt -keystore
 keystore.jks -alias bsssrv

Appendix A: Customer Billing Data

Developer's Guide 34

Appendix A: Customer Billing Data
The charges for the usage of a service in BSS are calculated based on the price model defined for
the service, customer, or subscription.
A supplier or reseller can export the billing data for one or several of his customers for a specific
time. Suppliers also have access to the billing data of customers of broker organizations that sell
their services. The exported data can be forwarded, for example, to an accounting system for
further processing.
The result of the export is stored in an XML file, the customer billing data file. The billing data file
conforms to the XML schema BillingResult.xsd, which can be found in the BSS integration
package.
The billing data file is named <date>BillingData.xml, where <date> represents the creation
date.
This appendix describes the meaning of the elements and attributes that may occur in a billing
data file.

BillingDetails
Top-level container element of a billing data file. For each subscription, a BillingDetails
element is added to the billing data file.
A BillingDetails element contains the following subelements:
• Period (see Period on page 34)
• OrganizationDetails (see OrganizationDetails on page 35)
• Subscriptions (see Subscriptions on page 35)
• OverallCosts (see OverallCosts on page 48)

A BillingDetails element has the following attributes:
key - (optional, data type long) Unique identifier allowing, for example, accounting systems
to relate billing data to an invoice. The billing data key is printed on the invoice. Suppliers and
customers may use the billing data key to create a detailed billing report for an existing invoice or
subscription. A supplier can retrieve the key from a billing report, a customer gets the billing data
key from the corresponding invoice.
timezone - (required, data type string) Time zone based on the UTC time standard used for the
calculation. The time zone is relevant for price models with costs (see PriceModel on page 36).

Period
Specifies the billing period for which the data is exported. The start and end time of the billing
period are output according to the start day of the billing period which was defined by the supplier
or reseller.
A Period element has the following attributes:
• startDate - (data type long) Start time of the period. The start time is specified in

milliseconds, the starting point for the calculation is 1970-01-01, 00:00.
• startDateIsoFormat - (optional, data type dateTime) Same as startDate, but specified in

ISO 8601 format (YYYY-MM-DDThh:mm:ss.fffZ) .
• endDate - (data type long) End time of the period. The end time is specified in milliseconds,

the starting point for the calculation is 1970-01-01, 00:00.

Appendix A: Customer Billing Data

Developer's Guide 35

• endDateIsoFormat - (optional, data type dateTime) Same as endDate, but specified in ISO
8601 format (YYYY-MM-DDThh:mm:ss.fffZ).

Example:

<Period startDateIsoFormat="2012-08-31T22:00:00.000Z"
 startDate="1346450400000" endDateIsoFormat="2012-09-30T22:00:00.000Z"
 endDate="1349042400000"/>

OrganizationDetails
Provides details of the customer for which the billing data have been exported.
An OrganizationDetails element contains the following subelements:
Email
Specifies the email address of the organization (data type string).
Name
Specifies the name of the organization (data type string).
Address
Specifies the address of the organization (data type string).
Paymenttype
Specifies the payment type used for subscriptions of the organization (data type string).
Example:

<BillingDetails key="10002" timezone="UTC+01:00">
...
 <OrganizationDetails>
 <Email>info@company.com</Email>
 <Name>company</Name>
 <Address>Street</Address>
 <Paymenttype>INVOICE</Paymenttype>
 </OrganizationDetails>
...
</BillingDetails>

Subscriptions
Contains the billing data for the subscriptions of the customer which are relevant for the current
billing period.
For every subscription of an organization, the Subscriptions element contains a Subscription
element. In this element, the costs and the custom attributes of the affected subscription are
specified. A Subscription element also contains the billing data for the price model of the
subscription in the PriceModel element.
A Subscription element has the following attributes:
• id - (required, data type string) Unique subscription name.
• purchaseOrderNumber - (data type string) Optional reference number as specified by the

customer when subscribing to a service.

Example:

<BillingDetails key="10002" timezone="UTC+01:00">
...
 <Subscriptions>

Appendix A: Customer Billing Data

Developer's Guide 36

 <Subscription id="Mega Office Basic" purchaseOrderNumber="12345">
 <PriceModels>
 <PriceModel calculationMode="PRO_RATA" id="14001">
...
 </PriceModel>
 </PriceModels>
 </Subscription>
 </Subscriptions>
...
</BillingDetails>

Udas
Contains custom attributes that store additional information on an organization or subscription.
This could be, for example, the profit center to which a customer's revenue is to be accounted.
A Udas element may be included in an OrganizationDetails or a Subscription element.
For every custom attribute, a Uda element is included in the Udas element.
A Uda element has the following attributes:
• id - (required, data type string) ID of the custom attribute.
• value - (required, data type string) Value of the custom attribute.

Example:

<BillingDetails key="10002" timezone="UTC+01:00">
...
 <Subscriptions>
 <Subscription id="Mega Office Basic" purchaseOrderNumber="12345">
...
 <Udas>
 <Uda id="Profit Center" value="My Company"/>
 </Udas>
 </Subscription>
 </Subscriptions>
...
</BillingDetails>

PriceModel
Contains the billing data for a price model used to calculate the utilization charges for a
subscription.
A PriceModel element is included in every subscription element. It contains the following
subelements:
• UsagePeriod (see UsagePeriod on page 37)
• GatheredEvents (see GatheredEvents on page 37)
• PeriodFee (see PeriodFee on page 38)
• UserAssignmentCosts (see UserAssignmentCosts on page 39)
• OneTimeFee (see OneTimeFee on page 40)
• PriceModelCosts (see PriceModelCosts on page 41)
• Parameters (see Parameters on page 41)

A PriceModel element has the following attribute:

Appendix A: Customer Billing Data

Developer's Guide 37

calculationMode - (required, data type string) Cost calculation option of the price model. Can
be set to one of the following values: FREE_OF_CHARGE (the service is free of charge), PRO_RATA
(the costs are calculated exactly for the time a service was used, based on milliseconds),
PER_UNIT (the costs are calculated based on fixed time units).
id - (required, data type string) Unique name identifying the price model.

UsagePeriod
Specifies the actual usage period for a subscription. A usage period begins when the customer
subscribes to a service and ends when the subscription is terminated.
A UsagePeriod element is contained in a PriceModel element.
A UsagePeriod element has the following attributes:
• startDate - (data type long) Start time of the period. The start time is specified in

milliseconds, the starting point for the calculation is 1970-01-01, 00:00.
• startDateIsoFormat - (optional, data type dateTime) Same as startDate, but specified in

ISO 8601 format (YYYY-MM-DDThh:mm:ss.fffZ) .
• endDate - (data type long) End time of the period. The end time is specified in milliseconds,

the starting point for the calculation is 1970-01-01, 00:00.
• endDateIsoFormat - (optional, data type dateTime) Same as endDate, but specified in ISO

8601 format (YYYY-MM-DDThh:mm:ss.fffZ).

Example:

<PriceModel calculationMode="PRO_RATA" id="14001">
 <UsagePeriod endDate="1306879200000"
 endDateIsoFormat="2011-05-31T22:00:00.000Z" startDate="1304755088065"
 startDateIsoFormat="2011-05-07T07:58:08.065Z"/>
...
</PriceModel>

GatheredEvents
Specifies the costs for all chargeable events that occurred in the current usage period of the
subscription. These include, for example, login and logout by users to the underlying application,
the completion of specific transactions, or the creation or deletion of specific data. It depends on
the implementation and integration of the underlying application which events are available.
A GatheredEvents element is contained in a PriceModel element.
A GatheredEvents element contains the following subelements:
• Event

• GatheredEventsCosts

Event
For every event, an Event element is included in the GatheredEvents element.
An Event element has the following attribute:
id - (required, data type string) Event ID as specified in the technical service definition.
An Event element contains the following subelements:
• Description

• SingleCost

• NumberOfOccurence

Appendix A: Customer Billing Data

Developer's Guide 38

• CostForEventType

Description
Contains the description of the event.
SingleCost
Specifies the price for the event as defined in the price model. If an event has stepped prices, this
attribute is omitted.
A SingleCost element has the following attribute:
amount - (required, data type decimal) Price for a single event.
NumberOfOccurence
Specifies how often the event occurred.
A NumberOfOccurence element has the following attribute:
amount - (required, data type long) Number of times the event occurred.
CostForEventType
Specifies the total costs for the event in the billing period.
A CostForEventType element has the following attribute:
amount - (required, data type decimal) Total costs for the event. The total costs for an event
are calculated from the singular costs (SingleCost) multiplied with the number of occurrences
(NumberOfOccurence). If role-based costs and/or stepped prices are specified for events, these
costs are added (see RoleCosts on page 45 and SteppedPrices on page 46). The value is
rounded to two decimal places.
GatheredEventsCosts
Specifies the total costs for all events in the current GatheredEvents element.
A GatheredEventsCosts element has the following attribute:
amount - (required, data type decimal) Total costs for events. The value is rounded to two decimal
places.
Example:

<PriceModel calculationMode="PRO_RATA" id="14001">
...
 <GatheredEvents>
 <Event id="USER_LOGOUT_FROM_SERVICE">
 <Description xml:lang="en">Logout from the service.</Description>
 <SingleCost amount="100.00"/>
 <NumberOfOccurrence amount="3"/>
 <CostForEventType amount="300.00"/>
 </Event>
...
 <GatheredEventsCosts amount="1200.00"/>
 </GatheredEvents>
...
</PriceModel>

PeriodFee
Specifies the costs for using the subscription in the given usage period.
For each subscription, a charge can be defined that a customer has to pay on a recurring basis.
Monthly, weekly, daily, or hourly periods are supported. The recurring charge for a subscription is
independent of the amount of users, events, or other usage data.

