& Interstage FUjiTSU

Interstage Big Data
Complex Event Processing Server
V1.0.0

Developer's Reference

[ Linux(64) ]

J2UL-1668-01ENZ0(00)
October 2012

PRIMERGY




Preface

Purpose

This manual provides a reference for the processing language used by this product, input adapter communication methods, etc. It also
describes the language format and available functions, communication protocols, etc.

Intended Readers

This manual is intended for users who are considering developing applications that use this product.

Structure of this Document
This document is structured as follows:
Chapter 1 Complex Event Processing Language Reference

Reference for the event processing language used by Complex Event Processing of this product. This section describes the language
syntax.

Chapter 2 Filter Rule Language Reference

Language reference for the rules used by High-speed Filter of this product. This section describes the language format, the available
functions, etc.

Chapter 3 Input Adapter Reference

Reference explaining the input adapter functionality for each communication protocol. This section also provides examples to be used
for reference when developing event sender applications.

Conventions
The notation conventions used in each chapter of this manual are as follows:
Chapter 1, " Complex Event Processing L anguage Reference” conventions
The following notation is used in the complex event processing language syntax:
- Square brackets, "["* and "]", indicate that the part enclosed by the brackets is optional.

- A vertical line, "|", indicates the need to make a selection from the items separated by the vertical line. If the boundary between the
selection options and surrounding syntax is not clear, the list of selection options is enclosed in parentheses, " (** and ")".

- Three periods, ". - ." indicates a continuation of the previous part in a similar way.
- Parts written in camelCase and formatted using italics are parts to be replaced by an actual expression, explained by the text.

- If square brackets or parentheses are used as part of sentence structure, they are underlined "[" "1" " (" ")" to distinguish them from
the square brackets and parentheses used as notation conventions.

Chapter 2, " Filter Rule Language Reference" conventions

The symbols used in the filter rule language format have the following meanings:

Symbol Explanation

The part branching below the line indicates elements that are optional.
Example:

— numeric

numeric




Symbol

Explanation

The parts branching vertically in parallel indicate that one of these elements must be
selected.

Example:

elemeniiame

The arrow line pointing backwards over the top of the line indicates that the element is
repeated.

Example:

4

numernc

Indicates that the multiple syntax elements are grouped.

Example:

elementiame

pathElement

—]

Indicates the end of the syntax.

Trademarks

- Adobe, Adobe Reader, and Flash are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries.

- Linux is a registered trademark of Linus Torvalds.

- Red Hat, RPM, and all Red Hat-based trademarks and logos are trademarks or registered trademarks of Red Hat, Inc. in the United
States and other countries.

- Microsoft, Windows, MS, MS-DOS, Windows XP, Windows Server, Windows Vista, Windows 7, Excel, and Internet Explorer are

either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

- Interstage, PRIMECLUSTER, ServerView, Symfoware, and Systemwalker are registered trademarks of Fujitsu Limited.




- Other company names and product names used in this document are trademarks or registered trademarks of their respective owners.

Note that registration symbols (TM or R) are not appended to system names or product names in this manual.

Export Restriction

This document might contain special technology designated under Foreign Exchange and Foreign Trade Laws. If so, when this document
is to be exported or provided overseas, it is necessary to check Foreign Exchange and Foreign Trade Laws, and take the necessary procedure
according to these laws.

Copyright
Copyright 2012 FUJITSU LIMITED

October 2012: First edition




Contents

Chapter 1 Complex Event Processing Language REEIENCE. ..........iiiiiiiiiiiiii et e e s e e e e e s aaees 1
1.1 Basic Items in the Complex Event ProCeSSING LANGUAGE. ........eviuiririrereeierieierte et sttt sa et st b et st ssesestenesbesnsseseesesnens 1
1.1.1 Event Stream Name
1.1.2 Event Properties..........
1.1.3 Time Expression.........
O O 1 0 T=T 0 T TP T TR P PP P P UP PR PPOPTN
L.1.5 RESEIVEA WOTUS. ...ttt etttk bbbk E b4 b s bbb b€ E b bbb bbbt b et b et b et 2
B Ol D = T Y 1TSS TSP PSPPSR 3
1.1.7 Complex EVENt ProCeSSING STALEIMENL. ..........iiuiiiiiiei ettt ettt ettt b e e b e st e e bbb b e b e e bt e b e s e ent e b e e b et et e sb e e enenbe e 4
L.0.8 ANINOTALION. ...ttt bbb e bbb bbbt b b e b b £ bbb R e R bR bR e R R AR bRt b bRt E bRt e bRt n et 5
1.2 SELECT SEAIEIMENT.......eiitiitiitietieteitest sttt sttt sttt et besbe s bt e se e s b et e be e b e e b e e b e e s e e st et e ke eb e e b e eh s e Rt e b e nb e e b e e b e e bt e st et e beebeebe e b e enb et e nbenas 6
1,21 SELECT CIaAUSE.....utrtveterenitereseistesssesteseessesesassssssesessssesessssesesessasesesensesesensesesessssesessssssasensssesensssesesessssesesensasesensasesessssssesensssesenssen 6
1.2.2 FROM CIaUSE. ...ttt sttt ettt sttt b et h bt e st b e b e s e e b £ eb e s e e b £ e £ e R e e b e e b e £ e b e e b e e eh e e E e b e R e e R e b e E £ e R e AE e R e e b e eben e e b e e b et ek e sb e e ebenbe e e 6
1.2.2.1 Filter-based EVent Stream DEfiNITION.........cociiiiiiiiie bbbttt b bbb 6
1.2.2.2 Pattern-based EVeNnt STream DEfiNITION.........ooiiiiiiiiciiese ettt sttt st e s enentenenae 7
LL2.3 WHERE ClIAUSE. ...t eueteste ettt ettt ettt ettt e et e s e e e e b e e bt s e 2Rt e b e o2 e m e eE e e b e e R e e Eem e eR £ eE e £ 2R £ e Rt eEem s eE e e Ee e e b e ebeeeenteEe et eneabesbeneaneneenene 7
1.2.4 GROUP BY CHaUSE.....ceutueeteuiiatentietentseetestsestesesestestseeseseseeteseseesesessesesessesesessaseseseaseseaeeses e s e et es e e et en e e eben et b ene e ebene st et eneneebeneneesenees 8
1.2.5 HAVING Clause
1.2.6 OUTPUT Clause
1.2.7 ORDER BY CIaUSE.....ceuteeteutieteuiriateneseetestseeseseseatesesessesesessesessasesessasesessasesessasesessasesessesensssesesessnsensssesesessesensssesensssesensssesensssesenenes 9
L.2.8 LIMIT CHaUSE. .ttt sttt sttt ettt bbbt bbbkt bbbt bbb bR E bR b bR £ b bRt b n b e b e n et e et et e et es 9
1.2.9 INSERT INTO ClIAUSE.......cveuiiiteriiitetitstetestsistesesestesesastesesessesesassssesesesseses e s abesesssseses e s et ese e e s es e e e s et ese s e s ebe s eaebes s asebes e s ebese s sbesensee 9
1.2.10 SUDGUETTES. ...ttt ettt b st 8k 8 e E R e R 0B e R R bR Rt e R Rt R et e r e n s 10
00 (@ 11N O OSSOSO 10
1.3 NAMEUd WINGAOW OPEIATIONS. ... ..eveuiiviriiieietiiteietest ettt ete sttt e e ste e e te st e e ebesbeseabe e ebesbeseebessebe b eseebessabe b essebensabe b essabensabessenesbessese e enene 11
1.3.1 CREATE WINDOW SEALEMENT.......ueuiietierieieriissesestssesessssesessssesessssesessssssessssesessssesessesesessssesessasesessesesessasesessssesessssesessasesesssseses 11
1.3.1.1 Generation from EXIStING EVENT TYPE. ...ttt ettt s et e e e sesbe s e ese et e et e e ebesae e e neseeneenesbensarenanns 11
1.3.1.2 Generation with Property Name and Type SPECITICALION. ..........ccvriiriririeireee et 11
1.3.1.3 Virtual Data WINGOW GENETALION. ........ciriiretiiiietisiiieieitristeie sttt ettt b et e ket b et b ekt b ekt b et s et st b nn b 11
1.3.2 ON SELECT SEABIMENL.....cueuiietereisieresisieseseseseeseeseesesessssesesessesessssssesesessesesessesesessesesessssasessssssesessssesensssesensssnsessssssesesesseseensaseses 13
1.3.3 ON UPDATE Statement........cceovrveuererrrerreiresieenesiereneseeens et R LAt R et Rt Re et et R et et R et et e R et et et re e tenen 13
1.3.4 ON DELETE Statement.... T T PO ST O TP ST U TOUP PP 13
1.3.5 ON MERGE SEEBMENT. ....utiutiieite ittt sttt sttt st e bbbt e s e e e et et s ke sbeebe e s e ea b e s b e b e sb e nb e e bt e bt et e be ke e be s ke e b e en s enb et e nbenbeneeens 13
e 1 1=] 1L OSSP PT PP PRTPPPPPPRTON 14
1.4.1 Pattern OPerators @N0 PrIOTTIES. ... ... ittt ettt bbbt b e bbb e bbb b e bt e bt e b e e b et e bt nb e e e bt nben e et e nn et et e 14
L4 2 EVERY OPBIALON. . .iiutiuietiitisitseetiesteste e stesieastestestesbesbeeseeseeaesbesbesbeassesbesbesbe e bt e be e st e ae b b e e b e eR e e Rt e b e nb e a b e e b e e st e be b ek e eb e e b e en b e benbeneennes 15
1.4.3 EVERY -DISTINCT OPEIAIOI....c.cvctiuiieeiuiieiesisiesesistesesessesesessssesessesesessasessssesesessasesessesesessesesessasesessasesessasesensasesessssesessasesessaseses 15
14,4 REPELITION OPBIALOT........e.eitiieeueeteeeete ettt te sttt e e te e e teste e ebe e etesae e et e seebeeeeaeebe e eseeeeme e b e e eseeEeaseEeeEeaeeEen e e bt eeeRe e e ene e bt eeeheabeneeneaeereaaeeanas
I R U @] 1] o OSSPSR
L.4.6 AND OPBIALO......c.veuietiseitirteie ettt r et r et b s st bt e b e e b e st e R s e E e e st e R e s e b e e 8 e s e b e e b £ e et e e e Rt e b e e et e e e R e bt e e e Rt e b e e r et n e r e n e en s
LLA.7 OR OPEIALON......eeueitiieeiieieiee sttt sttt sttt e et b e st e e bt et e R e e bt ee et e Rt e e st e R e b e bt e R st e b e e st e e et b e e Rt e b e r et r et e e n e es
L4 8 INOT OPBIALON ... eueeueiueeteeteeteest et ste st et ese e ettt et e ese e e e b e st e s bt e bt es e e s e e b e eb e e R e 4R e e R b e b e A b £ e E £ e E e e R e e R e ke eb e 4R e e m b e b e AE e e b e e b e e st e b e ek e eb e e beenr e b e nnenneens
1.4.9 FOIOWE-DY OPEIALOT. .. ...cueitiieieitiiete et ettt ettt ettt ettt e te st e st be st e s e et e b e tesbe st ebe s b e s e ebe s eseebe s ebe e b e s s ebeaaensebesaene et e b ene et ensebesaensere e
1.4.10 Pattern Guard...............
1.4.11 Time-based Observer...
1.5 FUNCLiONS....cveiieieieciieee
1.5.1 SINQIE-TOW FUNCIIONS. ....ctitiiietiieti sttt b st et te e b et e be st e e e bt st e s s e b e sb e st e be b e s s ek e b e s e e b e ns e s e et et ebe st e s s ene st ensebesbe e et e
1.5.2 AQQEUALE FUNCLIONS. ...ttt ettt b e bbbk E b b e bt e bt bbbt b et b bbb s
LGN O] oL 10 £ TSSOSO P RS TPTPTPPPRPRPION
1.7 WEBWS. .tttk ekttt st h st R Rt £k R £ E R £ R R R R oA e R R A€ E R oAt £ R eR e e R e R e e b e R e Rt R R Re et e R Rt et e Rt et Rttt e e ee
Chapter 2 Filter Rule LaNgUAGE RETEIENCE.........u ittt ettt e e e sttt e e e e e abb b et e e e e e nbbe e e e e e e annbbeeeaeean 24
2.1 WHAE Are FIIEI RUIBS?.....cei ettt ettt s e bt b e st e b £t e e b e e b e es a8t e R e eeem s e b e e b e e es e e b e b eneebeebe e benb et eneebenbeneabennan 24
2.2 BASIC FIIEI RUIE TTEIMS. ...ttt ekttt b et h b b e e b e b e e e Rt e b e b e e e b e e b e £ e R e e b e e e e e e bt eb et e b e e b e nbeneebesbe b ebeebenean 24
N S o Lot OSSPSR 24



2.2.2 KBYWOITS. ...ttt sttt b bbbkt b e bt e e st b€ 4o R £ e b EeH £ e b e £ e h £ 4 h e £ e b £ 4h e e e b £ A E e e e H £ oA e e e b e e b e e e bt E e e e bt nb et R et Rt b n et b e 24
2.2.3 COMMEBINES. ...ttt bbb bbb bbb bbb bbb bbb bbb bbbt 25
2,24 IVIASTET 1D ...tttk b ke s e bt b e h R e bR e R e R e oA oAb e R e AR £ R £ oA £ et e R e R e eR £ oA R e b e AR e eh £ e R e e b e b e ke b e e R e et nhenhenns 25
2.2.5 1tem Names and ALEFIDULE INGIMIES. .......c.iiuiiiite ettt h e b e bt e e a e e b e b e R e et e e e bt st e st et e s b e st et e et e s be e et s 25
2.3 FIIEEI RUIE SYNTAX....teitirietiiteieti sttt ettt sttt sttt et et e te e b e s e te et e s ese et e b ese e b e b e s e ebe s es s et e e s essabe b e s e ebesse s e e b e saensebe b ensabe st essebentesearenein
2.3.1 ON SEAEBIMENE. .. ettt sttt b e bbbt e bt e e et e be s Ee ke be e R e e R b e b e b a4 b4 e b e e bt e Rt et e b e A e E e e b e e b e e R b e R b e b e e b e eh e e Rt e Rt et et e b b benre et
2.3.2 IF-THEN Statement....
2.4 Common Formats..............
2.4.1 ltem Expressions.........
2.4.2 PN EXPIESSIONS. ...ttt ettt et h e bbb b e b b e bbb R R R R R R R R R R R Rt R bbbt n et r s
P B A o] (=] o] OO TPSOPRRR
2.4.4 ATITIDULE EXPIESSIONS. ... uiteutetieteaietest ettt ettt st s e be e et e s es e ebe b e bt e b e e e b e b e s e e b e b es e eb e b e b e e b e s e e b e b e b e eb e e eb e e b e e ebene e b e ebe e et e abe e abeneebeaben
R B v- N 1Y/ 0L T OO OSSOSO P PP
B I (=T =1 OSSO
2.4.8.1 SEING LITEIAL.....e ettt bbbt e he b e bR £ e b e b e h e b e £ e b £ be e eR e e b e £ e R e e R e b e R e e b et e b e ebe e bt nee e nenean
2.4.8.2 NUMEIIC LIEIAL.....cueviiiiieiiiei bbbttt
2.4.7 Comparison Operators
2.4.8 LOGICAI OPBIALOIS. .....vviuiveteuieeteiest ettt etttk b bt b st E s e R R0 E bR R e st R bR bR bt e R Rt n st nn et r s
2.4.9 TEBIM RETEIEINCES. ...ttt ettt bbb e st bttt e b e b e £ e b £ e b e e e e R e e b e b e e e b e 4 b e e e R £ eE e b e s £ eb e ebem £ e b e eben b ebeebeneeseebenbentabeaben
2.5 Search Expression Format.....
2.5.1 Condition Expressions
2.5.2 Escape Characters........cccceeverencenenenne.
2.5. 3 ENLILY RETEIBNCES. ... ettt b bbbt b et b b stk b e R b e e b £ e b e £ e b £ e b e e b e eb e R e e bt eben b e b e b en e eb et e bt e b et ebeaben
2.5.4 SPECIAI CNAIACTETS. ... .vevevitieietiiteti sttt ettt st e et e st s e e be e e te s b e s e ebe s e te e b e s e e ke b et e e b e s e e b e b e s e e b e st e b e b e b e e e e st et e b enesbessebe st esenbe e eneseeneaee
2.5.5 KEYWOIT SEAICR.......vviuiiieie ettt b e h b b s E bR R R e h bR bR e R b e Rt ne b e b bt nr e
2.5.5. 1 PALLEIN SBAICN. ...ttt bt b e b e b £ e R b b oA e Rt E e R £ R e e R e e SR e b e £ e R e e be e e Rt e b e R e Rt b e neebennan
2.5.5.1.1 Pattern SEATCH (STFNG)....ceiuiiveiitiitei ettt ettt sttt st s et st ere e b e se e st et et e seebe et e e e be st e b ebe et et et e ebe e ene et e e ene et e 42
2.5.5.1.2 PATEIN SEAICH (WOIT). ... ettt bbbkt bbbttt bbbt 47
2.5.5.1.3 Logical conjunction, logical disjunction, and negation in pattern SEArCNES............ccvverrereriineenceseesee s 48
2.5.5.2 SEIING SEAICN. ...ttt ettt bbb st b b s b e £ b b et e b b e R £ b e R e R e bt £ e Rt e b e e bt R e R e b e ne b nenenean
2.5.5.3 NUMEIIC SBAICTH. ....c.uiuiiiiiiiiiiititei ettt
2.5.6 COMPATISON DEIWEEN TEEIMS.......ceeeieieitet itttk b bbb bt b bbbt e b b e bt e bttt
2.5.6.1 String Comparisons........
2.5.6.2 Numeric Comparisons
2.5.6.3 Notes Common to String Comparisons and Numeric Comparisons....
2.5.7 LOOKUD SBAICN. ...tttk b bR R0 e R e Rt R bR bt b et n et ren e
2.5.7. L PALEEIN SEAICN. ...ttt bbbt b e e b e e b e £ e R e e b e b e R e bt e E e R e e R e e R oAb e bt e b e £ e R e e b e e e Rt eE e b e n e b e e n e benean
2.5.7.2 SENG SEATCN. ... ettt ettt ettt et e st et e b et ae et e b e s e e b et e te e b e st e be b e s e ebe b eReebe e eRe e b e e eb e et eReeae s eneete b rearin
2.5.7.3 NUMEIIC SEAICN. .. .eteiiiteieeitee ettt sttt b e b es e e be e e be s e e R e b et ebe et et e e be e e Eeebese e b et e be e b e st et et etesbeneabesenen
2.5.7.4 MASEEI DA SEAITH.......eeiiieieieeee ettt ettt ettt e e b e b e e e bt e b et ebeeees e e b e eeem e e b e b ene e b et e b e et et ebeebe e eneseeneanennan
2.5.7.5 LOOKUP SUM IMBECRING. ...ttt ettt sttt b et b bbb e h b b e e bt e b e e e bt e b e b e st e bt st e e e bt sbe b e b e ebennan
2.5.7.6 LOOKUP COUNE MAEICNING .. .cutitiiitiitiietsiei ettt ettt se st tesb et e be e b e e ebe s e s s et e s ent et et e st e be b ese et e b ebeebe e enessensenennin
2.6 JOIN EXPrESSION FOIMAL.......veuiuiitetisitetiistet etttk etk bbbkt b bbb bbb b A b b s £ b e bR e b e b st b bbb bbbt e b
2.6.1 JOIN-REIALIONAT EXPIESSION. ... .ceiueititeieteete ettt ettt ettt seete st e s e ebesees e e bt seemeebeebeseeseeEeaseReeEe e b e s e ebeeeenseseebe b abeaaeaseneabeabensarentens
2.7 OULPUL EXPIESSION FOIMNAL. ... e.tveveuieitetiieteteee et ieteseestste s eetese s e tese st sebese et es e et eb e et et e s e s eaes e s e eeeb e st aeebe b e e e b et enese et e ne st ebene e s sebe e e es
2.7.1 Output Items.......ccvvvervenne.
2.8 Function Format......
2.8. 1 FUNCEION LiSt....c.eiviiiiiiiieesie e
2.8.2 SEIING FUNCIIONS. ....cuetiictiiteete ettt ettt ettt e s b e e e b et ese e b et eseebe s ebe et e st e b e eb e st e be e b e e ek e b e s e e be s eseebe e ebe st e s ene st ensebesaeneere e
2.8.2. 1 FEIM() FUNCLION. ...ttt b ekt b b £ b b s bbb b b e b b e bbbkttt e b e et b et
2.8.2.2 SEIING() FUNCLION. ...ttt ettt e b e st eh et et et e b e e b e e eRe e b e e b e e eb e ee e e e Rt e R e ee e s e e bt eE et eseebeseeneenesbesereaaennan
2.8.3 NUMEIIC PrOCESSING FUNCLIONS. .......etiieiiiteiteieteste ettt sttt bbbt h bbb e bt se ekt b e e bt e b e bt b e a e eb e e b et et e eb e b entebeanen
2.8.3.1 VAI() FUNCHION....tit ittt b ettt b et et s b e e b e s e s e e b e s e R e e b e s e e b e s eRe e b e e ebe et e s s e b e st e s e e be e e s e et e nsebesbensete s enenrin
2.8.4 LOOKUD FUNCLIONS. ...ttt ettt h bR bbbt e bbb bbbt nn b
BT 5 I (o To Q0 o] I 03 Tod o o SO
2.8.4.2 100KUP_SUM() FUNCLION. .....cuitiiiiieteiiirietes sttt ettt b et b bt st e e et b st b e b e st e ek b et b et et e et ene et et e e e etenn
2.8.4.3 100KUP_COUNT() FUNCEION. .....tiuiitiieieiteietese ettt ettt e bt b e e et et e e e be s e Re e b et et e b et e e b et ebe b e s e sbe e ete st enen




2.8.5 BOOIBAN FUNCLIONS. ...ttt ettt e bbb bbbt b st b e h e b e e b e b e h e b e b e R £ e b e e e oAb e b e e b e e b e e bt nben b e b e e b et et e e b e e st et nee
2.8.5. 1 tTUB() FUNCHION. .....iititetieieiteiete ettt ettt b e st et e b e se et e et et b e e b e b e s e e b e b e s e e b e s e s s et e ebe e e R e ebe b e s s e b e e b e e ebe et e s eseebesseseabenein
2.8.5.2 false() Function

BNl o] (o] OO P ST PS SRR

2.9.1 OPLIONS OVEIVIBW. .. .e.evtiriietesieeteie ettt ettt st see b st be bt b e bRt b e ke st e e b e bt e b e b s e E e b e R e e e b b e Rt e e b e R e e b bt e b ek e st b e b n et et b e et et e s e e e

2.9.2 OPLIONS LEST. ..tttk h etk b bbb e bk e b b E e E R e bR Rk e bR R bbb bbb bbbt
2.9.2.1 SkipChar
2.9.2.2 SeparateChar....
2.9.2.3 ANKMIX....ooeeriirennes
2.9, 2.4 IKNTIMIX 1ttt £ £ bbb bbb R AR E ettt et bttt

Chapter 3 INPUL AJAPIEr RETEIEINCE. ... ..ii ittt e e et e e e e ettt e e e e sttt e e e e e e s stbeeeeesssbaeeaaeeassabeeaeesanstbaeaeesan 81
3L INPUL AQBPTET OVEIVIBW......c.eiueititeieteite ettt ettt st etttk b et eb b e e bt b e b e b e b £ Ees e eb £ e b e e e b £ e b e e ea £ e b e e b e e eh e e b e b e h e eb e e b e e ebenb et eb e et e e ebeebennin 81
3.2 ADOUL EVENT DALA. .....cvcvivieiiiieieiii ettt h sttt 81

