
Interstage
Business Process Manager
V11.0

Developer's Guide

J2U3-0062-01(00)
October 2009

October 2009Publication Date

3Revision

Interstage is a trademark of Fujitsu Limited.
ARIS is a registered trademark of IDS Scheer AG,
Saarbruecken.
Microsoft, Windows, Windows NT, and Windows Server are
registered trademarks of Microsoft Corporation in the United
States and other countries.
UNIX is a registered trademark of the Open Group in the
United States and in other countries.
Java, all Java-based trademarks and Solaris are trademarks
of Sun Microsystems, Inc. in the U.S. or other countries.
AIX is a trademark of IBM Corp.
Linux is a registered trademark of Linus Torvalds in the USA
and other countries.
Red Hat, the Red Hat "Shadow Man" logo, RPM, Maximum
RPM, the RPM logo, Linux Library, PowerTools, Linux
Undercover, RHmember, RHmember More, Rough Cuts,
Rawhide and all Red Hat-based trademarks and logos are
trademarks or registered trademarks of Red Hat, Inc. in the
United States and other countries.
All other trademarks and trade names mentioned have been
registered by their respective manufacturer.

Trademarks

All rights reserved, including those of translation into other
languages. No part of this manual may be reproduced in
any form whatsoever by means of photocopying, microfilming
or any other process without the written permission of Fujitsu
Limited.

All Rights Reserved,
Copyright © FUJITSU
LIMITED 2005-2009

High Risk Activity

The Customer acknowledges and agrees that the Product is designed, developed and
manufactured as contemplated for general use, including without limitation, general office
use, personal use, household use, and ordinary industrial use, but is not designed,
developed and manufactured as contemplated for use accompanying fatal risks or dangers
that, unless extremely high safety is secured, could lead directly to death, personal injury,
severe physical damage or other loss (hereinafter "High Safety Required Use"), including
without limitation, nuclear reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile launch control in
weapon system. The Customer shall not use the Product without securing the sufficient
safety required for the High Safety Required Use. In addition, Fujitsu (or other affiliate's
name) shall not be liable against the Customer and/or any third party for any claims or
damages arising in connection with the High Safety Required Use of the Product.

Table of Contents
About this Manual..10

1 Introduction..13

1.1 Overview of Workflow..13

1.2 Overview of Interstage Business Process Manager...13

1.3 Advantages of Interstage Business Process Manager’s Design....................13

1.4 Types of Workflow..14

1.5 Creating Your Own Application..16

2 Architecture Overview...17

2.1 Configuration Overview...18

2.2 System Architecture..19
2.2.1 Interstage BPM Server Tier..19
2.2.2 Interstage BPM Web and Client Tier..22

2.3 Interstage Analytics Integration...22

2.4 ARIS Process Performance Manager Integration...23

2.5 CentraSite Integration..25

2.6 Interstage BPM as a Service (SaaS)...25

3 Concepts...27

3.1 Process Definitions and Process Instances..27

3.2 Process Definitions..27
3.2.1 Process Definition States...28
3.2.2 Process Definition Identifiers..29
3.2.3 Workflow Elements...30
3.2.4 Java Actions...30
3.2.5 User Groups...31
3.2.6 Forms...31
3.2.7 Timers..32
3.2.8 Process Definition Ownership..32
3.2.9 User Defined Attributes..33
3.2.10 Node Types..33
3.2.11 Modifying Process Definitions..41

Interstage Business Process Manager Developer's Guide 3

Table of Contents

3.3 Process Instances..41
3.3.1 Process Instance States..43
3.3.2 Node Instances and Arrow Instances..44
3.3.3 Process Instance Ownership...44
3.3.4 Attachments...44

3.4 Work Items..44
3.4.1 Work Item Modes...45
3.4.2 Work Item States..46
3.4.3 Choices..47
3.4.4 Future Work Items..47

3.5 Filters...48

3.6 The Purpose of Structural Process Editing...48

3.7 The Purpose of Interstage BPM’s Subprocess Capabilities............................49

3.8 Security and Reassignment Modes..50
3.8.1 Security Modes...50
3.8.2 Reassignment Modes..50

4 Using the Model API...51

4.1 System Environment..51
4.1.1 Specifying Configuration Settings for Interstage Application Server (Local)..........51
4.1.2 Specifying Configuration Settings for Interstage Application Server (Remote)......53
4.1.3 Specifying Configuration Settings for WebSphere Application Server for developing

Standalone Applications (Local)...55
4.1.4 Specifying Configuration Settings for WebSphere Application Server for Deploying

Client J2EE Application (Local)..55
4.1.5 Specifying Configuration Settings for WebSphere Application Server for developing

Standalone Applications (Remote)...57
4.1.6 Specifying Configuration Settings for WebSphere Application Server for Deploying

Client J2EE Application (Remote)..57
4.1.7 Specifying Configuration Settings for WebLogic..60
4.1.8 Specifying Configuration Settings for JBoss..60

4.2 Executing a Model API Application..60

4.3 Location of Properties Files..61

4.4 Model API Architecture..61

4.5 Exception Handling..62

5 Designing Process Definitions...63

Interstage Business Process Manager Developer's Guide 4

Table of Contents

5.1 Designing a Simple Process Definition...63
5.1.1 Logging in/Logging out a Normal User...65
5.1.2 Choosing a Workflow Application...66
5.1.3 Designing a Process Definition with Start Node, Activity Node and Exit Node......66

5.2 Designing a Complex Process Definition..68
5.2.1 Adding User Defined Attributes..70
5.2.2 Using Voting Activity Nodes...72
5.2.3 Adding AND Nodes and OR Nodes...72
5.2.4 Using Conditional Nodes..73
5.2.5 Using Subprocess Nodes...74
5.2.6 Using Delay Nodes..76
5.2.7 Using Chained-Process Nodes..77

5.3 Working with Process Instances..78
5.3.1 Retrieving the Latest Version of a Process Definition..79
5.3.2 Creating and Starting a New Process Instance...80
5.3.3 Listing Work Items..81
5.3.4 Executing Work Items..82
5.3.5 Recalling Work Items...83
5.3.6 Handling Attachments..86

6 Enhancing Interstage Business Process Manager.....................88

6.1 Integrating Interstage BPM with External Applications...................................88

6.2 Using Application Variables..89

6.3 Using Java Actions..90
6.3.1 Types of Java Actions..91
6.3.2 Accessing Workflow Data Using the Server Enactment Context Interface............92
6.3.3 Assigning Prologue Actions to an Activity Node..93
6.3.4 Assigning Epilogue Actions to an Activity Node...95
6.3.5 Using Built-In Java Actions..96
6.3.6 JavaScript Java Actions...96
6.3.7 Rules JavaActions..97
6.3.8 Activity Actors and Relationships...100
6.3.9 Using Error Java Actions..101
6.3.10 Dealing with Errors in Java Actions..102
6.3.11 Java Action Structure and Execution Plan in Case of Errors...............................106
6.3.12 Using onAbort, onSuspend, onResume Java Actions...109

6.4 Advanced Filtering & Sorting API...110
6.4.1 Interface WFObjectList (Package com.Fujitsu.iflow.model.workflow)..................110

Interstage Business Process Manager Developer's Guide 5

Table of Contents

6.4.2 Methods for Filtering and Sorting...113
6.4.3 Interface Semantics...113
6.4.4 Identifying UDAs to be Used With Lists...113
6.4.5 Sorting and Filtering Combinations of Fields and UDAs......................................113
6.4.6 Note on Batching..114
6.4.7 Notification..114

6.5 Retrieving Information about Multiple Objects at a Time...............................114

6.6 Using Process Comments...116

6.7 Special User Defined Attribute Properties...118
6.7.1 Working with User Defined Attributes of Type XML...118
6.7.2 Worklist UDAs..120

6.8 Using Extended Attributes..121
6.8.1 Assigning Extended Attributes...122
6.8.2 Retrieving the Value of an Extended Attribute...123
6.8.3 Retrieving all Extended Attributes of an Element...123
6.8.4 Names of Extended Attributes...124
6.8.5 Namespace of Extended Attributes..126

6.9 Transaction Control...128

6.10 Using Triggers..129
6.10.1 How It Works..130
6.10.2 Defining a Trigger...131

6.11 Using Event Activity Nodes..133

6.12 File Listeners..134
6.12.1 Using File Listeners..135
6.12.2 Configuring File Listeners..135

6.13 Email Listeners...136
6.13.1 Using the Email Listener for Triggers...136

6.14 JMS Listeners...138
6.14.1 Using the JMS Listener for Triggers...138

6.15 Using Agents..140
6.15.1 Agents Overview..140
6.15.2 Configuring FTP Agents...142
6.15.3 Using FTP Agents..145
6.15.4 Configuring HTTP Agents..146
6.15.5 Using HTTP Agents..149

Interstage Business Process Manager Developer's Guide 6

Table of Contents

6.16 Using Timers...149
6.16.1 Defining a Timer...150
6.16.2 Adding a Due Date...152
6.16.3 Controlling Execution of Timers...152
6.16.4 Timer Instance History...153
6.16.5 Using Business Calendars...153
6.16.6 Time and Day Codes for Timers...155

6.17 Modeling Remote Subprocesses ...157
6.17.1 Designing a Parent and Remote Subprocess Definition......................................158
6.17.2 Running Remote Subprocess Definitions..161
6.17.3 Error Handling for Remote Subprocesses...162

6.18 Using Compound Activity Nodes...162
6.18.1 Defining a Compound Activity Node..163

6.19 Using Dynamic Subtasks..164

6.20 Using Dynamic Processes..166

6.21 Decision Tables..167
6.21.1 Decision Table Concepts..167
6.21.2 Using a Decision Table within a Process Definition...169
6.21.3 Decision Table Specifications...169
6.21.4 Managing Decision Tables...170

6.22 Iterator Nodes...174
6.22.1 Iterated Activity Nodes...175
6.22.2 Iterated Subprocess and Chained-process Nodes..176
6.22.3 Working with Iterator Nodes...176

7 Administration..182

7.1 Logging In/Logging Out an Administrator (Tenant Owner)...........................182

7.2 Choosing a Workflow Application..183

7.3 User and Group Administration..184
7.3.1 Managing Local Users...184
7.3.2 Managing Local Groups...185
7.3.3 Listing Logged-In Users...187
7.3.4 Logging Out Users...187
7.3.5 Resetting the User and Group Cache..187

7.4 Process Definition Administration...188
7.4.1 Listing Process Definitions...188

Interstage Business Process Manager Developer's Guide 7

Table of Contents

7.4.2 Publishing Process Definitions...189
7.4.3 Archiving Process Definitions...189
7.4.4 Deleting Process Definitions..190
7.4.5 Deleting Archived Process Definitions...190
7.4.6 Importing a Process Definition from an XPDL File...190
7.4.7 Exporting a Process Definition to an XPDL File...191

7.5 Process Instance Administration...192
7.5.1 Listing Process Instances..192
7.5.2 Changing the Ownership of a Process Instance..192
7.5.3 Archiving Process Instances..193
7.5.4 Suspending Process Instances..194
7.5.5 Aborting Process Instances...195
7.5.6 Deleting Process Instances..195
7.5.7 Deleting Archived Process Instances...196

7.6 Work Item Administration..196
7.6.1 Reassigning Work Items to Another User..196
7.6.2 Refreshing Work Items...196

8 Retrieving History Information...199

8.1 Retrieving History Information With the Model API..199

8.2 Retrieving History Information From a Hashtable..200
8.2.1 HISTORY_ID..200
8.2.2 HISTORY_TIME_STAMP...200
8.2.3 HISTORY_EVENT_CODE...201
8.2.4 HISTORY_EVENT_TYPE..201
8.2.5 HISTORY_EVENTDATA..202
8.2.6 HISTORY_PRODUCER_ID...202
8.2.7 HISTORY_PRODUCER_TYPE...202
8.2.8 HISTORY_CONSUMER_ID...202
8.2.9 HISTORY_CONSUMER_TYPE...202
8.2.10 HISTORY_ISHANDLED_CODE..203
8.2.11 HISTORY_PROCESSINSTANCE_ID..203
8.2.12 HISTORY_RESPONSIBLE..203
8.2.13 Rules for Navigating Through the History Entries..204

8.3 History Table...205

8.4 Retrieving History Information With SQL Statements....................................207

AppendixA Using the Interstage Business Process Manager Samples.....209

Interstage Business Process Manager Developer's Guide 8

Table of Contents

A.1 /client/samples/examples/sources...209
A.1.1 Samples Related to Process Modeling and Execution..209
A.1.2 Samples Related to System Administration...211
A.1.3 Samples Related to the JMS Interface ..211
A.1.4 Samples Related to Decision Tables..213

A.2 /client/samples/examples/classes..214

A.3 /client/samples/examples/bin..214

AppendixB Customizing Forms..215

B.1 QuickForm Command Overview...215

B.2 QuickForm Token Command Parameter Details...217

B.3 QuickForm Example: Vacation Request..219

AppendixC Supported JavaScript Functions..220

C.1 General JavaScript Functions..220

C.2 JavaScript Functions Supported with Java Actions......................................224

C.3 JavaScript Functions Supported with Triggers..226

AppendixD Troubleshooting...227

D.1 Log File Information...227

D.2 Resolving Specific Error Situations...227
D.2.1 Interstage BPM Server Fails to Start..227
D.2.2 Error in IBPMServer.log...228
D.2.3 Timeout During JavaScript Execution..228
D.2.4 Failure in Writing to an Oracle Database...229
D.2.5 Warning or Error Messages for Interstage Application Server.............................229

D.3 Errors During Installation, Deployment and Configuration...........................230

D.4 Errors during Starting the Interstage BPM Server ...233

D.5 Contacting Your Local Fujitsu Support Organization.....................................234

Glossary ...236

Index ...241

Interstage Business Process Manager Developer's Guide 9

Table of Contents

About this Manual
This manual describes how to use the Model API to customize and extend Interstage Business
Process Manager to fit the unique needs of your organization.

Intended Audience
This manual should be read by:
• IT professionals who are interested in the development of business processes
• Independent Software Vendors who are interested in empowering their products with workflow
• Systems integrators who are interested in building workflow-enabled applications or extending

existing applications with workflow

Any occurance of 'administrators' in this guide refers to 'Interstage BPM Tenant Owners'
and not 'Interstage BPM Super Users'.

Note:

This Manual Contains
Here is a list of what is in this manual:

DescriptionTitleChapter

Introduction to Interstage
Business Process Manager.

Introduction1

Description of the interaction
between the system
components.

Architecture Overview2

An overview of the structure and
operation of process definitions,
process instances, work items,
filters, process editing,
subprocesses, etc.

Concepts3

Describes the system
environment for application
development with the Model
API.

Using the Model API4

Programming examples for
simple and complex process
definitions, as well as for
process instances.

Designing Process Definitions5

Description of the various means
of enhancing Interstage
Business Process Manager,
including Java Actions and
Advanced Filtering & Sorting.

Enhancing Interstage Business Process
Manager

6

Programming examples for
administrative activities.

Administration7

Interstage Business Process Manager Developer's Guide 10

About this Manual

DescriptionTitleChapter

Describes how to retrieve the
history information of a workflow
from the database.

Retrieving History Information8

Lists the samples provided with
Interstage Business Process
Manager, their structure and
how to use them.

Using the Interstage Business Process
Manager Samples

Appendix A

Describes how to customize
QuickForms.

Customizing FormsAppendix B

Lists and describes the
JavaScript functions supported
by Interstage Business Process
Manager.

Supported JavaScript FunctionsAppendix C

Describes the Interstage
Business Process Manager log
files and specific error situations
and provides troubleshooting
information.

TroubleshootingAppendix D

Glossary of terms.Glossary

Typographical Conventions
The following conventions are used throughout this manual:

MeaningExample

Text, which you are required to type at a
command line, is identified by Courier font.

command

Text, which is visible in the user interface, is bold.screen text

Reference material is in italics.Reference

A command parameter is identified by Courier
font.

Parameter

Other References
The following references for Interstage Business Process Manager are also available:
• Release Notes

Contains an overview of Interstage Business Process Manager, installation tips, and late-breaking
information that could not make it into the manuals.

• Interstage Business Process Manager Server and Console Installation Guide
Describes software and hardware requirements, installation procedure for Interstage Business
Process Manager Server and Console

• Interstage Business Process Manager Server Administration Guide

Interstage Business Process Manager Developer's Guide 11

About this Manual

Explains how to configure and administrate Interstage Business Process Manager Server. This
guide also describes the configuration parameters of the Interstage BPM Server.

• Interstage Business Process Manager Studio User's Guide
Explains how to model processes using the Interstage Business Process Manager Studio.

• Interstage Business Process Manager Tenant Management Console Online Help
Explains how to use the Interstage Business Process Manager Tenant Management Console
user interface.

• Interstage Business Process Manager Console Online Help
Explains how to use the Interstage Business Process Manager Console user interface.

• Interstage Business Process Manager ARIS Process Performance Manager Integration Guide
Describes how to install and configure the PPM adapter and the PPM autoConfig tool. With both
programs, process data can be transferred from Interstage Business Process Manager to ARIS
Process Performance Manager.

• API Javadoc Documentation
This HTML documentation provides the API and syntax of the packages, interfaces and classes
for developing custom applications or embedding Interstage Business Process Manager into
other products.

Abbreviations
The products described in this manual are abbreviated as follows:
• "ARIS Process Performance Manager" is abbreviated as "ARIS PPM".
• "Interstage Business Process Manager" is abbreviated as "Interstage BPM".
• "Microsoft® Windows® 2000 Server" is abbreviated as "Windows® 2000 Server".
• "Microsoft® Windows Server® 2003" is abbreviated as "Windows Server® 2003".
• "Solaris ™ Operating System" is abbreviated as "Solaris".

Interstage Business Process Manager Developer's Guide 12

About this Manual

1 Introduction
Interstage Business Process Manager™ is a server-based workflow engine with APIs (Application
Programming Interfaces) for workflow application development. It empowers developers or systems
engineers to embed a workflow engine into their own products or systems which implement Interstage
Business Process Manager. The target users of Interstage Business Process Manager are therefore
system integrators and software product vendors.

1.1 Overview of Workflow
Workflow is a relatively new approach to automating business processes. The earliest attempts to
automate business processes incorporated the logic for the flow of work in specialized applications.
These specialized applications, however, were not easily updated every time the process changed.
This typically resulted in a maintenance nightmare.
Workflow products and middleware were introduced to address this problem by encapsulating all
the aspects of a process. This includes process-defining information, such as rules, routing paths,
activities, data. More importantly, it includes the automation of the management of this information.
An application that supports workflow could then implement any workflow without requiring intimate
knowledge of the workflow process itself.

1.2 Overview of Interstage Business Process Manager
Interstage Business Process Manager (BPM) is a distributed Web-enabled workflow application
development tool. It empowers business groups to collaboratively plan, automate, track, and improve
business processes. More specifically, it allows an enterprise to design automated processes, which
encapsulate the steps in the process, the responsible person(s) for each step, the order in which
steps may take place, and the relevant data for the step or process.
Some key features include:
• Model API, which allows customized applications to communicate with the Interstage BPM Server

or existing products to be workflow-enabled.
• Enterprise-wide, scalable infrastructure for handling processes of all types.
• Organizable and filterable universal to-do list.
• Central location for documents relevant to a process.

1.3 Advantages of Interstage Business Process Manager’s
Design
The philosophy behind Interstage Business Process Manager is that an automated workflow system
should minimize its users' involvement with the mundane and maximize their opportunities to use
their creative capabilities. For instance, it enables a customer service or sales person to focus more
effectively on servicing customers and less on processing the orders, complaints, or other issues.
In engineering, business development and R&D applications, the flexibility of the Interstage Business
Process Manager allows it to monitor and enhance the creative efforts of an entire team, department,
division or company. By particularizing the aspects of group creativity, the abilities and energies of
each individual in the team can be optimally engaged.
To best achieve these goals, it allows you to extend the functionality of the clients and classes from
which the product is built. This allows your organization to incorporate context-sensitive information

Interstage Business Process Manager Developer's Guide 13

1: Introduction

in your implementation as well as customizing the application to the environment in which the work
takes place.

1.4 Types of Workflow
There are the following industry-accepted types of workflow products: Production, Administrative,
Ad Hoc, Process Discovery, Case Handling, Collaborative, and Component. Interstage Business
Process Manager supports all of these types of workflow.

Production Workflow
Production Workflow was the first workflow technology to be designed because production workflow
automates the core business processes that a company relies on to produce a profit. Production
workflow ensures that even at high volumes, the business process reliably follows stringent
predetermined rules that never change, controlling and monitoring that does specific tasks at what
time and exactly what data they have access to.
An insurance company, for instance, might use production workflow to manage the work of numerous
agents upgrading and selling a large variety of policies, and constantly processing claims. Production
workflow can be used wherever sales, purchasing, manufacturing, accounting, and other core
business processes require extensive, enterprise-wide coordination.
The earliest workflow products were software applications that were reengineered for specific industry
needs. Unfortunately, since the workflow process was hard-coded, whenever the process changed,
the changes also needed to be hard-coded into the application. Programmers therefore found it
difficult to keep up with the evolution of the business. The development cycle, from program design
and creating new code through testing and implementation, was so long that the workflow system
sometimes became obsolete as soon as it was completed.

Administrative Workflow
Administrative Workflow is a low volume subtype of production workflow, used to ensure that regular
business practices stringently adhere to company policy. Examples of administrative workflow include
purchase orders, travel expense reports and reimbursements, vacation requests, and similar personnel
and administrative functions.
Interstage Business Process Manager is capable of managing the stringent requirements of production
or administrative workflow, and at the same time allows you to make changes almost instantly when
the business requirements change.

Ad Hoc Workflow
Ad Hoc Workflow is designed as an unstructured, free form workflow, which puts few, if any, constraints
on the process. A key feature required for ad hoc workflow is the ability to modify or alter a running
process.
Ad hoc workflow can be used as a planning tool in which the user might only instantiate a process
definition once, because the process is never the same from one time to the next. A company would
use workflow in this way if it's impossible to predict how the end of a project will look or if it's only
possible to partially specify where it's headed. In other words, as a user, you would create a partial
process definition, run the process instance, and extend it as you go along.
A pharmaceutical company might use ad hoc project management workflow while testing a new drug
to satisfy conditions set by the FDA (Food and Drug Administration in the U.S.) or by a software
development company while evolving a new product. These are both situations where the project's
requirements are unpredictable and undeterminable. As the company acquires experience, however,

Interstage Business Process Manager Developer's Guide 14

1: Introduction

it would build a knowledge base, and the process would become better defined; however, the nature
of such situations may be that each process is unique and constantly mutable.

Process Discovery Workflow
Process Discovery is a type of workflow that has a goal of defining a repeatable workflow system.
Process discovery uses workflow to record, organize, and refine existing business processes while
they are occurring. Process discovery is appropriate in those situations where individuals have
evolved their job description by the seat of their pants. It is also useful in situations where no procedure
yet exists but where one is being created and refined on the fly.
Although process discovery uses a form of ad hoc workflow, the processes that are discovered and
defined through the use of workflow can later become production processes. Thus, the use of workflow
for process discovery enables the existing work of a company to be automated without stopping the
existing flow of production.
Interstage Business Process Manager provides both subprocess and process editing capabilities,
which enables users to use it for both ad hoc workflow and process discovery. Both of these types
of workflow can lead to highly organized systems of dealing with unanticipated business events,
evaluating the effectiveness of improvised responses and creating effective procedures from what
works.
These capabilities also make it a good platform for "growing" complex case handling workflow,
described below. Case handling workflow tends to involve a multifaceted set of variables, which must
be handled both in a modular manner and as a single, unified case.

Case Handling Workflow
Case Handling Workflow is a subtype of production workflow. It is used to assist in complex
decision-making situations where each case might be completely unique, and yet the entire case
needs to be handled in the correct order and with due consideration of all dependencies within the
system.
An example of case handling might be the workflow employed by a law office that specializes in
divorce. Every divorce is different, yet there are many different common aspects, which might arise:
division of assets, the house, the children, retirement funds, spousal support, and spousal protection.
Such a complex set of details can easily become an unmanageable nightmare that is difficult to
understand or handle properly.
By using subprocesses to break down the overall process, each component of such a process
definition might be designed as a module, which is linked together through a master process definition.
Another example might be using workflow for case handling in a tax consultant business. When a
corporation considers expansion, buying a smaller company, or moving to a new state, for instance,
it needs to evaluate the impact of taxes fully. There are a huge number of factors and dependencies
involved in such a decision making practice, including different types of taxes for real estate, tax
structures around R&D, state laws, and corporate restrictions. Managing this amount of complexity
would involve a carefully sequenced hierarchy of subprocesses so that all of the required information
is available at every step of the process.

Collaborative Workflow
Collaborative Workflow has two meanings. The most common meaning is a system in which the
users must continuously see proactively updated information in real time. In addition, fat clients are
typically used to provide complete information to whoever happens to be available to take the case.
An example of a department that might use this type of workflow is a customer support center.

Interstage Business Process Manager Developer's Guide 15

1: Introduction

Collaborative workflow can also refer to a form of workflow that might be used for project management
of a large and complicated process, in which you might plan your team's activities for the next two
months, evaluating and modifying your plans periodically along the way. Using workflow software
would enable you to efficiently share data, review documents in an organized fashion, and process
requests for approval by linking software components such as a word processor, spreadsheet
program, and electronic mail program to enable participants to work on shared data.

Component Workflow
Component Workflow is workflow that drives software and automated processes without human
intervention. Many of the nodes in this type of workflow might be Conditional Nodes, which invoke
human interaction only when a business exception occurs. But so long as everything is moving along
smoothly, the processes are entirely automated.
You might think of component workflow as one of your goals in your business production processes.
You might design a labor-intensive business process for the moment, and whenever new technology
appears that can automate steps in the process, you simply change a few nodes in your process
definition to integrate the features of your new automation into the process as it already exists.
Interstage Business Process Manager provides the environment that makes this form of gradual
automation straightforward and orderly.

Open Architecture
Interstage Business Process Manager uses an open architecture to support all of these types of
workflow. This allows a company to create an enterprise-wide system, which coordinates the work
of the company end to end. Since most companies have different departments and responsibility
groups with diverse modus operandi, it is a tool that can unite the different types of workflow needed
throughout.
Interstage Business Process Manager supports various operating system platforms, includes a Model
API for applications to speak to the Interstage BPM Server with, supports RDBMS databases, and
allows routing of any kind of work (forms, images, and executables). In addition, its flexible architecture
is designed to facilitate changes to a workflow dynamically and to support integration with an existing
infrastructure.

1.5 Creating Your Own Application
The purpose of this guide is to enable you to embed Interstage BPM into your own products or
systems and extend delivered Interstage BPM EJBs. To do this most effectively and practically, we
recommend that you first consult the examples provided in the client/samples subdirectory of your
Interstage BPM Server installation directory and consider what is built into the sample classes, and
that you create a strategy for extending those capabilities in the application that you design. You
should start with the specific capabilities and orientation of your end users and tailor the application
to them.
Here are the basic possibilities that you can work with:
• You can create your own Java GUI using the Model API. Documentation for this API can be found

in the javadocs subdirectory of your Interstage BPM Server installation directory.
• You can extend the functioning of the system by using Java Actions that can automatically

manipulate the data and make decisions. Thereafter, less user interaction is needed to maintain
the flow of information through your organization.

Interstage Business Process Manager Developer's Guide 16

1: Introduction

2 Architecture Overview
Interstage Business Process Manager (Interstage BPM) is a server-based workflow engine with APIs
(Application Programming Interfaces) for workflow application development. It empowers developers
or systems engineers to embed a workflow engine into their own products or systems which implement
Interstage BPM.
Some key features of Interstage BPM include:
• API, which allows customized applications to communicate with the workflow engine or existing

products to be workflow-enabled.
• Enterprise-wide, scalable infrastructure for handling processes of all types
• Organizable and filterable universal to-do list
• Central location for documents relevant to a process
Interstage BPM can run on multiple application servers providing load balancing and failover
capabilities for non-stop operation with 100% reliability. Therefore, Interstage BPM is ideally suited
for large mission critical applications deployed on the leading J2EE-compliant application servers.
Refer to section System Architecture on page 19 for more information.
Interstage BPM can be used together with the following integration components:
• Interstage BPMAnalytics: The Interstage BPM server can provide business process monitoring

data to the Interstage Analytics engine. Using Interstage Analytics, this data can be evaluated
and processed. Refer to section Interstage Analytics Integration on page 22 for more information.

• ARIS Process Performance Manager Integration: For analyzing the process data from the
Interstage BPM Server, ARIS Process Performance Manager (ARIS PPM) can be used. With the
PPM adapter and the PPM autoConfig tool the process data from Interstage BPM can be
transferred to ARIS PPM. Refer to section ARIS Process Performance Manager Integration on
page 23 more information.

• CentraSite Integration: CentraSite provides storage infrastructure for Web Services registries,
Meta model repositories, as well as data necessary for auditing, access security and versioning.
Refer to section CentraSite Integration on page 25 for more information. In fact, Interstage BPM
can be used together with any UDDI- and WebDAV-compliant repository.

Interstage Business Process Manager Developer's Guide 17

2: Architecture Overview

2.1 Configuration Overview
Interstage BPM can be run in the following configuration:

Figure 1: Configuration Overview

The Interstage BPM Server operates with a Database and optionally a Directory Service. The
Interstage BPM Clients are used to access the Interstage BPM Server.
You can install the components that make up a complete Interstage BPM installation in various
configurations:
• All systems are installed one and the same computer
• One or several of the following is installed on separate computers:

• Interstage BPM Server
• Database
• Directory Service
• Interstage BPM Console
• Studio

Refer to the Interstage Business Process Manager Server and Console Installation Guide for details.

Interstage Business Process Manager Developer's Guide 18

2: Architecture Overview

2.2 System Architecture
Interstage BPM basically consists of a Server and a Model API. Several connectivity options allow
for the integration of third party tools and other systems. This section provides an overview of the
Interstage BPM components and their interaction.

Figure 2: Architecture Overview

2.2.1 Interstage BPM Server Tier
The Interstage BPM Server is running inside an application server providing an Enterprise Java Bean
(EJB) interface. The server negotiates interaction between users and other components, enacts
processes started by users, and notifies users of changes in status within a process. Interstage BPM
can be configured using the standard capabilities of the application server. The only way to the server
is through a client developed using the Model API.
Interstage BPM is deployed into a standard application server that isolates the application from
operating system and database differences. Interstage BPM utilizes the facilities of the application
server to provide, for example, for clustering, load balancing and failover capabilities.
The server is composed as a collection of EJBs that run in an application server, and make use of
application server functionality. The Interstage BPM EJBs participate in container transactions so
that the server and any client application can participate in the same transactions. Container-based
transactions ensure a consistent state of the server.
The subsequent sections describe the EJBs in more detail.

User Agent (Façade)
The User Agent EJB (UA bean) enables the client to “log in” to the Interstage BPM system and
validates the client for further interaction with Interstage BPM. First, the client requests a UA bean
to be created; next the server creates the UA bean and returns a handle to it to the client. Then the
client provides user name, password and server name for login to the server; this information is

Interstage Business Process Manager Developer's Guide 19

2: Architecture Overview

validated either through Interstage BPM's local user management capabilities or using the functionality
of a connected Directory Service.
A UserAgent instance represents the login session to the server. It holds information for that particular
login session. As the client’s agent, the UserAgent makes bean requests and method calls to the
other Interstage BPM components on behalf of its client, i.e. it acts as a gateway for the model to
access the process definition, process instance, work item, directory, and other objects. Therefore,
the UA bean is also referred to as Façade, representing the interface between the server and the
model.
Another function of the UA bean is to interpret the various filters on process definition, process
instance and work item objects. Upon a client’s option to log out, the UserAgent will do all the
necessary cleanup of resources held on behalf of the associated client. In addition, the UA bean
implements session synchronization.
The server requests a unique instance of the UA bean for each client that logs into Interstage BPM.
It requests these instances from the EJB container that is part of the application server. In a manner
of speaking, the Server bean is a factory that “produces” instances of UA beans.