Appendix A: Customer Billing Data

Developer's Guide 39

The calculation of the charges depends on the cost calculation option which was chosen for the
price model (see PriceModel on page 36 for details).
A PeriodFee element is contained in a PriceModel element.
A PeriodFee element has the following attributes:
• basePeriod - (required, data type string) Period on which the charges are based. Can be set

to one of the following values: MONTH, WEEK, DAY, HOUR.
• basePrice - (required, data type decimal) Recurring charge per base period according to the

price model.
• factor - (required, data type float) Factor used to calculate the period fee for the

subscription. The factor is calculated from the usage period of the subscription divided by the
base period (basePeriod). The recurring charge is multiplied with this factor to calculate the
total costs (price).

• price - (required, data type decimal) Total period fee for the subscription. This value is
calculated from the recurring charge (basePrice) multiplied with the factor (factor). The value
is rounded to two decimal places.

Example:

<PriceModel calculationMode="PRO_RATA" id="14001">
...
 <PeriodFee basePeriod="MONTH" basePrice="10.00"
 factor="0.4020212567204301" price="4.02"/>
...
</PriceModel>

UserAssignmentCosts
Specifies the costs for the user assignments to the subscription.
For every user assigned to a subscription, a charge can be defined that a customer has to pay on
a recurring basis. Monthly, weekly, daily, or hourly periods are supported. A charge to be paid on a
recurring basis per user can only be defined for services with the login or user access type.
The calculation of the charges depends on the cost calculation option which was chosen for the
price model (see PriceModel on page 36 for details).
A UserAssignmentCosts element is contained in a PriceModel element.
A UserAssignmentCosts element has the following attributes:
• basePeriod - (optional, data type string) Period on which the charges are based. Can be set

to one of the following values: MONTH, WEEK, DAY, HOUR.
• basePrice - (optional, data type decimal) Recurring charge per user and base period

according to the price model. If the charge per user has stepped prices, this attribute is omitted.
• factor - (optional, data type float) Factor used to calculate the costs for the user

assignments. The factor is calculated by summing up the factors for each user specified in the
UserAssignmentCostsByUser element. The recurring charge (basePrice) is multiplied with
this factor to calculate the costs (price).

• numberOfUsersTotal - (optional, data type long) Number of users assigned to the
subscription in the usage period.

• total - (data type decimal) Total costs for the user assignments including role-based costs
and stepped prices. The value is rounded to two decimal places. For details on role-based
costs and stepped prices, refer to RoleCosts on page 45 and SteppedPrices on page 46.

Appendix A: Customer Billing Data

Developer's Guide 40

• price - (optional, data type decimal) Costs for the user assignments. This value is calculated
from the recurring charge (basePrice) multiplied with the factor (factor). The value is rounded
to two decimal places.

A UserAssignmentCosts element contains the following subelement:
UserAssignmentCostsByUser
Specifies the fraction of the usage period a user was assigned to the subscription.
A UserAssignmentCostsByUser element has the following attributes:
• factor - (required, data type float) Fraction of the usage period the given user was assigned

to the subscription. The factors of the single user assignments are summed up to calculate the
total costs for the user assignments.

• userId - (required, data type string) User ID.

Example:

<PriceModel calculationMode="PRO_RATA" id="18000">
...
 <UserAssignmentCosts basePeriod="MONTH" basePrice="19.00"
 factor="0.5337726052867383" numberOfUsersTotal="2" total ="50.00"
 price="10.14">
 <UserAssignmentCostsByUser factor="1.0499215949820788E-4"
 userId="admin"/>
 <UserAssignmentCostsByUser factor="0.5336676131272401"
 userId="miller"/>
 </UserAssignmentCosts>
...
</PriceModel>

OneTimeFee
Specifies the one-time fee for the subscription.
A one-time fee defines the amount a customer has to pay for a subscription in the first billing
period of the subscription. It is added to the total charges for the first billing period. A one-time fee
is independent of the number of users, events, or other usage data.
A OneTimeFee element is contained in a PriceModel element.
A OneTimeFee element has the following attributes:
• amount - (required, data type decimal) Total costs for the one-time fee. The value is rounded

to two decimal places.
• baseAmount - (required, data type decimal) One-time fee as defined in the price model.
• factor - (required, data type long) Factor used for calculating the one-time fee. Since this

charge occurs only once, the factor is 1 for the first billing period, and 0 in case the one-time
fee has already been charged in a previous billing period.

Example:

<PriceModel calculationMode="PRO_RATA" id="14001">
...
 <OneTimeFee amount="10.00" baseAmount="10.00" factor="1"/>
...
</PriceModel>

Appendix A: Customer Billing Data

Developer's Guide 41

PriceModelCosts
Specifies the total costs for the subscription in the current usage period. If a discount was
specified, the net amount of the costs is given in the Discount element (see Discount on
page 47).
A PriceModelCosts element is contained in a PriceModel element.
A PriceModelCosts element has the following attributes:
• currency - (required, data type string) ISO code of the currency in which the costs are

calculated.
• grossAmount - (required, data type decimal) Gross amount of the costs, calculated from the

net costs (amount) plus VAT (see VAT on page 48). The value is rounded to two decimal
places.

• amount - (required, data type decimal) Net amount of the costs for the subscription. The value
is rounded to two decimal places.

Example:

<PriceModel calculationMode="PRO_RATA" id="14001">
...
 <PriceModelCosts currency="EUR" grossAmount="990.00" amount="900.00"/>
</PriceModel>

Parameters
Specifies the costs for parameters defined for the service underlying the subscription.
A price model can define prices for service parameters and options. It depends on the
implementation and integration of the underlying application whether and which parameters and
options are available.
A supplier can define a price for every parameter and option, and specify whether this price is to
be charged per subscription or per user assigned to the subscription. Numeric parameters are a
multiplier for the price. For boolean parameters, the multiplier is 1 if the value is true. In all other
cases, the multiplier is 0.
The calculation of charges for parameters depends on the cost calculation option which was
chosen for the price model (see PriceModel on page 36 for details).
With per time unit calculation, the customer is always charged for the parameter value which was
valid at the beginning of a time unit, even if the customer has changed the value of the parameter
or parameter option within the time unit.
For numeric parameters, stepped prices can be applied per subscription: Different prices can be
defined depending on the parameter values.
A Parameters element is contained in a PriceModel element.
A Parameters element contains the following subelements:
• Parameter

• ParametersCosts

Parameter
For every parameter, a Parameter element is included in the Parameters element.
A Parameter element has the following attribute:
id - (required, data type string) Parameter ID.

Appendix A: Customer Billing Data

Developer's Guide 42

A Parameter element contains the following subelements:
• ParameterUsagePeriod

• ParameterValue

• PeriodFee

• UserAssignmentCosts

• ParameterCosts

• Options

ParameterUsagePeriod
Specifies the actual usage period for the parameter. The usage period for a parameter begins
when a customer subscribes to the service with the given parameter definition in the price model.
A new usage period begins when the parameter value is changed.
A ParameterUsagePeriod element has the following attributes:
• startDate - (data type long) Start time of the period. The start time is specified in

milliseconds, the starting point for the calculation is 1970-01-01, 00:00.
• startDateIsoFormat - (optional, data type dateTime) Same as startDate, but specified in

ISO 8601 format (YYYY-MM-DDThh:mm:ss.fffZ) .
• endDate - (data type long) End time of the period. The end time is specified in milliseconds,

the starting point for the calculation is 1970-01-01, 00:00.
• endDateIsoFormat - (optional, data type dateTime) Same as endDate, but specified in ISO

8601 format (YYYY-MM-DDThh:mm:ss.fffZ).

ParameterValue
Specifies the costs and data type for the parameter.
A ParameterValue element has the following attributes:
• amount - (required, data type string) Costs for the parameter as defined in the price model.
• type - (required, data type string) Data type of the parameter. Can be set to one of the

following values: BOOLEAN, INTEGER, LONG, STRING, ENUMERATION, DURATION.

PeriodFee
Specifies the costs for using the parameter in the given usage period.
A PeriodFee element has the following attributes:
• basePeriod - (required, data type string) Period on which the charges are based. Can be set

to one of the following values: MONTH, WEEK, DAY, HOUR.
• basePrice - (optional, data type decimal) Recurring charge per base period according to the

price model. If a parameter has stepped prices, this attribute is omitted.
• factor - (required, data type float) Factor used to calculate the costs for using the parameter.

The factor is calculated from the usage period divided by the base period (basePeriod). The
recurring charge (basePrice) is multiplied with this factor to calculate the costs (price).

• price - (required, data type decimal) Costs for using the parameter. This value is calculated
from the recurring charge (basePrice) multiplied with the factors (factor and valueFactor).
The value is rounded to two decimal places.

• valueFactor - (required, data type float) Factor to calculate the total costs for using the
parameter depending on the parameter value. The recurring charge (basePrice) is multiplied
with this factor to calculate the costs (price). This factor is set depending on the data type
of the parameter. For numeric parameters it is set to the value of the parameter. For boolean
parameters, the factor is set to 1 if the value is true. In all other cases, the factor is set to 0.

Appendix A: Customer Billing Data

Developer's Guide 43

UserAssignmentCosts
Specifies the costs for the parameter related to the user assignments of the subscription based on
the price per user for the parameter as defined in the price model.
A UserAssignmentCosts element has the following attributes:
• basePeriod - (required, data type string) Period on which the charges are based. Can be set

to one of the following values: MONTH, WEEK, DAY, HOUR.
• basePrice - (required, data type decimal) Recurring charge per user and base period

according to the price model.
• factor - (required, data type float) Factor used to calculate the costs for using the

parameter. The factor is calculated from the parameter usage period divided by the base
period (basePeriod) multiplied with the number of users. The recurring charge (basePrice) is
multiplied with this factor to calculate the costs (price).

• price - (required, data type decimal) Costs for using the parameter. This value is calculated
from the recurring charge (basePrice) multiplied with the factors (factor and valueFactor).
The value is rounded to two decimal places.

• total - (data type decimal) Total costs for using the parameter including role-based costs.
The value is rounded to two decimal places. For details on role-based costs, refer to RoleCosts
on page 45.