32,1 EVENT DAL CONTENTS. ... teitiiiieie ittt sttt sttt skt e b e b e bt e bt et e be ke eb e ea b e ebeeh e e b e e b e b e eE e e b e e A b e eb e eb b e s b et e e b e ek e eneebesbeenteneenbenbe e 81
3.2.2 SUPPOITEU CRAFACTET SEES. ......eiueiteeitiiteeeti ettt sttt ettt be st e ke st e e e bt see s e ebe s e es e e beseehe e e e s e ebeeE e R e e b e b es e eb e b e Rt eb e b e b e e b et ebenbeseabeneebeabens 82
3.3 Communication Method
3.3.1 SOAP Adapter............
3.3.1.1 End Point.................
313,12 SN IMIBSSAGE. .. veteeeueete sttt ste e et ete st ettt b et e st e bese e st e bt e b e e e bt e b e ee 2Rt e b e b e e eE e e E e AEeR e e b a4 b e e eE £ eE e b e R e e R e eb e e R £ eE e b e R e e Rt e b e e e bt ebe e ereebennan
3.3.1.3 RESPONSE IVIESSAQE. ... vvveerrisressesttastestesiestesteassessessesstasseseesbesbeebeeseesbebeebees s es s e b e s be e b e e b e es b et Ab e e R e e s b e b e ke e Ee e b e e Rt e beeb e e bt enr et e neentenr
TR N Lo (= ST TSP SO TPV UPTUPOTOPPTPTPRPRONY
BRIl o I Ao T T OO
TR I = 4o 0T o | SO OO OO T TSP SOPRTPPR PRI
3.3.2.2 SENU IVIESSAQE. 1.t evtvervestetestesee st s teste st ete st eseeteste b eseebe st eseebeetesseseebe s es s ebe e b e s et e eb e s est e b e et e s e es e et e b e R e e Ee e b e e e b e e R et e R e eRe et e nseReeRe b ereerenrn
3.3.2.3 RESPONSE IMIESSAGE. ... evverereiesteseescstear ettt se e ebe e et b et e bt e s e e st a e bt ne et E e e R ekt Rt e st e e e bt e Rt s e e Rt e bt e Rt et E e n et n e n e n e
KR A N[ = T TSSO P PP PPTPPTOSOPPTPRPRTN
TR TR T Yoo (LA =1 o] (=] SO TR TP TSROSO
TR T T I = 4o I =T o SO OSSPSR
3.3.3.2 SENU MBSSAGE. ...ttt etttk ettt e bt e et e R h R R R R R R R R Rt R Rt R et n et n et nn s
3.3.3.3 RESPONSE IMIESSAGE. ... eveeuteutete et estet et e bt e bt et et beeb e st e e e sb e e bt ekt e he e e s e b e eh £ ekt e R s e b e eE e eb £ e b e e R s e R e eh £ 4R £ e a b e AR e nb e e R e e b e e nn e bt eR e e Rt entennennenre et
3.3.3.4 Socket Communication Processing Procedures
KR R T Lo (= OO SO TP UPTUPOUOPPTPTPRPRONY
KRy o] gl (0 T0T= ] o TSRS
3.5 SAMPIE PIOGIAMIS.....ueteiietitet ittt ettt b ettt b et h bbbt b e bt b e h e s £ bt s 4o R e e h e H e R £ e b e b e R e e b e b e b £ b e e e bt e b e e e bt e b et e bt et et eb e b e et e
BTN 10 o N - Vo (-] RSO SSSSS PSP
3.5.1.1 Example of Sample EXecution(Sends @ CSV Tata)..........ccouruireririreirmiieireieinesiee e 102
3.5.1.2 Example of Sample Execution(Sends an XIML Qata).........cccoereiiirieiiiiiieesie ettt 103
TSI o I Ao o ] SO SRRSO SRR OSTPRR 104
3.5.2.1 Example of Sample EXecution(SeNdS @ CSV Tata).........ceourireiriieiiiieiriciei sttt 107
3.5.2.2 Example of Sample Execution(Sends an XML ata)..........cccurvrreerrrererineerinieeieseeess e 107
BRI B Tl (=] AN =T o] (=] SO USSRV URU PR 108
3.5.3.1 Example of Sample EXecution(Sends @ CSV data).........ccerueriiiiriirieiiiieisieseiss sttt sttt sa s re e 110
3.5.3.2 Example of Sample Execution(Sends an XML ata)..........ccccrvreerirereriiereisieeieseeesiere st 110




|Chapter 1 Complex Event Processing Language Reference

This chapter explains the complex event processing rule descriptions for Complex Event Processing.

Complex Event Processing uses the complex event processing language to describe the processing of events.

The complex event processing language is an extended SQL-based language for processing events. Whereas SQL performs processing of
database tables, the complex event processing language performs processing of event streams.

1.1 Basic Items in the Complex Event Processing Language

1.1.1 Event Stream Name

In the complex event processing language, an event stream name is expressed as the event types that are included in an event stream. In
this manual, event stream name and event type (name) have similar meanings.

The following rules apply to event stream names:
- The first character must be alphabetic (a to z or A to Z).
- The second and subsequent characters can be alphabetic (a to z or A to Z), numerics (0 to 9), or underscores ().
- The reserved words listed in the table at *1.1.5 Reserved Words" cannot be used regardless of case.

Note that event stream names are case-sensitive.

Complex Event Processing uses the "development asset ID" specified in an "event type definition™ as the input event stream name. If the
"development asset ID" does not conform to the above rules, enclosing it between backquote symbols () allows its use as an event stream
name.

1.1.2 Event Properties

Events are normally constructed from multiple properties. Complex Event Processing handles event properties in the same way as table
columns are handled in SQL.

The rules applying to event property names are the same as the event stream name rules, but the reserved words that cannot be used are
different.

Input events are in either CSV format or XML format, and Complex Event Processing uses the names shown below as input event property
names. If these names do not conform to the above rules, enclosing them between backquote symbols () allows their use as a property
name.

CSV format events

The name attributes in the "column” elements specified in the "event type definition"

XML format events

Subelement names of the root element in the XML definition ("xmlSchema" and "root" element) specified in the "event type
definition"

1.1.3 Time Expression

The syntax below can be used to express time in the complex event processing language.

[yearPart] [nmonthPart] [weekPart] [dayPart] [hourPart] [mi nutePart] [secondsPart] [m|!lisecondsPart]




These parts have the syntax below. No parts can be omitted.

yearPart : nuneric (years | year)

nont hPart - nuneric (months | month)

weekPart - numeric (weeks | week)

dayPart : numeric (days | day)

hour Part : nuneric (hours | hour)

m nutePart : nuneric (minutes | minute | min)

secondsPart : nunmeric (seconds | second | sec)
mllisecondsPart: nunmeric (milliseconds | millisecond | msec)

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- Either the singular or plural form can be used for the units of these parts, but that is merely for description convenience. Complex
Event Processing does not check English grammar.

- In the monthPart, one month is equivalent to 30 days.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

,ﬂ Information

As with Java, Complex Event Processing internally handles times as long values indicating the number of milliseconds from January 1,
1970, 00:00:00 GMT.

1.1.4 Comments

In the complex event processing language, comments use the same two formats as in Java.

// Coment

/* Comment */

1.1.5 Reserved Words

The keywords below are reserved words in the complex event processing language, and cannot be used as event stream names (event
types).
The keywords marked with an asterisk (*) can be used as event property names.

after else is not set

all end istream null snapshot (*)
and escape (*) join (*) offset some

any events (*) last (*) on sql (*)

as every (*) lastweekday (*) or start

asc every-distinct left (*) order stddev (*)
at (*) exists like outer (*) sum (*)
avedev (*) expression limit output terminated
avg (*) false match_recognize partition (*) then
between first (*) matched (*) pattern (*) true

by for matches (*) prev (*) typeof (*)
case from max (*) prevcount unidirectional (*)




cast (*) full (*) measures prevtail (*) until (*)
coalesce (*) group median (*) prevwindow update
context having merge (*) prior (*) using
count (*) hour metadatasql (*) regexp variable (*)
create hours millisecond retain-intersection (*) week
current_timestamp in milliseconds retain-union (*) weekday (*)
dataflow index (*) min right weeks

day initiated minute (*) rstream when

days inner minutes schema where
define (*) insert month sec while (*)
delete instanceof months second window (*)
desc into msec seconds year
distinct irstream new select years

1.1.6 Data Type

The complex event processing language can handle the same data types as Java character strings and primitive data types. Data type

descriptions in the complex event processing language are not case-sensitive.

Data type

Explanation

Method for expressing constants (literals)

string

Character string

Enclose with double quotation marks () or single quotation marks ().

If you want to include double quotation marks (") or single quotation
marks (') in a character string, you can use either the method in which
the backslash symbol (in a Japanese language environment, the Yen
symbol) is placed before a double quotation mark or single quotation
mark, or the Unicode method (double quotation mark is \u0022, and
single quotation mark is \u0027).

char/character

Character

There is no constant (literal) expression indicating a single character.

bool/boolean

Boolean value

true or false

byte 8-bit signed integer Express using Ox followed by 2 hexadecimal characters.

short 16-bit signed integer There is no constant (literal) expression indicating 16-bit signed
integers.

int/integer 32-bit signed integer Enter the integer value as is.

long 64-bit signed integer Add L or | after the integer value.

float 32-bit float Add F or f after the numeric value.

double 64-bit double precision float Enter as is a numeric value, including the decimal point or the

exponent portion (specify using E or e), or add D or d at the end.

The event properties entered to Complex Event Processing are converted to the complex event processing language data types shown
below in accordance with the data types of the elements defined at "xmISchema" element in the "event type definition".

XML schema standard primitive data type, derived data type Complex event processing language data type

Primitive data
type

string string

boolean bool




XML schema standard primitive data type, derived data type Complex event processing language data type
decimal double
(If fractionDigit is specified as 0 in the derived data
type: int)
float float
double double
duration, dateTime, time, date, gYearMonth, string
gYear, gMonthDay, gDay, gMonth, hexBinary,
base64Binary, anyURI, QName, NOTATION
Derived data type | string derived data type string
(normalizedString, token, language, NMTOKEN,
NMTOKENS, Name, NCName, ID, IDREF,
IDREFS, ENTITY, ENTITIES)
integer, nonPositivelnteger, negativelnteger, int
nonNegativelnteger, positivelnteger
long, unsignedLong long
int, unsignedint int
short, unsignedShort short
byte, unsignedByte byte

& Note

- Even if the integer type is derived from the decimal type and the long type is derived from the integer type in the XML schema data
types, the decimal and integer types both correspond to the int type (the effective number of digits is less than for the long type) in
the corresponding complex event processing language data type. Therefore, if long values are used, do not use the integer or decimal
type in XML schema.

- In addition to true and false, 1 and 0 are permitted as XML schema Boolean values. In the complex event processing language, only
true and false can be used as bool (Boolean) values, so do not use 1 and 0 as Boolean values.

1.1.7 Complex Event Processing Statement

The statements described using the complex event processing language contain the items in the table below. The SELECT statement is
the core of rule descriptions. Use named windows if you want to cache event data in memory and use it for subsequent processing.

Category Complex event processing Explanation
statement type

Event stream SELECT statement The complex event processing statement at the core of rule
queries descriptions. It performs queries to event streams.

CREATE WINDOW statement Generates named windows for event data caching.

ON SELECT statement Performs queries to named windows when an event occurs.
Named window ON UPDATE statement Updates event data in named windows when an event occurs.
operations ON DELETE statement Deletes events in named windows when an event occurs.

ON MERGE statement Performs event addition, update, and deletion operations all at once

for named windows when an event occurs.




E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

By placing a semicolon (;) at the end of complex event processing statements, multiple complex event processing statements can be
described in a complex event processing rule described in the rule definitions.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

1.1.8 Annotation

Annotations attach additional information to individual complex event processing statements. Describe an annotation before the complex

event processing statement to which you want to add information.

Annotation type Notation Explanation
Name @Name (**Nane'™) Attaches Nare to a complex event processing
or @Name (*Name*) statement. Attaching a unique name makes it easier

to distinguish output information during
debugging.

When you attach the same name to multiple
complex event processing statements, two hyphens
(--) and a number will be automatically appended
to make unique names.

SoapL.istener

@SoapListener ('l i stenerDefinition
"Yor

@SoapListener ("l i stenerDefinition

)

Associates a listener definition with a SELECT
statement. For| i st ener Def i ni ti on, specify
the "development asset ID" specified at "listener
definition". This passes the SELECT statement
output as a SOAP message to the user-developed
Web service specified in the listener definition.

DebugLogL.istener

@DebuglLogListener

Outputs logs for debugging complex event
processing statements.

LoggingListener

@LoggingListener(table="| ogSt or ag
eArea",

properties="propert yNamesToBeCQut p
ut ll)

or the same format but with single quotation marks
(") instead of double quotation marks (**)

Logs the complex event processing statement
output results to | ogSt or ageAr ea.

Specify the output destination of the Hadoop
system in | ogSt or ageAr ea using a full path.
Even if events are to be recorded in the engine log,
specify with a virtual path name beginning with a
slash (e.g., "/event Nane") to distinguish events.

In pr oper t yNamesToBeCut put , specify the
property names to be output by the complex event
processing statement, separated by commas.

VDW

@vDW(cacheName=""cacheNane",
keyProperty=""pr opert yNaneCorr espo
ndi ngToCacheKey')

or the same format but with single quotation marks
(") instead of double quotation marks (**)

The annotation to be attached to the CREATE
WINDOW statement that creates a Virtual Data
Window. Refer to "1.3.1.3 Virtual Data Window
Generation" for information on how to write a
CREATE WINDOW statement.

Specify the KEY-VALUE method cacheNarme
accessed by the Virtual Data Window, and specify
the

pr oper t yNaneCor r espondi ngToCacheK

ey.

ﬂ Information

Annotation execution sequence




If the @SoapListener, @DebuglLogListener, and @LoggingListener annotations are specified simultaneously for one
complex event processing statement, the output processing of each annotation is executed in the sequence in which they are specified.

@SoapListener("LISTENO1™)
@DebugLogListener
select gatewayld, value from EVENT_O01;

In the above example, the sequence of output execution is @SoapListener, then @DebugLogListener.

1.2 SELECT Statement

The SELECT statement of the complex event processing language describes continuous queries to the event stream, similar to the way
queries to database tables are coded in SQL SELECT statements.

An overview of the SELECT statement syntax is shown below. Syntax details are shown under the various clauses.

Syntax:

[annot ati on]

[insert into insertDefinition]
select propertyAndExpressionLi st
from event StreanDefiniti onAndl tsJoin
[where conditi onExpression]

[group by groupi ngExpr essi onLi st]
[having groupi ngCondi ti on]

[output out putDefinition]

[order by sortExpressionList]

[Timit nunber O Rows]

1.2.1 SELECT Clause

For the SELECT clause, specify all properties, or specify property or expression lists. The SELECT statement output event consists of
the items specified here.

Syntax:

select [distinct] (* | (property | expression) [as nane])
[, (property | expression) [as nanme]] [, ---]

If an asterisk (*) is specified, this is interpreted as all properties being specified.
For AS, a name (alias) can be attached to a pr operty or expr essi on.

Output of duplicate output events can be suppressed by specifying DISTINCT.

1.2.2 FROM Clause

For the FROM clause, specify one or more event streams or named windows as the input.

Syntax:

from event StreanDefinition [as name] [unidirectional] [retain-union | retain-intersection]
[.event StreanDefinition [as name]] [, ---]

The event St r eanDef i ni ti on is a filter-based event stream definition or a pattern-based event stream definition. For AS, a name
(alias) can be attached to a stream definition.

Refer to "1.2.11 JOIN Clause" for information on UNIDIRECTIONAL.

1.2.2.1 Filter-based Event Stream Definition
Syntax:



event StreamNanme [( filterCondition )] [-.view] [.view]

The event St r eamName is an event type name, an event stream name specified in the INSERT INTO clause of a different complex
event processing statement, or the name of a named window.

For the fi |l t er Condi ti on specification, use properties and operators, functions (except for the aggregate function), or similar, to
describe the condition. Commas (,) can be used in a filferCondition with the same meaning as the AND logical operator.

In addition, event expiry policy specifications (if a data window view) and data derivations can be specified by specifying a vi ew, as
described at "1.7 Views".

If more than one vi ew s specified, the common parts of those views are retained by default (same as the RETAIN- INTERSECTION
specification). The union parts of multiple views can be retained by specifying RETAIN-UNION.

1.2.2.2 Pattern-based Event Stream Definition
Syntax:

pattern [ patternExpression ] [-view] [-view]

Pattern-based event streams are specified by describing a pat t er nExpr essi on inside square brackets, "[" and "]", following the
PATTERN keyword. A vi ewcan also be specified for a pattern in the same way as for filter-based event stream definitions.

Refer to "1.4 Patterns" for information on how to describe a pat t er nExpr essi on.

1.2.3 WHERE Clause

The WHERE clause can be used to specify the joining conditions that apply when multiple event streams are joined or to specify event
filtering conditions.

Syntax:

where condi ti onExpr essi on

The comparison operators =, <, >, >=, <=, I= /<> IS NULL, and IS NOT NULL, and logical combinations using AND and OR are
supported for a WHERE clause condi t i onExpr essi on.

QJT Note

Notes on using Virtual Data Windows
The rules below apply to the WHERE clauses that can be used to access information stored in a Virtual Data Window.
The rules below apply when designating records from the cache.
If records have already been designated, the rules below do not apply and rules can be described in the usual way.
- Only key properties specified in the @VDW annotation can be specified to designate a record.

is the only comparison operator that can be specified for key properties in a record designation.
Description example

M.code = T.code designates the record, and then comparisons are implemented for other items.

@vDW(cacheName="MARKET" ,keyProperty="code®)
create window MarketWindow. isxtp:vdw() (code string, high int, low int);

select M.code from MarketWindow as M, TicketWindow T
where M.code = T.code and ( T.price > M_high or T.price < M.low)

The table below shows valid and invalid description examples for the above cache.



No Description example Valid/ Explanation

Invalid

1 select * from MarketWindow where code = Valid "=" operation in relation to a key property
"1111"

2 select * from MarketWindow where high = Invalid Invalid because a property other than a key
1000 property is specified in the WHERE clause

3 select * from MarketWindow where code > Invalid Only a key property is specified in the
"1111* WHERE clause, but invalid because an

operation other than "=" is implemented

1.2.4 GROUP BY Clause

The GROUP BY clause splits the output of a complex event processing statement into groups. The output can be split in accordance with
event properties or in accordance with expression calculation results.

Syntax:

group by groupi ngExpression [,groupi ngExpression] [, ---]

Ina gr oupi ngExpr essi on, specify the property, or an expression that includes properties, that is the basis for splitting into groups.
The gr oupi ngExpr essi on cannot include the aggregate function. Event properties used by the aggregate function within a SELECT
clause can also not be included in a gr oupi ngExpr essi on.

1.2.5 HAVING Clause

Like a WHERE clause specification in relation to a SELECT clause, the HAVING clause specifies a gr oupi ngCondi ti on for a
GROUP BY clause. Whereas a WHERE clause cannot include the aggregate function, the HAVING clause can include the aggregate
function.

Syntax:

having groupi ngCondition

1.2.6 OUTPUT Clause

The OUTPUT clause controls the event output speed and suppresses output.
The syntax below performs output each time the specified nunber of output events have arrived.

Syntax:

output [after suppressionDefinition]
[[all | first | last | snapshot] every nunber events]

The syntax below performs output each time the specified #ime elapses.

Syntax:

output [after suppressionDefinition]
[[all | first | last | snapshot] every tine]

The syntax below specifies an output schedule similar to crontab.

Syntax:

output [after suppressionDefinition]
[[all | first | last | snapshot] at ( minute, hour, day, nonth, dayOr Week[, seconds] )]




Refer to the TIMER:AT explanation under "1.4.11 Time-based Observer" for information on schedule specification (m nut e, hour,
day, mont h, dayOf Week, seconds).

The ALL keyword is the default and specifies to output all targeted events. The FIRST keyword specifies to output only the first event.
The LAST keyword specifies to output only the last event. The SNAPSHOT keyword specifies to output the calculation results that take
into account all events in the specified view.

The syntax below specifies AFTER and the suppressionDefinition.

Syntax:

output after (tinme | nunber events ) [...]

From the start of complex event processing statement processing until the specified #ime has elapsed, or until the specified number of
output events arrive, all output events are discarded without being output.

1.2.7 ORDER BY Clause

The ORDER BY clause orders output events in accordance with a property or in accordance with the values of expressions that include
properties.

Syntax:

order by sortExpression [asc | desc] [,sortExpression [asc | desc]l] [, ---1

In the sortExpression, specify the property, or the expression that includes properties, on which ordering is to be based.

ASC and DESC specify whether ascending or descending order is used.

1.2.8 LIMIT Clause

The LIMIT clause restricts the number of output events.

Syntax:

limit nunber O Rows [offset of f set Nunber]

Only the number of events specified at nunber OF Rows are output.

By specifying an of f set Nunber , the number of rows of events that are output starts from a specified position rather than from the start
of the results.

As with SQL, the syntax below can also be used.

Syntax:

limit of fset Nunber [,nunber O Rows]

1.2.9 INSERT INTO Clause

The INSERT INTO clause can be used when making SELECT statement results usable as an event stream, when inserting into a named
window, and when merging multiple event streams.

Syntax:

insert into eventStreanNane [ ( propertyNane [,propertyNane] [, ---1 ) 1

At event St r eamNane, specify the identifier used as the name of the event stream that outputs results. This can also be the event type
names in the event stream. This event St r eanNane can also be used when describing processing in other complex event processing
statements. pr oper t yNane can also be specified at the same time as an event St r eanNane.



The results of a SELECT statement can be inserted in a named window by specifying the name of a named window in an
event St r eanmNane.

Streams can be merged by specifying an existing event stream name in an event St r eanNan®e.

1.2.10 Subqueries

The SELECT statement can be written as a subquery within a complex event processing statement. A subquery can be writtenina SELECT
clause, a WHERE clause, and in an event stream and pattern filter expression. Describe the subquery enclosed between parentheses, " ("

and ")".

A data window or another view must be specified in the event stream definition in the subquery. Only SELECT, FROM, and WHERE
clauses can be described in sub-queries. The GROUP BY clause, HAVING clause, JOIN, and OUTPUT clause cannot be specified.

The table below shows the keywords that can be used when describing a subquery in a WHERE clause condition.

Keyword Syntax Explanation
EXISTS, [not] exists ( subquery ) If the subquer y returns at least one row, the EXISTS condition
NOT EXISTS is TRUE. If the subquer y returns no rows, the NOT EXISTS
condition is TRUE.
IN, NOT IN expression [not] in ( If at least one value returned by the subquer y matches the
subquery ) expr essi on value, the IN condition is TRUE. If no values

returned by the subquer y match the expr essi on value, the
NOT IN condition is TRUE.

ANY, SOME | expression operator any ( The oper at or evaluates the expr essi on value and the
subquery ) subquery result, and is TRUE if even one is TRUE. The

expression operator some ( subquer y only need return one property.

subquery ) The oper at or iseither =, 1=, <>, <, <=, >, or >=.

ANY and SOME have the same meaning.

ALL expressi on operator all ( The oper at or evaluates the expr essi on value and the
subquery ) subquery result, and is TRUE if ALL are TRUE. The
subquer y only needs to return one property.

The oper at or iseither =, 1=, <>, <, <=, >, or >=,

1.2.11 JOIN Clause

The same operation as SQL JOIN can be described for an event stream in complex event processing language. In addition to event streams,
and named windows data can also be joined.

Syntax:

. from event StreanmDefinition [as name] [unidirectional]
((left]right]|full) outer | inner) join event StreanDefinition [as name] [unidirectional]
on property = property [and property = property] [and ...]

[ ((left]right]|full) outer | inner) join eventStreanDefinition on ...] ...

For JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN, and INNER JOIN can be specified. Use the ON clause to
specify the pr oper t y for joining each event stream.

In addition, INNER JOIN can be executed by tying event stream definitions together with commas (, ). In this case, an ON clause need
not be specified and the condition can be specified in a WHERE clause.