Enactment Engine - Process Definition Interpreter
The Process Definition Interpreter is the heart of the Interstage BPM Server. It is responsible for
enacting a process defined with Interstage BPM. The server communicates with the Database adapter
to maintain process state data, process instance and activity-related data, and process history
information. The server controls database request queues.
There are two types of entity beans representing data objects holding the information about process
definitions and instances. Upon enactment of a process, a Process Definition EJB is created, which
in turn creates Process Instance beans. Both beans implement the application server functionality
of Bean-Managed-Persistence and Container Transactions.
They are not exposed to the model. All requests to the model pass through the UA bean(s).
Process data, e.g. information about the current state, is stored in and, on request, retrieved from
the database. The server communicates with the database to maintain process state data, process
and activity-relevant data.

Messaging
A combination of message-driven beans (MDBs) and a Java class library implement the Interstage
BPM’s type system (Meta model). Process enactment events are encapsulated in JMS messages
that the MDBs process. Interstage BPM makes use of the default application server functionality.
In Interstage BPM, message-driven beans (MDBs) realize the flow of information between the server
components by means of asynchronous messages.
For example, there are the following MDBs:
• Enactment Message bean: When a process instance is created, this bean generates a message

so that the client is informed about this.
• Email Dispatcher bean: Handles email messages to the client
• Action Agent bean: handles Action Agents

Custom EJBs
Any application can implement EJBs that run on the same application server installation as the
Interstage BPM Server. Custom EJBs use the Model API, and Interstage BPM EJBs can call custom
EJBs using Java Actions.

Interstage Business Process Manager Developer's Guide 20

2: Architecture Overview

User and Group Management
Every user that is to work with Interstage BPM needs a user account and must be assigned to one
or more groups. Groups are used to determine who is responsible for carrying out a task in a process.
Interstage BPM comes with its own user and group management capabilities. Interstage BPM also
allows for connecting to a Directory Service. Depending on your choices when deploying the server,
users are managed either in Interstage BPM's local user store or in a Directory Service. Groups can
be managed in Interstage BPM's local group store, in a Directory Service or in both systems.

Connectivity
The Interstage BPM architecture allows for the integration with third-party products. The server can
communicate with the other components via "adapter classes". An adapter behaves as a converter
that allows the server to speak to a common interface. Interstage BPM allows for connecting to the
following:
• Database (DB) adapter using the JDBC standard. The server provides the communication

mechanism between the server and a database server. The database persistently stores and
maintains all process information. The DB Adapter is responsible for the translation of server
internal objects into various persistent formats. Included with Interstage BPM is an adapter that
persists the structures in a relational database using JDBC and some stored procedures.
Initialization scripts are available to configure Oracle, Microsoft SQL Server for use.

• Directory Service (Dir & DD) adapter which implements an Interstage BPM specific interface
to expand a user group into a list of individuals. The enactment engine uses this at runtime to
determine who to give work items to. The Directory Adapter uses the LDAP standard. Currently,
Microsoft® Active Directory and Sun Java System Directory Server is supported.
The DD Framework Adapter is used by the User Agent at login time to authenticate users.

• DMS adapter which is used to interface the Interstage BPM system to external file systems using
standard copy and transfer protocols. Forms, attachments, process definitions, etc. can be stored
in a file system. A locator for such documents is stored in the attachments attributes of a process
instance. Interstage BPM includes a DMS adapter that accessed documents stored on a file
system or on a file store accessible via the WebDAV protocol. Access to other document
management systems requires a custom DMS Adapter.

• Messages using the SMTP standard. Email can be sent from the server to the SMTP mail server
as a response to Interstage BPM events.

• External Systems:
• Java Actions and JavaScript: You can implement Java Actions for connecting to any external

system, such as CRM or ERP systems. Java Actions are extensions to the workflow engine.
Java Actions are data structures in the process definition that tell the Interstage BPM Server
how to call a particular Java method during execution. These method calls customize process
enactment and allow execution of Java business methods outside the scope of the Interstage
BPM Server. Java Actions make application integration easier and calls to external applications
and adapters faster.

• Agents: Agents in Interstage BPM are set up to run automatically and act asynchronously on
your behalf. You can use Agents to access external systems such as legacy systems or Web
Services, both inside and outside of company firewalls. Using Agents, you can incorporate
these external services into your Interstage BPM process instances. This mode of integrating
Java is particulary convenient when multiple retries may be required.

Interstage Business Process Manager Developer's Guide 21

2: Architecture Overview

• Rules: The Rules Engine Bridge is a Java Action that is included in Interstage BPM in order
to invoke rules engines like the iLog JRules Engine. Rules have all the same capabilities that
are available from JavaScript, so you can think of the rules as a kind of scripting engine.

2.2.2 Interstage BPM Web and Client Tier
The Model API is an abstraction over the server and provides a single unified API to the server. The
Model API runs in the client process, and handles all the communications to the server.
Interstage BPM comes with several client applications, for example, the Studio and the BPM Console.
Except for the Studio, the clients run in a servlet engine and are accessed using a Web browser.
They are comprised of a combination of Java User Interface classes. Such client components are
structured in two layers: a model layer (using the Model API) and a user interface layer (using Java
User Interface classes). The model layer encapsulates the state of the client objects and interacts
with the server. With using the Model API, you can develop your own clients and user applications.
The Studio is a standalone process design tool that can be installed separately. The Studio is
independent of application server functionality. It interacts with the Interstage BPM Server through
the Web tier.
Web Service capabilities is included in the web tier. This functionality can receive a number of
defined SOAP (Simple Object Access Protocol) requests, and respond with XML-formatted results.
Most of the common Interstage BPM operations are accessible through this port.
Interstage BPM supports another kind of Web Services Interface that is known as an Asynchronous
Web Services Interface. This is an implementation of a standard way to access process instances
and other long running programs. The standard is known as the Asynchronous Service Access
Protocol (ASAP).
Refer to the Interstage Business Process Manager Server and Console Installation Guide for details
on the Interstage BPM Web Services.

2.3 Interstage Analytics Integration
Interstage Analytics can be used for analyzing and evaluating the process data from the Interstage
BPM Server. The Interstage BPM Deployment Tool allows for configuring whether Interstage BPM
generates events to Interstage BPM Database that can then be evaluated by Interstage Analytics.

Interstage Business Process Manager Developer's Guide 22

2: Architecture Overview

The following figure illustrates the interaction of the applications involved.

Figure 3: Interstage Analytics Integration

The Interstage BPM Server, the Interstage Analytics Sensor and the Interstage Analytics Server can
be installed on the same physical machine, or on different machines on the same network.
Refer to the Interstage Business Process Manager Server and Console Installation Guide for
information on how to configure the sending of events during deployment.
Refer to the Interstage Analytics documentation for information on how to setup the Sensor and use
Interstage Analytics.

2.4 ARIS Process Performance Manager Integration
For analyzing the process data from the Interstage BPM Server, ARIS Process Performance Manager
(ARIS PPM) can be used. With the PPM adapter and the PPM autoConfig tool the process data from
Interstage BPM can be transferred to ARIS PPM.

Interstage Business Process Manager Developer's Guide 23

2: Architecture Overview

The following figure illustrates the interaction of the applications involved.

Figure 4: ARIS Process Performance Integration

PPM adapter
The PPM adapter reads process data from the Interstage BPM Server and exports them into an XML
file in a format that meets the requirements of ARIS PPM. The process data can contain all kinds of
nodes, arrows and User Defined Attributes. Process instances that are called as sub- or chained
processes are also exported with all their information.

PPM autoConfig
The program PPM autoConfig is a tool for automatically extending the ARIS PPM configuration files
with regard to the process instances exported by the PPM adapter. Furthermore, the PPM autoConfig
tool uses ARIS PPM tools to automatically import the XML files generated by the PPM adapter into
ARIS PPM.
The PPM autoConfig tool is executed after the PPM adapter successfully accomplished the export
of the process instances. The execution of the PPM autoConfig tool can be done manually or from
within the PPM adapter.

Interstage Business Process Manager Developer's Guide 24

2: Architecture Overview

ARIS PPM Server
ARIS PPM is a tool for analyzing, evaluating and monitoring business process data, after this ARIS
PPM generates intuitive Management Dashboards that can be used for management reporting. ARIS
PPM provides a clearly and precisely display of the current performance of business processes.
Refer to the Interstage Business Process Manager ARIS Process Performance Manager Integration
Guide for more information about the usage of the PPM adapter and the PPM autoConfig tool.

2.5 CentraSite Integration
CentraSite provides storage infrastructure for Web Services registries, Meta model repositories, as
well as for data necessary for auditing, access security and versioning. In addition it provides a
web-based interface to visualize reports that analyze the usage of Web Services in process instances
(Interstage Business Process Manager), orchestrations (Software AG's crossvision Service
Orchestrator) and information integration queries (Software AG's crossvision Information Integrator).
As a result, business analysts, architects and developers can all collaborate, eliminate business risk
related to change in IT assets and avoid the disruption of critical business processes.
From a functional point of view CentraSite manages metadata generated from integration software,
Web Service descriptions, application specific data, and in general it serves as a central store for
documents in native XML and non-XML formats.
You can use the following functionalities provided by CentraSite from Interstage BPM:
• UDDI registry
• WebDAV repository
UDDI is an industrial standard and serves the known registry functionality such as publicizing,
discovering and staging consumption of Web Services. Publishing, discovering and retrieving Web
Services capabilities provided by Interstage BPM is based on standard UDDI interfaces, and therefore
you can use CentraSite from Interstage BPM as a UDDI registry implementation.
WebDAV is another industrial standard and can be used for storing and retrieving development
artefacts, which are stored in standard formats such as XPDL. Interstage BPM provides the capability
of publishing metadata into WebDAV and therefore you can use CentraSite from Interstage BPM as
a WebDAV repository implementation.

2.6 Interstage BPM as a Service (SaaS)
Interstage Business Process Manager offers the option of being used in SaaS (Software as a Service)
mode. If you use Interstage BPM in SaaS mode, you can create multiple tenants and lease out
Interstage BPM to these tenant organizations, who will use it as a service. Note the following:
• You can decide whether or not to use Interstage BPM in SaaS mode during Interstage BPM

installation.
• An organization that leases out Interstage BPM to other organizations for use as a service is

called a service provider.
• An organization that uses Interstage BPM as a service from the service provider will use Interstage

BPM as a 'tenant'.
• A service provider user who administrates tenants is called a Super User. Functionality of a Super

User is limited to only managing tenants through the Interstage BPM Tenant Management Console,
and managing the Interstage BPM Server.
• Information about installing and accessing Interstage BPM Tenant Management Console is

included in the Interstage BPM Server and Console Installation Guide

Interstage Business Process Manager Developer's Guide 25

2: Architecture Overview

• Information about using the Interstage BPM Tenant Management Console is included in the
Interstage BPM Tenant Management Console Online Help

• Information about managing the Interstage BPM Server is included in the Interstage BPM
Administration Guide

• The Super User role cannot use or administrate Interstage BPM workflows.
• For a Service Provider to be able to use Interstage BPM as a regular user, it is required to set up

a default tenant for its own use during Interstage BPM installation. Setting up a default tenant
also sets up the default System application.

• Even if you use Interstage BPM in the non-SaaS mode:
• You will still need to set up a Super User during installation. The role of this Super User will

be limited to managing Interstage BPM Server.
• You will need to set up a default tenant during installation. You will use all Interstage BPM

functionality as a default tenant. You will not be allowed to create more than one tenant.

• Irrespective of whether you use Interstage BPM in SaaS mode or not, any operation on a workflow
element will always be in the specific context of an application. For example, before you create
a process definition or process instance, you need to choose an application. In SaaS mode, you
must choose an application before operating on any element. In non-SaaS mode, selecting an
application is optional.

Interstage Business Process Manager Developer's Guide 26

2: Architecture Overview

3 Concepts
From start to finish, the developers and users of a typical workflow application may perform some
or all of the following operations:
• Connect to the Interstage BPM Server
• Build a process definition
• Define and associate a form with an Activity Node
• Start a new process instance
• Modify a process instance
• Modify variables through Java Actions
• Associate an attachment with a process instance
• Execute an activity choice option
• Obtain a list of process definitions, process instances and work items
• Obtain the status of process instances and activities
The work performed by these operations can be best understood through the concepts that are
discussed in this chapter.

The Interstage BPM Server uses JMS messages for internal communication. JMS notification
is used internally only. You cannot write external applications to receive JMS messages
from the Interstage BPM Server.

Note:

3.1 Process Definitions and Process Instances
At its core, workflow is a medium of collaboration or coordination for any complex project. The basic
building block of this collaboration is the process definition. Process definitions are like recipes in a
cookbook: they provide you with the steps to follow, with references to the ingredients you must use,
and criteria for deciding that the job is done. Like a recipe, a process definition is a static, reusable
method, which guarantees a predictable result.
A process instance is the individual execution of the process definition, much like the specific act of
baking a cake that you create by following a general recipe. In other words, the process instance
provides a day-to-day context for coordinating the work on a project. It ensures that all of the cooks
have the right ingredients at the right time, and that everyone is using those ingredients according
to the agreed-upon recipe. In a business context, these ingredients generally consist of documents
and data.
Since a process instance merely reflects the structure and functionality that was designed into the
process definition, there is a close correspondence between the subordinate or dependent objects
of process definitions and process instances. This chapter therefore focuses on process
definition-related classes first to provide the background for understanding the whole system.

3.2 Process Definitions
Process definitions encapsulate all of the aspects of a process instance that can be set at design
time. Aspects include predefined attributes, operations to be performed when the process instance
is run, definitions for variable data that will be set at run-time, and the state of the process definition.

Interstage Business Process Manager Developer's Guide 27

3: Concepts

Process Definition Attributes
Process definition attributes include (but are not necessarily limited to) the following:
• Process definition state
• Process definition identifiers

• ID
• Version
• Owner
• Name (optional)
• Title (optional)
• Description (optional)

• Flow control
• Nodes
• Arrows

• Process definition ownership (Role)
• Variable data

• User Defined Attributes

• Java Actions
• Init Actions
• Commit Actions
• Error Actions and onSuspend, onResume, onAbort Actions

• Timers including Timer Actions

These attributes are added to the process definition during its design. However, many have
no specific meaning until the process definition is used to create a process instance, and
that process instance is run.

Note:

3.2.1 Process Definition States
A process definition can be in one of the following states:
• Draft
• Published
• Private
• Obsolete
• Deleted
Process definitions in draft state are in the design stage. Only the owner of a draft process definition
can create a process instance from it (for testing purposes). When the draft process definition is
ready for general use, the process definition owner asks a administrator (tenant owner) to publish it
so others can start process instances from it. If a user modifies a running process instance, a private
process definition is created for just that one process instance.

Interstage Business Process Manager Developer's Guide 28

3: Concepts

Although you cannot edit a published process definition, you can make a new copy of it that is in
draft state by default. This new copy of the process definition can be edited until it is published.

Figure 5: Process Definition States

If you want to take a published process definition out of circulation, an administrator can change the
process definition state from published to obsolete. If you want to delete a process definition, an
administrator can change the state to deleted. When draft and private process definitions are deleted,
they are dropped from the system. When published and obsolete process definitions are deleted,
they are not dropped from the system, but you can’t modify their state again. You can create new
versions from draft, private, published and obsolete process definitions, but not from deleted process
definitions.

If you want a private process definition to replace the currently used process definition going
forward, simply create a new version of the private process definition. The new process
definition will be in draft state with the same name and the next version number. Only the
administrator (tenant owner) can change then the state of the draft process definition to
published. In addition to publishing the draft process definition, this automatically changes
the state of the original process definition from published to obsolete.
Each process definition family (i.e., each process definition with the same name but different
version number) can only have one published process definition.

Note:

3.2.2 Process Definition Identifiers
A process definition is identified by the following attributes:
• ID
• Version
• Owner
• Name (optional)
• Title (optional)
• Description (optional)
The ID is a variable of data type Long, which is automatically assigned by the Interstage BPM Server
to provide a unique handle for the process definition. The version number is automatically assigned,
and the owner is the creator of the process definition.

Interstage Business Process Manager Developer's Guide 29

3: Concepts

The other three identifiers are optional. When designing an application, the Plan interface from the
Model API gives you access to the name, title, and description if you desire.

Process Definition Versioning
New process definitions are assigned a version number of 1.0, for example Purchase Order v1.0.
You can create a new version of a process definition without changing its name. If you copy a process
definition the new version of the process definition will have the next whole number, for example
Purchase Order v2.0.

Versioning of a process is specific to the application to which it belongs. This implies you
can have two processes with the same name without affecting their version number as long
as the processes exist in separate applications.

Note:

3.2.3 Workflow Elements
A workflow process is a network of nodes connected by arrows. Nodes and arrows together are
referred to as workflow elements.
Nodes represent the steps in a process. A step could be an activity where process participants are
assigned specific tasks to be completed. A step could also be a place where a decision on the process
flow is made. In this case, no user action is required.
Workflow elements have the following minimum attributes: ID, Name, Title and Description. ID is
absolutely mandatory - the one attribute that all workflow elements must have. The Interstage BPM
Server automatically assigns a unique ID to each element in a workflow process to identify it.
In addition to the attributes that all nodes have, specific node types have properties that are applicable
to only them. In the discussion that follows, some properties are only applicable to certain individual
node types - as required by their intended behavior.
Arrows are the connectors that guide the flow of the process instance from one node to another. The
flow of events simply passes through the arrow on its way from one node to the next. They have
little additional functionality except to change the state of their target nodes.
Arrows have a simple set of identifiers: ID, Name, and Description. The ID is a long data type that
is automatically assigned by the Interstage BPM Server to provide a unique handle for the process
definition.
The other two identifiers are optional. In designing an application, the Plan interface from the Model
API gives you access to the ID, Name, and Description fields, if desired.

3.2.4 Java Actions
Process instances "live" in the Interstage BPM Server that executes them and communicate with
users through whatever client is provided. Java Actions provide a mechanism through which process
instances can communicate with the outside world. At its core, a Java Action is nothing more than
a static Java method which Interstage BPM has been configured to know enough about to be able
to call, as part of process execution.
When data is moved into a process instance, it is usually read from one or more external data sources
and copied into User Defined Attributes. They are moved out of a process instance by copying the
values of User Defined Attributes to one or more external data sources. Since User Defined Attributes
can modify the action of certain nodes, Java Actions can do the same.

Interstage Business Process Manager Developer's Guide 30

3: Concepts

Interstage BPM offers various types of Java Actions. Java Actions are mostly defined for Nodes,
some of them can be defined for entire process definitions, others for other Java Actions, for example:
• Prologue Actions. A Prologue Action is evaluated before the node performs its task. This Java

Action can therefore be used to set up or initialize values associated with the node before it does
its work.

• Epilogue Actions. An Epilogue Action is executed after the node finishes its task and before the
process instance moves on to another node. This Java Action can therefore be used to clean up
or analyze values associated with the node after the intended work is finished.

• Role Actions. A Role Action is evaluated after role resolution and before task assignment. This
Java Action is therefore used to dynamically compute a list of assignees for a task in conjunction
with the assigned user group.

• Error Actions. An Error Action can be used for handling specific error situations in the execution
of a process. Error Actions can be defined for entire process definitions, for individual nodes and
for other Java Actions, i.e. when you want to react on errors occurring during the execution of
another Java Action.

• Compensate Actions. A Compensate Action can be defined for another Java Action that accesses
a system outside of Interstage BPM, e.g. a database. Compensate Actions are useful to ensure
a consistent state of all systems involved in a transaction for cleaning up and rolling back
transactions, e.g. to delete a newly added row in a database.

Refer to section Types of Java Actions on page 91 for more information.

3.2.5 User Groups
User Groups and assignee resolution are a basic, underlying feature of the system. A User Group
is a name given to a set of organizational resources. Depending on your system configuration, user
groups are defined in Interstage BPM's local group store, in a Directory Service or in both systems.
Using the Directory Service functionality, a User Group can also be mapped to any other organizational
resources, including machines, software programs, parameterized function calls, or even queries.
Usually, a User Group is a name given to users who are grouped according to criteria that fit the
needs of the business or organization. The most common of these criteria describe the kind of work
performed by one or more persons in an organization. Users can also be grouped according to their
authority, responsibility, skill, or profession: The workflow engine doesn't distinguish what the
organizational resources are, so long as it can be identified with a string variable.
A node can be assigned a User Group if it represents an activity that requires user involvement. In
the current Interstage BPM model, only Activity Nodes and Voting Activity Nodes support this property.

3.2.6 Forms
Most business processes involve decisions and actions that are based on information. Users access
this information through forms and attachments. Forms are added to process definitions at design
time, and attachments are added to running process instances.
Forms can be used to display or report data that is stored in User Defined Attributes and data from
external data sources. Forms can also enable users to interact with, modify, or add data to the
process instance or to an external data source. Refer to section User Defined Attributes on page 33
for using variable data in forms.
Forms are stored on a Web server and Interstage BPM only knows the URL with which the forms
can be addressed. They are associated to a node by specifying the path to the form including the
form name. Forms can be associated with Start Nodes, Activity Nodes and Voting Activity Nodes.

Interstage Business Process Manager Developer's Guide 31

3: Concepts

Forms are presented to the user in starting a process instance or viewing a work item. Forms can
only be accessed through work items.

3.2.7 Timers
Almost all business processes live and die according to timed criteria, including deadlines, interest
costs, milestones, procrastination, project management, vacation schedules, personal organization
- the list goes on forever.
The system environment allows you to create timers that trigger certain actions when they expire.
These timers can be Activity-Node-Level timers that start running when the Activity Node is activated
or Process-Level timers that start running whenever a new process instance is created from the
process definition containing the timer.
Timers are controlled by time and action parameters, specified as User Defined Attributes, and set
through Java Actions or forms. The expiration or firing time of a timer can be an absolute, specific
time or relative to another event (such as the start of the activity or process instance). The timer can
also be set to trigger actions periodically. Timers can also perform a variety of actions, including
escalation (assigning the activity to an additional list of users) or sending emails.
The following timer types are available:
• Relative timers. A Relative timer calculates the time when they will expire based upon the time

when the activity or process becomes active. They are only activated once.
• Absolute timers. An Absolute timer is set according to the absolute time when the timer will

expire, measured in milliseconds since January 1, 1970, 00:00:00.
• Periodic timers. A Periodic timer is a Relative timer that operates repeatedly. The first occurrence

of the timer is relative to the time when the activity or the process instance becomes active.
Subsequent occurrences are relative to the last occurrence.

• Business Periodic timers. A Business Periodic timer is a Business Relative timer that operates
repeatedly. The first occurrence of the timer is activated relative to the time the activity or a process
instance becomes active, and subsequent occurrences are relative to the last occurrence.

• Business Relative timers. A Business Relative timer calculates the time that they will expire,
based upon the time when the activity or a process instance becomes active, and using the
'business calendar' expression methods. They are only activated once.

The Business Periodic timers and the Business Relative timers are used within Business Calendars.
For defining a timer with the Model API refer to section Using Timers on page 149 for details. For
configuring a Business Calendar refer to the Interstage Business Process Manager Server
Administration Guide for details.

3.2.8 Process Definition Ownership
The attributes for process ownership allow you to set permission levels in process definitions and
process instances to individuals or groups. The purpose of process ownership is to identify users
who are authorized to edit it structurally.
The owner of a process definition is the person who created it. When a process instance is created
from the process definitions, this person is by default the owner of the process instance as well.
However, process definition ownership and process instance ownership are two distinct attributes.
During process definition design, process ownership can also be directly assigned to members of a
user group or programmatically assigned by using a Role Action. The Role Action interacts as
described in the table below.

Interstage Business Process Manager Developer's Guide 32

3: Concepts

The Process Owner Will BeSet in the Role ActionSet by the User Group

The process definition owner
becomes the process owner.

NoNo

The process instance owners
are determined by the User
Group.

NoYes

The Role Action determines the
process instance owners.

YesNo

The process owners belong to
the intersection between the
assigned User Group and the
Role Action. If this intersection
is empty, the process definition
owner becomes the process
instance owner.

YesYes

The Interstage BPM Server makes sure that users are authenticated and that their assigned Groups
and their capabilities in accessing and manipulating process instances, activities and their attributes
are identified. The use of Groups eliminates the need to modify every process definition when there
is a personnel change. Instead, only the group definition in Interstage BPM's local group store or in
the Directory Service needs to be updated.

3.2.9 User Defined Attributes
Another set of attributes assigned to the process definition consists of the User Defined Attribute
definitions. These definitions describe data items that will be associated with process instances
created from the process definitions. Process instance-specific values can therefore be stored in
them. The values may be assigned either at the beginning or during the running of the process
instance. This variable data is global to the process instance it is associated with. Any user may
change it with access to it.
While designing a process definition, the designer determines what types of data will be used in the
process instances and creates a strategy for assigning that data to variables.
The data can also be modified through Java Actions. Refer to section Integrating Interstage BPM
with External Applications on page 88 for using Java Actions.

3.2.10 Node Types
Interstage BPM supports different node types. The following table gives an overview of the supported
node types and their attributes. It does not contain attributes that are common to all node types.

FormsTriggersTimersError
Action

onAbort,
onSuspend,
onResume
Action

Epilogue
Action

Prologue
Action

Role
Action

AssigneeNode Type

Yes--------Start Node

---------Exit Node

Interstage Business Process Manager Developer's Guide 33

3: Concepts

FormsTriggersTimersError
Action

onAbort,
onSuspend,
onResume
Action

Epilogue
Action

Prologue
Action

Role
Action

AssigneeNode Type

YesYesYes-YesYesYesYesYesActivity Node

Yes-Yes-YesYesYesYesYesVoting Activity
Node

--Yes-YesYesYes--Delay Node

-YesYes-YesYesYes--Event Activity
Node

-----Yes---AND Node

-----Yes---OR Node

----Yes-Yes--Conditional Node

----YesYesYes--Subprocess Node

---YesYesYesYes--Remote
Subprocess Node

----YesYesYes--Chained-Process
Node

Yes---YesYesYesYesYesCompound Activity
Node

The following sections provide a detailed discussion of the different node types.

Start Node
The Start Node identifies the beginning of a process. Every process definition has one and only one
Start Node.
Not supported: This node type does not support any role assignment, timers or triggers.
Behavior:
• A process instance that is created from a process definition has to be explicitly started.
• Enactment of a process instance begins at the Start Node. When a process instance is started,

an event is sent to the Start Node.
• The Start Node then immediately sends events to all the outgoing arrows.

Exit Node
An Exit Node identifies the end of a process branch.
Every process definition has at least one Exit Node. A process definition may have multiple Exit
Nodes, which model different modes of completion of a process. With huge process definitions,
multiple Exit Nodes can simplify the graphical representation of the process.
In a typical process definition, an Exit Node has one or more incoming arrows and no outgoing
arrows.

Interstage Business Process Manager Developer's Guide 34

3: Concepts

Not supported: This node type does not support any kind of forms, role assignment, timers or
triggers.
Behavior: Enactment of the process instance stops at an Exit Node. When a process instance has
multiple Exit Nodes, as soon as the process instance’s enactment reaches one of the Exit Nodes it
is deemed to be complete.

Activity Node
An Activity Node is an interactive node that represents one or more tasks performed by humans
towards completion of a business process. Upon enactment of this node, this thread of events in the
process instance pauses. It only continues after human intervention.
Activity Nodes can also stand-in for activities performed by external agents (such as other devices).
A process instance may have any number of Activity Nodes. An Activity Node can have one or more
incoming arrows and one or more outgoing arrows.
Supported: Forms, as many as required, can be used. The semantics of this node type support
Prologue and Epilogue Actions, role assignment, timers and node-level triggers. In addition, a Java
Action Set can be defined that becomes active when an Administrator aborts, suspends or resumes
a process instance to which this node belongs.
Behavior:
• The list of assignees using the assigned group is computed as follows:

AssigneesUsers Specified in Java
Action

Group Specified

User group belonging to this
user group or individual
members of user group

NoYes

Members specified in both user
group and Java Action

Yes, list intersects with user
group

Yes

Process ownerYes, list does not intersect with
user group

Yes

Members specified in Java
Action

YesNo

• All timers defined for this node are activated.
• One group work item or individual work items are created for the assignees.
• When one of the assignees (not all of them) completes the task associated with the Activity Node,

the assignee sets the process instance rolling again by indicating that the task is complete (e.g.,
by clicking a button). This is referred to as committing the work item.

• Each of the outgoing arrows of this node represents a direction in which the process instance
can proceed from this node. Depending on the business process, an assignee can make the
process instance continue in a particular direction by choosing the arrow that represents the
direction.

• Once the work item is committed, the Epilogue Action is evaluated, any process timers that are
still active are cancelled, and an event is sent to the arrow that has been chosen.

Interstage Business Process Manager Developer's Guide 35

3: Concepts

Voting Activity Node
A Voting Activity Node uses voting rules to determine the choice (activity's outgoing arrow) that wins.
For every Voting Activity Node the rules for voting must be specified. A voting rule specifies for one
outgoing arrow the kind of controls to be used for voting, for example, TYPE_MAJORITY.
A process instance may have any number of Voting Activity Nodes. A Voting Activity Node can have
one or more incoming arrows and one or more outgoing arrows.
Supported: Forms, as many as required, can be used. The semantics of this node type support
Prologue and Epilogue Actions, role assignment and timers. In addition, a Java Action Set can be
defined that becomes active when an Administrator aborts, suspends or resumes a process instance
to which this node belongs.
Behavior:
• Upon receiving an event from any of its incoming arrows, a Voting Activity Node enters a running

state. While in this state, it ignores any events that it receives from its incoming arrows. If the
user group assigned to the node cannot be evaluated, the node and process instance containing
it enter the error state.

• The Voting Activity Node then evaluates the Prologue Action.
• It then computes the list of assignees, using the assigned user group, as follows:

AssigneesUsers Specified in Java
Action

User Group Specified

Members of User GroupNoYes

Members specified in both User
Group and Java Action

Yes, list intersects with User
Group

Yes

Process ownerYes, list does not intersect with
User Group

Yes

Members specified in Java
Action

YesNo

• All timers defined for this node are activated.
• Work items are created for all assignees.
• The voting rules defined for the Voting Activity Node are evaluated. A voting rule defines the kind

of controls to be used for voting. The threshold of a voting rule defines the limit when the condition
becomes true.

• When one of the voting rules is matched, it sets the process instance rolling again by indicating
that the task is complete. This is referred to as committing the work item.

• Once the work item is committed, the Epilogue Action is evaluated, any process timers that are
still active are cancelled, and an event is sent to the arrow that has been chosen.

There are some custom nodes that can be used in the Interstage BPM Studio. At API level,
Complex Conditional Nodes are equivalent to Conditional Nodes. Similarly, Email Nodes,
DB Nodes and Web Service Nodes are equivalent to OR Nodes.

Note:

Delay Node
A Delay Node represents a step in a process in which execution of the process instance (or a particular
execution thread in a process instance) is suspended for a specified amount of time.

Interstage Business Process Manager Developer's Guide 36

3: Concepts

A process definition can have any number of Delay Nodes. A Delay Node can have one or more
incoming arrows and one or more outgoing arrows.
Supported: Prologue Actions, Epilogue Actions, and timers can be used as required. Although more
than one timer can be specified on this node, only one is effective. In addition, a Java Action Set can
be defined that becomes active when an Administrator aborts, suspends or resumes a process
instance to which this node belongs. The semantics of this node type do not support forms, role
assignment or triggers.
Behavior:
• When a Delay Node receives an event from an incoming arrow, it evaluates any Prologue Action,

activates all the timers specified, and waits. While waiting, it ignores additional events from
incoming arrows.

• As soon as one active timer expires, the node cancels all other active timers, evaluates any
Epilogue Action, and sends events to all outgoing arrows.