• valueFactor - (required, data type float) Factor to calculate the total costs for using the
parameter depending on the parameter value. The recurring charge (basePrice) is multiplied
with this factor to calculate the costs (price). This factor is set depending on the data type
of the parameter. For numeric parameters it is set to the value of the parameter. For boolean
parameters, the factor is set to 1 if the value is true. In all other cases, the factor is set to 0.

ParameterCosts
Specifies the total costs for using the parameter.
A ParameterCosts element has the following attribute:
amount - (required, data type decimal) Total costs for the parameter calculated by summing up
the costs specified in the PeriodFee and the UserAssignmentCosts element for the parameter
and its options. If role-based costs and/or stepped prices are specified for the parameter, these
are added (see RoleCosts on page 45 and SteppedPrices on page 46). The value is
rounded to two decimal places.
ParametersCosts
Specifies the total costs for all parameters.
A ParametersCosts element has the following attribute:
amount - (required, data type decimal) Total costs for the parameters calculated by summing up
the costs of the individual parameters as specified in the ParameterCosts elements. The value is
rounded to two decimal places.
Example:

<Parameters>
...
 <Parameter id="MAX_FOLDER_NUMBER2">
 <ParameterUsagePeriod endDate="1306879200000"
 endDateIsoFormat="2011-05-31T22:00:00.000Z" startDate="1304755088065"
 startDateIsoFormat="2011-05-07T07:58:08.065Z"/>
 <ParameterValue amount="200" type="INTEGER"/>
 <PeriodFee basePeriod="MONTH" basePrice="0.00"
 factor="0.5337789669205496" price="0.00" valueFactor="200.0"/>

Appendix A: Customer Billing Data

Developer's Guide 44

 <UserAssignmentCosts basePeriod="MONTH" basePrice="0.00"
 factor="0.5337726052867383" total ="0.00" price="0.00"
 valueFactor="200.0"/>
 <ParameterCosts amount="0.00"/>
 </Parameter>

...
 <ParametersCosts amount="600.00"/>
</Parameters>

Options
Specifies the costs for parameter options.
An Options element is contained in a Parameter element.
For every option, an Option element is included in the Options element.
An Option element has the following attribute:
id - (required, data type string) Option ID.
An Option element contains the following subelements:
• PeriodFee

• UserAssignmentCosts

• OptionCosts

PeriodFee
Specifies the costs for using the parameter option in the given usage period.
A PeriodFee element has the following attributes:
• basePeriod - (required, data type string) Period on which the charges are based. Can be set

to one of the following values: MONTH, WEEK, DAY, HOUR.
• basePrice - (required, data type decimal) Recurring charge per base period according to the

price model.
• factor - (required, data type float) Factor used to calculate the costs for using the parameter

option. The factor is calculated from the usage period divided by the base period (basePeriod).
The recurring charge (basePrice) is multiplied with this factor to calculate the total costs
(price).

• price - (required, data type decimal) Costs for the parameter option. This value is calculated
from the recurring charge (basePrice) multiplied with the factor (factor), and is rounded to
two decimal places.

UserAssignmentCosts
Specifies the costs for the parameter option related to the user assignments of the subscription
based on the price per user for the option as defined in the price model.
A UserAssignmentCosts element has the following attributes:
• basePeriod - (required, data type string) Period on which the charges are based. Can be set

to one of the following values: MONTH, WEEK, DAY, HOUR.
• basePrice - (required, data type decimal) Recurring charge per user and base period for the

parameter option according to the price model.
• factor - (required, data type float) Factor used to calculate the costs for using the parameter

option. The factor is calculated from the usage period divided by the base period (basePeriod).
The recurring charge (basePrice) is multiplied with this factor to calculate the costs (price).

Appendix A: Customer Billing Data

Developer's Guide 45

• total - (data type decimal) Total costs for using the parameter option including role-based
costs. The value is rounded to two decimal places. For details on role-based costs, refer to
RoleCosts on page 45.

• price - (required, data type decimal) Costs for using the parameter option. This value is
calculated from the recurring charge (basePrice) multiplied with the factor (factor). The value
is rounded to two decimal places.

OptionCosts
Specifies the total costs for using the parameter option.
An OptionCosts element has the following attribute:
amount - (required, data type decimal) Total costs for the parameter option calculated by
summing up the costs specified in the PeriodFee and the UserAssignmentCosts element. The
value is rounded to two decimal places.
Example:

<Parameter id="MEMORY_STORAGE">
...
 <Options>
 <Option id="2">
 <PeriodFee basePeriod="MONTH" basePrice="100.00" factor="1.0"
 price="100.00"/>
 <UserAssignmentCosts basePeriod="MONTH" basePrice="0.00"
 factor="1.0" total ="0.00" price="0.00"/>
 <OptionCosts amount="100.00"/>
 </Option>
 </Options>
...
</Parameter>

RoleCosts
Specifies the costs for service roles.
If defined for the underlying application, roles can be used to grant specific privileges to different
users. The roles are specified in the technical service definition as service roles. Service roles can
be mapped to corresponding permissions in the application.
With per time unit calculation, the customer is always charged with the price which is valid at the
beginning of a time unit, even if the role assignment of a user is changed within the time unit.
The calculation of charges for service roles depends on the cost calculation option which was
chosen for the price model (see PriceModel on page 36 for details).
A RoleCosts element is contained in a UserAssignmentCosts element (as subelement of the
PriceModel, Parameters, or Option element).
A RoleCosts element has the following attribute:
total - (required, data type decimal) Total amount of costs for the service roles. The value is
rounded to two decimal places.
For every service role, a RoleCost element is included in the RoleCosts element.
A RoleCost element has the following attributes:
• id - (required, data type string) ID of the service role.
• basePrice - (required, data type decimal) Recurring charge for the service role according to

the price model.

Appendix A: Customer Billing Data

Developer's Guide 46

• factor - (required, data type float) Factor used to calculate the costs for the service role. The
factor is calculated as a fraction of the actual usage period. The recurring charge (basePrice)
is multiplied with this factor to calculate the costs (price).

• price - (required, data type decimal) Costs for the service role. This value is calculated from
the recurring charge (basePrice) multiplied with the factor (factor). The value is rounded to
two decimal places.

Example:

<Parameter id="MEMORY_STORAGE">
...
 <RoleCosts total="0.00">
 <RoleCost basePrice="0.00" factor="0.4020087753882915" id="USER"
 price="0.00"/>
 <RoleCost basePrice="0.00" factor="0.8040175186678614" id="ADMIN"
 price="0.00"/>
 </RoleCosts>
...
</Parameter>

SteppedPrices
Specifies the stepped prices for a user assignment, event, or parameter.
Stepped prices allow for the definition of ranges for which different price factors apply. Step limits,
i.e. the upper limits of ranges, can be set for:
• The number of users accessing a subscription. For example, 1 to 10 users cost 10.00 € per

user, 11 to 100 users cost 8.00 € per user, any user above 100 costs 6.00 €.
• The number of events occurring in the usage of a subscription. For example, up to 10 file

downloads cost 1.00 € per download, any additional download costs 0.50 €.
• Values of numeric parameters. For example, uploading up to 100 files costs 1.00 € per file,

any additional upload costs 0.50 € per file.

Stepped prices are independent of any other price model elements.
A SteppedPrices element is contained in UserAssignmentCosts (as subelement of the
PriceModel element), Event, and PeriodFee (as subelement of the Parameters element)
elements.
A SteppedPrices element has the following attribute:
amount - (required, data type decimal) Summed up costs for all steps including the last one.
For every price step, a SteppedPrice element is included in a SteppedPrices element.
A SteppedPrice element has the following attributes:
• additionalPrice - (required, data type decimal) Summed up costs for the previous steps.

The costs are calculated from the limit, freeAmount and basePrice attributes of the previous
step ((limit - freeAmount) * price). The additionalPrice attribute of the first step
always has a value of 0. The value is rounded to two decimal places.

• basePrice - (required, data type decimal) Costs for the current step according to the price
model.

• freeAmount - (required, data type long) Amount of units for the current step that are
considered as a fixed discount, for example, the number of users that are free of charge. The
value corresponds to the value of the limit attribute in the previous step. The freeAmount
attribute of the first step always has a value of 0.

• limit - (required, data type string) Step limit as defined in the price model.

Appendix A: Customer Billing Data

Developer's Guide 47

• stepAmount - (optional, data type decimal) Summed up costs for the current step. These costs
are calculated from the basePrice and stepEntityCount attributes of the current step. The
value is rounded to two decimal places.

• stepEntityCount - (optional, data type decimal) Factor used to calculate the costs for the
current step.

Example:

<PriceModel calculationMode="PRO_RATA" id="350001">
...
 <UserAssignmentCosts basePeriod="MONTH" factor="2.707940780619112"
 numberOfUsersTotal="4" price="1283.18">
 <SteppedPrices amount="1283.18">
 <SteppedPrice additionalPrice="0.00" basePrice="500.00"
 freeAmount="0" limit="2" stepAmount="1000.00"
 stepEntityCount="2"/>
 <SteppedPrice additionalPrice="1000.00" basePrice="400.00"
 freeAmount="2" limit="3" stepAmount="283.18"
 stepEntityCount="0.707940780619112"/>
 <SteppedPrice additionalPrice="1400.00" basePrice="300.00"
 freeAmount="3" limit="null" stepAmount="0.00"
 stepEntityCount="0"/>
 </SteppedPrices>
 </UserAssignmentCosts>
...
</PriceModel>

Discount
Specifies the discount granted to the customer.
A discount can be defined for a customer which applies to all subscriptions of the customer. A
discount may be valid as of the current or a future month. It can be restricted to a certain period
of time. Before the time expires, the customer is notified by email so that he can react and contact
the supplier.
The discount is defined as a percentage that is subtracted from the regular total price for a
subscription for all billing data generated within the discount period.
A Discount element is contained in OverallCosts and PriceModelCosts elements.
A Discount element has the following attributes:
• percent - (required, data type float) Percentage of costs to be deducted from the net costs,

specified as a decimal number.
• discountNetAmount - (required, data type decimal) Net discount to be deducted from the

original net costs (netAmountBeforeDiscount). The value is rounded to two decimal places.
• netAmountAfterDiscount - (required, data type decimal) Net costs after the net

discount (discountNetAmount) has been deducted from the original net costs
(netAmountBeforeDiscount). This value is identical to the value of the amount attribute of the
PriceModelCosts element (see PriceModelCosts on page 41). The value is rounded to two
decimal places.