Each of the event streams being joined must specify a data window view or another view. A view does not need to be specified for event
streams for which UNIDIRECTIONAL is specified, and named windows.

-10 -



Generally, JOIN is executed for the event streams in the FROM clause regardless of which of the event streams the event arrives at. If the
UNIDIRECTIONAL keyword is specified, JOIN is executed only when an event arrives at that event stream. The UNIDIRECTIONAL
keyword can be specified for only one event stream.

1.3 Named Window Operations

Data windows, referred to as named windows, can be created in complex event processing language to cache event data for implementing
processing that is similar to other event streams.

1.3.1 CREATE WINDOW Statement

Generate a named window. There are two generation methods: generation from an existing event type, and generation in which a property
name and type are defined.

1.3.1.1 Generation from Existing Event Type
Syntax:

create window wi ndowNane.vi ew
[as] [select property [, ---1 from] event TypeOr W ndowNane
[insert [where filterExpression]]

To generate a named window, specify the name of the named window being created (Wi ndowNarre), and specify one or more data window
views (Vi ew). An existing event type (event stream) name cannot be used for the wi ndowNarre.

Use the SELECT clause to specify to quote pr oper t y from an existing event TypeOr W ndowNane.

If quoting properties from an existing named window, the INSERT clause can be used to fetch data from an existing named window when
the new named window is generated. Filtering conditions can be specified atfi | t er Expr essi on.

1.3.1.2 Generation with Property Name and Type Specification
Syntax:

create window wi ndowNane.vi ew [as] ( propertyNane propertyType [,propertyName propertyTypel [, ---1 )

At pr opert yName and pr oper t yType, specify the property names and data types of the events to be entered in the named window.

1.3.1.3 Virtual Data Window Generation

A Virtual Data Window that references the Interstage eXtreme Transaction Processing Server (hereafter referred to as XTP) cache can be
created by specifying 1sxtp:vdw() in the CREATE WINDOW statement.

There are two writing methods: setting type information for the development asset ID defined in the event type definition, and setting by
direct description of type information.

Syntax: Setting type information using the event type definition

create window wi ndowNane.isxtp:vdw() as event TypeDevel opnent Asset | D;

This definition method uses the event type definition. Event type definitions defined in XML format cannot be specified.
Only CSV format event type definitions can be specified. (java.util. HashMap<String,Object> caches the value.)

Syntax: Setting by direct description of type information

create window wi ndowNane.isxtp:vdw() as (propertyNanmel typel, propertyName2 type2, ...);

This definition method specifies type information directly.

The XTP cache is constructed using key and value. The cache referenced by this product must have the following configuration:

-11 -



Type specified for key Type used for value

java.lang.String java.util. HashMap<java.lang.String, java.lang.Object>

The properties specified using the CREATE WINDOW syntax correspond to the elements of the above HashMap.

The table below shows the types that can be used in HashMap element values.

Types used for HashMap elements

java.lang.String

java.lang.Boolean

java.lang.Byte

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

The table below shows the correspondence between types specified in properties and HashMap element types (ValueJava classes).

Property type HashMap element type
string java.lang.String
char/character (no corresponding type)
bool/boolean java.lang.Boolean
byte java.lang.Byte
short (no corresponding type)
int/integer java.lang.Integer
long java.lang.Long
float java.lang.Float
double java.lang.Double

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Virtual Data Window creation example

@VDW(cacheName="CustomerCache” ,keyProperty="1D")
create window CustomerWindow. isxtp:vdw() as (id string, name string, address string);

This Virtual Data Window creation example shows direct description of type information.

This example references the XTP cache CustomerCache. The key is the ID. The name of the window being generated is
CustomerWindow, and the properties are as follows:

Property name Type
id string
name string
address string

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-12 -



Qn Note

Combination with the @VDW annotation is mandatory when using CREATE WINDOW to generate a Virtual Data Window. Refer to
"1.1.8 Annotation" for information on the @VDW annotation.

1.3.2 ON SELECT Statement

Execute a query to a named window when an event occurs.

Syntax:

on eventType[(filterCondition)] [as nane]
[insert into insertDefinition]
select propertyAndExpressionLi st
from wi ndowNane [as nane]
[where conditi onExpression]
[group by groupi ngExpr essi onLi st]
[having groupi ngCondi tion]
[order by sortExpressionList]

This syntax executes a query (SELECT statement) to the named window specified at wi ndowNarre when an event of event Type
occurs. AfilterCondition canalso be specified for the event. The AS keyword can be used to assign a nane (alias).

The explanations for the other parts are the same as for the SELECT statement.

1.3.3 ON UPDATE Statement

Update an event in a named window when an event occurs.

Syntax:

on event Type [(filterCondition)] [as nane]
update wi ndowNane [as nane]
set property = expression [,property = expression] [, ---1
[where conditi onExpression]

When an event of event Type occurs, this syntax updates the value of the pr oper t y specified in the SET clause to the value of
expr essi on for events in the named window specified atwi ndowNane. If a WHERE clause condi t i onExpr essi on is specified,
only events that match that condition are targeted.

1.3.4 ON DELETE Statement

Delete an event from a named window when an event occurs.

Syntax:

on event Type [(filterCondition)] [as nane]
delete from wi ndowNane [as nane]
[where conditi onExpression]

This syntax deletes events in the named window specified at wi ndowNarne when an event of event Type occurs. If a WHERE clause
condi ti onExpr essi on is specified, only events that match that condition are targeted.

1.3.5 ON MERGE Statement

Perform event addition, update, and deletion operations on a named window as a batch when an event occurs.

Syntax:

on event Type[(filterCondition)] [as nane]
merge [into] w ndowNane [as nane]
[where conditi onExpression]

-13-



when [not] matched [and condition]
then (
insert [into insertDefinition]
select propertyAndExpressi onLi st
[where conditi onExpression]
I
update set property = expression [,property = expression] [, ---]
[where conditi onExpression]
|
delete
[where conditi onExpression]
D)
[then (insert]update|delete) ...] [then ...]
[when ... then ...] [---]

This syntax executes various types of operations on the named window specified at wi ndowNarme when an event of event Type occurs.

The THEN clause action (INSERT, UPDATE, DELETE) specified after "when matched" or "when not matched" is executed in
accordance with whether or not events are in the named window (or, if there is a WHERE clause specified after the MERGE clause, in
accordance with that condi t i onExpr essi on). A further condi t i on can be added to "when [not] matched" by using AND.
With "when matched", either INSERT, UPDATE, or DELETE can be specified as the THEN clause action. With "when not
matched", only INSERT can be specified.

1.4 Patterns

An event pattern matches when a single event or multiple events that match the pattern definition occur. Patterns can also be described
based on time.

Pattern expressions consist of pattern atoms and pattern operators.

Pattern atoms contain filter expressions and observers for time-based events. Filter expressions specify filter conditions for event streams.

There are the following four types of pattern operators:

Operators that control repetitions of the sub-expressions that comprise the pattern expression: EVERY, EVERY-DISTINCT,
[COUNT], UNTIL

Logical operators: AND, OR, NOT
Time operator that operates event sequences: —> (followed-by)

Guards specified in WHERE clauses for controlling sub-expression life cycles: TIMER:WITHIN, TIMER:WITHINMAX, WHILE
expression

1.4.1 Pattern Operators and Priorities

Pattern operators have the following calculation priorities:

Priority Operator type Operator

1 Monadic operator EVERY

NOT

EVERY-DISTINCT

2 Guard WHERE TIMER:WITHIN

WHERE TIMER:WITHINMAX
WHILE (expr essi on)

3 Repetitive [COUNT]
UNTIL
4 Logical conjunction AND

-14-



Priority Operator type Operator

5 Logical disjunction OR

6 followed-by ->

By using parentheses, "(*" and ")", to enclose the sub-expressions that comprise a pattern expression, calculation of the enclosed parts
can be given priority.

1.4.2 EVERY Operator

The EVERY operator specifies to evaluate a sub- expr essi on repeatedly. If the EVERY operator is not used, pattern evaluation ends
at the point when the sub- expr essi on is evaluated once (as either TRUE or FALSE).

Syntax:

every sub-expression

1.4.3 EVERY-DISTINCT Operator

The EVERY-DISTINCT operator treats patterns that return the same value for the specified expression as duplicates and excludes them
from pattern evaluation.

Syntax:

every-distinct ( distinctExpression [,distinctExpression] [, --..1 [, period] ) sub-expression

Patterns having the same value for the di sti nct Expr essi on are excluded as duplicates after being detected once. If a time sets a
peri od, information held internally for duplicate exclusion purposes is discarded after the specified time has elapsed, and the pattern is
once again targeted for evaluation.

1.4.4 Repetition Operator

When the pattern sub- expr essi on is evaluated r epet i ti onCount times as TRUE, the repetition operator is evaluated as being
TRUE.

Syntax:

[ repetitionCount ] sub-expression

For the r epeti t i onCount , specify a positive integer enclosed in square brackets, "[" and "]".

1.4.5 UNTIL Operator

A repetition end condition can be specified using the UNTIL operator.

Syntax:

[ range ] sub-expression until endPatternExpression

If ar ange is not specified, sub- expr essi on evaluation is repeated until the endPat t er nExpr essi on becomes TRUE. At that
point the expression becomes TRUE.

If ar ange is specified, the sub- expr essi on must become TRUE within the count specified as the range.
The syntax for the range is as follows:

Syntax:

[m ni mumNunmber] : [maxi mumNunber ]

At least one, either the mi ni mumNunber or the maxi munNurber , must be specified.

The mi ni mumNunber is the minimum required number of TRUE sub- expr essi on repetitions for this expression to become TRUE.

-15-



When the maxi munNunber of repetitions is reached, the expression is evaluated as being TRUE and sub- expr essi on evaluation
stops.

1.4.6 AND Operator

If the sub- expr essi ons on both sides of the AND operator are TRUE, the entire pattern is TRUE.

Syntax:

sub- expressi on and sub-expressi on

1.4.7 OR Operator

If either the sub- expr essi on before or after the OR operator is TRUE, the entire pattern is TRUE.

Syntax:

sub- expressi on or sub-expression

1.4.8 NOT Operator

The NOT operator negates the sub- expr essi on value.

Syntax:

not sub-expression

1.4.9 Followed-by Operator

The followed-by operator (->) specifies that, after the sub- expressi on on the left side is evaluated as TRUE, the sub-
expr essi on on the right side is evaluated for event matching.

Syntax:

sub- expressi on -> sub-expression

1.4.10 Pattern Guard

The pattern guard controls a sub-expression by specifying a condition in a WHERE clause or a WHILE clause.

The pattern guards available for specification in the WHERE clause are TIMER:WITHIN and TIMER:WITHINMAX. A WHERE clause
that specifies a pattern guard is different from a WHERE clause that specifies event filtering in complex event processing language.

Syntax:

timer:within( ti meExpression )

If the pattern expression does not become TRUE within the specified time, evaluation of the expression ends. In the
ti meExpr essi on, specify either a time representation or an expression providing the number of seconds.

Syntax:

timer:withinmax( ti meExpressi on, maxi munmNunber Expression )

In addition to the TIMER:WITHIN processing, the number of matches are counted. Evaluation of the expression ends when either the
time specified in the t i neExpr essi on has elapsed or when the number specified in the maxi mumNunber Expr essi on is reached.

The pattern guard specified by the WHILE clause evaluates the guar dExpr essi on for each pattern detected, and evaluation of the
pattern expression ends at the point when it is evaluated as being FALSE.

Syntax:

-16 -



while ( guar dExpression )

Any expression that returns Boolean (TRUE or FALSE) can be written in a guar dExpr essi on.

1.4.11 Time-based Observer

Time-based observers observe time-based events based on the internal timer of the complex event processing engine.

Two observers, TIMER:INTERVAL and TIMER:AT, are available.

Observer

Syntax

Explanation

TIMER:INTERVAL | timer:interval(ti meExpressi on)

Waits the specified time.

Inthe t i neExpr essi on, specify either a time
representation or an expression providing the
number of seconds.

TIMER:AT timer:at(m nut eSpeci fication,
hour Speci fication,
daySpecification,

nmont hSpeci fi cation,

dayOrf WeekSpeci fication
[.secondsSpecification])

Has a function like the Unix crontab command. The
expression becomes TRUE at the specified time.

An asterisk (*) can be specified asawild card in each
speci fi cati on. A range can be specified by
using a colon (:) to tie together a lower limit and an
upper limit. The division expression */x indicates
that the value is enabled after every x. Specifications
in accordance with combinations are possible by
enclosing specifications in square brackets, "[" and
"1", and by comma (, ) separation.

The table below shows the values that can be specified for each TIMER:AT specification.

Specification location

Specifiable value

Specifiable keyword

nm nut eSpeci fi cation

0-59

hour Speci fi cation 0-23

daySpeci fication 1-31 last: Indicates the last day of the target month.
weekday: Indicates the nearest working day (Monday to
Friday) to the specified date.
lastweekday: Indicates the last working day of the target
month.

nmont hSpeci fi cation 1-12

dayOf WeekSpeci fi cation

0 (Sunday) - 6 (Saturday)

last: If only this specification is used, this simply indicates
Saturday. If last is used together with a numeric indicating a
day of the week, indicates the last occurrence of that day of the
week in the target month.

secondsSpeci fication
(optional)

0-59

-17 -




1.5 Functions

1.5.1 Single-row Functions

Asingle-row function returns a single value for each event (row) that is the output of a complex event processing statement. These functions
can be described at any position where expressions are permitted.

The table below shows the built-in single-row functions.

Function Syntax Explanation

CASE case val ue Returns r esul t at the first position where

when conpari sonVal ue then val ue |f equivalent to the
conpari sonVal ue.

resul t
[when conpari sonVal ue then
result] [---1
[else result]
end
case Returns r esul t at the first position where
when condition then result condi tionis TRUE.
[when condition then result]
L---1
end

CAST cast(expression, dataType) Converts the expr essi on result to
dat aType.

For dat aType, int, long, byte, short,
char, double, float, or string can be
specified.
COALESCE coalesce(expression, Returns the value of the firstexpr essi on inthe
expression [,expression] list that is not null. If all are null, null is returned.
[ ---D

CURRENT_TIMESTAMP current_timestamp[Q] Returns the current time using long milliseconds.

MAX max(expression, expression Returns the maximum value out of all the
[,expression] [, ---1) expr essi ons.

MIN min(expression, expression Returns the minimum value out of all the
[.expression] [, ---1) expressi ons.

PREV prev(expressi on, property) Returns the specified pr oper t y value of the
event at the expr essi on value position,
counting from the end in the data window, or
returns all properties. If the data window has been
sorted, it is the position based on that sequence.
Specifying a stream name as the pr operty
returns all properties.

PREVTAIL prevtail(expression, Returns the specified pr oper t y value of the

property) event at the expr essi on value position,
counting from the start in the data window, or
returns all properties. If the data window has been
sorted, it is the position based on that sequence.

-18-



Function

Syntax

Explanation

Specifying a stream name as the pr operty
returns all properties.

PREVWINDOW

prevwindow(pr operty)

Returns the specified pr oper t y value for all
events in the data window, or returns all
properties. Specifying a stream name as the
pr oper ty returns all properties.

PREVCOUNT

prevcount(property)

Returns the number of events in the data window.
For pr oper t y, specify a property name or a
stream name.

PRIOR

prior(expressi on, property)

Returns the specified pr oper t y value of the
event at the expr essi on value position,
counting from the end of arrived events, or returns
all properties. The sequence is the event arrival
sequence. Specifying a stream name as the

pr oper ty returns all properties.

1.5.2 Aggregate Functions

SQL standard functions

The table below shows the SQL standard aggregate functions that can be used by the complex event processing language.

Function Syntax Explanation
AVEDEV avedev(Jall | distinct] Returns a double value showing the mean deviation of the
expr essi on) expr essi on value.
AVG avg([all | distinct] expression) | Returnsadouble value showing the expr essi on value
average.
COUNT count([all | distinct] Returns a long value showing the number of expr essi on
expr essi on) values that are not null.
count(*) Returns a long value showing the number of events.
MAX max([all | distinct] expression) | Returnsthe maximum value of the expr essi on value.
MEDIAN median([all | distinct] Returns a double value showing the expr essi on value
expressi on) median value. Non-numeric values (Not-a-Number: NaN) are
ignored when calculating the median value.
MIN min([all | distinct] expression) | Returns the minimum value of the expr essi on value.
STDDEV stddev([all | distinct] Returns a double value showing the standard deviation of the
expr essi on) expr essi on value.
SUM sum([all | distinct] expression) | Returnsthe sum of the expr essi on values.

If distinct is specified, duplicated values are not included in calculations.

Data window aggregate functions

The table below shows the aggregate functions for data windows.

Function

Syntax

Explanation

FIRST

Ffirst (* | eventStreamNanme.* |
val ueExpression [,
i ndexExpr essi on])

Returns the property of the first event in the data window, in
event arrival sequence, or the evaluation value at
val ueExpr essi on. If multiple event streams are joined or

-19-




Function Syntax Explanation

if sub-queries are included, use event St r eaniNane to
specify the event stream for which you want properties returned.

If i ndexExpr essi on is specified, the property of the event
at the expression value position, counting from the first event,

is returned.
LAST last(* | event StreamName.* | Returns the property of the most recent event in the data
val ueExpr essi on window, in event arrival sequence, or the evaluation value at
[,i ndexExpressi on]) val ueExpr essi on. If multiple event streams are joined or

if sub-queries are included, use event St r eanNane to
specify the event stream for which you want properties returned.

If i ndexExpr essi on is specified, the property of the event
at the expression value position, counting from the most recent
event, is returned.

WINDOW window(* | event StreamNane.* | Returns the properties of all events in the data window, or the
val ueExpr essi on) evaluation value at val ueExpr essi on. If multiple event
streams are joined or if sub-queries are included, use

event St r eanNan® to specify the event stream for which
you want properties returned.

The differences between the FIRST, LAST, and WINDOW aggregate functions and the PREVTAIL, PREV, and PREVWINDOW
functions are that aggregate functions can operate using GROUP BY, and that the aggregate functions are based on the event arrival
sequence rather than the sort sequence.

1.6 Operators

The table below shows the operators that can be used in complex event processing language expressions. The operator priority sequence
is the same as Java standard.

Type Operator Explanation
Arithmetic +, - Monadic operators indicating positive and negative values. Dyadic operators
for performing addition and subtraction.
*, / Dyadic operators for performing multiplication and division
% Dyadic operator for performing modulo (division remainder) operation
Logical NOT Negation of a logical value
OR Logical conjunction of two logical values
AND Logical disjunction of two logical values
Comparison =, 1=, <, >, <=, >= | Comparison of two values
Join 11 Joining of two character strings
Binary & AND operation for each bit
| OR operation for each bit
n Exclusive logical disjunction (XOR) operation for each bit

In addition, the keywords shown in the table below can be used in complex event processing language expressions.

-20 -



Keyword Syntax Explanation

IN eval uati onExpressi on [not] in Returns TRUE if the value of the
(expression [,expression] eval uat i onExpr essi on is the same as the value of
- ---1) any of the expr essi ons within parentheses. If NOT

is present, the negated value (if TRUE, FALSE is
returned, and if FALSE, TRUE is returned) is returned.
eval uat i onExpressi on [not] in ([ | | Returns TRUE if the value of the
() lowerLintValue : eval uat i onExpr essi on is within the
upperLimtvalue Q | D | ower Li mi t Val ue and upper Li mi t Val ue
range. If square brackets, "[* and "]", are used, the
| ower Li mi t Val ue and the upper Li ni t Val ue
are included in the range. If parentheses, " (" and )", are
used, the | ower Li m t Val ue and the
upper Li m t Val ue are not included. If NOT is
present, the negated value is returned.

BETWEEN eval uat i onExpr essi on [not] between | Returns TRUE if the value of the
start Expressi on and endExpressi on | eval uati onExpr essi on is within the

st art Expr essi on and endExpr essi on range.
The st art Expr essi on and endExpr essi on
values are both included in the range. If NOT is present,
the negated value is returned.

LIKE eval uat i onExpressi on [not] like Provides the SQL standard pattern matching function.
patternRepresentati on [escape Returns TRUE if the character string value of the
character] evaluationExpression matches the pattern shown at

patternRepresent ati on. If NOT is present, the
negated value is returned.

Inthepat t er nRepr esent at i on, anunderscore (_)
indicates any single character, and the percent symbol
(%) indicates any character string (includes O characters).
The underscore (_) and the percent symbol (%) can be
used as ordinary characters in a

patt er nRepr esent at i on by preceding them with
the char act er specified as the ESCAPE.

REGEXP eval uat i onExpressi on [not] regexp | The same regular expressions as those implemented by
patternRepresentation the Java java.util.regex package are used in the

patt er nRepr esent at i on to perform
eval uat i onExpr essi on pattern matching.

ANY, SOME expressi on operator any Uses oper at or to compare the left-side
(expression [,expression] expr essi on against all the expr essi ons within
L. ---1) parentheses on the right side, and returns TRUE if the
expressi on operat or some result of any of the comparisons is TRUE.
(expression [,expression] SOME and ANY are the same.

L. ---1)

ALL expressi on operator all Uses oper at or to compare the left-side
(expression [,expression] expr essi on against all the expr essi ons within
L. ---1) parentheses on the right side, and returns TRUE if the

result of all of the comparisons is TRUE.

1.7 Views

In complex event processing language, the events targeted for operations can be restricted (data window views) and values can be derived

from event streams (derived value view) by specifying a view in relation to an event stream.

-21-




The table below shows a list of data window views.

View

Syntax

Explanation

Length window

win: length(si ze)

A length window that slides and holds the specified
si ze amount of the most recent events.

Length batch window

win: length_batch(si ze)

A repetitive window that processes events when the
specified si ze of events have accumulated, then
releases them all.

Time window

win:time(ti ne)

A time window that holds the specified t i me amount of
events.

Specify a time representation or the number of seconds.

Time batch window

win:time_batch(tinme [,
startTi me])

A repetitive window that stockpiles the specified t i me
events and processes them when the time is reached, then
releases them all.

Ifastart Ti ne is not specified, the t i me count starts
from when the first event arrives.

Ifast art Ti neisspecified, thet i me countstarts from
that st ar t Ti ne. For the st ar t Ti e, specify the
number of milliseconds from January 1, 1970, 00:00:00
GMT.

Time-length
combination batch
window

win:time_length_batch(ti ne,
size)

A combination of the time window and length window.

Events are processed and released when either the t i me
or si ze condition is matched.

Keep-all window

win:keepall )

This window holds all events.

Care must be taken with memory consumption because
events are not released.

First length win:firstlength(si ze) Holds the first event to arrive that is the si ze amount.

First time win:firsttime(ti ne) Holds the first event to arrive within the specified
tinme.

Unique std:unique(uni queExpr essi on) Calculates the uni queExpr essi on for events and

holds just the most recent events for each value.

Grouped data window

std:groupwin(gr oupi ngExpr essi
on)

Calculates the gr oupi ngExpr essi on for events and
holds a data window for each value.

i on)

Last event std: lastevent() Holds just the most recent event. This is equivalent to a
length window that set 1 to size.

First event std: firstevent() Holds just the event that arrived first.

First unique std: firstunique(uni queExpr ess | Calculates the uni queExpr essi on for events and

holds just the event that arrived first for each value.

Sorted window

ext:sort(si ze, sortExpression
[asc|desc] [,sortExpression

[asc |desc]] [, ---1D

Starting from the top of the results sorted in accordance
with the sor t Expr essi on, holds the number of
events specified at si ze.

Ascending or descending order can be specified using
ASC/DESC.

The table below shows the derived value view.

-22-




View

Syntax

Explanation

Size

std:size([property [,

---1D

This view enables the number of events received from
the event stream to be referenced using the SIZE property
having long values. In addition to SIZE, if pr operty
is specified, that property can also be referenced.

-23-




|Chapter 2 Filter Rule Language Reference

This chapter describes how to describe filter rules for the High-speed Filter.