Event Activity Node
An Event Activity Node represents a step in a process which is driven by an external event. Each
Event Activity Node has a trigger defined that is supposed to fire when data, typically XML files,
comes in from an external system. Once the data arrives, the trigger moves the data into User Defined
Attributes (UDAs) according to the trigger's definition. The trigger then makes a choice and process
execution moves forward to the next node.
This node type does not involve any human interaction. Hence, no work items are generated when
a node of this type becomes active. It can only be completed by a trigger defined on the node.
A process definition can have any number of Event Activity Nodes. An Event Activity Node can have
one or more incoming arrows and exactly one outgoing arrow.
Supported: An Event Activity Node must have one or more node-level triggers (make choice triggers)
defined. Prologue Actions, Epilogue Actions and timers can be used as required. In addition, a Java
Action Set can be defined that becomes active when an Administrator aborts, suspends or resumes
a process instance to which this node belongs. Due to its semantics, this node type cannot be
assigned to users, roles or agents. Also, this node type does not support Role Actions or forms.
Behavior:
• When an Event Activity Node receives an event from an incoming arrow, it evaluates any Prologue

Action, activates all of its active triggers, and waits. While waiting, it ignores additional events
from incoming arrows.

• As soon as one active trigger fires, the node evaluates any Epilogue Action, and sends an event
to its outgoing arrow.

In the Interstage BPM Studio, Event Activity Nodes are referred to as "Trigger Nodes".Note:

AND Node
An AND Node represents a step in a process where the process instance pauses to synchronize
multiple threads of execution.
A process can have any number of AND Nodes. An AND Node can have one or more incoming
arrows and one or more outgoing arrows.
Supported: Epilogue Actions can be used as required. The semantics of this node do not support
Prologue Actions, role assignment, forms, timers or triggers.

Interstage Business Process Manager Developer's Guide 37

3: Concepts

Behavior:
• An AND Node waits till it receives at least one event on each of its incoming arrows. Any additional

events received from the same incoming arrows are ignored while waiting to receive an event
from each of the arrows.

• When each of the incoming arrows has received an event, all of the execution threads represented
by the incoming arrows are synchronized. Any Epilogue Action is evaluated and events are sent
to all the outgoing arrows.

• Thus, this node can also result in multiple branches.

OR Node
An OR Node represents a step in a process from where a single branch of control splits into multiple
parallel branches. A process can have any number of OR Nodes.
This node can have one or more incoming arrows and one or more outgoing arrows.
Supported: Epilogue Actions can be used as required. The semantics of this node type do not
support Prologue Actions, role assignment, forms, timers or triggers.
Behavior: Every time this node type receives an event from one of its incoming arrows, it evaluates
the Epilogue Action and sends events to all its outgoing arrows.

Conditional Node
A Conditional Node represents a step in a process where the process’s execution proceeds in one
of the many possible directions, depending upon the value of a certain User Defined Attribute. All of
the outgoing arrows of this node represent various directions in which the process can proceed.
A process can have any number of Conditional Nodes. A Conditional Node can have one or more
incoming arrows and one or more outgoing arrows.
Supported: You can use Prologue Actions as required. In addition, a Java Action Set can be defined
that becomes active when an Administrator aborts, suspends or resumes a process instance to
which this node belongs. The semantics of this node type do not support user assignment, forms,
timers or triggers.
Behavior:
• The decision of which way to proceed depends on the value of the specified User Defined Attribute.

The Conditional Node compares this value with the constant value that is associated with conditions
specified by each outgoing arrow.

• When the Conditional Node receives an event from an incoming arrow, it first evaluates the
Prologue Action and then the conditions on the outgoing arrows in a specified order.

• The process instance proceeds along the first single outgoing arrow whose condition is satisfied
by the value of the specified User Defined Attribute. If the value of the User Defined Attribute
satisfies none of the conditions the process instance proceeds along the outgoing arrow specified
as the default.

Subprocess Node
A Subprocess Node represents a step in a process where a task is accomplished passing data to
an external process, invoking a process there, and ultimately receiving the results back.
Subprocess Nodes facilitate the reuse of existing process definitions. A single Subprocess Node
can represent an entire process definition that is already designed, accessing all of the nodes, arrows,
and other characteristics of the process definition.

Interstage Business Process Manager Developer's Guide 38

3: Concepts

With Subprocess Nodes, a user can organize a complex process into a simpler hierarchical network
of subprocesses that hide the details from the top-level view. The processes and subprocesses are
independent and can be designed simultaneously.
Subprocess Nodes can also be used to delegate details to other people.
A process can have any number of Subprocess Nodes. A Subprocess Node can have one or more
incoming arrows and one or more outgoing arrows.
Supported:
• Prologue and Epilogue Actions can be used as required. In addition, a Java Action Set can be

defined that becomes active when an Administrator aborts, suspends or resumes a process
instance to which this node belongs. The semantics of this node type do not support role
assignment, forms, timers or triggers.

• Attributes specific to this node type include the ID of the process definition to be used to create
a subprocess instance and data-mapping references that define what data is moved between
the parent process instance and subprocess instance.

• Input data mapping initializes the subprocess’s User Defined Attributes with the values from the
parent process’s User Defined Attributes before the execution of the subprocess.

• Output data-mapping copies values from the subprocess’s User Defined Attributes to the parent
process’s User Defined Attributes after the subprocess is completed.

• Data mapping need not be specified if no data will be copied into or out of the subprocess.
Behavior:
• On receiving an event from an incoming arrow, a Subprocess Node evaluates the Prologue Action

and then creates a process instance using the process definition who’s ID has been specified.
Input data mapping, if specified, initializes the User Defined Attributes of the subprocess.

• The subprocess then starts, and the Subprocess Node waits for it to complete. While waiting, the
node ignores any events received from incoming arrows.

• Once the subprocess completes, output data mapping, if specified, copies data from the subprocess
to the parent process, evaluates the Epilogue Action, and sends events to each of its outgoing
arrows. Each outgoing arrow is executed.

Remote Subprocess Node
A Remote Subprocess Node represents a step in a process where a task is accomplished passing
the execution to a process running on a remote workflow server. A remote workflow server might
be, for example, another Interstage BPM Server. Like Subprocess Nodes, Remote Subprocess
Nodes can be used to reuse existing process definitions within new ones, simplify complex business
processes, and delegate details to other people.
A process can have any number of Remote Subprocess Nodes. A Remote Subprocess Node can
have one or more incoming arrows and one or more outgoing arrows. However, the names of the
outgoing arrows must match with the names of the Exit Nodes in the Remote Subprocess.
Supported:
• Prologue and Epilogue Actions can be used as required. In addition, a Java Action Set can be

defined that becomes active when an Administrator aborts, suspends or resumes a process
instance to which this node belongs. The semantics of this node type also support the assignment
of an Error Java Action that is activated when the starting of the remote subprocess fails. The
semantics of this node type do not support role assignment, forms, timers or triggers.

• Attributes specific to this node type include the URI of the process definition to be used to create
a remote subprocess instance and data-mapping references that define what data is moved
between the parent process instance and the remote subprocess instance.

Interstage Business Process Manager Developer's Guide 39

3: Concepts

• Input data mapping initializes the remote subprocess’s User Defined Attributes with the values
from the parent process’s User Defined Attributes before the enactment of the remote subprocess.

• Output data-mapping copies values from the remote subprocess’s User Defined Attributes to the
parent process’s User Defined Attributes after the remote subprocess is completed.

• Data mapping need not be specified if no data will be copied into or out of the remote subprocess.
Behavior:
• On receiving an event from an incoming arrow, a Remote Subprocess Node evaluates the Prologue

Action and then creates a process instance using the process definition whose URI has been
specified. Input data mapping, if specified, initializes the User Defined Attributes of the remote
subprocess.

• The remote subprocess then starts, and the Remote Subprocess Node waits for it to complete.
While waiting, the node ignores any events received from incoming arrows.

• Once the remote subprocess completes, output data mapping, if specified, copies data from the
remote subprocess to the parent process, evaluates the Epilogue Action, and sends events to
each of its outgoing arrows.

Chained-Process Node
A Chained-Process Node represents a step in a process where a new process is created to accomplish
a task independent of the parent process instance. This node enacts this independent process as
a part of the execution of the parent process.
A process can have any number of Chained-Process Nodes. A Chained-Process Node can have
one or more incoming arrows and one or more outgoing arrows.
Supported:
• Prologue and Epilogue Actions can be used as required. In addition, a Java Action Set can be

defined that becomes active when an Administrator aborts, suspends or resumes a process
instance to which this node belongs. The semantics of this node type do not support role
assignment, forms, timers or triggers.

• Attributes specific to this node include the ID of the process definition that has to be used to create
new process instance and data mapping that defines what data is to be copied to the new process
instance.

• Input data mapping initializes the new process instance’s User Defined Attributes with values
from the User Defined Attributes of the parent process instance. A Chained-Process Node uses
only input data mapping, since the flow of enactment does not return to the parent process
instance. Data mapping need not be specified if no data will be copied to the new process instance.

Behavior: On receiving an event from an incoming arrow, a Chained-Process Node evaluates the
Prologue Action and then creates a process instance using the process definition who’s ID has been
specified. Input data mapping, if specified, initializes the User Defined Attributes of the
chained-process. The chained-process is independent of the parent process instance.

Compound Activity Node
A Compound Activity node encompasses a phase of a process and the milestones to be achieved
at the end of the phase.
Nodes and transitions which are required to be part of particular phase can be nested inside the
Compound Activity. Thus, each Compound Activity will represent a phase.
Supported:

Interstage Business Process Manager Developer's Guide 40

3: Concepts

On Compound Activity Node:
• Group/Expand Group
• Prologue, Epilogue, onAbort, onSuspend, onResume Actions
• Timers
• Due Date
• Forms
• Priority
On workitems created from Compound Activity Nodes:
• Make Choice
• Reassign
• Priority
Behavior:
When the control reaches the Compound Activity node in a process, the child Start node is activated
and the compound activity node state changes to WaitingOnSubProcess . Once the child nodes are
complete and the child Exit node is reached, the Compound Activity node is closed and the outgoing
arrow from the Compound Activity node that has the same name as the child Exit node, is activated.
Milestone date can be defined on the Compound Activity by adding DueDate Timer. There might be
a requirement that Phase needs to be forecfully completed. To achieve this, assignee can make
choice on Workitems of Compound Node and further Process execution can continue. This way any
active child nodes will be forcefully aborted .
Refer to Using Compound Activity Nodes on page 162 for more information on how to create and use
Compound Activity Nodes.

3.2.11 Modifying Process Definitions
Process definition operations pertain to how process definitions can be modified. To modify any
process definition, the following prerequisites must be fulfilled:
• The process definition must be in Draft state and in edit-mode.
• There must not be an instance of the process definition.
• You must be process definition owner or an administrator.
• You must acquire a lock on the process definition from the Interstage BPM Server.
You can only commit the changes to the process definitions atomically; i.e. either all or none can be
made. If you cancel or roll back the edit, no changes are made.

3.3 Process Instances
A process definition is a general model of a business process, using workflow elements to describe
it. A process instance describes and organizes one specific execution of this process definition. A
running process instance mimics the flow of events in the business process from its inception to its
completion.
Once a process instance is created, the Interstage BPM Server (also referred to as the workflow
engine) executes the process instance according to the design of the process definition. This execution
of the process instance by the Interstage BPM Server is referred to as enactment.
Process instances are enacted in the Interstage BPM Server using the event-model mechanism.
Events are like messages that are sent to the workflow elements in a process instance as the

Interstage Business Process Manager Developer's Guide 41

3: Concepts

Interstage BPM Server enacts it. These events trigger the workflow elements into action. Nodes and
arrows react to these events and perform tasks according to their type and definition.

In the current model, arrows are used only as facilitators of the workflow. When an arrow
receives an event from its source node, it merely sends an event to its target node. For
simplicity, the following discussion omits references to arrow events.

Note:

Process instances typically have one Start Node and one or more Exit Nodes. Enactment of a process
instance begins when the Start Node receives an event. Nodes react differently to the events,
depending on their type and definition. Subsequent events are propagated from node to node in the
process instance.
A process instance can have one or more branches of control flow, depending upon the number of
paths that it has from its Start Node to its Exit Nodes. However, the process instance completes
when one of the Exit Nodes receives an event. When this happens, all active threads are canceled.

Process Instance Attributes
The structure of a process instance is exactly the same as the structure of the process definition on
which it is based. Every object and every attribute within the process definition is mirrored by a
corresponding process instance or attribute. In addition, process instance have attributes referred
to as "process-relevant data" which do not map directly to the process definition in any way.
A process instance can have the same attributes as the originating process definition with certain
exceptions. For instance, there is no relationship between the ID of a process definition and the ID
of the process instance that is created from it. In addition, a process instance can have the same
name, title, and description as the process definition on which it is based, or it can have its own
identifiers.
Finally, process instances have a number of additional attributes that are not shared with (or mirrored
from) process definitions in any way. These include attachments, User Defined Attributes, and
attributes that are meaningless prior to run-time (e.g. process priority).
A process instance attribute could be a persistent data element or a link to an external information
source such as a document. Process instance attributes include (but are not necessarily limited to)
the following:
• Process instance state
• Process instance identifiers

• Process ID
• Process instance name
• Process instance description
• Process instance title

• Flow control
• Node instances
• Arrow instances
• Java Action Set

• Process instance ownership
• Role (process owner)
• Process initiator

• Variable data
• Data item definitions

Interstage Business Process Manager Developer's Guide 42

3: Concepts

• Creation time
• Priority
• Set of attachment references

• Timers including a Java Action Set

3.3.1 Process Instance States
A process instance can be in one of the following states that are stored on the Interstage BPM Server:
initial, running, suspended or completed. When a process instance is created, it is in the initial state
until it is started. When the process instance reaches the Exit Node, it enters the completed state.

Figure 6: Process Instance States

In practice, most process instances may be created and started at the same time, though it is possible
to create a process instance without starting it. However, creating and starting process instances
are two separate actions.
Suspending a process instance temporarily removes it from the running state. This temporarily
inactive state is called the suspended state. If this process instance has any work items or running
subprocesses, they are also put in the suspended state. Also, a suspended process instance cannot
be modified.
A suspended process instance is, however, not in a completed state. You cannot modify the process
definition from which a suspended process instance was created, you cannot reassign a suspended
process instance, and resuming a suspended process instance activates it (puts it back in running
state) along with any work items or subprocesses it has.
You can suspend or resume a process instance using the Model API. You must be an administrator
to use the suspend/resume methods in the API. Refer to section Suspending Process Instances on
page 194 for using the suspend() and resume() methods.

Persistence and State
The chief criteria for whether a state is persistent (i.e. stored on the Interstage BPM Server) is whether
making this state persistent will drive the process instance towards completion.
The Interstage BPM Server does not guarantee persistence and might detract from the forward
movement of the process instance (such as sessions and session data). For instance, a process
instance can be in a locked or unlocked state. This state is volatile and is lost if the Interstage BPM

Interstage Business Process Manager Developer's Guide 43

3: Concepts

Server goes down while the process instance is running, because in a situation where the Interstage
BPM Server machine fails, a persistently locked state could interfere with recovery.
Interstage BPM supports ACID properties (atomic, consistent, isolated, and durable) for workflow
process transactions, which do not include direct coordination across application participants. For
mission critical applications, it is recommended that workflow processes be kept separate from
application processes, and synchronized by the application based on the workflow steps. If the
Interstage BPM Server is unable to complete a workflow process update and has to back it out, the
application also can back out its processing to the same point. This coordination can be achieved
by using the Model API. In this context, changes are visible to other transactions.

3.3.2 Node Instances and Arrow Instances
Node instances and arrow instances have a one-to-one correspondence with process definition
nodes and arrows. Node instances are basically state holders for the specific nodes that they
represent. Node instances and arrow instances can be in the following states: initial, running, and
completed.
Refer to section Node Types on page 33 for information about the input behavior for the different
node types.

3.3.3 Process Instance Ownership
A process instance is owned by the person who begins the process instance (Process Initiator). It
is not necessary for the process owner to be involved in creating a process instance; however, it can
be useful for process owners to know who created each specific process instance that belongs to
them.

3.3.4 Attachments
Attachments are references to documents that are created and accessed through other software.
They could be images, spreadsheets, word processor files, or any other file that might need to be
accessed or modified in accomplishing a business process.
Attachments consist of only references to the document's paths and file names.
Attachments are added, removed, and accessed through a work item. However, attachments belong
to the entire process instance, including Activity Nodes on other branches of the workflow.
By default, the work item allows the user to specify which programs to use to open the different file
types.

3.4 Work Items
Once an Activity Node has finished a evaluating task assignment, it generates separate work items
for each assigned user or user group. Work items are the users' window on the process instance;
they are the mechanism by which the user can access all of the attributes of the process instance.

Work Item Attributes
• Identifiers

• Process instance ID
• Process instance name
• Process instance description
• Process instance title

Interstage Business Process Manager Developer's Guide 44

3: Concepts

• Work item name
• Work item title
• Work item description
• Set of choices

• Assignee
• Variable Data

• Set of attachment references
• Set of forms
• Data items

3.4.1 Work Item Modes
When an Activity Node becomes active, work items are generated according to the associated
assignee expression and possibly Role Actions.
The number of generated work items depends on the whether the activity node is set for individual
work items or group work items.

Group Work Item Mode
In this mode, one work item is generated for the entire user group assigned to an Activity Node.
Group work items are useful in case of frequent changes to the members of a group and you want
all current members of the group to always have access to workitems even when the work item has
been created some time before the last group change.

This mode is not applicable for work items associated with Voting Activity Nodes, and when
a Role Action is used. If you try setting this for voting activity nodes or when a Role Action
is used, a group work item is not generated; instead, work items for each user in the group
are generated.

Note:

Individual Work Item Mode
In this mode, one work item is generated for every user in the User Group assigned to an Activity
Node. Every user works on his/her own work item. Individual work items are required if you want to
keep track of users who decline the task, and for activities that can be forwarded to other individual.

Changing the Work Item Mode
The type of workitems generated for an Activity Node is controlled by the
Activity_node.markForExpandGroups parameter. The value true indicates that individual workitems
will be created, and false indicates that group level workitems will be created. By default, individual
work items are generated.
Additionally, there is a SupportGroupWorkItem parameter of the Interstage BPM Server which effects
process definitions which have no setting onthe activities. This can only happen if the process
definitions was created by a very old version of the product. When a process definition that does not
specify markForExpandGroups in the Activity Nodes, then that server will set the flag for each activity
to the converse of this global parameter at the time that the process definition is installed into the
server. Specifically, when a very old process definition is imported into the system, if
SupportGroupWorkItem=true, then markForExpandGroups will be set to false, and vice versa. Refer

Interstage Business Process Manager Developer's Guide 45

3: Concepts

to section Designing a Process Definition with Start Node, Activity Node and Exit Node on page 66
for a sample.

3.4.2 Work Item States
When an Activity Node becomes active, Interstage BPM creates one or several work items and
assigns it/them to a user group with the defined Role or to one or more people who are members of
a Role. By default, individual work items are generated and assigned to every member of a user
group; you can change this behavior and have Interstage BPM generate one group work item for
the entire group assigned to the respective Activity Node. In the first case, two or more people can
avoid duplicating each other's work by accepting the task and reserving the task.
In general, work items can be in the following states: active, read, accepted, declined, inactive
(individual work items only), suspended, and completed.
• Active: Whenever an Activity Node becomes active, Interstage BPM creates one active work

item for the user group assigned to the Activity Node, or, active work items for every member of
the Role, unless the selection is modified by a Role Java Action. Active work items are available
for any assignee or member of the assigned Role to view, accept, suspend, reassign, or decline.

• Read: When a work item has been viewed by an assignee or member of the assigned Role, his
or her work item is placed into a "Read" state. All assignees or group members can read one and
the same work item. A work item in this state can later be accepted, suspended, reassigned, or
declined, just like a work item in the "Active" state.

• Accepted: When a work item has been accepted by an assignee or a member of the assigned
user group, his or her work item is placed into an “Accepted” state. If there are individual work
items associated with that activity, they are placed into the “Inactive” state. This state prevents
any replication of efforts.
The user who has accepted a work item may later choose to decline it. When this happens, the
work item becomes active again. In addition, in Regular Reassignment Mode, a person who has
accepted a work item may assign it to someone else.
Refer to section Reassignment Modes on page 50 for information about the possible modes.

• Declined: A work item in the "Declined" state is one that a user has refused. A declined work
item no longer appears on a user’s list of active work items, though it still appears on the list of
inactive work items. It is still available for the user to view or accept.
If all of the assignees or all members of the Role decline their individual work items, an active
work item is created for each of the process instance owners. However, every owner cannot
decline the work item; if all process instance owners decline their work items, the work items
become active for all of them again.
If everyone declines a group work item, no work item is created for any process instance owner.
The existing group members can work on the group work item after accepting it; any new member
added to the group can work on it directly.
A user can accept a previously declined work item, so long as someone else has not already
accepted it.

• Inactive: A work item becomes inactive for a user when someone else has accepted it.
An inactive work item cannot be declined or accepted, though it can become active at a later
time, when it can again be accepted or declined

• Completed: When the user makes an appropriate choice on the work item, it enters the Completed
state, and all other work items that correspond to the same activity are removed from the system.
This means that they disappear from the list of work items.

Interstage Business Process Manager Developer's Guide 46

3: Concepts

3.4.3 Choices
When a user has completed the tasks specified by the work item, he or she may choose one or more
commit options to complete the activity and activate the next node in the process instance.

3.4.4 Future Work Items
Future Work Items are the work items that the users may be assigned in future. As a user, Future
Work Items help you to be aware of work items that may be assigned to you later so you can plan
your tasks in advance.
Future Work Items generated for a user may not be accurate since task assignment can vary during
the process execution.

Future Work Items are generated just as normal work items, with state as
WorkItem.STATE_FUTURE. They are displayed as a list for a particular user. User cannot
actually accept them or reject them or perform any kind of actions on them since these are
displayed as a read-only list.

Note:

Following are the properties of Future Work Items:
• Future Work Items are generated only on the activity nodes that have the

Activity_node.markForFutureWorkItems flag set to true. By default, this flag is set to 'false'.

Future Work Items can also be generated for activity nodes in Compound Node.Note:

• Future Work Items are generated only on inactive (initial state) activity node instances of a process
instance.

• Future Work Items are generated in a process instance only when at least one activity node
instance is activated.

• When an activity node instance is activated, it generates work items for current node, deletes
Future Work Items for current node and generates Future Work Items for other activity node
instances that are in initial state.

• Future Work Items are generated using Assignee and Role Action.

Any process update done in Role Actions while evaluating assignees of Future Work Items
is committed. Future Work Items are generated for an activiy node whenever any other
activity node instance is activated in the process instance. Hence, these Role Actions will
be executed multiple times. Also, they will be executed again while generating normal work
items. You need to make sure that execution of these actions multiple times, does not result
in undesired behavior.

Note:

• When Role Action or Role Script is set in an Activity Node, Future Work Items are assigned to
the users using the intersection of Role and assignees specified by the Role Action or Role Script.
If this intersection does not contain any value, Future Work Items are not generated for process
owners (normal Work Items are generated for the process owners in such a case).

• Future Work Items are generated or deleted during the process enactment. This means if an
activity node instance A is in active state and waiting for the user to make choice and you set the
Future Work Item flag of any other activity node instance in the initial state (say, B), to 'true' then
B will not generate Future Work Items until you make choice on A.

• Future Work Items cannot be generated for the activity nodes that have Agents defined on them.
• Future Work Items cannot be generated for the activity nodes configured as Iterator Nodes.

Interstage Business Process Manager Developer's Guide 47

3: Concepts

• Future Work Items cannot be generated for Voting Activity Nodes.
• Future Work Items cannot be generated for the activity nodes having group-level work items.
• Future Work Items generated for an activity node in 'initial' state are deleted once the state of the

activity node changes to 'active'.
• Any failure while generating Future Work Items is handled similar to the normal failure, that is,

transaction is rolled back and exception is thrown to user or process instance is put into error
state depending on inline/background enactment. Also, compensate and error actions are executed
in normal fashion.

3.5 Filters
Filters in Interstage BPM operate similarly to a SQL SELECT statement: they allow you to access
columns in a table in a database according to specific criteria. In other words, you can create a list
from the table of process definitions, process instance, or work items; you can filter them by assignee,
initiator or owner, by priority, by state, or by identifier.

Advanced filtering and sorting capabilities are available through the Model API. Refer to
sectionAdvanced Filtering & Sorting API on page 110 for instructions in using these advanced
capabilities.

Note:

3.6 The Purpose of Structural Process Editing
Process editing is the key feature required for several different types of workflow which require fewer
constraints on the direction a process instance can take:
• Ad Hoc Workflow
• Process Discovery
• Collaborative Workflow
• Case Handling
Workflow users need structural process editing for the following purposes:
• Design error: After a process instance has been running for a period of time, users might discover

that it is based on faulty assumptions or logic.
• Maintenance: Most long-running process instances will need to be tweaked periodically to keep

them up-to-date and running smoothly.
• Process discovery: In the real world, many business processes are started without completely

solidifying the business plan. Structural process editing allows a project team to fly by the seat
of their pants, modifying the process definition from the feedback they receive, and recording
their process instance for later replication.

• Obtaining Experimental Results: Structural process editing allows you to try out a new procedure
along the way and later analyze the results of using two or more methods that are precisely
recorded.

• Adjusting to NewRequirements: Structural process editing enables you to modify your process
definition whenever new government regulations or new market conditions occur.

• Starting Over: When a process is proceeding according to plan, but no one is happy with the
results, structural process editing allows you to start it over with modifications.

Interstage Business Process Manager Developer's Guide 48

3: Concepts

3.7 The Purpose of Interstage BPM’s Subprocess Capabilities
Subprocesses are an important element because of the following:
• Subprocesses enable users to break a project or process into easy to handle units of collaboration.

In other words, a complex process definition might be made up of an extremely large number of
nodes, making the process definition unreadable. If you reconstruct this process instance into a
hierarchy of simple subprocesses, each level of the process definition can be designed as a
separate task that fits easily into the whole process definition.

• Subprocesses also enable different departments with different processes to linking those processes
together easily and appropriately. For instance, a purchasing department, an accounting
department, and a new product development department will need completely separate process
definitions to serve their individual internal needs. However, Interstage BPM’s subprocesses
enable them to create an interdepartmental process definition to trade information and coordinate
collaborative tasks among all three seamlessly.

• Subprocesses enable an individual, a department, or a company to create a library of modular
components, process definitions, or tasks that they can later paste together in a wide variety of
ways.

Users can create subprocesses in two different ways: formally at design time and on the fly at run
time. These two different implementation strategies involve slightly different structures in the APIs.
• Design-time subprocess implementation, for instance, requires the use of a Subprocess Node,

a node type that is expressly constructed for this purpose. This node provides a uniform interface
that users can plug into a process definition at design time, with properties that specify the
subprocess definition and the method for mapping data that will be passed back and forth between
the parent process instance and child process instance. This Subprocess Node becomes a
member of a process definition in the same way that any other node is a member of a specific
process definition.
When the flow of an active process instance reaches a Subprocess Node, the node immediately
instantiates the subprocess and then starts it running. While waiting for the subprocess to complete,
the Subprocess Node enters a suspended state.

• Run-time subprocess implementation uses methods that are part of the Activity Node class.
When a task is assigned to an individual who must delegate the task (or parts of it) to others, the
person can invoke a run-time subprocess from the Activity Node. The delegating person can
create a new process definition or use an existing one and can map data from the original process
instance to the subprocess - just as if it had been done at design time. The original assigned work
item enters a suspended state as soon as a subprocess is invoked. The node changes to a
completed state, when the subprocess is complete and passes the workflow back to the work
item.

The difference between run-time and design-time subprocess implementation is that run-time
subprocess implementation is ephemeral and leaves the original process definition in its original
state. The next time that the process definition is used to create a process, the original Activity Node
is still only an Activity Node.
However, when subprocesses are used with process editing, it enables a powerful feature:
enterprise-wide process discovery workflow. This enables an executive, for instance, to create
a general statement of the work of the company, and use run-time subprocesses to get input from
those below him in the hierarchy. As they develop and distribute their own subprocesses, a procedural
description of the work of the entire business can evolve. Thus, enterprise-wide process discovery
workflow provides a gateway into reengineering the entire business operation through the use of
workflow.

Interstage Business Process Manager Developer's Guide 49

3: Concepts

3.8 Security and Reassignment Modes
The Security and Reassignment Modes address slightly different issues than the work item states.
However, since all of these modes and states work together to control work item access, they must
be addressed together. By default, the system is installed in Open Security mode and Regular
Reassignment mode.

3.8.1 Security Modes
The Security mode can be modified by setting the SecuritySwitch parameter of the Interstage BPM
Server. Refer to the Interstage Business Process Manager Server Administration Guide for more
information on how to change the configuration of the Interstage BPM Server.
The major difference in work item access between Open Security Mode and Secure Mode is that in
Open Security Mode, any Interstage BPM user can view a work item (read-only). In Secure Mode,
only the work item assignees and the process owners can view the work item and modify process
details or make a choice on the work item.

3.8.2 Reassignment Modes
The Reassignment mode can be modified by setting the ServerReassignMode parameter of the
Interstage BPM Server. Refer to the Interstage Business Process Manager Server Administration
Guide for more information on how to change the configuration of the Interstage BPM Server.
Reassignment allows activities to be assigned to a different set of people than those originally
specified through the User Group. The access control created for reassignment operates differently
than access control that is implemented by work item state. Reassignment acts on the activity, not
on the work item.
Reassigning a work item causes to delete all active and inactive work items associated with the
activity. Then the server creates new, active work items for the people specified in the reassignment.
Activities must be reassigned to individuals, not to Groups, because assignment is mainly appropriate
for process definitions that will be reused for a period of time. Because of this, it does not verify that
the people specified in the reassignment are valid users.
Interstage BPM can operate in three different reassignment modes: Regular Mode,
Process-Owner-Only Mode or No-Reassignment Mode. These are configured by setting the
ServerReassignMode parameter to regular, owner or none.
• Regular Mode: In this mode anyone who is a current assignee for the activity or a process owner

can reassign the activity to a new set of users.
• Process-Owner-Only Mode: In this mode only a process owner can reassign an activity to a

different set of users. The process owner doesn't have to be an assignee of a work item in order
reassign the work item to someone else.

• No-Reassignment Mode: In this mode, reassignment is completely disabled, and no one can
reassign an activity.

Interstage Business Process Manager Developer's Guide 50

3: Concepts

4 Using the Model API
This chapter describes the system environment for application development using the Model API
and introduces the basic Model API architecture.

4.1 System Environment
You can develop and deploy applications using the Model API on all of the operating system platforms
supported by Interstage BPM. Refer to the Release Notes for a list of supported operating systems.
On the system where you want to develop your applications using the Model API, the following is
required:
• J2SE Development Kit (JDK) 5.0 Update 10 is configured correctly.
• iFlow_api.jar. You must add its path to the CLASSPATH environment variable. In a typical

installation, you can find this file at the following location:
On Windows:
C:\Fujitsu\InterstageBPM\client\lib\iFlow.jar

On UNIX or Linux:
/opt/FJSVibpm/client/lib/iFlow.jar

The iFlow.jar file contains methods that are used internally by Interstage BPM. These
methods are not supported for application development and are not described in the Javadoc.
For this reason, an alternative jar file is provided for development purposes: iFlow_api.jar,
which does not contain any internally used methods. It is recommended that you compile
your application with the iFlow_api.jar library so that you make sure that your application
does not use any internal methods.
All other libraries (except iFlow_api.jar) contained in the
C:\Fujitsu\InterstageBPM\client\lib or /opt/FJSVibpm/client/lib directory must
also be added to the CLASSPATH, since they are used by the Model API implementation.
Currently, there are two libraries in the client/lib directory that are needed at runtime:

Note:

• js.jar

• log4j-1.2.15.jar

• Make sure that you add and define the path to the required application-server specific jar files
to the CLASSPATH.