• netAmountBeforeDiscount - (required, data type decimal) Net costs before the net discount
(discountNetAmount) has been deducted. The value is rounded to two decimal places.

Example:

<PriceModel calculationMode="PRO_RATA" id="14001">
...

Appendix A: Customer Billing Data

Developer's Guide 48

 <PriceModelCosts currency="EUR" grossAmount="990.00" amount="900.00">
 <Discount discountNetAmount="100.00" netAmountAfterDiscount="900.00"
 netAmountBeforeDiscount="1000.00" percent="10.00"/>
 </PriceModelCosts>
</PriceModel>

VAT
Specifies the VAT rate to be applied.
A supplier can define a basic VAT rate that applies by default to all prices for his customers.
In addition to this basic VAT rate, country-specific or even customer-specific VAT rates can be
defined. You can:
• Enable VAT rate support for your organization.
• Define a default VAT rate that applies to all prices for all customers.
• Define a country-specific VAT rate for every country where you want to sell your services.
• Define a customer-specific VAT rate, for example, in case a customer organization has a

subsidiary located in another country than its parent organization.

The VAT rate settings have the following effects on the cost calculation for a customer:
• If VAT rate support is disabled, prices are calculated as net prices; no VAT is added to the

overall costs.
• A customer-specific VAT rate takes priority over any default or country-specific VAT rate.
• The country-specific VAT rate for the country where the customer organization is located is

applied to the cost calculation when no customer-specific VAT rate is defined.
• The default VAT rate is used in all other cases.

A VAT element is contained in OverallCosts and PriceModelCosts elements.
A VAT element has the following attributes:
• percent - (required, data type float) VAT rate in percent, specified as a decimal number.
• amount - (required, data type decimal) Net amount of VAT to be added to the net costs

(amount attribute of the PriceModelCosts element). The value is rounded to two decimal
places.

Example:

<PriceModel calculationMode="PRO_RATA" id="14001">
...
 <PriceModelCosts currency="EUR" grossAmount="990.00" amount="900.00">
 <VAT amount="90.00" percent="10.00"/>
 </PriceModelCosts>
</PriceModel>

OverallCosts
Contains the total amount of the charges to be paid by a customer for all subscriptions in the
current billing period. The costs are given in the currency specified in the price model. If a discount
has been specified, the net amount of the costs is given in the Discount element (see Discount on
page 47).
An OverallCosts element has the following attributes:
• currency - (required, data type string) ISO code of the currency in which the costs are

calculated.

Appendix A: Customer Billing Data

Developer's Guide 49

• grossAmount - (required, data type decimal) Gross amount of the costs, calculated from the
net costs (netAmount) plus VAT (see VAT on page 48). The value is rounded to two decimal
places.

• netAmount - (required, data type decimal) Net costs after the net discount has been deducted
from the original net costs (see Discount on page 47). The value is rounded to two decimal
places.

Example:

<BillingDetails key="10002" timezone="UTC+01:00">
...
 <OverallCosts currency="EUR" grossAmount="990.00" netAmount="900.00"/>
 </OverallCosts>
</BillingDetails>

Appendix B: Revenue Share Data

Developer's Guide 50

Appendix B: Revenue Share Data
In extended usage scenarios, suppliers may involve brokers and resellers in selling their services.
The brokers and resellers as well as the owners of the marketplaces on which the services are
published, usually receive a share of the revenue for the services. BSS calculates these revenue
shares based on the billing data for the customers who use the services.
Suppliers, brokers, resellers, and marketplace owners can generate reports for their revenue
shares and export the revenue share data for a specific time. Operators can export the data for all
the suppliers, brokers, resellers, or marketplace owners known to their platform installation. The
exported data can be forwarded, for example, to an accounting system for further processing.
The result of the export is stored in an XML file, the revenue data file. The file conforms to one of
the following schemas, depending on the type of the revenue share data:
• BrokerRevenueShareResult.xsd : revenue share data for brokers
• ResellerRevenueShareResult.xsd : revenue share data for resellers
• MPOwnerRevenueShareResult.xsd : revenue share data for marketplace owners
• SupplierRevenueShareResult.xsd : revenue share data for suppliers

Each of these schemas includes the BillingBase.xsd with common definitions. All the schemas
can be found in the BSS integration package.
The XML files containing the revenue share data are named <date>BillingData.xml, where
<date> represents the creation date.
This appendix describes the meaning of the elements and attributes that may occur in the different
types of revenue share data file. The first section explains elements and attributes that are
common to all revenue share data files. The subsequent sections describe the individual files.

B.1 Common Elements
The sections below describe the following elements that are common to all revenue share data
files:
• Period

• OrganizationData

Period
Specifies the billing period for which the data is exported. The start and end time of the billing
period are output according to the start day of the billing period which was defined by the supplier
or reseller.
A Period element has the following attributes:
• startDate - (data type long) Start time of the period. The start time is specified in

milliseconds, the starting point for the calculation is 1970-01-01, 00:00.
• startDateIsoFormat - (optional, data type dateTime) Same as startDate, but specified in

ISO 8601 format (YYYY-MM-DDThh:mm:ss.fffZ) .
• endDate - (data type long) End time of the period. The end time is specified in milliseconds,

the starting point for the calculation is 1970-01-01, 00:00.
• endDateIsoFormat - (optional, data type dateTime) Same as endDate, but specified in ISO

8601 format (YYYY-MM-DDThh:mm:ss.fffZ).

Appendix B: Revenue Share Data

Developer's Guide 51

Example:

<Period startDateIsoFormat="2012-08-31T22:00:00.000Z"
 startDate="1346450400000" endDateIsoFormat="2012-09-30T22:00:00.000Z"
 endDate="1349042400000"/>

OrganizationData
Provides details of an organization.
An OrganizationData element has the following attributes:
• id - (required, data type string) ID of the organization.
• key - (required, data type positiveInteger) Internal numeric key of the organization.

An OrganizationData element contains the following subelements:
• Email - (data type string) Email address of the organization.
• Name - (data type string) Name of the organization.
• Address - (data type string) Address of the organization.
• CountryIsoCode - (data type string) ISO code of the country where the organization is

located.

Example:

<OrganizationData id="8e8f596c" key="37003">
 <Email>info@company.com</Email>
 <Name>Company</Name>
 <Address>Postal Address</Address>
 <CountryIsoCode>DE</CountryIsoCode>
</OrganizationData>

B.2 Broker Revenue Share Data
The following sections describe the XML elements and attributes that make up the revenue share
data for brokers.

BrokerRevenueShareResult
Top-level container element for broker revenue share data. For each broker organization in
consideration, a BrokerRevenueShareResult element is added to the billing data file.
A BrokerRevenueShareResult element has the following attributes:
• organizationId - (required, data type string) ID of the broker organization.
• organizationKey - (required, data type positiveInteger) Internal numeric key of the broker

organization.

A BrokerRevenueShareResult element contains the following subelements:
• An OrganizationData element specifying the details of the broker organization (see

OrganizationData on page 51).
• A Period element specifying the billing period (see Period on page 50).
• A Currency element for each currency for which broker revenue share data is available (see

Currency on page 52).

Appendix B: Revenue Share Data

Developer's Guide 52

Example:

<BrokerRevenueShareResult organizationId="cd9ffaac"
 organizationKey="19000" >
 <OrganizationData> ... </OrganizationData>
 <Period> ... </Period>
 <Currency> ... </Currency>
</BrokerRevenueShareResult>

Currency
Contains the broker revenue share data for a specific currency.
A Currency element has the following attribute:
id - (required, data type string) ISO code of the currency.
A Currency element contains the following subelements:
• A Supplier element for each supplier organization that provides a service for which the current

broker organization receives a revenue share (see Supplier on page 52).
• A BrokerRevenue element specifying the overall revenue for the currency in its totalAmount

attribute (optional, data type positive decimal, scale 2), and the overall broker revenue share
for the currency in its amount attribute (required, data type positive decimal, scale 2).

Example:

<Currency id="EUR">
 <Supplier>...</Supplier>
 <BrokerRevenue totalAmount="1000.50" amount="100.05" />
</Currency>

Supplier
Contains the broker revenue share data for the services provided by a specific supplier.
A Supplier element contains the following subelements:
• An OrganizationData element specifying the details of the supplier organization (see

OrganizationData on page 51).
• A Service element for each service provided by the supplier for which the current broker

organization receives a revenue share (see Service on page 52).
• A BrokerRevenuePerSupplier element specifying the overall revenue for the supplier in its

totalAmount attribute (optional, data type positive decimal, scale 2), and the overall broker
revenue share in its amount attribute (required, data type positive decimal, scale 2).

Example:

<Supplier>
 <OrganizationData> ... </OrganizationData>
 <Service> ... </Service>
 <BrokerRevenuePerSupplier totalAmount="200.50" amount="20.05" />
</Supplier>

Service
Specifies the broker revenue share data for a specific service.
A Service element has the following attributes:
• id - (required, data type string) Name of the service.

Appendix B: Revenue Share Data

Developer's Guide 53

• key - (required, data type positiveInteger) Internal numeric key of the service offered by the
broker. Technically, this is a copy of the original service defined by the supplier.

• templateKey - (required, data type positiveInteger) Internal numeric key of the original
service defined by the supplier.