2.1 What are Filter Rules?

The High-speed Filter can extract data from events received by input adapters (extraction process), and can join them to master data (join
processing). After input events are processed by the high-speed filter, they are passed to the complex event processing.

Filter rules are the rules for describing the extraction process and the join processing. Input events can be in CSV format or XML format,
and rules (the ON statement described later in this document) are described for each event type that indicates the structure of event data.

Filter rules are described in the rule definitions deployed to the CEP engine, and the syntax is checked when the CEP engine starts.

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- Input events are passed to the complex event processing only if the setting for using complex event processing is set in the event type
definition.

- If filter rules are omitted from the rule definitions, input events are passed directly to the complex event processing.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

L:n Note

CEP engine startup fails if the syntax check detects an error.

2.2 Basic Filter Rule Items

2.2.1 Spaces

For filter rule syntax, the following characters are treated as spaces and ignored:

Space character (')

- Horizontal tab (HT)

Line feed (LF)

- Carriage return (CR)

2.2.2 Keywords

The following keywords, written entirely in lower-case, are specified in filter rule syntax:

- on
- if

- then
- join

- output

-24 -




2.2.3 Comments

If two successive single-byte slashes (//) are used at the start of a row in filter rule syntax, the entire row is treated as being a comment
row and is ignored.

// comment

2.2.4 Master ID

In filter rule syntax, master data can be referenced by specifying the development asset ID of a master definition deployed to the CEP
engine.

In this manual, the development asset ID of a master definition is referred to as a master ID.

2.2.5 Item Names and Attribute Names

The single-byte characters (as indicated below) and multi-byte characters can be specified for the item names and attribute names used in
filter rule syntax. The character encoding is UTF-8.

! - 0 1 2 3 4 5 6 7 8 9
@ A B C D E F G H 1 J K L M
N o |Pp |0 |R |s [T Ju |v (w |Ix |y |z |_
= a b c d e f g h i i k | m
n o p ol r s t u \% w X y z

& Note

- Names starting with a hyphen (-) or period (-) cannot be specified.

- Single-byte spaces cannot be specified. (The far-right cell in the bottom row of the table does not indicate a space character.)

2.3 Filter Rule Syntax

This section explains the filter rule syntax (grammar).

2.3.1 ON Statement

Indicates a rule to be described for a particular event type.

on Event type  +— { l IF-THEN statement 1 q

Event type

Specify the development asset 1D of the event type definition.

E) Point

© 0000000000000 000000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCOCOCOCO00COC0C00000000000000000000000000000

- Only one ON statement can be described for one event type.

-25-



- ON statements for multiple event types can be described in one rule definition.

- Input events having an event type for which an ON statement is not described are passed directly to the Complex Event Processing.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Qﬂ Note

Multiple rule definitions can be deployed to one CEP engine, but the CEP engine will fail to start if these rule definitions contain more
than one ON statement described for the same event type.

IF-THEN statement
Describe the input event processing for the specified type.

If multiple IF-THEN statements are described, the output of the previous IF-THEN statement will be the input for the next IF-THEN
statement. The output of the IF-THEN statement described last is passed to the Complex Event Processing.

E) Point

© 0000000000000 000000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCOCOCOCO00COC0C00000000000000000000000000000

- If only an extraction process is described for the previous IF-THEN statement (if a join expression is not described and an output()
without arguments is specified), the event type that is the input for the next IF-THEN statement does not change.

- If the previous IF-THEN statement is other than the above (there is a join expression or an output() with arguments is specified),
the input event of the next IF-THEN statement is in CSV format.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Qﬂ Note

A maximum of 10 IF-THEN statements can be described in one ON statement. If more than 10 IF-THEN statements are described,
CEP engine startup fails.

2.3.2 IF-THEN Statement

Describe the extraction process and the join processing for events passed from an input adapter or a previous IF-THEN statement (only
if multiple IF-THEN statements are described).

1 1 Quiput expression —

if H ( H Search expression H ) |+ then — 3 Join expression
| |

| Output expression : \}

If only an extraction process is to be used, do not describe a join expression and describe output() without arguments.

If only join processing is to be used, omit the part between IF and THEN and describe just the join processing and output processing.

-26 -



Search expression
Describe the extraction process (conditions) that filters events.
=
k5 See

Refer to "2.5 Search Expression Format" for details.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Join expression
Describe the join processing for joining to master data.
If multiple join expressions are described, events can be joined to more than one master data.
.:-..
iy See

Refer to "2.6 Join Expression Format" for details.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Output expression
Specify the output item from within an input event or a joined master data.

If join processing is described, the output is in CSV format. When output is in CSV format, each item is tied together by double
quotation marks (**).

E) Point

© 0000000000000 000000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCOCOCOCO00COC0C00000000000000000000000000000

- The output expression can be omitted if the input event is in CSV format and is not the last IF-THEN statement.

- If only an extraction process is implemented, the input event is output as is (the event type does not change).

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

i, See

© 0000000000000 000000000000000000000000000000000O0CO0C0C0COCOCOCOCOCOCOCOCOCOCOC00C0C0C0000000000000000000000000000Ss

Refer to 2.7 Output Expression Format" for details.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

4 Common Formats

This section explains the common formats used in filter rule syntax.

- ltem Expressions

- Path Expressions

- Text Expressions

- Attribute Expressions
- Data Types

- Literals

- Comparison Operators

- Logical Operators

-27 -



- Item References

2.4.1 Iltem Expressions

The structure of a CSV type event is expressed by the item name in column elements of the event type definition.

An item expression specifies the location of elements in a CSV type event using the item name.

The format used by item expressions is shown below.

$ | ltem name

44

$

Is specified in a search expression when all items are search targets.

& Note

Use "$_" only when a pattern is specified in a search expression. At any other time, using "$_" will return items with an underscore
("_") as the item name.

2.4.2 Path Expressions

An XML type input event's structure is represented as a tree. Path expressions are used to identify the position of nodes within an XML
tree structure.

The format used by path expressions is shown below.

i Element name | —

i B *

Path operator Path element

-28 -



Path element

Path elements are used to identify element nodes in an XML data.

Path element Explanation
Element name Specifies the name of an element node
* Signifies all element nodes below the upper node

Path operator

Path operators express the relationship between path elements.

Path operator Explanation
/ Target is the node below the upper node
// Target is all descendant nodes below the upper node

Qn Note

- Do not specify "//" and "*" consecutively in a path expression.
- Do not specify a path expression as "/*".

- If a pattern is specified in a search expression, specify the "/ /" path operator at the end of the expression.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

A sample path expression is shown below.

<company>
<name>fuj i tsu</name>
<employee>
<name>smith</name>
<id>2000</id>
</employee>
</company>

-29-



Root node

Element node
[2]_ company

N | |

Element node Element node
name employee
(1) | (3)
N | Y/
Text node Element node Element node
fujitsu name id
Text node Text node
smith 2000

/company/emp loyee/name

This path expression contains the "name" element node below the "employee" element node, which is further aligned below the
"company" element node under the root node. This node is indicated by (1) in the above figure.

//name

This path expression indicates all "name" element nodes below the root node. These nodes are indicated by (1) and (2) in the above figure.

/company/*/id

This path expression refers to the "id" element node, which can be under any element node ("name" or "employee") below the
"company" element node under the root node. This node is indicated by (3) in the above figure.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.4.3 Text Expressions

Text expressions specify the (string) value of a text node below element nodes in an XML type input event specified using path expressions.

The format used by text expressions is shown below.

FPath expression /

text () <]

& Note

- The "*' path element cannot be specified in the path expression.

- The "//" path operator cannot be specified in the path expression.

-30-



2.4.4 Attribute Expressions

Attribute expressions specify the value of attribute nodes of element nodes in an XML type input event specified using path expressions.

The format used by attribute expressions is shown below.

— | Pathexpression |H | | @ Attribute name Q

Attribute name

Specify the names of attribute nodes of element nodes in the path expression. The at sign (@) must be specified before the attribute
name. Using the asterisk (*) selects all attribute nodes of element nodes specified in the path expression.

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

If the '/ /' path operator is specified at the end of a path expression, the '/* after the path expression is omitted.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

gn Note

- Attribute expressions with an asterisk (*) cannot be used as the argument for a function.
- You can specify an asterisk (*) in an attribute expression only when a pattern is specified in a search expression.

- Element names starting with the at sign (@) cannot be specified as the path element in an attribute expression.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

A sample attribute expression is shown below.

<company>
<name>fuj itsu</name>
<employee position="chief">
<name>smith</name>
<id>2000</id>
</employee>
</company>

-31-



Root node

Element node

company
Element node Element node Attribute node

name employee position="chief :),‘. 1)

N —
Text node Element node Element node
fujitsu name id
Text node Text node
smith 2000

/company/employee/@position

This expression shows the value of the attribute node "position” of the "employee" element node. The value is "chief" indicated
by (1) in the above figure.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.4.5 Data Types

This table lists the data types supported by the filter rule.

Data type Explanation
String - Represents a series of alphabetic characters, such as "ABC"
- Input data specified in an item name or text expression is considered to be of the string data type
Numeric - Represents integers as well as decimal values; for example, 10 and -0.5
- Up to 18 digits and 18 decimal places can be specified for integers and decimal values, respectively (*1)

*1: There is no restriction on the number of digits that can be specified for a numeric type value in a condition expression.

2.4.6 Literals

Literals represent values that are directly used in a search expression without any computation involved.

Literals are used in various condition expressions.

The format used by literals is shown below.

-32-



String literal

Numeric literal

2.4.6.1 String Literal

The format used by string literals is shown below.

-4

Character

Character

Specify single-byte characters or multi-byte characters (UTF-8 encoding).

Any spaces within quotation marks are treated as valid values, and the characters appear exactly as they have been specified.

If the backslash ("\") symbol precedes a character in a string literal, the character is replaced by an alternative character in accordance
with the following table.

Character within a literal Replacement character
\s Single-byte space
\S Double-byte space
\n Line feed
\t Horizontal tab
\" Quotation marks
\\ \ (backslash)
E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

If the character immediately following the backslash ("\") is not listed in the above table, the replacement character is the character itself.
For example, "\a" will be replaced by "a".

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.4.6.2 Numeric Literal

The format used by numeric literals is shown below.

-33-



Number

Number

Integer part Decimal part

Number :

Decimal part

Number

Specify a digit from 0 through 9.

Qn Note

- When specifying a numeric literal in a condition expression:

- There is no limit to the number of digits that can be specified.

- Spaces cannot be specified in a numeric literal. The only exception is spaces contained in a prefix or suffix.
- In all other cases:

- The integer part and decimal places of a numeric literal can be up to a maximum of 18 digits. However, this excludes any 0 values
at the beginning of the integer part.

- Spaces cannot be specified in a numeric literal. The only exception is spaces contained in a prefix or suffix.

2.4.7 Comparison Operators

Comparison operators that can be used in condition expressions are listed in the following table.

Comparison operator Search type Explanation

= Partial match (*1) TRUE if the search keyword is included in the element value

1= TRUE if the search keyword is not included in the

element value

== Complete match TRUE if the search keyword and the element value

exactly match

1== TRUE even if a portion of the search keyword differs

from the element value

< <= > >= Size comparison Compares the size of the search keyword and the element value

-34-



*1: If the keyword is a numeric value, it will exactly match.

2.4.8 Logical Operators

Logical operators define the relationship between two adjacent condition expressions, when multiple expressions are specified.

Logical operators that can be used in condition expressions are listed in the following table.

Logical Logical Explanation
operator operation
AND AND Links pairs of condition expressions with the AND operator
operation

Evaluates to TRUE if the results of both condition expressions is TRUE

Evaluates to FALSE if either or both condition expressions are FALSE

OR OR Links pairs of condition expressions with the OR operator

operation Evaluates to TRUE if either or both condition expressions are TRUE

Evaluates to FALSE if both condition expressions are FALSE

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- The AND operator is evaluated first in condition expressions that contains both AND and OR operators.

- Use parentheses " ()" to change the order of logical operators' evaluation. In the following example, (condi t i on_expr essi on_2
OR condi ti on_expr essi on_3) is evaluated first.

condition_expression_1 AND (condition_expression_2 OR condition_expression_3)

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

QJT Note

Lower-case "and" and "or" cannot be used as logical operators.

2.4.9 Iltem References

Item references return the values of input data and variables.

The format of item references used by condition expressions is shown below.

— ltem expression

Path expression

Aftnbute expression

The format of item references used by join-relational expressions, output items of output expressions, and lookup functions is shown
below.

-35-



— 3 item name

Text expression

Aftribute expression

& Note

If an item reference that does not exist is specified

If an item reference that does not exist is specified in a search expression, join-relational expression, or similar, it is processed as having
a "null" value.

2 See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

Refer to "2.4.1 Item Expressions” for details.

- Refer to "2.4.2 Path Expressions"” for details.

Refer to "2.4.3 Text Expressions" for details.

- Refer to "2.4.4 Attribute Expressions™ for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.5 Search Expression Format

Search expressions are used to specify conditions that apply to input event to be retrieved.

A search expression consists of one or more condition expressions.
Use logical operators to specify multiple condition expressions.
The format used by search expressions is shown below.

Logical operator

i i
i 1
I 1
| |
I 1
E AMD :
I 1
| . | I 1 A |
i 1
! OR :
| |
i 1
i 1
- = 1
Y Condition expression Q
( H Condition expression H ) 2. Single-byte space

-36-



25 See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

- Refer to "2.4.8 Logical Operators" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Ln Note

If the search expression size (character string length in UTF-8 encoding) exceeds 65535 bytes, CEP engine startup fails.

2.5.1 Condition Expressions

Condition expressions are used when performing a comparison between items specified on left and right sides of a comparison operator.

There are the following three types of condition expressions:
Keyword search
Compares the keyword with the input event.
In the search expression, specify an item reference (left side) and a keyword (right side).

Pattern search, string search, and numeric search can be used.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Example of keyword search format (pattern search)

L .
Item reference ' bl '
i

Pattem

Keyword

rtrim HIH Item reference n i Comparison

operator o
Z.: Single-byte space
#0000 0006060606060 606060606060606606060606606060600666060060060060000600600600600000000000000000000s0000s00os

2 See

© 0000000000000 000000000000000000000000000000000O0CO0C0C0COCOCOCOCOCOCOCOCOCOCOC00C0C0C0000000000000000000000000000Ss

- Refer to "2.5.5 Keyword Search" for information on keyword search formats.

- Refer to "2.4.9 Item References" for details.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Comparison between items
Compare items in input events.
In the search expression, specify an item reference (left side) and the value of another item reference (right side).

String comparisons and numeric comparisons can be used.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Example of comparison between items format (string comparison)

-37-



o [ CH oo 0]

27 Single-byte space

24 See

- Refer to "2.5.6 Comparison between Items" for information on comparison between items formats.

- Refer to "2.4.9 Item References" for details.

Lookup search
Compare master data items with a keyword.
In the search expression, specify the master data content (left side) and the keyword (right side).

Pattern search, string search, numeric search, master data search, lookup sum matching, and lookup count matching can be used.

jﬁ'J Example

Example of lookup search format (numeric search)

H=h
ookss_Jf (I~ westerio Jf~f ]
expression : - ! ;

QI_!.}J See

Refer to "2.5.7 Lookup Search" for information on lookup search formats.

-38-



E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

Ensure both the left and right sides of a condition expression are of the same data type.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Qn Note

- The "//" path operator can be specified at the end of path expressions only when a pattern is specified for the keyword. Specifying
the "//" path operator at the end of a path expression selects all the element nodes under the element node specified by the path
expression.

- The "*" path element can be specified at the end of path expressions only when a pattern is specified for the keyword.
- The "$_" path element can be specified in item expressions only when a pattern is specified for the keyword.

- The "*" path element can be specified in the attribute name of attribute expressions only when a pattern is specified for the keyword.

2.5.2 Escape Characters

To specify following characters in pattern and strings, precede them with the escape character '\".

Escape character is "\'.

The following table lists characters that require the escape character "\".

Table 2.1 Characters that must be preceded by the escape character

Character Specified as:

"
$ \$
& \&
. \"
( \(
) A\
* \*
+ \+
, \,
- \-

\.
? \?
[ \L
\ \\
] \
A \~
{ \{
I \
} \}
~ \~

-39-



jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

If the search target string is to be 'abc\', specify 'abc\\'".

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.5.3 Entity References

When searching an entity reference string within an XML type input event, specify that entity reference string as the search keyword.

To search for a symbol represented by an entity reference, specify the symbol as the search keyword.

Table 2.2 Example of entity references

Entity reference Symbol represented
&lt; <
&at; >
&amp; &
&apos; "
&quot;

L:n Note

- When specifying entity references for keywords, the ampersand (&) must be preceded by escape character.

- Tospecify symbols represented for keywords, the ampersand (&), single quotation marks (*), and quotation marks (**) must be preceded
by the escape character.

2.5.4 Special Characters

When specifying special characters in a pattern or string, use the values listed in the table below.

Table 2.3 Special characters

Character Specified as:
Single-byte space \s
Double-hyte space \S
Line feed \n
Horizontal tab \t

2.5.5 Keyword Search

This section explains the condition expressions that compare input event items with keywords.

- Pattern Search
- String Search

- Numeric Search

- 40 -



2.5.5.1 Pattern Search

Various conditions can be specified for patterns. Complex conditions, such as searches for partial matches and word searches, can be
described for searches.

The following types of pattern search are available:

Classification Type

Pattern search (string) String match specification

Prefix match specification

Suffix match specification

Free Character Specification

Character Interval Specification

Partial Character Specification

Character Range Specification

Numeric Range Specification

Pattern search (word) Word match specification

Word interval specification

Logical conjunction, logical disjunction, and Logical conjunction
negation in pattern searches

Logical disjunction

Negation

Pattern Search format

The format used by the pattern search is shown below.

temn reference

Paitem

Comparison
operator

Keyword

2.7 Single-byte space

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- A pattern search is enclosed within quotation marks (**) or single quotation marks (*).

- The handling of upper-case and lower-case single-byte alphabetics in search target strings can be specified by the rule definition
(ANKmix option). The handling of upper-case and lower-case double-byte alphabetics can be specified by the rule definition (KNJmix
option). Refer to "2.9 Options" for information on the ANKmix and KNJmix options.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

gn Note

Quotation marks (**) and single quotation marks (") cannot be used together.

-41-



Pattern format

Pattern format is shown below.

Logical conjunction

: i
A |
[ i
i i
| I :
| :

' Logical disjunction |
e e e e e e e e e e e ——— 1
— String —

Word ]
k4
(Patterm) -

—  ~(Patfem) |—

MNegation

2.5.5.1.1 Pattern search (string)

The format of a pattern search (string) is shown below.

-42 -



String match
specification

Prefix match
specification

Free character
spacification

Character interval 1
specification !

ﬂ Point

Characters to be excluded as search targets can be specified in rule definitions (SkipChar option). Refer to 2.9 Options" for information

on the SkipChar option.

String match specification

Partial character
specification

Character range E
specification

Numeric range @
specification |
1

Finds out whether the value of an element node includes the specified keyword.

jﬁ'J Example

Suffix match
specification

Search for data that includes the string "Fuj i tsu" in the element value indicated by /root/text.

/root/text = "Fujitsu”

Prefix match specification

Finds out whether the specified keywords exist at the start of an element node's value.

}JJ Example

Search for data that begins with the string "Fuj i tsu" in the element value indicated by /root/text.

-43-




/root/text = "~Fujitsu”

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Suffix match specification

Finds out whether the specified keywords exist at the end of an element node's value.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Search for data that ends with the string "Fuj 1'tsu™ in the element value indicated by /root/text.

/root/text = "Fujitsu$”

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Free character specification
Find out whether the value of an element node and the value of a text node include a keyword that contains free characters.

Free characters included in keywords can be specified in four ways, as shown in the following table.

Symbol Explanation Can be used consecutively
- Any one arbitrary character Yes

g Zero or one arbitrary character Yes

.+ One or more arbitrary characters No

_* Zero or more arbitrary characters No

L}T Note

If symbols that cannot be used consecutively are used consecutively, CEP engine startup fails.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Search for data that includes the strings "Fuj itsu" and "company" in the element value indicated by /root/text, provided the
number of characters between these strings is 0 or more.

/root/text = "Fujitsu.*company”

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

;ﬂ Information

Free character specifications can be combined. The following table shows examples of how combinations of free character
specifications evaluate to TRUE or FALSE for different data. These results assume that "=" has been specified as the comparison
operator.

Keyword Data example

example AB AXB AYYB | AzzzB
K Y Y Y Y
‘A_B' X Y X X
'‘A. 7B Y Y X X
‘A.+B' X Y Y M

-44 -



Keyword Data example
example AB AXB AYYB | AzzzB
‘AL *B Y Y \ Y
‘A .7?B' X \ X
N X X Y Y
A. . *B X Y Y Y
'‘A_?_+B' X Y Y Y
A2 *B Y Y M M
Y: TRUE
x: FALSE

Character interval specification

Finds out whether the two specified keywords appear in succession in an element node's value within an interval of the specified
number of characters. The numeric value of character interval specifications must be from 0 through 1024.

Qﬂ Note

- Character interval specifications can only be specified once in string searches.

- Free character specifications cannot be specified immediately before or after character interval specifications.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Search for data that includes the strings "alcohol" and "concentration' in the element value indicated by /root/text,
provided the number of characters between these strings is 10 or less.

/root/text = "alcohol,10C,concentration”

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Partial character specification
Finds out whether the value of an element node and the value of a text node contain the specified keyword.

Part of the keyword consists of one of multiple strings.

Qﬂ Note

Depending on the number of characters specified, a large amount of memory can be used. Insufficient memory can cause the search
response to deteriorate. Note that, if a memory overflow is detected, an error message is output and the input event is discarded
(processing of the next input event continues).

Refer to Section 6.3.4, "Tuning" in the User's Guide for information on the memory estimation method.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Search for data that includes any of the strings-"Jon Smith", "John Smith", or "Jonathon Smith"-in the element value
indicated by /root/text.

- 45 -



/root/text = "Jo(n]lhn|nathon) Smith*®

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Character range specification

Finds out whether the value of an element node includes the specified keyword where part of the keyword consists of any character
in a specific range.

The character code value of the start character must be smaller than the character code value of the end character. Both the start character
(character 1) and the end character (character 2) must be single ASCII characters and must not be control characters.

Qﬂ Note

Depending on the specified character range, a large amount of memaory can be used. Insufficient memory can cause the search response
to deteriorate. Note that, if a memory overflow is detected, an error message is output and the input event is discarded (processing of
the next input event continues).

Refer to Section 6.3.4, "Tuning" in the User’s Guide for information on the memory estimation method.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Search for data that includes the strings "classA", "classB", and "classC" in the element value indicated by /root/text.

/root/text = "class[A-C]"

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Numeric range specification

Finds out whether the value of an element node includes the specified keyword where part of the keyword consists of any numeric
value in a specific range.

The start numeric value (numeric value 1) and the end numeric value (numeric value 2) must be specified using single-byte numbers.
These values must be from 0 through 999. Also, the start numeric value must be smaller than the end numeric value.

E’ Point

© 0000000000000 000000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCOCOCOCO00COC0C00000000000000000000000000000

Correct search results can be obtained if characters are specified before and after the numeric value.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Qﬂ Note

Depending on the specified numeric range, a large amount of memory can be used. Insufficient memory can cause the search response
to deteriorate. Note that, if a memory overflow is detected, an error message is output and the input event is discarded (processing of
the next input event continues).

Refer to Section 6.3.4, "Tuning" in the User’s Guide for information on the memory estimation method.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Search for data that includes the strings "alcohol 9%", "alcohol 10%", and "alcohol 11%" in the element values indicated
by /root/text.

/root/text = "alcohol [9,11]%"

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

- 46 -



2.5.5.1.2 Pattern search (word)

The format of pattern search (word) is shown below.

i |
i 1
i ]
| i
i ]

L S Character !
| e = <
| |
i |
' Word match specification i
e e e e e e e e e e e e e e i o N

) Point
- The word delimiter character can be specified in the rule definitions (SeparateChar option). Refer to 2.9 Options" for information on
the SeparateChar option.