4.1.1 Specifying Configuration Settings for Interstage Application Server
(Local)
Prerequisite:Set up your system environment as explained in section System Environment on page
51.

If you want to develop applications using the Model API on the Interstage Application Server, the
following configuration settings are required:
1. Add the following JAR file to the CLASSPATH environment variable:

On Windows:
<Interstage Application Server Installation
Directory>/J2EE/var/deployment/ijserver/<Work Unit Name of the Interstage BPM

Interstage Business Process Manager Developer's Guide 51

4: Using the Model API

Server>/distribute/fujitsu-ibpm-engine.ear/fujitsu-ibpm-engine-ejb.jar/fujitsu-
ibpm-engine-ejb_jar_client.jar

On Solaris/Linux:
<Interstage Application Server Installation
Directory>/FJSVj2ee/var/deployment/ijserver/<Work Unit Name of the Interstage
BPM Server>/distribute/fujitsu-ibpm-engine.ear/fujitsu-ibpm-engine-
ejb.jar/fujitsu-ibpm-engine-ejb_jar_client.jar

2. Add the following JAR files to the CLASSPATH environment variable:
On Windows:
C:\Interstage\J2EE\lib\isj2ee.jar

C:\Interstage\ODWin\etc\class\ODjava4.jar

C:\Interstage\jms\lib\fjmsprovider.jar

C:\Interstage\EJB\lib\fjcontainer94.jar

C:\Interstage\eswin\lib\esnotifyjava4.jar

On Solaris:
/opt/FJSVj2ee/lib/isj2ee.jar

/opt/FSUNod/etc/class/ODjava4.jar

/opt/FJSVjms/lib/fjmsprovider.jar

/opt/FJSVes/lib/esnotifyjava4.jar

/opt/FJSVejb/lib/fjcontainer94.jar

On Linux:
/opt/FJSVj2ee/lib/isj2ee.jar

/opt/FJSVod/etc/class/ODjava4.jar

/opt/FJSVejb/lib/fjcontainer94.jar

/opt/FJSVes/lib/esnotifyjava4.jar

/opt/FJSVjms/lib/fjmsprovider.jar

3. Add the following directories to the PATH environment variable:
On Windows:
C:\Interstage\bin

On UNIX or Linux:
/opt/FJSVj2ee/bin

/opt/FJSVjms/bin

4. Add the following directories to the LD_LIBRARY_PATH environment variable:
On Solaris:
/opt/FSUNod/lib

/opt/FJSVjms/lib

On Linux:
/opt/FJSVod/lib

/opt/FJSVjms/lib

5. Go to the directory <JDK Installation Directory>/jre/lib. Open the orb.properties file
and add the following values:

Interstage Business Process Manager Developer's Guide 52

4: Using the Model API

org.omg.CORBA.ORBClass=com.fujitsu.ObjectDirector.CORBA.ORB

org.omg.CORBA.ORBSingletonClass=com.fujitsu.ObjectDirector.CORBA.SingletonORB

javax.rmi.CORBA.StubClass=com.fujitsu.ObjectDirector.rmi.CORBA.StubDelegateImpl

javax.rmi.CORBA.UtilClass=com.fujitsu.ObjectDirector.rmi.CORBA.UtilDelegateImpl

javax.rmi.CORBA.PortableRemoteObjectClass=
com.fujitsu.ObjectDirector.rmi.CORBA.PortableRemoteObjectDelegateImpl

4.1.2 Specifying Configuration Settings for Interstage Application Server
(Remote)
Prerequisite:Set up your system environment as explained in section System Environment on page
51.

You can use the Model API on a remote computer (that is on a computer different from the one
hosting the Interstage Application Server).
To use the Model API on a remote computer:
1. On your remote computer, install the Interstage Application Server Client Package.

Refer to the Interstage Application Server Installation Guide for detailed information.

2. Copy the following JAR file to your remote computer and add the JAR file to the CLASSPATH
environment variable:
On Windows:
<Interstage Application Server Installation
Directory>/J2EE/var/deployment/ijserver/<Work Unit Name of the Interstage BPM
Server>/distribute/fujitsu-ibpm-engine.ear/fujitsu-ibpm-engine-ejb.jar/fujitsu-
ibpm-engine-ejb_jar_client.jar

On Solaris/Linux
<Interstage Application Server Installation
Directory>/FJSVj2ee/var/deployment/ijserver/<Work Unit Name of the Interstage
BPM Server>/distribute/fujitsu-ibpm-engine.ear/fujitsu-ibpm-engine-
ejb.jar/fujitsu-ibpm-engine-ejb_jar_client.jar

3. Add the following JAR files to the CLASSPATH environment variable:
On Windows:
C:\Interstage\J2EE\lib\isj2ee.jar

C:\Interstage\ODWIN\etc\class\ODjava4.jar

C:\Interstage\jms\lib\fjmsprovider.jar

C:\Interstage\ODWIN\etc\class\esnotifyjava4.jar

C:\Interstage\EJBCL\lib\fjcontainer94.jar

On Solaris:
/opt/FJSVj2ee/lib/isj2ee.jar

/opt/FSUNod/etc/class/ODjava4.jar

/opt/FJSVjms/lib/fjmsprovider.jar

/opt/FJSVes/lib/esnotifyjava4.jar

/opt/FJSVejb/lib/fjcontainer94.jar

On Linux:

Interstage Business Process Manager Developer's Guide 53

4: Using the Model API

/opt/FJSVj2ee/lib/isj2ee.jar

/opt/FJSVod/etc/class/ODjava4.jar

/opt/FJSVejb/lib/fjcontainer94.jar

/opt/FJSVes/lib/esnotifyjava4.jar

/opt/FJSVjms/lib/fjmsprovider.jar

4. Add the following directories to the PATH environment variable:
On Windows:
C:\Interstage\bin

On UNIX or Linux:
/opt/FJSVj2ee/bin

/opt/FJSVjms/bin

5. Add the following directories to the LD_LIBRARY_PATH environment variable:
On Solaris:
/opt/FSUNod/lib

/opt/FJSVjms/lib

On Linux:
/opt/FJSVod/lib

/opt/FJSVjms/lib

6. Go to the directory <JDK Installation Directory>/jre/lib. Open the orb.properties file
and add the following values:
org.omg.CORBA.ORBClass=com.fujitsu.ObjectDirector.CORBA.ORB

org.omg.CORBA.ORBSingletonClass=com.fujitsu.ObjectDirector.CORBA.SingletonORB

javax.rmi.CORBA.StubClass=com.fujitsu.ObjectDirector.rmi.CORBA.StubDelegateImpl

javax.rmi.CORBA.UtilClass=com.fujitsu.ObjectDirector.rmi.CORBA.UtilDelegateImpl

javax.rmi.CORBA.PortableRemoteObjectClass=
com.fujitsu.ObjectDirector.rmi.CORBA.PortableRemoteObjectDelegateImpl

7. Execute the following command to configure the server host for the CORBA services that work
on the Interstage Application Server:
odsethost –a –h MyServer –p 8002

When several server hosts are registered with this command, Model API tries to connect
to the server that was registered first. If you want to connect to another server, execute the
odsethost command with the -a or -d option to change the order of the server hosts.

Note:

8. Execute the following command to register the definition of the JMS connection factory:
jmsmkfact –t –i IflowClient TopicConnectionFactory

You can display the list of connection factory definitions by executing the jmsinfofact
command.

Note:

9. Execute the following commands to register the definitions of the JMS destinations:
jmsmkdst –t –g IflowECG2 –c IflowECNotify NotificationTopic

jmsmkdst –t –g IflowECG2 –c IflowSQNotify SQNotificationTopic

Interstage Business Process Manager Developer's Guide 54

4: Using the Model API

You can display the list of JMS destination definitions by executing the jmsinfodst
command.

Note:

10. If you wish to use the JMS interface of Interstage BPM, execute the following commands to
register the definitions of the JMS destinations:
jmsmkdst -t -g IflowECG2 -c IflowECCommand CommandTopic

jmsmkdst -t -g IflowECG2 -c IflowECResponse ResponseTopic

For more information about the JMS interface, refer to section Samples Related to the JMS
Interface on page 211.

4.1.3 SpecifyingConfigurationSettings forWebSphereApplicationServer
for developing Standalone Applications (Local)
Prerequisite:Set up your system environment as explained in section System Environment on page
51 of the Interstage BPM Developer's Guide.

To develop standalone applications using the Model API on WebSphere Application Server,
add the following JAR files to the CLASSPATH environment variable:

<WAS AppServer home> in the JAR files below, stands for <WAS installation
dir>\IBM\WebSphere\AppServer

Note:

• <WAS AppServer home>\plugins\com.ibm.ws.runtime_6.1.0.jar

• <WAS AppServer home>\plugins\com.ibm.ws.sib.server_2.0.0.jar

• <WAS AppServer home>\plugins\com.ibm.ws.sib.utils_2.0.0.jar

• <<WAS AppServer home>\runtimes\com.ibm.ws.webservices.thinclient_6.1.0.jar

• <WAS AppServer
home>\deploytool\itp\plugins\com.ibm.websphere.v61_6.1.200\ws_runtime.jar

• Depending on your operating system:
• On Windows:

C:\Fujitsu\InterstageBPM\server\deployment\InterstageBPMServer.ear\fujitsu-ibpm-engine-ejb.jar

• On Solaris or Linux:
/opt/FJSVibpm/server/deployment/InterstageBPMServer.ear/fujitsu-ibpm-engine-ejb.jar

4.1.4 SpecifyingConfigurationSettings forWebSphereApplicationServer
for Deploying Client J2EE Application (Local)
Prerequisite: Make sure that the WebSphere Application Server of the version stated in the System
Requirements is properly installed and running on your machine.
You can use Model API in your J2EE application on the same machine where the Interstage BPM
Server is installed.

Interstage Business Process Manager Developer's Guide 55

4: Using the Model API

To deploy Client J2EE Application for WAS:
1. Create a J2EE application (EAR) including your web application and

fujitsu-ibpm-engine-model-ejb.jar as follows:
a) Create a new folder, for example, My Application on your computer, and copy the following

files/folders to it:
• your application WAR file (for example myapp.war)
• fujitsu-ibpm-engine-model-ejb.jar from IBPM Server installation directory, which is

<IBPMServer_Installation_Directory>\client\lib\

• the META-INF folder which contains the deployment descriptor for your J2EE application

b) Specify fujitsu-ibpm-engine-model-ejb.jar as a module in your application deployment
descriptor (application.xml). For example,

<module id="EjbModule_1187608318108">
<ejb>fujitsu-ibpm-engine-model-ejb.jar</ejb>

</module>

"EjbModule_1187608318108" can be customized.Note:

Refer to sample deployment descriptor from Interstage BPM CD-Image under
console\ibpmconsole-ear\

c) From My Application, run the following command: <java_home>/jar.exe cvfm myapp.ear
META-INF\MANIFEST.MF .

2. Deploy the J2EE Application(EAR), you created in the previous step, on WebSphere Application
Server with single class loader option.
a) In WAS Console, select Applications>Enterprise Applications.

A list of Enterprise Applications appears.

b) Click the link for your application.
The configuration page for the application appears.

c) Select the Class loading and update detection link.
The class loader details page appears.

d) In the WAR class loader policy section, select the Single class loader for application
option, and click Apply. Save your changes.

3. Copy fujitsu-ibpm-engine-ejb.jar from
<IBPM_installation_directory>\server\deployment\InterstageBPMServer.ear\ to
<J2EE_APP_HOME> \WEB-INF\lib location.

4. Copy iFlow.jar and js.jar from <IBPM_installation_directory>\client\lib\ to
<J2EE_APP_HOME>\WEB-INF\lib.

5. Start J2EE application.

<J2EE_APP_HOME> stands for
<WAS_APPSERVER_HOME>\profiles\AppSrv01\installedApps\<cell
Name>\<application_ name>.ear\<web_application_name>.war\.

Note:

Interstage Business Process Manager Developer's Guide 56

4: Using the Model API

4.1.5 SpecifyingConfigurationSettings forWebSphereApplicationServer
for developing Standalone Applications (Remote)
Prerequisite:Set up your system environment as explained in section System Environment on page
51 of the Interstage BPM Developer's Guide.

To use the Model API for developing standalone applications on a remote computer (that is
on a computer different from the one hosting the WebSphere Application Server):
1. Install WebSphere Application Client on the remote machine. During installation, ensure you:

a) Select Custom J2EE and thin client as the setup type.
b) Select the Web Services Thin Client feature.

2. Copy iFlow.jar and fujitsu-ibpm-engine-ejb.jar to the remote machine and add these
files to the CLASSPATH environment variable.

3. Add the following WAS Client JAR files to the CLASSPATH environment variable:

<WAS AppClient home> in the JAR files below, stands for <WAS Client installation
dir>\IBM\WebSphere\AppClient.

Note:

• <WAS AppClient home>\plugins\com.ibm.ws.runtime_6.1.0.jar

• <WAS AppClient home>\plugins\com.ibm.ws.emf_2.1.0.jar

• <WAS AppClient home>\plugins\com.ibm.ws.wccm_6.1.0.jar

• <WAS AppClient home>\plugins\com.ibm.ws.sib.client_2.0.0.jar

• <WAS AppClient home>\plugins\com.ibm.ws.sib.utils_2.0.0.jar

• <WAS AppClient home>\runtimes\com.ibm.ws.webservices.thinclient_6.1.0.jar

4. Execute the client program using the JDK of WebSphere Application Client.

4.1.6 SpecifyingConfigurationSettings forWebSphereApplicationServer
for Deploying Client J2EE Application (Remote)
Prerequisite: Ensure that there are two machines, Machine A and Machine B, for instance, and
WebSphere Deployment manager as well as IBPM Server is installed in Machine A and WebSphere
Application server is installed in Machine B. Make sure that the WebSphere Application Server of
both machines is of the version stated in the System Requirements .

To deploy Client J2EE Application for WAS:
1. On Machine B, create a J2EE application(EAR) including your web application and

fujitsu-ibpm-engine-model-ejb.jar as follows:
a) Create a new folder, for example, My Application on your computer, and copy the following

files/folders to it:
• your application WAR file (for example myapp.war)
• fujitsu-ibpm-engine-model-ejb.jar from IBPM Server installation directory, which is

<IBPMServer_Installation_Directory>\client\lib\

• the META-INF folder which contains the deployment descriptor for your J2EE application

Interstage Business Process Manager Developer's Guide 57

4: Using the Model API

b) Specify fujitsu-ibpm-engine-model-ejb.jar as a module in your application deployment
descriptor (application.xml). For example,

<module id="EjbModule_1187608318108">
<ejb>fujitsu-ibpm-engine-model-ejb.jar</ejb>

</module>

"EjbModule_1187608318108" can be customized.Note:

Refer to sample deployment descriptor from Interstage BPM CD-Image under
console\ibpmconsole-ear\

c) From My Application, run the following command: <java_home>/jar.exe cvfm myapp.ear
META-INF\MANIFEST.MF .

2. Deploy the J2EE Application(EAR), you created in the previous step, on Machine B's WebSphere
Application Server with single class loader option.
a) In WAS Console, select Applications>Enterprise Applications.

A list of Enterprise Applications appears.

b) Click the link for your application.
The configuration page for the application appears.

c) Select the Class loading and update detection link.
The class loader details page appears.

d) In the WAR class loader policy section, select the Single class loader for application
option, and click Apply. Save your changes.

3. Configure the JMS related settings on Deployment Manager of Machine A as follows:
a) Add managed nodes of Machine A and Machine B to the Deployment Manager. For details

refer the AddingManaged Nodes section of the Interstage BPMServer and Console Installation
Guide (WebSphere Application Server).

b) A SI Bus machineANode01IBPMBuss will be created during IBPM server installation on Machine
A. Add Server B as Member of this SI Bus, as follows:

Server A already exists on the SI Bus on Machine A.Note:

1. On the Buses page, click the name of the machineANode01IBPMBuss bus.
2. On the Configuration tab, click Bus members.
3. Click Add.
4. Select machineANode01:server1 from the Server drop-down list and click Next.
5. Make sure that File Store is selected as the message store and click Next.
6. Use the default message store properties and click Next.
7. Click Finish.
8. In the message displayed at the top of the page, click Review . Select Synchronize

changes with Nodes and click Save to save the configuration.

c) Add SQNotificationTopic and NotificationTopic to your J2EE Application(EAR)as
follows:
1. Go to Resources > JMS tab and select Topics.
2. Select scope as Node = machineBNode01, Server = server1.

Interstage Business Process Manager Developer's Guide 58

4: Using the Model API

3. Click on New, leave the default setting as it is and then select ok.
4. Specify the field details for SQNotificationTopic as follows:

• Name as iFLowSQNotificationTopic

• JNDI name as iFlow/jms/sq/SQNotificationTopic

• Topic name as SQNotification_MDB_TOPIC

• Select machineANode01IBPMBuss as Bus name
• Select SQNotification.Topic.Space as Topic space from the list
• Select Nonpersistent for JMS delivery mode
leave all other values as it is.

5. Select Apply, then review and save the configuration.
6. Repeat steps 1 to 5 for NotificationTopic. Specify the field details as follows:

• Name as iFLowNotificationTopic

• JNDI name as iFlow/jms/NotificationTopic

• Topic name as JmsNotification_MDB_TOPIC

• Select machineANode01IBPMBuss as Bus name
• Select JmsNotification.Topic.Space as Topic space from the list
• Select Nonpersistent for JMS delivery mode
leave all other values as it is.

d) AddActivation Specification for SQNotificationTopic and NotificationTopic as follows:
1. Go to Resources > JMS tab and select Activation Specification.
2. Select scope as Node = machineBNode01, Server = server1.
3. Click on New, leave the default setting as it is and then select ok.
4. Specify the field details for SQNotificationTopic as follows:

• Name as SQNotificationTopic

• JNDI name as eis/SQNotificationTopic

• Destination type as Topic

• Destination JNDI name as iFlow/jms/sq/SQNotificationTopic

• Select machineANode01IBPMBuss as Bus name
leave all other values as it is.

5. Select Apply, then review and save the configuration.
6. Repeat steps 1 to 5 for NotificationTopic. Specify the field details as follows:

• Name as NotificationTopic

• JNDI name as eis/NotificationTopic

• Destination type as Topic

• Destination JNDI name as iFlow/jms/NotificationTopic

• Select machineANode01IBPMBuss as Bus name
leave all other values as it is.

4. Copy fujitsu-ibpm-engine-ejb.jar from
<IBPM_installation_directory>\server\deployment\InterstageBPMServer.ear\ to
<J2EE_APP_HOME> \WEB-INF\lib location.

Interstage Business Process Manager Developer's Guide 59

4: Using the Model API

5. Copy iFlow.jar and js.jar from <IBPM_installation_directory>\client\lib\ to
<J2EE_APP_HOME>\WEB-INF\lib.

6. Restart both Server A and Server B respectively.

<J2EE_APP_HOME> stands for
<WAS_APPSERVER_HOME>\profiles\AppSrv01\installedApps\<cell
Name>\<application_ name>.ear\<web_application_name>.war\.

Note:

4.1.7 Specifying Configuration Settings for WebLogic
Prerequisite:Set up your system environment as explained in section System Environment on page
51.

• If you want to develop applications using the Model API on the WebLogic Application Server, add
the following JAR files to the CLASSPATH environment variable:
<BEA WebLogic Installation Directory>/weblogic92/server/lib/wlclient.jar

<BEA WebLogic Installation Directory>/weblogic92/server/lib/wljmsclient.jar

4.1.8 Specifying Configuration Settings for JBoss
Prerequisite:Set up your system environment as explained in section System Environment on page
51.

• If you want to develop applications using the Model API on the JBoss Application Server, add
the following directory containing the required JAR files to the CLASSPATH environment variable:
<JBoss Installation Directory>/client, for example,
/opt/jboss-4.0.5.GA/client/jbossall-client.jar.

4.2 Executing a Model API Application
Prerequisites:
• RMI access is possible to the computer where Interstage BPM is installed.
• The Interstage BPM Server has been started.

To execute your Model API application:
• In your Interstage BPM Server installation directory, you find a script for starting the programming

samples provided with Interstage BPM:
On Windows C:\Fujitsu\InterstageBPM\client\samples\examples\bin\StartSamples.bat
On UNIX or Linux /opt/FJSVibpm/client/samples/examples/bin/StartSamples.sh

• You need to ALWAYS execute the command specified in the "Start the Sample" section of this
script BEFORE you can execute a client application. This script requires you to enter the Java
class name of your application.
For details on how to use the samples, refer to Appendix Using the Interstage Business Process
Manager Samples on page 209.

Interstage Business Process Manager Developer's Guide 60

4: Using the Model API

4.3 Location of Properties Files
You can access properties files from within your Model API application. The following code fragment
shows an example of how to load the iFlowClient.properties file:

Properties iflowProps = new Properties();
try {

FileInputStream fin = new FileInputStream("iFlowClient.properties");
iflowProps.load(fin);

}
finally {

fin.close();
}

As a default, properties files are loaded from the current runtime directory. You need to store your
properties files there. The sample iFlowClient.properties file is located in the following directory:
<Interstage BPM Server Installation Directory>/client

If you want to store your properties file in a different directory, you need to specify the file's absolute
path or the path relative to the current runtime directory. The following is an example:

Properties iflowProps = new Properties();
try {

FileInputStream fin = new
FileInputStream("C:\\Fujitsu\\InterstageBPM\\iFlowClient.properties");

iflowProps.load(fin);
}
finally {

fin.close();
}

For Interstage Application Server, the following properties available in the iflow.properties
file are NOT used:
NamingProviderURL and JMSNamingProviderURL.

Note:

4.4 Model API Architecture
The Model API allows you to access and manipulate Interstage BPM, including its administration
function. With the Model API you can build your own applications which you can integrate in your
own graphical user interface.
The Model API contains, among others, the following packages. For detailed information, refer to
the API Javadoc.
• com.fujitsu.iflow.model.event: Contains interfaces and classes that listen for changes in

the Interstage BPM objects to provide proactive notification to the user.
• com.fujitsu.iflow.model.util: Contains low level utility classes that are commonly used by

other classes and interfaces. It also contains Exceptions thrown by the Model classes themselves.
• com.fujitsu.iflow.model.wfadapter: Contains interfaces that manage the Document

Management System (DMS). This includes retrieving and updating information about folders and
attachments in the DMS, checking objects in or out from the DMS.

• com.fujitsu.iflow.model.workflow: Contains interfaces that manage information required
by the workflow process definitions and process instances. This includes objects that represent

Interstage Business Process Manager Developer's Guide 61

4: Using the Model API

nodes, arrows, forms, attachments, work items and permission levels. The programming examples
explained in this manual, above all, use the following interfaces:
• Arrow interface: Used for creating and manipulating arrows.
• ArrowInstance interface: Used to access arrow attributes within a process instance.
• AttachmentRef interface: Used to access attachments to a process instance in the DMS.

There is no limit to the number of attachments that can be associated with a process instance,
and there are no restrictions on the types of attachments that can be added.

• DataItemRef interface: Used to hold the name, type, and initial value of User Defined Attributes
(UDAs) defined in a process definition.

• JavaActionSet interface: Provides methods for using Java Actions within process definitions.
• Node interface: Defines all the functions that can be used to obtain information about any node

type within a process definition.
• Plan interface: Used for creating and manipulating process definitions.
• ProcessInstance interface: Provides operations for creating and initiating a process instance.
• WFAdminSession interface: Provides methods used by an administrator. Extends the WFSession

interface.
• WFDetailsList interface: Allows for retrieving information about multiple objects at a time.
• WFObjectList interface: Allows for advanced sorting and filtering of process definitions,

process instances or work items.
• WFSession interface: Provides methods for establishing and maintaining access to the

Interstage BPM Server for the entire time a user is logged into it.
• WorkItem interface: Provides access to all aspects of a work item, that is, an activity that is

assigned to a particular user.

• com.fujitsu.iflow.server.intf: Contains an interface that provides access to workflow data.
This interface is called ServerEnactmentContext. This interface also contains classes for
implementing action agents.

4.5 Exception Handling
There are two levels of exceptions thrown by the Model API. The ModelException class is the super
class. Use this class for your exception handling.
The ModelException class contains some sub classes. For reasons concerning the future
compatibility, use the ModelException class only.

Interstage Business Process Manager Developer's Guide 62

4: Using the Model API

5 Designing Process Definitions
This chapter provides programming examples, using the Model API, for designing process definitions
and starting process instances.
The examples include:
• Logging in/logging out a normal user
• Creating a process definition with a Start Node, Activity Node and Exit Node
• Starting a process instance
• Executing work items

5.1 Designing a Simple Process Definition
To get started you can build a simple process definition with a Start Node, an Activity Node and an
Exit Node, using the Model API.
You can find the complete programming code of the examples presented in this section in the
SimplePlan.java sample file.
Before creating a process definition, a user must be logged in, and a workflow appliction selectd.
Afterwards he/she can create a simple process definition, whose basic structure consists of one and
only one Start Node, an Activity Node and at least one Exit Node. Logging in a user means to create
a session, i.e. a WFSession object. This session is finished when a user is logged out again.

Interstage Business Process Manager Developer's Guide 63

5: Designing Process Definitions

The following figure shows the necessary steps for designing a process definition using the Model
API:

Figure 7: Designing a Process Definition Using the Model API

Interstage Business Process Manager Developer's Guide 64

5: Designing Process Definitions

5.1.1 Logging in/Logging out a Normal User
Before working with process definitions, a tenant user must be logged in to the Interstage BPM
Server. When working with process definitions is finished, he/she must log out again.
To log in/log out a tenant user:
1. Create a new WFSession object.

WFSession session;
session = WFObjectFactory.getWFSession();

Use the WFObjectFactory class for accessing workflow objects. getWFSession() then creates
a WFSession object.

2. Initialize the session with the appropriate configuration file.
You can use the default iFlowClient.properties file located in <Interstage BPM Server
Installation Directory>/client.
Either use this file or write the configuration parameters into a new file, which must be located in
the current runtime directory. For the location of the current runtime directory, refer to section
Location of Properties Files on page 61.

Ensure you specify the tenant name logged in for the property file used. The tenant name
is specified for value of WFObjectFactory.TENANT_NAME(TenantName).
TenantName=Default is specified for login to Default tenant.

Note:

In the iFlowClient.properties file, any backslashes "\" or colons ":" are escaped by
backslashes. For example, a server address is specified like this:
ibpmhost\:49950

When loading the iFlowClient.properties file using the java.util.Properties.load()
method, escape characters will automatically be taken into account. If you use another way
to load the properties, make sure that you handle any escape characters correctly. For
details about escape sequences that may occur in the iFlowClient.properties file, refer
to the Java documentation of the java.util.Properties.store() method.

Note:

Load the configuration file iFlowClient.properties for the session:

Properties sessionProps = new Properties();
sessionProps.load(new

FileInputStream("../classes/iFlowClient.properties"));

Initialize the session:

session.initForApplication(null, sessionProps);

3. Log in a user.

String server = sessionProps.getProperty("HostName") + "Flow";
session.logIn(server, userName, password);

For implementation reasons, always attach the constant "Flow" to the given host name.

Interstage Business Process Manager Developer's Guide 65

5: Designing Process Definitions

4. After work with the process definition is finished, the user has to log out from the WFSession. To
log out a user:

if (session != null) {
session.logOut();
}

5.1.2 Choosing a Workflow Application
After logging in, choose a workflow application within which you want to operate, using
WFSession.chooseApplication()

session.chooseApplication(myApplicationID);

If the ApplicationModeSecurity server parameter is set to Relax, choosing an application
is optional. To know about detailed behavior when an application is not chosen, refer the
ApplicationModeSecurity parameter in the Interstage BPMServer Administration Guide.

Note:

5.1.3 Designing a Process Definition with Start Node, Activity Node and
Exit Node
After a user is logged in, the user can design a new process definition. A simple process definition
consists of only one Start Node, of one or more Activity Nodes and of one or more Exit Nodes.

Before creating a process definition, ensure you select an application.Note:

A Start Node identifies the start of a process. Every process definition must have one and only one
Start Node. AnActivity Node represents a step in the process where human intervention is planned.
A process definition may have any number of Activity Nodes. An Exit Node identifies the end of a
process. Every process definition must have at least one Exit Node.
Each node can be connected to each other with arrows. The fundamental purpose of an arrow is to
control the flow within a process. When a node completes, the process instance moves from the tail
of an arrow to the head of another arrow. There is no limit to the number of arrows that can enter or
leave a node (except for Start Nodes, which can only have an unlimited number of arrows leaving
them, or Exit Nodes, which can only have an unlimited number of arrows entering them).
To design a process definition:
1. Create an empty process definition object with WFObjectFactory.getPlan(). Set the current

session to the process definition object with Plan.setWFSession().

Plan plan = null;
plan = WFObjectFactory.getPlan();
plan.setWFSession(session);

2. Before adding nodes and arrows to a process definition, change the current mode of the process
definition to edit-mode with startEdit() from the Plan interface.

plan.startEdit();

Interstage Business Process Manager Developer's Guide 66

5: Designing Process Definitions

3. You can add some general information to the process definition with setName(), setTitle(),
and setDesc() from the Plan interface.

plan.setName("My Plan");
plan.setTitle("My first process definition");
plan.setDesc("Creation of a simple process definition");

4. Add the Start Node, Activity Node, and Exit Node to the process definition object.
For adding nodes use addNode(name, nodeType) from the Plan interface. The constant nodeType
defines the node type you want to add. You find the possible values for this constant in the Node
interface.
setPosition() from the Node interface defines the position of a node. Each node has an X and
Y coordinate to show where it resides on the canvas if it is shown graphically. This positioning
information is implementation-specific, so it will depend on how the node is represented. When
setting this parameter, choose a coordinate system that is appropriate for your implementation.
a) To add a Start Node:

Node startNode = plan.addNode("Start", Node.TYPE_START);
startNode.setPosition(new Point(100, 150));

b) For Activity Nodes you can assign a User Group with setRole() from the Node interface. In
addition, you can define whether the Activity Node will generate a group work item when it
becomes active, or individual work items for every member of the Group assigned to the
Activity node. This setting also depends on the value of the SupportGroupWorkItem parameter
of the Interstage BPM Server. By default, this parameter is set to false. Refer to the Interstage
Business Process Manager Server Administration Guide for details on the
SupportGroupWorkItem parameter.
To add an Activity Node :

Node activityNode = plan.addNode("Activity", Node.TYPE_ACTIVITY);
activityNode.setPosition(new Point(200, 250));
activityNode.setRole("SampleGroup");
activityNode.markForExpandGroups(false);

Only Activity Nodes and Voting Activity Nodes support assigning Groups.

c) To add an Exit Node:

Node exitNode = plan.addNode("Exit", Node.TYPE_EXIT);
exitNode.setPosition(new Point(300, 350));

5. Connect nodes with arrows using addArrow() from the Node interface. When adding an arrow,
specify the name, source and target of the arrow.

Arrow goArrow = plan.addArrow("go", startNode, activityNode);
Arrow stopArrow = plan.addArrow("stop", activityNode, exitNode);

6. After adding nodes and arrows to a process definition object, you need to validate it with
validatePlan() from the Plan interface.

plan.validatePlan();

Interstage Business Process Manager Developer's Guide 67

5: Designing Process Definitions

7. Create a process definition with createProcessDef() from the Plan interface.

plan = plan.createProcessDef();

A process definition will not be created on the Interstage BPM Server until you use
createProcessDef(). At this point, when the process definition object is committed to the
Interstage BPM Server, the Interstage BPM Server assigns a process definition ID to it.

Note:

If you are in SaaS mode, you must choose an application before working with a process
definition; if you are in non-SaaS mode, it is not mandatory to choose an application before
working with a process definition (except while creating it).