A Service element contains a ServiceRevenue element which specifies the total revenue for the
service and the broker revenue share in its attributes:
• totalAmount - (required, data type positive decimal, scale 2) Total revenue for the service in

the billing period.
• brokerRevenueSharePercentage - (required, data type positive decimal, scale 2) Percentage

of the revenue the broker is entitled to.
• brokerRevenue - (required, data type positive decimal, scale 2) The broker's revenue share

for the service in the billing period.

A ServiceRevenue element contains a ServiceCustomerRevenue subelement for each customer
who used the service. It specifies the total revenue for the service generated by the customer and
the broker revenue share in its attributes:
• customerName - (optional, data type string) Name of the customer organization.
• customerId - (optional, data type string) ID of the customer organization.
• totalAmount - (optional, data type positive decimal, scale 2) Total revenue for the service

generated by the customer in the billing period.
• brokerRevenueSharePercentage - (optional, data type positive decimal, scale 2) Percentage

of the revenue the broker is entitled to.
• brokerRevenue - (optional, data type positive decimal, scale 2) The broker's revenue share for

the service generated by the customer in the billing period.

Example:

<Service id="Mega Office" key="17005" templateKey="10501">
 <ServiceRevenue totalAmount="200.00"
 brokerRevenueSharePercentage="10.00" brokerRevenue="20.00" />
 <ServiceCustomerRevenue customerName="MyCompany"
 customerId="862cfb94" totalAmount="50.00"
 brokerRevenueSharePercentage="10.00" brokerRevenue="5.00" />
</Service>

B.3 Reseller Revenue Share Data
The following sections describe the XML elements and attributes that make up the revenue share
data for resellers.

ResellerRevenueShareResult
Top-level container element for reseller revenue share data. For each reseller organization in
consideration, a ResellerRevenueShareResult element is added to the billing data file.
A ResellerRevenueShareResult element has the following attributes:
• organizationId - (required, data type string) ID of the reseller organization.
• organizationKey - (required, data type positiveInteger) Internal numeric key of the reseller

organization.

Appendix B: Revenue Share Data

Developer's Guide 54

A ResellerRevenueShareResult element contains the following subelements:
• An OrganizationData element specifying the details of the reseller organization (see

OrganizationData on page 51).
• A Period element specifying the billing period (see Period on page 50).
• A Currency element for each currency for which reseller revenue share data is available (see

Currency on page 54).

Example:

<ResellerRevenueShareResult organizationId="cd9ffaac"
 organizationKey="19000">
 <OrganizationData> ... </OrganizationData>
 <Period> ... </Period>
 <Currency> ... </Currency>
</ResellerRevenueShareResult>

Currency
Contains the reseller revenue share data for a specific currency.
A Currency element has the following attribute:
id - (required, data type string) ISO code of the currency.
A Currency element contains the following subelements:
• A Supplier element for each supplier organization that provides a service for which the current

reseller organization receives a revenue share (see Supplier on page 54).
• A ResellerRevenue element with the following attributes:

totalAmount - (optional, data type positive decimal, scale 2) Overall revenue for the currency.
amount - (required, data type positive decimal, scale 2) Overall reseller revenue share.
purchasePrice - (optional, data type positive decimal, scale 2) Difference between the
totalAmount and the amount attribute.

Example:

<Currency id="EUR">
 <Supplier>...</Supplier>
 <ResellerRevenue totalAmount="1000.50" amount="200.10"
 purchasePrice="800.40"/>
</Currency>

Supplier
Contains the reseller revenue share data for the services provided by a specific supplier.
A Supplier element contains the following subelements:
• An OrganizationData element specifying the details of the supplier organization (see

OrganizationData on page 51).
• A Service element for each service provided by the supplier for which the current reseller

organization receives a revenue share (see Service on page 55).
• A ResellerRevenuePerSupplier element with the following attributes:

totalAmount - (optional, data type positive decimal, scale 2) Overall revenue for the supplier.
amount - (required, data type positive decimal, scale 2) Overall reseller revenue share for the
supplier.

Appendix B: Revenue Share Data

Developer's Guide 55

purchasePrice - (optional, data type positive decimal, scale 2) Difference between the
totalAmount and the amount attribute.

Example:

<Supplier>
 <OrganizationData> ... </OrganizationData>
 <Service> ... </Service>
 <ResellerRevenuePerSupplier totalAmount="200.50" amount="40.10"
 purchasePrice="160.40"/>
</Supplier>

Service
Specifies the reseller revenue share data for a specific service.
A Service element has the following attributes:
• id - (required, data type string) Name of the service.
• key - (required, data type positiveInteger) Internal numeric key of the service offered by the

reseller. Technically, this is a copy of the original service defined by the supplier.
• templateKey - (required, data type positiveInteger) Internal numeric key of the original

service defined by the supplier.

A Service element contains the following subelements:
• A Subscription element for each subscription to the service offered by the reseller (see

Subscription on page 55).
• A ServiceRevenue element specifying the overall reseller revenue share for the service (see

ServiceRevenue on page 56).

Example:

<Service id="Mega Office" key="17005" templateKey="10501">
 <Subscription> ... </Subscription>
 <ServiceRevenue> ... </ServiceRevenue>
</Service>

Subscription
Specifies the revenue for a specific subscription to a service.
A Subscription element has the following attributes:
• id - (required, data type string) Name of the subscription.
• key - (required, data type positiveInteger) Internal numeric key of the subscription.
• billingKey - (required, data type positiveInteger) Unique identifier allowing, for example,

accounting systems to relate billing data to an invoice. The billing data key is printed on the
invoice.

• revenue - (required, data type positive decimal, scale 2) The total revenue for the subscription
in the billing period.

A Subscription element contains a Period subelement specifying the applicable billing period
(see Period on page 50).
Example:

<Subscription id="Mega Office Basic" key="17005" billingKey="19032"
 revenue="600.00">

Appendix B: Revenue Share Data

Developer's Guide 56

 <Period>... </Period>
</Subscription>

ServiceRevenue
Specifies the total revenue for a service and the reseller revenue share.
A ServiceRevenue element has the following attributes:
• totalAmount - (required, data type positive decimal, scale 2) Total revenue for all

subscriptions to the service in the billing period.
• resellerRevenueSharePercentage - (required, data type positive decimal, scale 2)

Percentage of the revenue the reseller is entitled to.
• resellerRevenue - (required, data type positive decimal, scale 2) The reseller's revenue

share for the service in the billing period.

A ServiceRevenue element contains a ServiceCustomerRevenue subelement for each customer
who used the service. It specifies the total revenue for the service generated by the customer and
the reseller revenue share in its attributes:
• customerName - (optional, data type string) Name of the customer organization.
• customerId - (optional, data type string) ID of the customer organization.
• totalAmount - (optional, data type positive decimal, scale 2) Total revenue for the service

generated by the customer in the billing period.
• resellerRevenueSharePercentage - (optional, data type positive decimal, scale 2)

Percentage of the revenue the reseller is entitled to.
• resellerRevenue - (optional, data type positive decimal, scale 2) The reseller's revenue

share for the service generated by the customer in the billing period.
• purchasePrice - (optional, data type positive decimal, scale 2) Difference between the

totalAmount and the resellerRevenue attribute.

Example:

<ServiceRevenue totalAmount="200.00"
 resellerRevenueSharePercentage="10.00" resellerRevenue="20.00">
 <ServiceCustomerRevenue customerName="MyCompany"
 customerId="862cfb94" totalAmount="50.00"
 resellerRevenueSharePercentage="10.00" resellerRevenue="5.00"
 purchasePrice="45"/>
</ServiceRevenue>

B.4 Marketplace Owner Revenue Share Data
The following sections describe the XML elements and attributes that make up the revenue share
data for marketplace owners.

MarketplaceOwnerRevenueShareResult
Top-level container element for marketplace owner revenue share data. For each marketplace
owner organization in consideration, a MarketplaceOwnerRevenueShareResult element is added
to the billing data file.
A MarketplaceOwnerRevenueShareResult element has the following attributes:
• organizationId - (required, data type string) ID of the marketplace owner organization.

Appendix B: Revenue Share Data

Developer's Guide 57

• organizationKey - (required, data type positiveInteger) Internal numeric key of the
marketplace owner organization.

A MarketplaceOwnerRevenueShareResult element contains the following subelements:
• An OrganizationData element specifying the details of the marketplace owner organization

(see OrganizationData on page 51).
• A Period element specifying the billing period (see Period on page 50).
• A Currency element for each currency for which marketplace owner revenue share data is

available (see Currency on page 57).

Example:

<MarketplaceOwnerRevenueShareResult organizationId="cd9ffaac"
 organizationKey="19000">
 <OrganizationData> ... </OrganizationData>
 <Period> ... </Period>
 <Currency> ... </Currency>
</MarketplaceOwnerRevenueShareResult>

Currency
Contains the marketplace owner revenue share data for a specific currency.
A Currency element has the following attribute:
id - (required, data type string) ISO code of the currency.
A Currency element contains the following subelements:
• A Marketplace element for each marketplace for which revenue share data for the current

marketplace owner organization is available (see Marketplace on page 57).
• A RevenuesOverAllMarketplaces element summarizing the revenue shares across the

marketplaces (see RevenuesOverAllMarketplaces on page 61).

Example:

<Currency id="EUR">
 <Marketplace>...</Marketplace>
 <RevenuesOverAllMarketplaces> ... </RevenuesOverAllMarketplaces>
</Currency>

Marketplace
Contains the revenue share data for a specific marketplace.
A Marketplace element has the following attributes:
• id - (required, data type string) ID of the marketplace.
• key - (required, data type positiveInteger) Internal numeric key of the marketplace.

A Marketplace element contains the following subelements:
• A Service element for each service published on the marketplace for which revenue share

data is available (see Service on page 58).
• A RevenuesPerMarketplace element summarizing the revenue shares for all organizations

involved(see RevenuesPerMarketplace on page 60).