- ASCII characters (except for the word delimiter character) can be described in word searches.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Word match specification

Finds out whether the value of an element node and the value of the text node contain any individual words that match the specified
keyword. For word searches, strings separated by the delimiter are considered as individual words.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Search for data containing the word "the" in the element value indicated by /root/text.

/root/text = "\<the\>"

The string "the™ in "mother" will evaluate to FALSE because it occurs within a larger word.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Word interval specification

Finds out whether the two keywords appear in succession in an element node's value within an interval of the specified number of
words.

Numeric values specified for word interval specifications must be from 0 through 1024.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Search for data that includes the words "search™ and "As1s" in the element value indicated by /root/text, provided the number
of words between these two words is 10 or less.

/root/text = "\<search\>,10W,\<Asls\>"

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

-47 -



Qﬂ Note

Word interval specifications can be used only once in word searches.

2.5.5.1.3 Logical conjunction, logical disjunction, and negation in pattern searches

This section explains pattern searches (logical conjunction, logical disjunction, and negation).

Logical conjunction

Finds out whether the value of element nodes specified in a path expression includes all the specified patterns.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Evaluates to TRUE if the value of the element node represented by '/root/text' includes the strings "fast" and "search".

/root/text = "fast&search”

© 0 0000000000000 00000000000000000000000000000000000000O0C0COCOCOCOCOCOCOCOCOCOCOCCOCCCCCC0C0C0C0C0C0CCC0C0CO0COCOCOCOCOCOCOCOCOCOCTE

Logical disjunction

Finds out whether the value of an element node specified in a path expression includes any of the specified patterns.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Evaluates to TRUE if the value of the element node represented by '/root/text' includes either the string "fast" or the string
"search".

/root/text = "fast|search®

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Negation

Finds out whether the value of an element node specified in a path expression includes none of the specified patterns.

jJJ Example

Evaluates to TRUE if the value of the element node represented by '/root/text' includes neither the string "fast" nor the string
"search".

/root/text = "~(fast|search)*

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- For pattern searches, you can use logical conjunction, logical disjunction, and negation in combination. When this happens, the order
of evaluation is Negation > Logical conjunction > Logical disjunction.

- Parentheses "(** and )" may also be used to specify the order of evaluation. Conditions in parentheses are evaluated preferentially.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

- 48 -



2.5.5.2 String Search

In a string search, a search is performed for events in which the element value exactly matches the value specified in the string or for
events in which the element value is in the size relationship. As strings can be used for size comparisons, string searches can be used to
search for mixed values containing both numerals and characters.

The format used by the string search is shown below.

[tem reference

String

rtrim Item raference

Comparison [
operator - £ Single-byte space

String format is shown below.

l Character _{]

A string search involves complete match and size comparison.

Complete match

Finds out if the value of an element node is equal to the string.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Search for data equivalent to the string "North Sydney, Australia"indicated by the element value in /root/area.

/root/area == "North Sydney, Australia®

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Size comparison

This compares the size of the element value with the string in the encoding value, in sequence from the left of the string to the right.

gﬂ Note

- It is not possible to specify the "//" path operator at the end of a path expression when the string exactly matches or when
performing a size comparison.

- 49 -



- Itisnot possible to specify the "*" path element at the end of a path expression when the string exactly matches or when performing
a size comparison.

- Itis not possible to specify "$_" in the item expression when the string exactly matches or when performing a size comparison.

- When performing a string comparison, any element value to be searched within an XML event must have the same number of
digits as the string specified in the keyword.

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- Characters to be excluded as search targets can be specified in rule definitions (SkipChar option).

- The handling of upper-case and lower-case single-byte alphabets in search target strings can be specified by the rule definition
(ANKmix option). The handling of upper-case and lower-case double-byte alphabets can be specified by the rule definition (KNJmix
option).

- Refer to "2.9 Options" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.5.5.3 Numeric Search

In a numeric search, a search is performed by extracting the numeric part from an element value and searching for events in which the
extracted value matches a specified numeric value or for events in which the extracted value is in the size relationship. As the numeric
portion of the element value is extracted automatically, this search can be used to extract numeric values that have been written in a variety
of ways.

In addition, it is also possible to specify a numeric function on the left side of the comparison operator to perform comparisons with
numeric values.

The format used by the numeric search is shown below.

Item reference

val H ( H ftem reference H )

Keyword
L e —a
==
Comparison PR
aperator &7 3ingle-byte space

Numeric literal format is shown below.

-50 -



Number

Number

Integer part Decimal part

Number :

Decimal part

Number
For numbers, specify a digit from 0 through 9. There is no limit to the number of digits that may be specified.
Spaces may not be specified in a numeric literal, with the exception of spaces in a prefix or suffix.
The first string in the above format found from the element value will be treated as a numeric value.

Any commas (,) appearing in the integer part are ignored. If a decimal point is specified, the decimal places include all characters up
to the first instance of a non-numeric character.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

This example evaluates to TRUE if the numeric component extracted from the value of the element node represented by '/doc/
money' matches 1000.

/doc/money = 1000

In the following examples, the value of the element node specified in the path expression contains multiple numeric values. In such
cases, only the first numeric value is extracted.

Event A

<money>ABC123,456@789</money>

123456 is extracted.

Event B

<money>123456 7890123</money>

123456 is extracted.

Event C

-51-



<money>1,500yen</money>

1500 is extracted.

If the search data does not contain a valid numeric value string, the conditions evaluate to FALSE.

The following search target string does not contain a valid numeric value string.

<money></money>

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- The number of digits in a numeric value specified as the keyword need not match the value of the element node specified in a path
expression.

- There is no need to make the number of digits in the integer or decimal part of element node values consistent across multiple XML
events.

EventA

<money>1000.1</money>

EventB

<money>2000.05</money>

EventC

<money>10.5</money>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

gn Note

- The '//' path operator cannot be specified at the end of a path expression when performing numeric search.
- The *' path element cannot be specified at the end of a path expression when performing numeric search.

- In numeric search, "$_" cannot be specified as an item expression.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Search for data greater than 1000 in the element value indicated by /root/money.

/root/money > 1000

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

& See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

- Refer to “2.8.3.1 val() Function” for details.

- Refer to "2.4.6.2 Numeric Literal" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-52 -



2.5.6 Comparison between ltems

This section explains condition expressions that compare input event items with other input event items. There are two types: string
comparison and numeric comparison.

- String Comparisons
- Numeric Comparisons

- Notes Common to String Comparisons and Numeric Comparisons

2.5.6.1 String Comparisons
Compares strings.

The format used for string comparisons is shown below.

itrim HIH /tem referance 4! rtrim item reference

2 Single-byte space

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Search for data of employees who are not in the Management team and where the applicant and approver is the same.

$Position I= "Management™ AND $Applicant == $Approver

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

gn Note

It is not possible to specify a partial match in the comparison operator for string comparisons.
2.5.6.2 Numeric Comparisons

Compares numeric values with other numeric values.

The format used for numeric comparisons is shown below.

-53-



5
— v H () temmeterence ) H 2 |_.7 — [ w H (] remmternce [ ) |
'

2.7 Single-byte space

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Search for data of employees, with a tendency towards obesity, who have gained weight since last year and who have a waist measurement
of more than 80 cm.

val ($WeightLastYear) < val($Weight) AND val ($WaistMeasurement) > 80.0

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.5.6.3 Notes Common to String Comparisons and Numeric Comparisons

This section explains considerations that apply to both string comparisons and numeric comparisons.

Ln Note

- For comparisons between items, the SkipChar, ANKmix, and KNJmix options of the rule definitions deployed to the CEP engine are
disabled. Refer to 2.9 Options" for details.

- If an input event in XML format includes an element node that repeatedly appears with the same name and that element is specified
in a path expression in an item reference, the result of the comparison between items is TRUE if even one item fulfills the conditions.
However, if a negation search expression (1==) is specified, the result is TRUE if no items fulfill the conditions.

- If a path expression, item expression or attribute expression having an element that is "null" is specified, the result is not TRUE even
if the item element on the right side of the condition expression is "null".

- It is not possible to specify characters, such as "//" or "*", when specifying a path expression for comparison between items.
- It is not possible to specify "$" when specifying an item expression for comparison between items.

- It is not possible to specify "*" when specifying an attribute expression for comparison between items.

2.5.7 Lookup Search

This section explains condition expressions that compare master data items and keywords.

The lookup functions below are provided for returning master data item contents.

Refer to "2.8.4 Lookup Functions" for details.
lookup()

There are two types of functions: those that specify two arguments and those that specify three arguments.

If two arguments are specified, master item existence (true/false) is returned.

-54-



If three arguments are specified, master item contents are returned.

lookup_sum()

Returns the sum of the master item contents.

lookup_count()

Returns the number of master items existing (count).

The sections below explain condition expressions in which these lookup functions are specified.

Pattern Search

String Search

Numeric Search

Master Data Search
Lookup Sum Matching
Lookup Count Matching

2.5.7.1 Pattern Search

Complex conditions in relation to master items joined by lookup(), such as searches for partial matches and word searches, can be described
for searches.

The format used for pattern search is shown below.

~{ lookup Mastar ID m Join-relafional D.I Output ifem a

expression

2 Single-byte space

Refer to "2.8.4.1 lookup() Function" for information on the lookup() function specified on the left side.

The keyword specified on the right side (a pattern search type) is similar to keyword search. Refer to "2.5.5.1 Pattern Search” for details.

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

The handling of upper-case and lower-case single-byte alphabets in search target strings can be specified by the rule definition
(ANKmix option). The handling of upper-case and lower-case double-byte alphabets can be specified by the rule definition (KNJmix
option).

If a pattern (string) is used for a searching, characters to be excluded as search targets can be specified in rule definitions (SkipChar
option). Refer to "2.5.5.1.1 Pattern search (string)" for details.

If a pattern (word) is used for a search, the word delimiter character can be specified in the rule definitions (SeparateChar option).
Refer to "2.5.5.1.2 Pattern search (word)" for details.

Refer to 2.9 Options" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-55-



2.5.7.2 String Search

String search searches master items joined by lookup() for events which are a complete match with the value specified in the string or for
events in a size relationship.

The format used for string search is shown below.

BXprassion

-I lookup Master ID H:H:I- Join-relational
H =

A Single-byte space

' 1
1 Comparison
operator :

Refer to "2.8.4.1 lookup() Function" for information on the lookup() function specified on the left side.

The keyword specified on the right side (string) is similar to keyword search. Refer to "2.5.5.2 String Search" for details.

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- Characters to be excluded as search targets can be specified in rule definitions (SkipChar option).

- The handling of upper-case and lower-case single-byte alphabets in search target strings can be specified by the rule definition
(ANKmix option). The handling of upper-case and lower-case double-hyte alphabets can be specified by the rule definition (KNJmix
option).

- Refer to "2.9 Options" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.5.7.3 Numeric Search

Numeric search searches master items joined by lookup() for events which match the specified numeric value or for events in a size
relationship.

The format used for numeric search is shown below.

| |
Comn O YW e e HOHR ) e 1<

Comparison
operator

-56 -



Refer to "2.8.4.1 lookup() Function" for information on the lookup() function specified on the left side.

The keyword specified on the right side (numeric) is similar to keyword search. Refer to "2.5.5.3 Numeric Search" for details.

2.5.7.4 Master Data Search

Evaluates the existence of master data joined by lookup().

The format used for master data search is shown below.

i
|
i
0 ) Y |: =
s LN oo 12—
EXpression :
i
i Comparison
lL operatar

27 Single-byte space

Refer to "2.8.4.1 lookup() Function" for information on the lookup() function specified on the left side.

A true() function or a false() function is specified in the keyword specified on the right side. Refer to "2.8.5 Boolean Functions" for
information on the format of these functions.

2.5.7.5 Lookup Sum Matching

Searches the sum of master items joined by lookup_sum() for events which match the specified numeric or for events in a size relationship.

The format used for lookup sum matching is shown below.

ftem reference

[osos e [ st Y} i

BXDMESSI0N

& Single-byte space

Refer to "2.8.4.2 lookup_sum() Function" for information on the lookup_sum() function specified on the left side.

The keyword specified on the right side (numeric) is similar to keyword search. Refer to "2.5.5.3 Numeric Search" for details.

2.5.7.6 Lookup Count Matching

Searches the count for master items joined by lookup_count() for events which match the specified numeric or for events in a size
relationship.

The format used for lookup count matching is shown below.

-57 -



g -
~[ lookup_count N[ " I Master ID H_Hj- Join-relational D—| Item reference HJ_H Ta¥ |_1—
expression i |
- |

. operator

Refer to "2.8.4.3 lookup_count() Function™ for information on the lookup_count() function specified on the left side.

The keyword specified on the right side (numeric) is similar to keyword search. Refer to "2.5.5.3 Numeric Search™ for details.

2.6 Join Expression Format

A join expression is used to join an input event and master data.

The format used for join expression is shown below.

— join M { H " H MasteriD | " + . [ Joinrelational expression |— )

Master ID

Specify the development asset 1D of the master definition.

Join-relational expression

Describe the join-relational expression used when joining the event and the master.

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

Only one master data can be handled by one join expression. Therefore, add join expressions if you want to join an event to multiple master
data.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.6.1 Join-Relational Expression

Specify the conditions for joining the input event (left side) and the master file (right side).

The format used for join-relational expression is shown below.

String type

Item reference = Item reference

[

string function - == string function

-58 -



Numeric type

val function = val function —-{]

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

Specify the same type on the left and right sides of the join-relational expression.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

gn Note

- If the item reference and the function result specified on the left side of the join-relational expression are "null", the join-relational
expression is not TRUE even if the item reference and the function result specified on the right side of the join-relational expression
are "null".

- The join target is only the item within the input event (the input event item joins the master data as a key). Therefore, master data
joined by one IF-THEN statement and another master data cannot be joined.
If you want to join a master data item as a key to another master data, describe a join expression in the next IF-THEN statement as
shown below, or prepare master data that is already joined and join that.

Master definition: MASTERQ Master definition: MASTERD2

. Sy ™,
Schema file: Schema file:
“MemberlD","GrouplD”,"Namea" "GrouplD","Section”
Data file: Data file:
"MEMO001" "GRPO1","John" "GRP01","Development Dept."
"MEMO00Z" "GRP0Z2","Peter” "GRP02","Business Dept.”
"MEMO003" "GREPO1","Diana”

e AN oy

The joining of two master data can be described using two IF-THEN statements, as follows:

oin(""MASTERO1", $ID == $MemberlID) output();

J
join("MASTER02", $MASTERO1.GrouplD == $GrouplD) output();

2, See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

Refer to "2.4.7 Comparison Operators" for information on the meaning of the comparison operators.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.7 Output Expression Format

An output expression is used to output the result of joining an input event and master data.

The format used for output expression is shown below.

-59 -



[
L

’-{as |—| Property alias }—‘ as|—| Event type alias

Quiput item
|
——{ output P{ { | ) r \\J

Output item

Specify the property of the event to be output and the master data item.

If no master data fulfills the join-relational expression conditions, the output as the master item will be empty.

Operation is as follows if an output item is not specified:
With no join expression:
Input events filtered by a search expression are output as is.
If there is no search expression, CEP engine startup fails.
With join expression:
All properties of input events and all items of all joined master data are output in sequence (if input events are in CSV format).

If input events are in XML format, CEP engine startup fails.

E) Point

© 0000000000000 000000000000000000000000000000000O0COC0COCOCOCOCOCOCOCOCOCOCOCOCO00COC0C00000000000000000000000000000

If an output expression that does not have an argument (output item) after the join expression is described, the output results are the
same as for an output expression in which all items of input events and master data are specified.

Master definition (MASTERD1) schema information

"prop11”,"prop12”
Input event schema information /

JOIM

\ Master definition (MASTERD2) schema information

"prop2 1", "prop22”

"propA”,"propB”,"propC"

IF-THEN statement:

Join("'MASTERO1", $propA == $propll), join("'MASTERO2", $propB == $prop22) output();

The above output() has the same output result as the following output expression:

output($propA, $propB,$propC, "MASTERO1" .$propll, "MASTERO1" .$propl2,""MASTERO2" .$prop21, " "MASTERO2" .
$prop22);

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Qﬂ Note

- Output item specification is mandatory if join processing is used for events in XML format.

- Output item specification can be omitted only if a search expression or a join expression is specified.

-60 -



- There is no limit to the number of output items that can be specified for one output(). However, if the size obtained from the
following calculation expression exceeds 65535 bytes, CEP engine startup fails:

Size calculation expression:

sizeRequiredForOutputltems + numberOfOutputltems - 1 (bytes)

Output item Required size

Item reference Item reference string length

Master item reference | Master item reference string length + string length of join-relational expression
of the target join expression + 9

lookup_sum() lookup_sum argument string length + string length of join-relational expression
function of the target join expression + 13
lookup_count() lookup_count argument string length + string length of join-relational expression
function of the target join expression + 15

Each of the string lengths specifies the string length in UTF-8 encoding.
Refer to "2.7.1 Output Items" for details.

Sizes (examples) in output() in the following IF-THEN statement:

Join('MASTERO1", $message = $word)
output($ID, "MASTERO1".$word, lookup_sum(**MASTERO1".$weight));

The calculation result is 93 bytes.

stringLengthOf"'$ID"

+ (stringLengthOf""'"MASTERO1" .$word" + stringLengthOf"$message = $word"™ + 9)

+ (stringLengthOf""'"MASTERO1".$weight" + stringLengthOf"$message = $word” + 13)
+ numberOfOutputltems - 1

=3+ (16 +16 +9) + (18 + 16 + 13) + 3 - 1 = 93

Property alias
Attaches an alias to items that are output.
For output expressions other than the last IF-THEN statement, a property alias must be specified.

The property alias can be used as property names of input events for next processing.

A property alias must be specified if the input event is in XML format (except for the last output expression within an ON statement).

If the input event is in CSV format, the following property aliases are generated automatically:

Property Automatically generated property alias
Input event item The input event item name is specified as is.
Master data item The name is generated by using a period (.) to join
the master ID and the item name.

& Note

- A property alias cannot be specified in the last output expression within an ON statement.

- Restrictions apply to the characters that can be used in a property alias. Refer to "2.2.5 Item Names and Attribute Names" for
details.

-61-



The same property alias cannot be used more than once in an output expression.

If the same item is output multiple times, each must have a different property alias attached.

If the input format is XML, a property alias must be specified unless it is the last output expression within an ON statement. If not
specified, CEP engine startup fails.

If the same alias is defined more than once in an output expression, automatically generated aliases included, CEP engine startup
fails.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

If "Mstl" .$iteml is specified as the output item, the property alias is as follows:

Mstl.iteml

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Event type alias
Attaches an event type alias to the event to be output.
An event type alias must be specified in the output expression of the last IF-THEN statement.

Specify the development asset ID of the event type definition to be passed to the complex event processing.

Qn Note

If an event type alias is specified other than in the last process in an ON statement, CEP engine startup fails.

- If the extraction process is the only processing in an ON statement, the event type alias must be the same as the event type specified
in the ON statement.

The event type alias in the last output expression of an ON statement must be registered as an event type definition.

If the output is in CSV format, the number of properties in that event type definition must match the number of items to be output.
If they do not match, CEP engine startup fails.

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- The output expression can be omitted if the input event is in CSV format and the IF-THEN statement is not the last IF-THEN statement.

-62 -



- If multiple master items in a join expression fulfill the join-relational expression conditions, multiple items are output separated by
commas (,) and all items are enclosed between double quotation marks (**), as shown below. If a double quotation mark is included
in the master item contents, another double quotation mark is attached before that double quotation mark.

Master definition: Memberlnfo
¢ ™y

Schema file:

"MemberlD"

. GrouplD","Mame"

Data file:
"MEMO001" "GRPO1","John"
"MEMO002" "GRPO2","Peter”
"MEMO003" . "GRPO1","Diana"
h "y

IF-THEN statement:

Join('MemberInfo™”, $group == $GrouplD)
output(“"MemberInfo'.$MemberID, "MemberInfo™._$Name);

If $group joins the "GRPO1" input event to the master data, the output results are as follows:

- However, if the lookup_sum() function or the lookup_count() function is specified for the output item, items are output without being
enclosed between double quotation marks (**).

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.7.1 Output Items

Specifies which items in the input events and master data are to be output.

The format used for output item is shown below.

(Event) ltem reference

$

ltem name

Text expression

Afttribute expression

I
-
&
]
=
o
=

I

I

I
€A

I

lookup_sum function

lookup _count function

-63-



Item reference

Describe an item reference in accordance with the event type format.

Master item reference

Describe a master item reference in which a master 1D and item name are combined.

lookup_sum function
This function returns the sum of the master item contents that results from joining to one master file.

The format used for lookup_sum() function specified in the output expression is shown below.

Master item reference

lookup_sum  ({ (

" Master ID . U s W itemname i ) Q

lookup_count function
This function returns the master item count that results from joining to one master file.

The format used for lookup_count() function specified in the output expression is shown below.

Master item reference

lookup count |

! Master ID "H . H S H ltemname ) .Q

gn Note

If the lookup_sum() function or the lookup_count() function is specified for an output item, a property alias must be specified after the
output item.

i, See

- Referto "2.8.4.2 lookup_sum() Function" for details.

- Refer to "2.8.4.3 lookup_count() Function" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.8 Function Format

This section explains the format of functions.

2.8.1 Function List

The table below lists the function provided by the High-speed Filter.

The table shows the format in which each function can be specified.

-64-



Type Function name | Explanation Return Whether specifiable or not
pale Search Join-relational | Output Output
(type) expression expression item for item for
lookup() | output()
String rtrim Removes String Y - - -
function spaces from
the end of a
string
string Converts to a String - Y Y -
standard
format string
Numeric val Fetches a Numeric Y Y Y -
processing numeric value
function
lookup lookup Searches Boolean Y - - -
function master items value
(without a
third
argument)
Searches Any Y - - -
master items
(with a third
argument)
lookup_sum Calculates the Numeric Y - - Y
master item
sum
lookup_count Calculates the Numeric Y - - Y
master item
count
Boolean true Returns Boolean Y - - -
function Boolean value value
(true)
false Returns Boolean Y - - -
Boolean value value
(false)

Y: Can be specified

-: Cannot be specified

2.8.2 String Functions

This section explains the functions that handle strings.

2.8.2.1 rtrim() Function

The rtrim() function returns a string from which the following consecutive characters at the end of a string specified in an item reference
have been removed:

- Single-byte space (')
- Horizontal tab (HT)
- Line feed (LF)

-65-



- Carriage return (CR)

The rtrim() function format is as follows:

— nrim ([ H ltemreference |H ) %

ﬂ%‘,See

Refer to "2.4.9 Item References" for details

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Return value

If the conversion has operated normally, a string type is returned.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

If $nameis "Smith Adam " (where" " is a single-byte space):

rtrim($name)

"Smith Adam" is output as a string.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.8.2.2 string() Function

The string() function converts an item reference value to a standard format string.

The string() function format is as follows:

— string |4 (  ltem reference ) %

Q_P.',See

Refer to "2.4.9 Item References" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Return value

If the conversion has operated normally, a string type is returned. If the item reference value is "null”, "null" is returned.

The string after conversion is in the following format:

Type specified in String after conversion
argument
String type Not converted
Numeric type Integer part + decimal part (*1)

*1: The integer part and decimal part are a maximum of 18 digits each.

- 66 -



jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

If the numeric item $age is "30":

string($age)

"30" is output as the string.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.8.3 Numeric Processing Functions

This section explains the functions that handle the numeric type.

2.8.3.1 val() Function

The val() function extracts the numeric values from a string within an item reference.

The format of the val() function is illustrated below.

— val H

ltem reference L

T

, MWumber of decimal places

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- The first instance of a string, in the format shown below, found in the string in the text expression is extracted as a numeric value.

Number

Number

Integer part Decimal part

MNumber :
Decimal part i

- Any commas (,) appearing in the integer part are ignored.