Note:

The figure below illustrates the resulting process definition.

Figure 8: Simple Process Definition with a Start Node, Activity Node and Exit Node

5.2 Designing a Complex Process Definition
This section provides programming instructions for creating a complex process definition with nearly
all possible components. You can find the complete programming code of the examples presented

Interstage Business Process Manager Developer's Guide 68

5: Designing Process Definitions

in this section in the ComplexPlan.java sample file. The following figure illustrates how the workflow
elements defined in the sample file interact.

Figure 9: A Complex Process Definition with Different Node Types

In the previous section, you learned how to add basic workflow elements like Start Node, Exit Nodes,
and Activity Nodes. The following sections explain how to add User Defined Attributes and how to
add additional node types like Voting Activity Nodes, AND Nodes, OR Nodes, and so on.
To design a complex process definition:
1. Log in a user.

Interstage Business Process Manager Developer's Guide 69

5: Designing Process Definitions

Refer to section Logging in/Logging out a Normal User on page 65 for information about to how
to log in and log out a user.

2. Use startEdit() from the Plan interface to set the edit-mode for a process definition.
Once in edit-mode, the Interstage BPM Server locks the process definition so that no other user
can make changes to it while an edit session is running. Only draft or private process definitions
can be edited. Draft process definitions can be edited only if there are no current running process
instances associated with them.

3. Add a Start Node, at least one Exit Node and the required Activity Nodes.
Refer to section Designing a Process Definition with Start Node, Activity Node and Exit Node on
page 66 for information about how to add these node types.

4. Add User-Defined Attributes to the process definition. Add the other node types like Voting Activity
Nodes, AND Nodes, and so on.
For details, refer to the following sections.

5. Connect the nodes with arrows.
For details, refer to section Designing a Process Definition with Start Node, Activity Node and
Exit Node on page 66.

6. Validate the process definition and create it.
For details, refer to section Designing a Process Definition with Start Node, Activity Node and
Exit Node on page 66.

7. Check if you want to make use of the extended features for enhancing your business processes,
such as Java Actions, Extended attributes, agents, timers, error handling, etc.
For details, refer to chapter Enhancing Interstage Business Process Manager on page 88.

5.2.1 Adding User Defined Attributes
The DataItemRef interface is used to hold the identifier, the name, type, and the initial values of
User Defined Attributes (UDAs) defined in the process definitions.
UDAs are variables that are global to the process instance, so that all nodes within the process
instance can access all of the UDAs. UDAs specify the behaviour of nodes and store data for process
execution.
UDAs have one of the following data types: BIGDECIMAL, BOOLEAN, DATE, FLOAT, INTEGER,
LONG, STRING, XML.

Interstage Business Process Manager Developer's Guide 70

5: Designing Process Definitions

A UDA has a name and an identifier.
The UDA name

Note:

• is user-defined
• may contain any character (maximum: 64 characters)
• must not start with two underscores (__), because two underscores are used as prefix

of UDAs created and maintained by the system.
The UDA identifier
• is either user-defined or generated by the system. If you do not specify an identifier when

creating a UDA, the identifier is automatically generated as follows: The name is taken
as input; all special characters are removed. If this "sanitized name" (identifier) is longer
than 32 characters, empty or not unique, the identifier will be composed of the prefix
'uda<number>', e.g. 'uda1'. The number is increased by one each time a new UDA is
added that fulfills the above conditions.

• may consist of a maximum of 32 characters
• may not contain any special characters (all characters except 'a' - 'z', 'A' - 'Z', '0' - '9')
• must be unique throughout the entire process definition
For every user interaction, the UDA name is to be used. Whenever necessary, the name
is automatically mapped to the identifier. Once created, the UDA identifier cannot be changed
anymore; the UDA name can, however, be changed any time.

To add UDAs to a process definition:
1. Make sure that you have changed the current mode of the process definition to edit-mode with

startEdit() from the Plan interface.
2. To add UDAs, use addDataItemRef() or addDataItemRefWithId() from the Plan interface.

Using the first method will generate an identifier for the UDA; using the second method, you can
define your own identifier.

Example
protected final static String WLUDA_PRICE = "Price";
protected final static String WLUDA_QTY = "Qty";
protected final static String WLUDA_TOTAL = "Total";

DataItemRef udaPrice = plan.addDataItemRef(WLUDA_PRICE,
DataItemRef.TYPE_FLOAT, "0.0");

DataItemRef udaQty = plan.addDataItemRef(WLUDA_QTY,
DataItemRef.TYPE_INTEGER, "0");

DataItemRef udaTotal = plan.addDataItemRef(WLUDA_TOTAL,
DataItemRef.TYPE_FLOAT, "0.0");

DataItemRef udaJavaActionTest = plan.addDataItemRefWithId(
"JavaActionTest", "My JA Test", DataItemRef.TYPE_STRING, "0");

DataItemRef udaMapping = plan.addDataItemRefWithId(
("MapUDAParent", "Mapping UDA Parent",
DataItemRef.TYPE_STRING,
"This value is from parent process");

DataItemRef udaCondition = plan.addDataItemRef("Condition",
DataItemRef.TYPE_STRING, "");

Interstage Business Process Manager Developer's Guide 71

5: Designing Process Definitions

DataItemRef udaSec = plan.addDataItemRef("SEC",
DataItemRef.TYPE_STRING, "sec");

Use the isIdentifierUnique(String ID) method from the Plan interface for checking
whether a user-defined identifier is unique within the entire process definition.

Note:

5.2.2 Using Voting Activity Nodes
A Voting Activity Node uses voting rules to determine the choice (activity’s outgoing arrow) that wins.
For every Voting Activity Node you specify the rules for voting.
To add a Voting Activity Node:
1. Create a node using addNode(). Set the constant nodeType to TYPE_VOTING_ACTIVITY.

Node directorApproveNode = plan.addNode("Approve",
Node.TYPE_VOTING_ACTIVITY);

directorApproveNode.setRole(userGroup);
directorApproveNode.setPosition(new Point(290, 350));

2. Define the rules and the threshold for the Voting Activity Node using setVotingRule() from the
Node interface.
Choose between the following types of rules:
• NUMBER

• PERCENTAGE

• MAJORITY

The threshold defines the value when a vote is performed.

directorApproveNode.setVotingRule("Reject",
VotingRule.TYPE_NUMBER, 1);

directorApproveNode.setVotingRule("Approve",
VotingRule.TYPE_NUMBER, 1);

The sample code specifies a voting rule of type NUMBER with the threshold 1 for both outgoing
arrows. This means, if one user makes a choice, the action associated with the arrow is performed.

3. Specify the time when the votes are checked using setEvaluateRulesMode().
You can choose between the following:
• Node.ON_EVERY_VOTE: Conditions will be checked after every vote.
• Node.WHEN_ALL_VOTES_ARE_CAST: Conditions will be checked after all users of the assigned

Group have voted.

directorApproveNode.setEvaluateRulesMode(Node.ON_EVERY_VOTE);

4. Define the default choice for the voting rule with setDefaultChoice().

directorApproveNode.setDefaultChoice("Reject");

5.2.3 Adding AND Nodes and OR Nodes
An AND Node represents a step in a process where the process instance pauses to synchronize
multiple threads of execution. A process definition can have any number of AND Nodes.

Interstage Business Process Manager Developer's Guide 72

5: Designing Process Definitions

An OR Node represents a step in a process from where a single branch of control splits into multiple
parallel branches. A process definition can have any number of OR Nodes.
• To add an AND Node:

Use addNode() and set the constant nodeType to TYPE_AND.

Node andNode = plan.addNode("And Node", Node.TYPE_AND);
andNode.setPosition(new Point(440, 460));

• To add an OR Node:
Use addNode() and set the constant nodeType to TYPE_OR.

Node orNode = plan.addNode("Or Node", Node.TYPE_OR);
orNode.setPosition(new Point(430, 230));

5.2.4 Using Conditional Nodes
A Conditional Node is an Activity Node with a Prologue Action. After adding the Conditional Node
to the process definition you first have to define a Prologue Action and then you have to specify the
condition for the node.
To add a conditional node:
1. Use addNode() and set the constant nodeType to TYPE_CONDITION.

Node CondNode = plan.addNode("Conditional Node",
Node.TYPE_CONDITION);

CondNode.setPosition(new Point(430, 140));

2. Define the Prologue Actions. Refer to chapter Enhancing Interstage Business Process Manager
on page 88 for details.

3. Define the conditions for the Conditional Node using getConditionSpec() and
setCondBranchSpecInfo() from the Node interface.

Example
In the following example, three conditions for the outgoing arrows of a Conditional Node are defined.
The values of the User Defined Attribute (UDA) Total represent the borders for a given budget:
• Modify PR: Total <= 0.0 (default)
• Manager Approval Required: Total > 0.0 and Total < 1000.0
• Multiple Approvals Required: Total > 1000.0
It is not possible to use the UDA Total to decide which branch is used, because it contains two
conditions, but only one condition can be defined per branch. Therefore a further User Defined
Attribute Condition is introduced. Depending on the UDA Total the UDA Condition is set to one
of three unique values. These values are required to control which arrow is used. A Java Action,
named SampleJavaActions in this example, is used to wrap the current value of the UDA Total to
the UDA Condition, which is then checked.
The conditions for the wrapping are:

if (Total <= 0.0) {
Condition = Modify PR;

} else if (Total > 0.0 && Total <= 1000.0) {
Condition = "Manager Approval Required";

Interstage Business Process Manager Developer's Guide 73

5: Designing Process Definitions

} else if (Total > 1000.0) {
Condition = "Multiple Approvals Required";

} else {
Condition = "Modify PR";

The getConditionSpec() from the Node interface which is defined for this Conditional Node uses
this User Defined Attribute (UDA) to retrieve information about the arrow it has to choose. This is
necessary because only one ConditionSpec object can be defined containing only one UDA. With
setCondBranchSpecInfo() from the ConditionSpec interface you can add a new branch to the
ConditionSpec object.

ConditionSpec conditionSpec = condNode.getConditionSpec();
conditionSpec.setConditionAttribute("Condition");

conditionSpec.setCondBranchSpecInfo("Modify PR",
BranchSpec.EQUAL_OP, "Modify PR", true);

conditionSpec.setCondBranchSpecInfo("Multiple Approvals Required",
BranchSpec.EQUAL_OP,
"Multiple Approvals Required", false);

conditionSpec.setCondBranchSpecInfo("Manager Approval Required",
BranchSpec.EQUAL_OP, "Manager Approval Required", false);

condNode.setConditionSpec(conditionSpec);

The Interstage BPM Model API also provides a method for accessing values of XML substructures:
setConditionAttribute(String udaName, String xPath) as well as for retrieving the value of
an xPath by calling the getConditionAttributeXPath() method. Refer to the API Javadoc for
detailed information.

5.2.5 Using Subprocess Nodes
A Subprocess Node represents a step in a process where a task is accomplished by invoking another
process definition, and waiting for a result to come back. This node can be used to serve multiple
purposes, especially for reusing existing process definitions within new ones.
A single Subprocess Node can represent an entire process definition that is already designed,
accessing all of the nodes, arrows, and other characteristics of that process definition. The Subprocess
Node can then call an already existing process definition via its name.

Interstage Business Process Manager Developer's Guide 74

5: Designing Process Definitions

In the example file ComplexPlan.java a Subprocess Node calls a process definition with the name
CxPD_Approval. The following figure illustrates this process definition:

Figure 10: A Process Definition with Different Node Types called from a Subprocess Node

To use a subprocess node:
1. Add a Subprocess Node to the process definition. To do so, use addNode() and set the constant

nodeType to TYPE_SUB_PROCESS.

Node subProcessNode = plan.addNode("Multiple Approvals",
Node.TYPE_SUB_PROCESS);

subProcessNode.setPosition(new Point(406, 237));

Interstage Business Process Manager Developer's Guide 75

5: Designing Process Definitions

2. Specify the name of an existing process definition for which a process instance is to be generated
when the Subprocess Node is called. To do so, use setSubPlanName() from the Node interface.

subProcessNode.setSubPlanName(subPlan.getName());

A new process instance of the latest version of this subprocess definition will automatically be
generated.

If you need to use a subprocess definition of the same version as that of the parent process
definition, use the setSameSubPlanVersion(boolean) method of the
com.fujitsu.iflow.model.workflow.Plan interface to do this. For example, for a parent
process definition 'A' of version 2, you can use the method mentioned above to use only
version 2 (and not the latest version) of all its subprocesses. Sample code to set such
functionality for a parent process definition is as follows:

plan.startEdit();
plan.setSameSubPlanVersion(true);
plan.commitEdit();

If you set this feature for a parent process, ensure that for a version of a parent process
definition, subprocess definitions having that same version exist. If the parent process
instance tries to call a subprocess definition with a version number that does not exist, an
error is thrown.
While updating an application using the WFSession.updateApplication() method, if you
want to use the same versions of the subprocess definitions, you need to update the parent
process definition as well as the child process definitions.

Note:

3. Map the flow of information between a User Defined Attribute (UDA) in the parent process definition
and a UDA in the subprocess definition using addDataMappingElement().
A DataItemMappingElement that contains a UDA in a parent process definition mapped to a
UDA in a subprocess definition is called "input data mapping element".

subProcessNode.addDataMappingElement("MappingUDAParent",
"MappingUDAChild", DataItemMappingElement.INOUT);

Be careful when designing process definitions that have recursive subprocesses. Check all
process definitions involved and make sure that there are no infinite recursions.

Note:

5.2.6 Using Delay Nodes
A Delay Node represents a step in a process where process execution is suspended for a certain
amount of time.
To use a Delay Node:
1. Add a Delay Node to the process definition. To do so, use addNode() and set the constant

nodeType to TYPE_DELAY.

Node delayNode = plan.addNode("Delay Node", Node.TYPE_DELAY);
delayNode.setPosition(new Point(434, 500));

2. Add a timer to the Delay Node to specify how long the process execution will be suspended.
Refer to section Defining a Timer on page 150 for an example.

Interstage Business Process Manager Developer's Guide 76

5: Designing Process Definitions

5.2.7 Using Chained-Process Nodes
A Chained-Process Node represents a step in a workflow process where a new process instance is
created to accomplish a task independent of the parent process instance. This node enacts this
independent process instance as a part of the execution of the parent process instance. The
Chained-Process Node can only call an already existing process definition via its name.
In the example file ComplexPlan.java a Chained-Process Node calls a process definition with the
name CxPD_Send. The following figure illustrates this process definition.

Figure 11: A Process Definition Called from a Chained-Process Node

To use a Chained-Process Node:
1. Add a Chained-Process Node to the process definition. To do so, use addNode() and set the

constant nodeType to TYPE_CHAINED_PROCESS.

Node chainedProcessNode = plan.addNode("Send Purchase Order",
Node.TYPE_CHAINED_PROCESS);
chainedProcessNode.setPosition(new Point(212, 391));

2. Specify the name of an existing process definition for which a process instance is to be generated
when the Chained-Process Node is called. To do so, use setChainedPlanName() from the Node
interface.

chainedProcessNode.setChainedPlanName(chainedPlan.getName());

Interstage Business Process Manager Developer's Guide 77

5: Designing Process Definitions

A new process instance of the latest version of this chained-process definition will automatically
be generated.

If you need to use a chained-process definition of the same version as that of the parent
process definition, use the setSameSubPlanVersion(boolean) method of the
com.fujitsu.iflow.model.workflow.Plan interface to do this. For example, for a parent
process definition 'A' of version 2, you can use the method mentioned above to use only
version 2 (and not the latest version) of all its chained-processes. Sample code to set such
functionality for a parent process definition is as follows:

plan.startEdit();
plan.setSameSubPlanVersion(true);
plan.commitEdit();

If you set this feature for a parent process, ensure that for a version of a parent process
definition, chained-process definitions having that same version exist. If a parent process
instance tries to call a chained-process with a version number that does not exist, an error
is thrown.
While updating an application using the WFSession.updateApplication() method, if you
want to use the same versions of the subprocess definitions, you need to update the parent
process definition as well as the child process definitions.

Note:

3. Map the flow of information between a User Defined Attribute (UDA) in the parent process definition
and a UDA in the chained-process definition using addDataMappingElement().
A DataItemMappingElement that contains a UDA in a parent process definition mapped to a
UDA in a chained-process definition is called "input data mapping element".

chainedProcessNode.addDataMappingElement("MappingUDAParent",
"MappingUDAChild", DataItemMappingElement.INOUT);

5.3 Working with Process Instances
The following sections provide instructions for retrieving a process definition and starting a process
instance from it. In addition, the execution of work items, which are generated within a process
instance, is shown. You can find the complete programming code of the examples presented in these
sections in the sample file ProcessExecution.java.
Before doing any work on process instances and work items, the user must be logged in. Refer to
section Logging in/Logging out a Normal User on page 65 for information about how to log in and
log out a user.
If you are in SaaS mode, it also necessary to choose an application before working with process
instances.

Interstage Business Process Manager Developer's Guide 78

5: Designing Process Definitions

The following figure shows the necessary steps when working with process instances:

Figure 12: Working with Process Instances Using the Model API

5.3.1 Retrieving the Latest Version of a Process Definition
To retrieve the latest version of a process definition:
1. List all process definitions that are available on the Interstage BPM Server. To do so, use the

WFObjectList interface from the package com.fujitsu.iflow.model.workflow to get a list of
the existing WFObjects from the Interstage BPM Server.
The WFObjectFactory class provides you with consistent, non-proprietary means of accessing
the workflow objects.

Plan plan = null;
WFObjectList wfObjectList =

Interstage Business Process Manager Developer's Guide 79

5: Designing Process Definitions

WFObjectFactory.getWFObjectList(session);
Object[] planList = null;

2. Filter the process definitions according to their names. To do so, use addFilter() from the
WFObjectsList interface to add filtering criteria to the list of the process definitions to be retrieved.

wfObjectList.addFilter(WFObjectList.LISTFIELD_PLAN_NAME,
WFObjectList.SQLOP_EQUALTO, "\'" + planName + "\'");

Include the process definition name in double quotes '', because it is directly included in
the generated database query.

Note:

3. Sort the process definitions according to a desired criteria. Use addSortOrder() to add a
field-based sort order to the list of the process definitions to be retrieved.

wfObjectList.addSortOrder(WFObjectList.LISTFIELD_PLAN_ID,
WFObjectList.SORTORDER_DESCENDING);

wfObjectList.openBatchedList(Filter.AllPlans);

planList = wfObjectList.getNextBatch(1);

In the code sample, process definitions are sorted by their ID. openBatchedList() returns a list
of process definitions from the Interstage BPM Server matching the filter criteria. getNextBatch(1)
retrieves the next entry only, because we only search for the latest version of the process definition.

4. Use the process definition with the latest version.

if (planList != null && planList.length > 0) {
plan = (Plan) planList[0];

}
return plan;

The first entry of the returned list is the searched process definition version.

5.3.2 Creating and Starting a New Process Instance
After you have retrieved a process definition, you can create a process instance from it and start the
process instance.
To create and start a new process instance:
1. Create a process instance using createProcessInstance() from the Plan interface.

processInst =
WFObjectFactory.createProcessInstance(plan.getId(),session);

createProcessInstance() copies the process definition's structure and attributes to a running
process instance, making it appear as if it had been instantiated.
When a process definition is copied to a new process instance, the components of the process
definition are also copied as components of the new process instance. For example, a StartNode
object in the process definition is copied to a StartNodeInstance object in the new process
instance.

2. You can edit the parameters of the process instance by setting it to edit-mode with startEdit().
3. When the editing is finished, stop edit-mode with commitEdit().

Otherwise the process instance is locked for further operations.

Interstage Business Process Manager Developer's Guide 80

5: Designing Process Definitions

4. Start the process instance.

processInst.start();

5.3.3 Listing Work Items
For listing work items, use the WFObjectsList interface from the
com.fujitsu.iflow.model.workflow package. This interface retrieves a list of existing WFObjects
from the Interstage BPM Server.
To list work items:
1. Build a filter using the Filter class.

Possible filter criteria for work items are:
• AllWorkItems: Retrieves all work items. This is the main filter for retrieving group work items.
• MyAcceptedWorkItems: Retrieves all work items including group work items accepted by the

logged-in user.
• MyActiveWorkItems: Retrieves all active work items belonging to the logged-in user.
• MyCompletedWorkItems: Retrieves all work items completed by the logged-in user.
• MyDeclinedWorkItems: Retrieves all work items declined by the logged-in user.
• MyWorkItems: Retrieves all work items belonging to the logged-in user.

2. Use openBatchedList().
3. Call getNextBatch().

getNextBatch() returns an array of workflow objects matching the filter criteria set with
openBatchedList().

Example
WorkItem[] workItemList = null;
if (filter == Filter.AllWorkItems
|| filter == Filter.MyAcceptedWorkItems
|| filter == Filter.MyActiveWorkItems
|| filter == Filter.MyCompletedWorkItems
|| filter == Filter.MyDeclinedWorkItems
|| filter == Filter.MyWorkItems) {

WFObjectList wfObjectList =
WFObjectFactory.getWFObjectList(session);
wfObjectList.openBatchedList(filter);
int batchSize = 50;
Object[] elements = wfObjectList.getNextBatch(batchSize);

}

The filter Filter.MyActiveWorkItems is not supported for group work items. If the
SupportGroupWorkItem parameter of the Interstage BPM Server is set to true, you cannot retrieve
work items using this filter. To retrieve work items, use the filter Filter.AllWorkItems instead. For
advanced filtering based on the name of the group to which the group work item belongs, use
LISTFIELD_WORKITEM_ASSIGNEE together with SQL operators. Refer to the Interstage Business
Process Manager Server Administration Guide for details on the SupportGroupWorkItem parameter.

Examples for Filtering Group Work Items
Consider UserX who is a member of two user groups: GroupA and GroupB.

Interstage Business Process Manager Developer's Guide 81

5: Designing Process Definitions

Scenario 1: UserX wants to retrieve all group work items that are assigned to GroupA:

...
wfObjectList.addFilter (WFObjectList.LISTFIELD_WORKITEM_ASSIGNEE,
WFObjectList.SQLOP_EQUALTO, "GroupA");
wfObjectList.openBatchedList(Filter.AllWorkItems);
...

Scenario 2: UserX wants to retrieve all group work items that are assigned to both groups:

...
wfObjectList.addFilter (WFObjectList.LISTFIELD_WORKITEM_ASSIGNEE,
WFObjectList.SQLOP_IN, "GroupA,GroupB");
wfObjectList.openBatchedList(Filter.AllWorkItems);
...

Scenario 3: UserX wants to retrieve all group work items that are assigned to both groups as well
as all individual work items assigned to himself/herself:

...
wfObjectList.addFilter (WFObjectList.LISTFIELD_WORKITEM_ASSIGNEE,
WFObjectList.SQLOP_EQUALTO, "GroupA,GroupB,UserX");
wfObjectList.openBatchedList(Filter.AllWorkItems);
...

5.3.4 Executing Work Items
Only active work items can be executed.
To execute a work item:
1. Generate a list with all active work items, for example:

wfObjectList.addFilter(WFObjectList.LISTFIELD_WORKITEM_ASSIGNEE,
WFObjectList.SQLOP_IN, "User,Group");

WorkItem[] workItemList = listWorkItems(Filter.AllWorkItems);

2. Retrieve the possible choices allowed for a work item using getChoices() from the WorkItem
interface.

choices = workItem.getChoices();

The choices are the names of each of the outgoing arrows attached to the Activity Node that the
work item represents.

3. Accept the work item by using accept() from the WorkItem interface.

if (choices != null) {
workItem.accept();
int choiceIdx = 0;
...

}

accept() changes the state of the work item to STATE_ACCEPTED, and all other active work items
associated with this activity change to STATE_DEACTIVE.

4. Execute the work item, i.e. make a choice for it using makeChoice() from the WorkItem interface.

workItem.makeChoice(choices[choiceIdx]);

Interstage Business Process Manager Developer's Guide 82

5: Designing Process Definitions

makeChoice() captures the specified choice for this work item through a parameter. makeChoice()
completes the work item.

5.3.5 Recalling Work Items
Only completed work items can be recalled.
The activity that is the target of recall is called the Recall Target. The activity that was active prior
to the Recall Target is called the Recall Source.
The status of activities in the recall process undergoes the following changes:
• Recalling a work item results in the deactivation of the target activity and it goes back to the closed

state, the only exception is the AND node which continues to remain active.
• The Recall Source then goes into the active state.

Only single level recall of work item is possible. Multiple level recall of work items cannot
be done.

Note:

The figures below illustrate a successfully recalled work item, and the change in the status of activities
before and after recall:

Figure 13: Status of Activities before Recall

Figure 14: Status of Activities after Recall

In case of activities connected through parallel branches to the AND or OR nodes or leading to a
common activity, both the parallelly connected activities cannot be recalled simultaneously. Only
one activity can be recalled at a time. The work item for the recalled activity has to be committed
and only then can the second activity be recalled.

Interstage Business Process Manager Developer's Guide 83

5: Designing Process Definitions

For instance in the figures below, Activity 2 has been recalled. Activity 1 cannot be recalled until
work item for Activity 2, that is, action 4 is committed.

Figure 15: Activities connected parallely to the AND Node

Figure 16: Activities connected parallely leading to a common activity

When a work item is recalled, compensate java actions are executed to roll back operations done
by java actions executed before recall.
Conditions for Recalling Work Item
To recall a work item, its imperative that the node types are supported by the recall functionality.
However this support is provided only if the relevant conditions for the node types are met.
The following table gives an overview of the node types supported and not supported by the recall
functionality and the conditions to be met by different node types in order to be supported as recall
targets.

Interstage Business Process Manager Developer's Guide 84

5: Designing Process Definitions

ConditionsRecall TargetsRecall SourceNode Type

• It is not an Agent
• It has not been accepted
• It is in the active state and not in

the error or closed state
• The process instance is not in the

suspended or aborted state

SupportedSupportedActivity Node

• No voting has been done
• The process instance is not in the

suspended or aborted state

SupportedNot supportedVoting Node

-Not supportedNot supportedRoute Nodes (AND,
OR, Conditional,
Complex Conditional,
Email, DB, WebService
and Customized
Nodes)

-Not supportedNot supportedSubprocess,
Chained-process, and
RemoteSubprocess
Nodes

• It is in the active state and not in
the error or closed state

• The process instance is not in the
suspended or aborted state

SupportedNot supportedDelay Node

• It is in the active state and not in
the error or closed state

• The process instance is not in the
suspended or aborted state

SupportedNot supportedTrigger Node

-Not supportedNot supportedExit Node

-Not supportedNot supportedStart Node

Interstage Business Process Manager Developer's Guide 85

5: Designing Process Definitions

ConditionsRecall TargetsRecall SourceNode Type

• Only Activity Nodes are included
in the Iterator Node, that is, no
Subprocess or Agent Nodes are
included in it

• All the Activity Nodes included in
the Iterator Node are active

• Activity Nodes included in the
Iterator Node have not been
accepted

• The process instance is not in the
suspended or aborted state

SupportedSupportedIterator Node

Route Nodes include the AND, OR, Conditional, Complex Conditional, Email, DB,
WebService and Customized Nodes. They cannot become recall targets, however, when
they exist between recall source and recall target, recall is possible.

Note:

The recall flag is used to disable or enable the recall functionality for an activity. If the recall flag is
set to false, then recall is enabled, and if it is set to true then recall is disabled. To check the status
of recall flag, use isRecallDisabled(). By default, recall flag is set to false. To set the recall flag
to true or false use setRecallDisabled(boolean).
To recall a work item:
1. Generate a list of Completed Work Items.

wfObjList.openBatchedList(Filter.MyCompletedWorkItems);

2. Select the work Item you want to recall.

Object[] elements = wfObjectList.getNextBatch(100);
workItem =(WorkItem)elements[n];

3. Recall the source work item.

workItem.recall();

This results in the recall of the selected work item.

5.3.6 Handling Attachments
In the context of a process instance, the AttachmentRef interface allows you to access attachments
in a specified Document Management System (DMS).

The DMS must be one of the DMS directories specified in the Interstage BPM configuration.Note:

An attachment is referenced by two attributes: name and path. The name attribute is a short descriptive
value used for identification. The path attribute describes the fully qualified path to the attachment.
There is no limit to the number of attachments that can be associated with a process instance, and
there are no restrictions on the types of attachments that can be added.

Interstage Business Process Manager Developer's Guide 86

5: Designing Process Definitions

Attachments are global to the process instance; any activity in a process instance can access the
attachment.
• To add an attachment:

Make sure that the process instance is in enactment edit-mode or in structural edit-mode. Then,
construct a new AttachmentRef object using ProcessInstance.addAttachment.

procInst.startEdit();
procInst.addAttachment(ATTACHMENT_NAMES[attachIdx],

ATTACHMENT_FILES[attachIdx]);
procInst.commitEdit();

• To retrieve all attachments:
Use ProcessInstance.getProcessAttachments .

currentAttachments = procInst.getProcessAttachments();

getProcessAttachments() returns the references to all the attachments associated with a
process instance. Attachments are added to a process instance while it is running.

• To retrieve a particular attachment:
Use ProcessInstance.getAttachment.

newAttachment =
procInst.getAttachment(ATTACHMENT_NAMES[attachIdx]);

getAttachment returns the AttachmentRef object of the attachment associated with the process
instance.

The ProcessExecution.java sample contains examples for handling attachments. Refer to the
provided sample source code and the API Javadoc for details.

Interstage Business Process Manager Developer's Guide 87

5: Designing Process Definitions

6 Enhancing Interstage Business Process Manager
This chapter describes the following means of enhancing and extending Interstage BPM so that you
can exploit its full power. Refer to the following sections for details:
• Integrating Interstage BPM with External Applications on page 88
• Using Java Actions on page 90
• Advanced Filtering & Sorting API on page 110
• Special User Defined Attribute Properties on page 118
• Using Extended Attributes on page 121
• Transaction Control on page 128
• Using Triggers on page 129
• File Listeners on page 134
• Using Agents on page 140
• Using Timers on page 149
• Modeling Remote Subprocesses on page 157
• Decision Tables on page 167

6.1 Integrating Interstage BPM with External Applications
Interstage BPM is designed to be integrated with other applications. You can use Java Actions,
Agents, or JavaScripts to call methods on classes external to the Interstage BPM Server. There are,
however, some simple integration steps that you must take to do this.

Actions, Agents, and JavaScripts must call the ServerEnactmentContext interface. The
interfaces in the Model API are not accessible to Actions, Agents, or JavaScripts .

Note:

To integrate Interstage BPM with external applications:
1. To include external libraries, so they can be used in Interstage BPM, copy your external classes

or JARs to the following locations:
• To be able to use the files across tenants

• If you use classes separately, copy the class files to <Interstage BPM Server
Installation Directory>/server/instance/default/classes

• If you use a custom library, copy the JAR files to the Interstage BPM library extensions
directory <Interstage BPM Server Installation
Directory>/server/instance/default/lib/ext

• To be able to use the files so that they are specific to a tenant
• If you use classes separately, copy the class files to <Interstage BPM Server

Installation Directory>/server/instance/default/tenants/<tenant
name>/classes

• If you use a custom library, copy the JAR files to <Interstage BPM Server Installation
Directory>/server/instance/default/tenants/<tenant name>/lib/ext

• To be able to use the files so that they are specific to an application
• If you use classes separately, copy the class files to <DMSRoot>/apps/<application

ID>/engine_classes

Interstage Business Process Manager Developer's Guide 88

6: Enhancing Interstage Business Process Manager

• If you use a custom library, copy the JAR files to <DMSRoot>/apps/<application
ID>/engine_lib

• If you use JavaScript files, copy them to <DMSRoot>/apps/<application ID>/engine_js

2. To use your own custom classes in a JavaScript, add them to a JAR file and copy the JAR file
into the appropriate directory as mentioned in the step above. Then, instantiate the class with the
"Packages." notation.