Example:

<Marketplace id="e1828fba" key="17021">

Appendix B: Revenue Share Data

Developer's Guide 58

 <Service>...</Service>
 <RevenuesPerMarketplace> ... </RevenuesPerMarketplace>
</Marketplace>

Service
Specifies the revenue share data for a specific service published on the current marketplace.
A Service element has the following attributes:
• id - (required, data type string) Name of the service.
• key - (required, data type positiveInteger) Internal numeric key of the published service. If

the service is offered by a broker or reseller, this is the key of an internal technical copy of the
original service defined by the supplier. If the service is offered directly by its supplier, it is the
key of the original service.

• model - (required, data type string) String specifying by which type of organization the service
is offered. Possible values are:
• DIRECT : The service is offered by its supplier.
• BROKER : The service is offered by a broker.
• RESELLER : The service is offered by a reseller.

• templateKey - (optional, data type positiveInteger) Internal numeric key of the original
service defined by the supplier, if the service is published by a broker or reseller.

A Service element contains the following subelements:
• A Supplier element specifying the supplier organization who defined the service in an

OrganizationData subelement (see OrganizationData on page 51).
• If the service is offered by a broker: A Broker element specifying the broker organization in an

OrganizationData subelement (see OrganizationData on page 51).
• If the service is offered by a reseller: A Reseller element specifying the reseller organization

in an OrganizationData subelement (see OrganizationData on page 51).
• A RevenueShareDetails element specifying the revenue shares for the service (see

RevenueShareDetails on page 59).

Examples:
The service is offered directly by its supplier:

<Service id="Mega Office" key="17005" model="DIRECT">
 <Supplier> <OrganizationData> ... </OrganizationData> </Supplier>
 <RevenueShareDetails> ... </RevenueShareDetails>
</Service>

The service is offered by a broker:

<Service id="Mega Office" key="17005" model="BROKER"
 templateKey="10501">
 <Supplier> <OrganizationData> ... </OrganizationData> </Supplier>
 <Broker> <OrganizationData> ... </OrganizationData> </Broker>
 <RevenueShareDetails> ... </RevenueShareDetails>
</Service>

The service is offered by a reseller:

<Service id="Mega Office" key="17005" model="RESELLER"
 templateKey="10501">

Appendix B: Revenue Share Data

Developer's Guide 59

 <Supplier> <OrganizationData> ... </OrganizationData> </Supplier>
 <Reseller> <OrganizationData> ... </OrganizationData> </Reseller>
 <RevenueShareDetails> ... </RevenueShareDetails>
</Service>

RevenueShareDetails
Specifies the revenue for a specific service and the revenue shares for all organizations involved
in selling the service.
A RevenueShareDetails element has the following attributes:
• serviceRevenue - (required, data type decimal, scale 2) Total revenue for the service in the

billing period.
• marketplaceRevenueSharePercentage - (required, data type decimal, scale 2) Percentage of

the revenue the marketplace owner is entitled to.
• brokerRevenueSharePercentage - (optional, data type decimal, scale 2) If the service is

offered by a broker: Percentage of the revenue the broker is entitled to.
• resellerRevenueSharePercentage - (optional, data type decimal, scale 2) If the service is

offered by a reseller: Percentage of the revenue the reseller is entitled to.
• marketplaceRevenue - (required, data type decimal, scale 2) The marketplace owner's

revenue share for the service in the billing period.
• brokerRevenue - (optional, data type decimal, scale 2) If the service is offered by a broker:

The broker's revenue share for the service in the billing period.
• resellerRevenue - (optional, data type decimal, scale 2) If the service is offered by a reseller:

The reseller's revenue share for the service in the billing period.
• amountForSupplier - (required, data type decimal, scale 2) The supplier's revenue share for

the service in the billing period. This is the remaining value of the total service revenue after
subtracting the revenue shares for the marketplace owner, broker, and/or reseller.

Examples:
The service is offered directly by its supplier:

<RevenueShareDetails serviceRevenue="16.92"
 marketplaceRevenueSharePercentage="10.00" marketplaceRevenue="1.69"
 amountForSupplier="15.23"/>

The service is offered by a broker:

<RevenueShareDetails serviceRevenue="4000.00"
 marketplaceRevenueSharePercentage="21.00" marketplaceRevenue="840.00"
 amountForSupplier="2800.00" brokerRevenueSharePercentage="9.00"
 brokerRevenue="360.00"/>

The service is offered by a reseller:

<RevenueShareDetails serviceRevenue="4000.00"
 marketplaceRevenueSharePercentage="16.00"
 resellerRevenueSharePercentage="20.00" marketplaceRevenue="640.00"
 resellerRevenue="800.00" amountForSupplier="2560.00"/>

Appendix B: Revenue Share Data

Developer's Guide 60

RevenuesPerMarketplace
Provides an overview of the revenue shares for the different organizations involved in selling
services on a specific marketplace.
A RevenuesPerMarketplace element contains the following subelements:
• A Brokers element listing the relevant broker organizations with their revenue shares in

Organization subelements.
• A Resellers element listing the relevant reseller organizations with their revenue shares in

Organization subelements.
• A Suppliers element listing the relevant supplier organizations with their revenue shares in

Organization subelements.
• A MarketplaceOwner element specifying the revenue share for the marketplace owner in its

amount attribute (required, data type decimal, scale 2).

Each Brokers, Resellers, or Suppliers element included in a RevenuesPerMarketplace
element has the following attributes:
• amount - (optional, data type decimal, scale 2) Overall revenue share of the listed broker,

reseller, or supplier organizations.
• marketplaceRevenue - (optional, data type decimal, scale 2) The marketplace owner's share

of the revenue of the listed broker, reseller, or supplier organizations.
• totalAmount - (optional, data type decimal, scale 2) Overall revenue for all services offered

by the listed broker, reseller, or supplier organizations on the marketplace.

An Organization element included in a Brokers, Resellers, or Suppliers element has the
following attributes:
• identifier - (required, data type string) ID of the organization.
• amount - (required, data type decimal, scale 2) Revenue share of the organization.
• name - (optional, data type string) Name of the organization.
• marketplaceRevenue - (optional, data type decimal, scale 2) The marketplace owner's share

of the organization's revenue.
• totalAmount - (optional, data type decimal, scale 2) Overall revenue for all services offered

by the organization on the marketplace.

Example:

<RevenuesPerMarketplace>
 <Brokers amount="50.00" totalAmount="1000.00"
 marketplaceRevenue="150.00">
 <Organization identifier="da3cd3a3" amount="25.00" name="broker"
 marketplaceRevenue="75.00" totalAmount="500.00" />
 <Organization identifier="ea4cd3a3" amount="25.00" name="broker2"
 marketplaceRevenue="75.00" totalAmount="500.00" />
 </Brokers>
 <Resellers amount="50.00" totalAmount="1000.00"
 marketplaceRevenue="150.00">
 <Organization identifier="bc4cd3a3" amount="25.00" name="reseller"
 marketplaceRevenue="75.00" totalAmount="500.00" />
 <Organization identifier="fg5cd3a3" amount="25.00" name="reseller2"
 marketplaceRevenue="75.00" totalAmount="500.00" />
 <Resellers/>
 <Suppliers/>
 <MarketplaceOwner amount="300.00" />

Appendix B: Revenue Share Data

Developer's Guide 61

</RevenuesPerMarketplace>

RevenuesOverAllMarketplaces
Provides an overview of the revenue shares for the different organizations involved in selling
services on any of the marketplaces that belong to a specific marketplace owner.
A RevenuesOverAllMarketplaces element contains the following subelements:
• A Brokers element listing the relevant broker organizations with their revenue shares in

Organization subelements.
• A Resellers element listing the relevant reseller organizations with their revenue shares in

Organization subelements.
• A Suppliers element listing the relevant supplier organizations with their revenue shares in

Organization subelements.
• A MarketplaceOwner element specifying the revenue share for the marketplace owner in its

amount attribute (required, data type decimal, scale 2).

Each Brokers, Resellers, or Suppliers element included in a RevenuesPerMarketplace
element has the following attributes:
• amount - (optional, data type decimal, scale 2) Overall revenue share of the listed broker,

reseller, or supplier organizations.
• marketplaceRevenue - (optional, data type decimal, scale 2) The marketplace owner's share

of the revenue of the listed broker, reseller, or supplier organizations.
• totalAmount - (optional, data type decimal, scale 2) Overall revenue for all services offered

by the listed broker, reseller, or supplier organizations on the marketplaces.

An Organization element included in a Brokers, Resellers, or Suppliers element has the
following attributes:
• identifier - (required, data type string) ID of the organization.
• amount - (required, data type decimal, scale 2) Revenue share of the organization.
• name - (optional, data type string) Name of the organization.
• marketplaceRevenue - (optional, data type decimal, scale 2) The marketplace owner's share

of the organization's revenue.
• totalAmount - (optional, data type decimal, scale 2) Overall revenue for all services offered

by the organization on the marketplaces.

Example:

<RevenuesOverAllMarketplaces>
 <Brokers amount="50.00" totalAmount="1000.00"
 marketplaceRevenue="150.00">
 <Organization identifier="da3cd3a3" amount="25.00" name="broker"
 marketplaceRevenue="75.00" totalAmount="500.00" />
 <Organization identifier="ea4cd3a3" amount="25.00" name="broker2"
 marketplaceRevenue="75.00" totalAmount="500.00" />
 </Brokers>
 <Resellers amount="50.00" totalAmount="1000.00"
 marketplaceRevenue="150.00">
 <Organization identifier="bc4cd3a3" amount="25.00" name="reseller"
 marketplaceRevenue="75.00" totalAmount="500.00" />
 <Organization identifier="fg5cd3a3" amount="25.00" name="reseller2"
 marketplaceRevenue="75.00" totalAmount="500.00" />
 <Resellers/>

Appendix B: Revenue Share Data

Developer's Guide 62

 <Suppliers/>
 <MarketplaceOwner amount="300.00" />
</RevenuesOverAllMarketplaces>

B.5 Supplier Revenue Share Data
The following sections describe the XML elements and attributes that make up the revenue share
data for suppliers.