- If a decimal point is specified, the decimal places will include all characters appearing from the decimal point onwards till the first
instance of a non-numeric character.

-67 -



- Strings within the text expression that do not contain any numbers are treated as 0.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Ln Note

If the integer part, excluding leading zeros, exceeds 18 digits, an error message is output and the input events are discarded (processing
of subsequent input events continues).

2 See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

Refer to "2.4.9 Item References" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Number of decimal places

- If specifying the number of decimal places, digits after the specified number of decimal places are truncated from the return value.

- The range for decimal places is from -18 through 18.

If the number of decimal places argument is omitted, a value with up to a maximum of 18 decimal places is valid.

- If the number of decimal places is a negative number, the digits to the left of the decimal point (integer part) are truncated.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

Consider the following value before truncation.

123456789012345678.1234567890123456789

Number of decimal places Value after truncation
When omitted 123456789012345678.123456789012345678
0 123456789012345678
1 123456789012345678.1
-1 123456789012345670
18 123456789012345678.123456789012345678
-18 0

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Return value

A numeric value is returned if the function executes successfully.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

If $address is "3141 Fairview Park Drive, Falls Church":

val ($address)

Only the numeric value 3141 is output.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

- 68 -



2.8.4 Lookup Functions

These functions relate to the results joined to one master data.

2.8.4.1 lookup() Function
The lookup() function returns the master item contents from the results joined to the master data.

The function return value type varies in accordance with the contents specified for the third argument output item and in accordance with
the existence of specifications.

The lookup() function format is as follows:

— lookup " |—| Master ID |— “H . H -Join-relational E <]

BXpression

Output item

Master ID

Specify the development asset 1D of the master definition.

Join-relational expression

Describe the join-relational expression used when joining the event and the master.

Output item
Specify the master data item to be output.
The string() function format or the val() function format must be used, not the master item reference format.

If an output item is not specified, the existence of master data after the join (true/false) is returned.

The format used for output item is shown below.

string

I
—

item reference

—
I

Aq

val

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

If multiple master data fulfill the join-relational expression, search condition evaluation is performed for each of the output item contents.
If even one of the multiple master items fulfills the lookup expression, the result of the condition expression is TRUE.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Qn Note

There are no literals indicating Boolean values (true/false). If the lookup() function is used without an output item specification, specify
either the true() function or the false() function in the right side of the condition expression.

-69 -



2 See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

- Refer to "2.6.1 Join-Relational Expression™ for information on join-relational expression formats.

- Refer to "2.4.9 Item References" for details.

Return value
If output item specified

If the string() function is specified for the output item, the string type is returned. If the val() function is specified for the output
item, the numeric type is returned.

If output item not specified

The following Boolean values are returned:

Return value Explanation

true Master data that fulfills the join-relational expression exists.

It is the same as the true() function result.

false Master data that fulfills the join-relational expression does not
exist.

It is the same as the false() function result.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

If the input event C item and the master data X item were joined, that input event is extracted.

lookup("Mst™, $C == $X) = true()

If the input event C item and the master data X item were joined and the Y item of the joined result master matches "Diana”, that input
event is extracted.

lookup("Mst™, $C == $X, string($Y)) = "Diana"”

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.8.4.2 lookup_sum() Function
The lookup_sum() function returns the sum of the contents of master items from the results of joining to master data.

If specified in an output expression, the second and third arguments are omitted and the sum of the contents of the master items joined by
the join expression is returned.

The lookup_sum() function format is as follows:

Master item reference

! H Master D |—| " H . H 5 H lterm name

lookup_sum

|—| Master ID H " H , I» Joir-relational
EXpression

N

. H Iltem reference

-70 -



Master ID

Specify the development asset 1D of the master definition.

Join-relational expression

Describe the join-relational expression used when joining events and a master.

Item reference

Specify the master data and items for extracting the sum.

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- The first numeric literal format string found is extracted from the master data items as a numeric and added to the sum.

Number

Number

Integer part Decimal part

MNumber :
Decimal part |

- If strings shown in master data items do not contain numerics, they are handled as O (they are not added to the sum).

- If no master data items contain numeric, this function returns "null®. If this function is specified in a condition expression, the condition
expression is evaluated as being false (conditions not met).

- Commas (,) appearing in the integer part are ignored.

- If a decimal point is specified, all subsequent numerics up to the first appearance of a non-numeric character are assumed to be the
decimal part.

- Values having a maximum of 18 digits in the decimal part after the decimal point are valid. (Decimal parts that exceed 18 digits are
truncated.)

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

& Note

If the integer part, excluding leading zeros, exceeds 18 digits, an error message is output and the input events are discarded (processing
of subsequent input events continues).

-71-



2 See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

- Refer to "2.6.1 Join-Relational Expression™ for information on join-relational expression formats.

- Refer to "2.4.9 Item References" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

If the conversion has operated normally, a numeric type is returned.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

If the input event C item and the master data X item were joined and the totaled result for the master data Y item is greater than 100, that
input event is extracted.

lookup_sum(*"Mst", $C == $X, $Y) > 100

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.8.4.3 lookup_count() Function
The lookup_count() function returns the count for the master items from the results of joining to master data.

If specified in an output expression, the second and third arguments are omitted and the count for the master items joined by the join
expression is returned.

The lookup_count() function format is as follows:

Master item reference

" H Master ID H " H . H 5 H Item name

lookup_count

" |—| Master ID H " |—| ) |~ Join-relational ~| , H Item reference
EXPrEssion

Master ID

Specify the development asset ID of the master definition.

Join-relational expression

Describe the join-relational expression used when joining events and a master.

Item reference

Specify the master data item to be counted.

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

- If the content of the specified item is "null", it is not counted.

- If all the contents of the specified item are "null”, this function returns 0.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-72-



2 See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

- Refer to "2.6.1 Join-Relational Expression™ for information on join-relational expression formats.

- Refer to "2.4.9 Item References" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Return value

If the conversion has operated normally, a numeric type is returned.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of using the lookup_count() function

If the input event C item and the master data X item were joined, this example detects if the master data Y item count is smaller than 10.

lookup_count("Mst™”, $C == $X, $Y) < 10

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.8.5 Boolean Functions

This section explains the functions that return Boolean values.

2 See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

Boolean functions can be specified only in the right side of a condition expression when master data search is performed.

Refer to "2.5.7.4 Master Data Search" for details.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

2.8.5.1 true() Function

The true() function returns "true", indicating always TRUE.

Use the true() function as a lookup search (master data search) keyword.

The true() function format is as follows:
— true = ) —q

Return value

The Boolean value (true) is returned.

2.8.5.2 false() Function

The false() function returns "false", indicating always FALSE.

Use the false() function as a lookup search (master data search) keyword.

The false() function format is as follows:

-73-



— false —[—}—q

Return value

The Boolean value (false) is returned.

2.9 Options

This section explains the filter rule options.

2.9.1 Options Overview

The handling of characters during pattern search and string search can be changed by specifying options in the filter rules.

Describe the options before the first ON statement.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Example of describing options

The following is an example of an option description:

<?xml version="1.0" encoding="UTF-8" standalone="yes'?>
<rule xmIns="urn:xmlns-fujitsu-com:cspf:bdcep:v1l" id="RULE_O1 ''>
<comment> Rule definition used by CEP</comment>
<filter>
<I[CDATAL
@SkipChar(*'\n'")
@SeparateChar(""\t")
@ANKmix(true)
@KNImix(true)

on EventTypel {
Y G
3
I G N
11>
</filter>
<statements>
Y G
</statements>
</rule>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

& Note

Notes on setting filter rule options
- Options are valid for all filter rules described in the <filter> element.

- Describe options before the first ON statement. Options cannot be described after an ON statement.

2.9.2 Options List

The options that can be used are shown below.

-74 -



Table 2.4 Specifiable options

Option Item name Parameter Example Explanation

SkipChar Skip character String to be @SkipChar(’'"\n") If performing pattern search

excluded from (string) and complete match of
search target string search, specify characters
(More than one to be excluded from the search

- target.
string can be
specified.)

SeparateChar Separate Word separator @SeparateChar(""\t'") If performing pattern search
character character (word), specify the word

separator character.

ANKmMmix Distinguish true @ANKmix(true) Specify the handling of upper-
between upper- or case and lower-case for single-
case and lower- false byte alphabetics in search target
case single-byte strings.
alphabetics true

If not case-sensitive
false
If case-sensitive

KNJmix Distinguish true @KNImix(true) Specify the handling of upper-
between upper- or case and lower-case for double-
case and lower- false byte alphabetics in search target
case double-byte strings.
alphabetics true

If not case-sensitive
false
If case-sensitive

2.9.2.1 SkipChar

If filter rules are used to perform pattern search (string) and string search, specify the strings (skip characters) that are excluded as search

targets.

Syntax

@SkipChar(*'parameter'™)

Values specified in parameter

- Specify characters, excluding control characters. The characters specified are case-sensitive.

- Specify spaces, horizontal tabs, and line feeds as follows:

Character Specification method
Single-byte Space \s
Double-byte space \S

Horizontal tab \t
Line feed \n

-75-




jJJ Example

© © 0000000000000 0000000000000000000000000000000000000000000000000000000000000000000000006006060COCOCEOESE

Example when specifying a single-byte space

@SkipChar (""\s")

© 0000000000000 00000000000000000000000000O0O0C0C0COCOCOCOCEOCEOCEOCEOCEOCIOCEOCIOCOCEOCEOCOCIOCI0CIOCI0C0CI0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCQCCQCCOCQOCEOCEECEEETS

There can be more than one character specified. If there are multiple specifications, specify with each string separated by a comma

()

_VJ Example

© © 0000000000000 0000000000000000000000000000000000000000000000000000000000000000000000006006060COCOCEOESE

Example when specifying single-byte spaces and double-byte spaces

@SkipChar(*"\s,\S"")

© 0000000000000 00000000000000000000000000O0O0C0C0COCOCOCOCEOCEOCEOCEOCEOCIOCEOCIOCOCEOCEOCOCIOCI0CIOCI0C0CI0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCQCCQCCOCQOCEOCEECEEETS

Characters can be specified in UTF-8 encoding. If using the character codes to specify characters, express the code with an escape
character added. The escape character is "\". If character codes are expressed using multi-byte characters, use single-byte spaces to
separate them.

jJJ Example

© © 0000000000000 0000000000000000000000000000000000000000000000000000000000000000000000006006060COCOCEOESE

Example when specifying @(single-byteCharacter)

@SkipChar(*"\40")

Example when specifying @(double-byteCharacter)

@SkipChar(""\EF \BC \AO')

© 0000000000000 00000000000000000000000000O0O0C0C0COCOCOCOCEOCEOCEOCEOCEOCIOCEOCIOCOCEOCEOCOCIOCI0CIOCI0C0CI0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCQCCQCCOCQOCEOCEECEEETS

- Use up to 4096 bytes to specify skip characters.

QT Note

- This option is not valid for condition expression of comparisons between items.

- The following characters cannot be specified:

Prohibited characters
D
\n (*1)
< (*2)
> (2
1 ¢2
)

*1: Can be specified as an exception if the input event type to all IF-THEN statements in filter rules is XML.

*2: Can be specified as an exception if the input event type to all IF-THEN statements in filter rules is CSV.

-76 -



Operation when option is omitted

If this option is omitted, all characters are treated as search targets.

2.9.2.2 SeparateChar

If pattern search (word) is specified in a filter rule search expression, specify the delimiter character (separator character).

Syntax

@SeparateChar (“'parameter')

Values specified in parameter
- Specify ASCII characters, excluding control characters, and line feeds and horizontal tabs.

- If the characters shown below are specified, express them by adding an escape character. The escape character is "\".

Character Specification method
Single-byte space \s
Line feed \n
Horizontal tab \t
Comma \,
Double-quotation marks \"
\ (backslash) \\

jJJ Example

© © 0000000000000 0000000000000000000000000000000000000000000000000000000000000000000000006006060COCOCEOESE

Example when specifying a single-byte space

@SeparateChar(*"\s")

© 0000000000000 00000000000000000000000000O0O0C0C0COCOCOCOCEOCEOCEOCEOCEOCIOCEOCIOCOCEOCEOCOCIOCI0CIOCI0C0CI0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCQCCQCCOCQOCEOCEECEEETS

There can be more than one character specified. If there are multiple specifications, specify with each string separated by a comma

()

jJJ Example

© © 0000000000000 0000000000000000000000000000000000000000000000000000000000000000000000006006060COCOCEOESE

Example when specifying a single-byte space and a horizontal tab

@SeparateChar(*"\s,\t")

© 0000000000000 00000000000000000000000000O0O0C0C0COCOCOCOCEOCEOCEOCEOCEOCIOCEOCIOCOCEOCEOCOCIOCI0CIOCI0C0CI0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCQCCQCCOCQOCEOCEECEEETS

- Use up to 4096 bytes to specify separator characters.

Qn Note

The following characters cannot be specified:

Prohibited characters

D

» D

\n (*1)

-77-



Prohibited characters
< (*2)
> (*2)
1 2

*1: Can be specified as an exception if the input event type to all IF-THEN statements in filter rules is XML.

*2: Can be specified as an exception if the input event type to all IF-THEN statements in filter rules is CSV.

Operation when option is omitted

If this option is omitted, it is assumed that the following "separator characters™ have been specified:

\t \n (*1) \s \" (*1) ! $
% & ) ( ) *
+ \, (*1) - . /

< (*2) = > (*2) ? @
[ \\ 1 ¢2 " _ X
{ | } ~

*1: Not assumed to be a separator character if the input event type to IF-THEN statements is CSV.

*2: Not assumed to be a separator character if the input event type to IF-THEN statements is XML.

2.9.2.3 ANKmix

Specify how upper-case and lower-case are handled for single-byte alphabetic search target strings.

Syntax

@ANKmix(parameter)

Values specified in parameter
true

Single-byte alphabetics are not case-sensitive.
false

Single-byte alphabetics are case-sensitive.

Operation when option is omitted

If this option is omitted, it is assumed that false is specified.

Qn Note

This option is not valid for condition expression of comparisons between items.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Examples of search processing resultswhen the ANK mix parameter isfalse (case-sensitive) and when it istrue (not case-sensitive)

-78-



Search keyword Search target characters false: case-sensitive true: not case-sensitive
ab ab Y Y
AB X Y
aB X Y
Ab X Y
AB ab X Y
AB Y Y
aB X Y
Ab X Y
Y: Hit
x: Not hit
2.9.2.4 KNJmix

Specify how upper-case and lower-case are handled for double-byte alphabetic search target strings.

Syntax

@KNJImix(parameter)

Values specified in parameter
true

Double-byte alphabetics are not case-sensitive.
false

Double-byte alphabetics are case-sensitive.

Operation when option is omitted

If this option is omitted, it is assumed that false is specified.

QJT Note

This option is not valid for condition expression of comparisons between items.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

Examples of sear ch processing resultswhen the KNJmix parameter isfalse (case-sensitive) and when it istrue (not case-sensitive)

-79-



Search keyword | Search target characters | false: case-sensitive | true: not case-sensitive

ab ak Y ki
AB X Y
a B X Y
Ab X b

A B ahb X Y
AB Y Y
a B X Y
A b X Y

Y: Hit

*. Mot hit

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

-80 -



|Ch apter 3 Input Adapter Reference

This chapter explains the input adapter functions and also explains the event sender application samples.

3.1 Input Adapter Overview

The input adapter receives event data from an event sender application, performs format analysis and log output (only if logging is used),

then passes the event data to a high-speed filter.

The input adapters provided by this product are a SOAP adapter, an HTTP adapter, and a socket adapter. The user selects which adapter

to use in accordance with the terminal used as the event sender application and the service format.

The table below shows the features of these input adapters and the communication protocol used for data transmission.

Input adapter type Features Communication Characteristics
protocol
SOAP adapter Receives SOAP messages and SOAP Versatility: Very good
extracts event data (HTTP) Performance: Poor
SOAP communication enables
easy linkage to existing SOA
systems
HTTP adapter Receives HTTP requests and HTTP Versatility: Good
extracts event data Performance: Good
Lightweight compared with
SOAP, but response is better
Socket adapter Receives messages using the Proprietary protocol | Versatility: Poor
proprietary data format of this (TCP/IP) Performance: Very good
product, and extracts event data
High throughput enables sending
large quantities of events

3.2 About Event Data

This section explains the event data sent to input adapters.

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

Event sender applications must send event data in accordance with the communication method of each input adapter. Refer to "3.3

Communication Method" for information on input adapter communication methods.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

3.2.1 Event Data Contents

The event data posted to an input adapter contains the following information:

Information

Explanation

Mandatory/Optional

Event data format

The format of the event data (CSV or XML)

* Not case-sensitive

Mandatory

-81-




* Maximum data size is 32,000,000 bytes

Information Explanation Mandatory/Optional
Event type ID The development asset 1D of the event type definition that indicates Mandatory
the event data structure
Character set The event data encoding (character code) (*1)
Event data content The event data content (data in CSV or XML format) Mandatory

*1: Posting is mandatory if the character encoding is other than UTF-8

3.2.2 Supported Character Sets

The event data character sets (encoding) supported by input adapters are shown below.

If a character set other than UTF-8 is specified, the input adapter converts the event data contents to UTF-8 for the CEP service. Character

sets are not case-sensitive.

Supported character sets Explanation
Shift_JIS Shift JIS
EUC-JP Japanese-language EUC

UTF-8

Unicode (UTF-8)

gn Note

- If a character set other than the above is specified, the input adapter does not respond with an error if the CEP Server system can

recognize the character set. However, in this case, operation is not guaranteed.

- Operation is not guaranteed if the event data encoding does not match the specified character set.

3.3 Communication Method

This section explains the end points (send destination address or port number), send message contents and response message contents

(including error contents when an error occurs) for each of the following input adapters:

- SOAP Adapter
- HTTP Adapter

- Socket Adapter

3.3.1 SOAP Adapter

This section explains the SOAP adapter communication method.

3.3.1.1 End Point

A SOAP adapter uses CEP service Web server features to receive event data.

The end point address (URL) is as follows:

http://CEPser ver Host Name/CEPengi neNaneFrontServerService/SoapReceiverService

-82-




jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

If the CEP Server host name is "bdcep", and the CEP engine name is "CEPenginel":

http://bdcep/CEPenginelFrontServerService/SoapReceiverService

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

3.3.1.2 Send Message
Use HTTP protocol (HTTP binding) to send a SOAP message in which event data is stored to the CEP Server.

;ﬂ Information

SOAP message

The format of SOAP messages posted to the CEP engine is as follows:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/* >
<S:Header />
<S:Body>
<a:notify xmlns:a="http://adapter.front.cep.cspf.fujitsu.com/">
<type>event Dat aFor mat </type>
<eventTypeld>event Typel D</eventTypeld>
<data>event Dat a</data>
</a:notify>
</S:Body>
</S:Envelope>

SOAP header (S:Header)
Specify a blank element.
SOAP body (S:Body)
Describe the event data information below in the notify element value and specify it in the SOAP body.

Specify "http://adapter.front._cep.cspf.fujitsu.com/" inthe xmlIns attribute (XML namespace) of the notify
element.

Send information | Specification method Specification example

Event data format | Specify asthet ype | If the event data is in CSV format:
element value

<t ype>CSV</t ype>
Event type ID Specify as the If the event type (development asset 1D of the event type
event Typel d definition) is EVENTTYPE_01:

element value <event Typel d>EVENTTYPE_01</ event Typel d>

Event data content | Specify asthe data | <dat a>MEMD0O1, 1010, 1</ dat a>
element value

HTTP request
Specify the CEP engine that posts the event data.

POST path HTTP/version

Path
The path part of the end point address.

-83-



Version

The HTTP protocol version.

E’) Point

© 0000000000000 000000000000000000000000000000000000O0OCL0COCOCOCOCOCCOCCCOCOCOCOCOCOC0C00C0000C0C0C0C0COCOCO0CO0C0CO0CIO0CIOCIOCOCEOCEEOEE

This product supports HTTP protocol versions 1.0 and 1.1.

© 000000000000 0000000000000000000000000000000000000000OCOCL0COCOCOCOCOCCCCOCOCOCOCOCOCOC0C0C0CO00C0C0C0C0C0COCOCOCOCO0CO0CIOCIOCIOCESS

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

If the CEP engine name is "CEPenginel™:

POST /CEPenginelFrontServerService/SoapReceiverService HTTP/1.1

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Request header

Specify event data information as follows:

Send Specification method Specification example
information

Character set Specify in the Content-Type header | If the event data encoding is Shift JIS:

(Can be omitted for UTF-8) Content-Type: text/xml; charset=Shift_JIS

L}T Note

If a character set is not specified, the encoding is not converted. Therefore, even if the encoding of the sent event data is not UTF-8,
the high-speed filter and complex event processing operate interpreting the input event as being in UTF-8.

Message body
Specify the SOAP message (as above).

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

The send message for the following scenario is shown below:

- CEP Server host name: hdcep

CEP engine name: CEPenginel

Event data format: CSV format
- Eventtype ID: EVENTTYPE_01
Character set: Shift JIS

POST /CEPenginelFrontServerService/SoapReceiverService HTTP/1.1
Host: bdcep

Content-Type: text/xml; charset=Shift_JIS

Content-Length: nnnn

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header />
<S:Body>

-84 -



<a:notify xmlns:a="http://adapter.front.cep.cspf.fujitsu.com/">
<type>CSV</type>
<eventTypeld>EVENTTYPE_O1</eventTypeld>
<data>MEM0001,1010,1</data>
</a:notify>
</S:Body>
</S:Envelope>

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

3.3.1.3 Response Message
After an HTTP request is sent, a response message (SOAP message) posted from the CEP Server is received.

The HTTP response and the information posted in the message body are shown below.

SOAP message
The format of the SOAP message posted from the CEP engine is shown below.

Note that newlines have been inserted here for this example, but newlines are not inserted in the actual messages.

<?xml version="1.0" encoding="UTF-8"7?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

<S:Body>

<ns2:notifyResponse xmlns:ns2="http://adapter.front.cep.cspf.fujitsu.com/'>
<return>r et ur nMessage</return>

</ns2:notifyResponse>

</S:Body>

</S:Envelope>

Return message
This message shows the SOAP adapter processing results.

If processed normally, the message is "Code=0 Message=Message sending is completed normally."

HTTP response

An HTTP response message is posted.

HTTP/ver si on statusCode suppl enent aryMessage

Version

HTTP protocol version.
Status code

HTTP request result.
Supplementary message

Supplementary message in accordance with the status code.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

If event data send ended normally:

HTTP/1.1 200 OK

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Message body
A SOAP message (as above) is posted.

-85-



E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

When an error occurs, a message is output to the syslog and the engine log. Refer to 3.4 Error Processing™ for information on error
processing.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Various messages, in accordance with the processing result, are as follows:

Processing result Message (*1)

Normal end 200 OK

Code=0 Message=Sending message completed normally.

None

Format error 200 OK

The event data format | Code=-100 Message=Event type format is not defined.
does not exist.

cepl10306e: Event Type Format is not defined. Engineld=CEPengineName

Processing result 200 OK
error

Code=-200 Message=Logging failed.

Log output processing cepl0401e: The Log was not able to be output. Engineld=CEPengineName,

failed. EVENT=receivedEvent, ERRORINFO=/nternallnformation
Note: Newlines in received events are converted to &#012; before output. If an event exceeds the
length that can be output to the syslog, only partial event information is output to the syslog.
Format error 200 OK

The event type ID does | Code=-300 Message=Event type id is not defined.

not exist. cep10305e: Event Type ID is not defined. Engineld=CEPengineName

Format error 200 OK

A format other than Code=-400 Message=Unknown event format [eventFormal].

CSV_ (?r XML is cepl0114e: Unknown Event format. Engineld=CEPengineName, format=eventFormat
specified for the event

data format.

Settings content 200 OK

discrepancy

Code=-500 Message=Unknown event type id [eventTypd].

The eventtype ID is not cepl0108e: Event type is not found. Engineld=CEPengineName, eventType=eventType

known.