Example of Using a Custom Class in a JavaScript
You want to use test.class, a special purpose custom Java class. You add it to a JAR file called
test.jar, and copy the JAR file into <Interstage BPM Server Installation
Directory>/server/instance/default/lib/ext. Then, you instantiate test.class as follows in
your JavaScript:
var test = new Packages.test();

The class SalaryCommission must be located in either of the following paths:
• In the global classpath (<ServerRoot>/classes or for libraries <ServerRoot>/lib/ext)
• In the tenant classpath (<ServerSharedRoot>/tenants/<tenant name>/classes or for libraries

<ServerSharedRoot>/tenants/<tenant name>/lib/ext)
• In the application classpath (<DMSRoot>/apps/<application ID>/engine_classes or for

libraries <DMSRoot>/apps/<application ID>/engine_lib)
But the javascript uses the classloader of the ServerEnactmentContext instance where it is executed
in. This instance is created without the knowledge of the action classpath. JavaScriptUtil then uses
this classloader and additionally adds the global and if needed the application classpath. Please
correct the test and add SalaryCommission to one of the loaded classpaths.

6.2 Using Application Variables
Application Variables allow all users of a particular application to share data between processes in
that application. With this ability, more dynamic behavior and various actions associated with it are
possible in processes. For example, the Web Service JavaAction can use an Application Variable
to designate the Web Service location. This allows end users to change the Web Service location
dynamically without changing the JavaAction specification in the process definition.
These variables are defined as part of an application during application development in the Interstage
BPM Studio and are available throughout the life cycle of the application. All of the Application
Variables for an application are represented in the code as an XML file named Appvariable.xml. It
can be found directly under the application. Appvariable.xml contains the variable names and values.
The following is an example:

<properties>
<entry key="VariableName1">Value1</entry>
<entry key="VariableName2">Value2</entry>
…

</properties>

Variables can be created only in the Interstage BPM Studio, but their values can be changed in the
Interstage BPM Console. However, the value of an Application Variable can be updated only by the
Application Administrator.
Application Variables are especially helpful to developers because they might need a particular
setting or a variable to have a common value across all of the processes in that application. These

Interstage Business Process Manager Developer's Guide 89

6: Enhancing Interstage Business Process Manager

variables are used in much the same way as user-defined attributes (UDAs). The only difference
between them is that UDAs are limited to sharing data in a particular running process.
Model API
The following methods in the Model API WFSession package allow manipulation of Application
Variables in runtime:

public java.util.Properties getApplicationVariables (String appId) throws
ModelException;

This will return a Property object of Application Variables name, value pair.

public void setApplicationVariables(String appId, java.util.Properties properties)
throws ModelException;

This method updates the Application Variables.
NOTE: You must be an Application Owner or System Administrator to set Application Variables.

6.3 Using Java Actions
Java Actions are extensions to the workflow engine. At its core, a Java Action is nothing more than
a static Java method which Interstage BPM has been configured to know enough about to be able
to call, as part of process execution.
Java Actions can be used to extend the workflow engine to do anything that is possible to do in Java.
Typically, these Java Actions are used to connect to and interact with external programs and services.
Data can be moved from external programs and services to Interstage BPM and vice versa. Java
Actions are also used to make use of standard protocols to again access external programs and
services.
In addition, you can use Java Actions for dealing with specific error situations or for handling situations
where, e.g. a process instance is aborted or suspended by an Interstage BPM Administrator.
The JavaActionSet interface of com.fujitsu.iflow.model.workflow is a container for
JavaActions. You add Java Actions, i.e. a set of one or more Java methods, to a process definition
at design time.
You can add Java Actions to the process definition itself, to nodes, to timers, and you can add Error
or Compensate Java Actions to other Java Actions.
Java Actions can be invoked at the following points of process execution:
• at process initialization (Init Actions and Process Owner Actions)
• at process completion (Commit Actions)
• before an activity starts (Prologue Actions and Role Actions)
• at activity completion (Epilogue Actions)
• when a timer expires (Timer Action)
• when a process instance is aborted, suspended, or resumed (onAbort, onSuspend, or onResume

Action)
• when an error occurs during process execution (Error Actions)
• when an error occurs during the execution of a Java Action (Error Actions and Compensate

Actions)
• when the starting of a remote subprocess fails (Error Action for a Remote Subprocess Node)
Refer to section Types of Java Actions on page 91 for details.

Interstage Business Process Manager Developer's Guide 90

6: Enhancing Interstage Business Process Manager

Java Actions run within the context of a process instance. This means that they can read and update
User Defined Attributes (UDAs) and other attributes of the particular process instance they are
embedded within. When data is moved to a process instance, it is usually read from one or more
external data sources and copied into UDAs. When data is moved to an external program or service,
the values of UDAs are copied to one or more external data sources.

If Java Actions are supposed to manipulate the process flow, they need access to the
process instance context through the Server Enactment Context API. The interfaces in the
Model API are not accessible to them.

Note:

You can, for example:
• Manipulate process flow through external programs or services. Refer to section Accessing

Workflow Data Using the Server Enactment Context Interface on page 92 for an example.
• Enhance Interstage BPM with functions that just read context data, e.g. to compare values. Refer

to sections Assigning Prologue Actions to an Activity Node on page 93 and Assigning Epilogue
Actions to an Activity Node on page 95 for examples.

• Manipulate process flow through existing Interstage BPM functionality (built-in Java Actions).
Refer to section Using Built-In Java Actions on page 96 for more information.

• Define specific error handling when an error occurs during the execution of a Java Action. Refer
to section Dealing with Errors in Java Actions on page 102 for more information.

• Define specific error actions in case a remote subprocess cannot be started. Refer to section
Using Error Java Actions on page 101 for more information.

• Handle the case when a process instance is aborted, suspended or resumed. Refer to section
Using onAbort, onSuspend, onResume Java Actions on page 109 for an example.

6.3.1 Types of Java Actions
The JavaAction interface allows the inclusion of Java methods in a process definition. Those methods
will be executed during the process enactment. Java Actions can be added to the process definition
at design time. They can be added at either the process definition level as Init, Process Owner,
Commit, onAbort, onResume, onSuspend, or Error Actions, or at Node level as Role, Prologue,
Epilogue, onAbort, onResume, onSuspend, Error or Timer Actions. In addition, Compensate and
Error Actions can be added at Java Action level.
Interstage BPM offers the following types of Java Actions:
• Init Actions and Process Owner Actions are executed upon process initialization. These Java

Actions initialize User Defined Attribute data before the first activity is activated.
• Commit Actions are executed upon process completion. They can be used to clean up or analyze

the data of an entire process instance.
• Prologue Actions. A Prologue Action is evaluated before the node performs its task. This Java

Action can therefore be used to set up or initialize values associated with the node before it does
its work.

• Epilogue Actions. An Epilogue Action is executed after the node finishes its task and before the
process instance moves on to another node. This Java Action can therefore be used to clean up
or analyze values associated with the node after the intended work is finished.

• Role Actions. A Role Action is evaluated after assignee resolution and before task assignment.
This Java Action is therefore used to dynamically compute a list of assignees for a task in
conjunction with a User Group.

• Timer Actions are executed when a timer expires.

Interstage Business Process Manager Developer's Guide 91

6: Enhancing Interstage Business Process Manager

• Error Actions. An Error Action can be used for handling specific error situations in the execution
of a process. Error Actions can be defined for entire process definitions, for individual nodes and
for other Java Actions, i.e. when you want to react on errors occurring during the execution of
another Java Action.

• Compensate Actions. A Compensate Action can be defined for another Java Action that accesses
a system outside of Interstage BPM, e.g. a database. Compensate Actions are useful to ensure
a consistent state of all systems involved in a transaction for cleaning up and rolling back
transactions, e.g. to delete a newly added row in an external database.

• A special type of action can be activated as soon as an Administrator issues the command to
abort, suspend or resume the processing of a process instance. Such actions are stored in either
of the following Action Sets:
• onAbort Action
• onResume Action
• onSuspend Action
on* Java Actions are to be performed before the state of a process instance is changed. They
can be defined for individual activities, i.e. for individual nodes in a process definition, or for an
entire process definition.

When programming Java Actions, you specify its type only when you set it for a process
definition, a node or another Java Action. The methods available from the JavaAction
interface can be used for any type of Java Action, however, you need to be aware that the
type of Java Action determines which methods are executed at runtime. Refer to the API
Javadoc for more information.

Note:

6.3.2 Accessing Workflow Data Using the Server Enactment Context
Interface
You can use Java Actions to manipulate process flow. In this case, Java Actions need access to the
process instance context through the Server Enactment Context interface.
The Server Enactment Context interface provides access to workflow data and is implemented as
a server interface (com.fujitsu.iflow.server.intf.ServerEnactmentContext). It provides, for
example, the following methods:
• addAttachment()

• getAttachment()

• getProcessOwners()

• setProcessDescription()

Refer to the API Javadoc for details on the available classes and methods.
To access workflow data using the Server Enactment Context:
1. When creating your Java class:

a) Import the ServerEnactmentContext interface.
b) Make sure that one parameter of the method that you want to call from a Java Action is of

type ServerEnactmentContext.

2. When defining the Java Action, you specify the values to pass to your method. Use the sec
identifier as value for the ServerEnactmentContext parameter.
At run time, Interstage BPM will pass an object with this interface to your method.

Interstage Business Process Manager Developer's Guide 92

6: Enhancing Interstage Business Process Manager

Example
Here is an example of a Java method you might write that needs to access workflow data. The bold
text shows how to import and use the Server Enactment Context interface:

import com.fujitsu.iflow.server.intf.ServerEnactmentContext;
public class MyClass {

public void reassignIfTooExpensive(ServerEnactmentContext sec,
int amount) {
String[] employee = {"Employee1", "Employee2"};
String[] managers = {"Manager1", "Manager2"};
if (amount <= 5000)

sec.setActivityAssignees(employee);
else

sec.setActivityAssignees(managers);
}

}

This is how you might define the Java Action. The bold text shows how to pass the context data to
your method:

JavaAction[] myAction = MyActionSet.createJavaActions(1);
myAction[0].setActionDescription("Decide on purchase requisition");
myAction[0].setActionName("RoutePurchaseRequisition");
myAction[0].setClassName("MyPackage.MyClass");
myAction[0].setMethodName("reassignIfTooExpensive(ServerEnactmentContext,
int)");
String[] args = new String[2];
args[0] = "sec";
args[1] = "uda.amount";
String params = Utils.combineParametersToXML(args);
myAction[0].setArgumentsUDANames(params);
MyActionSet.setJavaActions(myAction);

6.3.3 Assigning Prologue Actions to an Activity Node
This section gives you an example of how to assign Prologue Actions to an Activity Node. The Java
Actions used are part of the example class ComplexPlan. Use setClassName() from the JavaAction
interface to refer to the example class ComplexPlan.
In the example, Prologue Actions are defined that return the initial values for the User Defined
Attributes (UDAs) Qty and Price. This means that you implement your own Java class and add its
methods as Java Actions without using the Server Enactment Context API.

When programming Java Actions, you specify its type only when you set it for a process
definition, a node or another Java Action. The methods available from the JavaAction
interface can be used for any type of Java Action, however, you need to be aware that the
type of Java Action determines which methods are executed at runtime. Refer to the API
Javadoc for more information.

Note:

Interstage Business Process Manager Developer's Guide 93

6: Enhancing Interstage Business Process Manager

To assign Prologue Actions to an Activity Node:
1. Add an Activity Node. The name of the first activity in the process definition is protected final static

String NODE_FILL_OUT_PR = "Fill out Purchase Request";

protected final static String NODE_FILL_OUT_PR =
"Fill out Purchase Request";

Node fillOutNode = plan.addNode("NODE_FILL_OUT_PR",
Node.TYPE_ACTIVITY);

fillOutNode.setRole("SampleGroup");
fillOutNode.setPosition(new Point(450, 40));

2. Use getJavaActionSet() from the WFObjectFactory class to create a new JavaActionSet
object.

JavaActionSet foPJavaActionSet =
WFObjectFactory.getJavaActionSet();

3. Generate the required number of Java Actions for JavaActionSet.
In the following example, three Java Actions are generated.

JavaAction[] foPJavaActions =
foPJavaActionSet.createJavaActions(3);

4. Define the Java Actions.
These are the Java Actions that set the initial quantity and price:

foPJavaActions[0].setActionDescription("Sets initial value for Qty");
foPJavaActions[0].setActionName("load initial qty");
foPJavaActions[0].setMethodName("getInitialQty");
foPJavaActions[0].setClassName(CLASS_NAME_JAVA_ACTION);
foPJavaActions[0].setReturnValueUDAName("Qty");
...
foPJavaActions[1].setActionDescription("Sets initial value for Price");
foPJavaActions[1].setActionName("load initial price");
foPJavaActions[1].setMethodName("getInitialPrice");
foPJavaActions[1].setClassName(CLASS_NAME_JAVA_ACTION);
foPJavaActions[1].setReturnValueUDAName("Price");
...

foPJavaActionSet.setActionSetDescription("Operations to set"
+ " initial values of UDAs Qty and Price");

foPJavaActionSet.setActionSetName("Qty and Price Setter");

In the example, another Prologue Action is defined for creating an attachment. To handle errors
that might occur, Error Actions are defined for that Java Action. For details refer to section Dealing
with Errors in Java Actions on page 102.

5. Assign JavaActionSet to the prologue part of the Activity Node.

foPJavaActionSet.setJavaActions(foPJavaActions);
fillOutNode.setJavaActionSet(foPJavaActionSet,JavaActionSet.NODE_PROLOGUE);

An internal copy of the Java Action Set is made and saved with the Activity Node. Further changes
of the Java Action Set will have no effect on the Java Actions that are assigned to the Activity Node.

Interstage Business Process Manager Developer's Guide 94

6: Enhancing Interstage Business Process Manager

If you want to change the Activity Node, you must modify the Java Action Set, and then assign it
again to the Activity Node.

6.3.4 Assigning Epilogue Actions to an Activity Node
Prerequisite: You have defined an Activity Node as explained in section Assigning Prologue Actions
to an Activity Node on page 93.

In this example, ComplexPlan defines an Epilogue Action which returns the calculated price Total
for the User Defined Attributes (UDAs) Qty and Price. The Epilogue Action is added to an Activity
Node.

When programming Java Actions, you specify its type only when you set it for a process
definition, a node or another Java Action. The methods available from the JavaAction
interface can be used for any type of Java Action, however, you need to be aware that the
type of Java Action determines which methods are executed at runtime. Refer to the API
Javadoc for more information.

Note:

To add an Epilogue Action to an Activity Node:
1. Use getJavaActionset() from the WFObjectFactory class to create a new JavaActionSet

object.

JavaActionSet foEJavaActionSet =
WFObjectFactory.getJavaActionSet();

2. Generate the required number of Java Actions for JavaActionSet.
In the following example, one Java Action is generated.

JavaAction[] foEJavaActions =
foEJavaActionSet.createJavaActions(1);

3. Define the Java Action.

foEJavaActions[0].
setActionDescription("Sets calculated total amount to UDA 'Total'");

foEJavaActions[0].setActionName("calculate Total");
foEJavaActions[0].setClassName(CLASS_NAME_JAVA_ACTION);
foEJavaActions[0].setClassPath(CLASS_PATH_JAVA_ACTION);
foEJavaActions[0].setMethodName("getTotal(float,int)");
foEJavaActions[0].

setArgumentsUDANames("<E>uda.Price</E><E>uda.Qty</E>");
foEJavaActions[0].setReturnValueUDAName("Total");
foEJavaActionSet.

setActionSetDescription("Operation to calculate total");
foEJavaActionSet.setActionSetName("Total Setter");

4. Assign JavaActionSet to the epilogue part of the Activity Node.

foEJavaActionSet.setJavaActions(foEJavaActions);
fillOutNode.setJavaActionSet(foEJavaActionSet,JavaActionSet.NODE_EPILOGUE);

Interstage Business Process Manager Developer's Guide 95

6: Enhancing Interstage Business Process Manager

6.3.5 Using Built-In Java Actions
Interstage BPM provides various Java methods for manipulating process flow. You can call these
methods directly from a Java Action without having to implement them. These methods are referred
to as built-in Java Actions.
There are, for example, the following built-in Java Actions:
• Java Action that can evaluate JavaScript. Refer to section JavaScript Java Actions on page 96

for an example.
• Java Actions that can invoke evaluations of business rules in compatible business rules engines.

Refer to section Rules JavaActions on page 97 for more information.
• Java Actions to retrieve and update data in external databases.
• Java Actions to invoke and fetch information from web services.
Built-in Java Actions are available through the IflowActions class
(com.fujitsu.iflow.actions.IflowActions). This class provides, for example, the following
methods:
• escalateActivity()

• makeChoiceAction()

• sendEmail()

Refer to the API Javadoc for details on the available methods.
You can use the IflowActions methods in a Java Action by specifying the appropriate class name.
The class path is not required.

Example
The following example shows how to specify a method of the IflowActions class:

JavaAction[] myAction = MyActionSet.createJavaActions(1);
myAction[0].setActionDescription("Decide on purchase requisition");
myAction[0].setActionName("MakeChoice");
myAction[0].setClassName("com.fujitsu.iflow.actions.IflowActions");
myAction[0].setMethodName("makeChoiceAction(String, long,
ServerEnactmentContext)");
String[] args = new String[3];
...

For more information on defining Java Actions, refer to section Accessing Workflow Data Using the
Server Enactment Context Interface on page 92.

6.3.6 JavaScript Java Actions
Java Actions are flexible in that they allow you to do anything that Java can do, but they have the
drawback that you must compile your Java into a class that is accessible to the process engine. For
this reason, a special JavaScript Java Action that can evaluate JavaScript is available. In JavaScript,
you can do everything that you could do in Java; only the JavaScript is not compiled until you need
to execute it. Because the JavaScript is kept in source form inside the process definition, there is no
associated class file that must be carried around externally.
JavaScript uses a syntax very much like Java, but there are a few differences, such as dynamically
typed variables that make sense in a scripting environment. JavaScript is actually an ECMA standard
described in the document ECMA-262.PDF that is provided as a printable file with the software. The
same Server Enactment Context API is available to the JavaScripts.

Interstage Business Process Manager Developer's Guide 96

6: Enhancing Interstage Business Process Manager

In addition, you might want to create your own custom JavaScript extensions to effect script behavior
that you will use over and over in your specific situation.

The size that a method used in a JavaScript may have is limited by the Java Virtual Machine
(JVM). Currently, the method byte code size is limited to 65535 bytes (64 KBytes). If you
use a method with a larger size, the JVM will throw an error and you have to reduce the
size of the method before executing the JavaScript again.

Note:

Calling Java Methods in JavaScript
Standard JavaScript has the ability to call any Java method you wish. It can even construct Java
objects, and call methods on them, passing other Java objects as parameters if you wish.
Example of a call to a static method in ScriptPlugIn.class:
Packages.ScriptPlugIn.createFile(“c:\\temp\\test.txt”);

Example of a call to a member method in JDBCPlugIn.class:
x = new Packages.JDBCPlugIn();

var customer = uda.Customer;

var finish = x.findCustomer(customer);

6.3.7 Rules JavaActions
A Rules JavaAction is a special type of JavaAction that acts as an interface to a Rules Engine. This
interface allows you to use advanced process logic in your processes at every point in the process
where you could attach a JavaAction Set.
You can apply these rules using the following Interstage BPM methods along with any of your own
custom methods:
• getCurrentProcessId
• getCurrentActivityId
• getCurrentActivityName
• getCurrentActionType
• getProcessDefinitionName
• getProcessDefinitionIdentifier
• getOwners
• getInitiator
• getMembers
• getActivityAssignees
• getActivityIteratorIndex
• getProcessAttribute*
• getProcessPriority
• getActivityPriority
• getProcessTitle
• getProcessOwners
• getProcessInitiator
• getProcessDescription

Interstage Business Process Manager Developer's Guide 97

6: Enhancing Interstage Business Process Manager

• getProcessName
• setProcessName
• getGroupMembers
• getActivityActor
• setProcessOwners
• setActivityAssignees
• setProcessAttribute*
• setProcessPriority
• setActivityPriority
• setOwners
• setProcessTitle
• setProcessDescription
*For the getProcessAttribute and setProcessAttribute methods, the user-defined process
attributes that you are getting or setting must be defined on the process definition on which the Rules
JavaAction is attached.

ILOG Configuration

To use the ILOG Rules Engine, you must have the ILOG application installed on your system
and copy its rulesall.jar file to the location as specified in Integrating Interstage BPM
with External Applications on page 88.

Note:

This section discusses the development of a business rules (*.ilr) file in the ILOG Rules Engine.
It provides instructions for integrating Interstage BPM methods in ILOG but not for using ILOG. For
instructions in using ILOG, please refer to your ILOG documentation.
With a business rules file you can create a Rules JavaAction to implement the advanced process
logic of ILOG.
You can write your business rules file in ILOG by importing the Rules Engine Interface class into
ILOG. This class is called RulesEngineIntf.class, and it can be found in the
com.fujitsu.iflow.rules package. Once you import this class, it will appear in your ILOG editor,
and you will see all the Interstage BPM methods (mentioned above) under it.
If you want to use ILOG Rules in Java Actions, the following configuration step is required:
On the Interstage BPM Server
• Specify a rule file name by using the first parameter of InputUDAList.
• If in SaaS mode, or if only the file name was specified, copy the file to

<DMSRoot>/apps/<application ID>/dms/Attachments.
• If in non-SaaS mode the complete file path was specified, copy the file to that location.

Blaze Advisor Configuration
If you want to use Blaze Advisor rules in Java Actions, the following configuration steps are required.
1. If it is the first time that you use Blaze Advisor with Interstage BPM, copy the following JAR files

with the license directory from the Blaze Advisor lib directory into the <Interstage BPM
Domain>/lib directory, e.g. C:/bea/user_projects/domains/base_domain/lib:
• AdvCommon.jar

Interstage Business Process Manager Developer's Guide 98

6: Enhancing Interstage Business Process Manager

• Advisor.jar

• AdvisorSvr.jar

• collections.jar

• InnovatorRT.jar

• jaxen.jar

• Ndkjc-2.1A-bin.jar

• OROMatcher.zip

• saxpath.jar

• iFlow.jar. This file is located in the client/lib folder of your Interstage BPM installation, e.g.
C:/Fujitsu/InterstageBPM/client/lib.

2. On the Interstage BPM Server
• Specify a server configuration file name by using the first parameter of InputUDAList.
• If in SaaS mode, or if only the file name was specified, copy the file to

<DMSRoot>/apps/<application ID>/dms/Attachments.
• If in non-SaaS mode the complete file path was specified, copy the file to that location.

3. Include the Blaze license file in your CLASSPATH.
If you are using Interstage BPM for WebLogic, update the script setDomainEnv.cmd or
setDomainEnv.sh located in the <Interstage BPM Domain>/bin directory, e.g.
C:/bea/user_projects/domains/base_domain/bin:
On Windows:
Delete the line:

set
CLASSPATH=%PRE_CLASSPATH%;%WEBLOGIC_CLASSPATH%;
%POST_CLASSPATH%;%WLP_POST_CLASSPATH%

Add the following lines:

set BLAZE_LICENSEPATH=<path to your license file>
set
CLASSPATH=%PRE_CLASSPATH%;%WEBLOGIC_CLASSPATH%;
%POST_CLASSPATH%;%WLP_POST_CLASSPATH%;%BLAZE_LICENSEPATH%

On UNIX or Linux:
Delete the line:

CLASSPATH="{PRE_CLASSPATH}${CLASSPATHSEP}
${WEBLOGIC_CLASSPATH}${CLASSPATHSEP}
${POST_CLASSPATH}${CLASSPATHSEP}
${WLP_POST_CLASSPATH}"

Add the following lines:

BLAZE_LICENSEPATH=<path to your license file>
export $BLAZE_LICENSEPATH
CLASSPATH="{PRE_CLASSPATH}${CLASSPATHSEP}
${WEBLOGIC_CLASSPATH}${CLASSPATHSEP}
${POST_CLASSPATH}${CLASSPATHSEP}
${WLP_POST_CLASSPATH}${CLASSPATHSEP}
${BLAZE_LICENSEPATH}"

Interstage Business Process Manager Developer's Guide 99

6: Enhancing Interstage Business Process Manager

4. Stop and start the Interstage BPM Server.
For instructions, refer to the Interstage Business Process Manager Server Administration Guide.

Decision Tables JavaAction
Decision Tables is a feature built into Interstage BPM that allows designing of advanced rules for
decision making without programming. For details of how to create rules using Decision Tables, refer
section Decision Tables on page 167.
To use a decision table in a process definition, a predefined JavaAction to evaluate Decision Tables
(called a Decision Table JavaAction, a type of Rules JavaAction) is provided. For further details refer
section Using a Decision Table within a Process Definition on page 169, the Interstage BPM Studio
User's Guide and/or the Interstage BPM Console Online Help.

6.3.8 Activity Actors and Relationships

Activity Actors
After an activity is assigned to a role, any person in that role can perform that activity. For instance,
if an activity is assigned to the 'managers' role, any person who is a member of the 'managers' group
can perform that activity. But only one particular manager will actually perform the activity. That
manager can be referred to as the activity actor for that activity.
After an activity has been performed, certain workflows may demand determining who was the activity
actor, and then take further action based on that information. For instance, consider the activity
'Record customer issue' assigned to the 'customer support executive' role. It will be needed to
ascertain exactly which customer executive performed a particular 'Record customer issue' activity,
so that the same actor can be assigned the next activity 'Escalate issue' in that process instance.

Determining Activity Actors
The ServerEnactmentContext interface of the com.fujitsu.iflow.server.intf package contains
the getActivityActor() method to determine activity actors.
The getActivityActor() method gets the actor of a completed Activity node using the name of
the Activity node as a parameter. Voting activity node is not supported by this method.

It is recommended that all activity nodes within a process instance have unique names.
This method throws an exception if a node name passed to it exists in duplicate.

Note:

The following sample gets the actor of 'Activity A' and assigns the current activity to that actor.

public void assignActivityActor(ServerEnactmentContext sec){
String[] actor = new String[1];
actor[0] = sec.getActivityActor("Activity A");
sec.setActivityAssignees(actor);
}

You need to either call this method in a JavaAction defined by you (refer AccessingWorkflow
Data Using the Server Enactment Context Interface on page 92) or as part of a JavaScript.
Refer to the API Javadoc for details of this method.

Note:

Interstage Business Process Manager Developer's Guide 100

6: Enhancing Interstage Business Process Manager

Relationships
Certain workflows may demand finding out the hierarchical relationships for an activity actor or a
UDA value. For example, the UDA 'Company Name' may have a value 'Fujitsu', and it may be required
to ascertain who is the 'account executive' for the value 'Fujitsu', so only that account executive (and
not any other) may be assigned a particular activity. Or, an activity may have an actor called 'Jim',
and it may be required to find out who is the 'manager' for Jim, so that, that manager can be assigned
a particular activity.

Determining Relationships
The ServerEnactmentContext interface of the com.fujitsu.iflow.server.intf package contains
the resolveRelationship() method to determine relationships.
The resolveRelationship() method returns a target value using a source value and a relationship
as parameters. For this method to work, mappings of source values, relationships, and target values
need to be pre-defined, so that this method can refer to the mappings and return appropriate values.

TargetValueRelationshipSourceValue

RobertmanagerJim

ArthurassistantJim

BobexecutiveFujitsu

For example, resolveRelationship("assistant", "Jim") returns the value Arthur.
SourceValue-Relationship-TargetValue mappings should be stored as user profiles in the Directory
Service or local user store, where the source value is a user ID, relationship is a user attribute name,
and target value is a user attribute value. To create a user profile, refer the DirectoryServices
interface of the com.fujitsu.iflow.model.workflow package in the API Javadoc.
Note that SourceValues can be both human as well as non-human (such as company name or group
name). User profiles of such non-human objects also need to be added to the directory server or
local user store, taking care that such user profiles cannot be used for the purpose of logging in.
The following sample gets the actor of 'Activity A', gets the manager of that actor, and assigns the
current activity to this manager.

public void assignManagerOfActivityActor(ServerEnactmentContext sec){
String[] managers =
sec.resolveRelationship("Manager",sec.getActivityActor("Activity A"));
sec.setActivityAssignees(managers);
}

You need to either call this method in a JavaAction defined by you (refer AccessingWorkflow
Data Using the Server Enactment Context Interface on page 92) or as part of a JavaScript.
Refer to the API Javadoc for details of this method.

Note:

6.3.9 Using Error Java Actions
Error Java Actions can be used to handle specific errors and to determine the behavior of a process
instance in case an error occurs. If you do not define any error handling, a process instance will go
into error state as soon as an exception is thrown, irrespective of where the exception is thrown: e.g.
if the starting of a Remote Subprocess fails, if an email cannot be sent, etc.

Interstage Business Process Manager Developer's Guide 101

6: Enhancing Interstage Business Process Manager

Error Java Actions can be defined on different levels:
• On Process Definition level: These Error Java Action Sets will be executed in case of any error,

independent of the activity in which an error occurs and independent of the severity of an error.
Error Java Action sets defined on process definition level will be executed immediately before
the process instance will go into error state. Note that such Error Actions cannot influence the
behavior of the process instance. Error Actions on process definition level may, for example, be
used for sending a notification email or for writing additional information into a log file.

• On Node level (for Remote Subprocess Nodes only): An Error Java Action Set on this level will
become active if the remote subprocess fails to start. Refer to section Error Handling for Remote
Subprocesses on page 162 for an example.

• On Java Action level: An Error Java Action Set on this level will be executed when an exception
is thrown in the related "regular" Java Action. Error Java Actions can be defined for all types of
Java Actions (e.g. Prologue, Epilogue, Timer, onAbort Java Action) except for an Error or
Compensate Action itself. Assigning Error Actions to Java Actions is described in section Dealing
with Errors in Java Actions on page 102.

Below you find an example of how to assign an Error Java Action to a process definition. The Java
Actions used are part of the example class ComplexPlan.
To define an Error Java Action Set on process definition level:
1. Use getJavaActionSet() from the WFObjectFactory class to create a new JavaActionSet

object.

JavaActionSet plErrorJavaActionSet =
WFObjectFactory.getJavaActionSet();

2. Generate the required number of Java Actions for JavaActionSet.
In the following example, one Java Action is generated.

JavaAction[] plErrorJavaAction =
plErrorJavaActionSet.createJavaActions(1);

3. Define the Java Action Set.

plErrorJavaAction[0]
.setActionName("WriteLogEntryWithException");

plErrorJavaAction[0]
.setActionDescription("Writes a log entry with exception");

plErrorJavaAction[0]
.setMethodName("writeLogEntryWithException(String,ServerEnactmentContext)");

plErrorJavaAction[0]
.setClassName(CLASS_NAME_JAVA_ACTION);

plErrorJavaAction[0]
.setArgumentsUDANames("<E>uda.ProcessLevelErrorLogEntry</E><E>sec</E>");

plErrorJavaActionSet.setJavaActions(plErrorJavaAction);

4. Assign the JavaActionSet to the process definition.

plan.setJavaActionSet(plErrorJavaActionSet,
JavaActionSet.PLAN_ERROR);

6.3.10 Dealing with Errors in Java Actions
When an error occurs during the execution of a Java Action, an exception is thrown. Interstage BPM
allows you to define your own error handling for erroneous Java Actions and Remote Subprocess

Interstage Business Process Manager Developer's Guide 102

6: Enhancing Interstage Business Process Manager

calls. In this way, you can prevent that a process instance goes into error state when an exception
is thrown.
In addition, you can define actions for Java Actions which perform a "cleanup" before a transaction
is rolled back and a process instance is set to the error state. This includes a rollback of all Java
Actions in a Java Action Set, and allows you to perform general actions (e.g. sending notification
emails in any error case), or executing some specific actions before setting the process instance to
error state.
Interstage BPM provides the following options to handle errors in Java Actions:
• Compensate Actions: Compensate Actions are used to clean up the system and to ensure a

consistent state of all systems involved in a transaction, e.g. external databases or mail servers.
Compensate Actions are particularly useful whenever external systems are involved.
If you do not define any error handling for a Java Action, the following happens: When an exception
is thrown in this Java Action, the transaction will be rolled back. A rollback, however, is only
possible for changes in the Interstage BPM Application Server context. Any transactions in external
systems cannot be rolled back, for example, if a row has been added to an external database.
Therefore, it is sometimes necessary to manually clean up external systems to ensure a consistent
state of all systems used in the transaction. Optionally, you can use Compensate Action Sets.
You can specify a Compensate Action for every Java Action in an Action Set. You can use a
Compensate Actions e.g. for removing a newly added row in a database or for sending out an
additional email. If an exception occurs in a regular Java Action Set, all Compensate Actions
defined for all Java Actions that have been successfully executed before the exception was
thrown, are invoked in reverse order.