SupplierRevenueShareResult
Top-level container element for supplier revenue share data. For each supplier organization in
consideration, a SupplierRevenueShareResult element is added to the billing data file.
A SupplierRevenueShareResult element has the following attributes:
• organizationId - (required, data type string) ID of the supplier organization.
• organizationKey - (required, data type positiveInteger) Internal numeric key of the

supplier organization.

A SupplierRevenueShareResult element contains the following subelements:
• An OrganizationData element specifying the details of the supplier organization (see

OrganizationData on page 51).
• A Period element specifying the billing period (see Period on page 50).
• A Currency element for each currency for which supplier revenue share data is available (see

Currency on page 62).

Example:

<SupplierRevenueShareResult organizationId="cd9ffaac"
 organizationKey="19000">
 <OrganizationData> ... </OrganizationData>
 <Period> ... </Period>
 <Currency> ... </Currency>
</SupplierRevenueShareResult>

Currency
Contains the supplier revenue share data for a specific currency.
A Currency element has the following attribute:
id - (required, data type string) ISO code of the currency.
A Currency element contains the following subelements:
• A Marketplace element for each marketplace for which revenue share data for the supplier

organization is available (see Marketplace on page 63).
• A SupplierRevenue element specifying the detailed revenue share data for the current

supplier organization (see SupplierRevenue on page 63).

Example:

<Currency id="EUR">
 <Marketplace>...</Marketplace>
 <SupplierRevenue>...</SupplierRevenue>
</Currency>

Appendix B: Revenue Share Data

Developer's Guide 63

Marketplace
Contains the revenue share data for a specific marketplace.
A Marketplace element has the following attributes:
• id - (required, data type string) ID of the marketplace.
• key - (required, data type positiveInteger) Internal numeric key of the marketplace.

A Marketplace element contains the following subelements:
• A MarketplaceOwner element specifying the marketplace owner in an OrganizationData

subelement (see OrganizationData on page 51).
• A Service element for each service published on the marketplace for which revenue share

data for the supplier is available (see Service on page 65).
• A RevenuePerMarketplace element summarizing the revenue shares for all organizations

involved(see RevenuePerMarketplace on page 68).

Example:

<Marketplace id="e1828fba" key="17021">
 <MarketplaceOwner>
 <OrganizationData> ... </OrganizationData>
 </MarketplaceOwner>
 <Service>...</Service>
 <RevenuePerMarketplace> ... </RevenuePerMarketplace>
</Marketplace>

SupplierRevenue
Contains the detailed revenue data for a supplier organization.
A SupplierRevenue element has the following attributes:
• amount - (required, data type decimal, scale 2) Overall revenue for the supplier.

A SupplierRevenue element may contain the following subelements, depending on which
organizations offer the supplier's services:
• A DirectRevenue element specifying the revenue for the services offered directly by the

supplier.
• A BrokerRevenue element specifying the revenue for the supplier's services offered by

brokers.
• A ResellerRevenue element specifying the revenue for the supplier's services offered by

resellers.

Example:

<SupplierRevenue amount="1500.00">
 <DirectRevenue> ... </DirectRevenue>
 <BrokerRevenue> ... </BrokerRevenue>
 <ResellerRevenue> ... </ResellerRevenue>
</SupplierRevenue>

DirectRevenue
Contains the revenue data for services offered directly by their supplier.
A DirectRevenue element has the following attributes:
• serviceRevenue - (required, data type decimal, scale 2) Overall revenue for the services

offered by the supplier.

Appendix B: Revenue Share Data

Developer's Guide 64

• marketplaceRevenue - (required, data type decimal, scale 2) Overall revenue for the owners
of the marketplaces where the services are offered by the supplier.

Example:

<SupplierRevenue amount="1500.00">
 <DirectRevenue serviceRevenue="500.00" marketplaceRevenue="75.00" />
 <BrokerRevenue> ... </BrokerRevenue>
 <ResellerRevenue> ...</ResellerRevenue>
</SupplierRevenue>

BrokerRevenue
Contains the revenue data for a supplier's services offered by brokers.
A BrokerRevenue element has the following attributes:
• serviceRevenue - (required, data type decimal, scale 2) Overall revenue for the services

offered by the broker.
• marketplaceRevenue - (required, data type decimal, scale 2) Overall revenue for the owners

of the marketplaces where the services are offered by brokers.
• brokerRevenue - (required, data type decimal, scale 2) Overall revenue share for the broker

offering the services.

Example:

<SupplierRevenue amount="1500.00">
 <DirectRevenue> ... </DirectRevenue>
 <BrokerRevenue serviceRevenue="500.00" marketplaceRevenue="75.00"
 brokerRevenue="25.00" />
 <ResellerRevenue> ...</ResellerRevenue>
</SupplierRevenue>

ResellerRevenue
Contains the revenue data for the supplier's services offered by resellers.
A ResellerRevenue element has the following attributes:
• serviceRevenue - (required, data type decimal, scale 2) Overall revenue for the services

offered by resellers.
• marketplaceRevenue - (required, data type decimal, scale 2) Overall revenue for the owners

of the marketplaces where the services are offered by the resellers.
• resellerRevenue - (required, data type decimal, scale 2) Overall revenue share for the

resellers offering the services.
• overallRevenue - (required, data type decimal, scale 2) Overall revenue for the services

offered by the resellers minus the marketplace owner revenue (marketplaceRevenue) and the
reseller revenue (resellerRevenue).

Example:

<SupplierRevenue amount="1500.00">
 <DirectRevenue> ... </DirectRevenue>
 <BrokerRevenue> ... </BrokerRevenue>
 <ResellerRevenue serviceRevenue="500.00" marketplaceRevenue="75.00"
 resellerRevenue="25.00" overallRevenue="400.00" />
</SupplierRevenue>

Appendix B: Revenue Share Data

Developer's Guide 65

Service
Specifies the revenue share data for a specific service.
A Service element has the following attributes:
• id - (required, data type string) Name of the service.
• key - (required, data type positiveInteger) Internal numeric key of the published service. If

the service is offered by a broker or reseller, this is the key of an internal technical copy of the
original service defined by the supplier. If the service is offered directly by its supplier, it is the
key of the original service.

• model - (required, data type string) String specifying by which type of organization the service
is offered. Possible values are:
• DIRECT : The service is offered by its supplier.
• BROKER : The service is offered by a broker.
• RESELLER : The service is offered by a reseller.

• templateKey - (optional, data type positiveInteger) Internal numeric key of the original
service defined by the supplier, if the service is published by a broker or reseller.

A Service element contains the following subelements:
• If the service is offered directly by the supplier: A Subscription element for each subscription

to the service for which revenue share data is available (see Subscription on page 66).
• If the service is offered by a broker:

• A Subscription element for each subscription to the service for which revenue share data
is available (see Subscription on page 66).

• A Broker element specifying the broker organization in an OrganizationData subelement
(see OrganizationData on page 51).

• If the service is offered by a reseller:
• A SubscriptionsRevenue element summarizing the total revenue for all subscriptions to

the service in its amount attribute (required, data type positive decimal, scale 2).
• A Reseller element specifying the reseller organization in an OrganizationData

subelement (see OrganizationData on page 51).

• A RevenueShareDetails element specifying the revenue shares for the service (see
RevenueShareDetails on page 66).

Examples:
The service is offered directly by its supplier:

<Service id="Mega Office" key="17005" model="DIRECT">
 <Subscription> ... </Subscription>
 <RevenueShareDetails> ... </RevenueShareDetails>
</Service>

The service is offered by a broker:

<Service id="Mega Office" key="17005" model="BROKER"
 templateKey="10501">
 <Subscription> ... </Subscription>
 <Broker> <OrganizationData> ... </OrganizationData> </Broker>
 <RevenueShareDetails> ... </RevenueShareDetails>
</Service>

Appendix B: Revenue Share Data

Developer's Guide 66

The service is offered by a reseller:

<Service id="Mega Office" key="17005" model="RESELLER"
 templateKey="10501">
 <SubscriptionsRevenue amount="6000.00" />
 <Reseller> <OrganizationData> ... </OrganizationData> </Reseller>
 <RevenueShareDetails> ... </RevenueShareDetails>
</Service>

Subscription
Specifies the revenue for a specific subscription to a service.
A Subscription element has the following attributes:
• id - (required, data type string) Name of the subscription.
• key - (required, data type positiveInteger) Internal numeric key of the subscription.
• billingKey - (required, data type positiveInteger) Unique identifier allowing, for example,

accounting systems to relate billing data to an invoice. The billing data key is printed on the
invoice.

• revenue - (required, data type positive decimal, scale 2) The total revenue for the subscription
in the billing period.

A Subscription element contains a Period subelement specifying the applicable billing period
(see Period on page 50).
Example:

<Subscription id="Mega Office Basic" key="17005" billingKey="19032"
 revenue="600.00">
 <Period>... </Period>
</Subscription>

RevenueShareDetails
Specifies the revenue for a specific service and the revenue shares for all organizations involved
in selling the service.
A RevenueShareDetails element has the following attributes:
• serviceRevenue - (required, data type decimal, scale 2) Total revenue for the service in the

billing period.
• marketplaceRevenueSharePercentage - (required, data type decimal, scale 2) Percentage of

the revenue the marketplace owner is entitled to.
• brokerRevenueSharePercentage - (optional, data type decimal, scale 2) If the service is

offered by a broker: Percentage of the revenue the broker is entitled to.
• resellerRevenueSharePercentage - (optional, data type decimal, scale 2) If the service is

offered by a reseller: Percentage of the revenue the reseller is entitled to.
• marketplaceRevenue - (required, data type decimal, scale 2) The marketplace owner's

revenue share for the service in the billing period.
• brokerRevenue - (optional, data type decimal, scale 2) If the service is offered by a broker:

The broker's revenue share for the service in the billing period.
• resellerRevenue - (optional, data type decimal, scale 2) If the service is offered by a reseller:

The reseller's revenue share for the service in the billing period.