Format error 415 Unsupported Media Type

The character set is not | None

known. None

Settings content 200 OK

discrepancy Code=-700 Message=It differs from the registered format [eventFormat].
The event data type

cepl0116e: It differs from the registered format. Engineld=CEPengineName,

does not match the format=eventFormat

deployed event type

definition.
Busy status 200 OK
The CEP Server is Code=-800 Message=Server is busy now.

temporarily or
permanently
overloaded. or

cepl0301w: FrontServer is busy. Event is aborted. Engineld=CEPengineName

-86-



Processing result Message (*1)

cepl10302e: FrontServer is continuously busy. Event is aborted. Engineld=CEPengineName

Format error 200 OK

The event data size Code=-900 Message=Bad Event data size [eventDataSize).

Extt:eeds 32,000,000 cepl10310e: Event Data Size is over. Engineld=CEPengineName, Size=eventDataSize
ytes.

CEP Server not 200 OK

running

Code=-1000 Message=Server is not Running.

cep10300w: FrontServer is not running. Event is aborted. Engineld=CEPengineName

*1: The contents of each row are as follows:
Top row: HTTP status code + supplementary message
Middle row: Return message included in SOAP message (variable information shown in Jtalic)

Bottom row: Message output to syslog and engine log (variable information shown in /talic)

3.3.1.4 Notes

This section explains notes related to the use of the SOAP adapter.

Number of simultaneous connections

If multiple event sender applications connect to a SOAP adapter simultaneously, the maximum number of simultaneous connections to
the SOAP adapter might be reached. In this case, the suspended status temporarily occurs for subsequent connection requests from event
sender applications.

Since the SOAP adapter responds to suspended status connection requests in accordance with the processing of the received event data,
no action is required by the event sender application.

ﬂ Information

The maximum number of simultaneous connections to a SOAP adapter is 50.

Since SOAP adapters and HTTP adapters share use of the Web server features of the CEP Server, the actual number of connections is the
combined number of SOAP adapter and HTTP adapter connections.

Communication protocol
The SOAP adapter communication protocols do not support HTTPS (HTTP over SSL/TLS).

3.3.2 HTTP Adapter

This section explains the HTTP adapter communication method.

3.3.2.1 End Point

An HTTP adapter uses CEP service Web server features to receive event data.

The end point address (URL) is as follows:

http://CEPser ver Host Name/CEPengi neNanmeFrontServerService/HttpReceiver

-87 -



jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

In this example, the CEP server host name is "bdcep", and the CEP engine name is "CEPenginel".

http://bdcep/CEPenginelFrontServerService/HttpReceiver

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

3.3.2.2 Send Message

Use an HTTP request to send event data to the CEP Server.

HTTP request
Specify the CEP engine that posts the event data.

POST path HTTP/version

Path

The path part of the end point address.
Version

The HTTP protocol version.

E) Point

© 0000000000000 000000000000000000000000000000000000O0OCL0COCOCOCOCOCCOCCCOCOCOCOCOCOC0C00C0000C0C0C0C0COCOCO0CO0C0CO0CIO0CIOCIOCOCEOCEEOEE

This product supports HTTP protocol versions 1.0 and 1.1.

© 000000000000 0000000000000000000000000000000000000000OCOCL0COCOCOCOCOCCCCOCOCOCOCOCOCOC0C0C0CO00C0C0C0C0C0COCOCOCOCO0CO0CIOCIOCIOCESS

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

If the CEP engine name is "CEPenginel™:

POST /CEPenginelFrontServerService/HttpReceiver HTTP/1.1

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Request header

Specify event data information as follows:

Send information | Specification method Specification example

Event data format Specify in the TYPE | If the event data is in CSV format:
header TYPE: CSV

Event type ID Specify in the If the event type (development asset ID of the event type definition) is
EVENT- TYPE- | D EVENTTYPE_01:
header EVENT- TYPE- I . EVENTTYPE_01

Character set Specify in the If the event data encoding is Shift JIS, and the format is CSV:
g:ar;terent -Type Cont ent - Type: text/plain; charset=Shift_JIS

If the event data encoding is Japanese-language EUC, and the format is

Canb itted f
(Can be omitted for XML

UTF-8)

Content - Type: text/xm; charset=EUC- JP

-88 -



Qﬂ Note

If a character set is not specified, the encoding is not converted. Therefore, even if the encoding of the sent event data is not UTF-8,
the high-speed filter and complex event processing operate interpreting the input event as being in UTF-8.

Message body

Specify the event data content.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

The send message for the following scenario is shown below:
- CEP Server host name: bdcep
- CEP engine name: CEPenginel
- Event data format: CSV format
- Eventtype ID: EVENTTYPE_01
- Character set: Shift JIS

POST /CEPenginelFrontServerService/SoapReceiverService HTTP/1.1
Host: bdcep

TYPE: CSV

EVENT-TYPE-ID: EVENTTYPE_O1

Content-Type: text/plain; charset=Shift_JIS

Content-Length: nnnn

MEMO001,1010,1

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

3.3.2.3 Response Message
After an HTTP request is sent, a response message posted from the CEP Server is received.

The HTTP response and the information posted in the message body are shown below.

HTTP response

An HTTP response message is posted.

HTTP/versi on statusCode suppl enent aryMessage

Version

HTTP protocol version.
Status code

HTTP request result.
Supplementary message

Supplementary message in accordance with the status code.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

If event data send ended normally:

-89 -



HTTP/1.1 200 OK

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

Message body

A message showing the HTTP adapter processing results is posted.

jJJ Example

© 0000000000000 0000000000000000000000000000000000O0C0C0COCOCOCOCOCOCOCCOCOCOCOC00C00C0C0C00000000000000000000000000Ss

If event data send ended normally:

Code=0 Message=Message sending is completed normally.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

E) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

When an error occurs, a message is output to the syslog and the engine log. Refer to 3.4 Error Processing™ for information on error
processing.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Various messages, in accordance with the processing result, are as follows:

Processing result Message (*1)

Normal end 200 OK

Code=0 Message=Sending message completed normally.

None
CEP Server not 200 OK
running Code=-1000 Message=Server is not Running.

cep10300w: FrontServer is not running. Event is aborted. Engineld=CEPengineName
Format error 400 Bad Request

The event data format | Code=-100 Message=Event type format is not defined.
does not exist.

cepl0306e: Event Type Format is not defined. Engineld=CEPengineName

Format error 400 Bad Request

The event type ID does | Code=-300 Message=Event type id is not defined.

not exist. cepl0305e: Event Type ID is not defined. Engineld=CEPengineName

Format error 400 Bad Request

A format other than Code=-400 Message=Unknown event format [eventFormad.

CSV_ qr XML is cepl0114e: Unknown Event format. Engineld=CEPengineName, format=eventFormat

specified for the event

data format.

Format error 400 Bad Request

The event data size Code=-900 Message=Bad Event data size [eventDataSize).

EX(t:eeds 32,000,000 cepl10310e: Event Data Size is over. Engineld=CEPengineName, Size=eventDataSize
ytes.

Settings content 400 Bad Request

discrepancy

Code=-500 Message=Unknown event type id [eventType].
The event type ID is not
known.

-90-



Processing result

Message (*1)

cepl10108e: Event type is not found. Engineld=CEPengineName, eventType=eventType

Settings content
discrepancy

The event data format
does not match the
deployed event type
definition.

400 Bad Request

Code=-700 Message=It differs from the registered format [eventFormal.

cepl0116e: It differs from the registered format. Engineld=CEPengineName,
format=eventfFormat

Format error

The character set is not
known.

415 Unsupported Media Type

Code=-600 Message=Charset is Abnormal [characterSetName].

cepl10304e: Charset Name is abnormal.
Engineld=CEPengineName,CharsetName=characterSetName

Processing result
error

Log output processing
failed.

500 Internal Server Error

Code=-200 Message=Logging failed.

cepl10401e: The Log was not able to be output. Engineld=CEPengineName,
EVENT=receivedEvent, ERRORINFO=/nternallnformation

Note: Newlines in received events are converted to &#012; before output. If an event exceeds the
length that can be output to the syslog, only partial event information is output to the syslog.

Busy status

The CEP Server is
temporarily or
permanently
overloaded.

503 Service Unavailable

Code=-800 Message=Server is busy now.

cepl0301w: FrontServer is busy. Event is aborted. Engineld=CEPengineName
or

cepl10302e: FrontServer is continuously busy. Event is aborted. Engineld=CEPengineName

*1: The contents of each row are as follows:

Top row: HTTP status code + supplementary message

Middle row: HTTP response message body (variable information shown in /talic)

Bottom row: Message output to syslog and engine log (variable information shown in /talic)

3.3.2.4 Notes

This section explains notes related to the use of the HTTP adapter.

Number of simultaneous connections

If multiple event sender applications connect to an HTTP adapter simultaneously, the maximum number of simultaneous connections to
the HTTP adapter might be reached. If so, the suspended status temporarily occurs for subsequent connection requests from event sender
applications.

Since the HTTP adapter responds to suspended status connection requests in accordance with the processing of the received event data,
no action is required by the event sender application.

,ﬂ Information

The maximum number of simultaneous connections to an HTTP adapter is 50.

Since SOAP adapters and HTTP adapters share use of the Web server features of the CEP Server, the actual number of connections is the
combined number of SOAP adapter and HTTP adapter connections.

-01-



Communication protocol

The HTTP adapter communication protocols do not support HTTPS (HTTP over SSL/TLS).

3.3.3 Socket Adapter

This section explains the socket adapter communication method.

;ﬂ Information

Due to the following performance advantages, use of a socket adapter can achieve higher throughput than with SOAP and HTTP adapters:

- The event sender application can send multiple event data while connected to the CEP Server (input adapter). Since this can eliminate
overheads associated with establishing and ending TCP/IP connections, throughput improves.

- Event sender applications can send event data continuously without waiting for reception messages from the CEP Server (input
adapter). Since this eliminates the time lag associated with waiting for a response from the CEP Server, throughput improves.
(Only if the input adapter does not use logging)

3.3.3.1 End Point

The socket adapter end point is a combination of the CEP Server IP address and the socket adapter port (any TCP port).
If the socket adapter is used, the listening port for event data must be specified as the socket adapter port in the engine configuration file.

&, See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

Refer to Section 9.1.1, "Engine Configuration File" in the User's Guide for information on how to specify the socket adapter port.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

3.3.3.2 Send Message

This section explains the messages sent to the socket adapter.

Send message format

4 hytes Variable size
Event header Event data
v v
Event data size or send Event data
complete notification (not specified with a send complete notification)
Data field Size Specified value
Event header 4 bytes Specify the data size of the event data field (bytes).

Or, specify 0 to post a send complete notification (indicating event sending is
completed) to the socket adapter.

Possible range is 0 to 33,000,000.

Event data Variable size Store the event data (described below).

Specify this field if the event header field is other than O (send complete
notification).

-902-



Event data field format

Jbvtes 4 hytes Variable size 4 lwtes  Variable size 4 Intes Variable size
Data . . .
Size Event type Size Character set Size Event data content
farmat
v v v v v v w
"l._.v._} "s._,v,_)' N\ J
Csv ¥
or Event type size Character set size Size of event data content
XML + text data + text data + text data
Data field Size Specified value
Event data format 3 bytes Specify CSV or XML (string).

The format can also be specified in lower-case (csv or xml).

Event type ID Size 4 bytes Specify the string length of the event type ID (bytes).
Data Variable size Specify the event type ID text data.
Character set Size 4 bytes Specify the string length of the character set (bytes).

If the event data encoding is UTF-8, specify 0.

Data Variable size Specify the character set text data.

If UTF-8, omit this field.

Event data content Size 4 bytes Specify the size of the event data content (bytes).

Data Variable size Specify the event data text data.

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

In the following case, the send message byte array is as follows:
- Event data format: CSV format
- Event type ID: EVENTTYPE_01
- Character set: Shift JIS

0123 456789 ABCDEF
Ox00| Ox32(50) |C|S|V| OxC(12) |[E|V|E|N|T

Ox10| T|Y|P|E O[1] Ox8(9) |S|hji|f]|t

0x20 J|1S| OxE(14) IM|E(M{0[0|0|1],

0x30{1|0(1|0}|, |1

The send complete notification byte array is as follows:

-03-



0123
0x0 (0)

0x00

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

3.3.3.3 Response Message

This section explains the messages posted from the socket adapter.

Response message format

1 Intes 1 nyte Variahle size 1 nyte Variahle size 1 nyte
Fesponse
cgde Send success count Error message LF
v v v v v v
Processing Separator String showing Separator Processing result message End

result code the send count
0 to 92233720368547 75807
Data field Size Specified value
Response code 4 bytes Stores a 4-digit string showing the input adapter processing results.
<Separator> 1 byte Stores a colon (:) (0x3A) as the separator character between the previous and next
fields.
Send success Variable size Stores the processing success count for event data at the input adapter (upper limit:
count (010 19 bytes) LONG_MAX).
This field is posted as a decimal string. For example, if the count is 0, one byte
indicating "0" (0x30) is stored. If the maximum count, 19 bytes indicating 2%- 1 is
stored.
<Separator> 1 byte Stores a colon (:) (0x3A) as the separator character between the previous and next
fields.
Error message Variable size Stores the error message string.
<End> 1 byte Stores a line feed (LF) (0x0A) as the error message end character.
) Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

When an error occurs, a message is output to the syslog and the engine log. Refer to 3.4 Error Processing™ for information on error
processing.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Response codes and various messages, in accordance with the processing result, are as follows:

Processing result Response code and message (*1)

Normal end 0000

Sending message completed normally.

None

Format error M 001

Bad Message data size [dataSize].

-94 -



Processing result

Response code and message (*1)

The data size exceeds
33,000,000 bytes.

cepl10308e: Message Data Size is over. Engineld=CEPengineName, Size=dataSize

Settings content
discrepancy

The event type ID is not
known.

M002

Unknown event type id [eventType].

cepl10108e: Event type is not found. Engineld=CEPengineName ,eventType=eventTypeld

Format error

A format other than
CSV or XML is
specified for the event
data format.

MO003

Unknown event format [eventFormat].

cepl0114e: Unknown Event format. Engineld=CEPengineName, format=eventFormat

Format error

Send message format
error

M 004

Data format is Abnormal.

cepl10303e: Event data cannot read. Event is aborted. Engineld=CEPengineName,
ClientIP=eventSenderlpAddress

Format error

The character set is not
known.

M 005

Charset is Abnormal [characterSetName).

cepl0304e: Charset Name is abnormal. Engineld=CEPengineName,
CharsetName=characterSetName

Processing result
error

An error occurred when
decoding event data.

M 006

Decoding event data failed.

cepl10309e: Decoding event data failed. Engineld=CEPengineName

Settings content
discrepancy

The event data type
does not match the
deployed event type
definition.

MO007

It differs from the registered format [eventFormai.

cepl0116e: It differs from the registered format. Engineld=CEPengineName, format=eventFormat

Format error

The event data size
exceeds 32,000,000
bytes.

M 008

Bad Event data size [eventDataSize].

cepl10310e: Event Data Size is over. Engineld=CEPengineName, Size=eventDataSize

CEP server not

S001

running Server is not Running.
cepl0300w: FrontServer is not running. Event is aborted. Engineld=CEPengineName
Busy status S002

The CEP Server is
temporarily or
permanently
overloaded.

Server is busy now.

cepl0301w: FrontServer is busy. Event is aborted. Engineld=CEPengineName
or

cepl10302e: FrontServer is continuously busy. Event is aborted. Engineld=CEPengineName

Processing result
error

Log output processing
failed.

S003

Logging failed.

cepl0401e: The Log was not able to be output. Engineld=CEPengineName,
EVENT=receivedEvent, ERRORINFO=/nternallnformation

-05-




Processing result

Response code and message (*1)

Note: Newlines in received events are converted to &#012; before output. If an event exceeds the
length that can be output to the syslog, only partial event information is output to the syslog.

*1: The contents of each row are as follows:

Top row: Response code

Middle row: Error message (variable information shown in Jszalic)

Bottom row: Message output to syslog and engine log (variable information shown in /talic)

jJJ Example

© © 0000000000 000000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCEOCEOCE

If 10 event data are sent and then a send complete notification is sent, the received message byte array is as follows when message send

ends normally:

0123405 8 9 ABCDEF
Ox00(0(0(0|0 1 Mie|s|s|a|g|e
Ox10|s|e|n|d n I |s clom|p]| |
0x20|e |t |e|d n mia|l|l|y|.|LF

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

3.3.3.4 Socket Communication Processing Procedures

This section explains the procedures when a socket adapter is used, from connection using socket communication (TCP/IP) to

disconnection.

The event sender application communicates in accordance with the procedures (processing flow) shown below.

Processing procedure:

N oo o M w0 D P

Send event data. (Send message)

Send next event data (if required). (Repeat step 2)

Send a notification. (Send complete notification)

Connect to the CEP Server socket adapter. (Establish connection)

Receive response message from the CEP Server. (Receive message)

Send next event data (if required). (Go back to step 2)

-06 -

If all event data sends are completed, close the connection. (End connection)



CEP Server

A -

- _._,-f'f "--.__.--/?
Event sender Input adapter High-speed
application { Socket) filter
- Establish connection
L Jd

Send message {event data)

— |{—

|

|

MHotify send completion

]
1]
A -
Receive message
—

7 '
[Fm—— ﬂ
: End connection I—

%, o

25 See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

- Referto"3.3.3.1 End Point" for information on the input adapter end point at the connection destination when establishing a connection.
- Refer to "3.3.3.2 Send Message™ for information on message sending and the send complete notification.

- Refer to "3.3.3.3 Response Message" for information on message reception.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

3.3.3.5 Notes

This section explains notes related to the use of the socket adapter.

Sending messages continuously

If an error is detected at the socket adapter, a response message is posted before a send complete notification is received and the connection
is closed.

In this case, the event sender application cannot continue to send messages (an error occurs for data sending). Therefore, have the event
sender application interrupt message sending, then receive a response message from the socket adapter.

-97 -



Sending messages that do not match the size information

If event data is sent that is less than the data size set in the "size information”, the CEP Server will wait to receive the correct amount of
data, and does not post a response message until the appropriate amount of data is sent.

In the event sender application, ensure that the "size information™ matches the event data size.

Number of simultaneous connections

There is no maximum number of simultaneous socket adapter connections. Connections can be made up to the maximum number of
operating system file descriptors.

However, to ensure efficient resource usage, close connections when the event sender application is not continuing to send data.

E’ Point

© © 0000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOEE

The CEP Server side does not close connections unless an error is detected at the socket adapter.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

Using logging at the input adapter
The socket adapter outputs logs at the time of a send complete notification.

Therefore, have the event sender application initiate a send complete notification for each individual message and receive a response
message, as shown below.

If a send complete notification is not sent nor a response message received for each message, the send success count for response messages
might be inaccurate.

CEP Server

Event sender * Input adapter High-speed
application { Socket) filter

Ll

— B

Event log

[=]
v

] |

L]

-08 -



3.4 Error Processing

If the event sender application receives a response message indicating an error, take action according to the type of error.

Note that developers themselves must resolve error processing relating to ordinary socket communication (TCP/IP).

CEP Server not running

At the CEP Server, execute cepdispeng (with the -a option specified) to check if the CEP engine has started. If a socket adapter is being
used, check the command results to see if the CEP engine listening on the specified TCP port has started.

If not started, use cepstarteng to start the CEP Server.

Format error

Check if the data format of the message sent from the event sender application conforms to the contents of "3.2 About Event Data".
Also check if the send message specification method is compliant with the input adapter type.

If there is an error, reconfigure the event sender application.

Settings content discrepancy (event type ID does not match)

At the CEP Server, execute cepdispeng (with the —i option specified) to check if the event type ID of the send message matches the
event type definition (development asset 1D) deployed to the CEP engine.

If there is an error, correct so that they match.

Settings content discrepancy (event data format does not match)

At the CEP Server, execute cepgetrsc (with eventtype and the —n option specified) to check if the event data format of the send
message (CSV or XML) matches the event data format in the deployed event type definition.

If there is an error, correct so that they match.

Processing result error (decoding error)
Check if the encoding of the event data sent from the event sender application is the same as the specified character set.

If different, specify the same character set.

Processing result error (log output failure)
Refer to the syslogs or the engine logs at the CEP Server and check the detailed error information.

Refer to Messages for information on the appropriate action.

Busy status
Refer to the syslogs or the engine logs at the CEP Server and check if the input adapter overload is temporary or permanent.
Refer to Messages for information on the appropriate action.

2, See

© © 0000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000COCOCOCOCOCEOCEOCE

Refer to Chapter 8, "Command Reference™ in the User’s Guidefor information on the cepdispeng, cepstarteng, and cepgetrsc commands.

© ©0000000000000000000000000000000000000000000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCCCCOCOCEOCEECEEETS

-99 -



3.5 Sample Programs

This section provides event sender application sample programs for each of the input adapters listed below.
Refer to these samples when developing event sender applications.

- SOAP Adapter

- HTTP Adapter

- Socket Adapter

3.5.1 SOAP Adapter

Sample program source code:

1 import java.io.BufferedOutputStream;

2 import java.io.BufferedReader;

3 import java.io.lOException;

4 import java.io.lnputStreamReader;

5 import java.net._HttpURLConnection;

6 import java.net.MalformedURLException;

7 import java.net.URL;

8

9 public class SoapClient {

10 URL soapAdapterUrl = null;

11 String url = "http://%HOSTNAME%/%ENG INE%FrontServerService/SoapReceiverService';
12 HttpURLConnection con = null;

13

14 public static void main(String[] args) {

15 String hostName = "*';

16 String engineName = "';

17 String dataType = '"';

18 String charSet = "*';

19 String eventTypeld = ""';

20 String data = """

21 long IWait = 10;

22

23 try {

24 int loop = 0;

25 if (args.length 1= 8) {

26 System.out.printIn(“param is Abnormal');
27 return;

28 }

29

30 hostName = String.valueOf(args[0]);

31 engineName = String.valueOf(args[1]);

32 dataType = String.valueOf(args[2]);

33 charSet = String.valueOf(args[3]):

34 eventTypeld = String.valueOf(args[4]);

35 data = String.valueOf(args[5]);

36 IWait = Long.valueOf(args[6]);

37 loop = Integer.valueOf(args[7]);

38

39 SoapClient sc = new SoapClient(hostName, engineName);
40 sc.sendMessage(data, dataType, eventTypeld,charSet, loop, IWait);
41 } catch (Exception e) {

42 e.printStackTrace();

43 }

44 }

45

46 public SoapClient(String hostName, String engineName) throws I0Exception {
47

-100 -




48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

try {
String wkUrl = url.replaceAlI (""%ENGINE%', engineName);
wkUrl = wkUrl_replaceAll (""%HOSTNAME%', hostName);

soapAdapterUrl = new URL(wkUrl);
} catch (MalformedURLException e) {
e_printStackTrace();
b
3

private HttpURLConnection open(String charSet) throws I0Exception {

HttpURLConnection con = null;
con = (HttpURLConnection) soapAdapterUrl.openConnection();

con.setRequestMethod(*'POST") ;

con.setRequestProperty(‘'content-type”, "text/xml;charset=" + charSet);
con.setDoOutput(true);

con.connect();

return con;

}

private void sendMessage(String baseData, String dataType, String eventTypeld,
String charSet, int loop, long IWait) throws Exception {

BufferedOutputStream bos = null;
InputStreamReader irl = null;
BufferedReader brl = null;

try {
for (int i = 0; i < loop; i++) {
con = this.open(charSet);
bos = new BufferedOutputStream(con.getOutputStream());

String data = baseData.replaceAll (""%COUNTER%", String.valueOf(i));
String MSG
= "<S:Envelope xmlIns:S=\"http://schemas.xmlsoap.org/soap/envelope/\"'>"

+ "<S:Header />"

+ '"<S:Body>"

+ "<a:notify xmlns:a=\"http://adapter._front.cep.cspf.fujitsu.com/\'">"
+ "<type>" + dataType + "'</type>"

+ "<eventTypeld>" + eventTypeld + ''</eventTypeld>"

+ "<data>" + data + "'</data>"

+ "</a:notify>"

+ ''</S:Body>"

+

"'</S:Envelope>";
bos.write(MSG.getBytes(charSet));

bos.flush();
bos.close();

irl = new InputStreamReader(con.getlnputStream());
brl = new BufferedReader(irl);

String line;
while ((line = brl.readLine()) != null) {
System.out._printin(line);

}

brl.close();
irl.close();

-101-




111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140 }

con.disconnect();
Thread.sleep(IWait);

}

} catch (MalformedURLException e) {
e.printStackTrace();
throw e;

} catch (10Exception e) {
e.printStackTrace();
throw e;

} catch (InterruptedException e) {
e.printStackTrace();
throw e;

} finally {

try {

if (bri != null) {

brl.close(Q);

if (irl '= null) {

}

irl.close();

} catch (10Exception e) {
e.printStackTrace();
return;

}

return;

The following data are obtained from the arguments at runtime:

Argument Variable Use

1 hostName CEP Server host name

2 engineName CEP engine name

3 aataType Event data format

4 charSet Character set

5 eventTypeld Event type ID

6 gata Event data
%COUNTER% included in event data needs to be
substituted with loop count so that different event data
shall be sent at each loop

7 IWait Data transmission wait time

8 loop Data transmission count

3.5.1.1 Example of Sample Execution(Sends a CSV data)

An example of sample execution is shown below.