You cannot embed a Compensate Action in another Compensate Action. If a Compensate
Action throws an exception, the process instance will immediately go to error state, and the
execution of remaining Compensate Actions will be aborted.

Note:

Refer to the sample below for more information.

• Error Actions: On Java Action level, Error Action sets will become active when an exception is
thrown in the related regular Java Action. Error Actions are bound together in Action Sets, similar
to all other Action Sets. Error Actions can be specified for any action inside an Action Set. Note
that you cannot define an Error Action that handles exceptions occurring in an Error Action.
Refer to section Using Error Java Actions on page 101 and the sample below for more information.
The Continue Setting
Error Actions allow for determining whether the error will be caught and process execution will
continue or not. This behavior is defined by the Continue Setting "catchException":
If set to true, the exception gets caught and the process instance continues its execution after
the defined Error Actions have been executed.
If set to false, any Compensate Action defined will be executed and afterwards the process
instance will go into error state.
In case several Error Actions are defined that have different "catchException" settings, false
overrides true and the process instance will go into error state as soon as one Error Action has
set the "catchException" to false.
The Exception Class
In addition to the Continue Setting, Error Actions on Activity Node level and on Java Action level
allow for determining on which exceptions the Error Action reacts: You can specify a concrete
exception class (default: java.lang.Exception. In this case, an Error Action will only be executed

Interstage Business Process Manager Developer's Guide 103

6: Enhancing Interstage Business Process Manager

when the exception thrown is an instance or a subclass of this specified exception class. For
example:
You specify the java.io.FileNotFoundException) class so that the Error Action will only be
considered in case the occurred exception is an instance or a subclass of this class.

In case an Error Java Action throws an exception, the transaction will be rolled back instantly
and the process instance will go into error state. No Error Action can be defined for such a
case.

Note:

Any Java Action Set can contain several Java Actions. For each Java Action, you can define Error
Actions, as well as Compensate Actions. Refer to section Java Action Structure and Execution Plan
in Case of Errors on page 106 for additional information.

Defining and Assigning Compensate Java Actions to a Java Action
The sample below defines a Compensate Java Action that is to be executed in case the execution
of another Java Action fails: The administrator is to be notified by email in case the retrieval of the
initial quantity fails. This retrieval is defined in another Java Action that is executed as Prologue
Action for the FillOut Activity Node. You can find the whole code of this sample in the
ComplexPlan.java sample. The methods for sending an email and for retrieving the initial quantity
are defined in the SampleJavaActions sample.
To define and assign a Compensate Java Action Set:
1. Use getJavaActionSet() from the WFObjectFactory class to create a new JavaActionSet

object.

JavaActionSet compensateJavaActionSet =
WFObjectFactory.getJavaActionSet();

2. Generate the required number of Java Actions for JavaActionSet. In the following example, one
Java Action is generated.

JavaAction[] compensateJavaAction =
compensateJavaActionSet.createJavaActions(1);

3. Define the Java Action. Note that the sendEmail() method is defined in the SampleJavaActions
sample.

compensateJavaAction[0].setActionName("Send a notification mail");
compensateJavaAction[0]

.setActionDescription("Send notification mail to administrator");
compensateJavaAction[0].setMethodName

("sendEmail(String, String, String, String, String, String,
ServerEnactmentContext)");

compensateJavaAction[0].setClassName(CLASS_NAME_JAVA_ACTION);
compensateJavaAction[0].setArgumentsUDANames

("<E>uda.MailTo</E><E>uda.MailFrom</E>
<E>uda.MailCc</E><E>uda.MailBcc</E><E>uda.MailSubject</E>
<E>uda.MailBody</E><E>sec</E>");

Interstage Business Process Manager Developer's Guide 104

6: Enhancing Interstage Business Process Manager

4. Add the compensateJavaAction to the Java Action that retrieves the initial quantity. This Java
Action is part of the Prologue Java Action Set of the FillOut Activity Node. You can find the entire
definition in the ComplexPlan.java sample.

....
JavaActionSet foPJavaActionSet = WFObjectFactory.getJavaActionSet();
JavaAction[] foPJavaActions = foPJavaActionSet.createJavaActions(3);
foPJavaActions[0]

.setActionDescription("Sets initial value for Qty");
foPJavaActions[0].setActionName("load initial qty");
foPJavaActions[0].setMethodName("getInitialQty");
foPJavaActions[0].setClassName(CLASS_NAME_JAVA_ACTION);
foPJavaActions[0].setReturnValueUDAName("Qty");
foPJavaActions[0].setJavaActionSet(compensateJavaActionSet,

JavaActionSet.ACTION_COMPENSATE);
....

Defining and Assigning Error Actions to a Java Action
The sample below defines an Error Action Set that is to be executed in case the execution of a related
Java Action fails: An entry is to be written to the log file and the processing of the process instance
is to be continued in case an attachment cannot be added. The method for adding an attachment is
defined in the in the SampleJavaActions sample. This Java Action is executed as Prologue Action
for the FillOut Activity Node. You can find the whole code of this sample in the ComplexPlan.java
sample.
To define and assign an Error Java Action Set:
1. Use getJavaActionSet() from the WFObjectFactory class to create a new JavaActionSet

object.

JavaActionSet errorJavaActionSet =
WFObjectFactory.getJavaActionSet();

2. Generate the required number of Java Actions for JavaActionSet. In the following example, two
Java Actions are generated.

JavaAction[] errorJavaActions =
errorJavaActionSet.createJavaActions(2);

3. Define the Java Actions. Note that the addAttachment() method is defined in the
SampleJavaActions sample.

errorJavaActions[0]
.setActionDescription("Writes a log entry with exception");

errorJavaActions[0]
.setMethodName("writeLogEntryWithException(String,ServerEnactmentContext)");

errorJavaActions[0].setClassName(CLASS_NAME_JAVA_ACTION);
errorJavaActions[0]

.setArgumentsUDANames("<E>uda.ProcessLevelErrorLogEntry</E><E>sec</E>");
errorJavaActions[0].setCatchException(true);

errorJavaActions[1].setActionName("Continue process");
errorJavaActions[1].setActionDescription("Catches FileNotFoundExceptions

and continues the execution of the process");
errorJavaActions[1].setMethodName("noop()");
errorJavaActions[1]

.setClassName("com.fujitsu.iflow.actions.IflowActions");
errorJavaActions[1]

.setEditorClassName("com.fujitsu.iflow.actions.IflowActions");

Interstage Business Process Manager Developer's Guide 105

6: Enhancing Interstage Business Process Manager

errorJavaActions[1]
.setCatchException(true);

4. Add the above Error Java Action Set to the Java Action that is to add the attachment. This Java
Action is part of the Prologue Java Action Set of the FillOut Activity Node. You can find the entire
definition in the ComplexPlan.java sample.

....
foPJavaActions[2].setJavaActionSet(errorJavaActionSet,

JavaActionSet.ACTION_ERROR);
...

6.3.11 Java Action Structure and Execution Plan in Case of Errors
This section describes the possible structure of Java Action Sets including Compensate and Error
Action Sets. In addition, for any error that occurs in a Java Action, it shows which actions will be
executed in which order.
Any "regular" Java Action Set can consist of several Java Actions. In addition, you can define an
Error Java Action set for handling execptions thrown by a "regular" Java Action in the Java Action
Set (e.g. a Prologue Java Action Set), and you can define a Compensate Action Set for the "regular"

Interstage Business Process Manager Developer's Guide 106

6: Enhancing Interstage Business Process Manager

Java Action Set that will become active in case the execution of the "regular" Java Action Set throws
an exception and a rollback of an external system is required:

Figure 17: Java Action Set Structure

Example of a Regular Java Action Set
Assume you have defined a Prologue Java Action Set comprising two Java Actions (JA_1 and JA_2).
• JA_1: An Error Java Action Set with one Error Java Action (EJA_JA_1) and a Compensate Java

Action Set with two Compensate Java Actions (CJA_1_JA_1 and CJA_2_JA_2) have been
defined.

Interstage Business Process Manager Developer's Guide 107

6: Enhancing Interstage Business Process Manager

• JA_2: An Error Java Action Set with two Error Java Actions (EJA_1_JA_2 and EJA_2_JA_2) has
been defined, but no Compensate Java Action Set is available:

Figure 18: Regular Java Action Set

Execution Plan in Case of Errors
The table below lists several error situations and explains which Java Actions will be executed in
case of an error:

ResultSituation

Since no Error Action is defined for this situation,
the process instance will go into error state.

JA_1 throws a FileNotFoundException.

The exception gets caught and EJA_JA_1 will be
executed. The process instance continues, i.e.
JA_2 will be executed and afterwards the
transaction will be committed.

JA_1 throws a NullPointerException.

EJA_1_JA_2 will be executed, because
NullPointerException is a subclass of
Exception. The exception will be caught, the
transaction will be committed and the process
instance continues.

JA_1 executes successfully.
JA_2 throws a NullPointerException.

Interstage Business Process Manager Developer's Guide 108

6: Enhancing Interstage Business Process Manager

ResultSituation

EJA_1_JA_2 and EJA_2_JA_2 will be executed,
because FileNotFoundException is a subclass
of Exception and of IOException. However, the
exception will not be caught due to the Catch
Exception being set to false in EJA_2_JA_2.
This setting overrides the EJA_1_JA_2 setting.
Therefore, after execution of the two Error
Actions, the Compensate Actions CJA_1_JA_1
and CJA_2_JA_1 will be executed before the
process instance goes into error state.

JA_1 executes successfully.
JA_2 throws a FileNotFoundException.

No Error or Compensate Actions are executed.
The process instance remains in its regular state.

JA_1 and JA_2 are executed successfully.

Refer to sections Dealing with Errors in Java Actions on page 102 and Using Error Java Actions on
page 101 for additional information.

6.3.12 Using onAbort, onSuspend, onResume Java Actions
The onSuspend, onResume, and onAbort Java Actions can be used to execute specific actions
before the state of a process instance is changed because an Interstage BPM Administrator has
called the suspend, resume, or abort command.
Similar to other Java Action Sets, the onAbort, onResume, and onSuspend Action Sets can contain
several Java Actions. Each of these sets can be defined on node level as well as on process definition
level. Node level Action Sets will always be executed first, but only if the respective activity is active
when the abort, suspend, resume command has been issued. The process definition level Action
Sets will be executed independent of the activities that are active when the command is being issued.
Below you find an example of how to assign an onAbort Java Action to a process definition. The
Java Actions used are part of the example class ComplexPlan. Use setClassName() from the
JavaAction interface to refer to the example class ComplexPlan.
To design and assign an onAbort Java Action Set on process definition level:
1. Use getJavaActionSet() from the WFObjectFactory class to create a new JavaActionSet

object.

onAbortJavaActionSet = WFObjectFactory.getJavaActionSet()

2. Generate the required number of Java Actions for JavaActionSet.
In the following example, one Java Action is generated.

JavaAction[] onAbortJavaAction =
onAbortJavaActionSet.createJavaActions(1);

3. Define the Java Action Set.

onAbortJavaAction[0].setActionName("WriteLogEntry");
onAbortJavaAction[0]

.setActionDescription("Writes a log entry if process is aborted");
onAbortJavaAction[0].setMethodName("writeLogEntry(String)");
onAbortJavaAction[0].setClassName(CLASS_NAME_JAVA_ACTION);

Interstage Business Process Manager Developer's Guide 109

6: Enhancing Interstage Business Process Manager

onAbortJavaAction[0]
.setArgumentsUDANames("<E>uda.OnAbortLogEntry</E>");

onAbortJavaActionSet.setJavaActions(onAbortJavaAction);

4. Assign the JavaActionSet to the process definition.

plan.setJavaActionSet(onAbortJavaActionSet,
JavaActionSet.PLAN_ABORT);

6.4 Advanced Filtering & Sorting API
You can filter lists of process definitions, process instances and work items on a range of fields like
the process definition name, process initiator, work item name, or any other. With this feature, you
can retrieve lists that match certain filtering criteria like: get all process instances initiated by "userX",
or get all work items originating from process instances with title "Purchase Order". You can also
filter on multiple fields. A table of the fields and the lists with which they are valid is provided in the
next section.

6.4.1 InterfaceWFObjectList (Package com.Fujitsu.iflow.model.workflow)
This interface offers constants that identify the fields that can be used for filtering/sorting lists along
with the filters for which they are valid, for example:

listFieldFilter

LISTFIELD_APPLICATION_IDENTIFIER

LISTFIELD_PLAN_ID

LISTFIELD_PLAN_NAME

LISTFIELD_PLAN_OWNER

LISTFIELD_PLAN_STATE

LISTFIELD_PLAN_IDENTIFIER

Filter.AllPlans

Filter.MyPlans

Interstage Business Process Manager Developer's Guide 110

6: Enhancing Interstage Business Process Manager

listFieldFilter

LISTFIELD_APPLICATION_IDENTIFIER

LISTFIELD_PLAN_ID

LISTFIELD_PLAN_NAME

LISTFIELD_PLAN_IDENTIFIER

LISTFIELD_PROCESSINSTANCE_ID

LISTFIELD_PROCESSINSTANCE_STATE

LISTFIELD_PROCESSINSTANCE_INITIATOR

LISTFIELD_PROCESSINSTANCE_PRIORITY

LISTFIELD_PROCESSINSTANCE_NAME

LISTFIELD_PROCESSINSTANCE_TITLE

LISTFIELD_PROCESSINSTANCE_PARENTID

LISTFIELD_PROCESSINSTANCE_CREATEDTIME

LISTFIELD_PROCESSINSTANCE_CLOSEDTIME

LISTFIELD_PROCESSINSTANCE_OWNER

LISTFIELD_PROCESSINSTANCE_DUEDATE

LISTFIELD_PROCESSINSTANCE_TYPE

Filter.AllProcesses

Filter.AllActiveProcesses

Filter.MyProcesses

Filter.MyActiveProcesses

Filter.MyInactiveProcesses

Filter.AllInactiveProcesses

Filter.AllProcessesInErrorState

LISTFIELD_APPLICATION_IDENTIFIER

LISTFIELD_PLAN_ID

LISTFIELD_PLAN_NAME

LISTFIELD_PLAN_IDENTIFIER

LISTFIELD_PROCESSINSTANCE_ID

LISTFIELD_PROCESSINSTANCE_STATE

LISTFIELD_PROCESSINSTANCE_NAME

LISTFIELD_PROCESSINSTANCE_TITLE

LISTFIELD_PROCESSINSTANCE_INITIATOR

LISTFIELD_PROCESSINSTANCE_PRIORITY

LISTFIELD_PROCESSINSTANCE_CREATEDTIME

LISTFIELD_WORKITEM_ID

LISTFIELD_WORKITEM_ASSIGNEE

LISTFIELD_WORKITEM_STATE

LISTFIELD_WORKITEM_CREATEDTIME

LISTFIELD_WORKITEM_DUEDATE

LISTFIELD_WORKITEM_PRIORITY

LISTFIELD_WORKITEM_NAME

LISTFIELD_WORKITEM_ACTIVITYINSTANCEID

Filter.AllWorkItems

Filter.AllInactiveWorkItems

Filter.MyWorkItems

Filter.MyAcceptedWorkItems

Filter.MyActiveWorkItems

Filter.MyDeclinedWorkItems

Interstage Business Process Manager Developer's Guide 111

6: Enhancing Interstage Business Process Manager

listFieldFilter

LISTFIELD_PLAN_ID

LISTFIELD_PLAN_NAME

Filter.AllArchivedPlans

LISTFIELD_PLAN_ID

LISTFIELD_PROCESSINSTANCE_ID

LISTFIELD_PROCESSINSTANCE_NAME

Filter.AllArchivedProcesses

LISTFIELD_APPLICATION_IDENTIFIER

LISTFIELD_PLAN_ID

LISTFIELD_PLAN_NAME

LISTFIELD_PLAN_IDENTIFIER

LISTFIELD_PROCESSINSTANCE_ID

LISTFIELD_PROCESSINSTANCE_STATE

LISTFIELD_PROCESSINSTANCE_NAME

LISTFIELD_PROCESSINSTANCE_TITLE

LISTFIELD_PROCESSINSTANCE_INITIATOR

LISTFIELD_PROCESSINSTANCE_PRIORITY

LISTFIELD_PROCESSINSTANCE_CREATEDTIME

LISTFIELD_WORKITEM_ID

LISTFIELD_WORKITEM_ASSIGNEE

LISTFIELD_WORKITEM_PRIORITY

LISTFIELD_WORKITEM_NAME

LISTFIELD_WORKITEM_ACTIVITYINSTANCEID

Filter.MyFutureWorkItems

Filter.AllFutureWorkItems

The following constants denote sorting order:
• SORTORDER_ASCENDING

• SORTORDER_DESCENDING

The following constants denote SQL relational operands:
• SQLOP_EQUALTO

• SQLOP_GREATERTHAN

• SQLOP_LESSTHAN

• SQLOP_GREATERTHANOREQUALTO

• SQLOP_LESSTHANOREQUALTO

• SQLOP_NOTEQUALTO

• SQLOP_LIKE

• SQLOP_NOTLIKE

• SQLOP_IN

You can find examples using filters in the following sections: Listing Work Items on page 81, Listing
Process Definitions on page 188, and Listing Process Instances on page 192.

Interstage Business Process Manager Developer's Guide 112

6: Enhancing Interstage Business Process Manager

6.4.2 Methods for Filtering and Sorting
There are the following methods for filtering and sorting:
• addFilter(): Adds a field-based filtering criteria for the list of objects to be retrieved. The values

passed in the parameters conceptually translate to "where <actual-column-name-of-the-listField>
<actual-value-of-the-SQL-operator> <value>".

• addFilter(): Adds a UDA-based filtering criteria for the list of objects to be retrieved. The values
passed in the parameters conceptually translate to "where <udaName>
<actual-value-of-the-SQL-operator> <value>".

• addSortOrder(): Adds a field-based sort order for the list of objects to be retrieved.
• addSortOrder(): Adds a UDA-based sort order for the list of objects to be retrieved.
• getNextBatch[]: Returns an array of list objects that are next in sequence. The returned array

size is equal to batchSize. It may be less than batchSize for the last batch. The call returns
null if there are no more elements in the list to return.

For details, refer to the API Javadoc.

6.4.3 Interface Semantics
The following sample represents the proper order in which the methods of this interface are to be
invoked:

wfol = WFObjectFactory.getWfObjectList()
wfol.addFilter(…)
wfol.addSortOrder(…)
Object[] listElements = null;
int batchSize = 10;
wfol.openBatchedList(…)
while ((listElements = wfol.getNextBatch(batchSize)) != null) {

// process elements in listElements array
}

Make sure that the openBatchedList() call follows addFilter() and/or addSortOrder() call(s)
and precedes getNextBatch() calls. If the methods are invoked in any other order, the behavior of
the WFObjectList is undefined.

6.4.4 Identifying UDAs to be Used With Lists
You can filter lists of process definitions, process instances and work items on values of User Defined
Attributes (UDAs). Users can retrieve lists which match filtering criteria based on values of UDAs,
for example "get all work items where transaction_amount > 5000.*". To do this, make sure, that the
WorkListUDA flag is set on the UDA. This can be accomplished when you design the process definition
by using markAsWorkListUDA() from the DataItemRef interface. Refer to section Worklist UDAs
on page 120 for more information.
If UDAs that are not identified as described above are used to filter and sort lists, the behavior of the
list will be undefined.

6.4.5 Sorting and Filtering Combinations of Fields and UDAs
A list can be sorted and filtered on combinations of fields, but with the following restriction:
Field-based sort order can’t be used together with UDA-based sort order.
The following table identifies the valid combinations of field/UDA filters and sort orders.

Interstage Business Process Manager Developer's Guide 113

6: Enhancing Interstage Business Process Manager

1 or more Field
Sort Order

1 or more Field
Filter

1 UDA Sort Order1 UDA Filter

-1 UDA Filter

-Same*1 UDASort Order

-ValidValid1 or more Field
Filter

-ValidNot-ValidValid1 or more Field
Sort Order

* Both the sort and filtering has to be done on the same UDA.

6.4.6 Note on Batching
You can retrieve lists in batches. If there were a large number of records in the database, opening
a list would take a long time even if you needed only a few items of the list. You can use
openBatchedList and getNextBatch(int howMany) to retrieve lists in batches. This batching works
in conjunction with the filtering and sorting described here; i.e., Interstage BPM will retrieve a batch
of the filtered and sorted list. However, the instructions provided in Interface Semantics on page 113
must be followed to obtain the desired result.

If filtering or sorting is used, the relationship between the speed of retrieving a batch and
the speed of retrieving the full list depends on the distribution of the values of the field/UDA
used for filtering/sorting. The better the distribution of the values, the more advantage is
derived from using batching.

Note:

For example if a list of process instances is sorted by process name, and if all the process instances
have the same name, retrieving a batch internally degenerates to retrieving the full list. On the other
hand if there are process instances with most process instances having different names, then the
full advantage of using batching is derived.

6.4.7 Notification
Notification will be supported only in simple-list cases, i.e. without batch, filters or sort orders. If the
list is opened with notification the following methods will throw a ModelException when invoked.
• addFilter()

• addSortOrder()

• getNextBatch()

6.5 Retrieving Information about Multiple Objects at a Time
The WFDetailsList interface allows you to efficiently retrieve information about many objects at a
time. This capability is also referred to as bulk processing.
Currently, the interface provides methods to do the following:
• Retrieve User Defined Attributes (UDAs) of multiple process instances at a time
• Retrieve outgoing arrows of multiple work items at a time
This section explains the typical steps that you follow to use this interface. A programming sample
is presented, which retrieves UDAs of multiple process instances. You can find the complete

Interstage Business Process Manager Developer's Guide 114

6: Enhancing Interstage Business Process Manager

programming code in the BatchDetailsRetrieval.java sample file. The sample file also contains
an example of how to retrieve outgoing arrows of multiple work items.
To retrieve UDAs of multiple process instances at a time:
1. Make sure that you have a list of process instance IDs for which you want to retrieve UDAs later.

To do so, you typically use one of the process instance filters provided by the WFObjectList
interface.
In the programming sample, to prepare for the bulk processing functionality, the active process
instances of the logged-in user are retrieved:

WFObjectList list = WFObjectFactory.getWFObjectList(session);
list.openBatchedList(Filter.MyActiveProcesses);
Object[] batch = list.getNextBatch(10);

For more information about filters, refer to section Advanced Filtering & Sorting API on page 110.

2. If process instances are found, assign their IDs to an array.

if (batch == null) {
< ... >
return;

}
long[] idValues = new long[batch.length];
for (int i = 0; i < batch.length; i++) {

idValues[i] = ((ProcessInstance) batch[i]).getId();
}

3. As the list of process instances is not needed for further processing, you are recommended to
close it.

list.closeList();

4. Retrieve the UDAs of all of the process instances that you previously retrieved. To do so, create
a WFDetailsList instance and call getUDAsForProcessInstances().

WFDetailsList detailsList = WFObjectFactory.getWFDetailsList(session);
ProcessInstancesUDASet udaInfo = detailsList

.getUDAsForProcessInstances(idValues);

The udaInfo object stores the UDAs of the process instances in a Java Map. The process instance
ID is used as key, and another Java Map representing the UDAs of that process instance is used
as value.
Next, you will retrieve the UDAs of a particular process instance.

5. To retrieve the UDAs of a particular process instance, use getUDAsForProcessInstance() from
the ProcessInstancesUDASet class:

for (int i = 0; i < idValues.length; i++) {
Map udaData = udaInfo.getUDAsForProcessInstance(idValues[i]);
< ... >

}

In the sample, the UDAs of a process instance are assigned to a Java Map named udaData. This
Map uses the UDA's name as key and an object of type UDAData as value. The UDAData object
stores the name, data type and value of an individual UDA.

Interstage Business Process Manager Developer's Guide 115

6: Enhancing Interstage Business Process Manager

6. To process the individual UDAs of a process instance, use a Java Iterator to iterate through the
UDAs of that process instance. You can retrieve the name, data type and value of a UDA, using
getUdaName(), getUdaType() and getUdaValue() from the UDAData class.
The following sample creates a Java Iterator, which is required to iterate through the elements
of the udaData Map. Each object returned by iterator.next() is casted to a UDAData object.
Finally, the UDA's name, data type and value are retrieved for further processing.

Iterator iterator = udaData.keySet().iterator();
while (iterator.hasNext()) {

UDAData data = (UDAData) udaData.get(iterator.next());
System.out.println("\tUDA name: '" + data.getUdaName() + "'");
System.out.println("\tUDA type: '" + data.getUdaType() + "'");
System.out.println("\tUDA value: '" + data.getUdaValue()

+ "'\n");
}

6.6 Using Process Comments
To facilitate flexible communication among users, Interstage BPM allows users to add comments to
the node or process instance.
You can add, retrieve, and delete comments on ProcessInstance and NodeInstance interfaces in
the com.fujitsu.iflow.model.workflow package using the following APIs.

The following APIs can be used for both process instance and node instance.Note:

• To fetch a comment - getComments(). This API returns an array of comments of a process
instance or node instance. Comments can be fetched by all users.
For example, to fetch comments from
• the node instance object activity of an Activity Node, use activity.getComments();

• the process instance object pi, use pi.getComments();

You can retrieve comments' details, using Comment interface in the
com.fujitsu.iflow.model.workflow package. For example, the following APIs can be used.
• getMessage(): Returns message for this Comment
• getId(): Returns comment ID for this Comment
• getUserId(): Returns the user ID who has added this Comment
• getTimeStamp(): Returns the timestamp in milliseconds, for when this comment is added.
Refer to the API Javadoc for details on the available classes and methods.
The following sample code gives an example of retrieving individual comment information from
a process instance object pi.

Comment [] comments = pi.getComments();
for(int count=0;count<comments.length;count++){

System.out.println("CommentId: "+comments[count].getId());
Date date = new Date(comment[count].getTimeStamp());
System.out.println("Timestamp: "+ date);
System.out.println("UserId: "+comments[count].getUserId());
System.out.println("CommentMsg: "+comments[count].getMessage());
System.out.println("Deleted flag: "+comments[count].isDeleted());

}

Interstage Business Process Manager Developer's Guide 116

6: Enhancing Interstage Business Process Manager

Users can also fetch all comments of a process instances and comments from associated node
instances using ProcessInstance.getAllComments()API.
The following sample code gives an example of fetching all comments from the process instance
object pi and comments from all node instances of process instance object pi.

Comment [] comments = pi.getAllComments();

If no comments are present on the process instance or node instance, an empty array of
comments is returned.

Note:

• To add a comment -addComment(). This API adds the user-provided comment to the process
instance or node instance. Administrators, process instance owners, process instance initiator,
and assignees of each work item can add comments on that process instance. Administrators,
process instance owners, process instance initiator, and assignees of each work item on that
node can add comments on that node instance.

For a node instances, comments can be added to the Activity nodes, Voting nodes, Compund
Activity nodes and Dynamic Activity nodes.

Note:

Comments can be added on a node instance and process instance, if the process instance
is not locked by another user.

Note:

The following sample code gives an example of adding a comment to the node instance object
activity of an Activity Node.

String comment = "This is a comment on the node instance";
activity.addComment(comment);

The following sample code gives an example of adding a comment to the process instance object
pi.

String comment = "This is a comment on the process instance";
pi.addComment(comment);

• To delete a comment - deleteComment(). This API marks the given comment as deleted.
Comments can be deleted by the user who has added the comment and administrators.

A comment can be deleted from a process instance, only if the process instance is not
locked by another user.

Note:

The following sample code gives example of deleting a comment from the node instance object
activity of an Activity Node.

Comment comments = activity.getComments();
long commentId = comments[0].getId();
activity.deleteComment(commentId);

Make sure that the CommentID for the comment that you want to delete, is specific to the
node instance or process instance from which you want to delete the comment. If you try
to delete a comment from the node instance using a CommentID of a comment belong to
the process instance, you will get an error. Same holds true for process instance.

Note:

Interstage Business Process Manager Developer's Guide 117

6: Enhancing Interstage Business Process Manager

The following sample code gives an example of deleting a comment from the process instance
object pi.

Comment comments = pi.getComments();
long commentId = comments[0].getId();
pi.deleteComment(commentId);

6.7 Special User Defined Attribute Properties

6.7.1 Working with User Defined Attributes of Type XML
When modeling the data that will be used in a process, you might need to handle structured data in
XML format. For example, an external system might pass an XML structure to Interstage BPM which
needs to be modified during process execution and then passed back.
Interstage BPM provides a special data type for XML data. User Defined Attributes (UDAs) of type
XML allow you to access and manipulate the entire XML structure as well as substructures, single
elements and attributes. XPath expressions are used to select components from the XML data for
further processing.
Before storing data in a UDA of type XML, the Interstage BPM Server checks whether the data is
well-formed. Only well-formed XML data can be stored. Optionally, you can specify an XML schema
for each UDA and validate the XML data against that schema.
UDAs of type XML can be created, updated, read and deleted like any other UDA. For UDAs of type
XML, there are several additional methods provided for the following:
• setting and retrieving an XSD schema
• setting and retrieving the UDA value as file
• setting and retrieving the UDA value using an XPath expression, i.e. you can set and retrieve a

value for the entire XML structure, for a substructure and for a single element.
• validating the XML content of a UDA
When mapping UDAs of type XML, the DataItemMappingElement class of the WorkItem interface
allows for
• mapping a full XML structure to a full XML structure
• mapping a single element to another UDA of type XML
• mapping an XML substructure to another XML substructure
• mapping an XML substructure to a full XML structure
Below you find some examples for working with UDAs of type XML. Refer to the ComplexPlan.java
sample file for the entire sample code.

Interstage Business Process Manager Developer's Guide 118

6: Enhancing Interstage Business Process Manager

To work with UDAs of type XML:
1. When adding UDAs, specify TYPE_XML as the data type:

DataItemRef dataRefOrder = procDef.addDataItemRef(XMLUDA_BOOKSTORE,
DataItemRef.TYPE_XML, XMLVAL_BOOKSTORE);

The XMLUDA_BOOKSTORE constant defines the name of the UDA:

private final static String XMLUDA_BOOKSTORE = "XMLBookstore";

The XMLVAL_BOOKSTORE constant defines the value for the UDA in the following XML structure:

private final static String XMLVAL_BOOKSTORE =
"<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>"
+ "<bookstore>"
+ "<book category=\"COOKING\">"
+ "<title lang=\"en\">Everyday Italian</title>"
+ "<author>Giada De Laurentiis</author>"
+ "<year>2005</year>"
+ "<price>30.00</price>"
+ "</book>"
+ "<book category=\"CHILDREN\">"
+ "<title lang=\"en\">Harry Potter</title>"
+ "<author>J K. Rowling</author>"
+ "<year>2005</year>"
+ "<price>29.99</price>"
+ "</book>"
+ "<book category=\"WEB\">"
+ "<title lang=\"en\">XQuery Kick Start</title>"
+ "<author>James McGovern</author>"
+ "<author>Per Bothner</author>"
+ "<author>Kurt Cagle</author>"
+ "<author>James Linn</author>"
+ "<author>Vaidyanathan Nagarajan</author>"
+ "<year>2003</year>"
+ "<price>49.99</price>"
+ "</book>"
+ "<book category=\"WEB\">"
+ "<title lang=\"en\">Learning XML</title>"
+ "<author>Erik T. Ray</author>"
+ "<year>2003</year>"
+ "<price>39.95</price>" + "</book>" + "</bookstore>";

2. To read a single element of the XML structure, in this case the price for the first book, specify the
element using an XPath expression:

DataItem di = pi.getDataItem(XMLUDA_BOOKSTORE);
// retrieve the price for the first book
String price = di.getElementValue("/bookstore/book[1]/price/text()");

logger.log(Logger.DEBUG, "Price is: " + price);

Interstage Business Process Manager Developer's Guide 119

6: Enhancing Interstage Business Process Manager

3. To read the name of an XML node in the substructure, in this case the name of the XML node
defining the second book:

org.w3c.dom.Node subNode = di.getSubTreeValue("/bookstore/book[2]");
logger.log(Logger.DEBUG, "Node name is: " +

subNode.getNodeName());

Note that you must use the org.w3c.dom.Node interface for addressing the XML node, because
Interstage BPM also offers a Node interface.