Appendix B: Revenue Share Data

Developer's Guide 67

• amountForSupplier - (required, data type decimal, scale 2) The supplier's revenue share for
the service in the billing period. This is the remaining value of the total service revenue after
subtracting the revenue shares for the marketplace owner, broker, and/or reseller.

A RevenueShareDetails element contains a CustomerRevenueShareDetails subelement for
each customer who used the service (see CustomerRevenueShareDetails on page 67).
Examples:
The service is offered directly by its supplier:

<RevenueShareDetails serviceRevenue="16.92"
 marketplaceRevenueSharePercentage="10.00" marketplaceRevenue="1.69"
 amountForSupplier="15.23">
 <CustomerRevenueShareDetails> ... </CustomerRevenueShareDetails>
</RevenueShareDetails>

The service is offered by a broker:

<RevenueShareDetails serviceRevenue="4000.00"
 marketplaceRevenueSharePercentage="21.00" marketplaceRevenue="840.00"
 amountForSupplier="2800.00" brokerRevenue="360.00"
 brokerRevenueSharePercentage="9.00">
 <CustomerRevenueShareDetails> ... </CustomerRevenueShareDetails>
</RevenueShareDetails>

The service is offered by a reseller:

<RevenueShareDetails serviceRevenue="4000.00"
 marketplaceRevenueSharePercentage="16.00" marketplaceRevenue="640.00"
 resellerRevenueSharePercentage="20.00" resellerRevenue="800.00"
 amountForSupplier="2560.00">
 <CustomerRevenueShareDetails> ... </CustomerRevenueShareDetails>
</RevenueShareDetails>

CustomerRevenueShareDetails
Specifies the revenue for a specific service generated by a given customer and the revenue
shares for all organizations involved in selling the service.
A CustomerRevenueShareDetails element has the following attributes:
• customerName - (required, data type string) Name of the customer organization.
• customerId - (required, data type string) ID of the customer organization.
• serviceRevenue - (required, data type decimal, scale 2) Total revenue for the service in the

billing period.
• marketplaceRevenueSharePercentage - (required, data type decimal, scale 2) Percentage of

the revenue the marketplace owner is entitled to.
• marketplaceRevenue - (required, data type decimal, scale 2) The marketplace owner's

revenue share for the service in the billing period.
• amountForSupplier - (required, data type decimal, scale 2) The supplier's revenue share for

the service generated by the customer in the billing period. This is the remaining value of the
total service revenue generated by the customer after subtracting the revenue shares for the
marketplace owner, broker, and/or reseller.

• brokerRevenueSharePercentage - (optional, data type decimal, scale 2) If the service is
offered by a broker: Percentage of the revenue the broker is entitled to.

Appendix B: Revenue Share Data

Developer's Guide 68

• brokerRevenue - (optional, data type decimal, scale 2) If the service is offered by a broker:
The broker's revenue share for the service in the billing period.

• resellerRevenueSharePercentage - (optional, data type decimal, scale 2) If the service is
offered by a reseller: Percentage of the revenue the reseller is entitled to.

• resellerRevenue - (optional, data type decimal, scale 2) If the service is offered by a reseller:
The reseller's revenue share for the service in the billing period.

Examples:
The service is offered directly by its supplier:

<CustomerRevenueShareDetails customerName="MyCompany"
 customerId="8dac00a0" serviceRevenue="16.92"
 marketplaceRevenueSharePercentage="10.00" marketplaceRevenue="1.69"
 amountForSupplier="15.23"/>

The service is offered by a broker:

CustomerRevenueShareDetails customerName="ITCompany"
 customerId="ff48ae0b" serviceRevenue="4000.00"
 marketplaceRevenueSharePercentage="21.00" marketplaceRevenue="840.00"
 amountForSupplier="2800.00" brokerRevenue="360.00"
 brokerRevenueSharePercentage="9.00"/>

The service is offered by a reseller:

<CustomerRevenueShareDetails customerName="YourCompany"
 customerId="859069d7" serviceRevenue="4000.00"
 marketplaceRevenueSharePercentage="16.00" marketplaceRevenue="640.00"
 resellerRevenueSharePercentage="20.00" resellerRevenue="800.00"
 amountForSupplier="2560.00"/>

RevenuePerMarketplace
Provides an overview of the revenue shares for the different organizations involved in selling the
services of a supplier on a specific marketplace.
A RevenuePerMarketplace element has the following attributes:
• serviceRevenue - (required, data type decimal, scale 2) Total revenue for all relevant services

in the billing period.
• marketplaceRevenue - (required, data type decimal, scale 2) Total revenue share for the

marketplace owner.
• brokerRevenue - (optional, data type decimal, scale 2) Total revenue share for all brokers.
• resellerRevenue - (optional, data type decimal, scale 2) Total revenue share for all resellers.
• overallRevenue - (required, data type decimal, scale 2) Total revenue for the supplier. This is

the remaining value of the total revenue for all services after subtracting the revenue shares for
the marketplace owner, brokers, and/or resellers.

Example:

<RevenuePerMarketplace serviceRevenue="1010.00"
 marketplaceRevenue="126.25" resellerRevenue="0.00"
 brokerRevenue="121.20" overallRevenue="762.55"/>

Glossary

Developer's Guide 69

Glossary
Administrator
A privileged user role within an organization. Each organization has at least one administrator.

Application
A software, including procedures and documentation, which performs productive tasks for users.

Broker
An organization which supports suppliers in establishing relationships to customers by offering the
suppliers' services on a marketplace, as well as a privileged user role within such an organization.

Cloud
A metaphor for the Internet and an abstraction of the underlying infrastructure it conceals.

Cloud Computing
The provisioning of dynamically scalable and often virtualized resources as a service over the
Internet on a utility basis.

Customer
An organization which subscribes to one or more marketable services in BSS in order to use the
underlying applications in the Cloud.

Infrastructure as a Service (IaaS)
The delivery of computer infrastructure (typically a platform virtualization environment) as a
service.

Marketable Service
A service offering to customers in BSS, based on a technical service. A marketable service
defines prices, conditions, and restrictions for using the underlying application.

Marketplace
A virtual platform for suppliers, brokers, and resellers in BSS to provide their services to
customers.

Marketplace Owner
An organization which holds a marketplace in BSS, where one or more suppliers, brokers, or
resellers can offer their marketable services.

Marketplace Manager
A privileged user role within a marketplace owner organization.

Operator
An organization or person responsible for maintaining and operating BSS.

Glossary

Developer's Guide 70

Organization
An organization typically represents a company, but it may also stand for a department of a
company or a single person. An organization has a unique account and ID, and is assigned one or
more of the following roles: technology provider, supplier, customer, broker, reseller, marketplace
owner, operator.

Payment Service Provider (PSP)
A company that offers suppliers or resellers online services for accepting electronic payments by
a variety of payment methods including credit card or bank-based payments such as direct debit
or bank transfer. Suppliers and resellers can use the services of a PSP for the creation of invoices
and payment collection.

Payment Type
A specification of how a customer may pay for the usage of his subscriptions. The operator
defines the payment types available in BSS; the supplier or reseller determines which payment
types are offered to his customers, for example, payment on receipt of invoice, direct debit, or
credit card.

Platform as a Service (PaaS)
The delivery of a computing platform and solution stack as a service.

Price Model
A specification for a marketable service defining whether and how much customers subscribing to
the service will be charged for the subscription as such, each user assigned to the subscription,
specific events, or parameters and their options.

Reseller
An organization which offers services defined by suppliers to customers applying its own terms
and conditions, as well as a privileged user role within such an organization.

Role
A collection of authorities that control which actions can be carried out by an organization or user
to whom the role is assigned.

Seller
Collective term for supplier, broker, and reseller organizations.

Service
Generally, a discretely defined set of contiguous or autonomous business or technical functionality,
for example, an infrastructure or Web service. BSS distinguishes between technical services and
marketable services, and uses the term "service" as a synonym for "marketable service".

Service Manager
A privileged user role within a supplier organization.

Glossary

Developer's Guide 71

Standard User
A non-privileged user role within an organization.

Software as a Service (SaaS)
A model of software deployment where a provider licenses an application to customers for use as
a service on demand.

Subscription
An agreement registered by a customer for a marketable service in BSS. By subscribing to a
service, the customer is given access to the underlying application under the conditions defined in
the marketable service.

Supplier
An organization which defines marketable services in BSS for offering applications provisioned by
technology providers to customers.

Technical Service
The representation of an application in BSS. A technical service describes parameters and
interfaces of the underlying application and is the basis for one or more marketable services.

Technology Manager
A privileged user role within a technology provider organization.

Technology Provider
An organization which provisions applications as technical services in BSS.

	Contents
	About this Manual
	Readers of this Manual
	Notational Conventions
	Abbreviations
	Available Documentation

	1 Introduction
	1.1 The Developer's Tasks in BSS
	1.2 Web Services Concepts

	2 Platform Services
	3 Integrating Applications with BSS
	3.1 Prerequisites
	3.2 Implementing a Provisioning Service
	3.2.1 Implementing the Service as a Java Client
	3.2.2 Implementing the Service as a Non-Java Client
	3.2.3 Implementation Details

	3.3 Adapting the Login/Logout Implementation
	3.4 Integrating with BSS Event Management
	3.5 Implementing Technical Service Operations

	4 Integrating External Process Control
	5 Integrating Certificates for Trusted Communication
	5.1 Introduction
	5.2 Requirements for Web Service Calls from BSS
	5.3 Requirements for Web Service Calls to BSS
	5.4 Certificate Integration Procedures
	5.4.1 Creating a Certificate and a Signing Request
	5.4.2 Importing the Signed Certificates
	5.4.3 Importing the BSS Server Certificate

	Appendix A: Customer Billing Data
	Appendix B: Revenue Share Data
	B.1 Common Elements
	B.2 Broker Revenue Share Data
	B.3 Reseller Revenue Share Data
	B.4 Marketplace Owner Revenue Share Data
	B.5 Supplier Revenue Share Data

	Glossary