In this example, debug information is output to the engine log by using DebugLogL istener.

Command execution result

# java -cp ./ SoapClient localhost CepEngine CSV UTF-8 CSVEvent SOAP,CSV,%COUNTER% 1 3 <ENTER>
<?xml version="1.0" encoding="UTF-8"?><S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/env
elope/''><S:Body><ns2:notifyResponse xmlns:ns2="http://adapter.front.cep.cspf.fujitsu.com/"><re
turn>Code=0 Message=Sending message completed normally.</return></ns2:notifyResponse></S:Body>

-102 -




</S:Envelope>
<?xml version="1.0" encoding="UTF-8"?><S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/env
elope/''><S:Body><ns2:notifyResponse xmlns:ns2="http://adapter.front.cep.cspf.fujitsu.com/"><re
turn>Code=0 Message=Sending message completed normally.</return></ns2:notifyResponse></S:Body>
</S:Envelope>
<?xml version="1.0" encoding="UTF-8"?><S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/env
elope/''><S:Body><ns2:notifyResponse xmlns:ns2="http://adapter.front.cep.cspf.fujitsu.com/"><re
turn>Code=0 Message=Sending message completed normally.</return></ns2:notifyResponse></S:Body>
</S:Envelope>

Please note that we added newlines in the example above (lines 2 to 4, 6 to 8, and 10 to 12) for readability only - the actual output does
not have a newline.

Enginelog output result

2012-07-29 13:01:20,693 [DEBUG] abc:length=1

abc[0]
operation :CSV: String
count :0: String
1D :SOAP: String

2012-07-29 13:01:20,730 [DEBUG] abc:length=1

abc[0]
operation :CSV: String
count :1: String
1D :SOAP: String

2012-07-29 13:01:20,768 [DEBUG] abc:length=1

abc[0]
operation :CSV: String
count :2: String
1D :SOAP: String

3.5.1.2 Example of Sample Execution(Sends an XML data)
An example of sample execution is shown below.

In this example, debug information is output to the engine log by using DebugLogL istener.

gn Note

In case XML data is sent through SOAP adapter, enclose the data with CDATA as described in the command execution result below.

Command execution result

# java -cp ./ SoapClient localhost CepEngine XML UTF-8 XMLEvent "<I[CDATA[<?xml version="1.0"\
encoding=""UTF-8"?><XMLEvent><I1D>S0AP</ID> <operation>XML</operation>\
<count>%COUNTER%</count></XMLEvent>]]>" 1 3 <ENTER>

<?xml version="1.0" encoding="UTF-8"?><S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/env

elope/''><S:Body><ns2:notifyResponse xmlns:ns2="http://adapter.front.cep.cspf.fujitsu.com/"><re

turn>Code=0 Message=Sending message completed normally.</return></ns2:notifyResponse></S:Body>
</S:Envelope>

<?xml version="1.0" encoding="UTF-8"?><S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/env

elope/''><S:Body><ns2:notifyResponse xmlns:ns2="http://adapter.front.cep.cspf.fujitsu.com/""><re

turn>Code=0 Message=Sending message completed normally.</return></ns2:notifyResponse></S:Body>
</S:Envelope>

<?xml version="1.0" encoding="UTF-8"?><S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/env

elope/''><S:Body><ns2:notifyResponse xmlns:ns2="http://adapter.front.cep.cspf.fujitsu.com/'"><re

turn>Code=0 Message=Sending message completed normally.</return></ns2:notifyResponse></S:Body>
</S:Envelope>

-103 -



Please note that we added backslash ("\") and newline characters in the command line example above for readability only - the actual
command line does not have a backslash and newline.

Please note that we added newlines in the output example above (lines 4 to 6, 8 to 10, and 12 to 14) for readability only - the actual output
does not have a newline.

Enginelog output result

2012-07-29 13:02:21,860 [DEBUG] abc--0:length=1

abc--0[0]
operation IXML: String
count :0: String
1D :SOAP: String

2012-07-29 13:02:21,900 [DEBUG] abc--0:length=1

abc--0[0]
operation IXML: String
count :1: String
1D :SOAP: String

2012-07-29 13:02:21,935 [DEBUG] abc--0:length=1

abc--0[0]
operation IXML: String
count :2: String
1D :SOAP: String

3.5.2 HTTP Adapter

Sample program source code:

1 import java.io.BufferedOutputStream;

2 import java.io.BufferedReader;

3 import java.io.lOException;

4 import java.io.lnputStreamReader;

5 import java.net.HttpURLConnection;

6 import java.net.MalformedURLException;

7 import java.net.URL;

8

9 public class HttpClient {

10 URL httpAdapterUrl = null;

11 String url = "http://%HOSTNAME%/%ENG INE%FrontServerService/HttpReceiver";
12 HttpURLConnection con = null;

13

14 public static void main(String[] args) {

15 String hostName = "**

16 String engineName = ""';

17 String dataType = "*';

18 String charSet = "*';

19 String eventTypeld = ""';

20 String data = ""';

21 long IWait = 10;

22

23 try {

24 int loop = 0;

25 if (args.length 1= 8) {

26 System.out.printIn("param is Abnormal™);
27 return;

28 }

29

30 hostName = String.valueOf(args[0]);
31 engineName = String.valueOf(args[1]);
32 dataType = String.valueOf(args[2]);
33 charSet = String.valueOf(args[3]):

-104 -



34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

eventTypeld = String.valueOf(args[4]);

data = String.valueOf(args[5]):
IWait = Long.valueOf(args[6]);
loop = Integer.valueOf(args[7]):

HttpClient hc = new HttpClient(hostName, engineName);
hc.sendMessage(data, charSet, dataType, eventTypeld, loop, IWait);
} catch (Exception e) {
e.printStackTrace();
3
¥

public HttpClient(String hostName, String engineName) throws I0Exception {

try {
String wkUrl = url_replaceAlI (""%ENGINE%", engineName);

wkUrl = wkUrl_replaceAll (""%HOSTNAME%', hostName);

httpAdapterUrl = new URL(wkUrl);
} catch (MalformedURLException e) {
e.printStackTrace();
3
3

private HttpURLConnection open(String charSet, String dataType, String eventTypeld)

throws Exception {

HttpURLConnection con = null;
con = (HttpURLConnection) httpAdapterUrl.openConnection();

con.setRequestMethod(*'POST");
con.setRequestProperty(""TYPE", dataType);
con.setRequestProperty(""EVENT-TYPE-ID", eventTypeld);

if (“csv'.equalslgnoreCase(dataType)) {

con.setRequestProperty(‘'content-type", "text/plain; charset=" + charSet);

} else if ("'xml"._equalslgnoreCase(dataType)) {
con.setRequestProperty("'content-type", "text/xml; charset=" + charSet);
} else {
System.out.printin("datatype is Abnormal'™);
throw new Exception();

}

con.setDoOutput(true);
con.connect();

return con;

}

private void sendMessage(String data, String charSet, String dataType,
String eventTypeld, int loop, long IWait) throws Exception {

BufferedOutputStream bos = null;
InputStreamReader irl = null;
BufferedReader brl = null;

try {
for (int i = 0; i < loop; i++) {
con this.open(charSet, dataType, eventTypeld);
bos = new BufferedOutputStream(con.getOutputStream());

String MSG = data.replaceAll (""%COUNTER%", String.valueOf(i));
bos.write(MSG.getBytes(charSet));

-105 -




97

98 bos.flush();

99 bos.close();

100

101 irl = new InputStreamReader(con.getlnputStream());
102 brl = new BufferedReader(irl);
103

104 String line;

105 while ((line = brl.readLine()) != null) {
106 System.out._printin(line);
107 }

108

109 brl.close();

110 irl_close();

111

112 con.disconnect();

113 Thread.sleep(IWait);

114 }

115

116 } catch (MalformedURLException e) {
117 e.printStackTrace();

118 throw e;

119 } catch (10Exception e) {

120 e.printStackTrace();

121 throw e;

122 } catch (InterruptedException e) {
123 e.printStackTrace();

124 throw e;

125 3} finally {

126 try {

127 if (brl = null) {

128 brl.close();

129

130 if (irl = null) {

131 irl.close();

132 }

133 } catch (10Exception e) {

134 e.printStackTrace();

135 return;

136 }

137 }

138

139 return;

140 }

141 }

The following data are obtained from the arguments at runtime:

Argument Variable Use

1 hostName CEP Server host name

2 engineName CEP engine name

3 aataType Event data format

4 charSet Character set

5 eventTypeld Event type ID

6 data Event data
%COUNTER®% included in event data needs to be
substituted with loop count so that different event data
shall be sent at each loop.

- 106 -



Argument Variable Use

7 Wait Data transmission wait time

8 loop Data transmission count

3.5.2.1 Example of Sample Execution(Sends a CSV data)
An example of sample execution is shown below.
In this example, debug information is output to the engine log by using DebugLogL istener.

Command execution result

# java -cp ./ HttpClient localhost CepEngine CSV UTF-8 CSVEvent HTTP,CSV,%COUNTER% 1 3 <ENTER>
Code=0 Message=Sending message completed normally.
Code=0 Message=Sending message completed normally.
Code=0 Message=Sending message completed normally.

Enginelog output result

2012-07-29 13:05:02,954 [DEBUG] abc:length=1

abc[0]
operation :CSV: String
count :0: String
1D HTTP: String

2012-07-29 13:05:03,027 [DEBUG] abc:length=1

abc[0]
operation :CSV: String
count :1: String
1D HTTP: String

2012-07-29 13:05:03,108 [DEBUG] abc:length=1

abc[0]
operation :CSV: String
count :2: String
1D HTTP: String

3.5.2.2 Example of Sample Execution(Sends an XML data)
An example of sample execution is shown below.
In this example, debug information is output to the engine log by using DebugLogL istener.

Command execution result

# java -cp ./ HttpClient localhost CepEngine XML UTF-8 XMLEvent "<?xml version="1.0"\
encoding=""UTF-8"?><XMLEvent><ID>HTTP</ID> <operation>XML</operation>\
<count>%COUNTER%</count></XMLEvent>" 1 3 <ENTER>

Code=0 Message=Sending message completed normally.

Code=0 Message=Sending message completed normally.

Code=0 Message=Sending message completed normally.

Please note that we added backslash ("\"") and newline characters in the command line example above for readability only - the actual
command line does not have a backslash and newline.

Enginelog output result

2012-07-29 13:07:32,670 [DEBUG] abc--0:length=1

abc--0[0]
operation IXML: String
count :0: String
1D HTTP: String

-107 -



2012-07-29 13:07:32,685 [DEBUG] abc--0:length=1
abc--0[0]

operation :XML: String

count :1: String

1D HTTP: String

2012-07-29 13:07:32,698 [DEBUG] abc--0:length=1
abc--0[0]

operation :XML: String

count :2: String

1D HTTP: String

3.5.3 Socket Adapter

Sample program source code:

O© 00O ~NOOUDWNEPR

A A DDA BEDIDDEOWWOWWWWWWWWNDNNNDNNNNNNRPRPRPRPRPEPRPRERPEPREREPR
OO D WNRPOOO~NOOAOPAMWNRPOOONOODOPRMRWNPEPOOONOOOUDMWDNEDO

import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.lOException;

import java.io.lnputStreamReader;
import java.net.InetAddress;

import java.net.InetSocketAddress;
import java.net.Socket;

public class SocketClient {
Socket s = new Socket();

public static void main(String[] args) {
String hostName = "**;
int port = O;
String dataType = "*';
String charSet = ""';
String eventTypeld =
String data = "";
long IWait = 10;
int loop = 0;
int dataCount

1;

if (args.length 1= 9) {
System.out._printIn("param is Abnormal™);

return;

}

try {
hostName = String.valueOf(args[0]);
port = Integer.valueOf(args[1]);
dataType = String.valueOf(args[2]);
charSet = String.valueOf(args[3]);
eventTypeld = String.valueOf(args[4]);
data = String.valueOf(args[5]):
IWait = Long.valueOf(args[6]);
loop = Integer.valueOf(args[7]):
dataCount = Integer.valueOf(args[8]):

SocketClient ¢ = new SocketClient(hostName,
c.sendMessage(dataCount, dataType, charSet,

System.out._printin(c.readResponse());

} catch (InterruptedException e) {
e.printStackTrace();

-108 -

port);
eventTypeld, data,

loop,

IWait);




47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

return;

} catch (Exception e) {
e.printStackTrace();
return;

}

public void sendMessage(int dataCount, String dataType, String charSet,
String eventTypeld,String data, int loop, long wait)
throws 10Exception, InterruptedException {

DataOutputStream dos = new DataOutputStream(
new BufferedOutputStream(s.getOutputStream()));

for (int k = 0; k < loop; k++) {

for (int i = 0; 1 < dataCount; i++) {
int count = ( k * dataCount ) + i;
String msg = data.replaceAll ("%COUNTER%", String.valueOf(count));

int length = dataType.getBytes().length + 4 + eventTypeld.getBytes().length
+ 4 + charSet.getBytes().length + 4 + msg.getBytes().length;
dos.writelnt(length);

dos.write(dataType.getBytes());

dos.writelnt(eventTypeld.getBytes().length);
dos.write(eventTypeld.getBytes());

dos.writelnt(charSet.getBytes().length);
dos.write(charSet.getBytes());

dos.writelnt(msg.getBytes().length);
dos.write(msg.getBytes(charSet));

dos.flushQ);
3

Thread.sleep(wait);
¥
dos.writelnt(0);
dos.flushQ);
3

public SocketClient(String host, int port) throws I0Exception {
InetSocketAddress address = new InetSocketAddress(lnetAddress.getByName(host),
Integer.valueOf(port));
s.setSendBufferSize(1000000000) ;
s.connect(address);

}

public String readResponse() throws I0Exception {
BufferedReader br = new BufferedReader( new InputStreamReader(s.getlnputStream()));

String ret =br.readLine();
System.out.printIn("'RESPONSE:" + ret);
return "'';

The following data are obtained from the arguments at runtime:

-109 -




Argument Variable Use

1 hostName CEP Server host name
2 port Socket adapter port

3 aataType Event data format

4 charSet Character set

5 eventTypeld Event type ID

6 data Event data

%COUNTERY% included in event data needs to be
substituted with loop count so that different event data
shall be sent at each loop.

7 IWait Data transmission wait time
8 loop Data transmission count
9 dataCount Number of event data to send at a time

3.5.3.1 Example of Sample Execution(Sends a CSV data)
An example of sample execution is shown below.
In this example, debug information is output to the engine log by using DebugLogL istener.

Command execution result

RESPONSE:0000:6:Sending message completed normally.

# java -cp ./ SocketClient localhost 8001 CSV UTF-8 CSVEvent SOCKET,CSV,%COUNTER% 1 2 2 <ENTER>

Enginelog output result

2012-07-29 13:27:49,410 [DEBUG] abc:length=1

abc[0]
operation :CSV: String
count :0: String
1D :SOCKET: String

2012-07-29 13:27:49,422 [DEBUG] abc:length=1

abc[0]
operation :CSV: String
count :1: String
1D :SOCKET: String

2012-07-29 13:27:49,427 [DEBUG] abc:length=1

abc[0]
operation :CSV: String
count :2: String
1D :SOCKET: String

2012-07-29 13:27:49,428 [DEBUG] abc:length=1

abc[0]
operation :CSV: String
count :3: String
1D :SOCKET: String

3.5.3.2 Example of Sample Execution(Sends an XML data)
An example of sample execution is shown below.
In this example, debug information is output to the engine log by using DebugLogL istener.

Command execution result

-110 -



# java -cp ./ SocketClient localhost 8001 XML UTF-8 XMLEvent "<?xml version="1.0"\
encoding=""UTF-8"?><XMLEvent><ID>SOCKET</ID> <operation>XML</operation>\
<count>%COUNTER%</count></XMLEvent>" 1 2 2 <ENTER>

RESPONSE:0000:4:Sending message completed normally.

Please note that we added backslash ("\") and newline characters in the command line example above for readability only - the actual
command line does not have a backslash and newline.

Engine log output result

2012-07-29 13:30:56,861 [DEBUG] abc--0:length=1

abc--0[0]
operation :XML: String
count :0: String
1D :SOCKET: String

2012-07-29 13:30:56,862 [DEBUG] abc--0:length=1

abc--0[0]
operation :XML: String
count :1: String
1D :SOCKET: String

2012-07-29 13:30:56,865 [DEBUG] abc--0:length=1

abc--0[0]
operation :XML: String
count :2: String
1D :SOCKET: String

2012-07-29 13:30:56,865 [DEBUG] abc--0:length=1

abc--0[0]
operation :XML: String
count :3: String
1D :SOCKET: String

-111-



	Title Page
	Preface
	Contents
	Chapter 1 Complex Event Processing Language Reference
	1.1 Basic Items in the Complex Event Processing Language
	1.1.1 Event Stream Name
	1.1.2 Event Properties
	1.1.3 Time Expression
	1.1.4 Comments
	1.1.5 Reserved Words
	1.1.6 Data Type
	1.1.7 Complex Event Processing Statement
	1.1.8 Annotation

	1.2 SELECT Statement
	1.2.1 SELECT Clause
	1.2.2 FROM Clause
	1.2.2.1 Filter-based Event Stream Definition
	1.2.2.2 Pattern-based Event Stream Definition

	1.2.3 WHERE Clause
	1.2.4 GROUP BY Clause
	1.2.5 HAVING Clause
	1.2.6 OUTPUT Clause
	1.2.7 ORDER BY Clause
	1.2.8 LIMIT Clause
	1.2.9 INSERT INTO Clause
	1.2.10 Subqueries
	1.2.11 JOIN Clause

	1.3 Named Window Operations
	1.3.1 CREATE WINDOW Statement
	1.3.1.1 Generation from Existing Event Type
	1.3.1.2 Generation with Property Name and Type Specification
	1.3.1.3 Virtual Data Window Generation

	1.3.2 ON SELECT Statement
	1.3.3 ON UPDATE Statement
	1.3.4 ON DELETE Statement
	1.3.5 ON MERGE Statement

	1.4 Patterns
	1.4.1 Pattern Operators and Priorities
	1.4.2 EVERY Operator
	1.4.3 EVERY-DISTINCT Operator
	1.4.4 Repetition Operator
	1.4.5 UNTIL Operator
	1.4.6 AND Operator
	1.4.7 OR Operator
	1.4.8 NOT Operator
	1.4.9 Followed-by Operator
	1.4.10 Pattern Guard
	1.4.11 Time-based Observer

	1.5 Functions
	1.5.1 Single-row Functions
	1.5.2 Aggregate Functions

	1.6 Operators
	1.7 Views

	Chapter 2 Filter Rule Language Reference
	2.1 What are Filter Rules?
	2.2 Basic Filter Rule Items
	2.2.1 Spaces
	2.2.2 Keywords
	2.2.3 Comments
	2.2.4 Master ID
	2.2.5 Item Names and Attribute Names

	2.3 Filter Rule Syntax
	2.3.1 ON Statement
	2.3.2 IF-THEN Statement

	2.4 Common Formats
	2.4.1 Item Expressions
	2.4.2 Path Expressions
	2.4.3 Text Expressions
	2.4.4 Attribute Expressions
	2.4.5 Data Types
	2.4.6 Literals
	2.4.6.1 String Literal
	2.4.6.2 Numeric Literal

	2.4.7 Comparison Operators
	2.4.8 Logical Operators
	2.4.9 Item References

	2.5 Search Expression Format
	2.5.1 Condition Expressions
	2.5.2 Escape Characters
	2.5.3 Entity References
	2.5.4 Special Characters
	2.5.5 Keyword Search
	2.5.5.1 Pattern Search
	2.5.5.1.1 Pattern search (string)
	2.5.5.1.2 Pattern search (word)
	2.5.5.1.3 Logical conjunction, logical disjunction, and negation in pattern searches

	2.5.5.2 String Search
	2.5.5.3 Numeric Search

	2.5.6 Comparison between Items
	2.5.6.1 String Comparisons
	2.5.6.2 Numeric Comparisons
	2.5.6.3 Notes Common to String Comparisons and Numeric Comparisons

	2.5.7 Lookup Search
	2.5.7.1 Pattern Search
	2.5.7.2 String Search
	2.5.7.3 Numeric Search
	2.5.7.4 Master Data Search
	2.5.7.5 Lookup Sum Matching
	2.5.7.6 Lookup Count Matching


	2.6 Join Expression Format
	2.6.1 Join-Relational Expression

	2.7 Output Expression Format
	2.7.1 Output Items

	2.8 Function Format
	2.8.1 Function List
	2.8.2 String Functions
	2.8.2.1 rtrim() Function
	2.8.2.2 string() Function

	2.8.3 Numeric Processing Functions
	2.8.3.1 val() Function

	2.8.4 Lookup Functions
	2.8.4.1 lookup() Function
	2.8.4.2 lookup_sum() Function
	2.8.4.3 lookup_count() Function

	2.8.5 Boolean Functions
	2.8.5.1 true() Function
	2.8.5.2 false() Function


	2.9 Options
	2.9.1 Options Overview
	2.9.2 Options List
	2.9.2.1 SkipChar
	2.9.2.2 SeparateChar
	2.9.2.3 ANKmix
	2.9.2.4 KNJmix



	Chapter 3 Input Adapter Reference
	3.1 Input Adapter Overview
	3.2 About Event Data
	3.2.1 Event Data Contents
	3.2.2 Supported Character Sets

	3.3 Communication Method
	3.3.1 SOAP Adapter
	3.3.1.1 End Point
	3.3.1.2 Send Message
	3.3.1.3 Response Message
	3.3.1.4 Notes

	3.3.2 HTTP Adapter
	3.3.2.1 End Point
	3.3.2.2 Send Message
	3.3.2.3 Response Message
	3.3.2.4 Notes

	3.3.3 Socket Adapter
	3.3.3.1 End Point
	3.3.3.2 Send Message
	3.3.3.3 Response Message
	3.3.3.4 Socket Communication Processing Procedures
	3.3.3.5 Notes


	3.4 Error Processing
	3.5 Sample Programs
	3.5.1 SOAP Adapter
	3.5.1.1 Example of Sample Execution(Sends a CSV data)
	3.5.1.2 Example of Sample Execution(Sends an XML data)

	3.5.2 HTTP Adapter
	3.5.2.1 Example of Sample Execution(Sends a CSV data)
	3.5.2.2 Example of Sample Execution(Sends an XML data)

	3.5.3 Socket Adapter
	3.5.3.1 Example of Sample Execution(Sends a CSV data)
	3.5.3.2 Example of Sample Execution(Sends an XML data)