4. To compare the value of a single XML element:

String xPath = "/bookstore/book[3]/author/text()";
String expAuthor = "Erik T. Ray";
logger.log(Logger.DEBUG, "Author: " + di.getElementValue(xPath));
if (di.getElementValue(xPath).equals(expAuthor)) {
logger.log(Logger.DEBUG, "Expected author found");

6.7.2 Worklist UDAs
Many applications require that the work list display certain User Defined Attribute (UDA) values that
are used to help determine which work item will be worked on next. Normal access to UDA values
from the worklist can be slow - Worklist UDAs provide a faster way of access. In addition, marking
a UDA as Worklist UDA allows you to sort and filter a list of workflow elements by this UDA.
Worklist UDAs are returned as an object within the worklist object. The same set of UDA values will
be included regardless of the activity from which the worklist object is generated. These values will
be included with the work item object, and can be immediately read without having to load the entire
process instance into the model.
There are two methods that can be used to obtain UDA information on a particular work item using
the Model API. You start by obtaining the work item object. Then, you can either obtain all of the
UDAs (DataItems) of this work item with getDataItems() or a subset that consists of the work item
DataItems with the getWorklistDataItems() method.
The prerequisite for using the getWorklistDataItems() method from the WorkItem interface is that
you mark certain DataItems as Worklist UDAs. This can be accomplished when you design the
process definition by using markAsWorkListUDA() from the DataItemRef interface.
There are the following worklist UDA-specific methods:
• markAsWorkListUDA(): Marks a UDA as a worklist UDA.
• boolean isWorkListUDA(): Checks, whether a UDA is a worklist UDA.
The following sample code demonstrates how you can define UDAs and mark them as Worklist
UDAs when you create a process definition. Refer to the ComplexPlan.java sample file for the
complete process definition.

//*** Definition of UDAs ***
DataItemRef udaPrice = plan.addDataItemRefWithId("Price",

"WLUDA_PRICE", DataItemRef.TYPE_FLOAT, "0.0");
DataItemRef udaQty = plan.addDataItemRefWithId("Quantity",

"WLUDA_QTY", DataItemRef.TYPE_INTEGER, "0");
DataItemRef udaTotal = plan.addDataItemRefWithId("Total",

"WLUDA_TOTAL", DataItemRef.TYPE_FLOAT, "0.0");

//Mark the UDAs as Worklist UDAs.
udaPrice.markAsWorkListUDA(true);

Interstage Business Process Manager Developer's Guide 120

6: Enhancing Interstage Business Process Manager

udaQty.markAsWorkListUDA(true);
udaTotal.markAsWorkListUDA(true);

You can use these Worklist UDAs, for example, to retrieve process instances that match filtering
criteria based on values of UDAs. For a programming sample, refer to the listProcsByUDA()method
in the ComplexPlan.java sample file.

UDAs of type XML cannot be marked as worklist UDAs.Note:

6.8 Using Extended Attributes
Interstage BPM allows you to define extended attributes. Extended attributes store extra information
that is not native to Interstage BPM. You can assign extended attributes to process definitions, nodes,
and arrows.
Extended attributes are specified as an XML document. Values of extended attributes are always of
type String. The following XML schema defines the format of extended attributes:

<xsd:element name="ExtendedAttributes">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="xpdl:ExtendedAttribute" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="ExtendedAttribute">

<xsd:complexType mixed="true">
<xsd:choice minOccurs="0" maxOccurs="unbounded">

<xsd:any minOccurs="0" maxOccurs="unbounded"/>
</xsd:choice>
<xsd:attribute name="Name" type="xsd:NMTOKEN" use="required"/>
<xsd:attribute name="Value" type="xsd:string"/>

</xsd:complexType>
</xsd:element>

When using extended attributes, make sure that your XML documents comply with this XML schema.
The following sample is a valid instance:

<ExtendedAttributes>
<ExtendedAttribute Name="SomeAttributeName" Value="Some value"/>
<ExtendedAttribute Name="AnotherAttributeName" Value="200"/>

</ExtendedAttributes>

The Plan, Node, and Arrow interfaces provide the following methods related to extended attributes:
• setExtendedAttributes (org.w3c.dom.Document attrs): Assigns extended attributes to the

process definition, node or arrow. attrs is an XML document that contains the extended attributes
to be assigned.

• getExtendedAttributes(): Returns the XML document that contains all extended attributes of
the process definition, node or arrow.

ComplexPlan.java contains a sample that shows how to work with extended attributes. A sample
process definition CxPD_PurchaseOrder is created that is supposed to be used by divisions in different
countries. Therefore, certain strings like the process definition name and node names need to be
available in different languages. Extended attributes are used to store the language-specific names.
The following sections explain how to assign and retrieve extended attributes.

Interstage Business Process Manager Developer's Guide 121

6: Enhancing Interstage Business Process Manager

6.8.1 Assigning Extended Attributes
To assign extended attributes to a process definition, node, or arrow:
1. Create an XML document containing the extended attributes that you want to assign to an element.

The sample program ComplexPlan.java creates two XML documents: One for the
language-specific names of the CxPD_PurchaseOrder process definition and another for the
language-specific names of an Activity Node. The following sample code shows the XML document
that is created for the language-specific names of the process definition:

StringBuffer sb_xmlProcDef = new StringBuffer();
sb_xmlProcDef.append("<ExtendedAttributes>");
sb_xmlProcDef.append("<ExtendedAttribute

Name=\"DE\" Value=\"Kaufauftrag\"/>");
sb_xmlProcDef.append("<ExtendedAttribute

Name=\"EN\" Value=\"Purchase Order\"/>");
sb_xmlProcDef.append("<ExtendedAttribute

Name=\"FR\" Value=\"Contrat d'achat\"/>");
sb_xmlProcDef.append("</ExtendedAttributes>");
InputStream in_xmlProcDef = new
ByteArrayInputStream(sb_xmlProcDef.toString().getBytes("UTF-8"));

This is the XML document that is created for the language-specific names of an Activity Node:

StringBuffer sb_xmlProcDef = new StringBuffer();
sb_xmlProcDef.append("<ExtendedAttributes>");
sb_xmlProcDef.append("<ExtendedAttribute Name=\"DE\"

Value=\"Bestellformular ausfuellen\"/>");
sb_xmlProcDef.append("<ExtendedAttribute Name=\"EN\"

Value=\"Fill out Purchase Requisition\"/>");
sb_xmlProcDef.append("<ExtendedAttribute Name=\"FR\"

Value=\"Remplir le formulaire de commande\"/>");
sb_xmlProcDef.append("</ExtendedAttributes>");
InputStream in_xmlActivity = new
ByteArrayInputStream(sb_xmlProcDef.toString().getBytes("UTF-8"));

There are some restrictions on the names you can use for extended attributes. For more
information, refer to section Names of Extended Attributes on page 124.

2. Read the XML documents containing the extended attributes.

DocumentBuilderFactory dbf =
DocumentBuilderFactory.newInstance();

DocumentBuilder builder = dbf.newDocumentBuilder();
Document extAttPlan = builder.parse(in_xmlProcDef);
Document extAttNode = builder.parse(in_xmlActivity);

3. Assign the extended attributes to the element.
The following sample code shows how to assign extended attributes to a process definition and
to a node:

procDef.startEdit();
procDef.setExtendedAttributes(extAttPlan);
nodePR.setExtendedAttributes(extAttNode);
procDef.commitEdit();

Interstage Business Process Manager Developer's Guide 122

6: Enhancing Interstage Business Process Manager

Once you have assigned extended attributes to an element, you can use getExtendedAttributes()
to retrieve them for further processing.

6.8.2 Retrieving the Value of an Extended Attribute
Prerequisite: You have assigned extended attributes to an element as explained in section Assigning
Extended Attributes on page 122.

To retrieve the value of a particular extended attribute:
1. Read the extended attributes that have been assigned to the element.

The following sample shows how to read the extended attributes that have been assigned to a
process definition:

Document resExtAttPlan = procDef.getExtendedAttributes();

Alternatively, you can use your own custom Java action to read the extended attribute assigned
to a process definition. Refer to section Accessing Workflow Data Using the Server Enactment
Context Interface on page 92 to create your own custom Java action. Make sure that you use
ServerEnactmentContext.getProcessDefinitionExtendedAttributes() API in your
customized Java action.

2. Build an XPath expression that specifies the location of the extended attribute within the XML
document.
In the following sample, exAttName stores the name of an extended attribute that is to be retrieved.

String xpath = "/ExtendedAttributes/ExtendedAttribute[@Name=\""
+ exAttName + "\"]";

If exAttName has the value EN, the resulting XPath expression is:

"/ExtendedAttributes/ExtendedAttribute[@Name=\"EN\"]"

3. Select the XML node that corresponds to the extended attribute:

org.w3c.dom.Node ndLang =
XPathAPI.selectSingleNode(resExtAttPlan, xpath);

The resulting XML node might be, for example:

<ExtendedAttribute Name="EN" Value="Purchase Order"/>

4. To access the value of the extended attribute:

String strRes =
ndLang.getAttributes().getNamedItem("Value").getNodeValue();

If an element has no extended attributes assigned, getExtendedAttributes() or
selectSingleNode() return a null value.

6.8.3 Retrieving all Extended Attributes of an Element
Prerequisite: You have assigned extended attributes to an element as explained in section Assigning
Extended Attributes on page 122.

Interstage Business Process Manager Developer's Guide 123

6: Enhancing Interstage Business Process Manager

To retrieve all extended attributes of a particular element:
1. Build an XPath expression that specifies the location of the extended attributes within the XML

document:

String xpath = "/ExtendedAttributes/ExtendedAttribute";

2. Read the extended attributes that have been assigned to the element.
The following sample retrieves all nodes of a process definition and checks whether extended
attributes have been assigned to a node. If a node has extended attributes, they are assigned to
a list of XML nodes.

Node[] nodes = procDef.getNodes();
for (int iNodeCnt=0; iNodeCnt<nodes.length; iNodeCnt++) {

Node tmpNode = nodes[iNodeCnt];
Document resExtAttNode = tmpNode.getExtendedAttributes();
if (resExtAttNode != null) {

NodeList nodelistNode =
XPathAPI.selectNodeList(resExtAttNode, xpath);

. . . }
}

Alternatively, you can use your own custom Java action to read the extended attribute assigned
to an activity definition. Refer to section Accessing Workflow Data Using the Server Enactment
Context Interface on page 92 to create your own custom Java action. Make sure that you use
ServerEnactmentContext.getActivityExtendedAttributes() API in your customized Java
action.

3. To access a particular extended attribute within the list of XML nodes:

for (int iNListCnt=0; iNListCnt<nodelistNode.getLength();
iNListCnt++) {

org.w3c.dom.Node exAttNode = nodelistNode.item(iNListCnt);
. . . }

Suppose nodelistNode contains the following XML nodes:

<ExtendedAttribute Name="DE"
Value="Bestellformular ausfuellen"/>

<ExtendedAttribute Name="EN"
Value="Fill out Purchase Requisition"/>

<ExtendedAttribute Name="FR"
Value="Remplir le formulaire de commande"/>

In this case, nodelistNode.item(1) returns the following XML node:

<ExtendedAttribute Name="EN"
Value="Fill out Purchase Requisition"/>

6.8.4 Names of Extended Attributes
When defining extended attributes, make sure that their names do not interfere with names used by
Interstage BPM or by the XPDL standard.

Interstage Business Process Manager Developer's Guide 124

6: Enhancing Interstage Business Process Manager

Extended Attributes Native to Interstage BPM
When converting a process definition to XPDL, Interstage BPM encodes some information that is
native to Interstage BPM into extended attributes. Below is the list of names used by Interstage BPM
for its native extended attributes.

Do not use these names as extended attribute values.
XML nodes having these attribute values may be removed when the process definition is
converted to XPDL. Interstage BPM uses some of these XML nodes to map internal data;
they are extracted from the extended attributes using getExtendedAttributes().

Note:

Associations

Artifacts

ChildPlan

ChildPlanId

CommitJavaActionSet

Coordinates

CustomNodeType

DataMapping

DataMappings

Description

EnableFutureWorkItems

EndPoint

EpilogueJavaActionSet

ExposedField

FormList

FormsList

InitJavaActionSet

InTransaction

IsWorkItemUDA

IteratorCountUDA

NodeType

Organization

ParentVersion

PrivateData

ProcessDefinitionId

ProcessOwnerRole

ProcessOwnerRoleJavaActionSet

ProcessTypeId

PrologueJavaActionSet

RoleJavaActionSet

SameSubPlanVersion

Interstage Business Process Manager Developer's Guide 125

6: Enhancing Interstage Business Process Manager

StartPoint

State

subProcessDefinitionURI

SWIM_LANES

TemplateIdentifier

TimerDefSet

Title

TriggerDefSet

VersionComment

ViewerScript

Example: The following XML fragment defines two extended attributes, StartPoint and StartPoint1.
The definition of StartPoint is faulty because this name is used by Interstage BPM for one of its
native extended attributes.

<ExtendedAttributes xmlns:x="http://example.com">
<ExtendedAttribute Name="StartPoint">

<x:StartPoint>
PointA

</x:StartPoint>
</ExtendedAttribute>
<ExtendedAttribute Name="StartPoint1">

<x:StartPoint1>
PointB

</x:StartPoint1>
</ExtendedAttribute>

</ExtendedAttributes>

When the process definition is converted to XPDL, the StartPoint XML node will be removed. The
resulting XPDL fragment would look like this:

<ExtendedAttributes xmlns:x="http://example.com">
<ExtendedAttribute Name="StartPoint1">

<x:StartPoint1>
PointB

</x:StartPoint1>
</ExtendedAttribute>

</ExtendedAttributes>

6.8.5 Namespace of Extended Attributes
Interstage BPM generates namespace-aware XPDL that fully complies with the XPDL 2.0 standard.

If you are using extended attributes, you are recommended to prefix their names with valid
namespaces. This ensures that the XPDL generated by Interstage BPM remains fully
compliant with the XPDL standard.

Note:

If you do not use a namespace when defining extended attributes, Interstage BPM adds the default
ibpm namespace to generate namespace-aware XPDL that fully complies with the XPDL 2.0 standard.

Interstage Business Process Manager Developer's Guide 126

6: Enhancing Interstage Business Process Manager

Example 1
The following sample defines extended attributes that are prefixed with the namespaces x and y:

<?xml version="1.0" encoding="UTF-8"?>
<ExtendedAttributes xmlns:x="http://example.com"

xmlns:y="http://example.net">
<ExtendedAttribute Name="myAttribute">

<x:myTag1>
myData1

</x:myTag1>
<y:myTag2>

<myTag3>
myData2

</myTag3>
</y:myTag2>

</ExtendedAttribute>
</ExtendedAttributes>

After importing such a process definition, getExtendedAttributes() returns the following XML
document:

<?xml version="1.0" encoding="UTF-8"?>
<ExtendedAttributes xmlns="http://www.wfmc.org/2004/XPDL2.0alpha"
xmlns:xpdl="http://www.wfmc.org/2004/XPDL2.0alpha"
xmlns:ibpm="http://fujitsu.com/ibpm1" xmlns:x="http://example.com"
xmlns:y="http://example.net">

<ExtendedAttribute Name="myAttribute">
<x:myTag1>

myData1
</x:myTag1>
<y:myTag2>

<myTag3>
myData2

</myTag3>
</y:myTag2>

</ExtendedAttribute>
</ExtendedAttributes>

Note that additional namespace attributes (the ibpm namespace and the XPDL 2.0 standard
namespaces) have been added to the root element. The immediate children of the
ExtendedAttribute element have not been prefixed with ibpm because appropriate namespaces
were already present in the original XML document.

Example 2
This XML fragment defines some extended attributes without namespace. In the context of the XPDL
standard, this XML is invalid because the children of the ExtendedAttribute element have no
namespace prefix.

<!-- INVALID -->
<ExtendedAttributes>

<ExtendedAttribute Name="myAttribute">
<myTag1>

myData1
</myTag1>
<myTag2>

<myTag3>
myData2

Interstage Business Process Manager Developer's Guide 127

6: Enhancing Interstage Business Process Manager

</myTag3>
</myTag2>

</ExtendedAttribute>
</ExtendedAttributes>

After importing such a process definition, getExtendedAttributes() returns the following XML
document:

<?xml version="1.0" encoding="UTF-8"?>
<ExtendedAttributes xmlns="http://www.wfmc.org/2004/XPDL2.0alpha"
xmlns:xpdl="http://www.wfmc.org/2004/XPDL2.0alpha"
xmlns:ibpm="http://fujitsu.com/ibpm1">

<ExtendedAttribute Name="myAttribute">
<ibpm:myTag1>

myData1
</ibpm:myTag1>
<ibpm:myTag2>

<myTag3>
myData2

</myTag3>
</ibpm:myTag2>

</ExtendedAttribute>
</ExtendedAttributes>

The returned XML document has changed in two aspects:
• The ibpm namespace and the XPDL 2.0 standard namespace attributes have been added to the

root element.
• The ibpm prefix has been added to the immediate children of the ExtendedAttribute element.

6.9 Transaction Control
The Interstage BPM transaction control mechanism allows for rolling back transactions to a specific
point in process execution. This mechanism also improves the system’s overall performance.
A process often consists of a sequence of nodes. You can decide whether or not the transaction
stays open after node completion. If the transaction stays open, the next node in the process will be
processed in the same transaction.
Consider the following:
• Performance: Committing a transaction saves everything to the database, and might force

everything to be read from the database again to start the subsequent transaction. If you have a
long chain of nodes that do very little computation (for example, a chain of branch nodes deciding
among many possible directions) the overhead of saving to the database every time will be
significant and unnecessary.

• Rollback upon errors: If a low level error occurs during processing, the current transaction will be
rolled back to the last commit point. If four nodes are all part of the same transaction, all four
nodes will be rolled back in case of an error, and upon restart all four will be executed again.
Committing the transaction somewhere in the middle means that it will rollback only to that point.

Controlling Transactions with the Model API
There are two methods in the com.fujitsu.iflow.model.workflow.Node interface supporting the
transaction control feature. These are:
• setNodeInTxn(): Sets the transaction flag on this node. This transaction flag is used to decide

whether the transaction should be committed when this node completes.

Interstage Business Process Manager Developer's Guide 128

6: Enhancing Interstage Business Process Manager

• getNodeTxnStatus(): Gets the node transaction status. Depending upon whether the node is
set to complete in the same transaction.

For more information on these methods or the Model API in general, refer to the API Javadoc.
For a node to automatically commit a transaction with the next commit operation (and not directly),
set setNodeInTxn() to true, for example:

fillOutNode.setNodeInTxn(true);

For checking the transaction status of a node, use getNodeTxnStatus(), for example:

logger.log(Logger.INFO, "");
logger.log(Logger.INFO, "Get status of node transaction");
boolean nodeTxnStatus =

workItem.getNodeInstance().getNodeTxnStatus();
logger.log(Logger.INFO, "Status: " + nodeTxnStatus);

Refer to the ComplexPlan.java and ProcessExecution.java samples for the complete node
definition.

Rolling Back Transactions in External Systems
You can define actions for Java Actions which perform a "cleanup" before a transaction is rolled
back and a process instance is set to the error state. This includes a rollback of all Java Actions in
a Java Action Set, and allows you to perform general actions (e.g. sending notification emails in any
error case), or executing some specific actions before setting the process instance to error state.
If you do not define any error handling for a Java Action, the following happens: When an exception
is thrown in this Java Action, the transaction will be rolled back. A rollback, however, is only possible
for changes in the Interstage BPM Application Server context. Any transactions in external systems
cannot be rolled back, for example, if a row has been added to a database. Therefore, it is sometimes
necessary to manually clean up external systems to ensure a consistent state of all systems used
in the transaction. Optionally, you can use Compensate Action Sets.
Refer to section Dealing with Errors in Java Actions on page 102 for more information.

6.10 Using Triggers
The purpose of a trigger is to move data, typically XML files, coming from an external system’s data
source into Interstage BPM process instances. These process instances are either started or directed
by the incoming XML data files, and the process instances perform functions that use the data source
data. The XML data files are called event data files.
Triggers can be configured to recognize the data in the event data files, so that the data can be
mapped to User Defined Attributes (UDAs) in the Interstage BPM process instances, or triggers use
the event data files directly and write the data to the defined UDAs.
Triggers are very versatile and can be associated with a process definition, an Event Activity Node
or an Activity Node. Each of these provides a different scope of behaviour.
• When defined on process definition level, the trigger creates a new process instance and starts

it.
• When defined on node level, the trigger makes a choice so that process execution moves forward

to the next node.
A trigger contains two components: the event that drives the trigger and the action that the trigger
takes when it is fired.

Interstage Business Process Manager Developer's Guide 129

6: Enhancing Interstage Business Process Manager

6.10.1 How It Works
Event data files (XML files) are sent from an external data source to a directory configured in the
Interstage BPM File Listener. The Trigger Handler checks all the triggers configured on Interstage
BPM and activates them in case the File Listener notifies the Trigger Handler of incoming XML files.
The trigger then acts according to its definition:
• If the trigger is defined on process definition level, it starts a process instance from the process

definition in which the trigger is defined and moves the XML data into the User Defined Attributes
(UDAs) of the process according to the data mapping specified in the trigger definition.

• If the trigger is defined on node level, it makes a choice on the node for which it is defined and
moves the XML data into the UDAs of the process instance according to the data mapping
specified in the trigger definition.

Triggers can not only be fired by the File Listener, but also explicitly using the
WFObjectFactory.processTriggerEvent() method of the Model API in package
com.fujitsu.iflow.model.workflow. This method processes the event data supplied in XML
format for all active trigger definitions.

Trigger State
A trigger is allowed to be in one of three possible states: Default, Active and Inactive. The state of
a trigger is a property at definition level, i.e. changing a trigger obtained on instance level, e.g. by
calling ProcessInstance.getTriggers(), will affect all triggers of all process instances belonging
to the same process definition as well. Changes to the state of the process definition or process
instance have no effect on the state of the contained trigger(s).

Control Conditions
Triggers may be designed to operate on certain process instances only. In such a case, you can
provide control conditions to facilitate the trigger to locate the right process instance to operate on
when the trigger is fired. If you do not specify control conditions, the trigger is always fired as soon
as the File Listener detects a new XML file in the specified directory.
For example, for triggers defined on process definition level: If you define triggers for several process
definitions, every time the File Listener finds an XML file, a process instance for every process
definition will be created. This means that an XML file can create an arbitrary number of process
instances of different process definitions. You can avoid this behavior by specifying control conditions
so that the creation of a process instance depends on the content of the XML file. Only if the XML
file content matches the control conditions, the trigger will be fired, i.e. a process instance will be
created.
Control conditions operate on User Defined Attributes. For each attribute used, you specify an element
of the incoming event data via an XPath expression. When the trigger is fired, only those processes
are selected in which the value of the specified attribute matches the value of the corresponding
element in the incoming event.

Action Specifications
Action specifications define the operation that the trigger will perform. Since each trigger is defined
to handle only one type of operation, all the actions defined in a trigger relate to the same operation.
This means, for example, that a trigger defined to make a choice will not be able to start a process.
For triggers defined on node level (make choice triggers), it is required to specify the actions that
can be performed using the method addAction(String, String). The first parameter contains the

Interstage Business Process Manager Developer's Guide 130

6: Enhancing Interstage Business Process Manager

name of the outgoing arrow that is to be chosen if the condition specified in the second parameter
is true.
When defining a trigger on an Event Activity Node, exactly one action has to be defined because
the node has exactly one outgoing arrow.
When defining a trigger on an Activity Node, the number of actions that can be defined depends on
the number of outgoing arrows defined for the node. The sequence of evaluating the conditions,
which is identical to the second parameter in the method, depends on the sequence of the actions.
The condition of the action with index [0] is evaluated first. If its condition is true, the conditions of
the other actions will not be evaluated. The process instance continues with the arrow defined in the
action whose condition was found to be true.

6.10.2 Defining a Trigger
This section explains how to define a trigger on process definition level. You can find the complete
programming code of the examples presented in this section in the sample file
TriggerTimerSample.java.

The TriggerTimerSample.java file contains an additional sample for adding a trigger to
an Activity Node. For information about triggers defined on Event Activity Nodes, refer to
section Using Event Activity Nodes on page 133.

Note:

To define a trigger:
1. Configure the File Listener that starts the triggering mechanism so that it looks into the directory

where incoming event data files are stored. For instruction on configuring and testing the File
Listener, refer to section File Listeners on page 134.

2. Create the relevant User Defined Attributes (UDAs) for your process definition.
In the sample file, the following UDAs are created:

plan.addDataItemRef("OrderID",
DataItemRef.TYPE_STRING, "Initial Value");

plan.addDataItemRef("OrderPerson",
DataItemRef.TYPE_STRING,"Initial Value");

plan.addDataItemRef("Name",
DataItemRef.TYPE_STRING, "Initial Value");

plan.addDataItemRef("Address",
DataItemRef.TYPE_STRING, "Initial Value");

plan.addDataItemRef("City",
DataItemRef.TYPE_STRING, "Initial Value");

plan.addDataItemRef("State",
DataItemRef.TYPE_STRING, "Initial Value");

plan.addDataItemRef("ZIP",
DataItemRef.TYPE_STRING, "Initial Value");

plan.addDataItemRef("Title",
DataItemRef.TYPE_STRING, "Initial Value");

plan.addDataItemRef("Note",
DataItemRef.TYPE_STRING, "Initial Value");

plan.addDataItemRef("Quantity",
DataItemRef.TYPE_INTEGER, "1");

plan.addDataItemRef("Price",
DataItemRef.TYPE_BIGDECIMAL, "0.00");

3. Add the trigger to your process definition, define control conditions and set its state to active.

Interstage Business Process Manager Developer's Guide 131

6: Enhancing Interstage Business Process Manager

In the sample below, two control conditions are defined. The first one requires that the value for
the price of the article must be bigger than 10, and the second one states that the name of the
adressee ("shipto" tag) must be "Pete Gagnet".

TriggerDef myTrigger = plan.addTrigger("myTrigger",
TriggerDef.TYPE_START_PROCESS);

myTrigger.setDescription("Will start a process instance.");

// add control conditions
String[] conditions = new String[2];
conditions[0] = "toFloat(eventData.getXMLData

(\"/shiporder/item/price/text()\")) > 10";
conditions[1] = "eventData.getXMLData

(\"/shiporder/shipto/name/text()\") == \"Pete Gagnet\"";
myTrigger.setControlConditions(conditions);

// activate trigger
myTrigger.setState(TriggerDef.STATE_ACTIVE);

4. Specify the data mapping for extracting the values of the event elements of the XML file that will
be used to fire the trigger, and write them to the UDAs, for example:

myTrigger.addDataMap("OrderID","shiporder/@orderid");
myTrigger.addDataMap("OrderPerson","shiporder/orderperson/text()");
myTrigger.addDataMap("Name","shiporder/shipto/name/text()");
myTrigger.addDataMap("Address","shiporder/shipto/address/text()");
myTrigger.addDataMap("City","shiporder/shipto/city/text()");
myTrigger.addDataMap("State","shiporder/shipto/state/text()");
myTrigger.addDataMap("ZIP","shiporder/shipto/zip/text()");
myTrigger.addDataMap("Title","shiporder/item/title/text()");
myTrigger.addDataMap("Note","shiporder/item/note/text()");
myTrigger.addDataMap("Quantity","shiporder/item/quantity/text()");
myTrigger.addDataMap("Price","shiporder/item/price/text()");

5. Create an XML file that will be used by the trigger to start an instance of a process definition and
fill the file with values. You can either use an existing XML file or create it using the API, for
example:

// Create XML file in the folder specified by the FILELISTENER_PATH
File xml = new File(FILELISTENER_PATH + "shiporder.xml");

// Write XML data into the file
FileWriter fw = new FileWriter(xml);
BufferedWriter bw = new BufferedWriter(fw);
bw.write("<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>");
bw.newLine();
bw.write("<shiporder orderid=\"889923\">");
bw.newLine();
bw.write("<orderperson>Joan Smith</orderperson>");
bw.newLine();
bw.write("<shipto>");bw.newLine();
bw.write("<name>Pete Gagnet</name>");
bw.newLine();
bw.write("<address>325 Eastwood Ave</address>");
bw.newLine();
bw.write("<city>" + CITY_OF_ORDER + "</city>");
bw.newLine();
bw.write("<state>OH</state>");
bw.newLine();

Interstage Business Process Manager Developer's Guide 132

6: Enhancing Interstage Business Process Manager

bw.write("<zip>20131-1234</zip>");
bw.newLine();
bw.write("</shipto>");bw.newLine();
bw.write("<item>");bw.newLine();
String titleStr = "<title>" + ITEM_TITLE + "</title>";
bw.write("(titleStr);bw.newLine();
bw.write("<note>Special Edition</note>");bw.newLine();
titleStr = "<quantity>" + QUANTITY_ORDER + "</quantity>";
bw.write("(titleStr);bw.newLine();
bw.write("<price>39.99</price>");bw.newLine();
bw.write("</item>");bw.newLine();
bw.write("</shiporder>");bw.newLine();
bw.close();

When specifying dates in the XML file, make sure to use a date format that matches the
locale setting of the Interstage BPM Server.

Note:

6.11 Using Event Activity Nodes
An Event Activity Node represents a step in a process which is driven by an external event. Each
Event Activity Node has a trigger defined that is supposed to fire when data, typically XML files,
comes in from an external system. Once the data arrives, the trigger moves the data into User Defined
Attributes (UDAs) according to the trigger's definition. The trigger then makes a choice and process
execution moves forward to the next node. No human interaction is required.
This section explains the typical steps involved in working with Event Activity Nodes. You can find
the complete programming code for the example presented in this section in the sample file
EventActivityNodeSample.java.
For general information about triggers and how they work, refer to section Using Triggers on page
129.
To use Event Activity Nodes:
1. Create an Event Activity Node using addNode(). Set the constant nodeType to

TYPE_EVENT_ACTIVITY.

Node activity = plan.addNode("EventActivity",
Node.TYPE_EVENT_ACTIVITY);

2. Add exactly one outgoing arrow to the Event Activity Node, for example

plan.addArrow("Exit", activity, exit);

3. Define a make choice trigger for the Event Activity Node that you previously created.

TriggerDef trigger = activity.addTrigger("ChoiceTrigger",
TriggerDef.TYPE_MAKE_CHOICE);

4. Optionally, add control conditions and correlation maps.
Control conditions check whether the content of the incoming XML data is valid for the trigger.
Correlation maps are used to select the process instances the trigger will operate on.

Interstage Business Process Manager Developer's Guide 133

6: Enhancing Interstage Business Process Manager

The following sample defines that the trigger will fire if the <doMakeChoice> element in the incoming
XML data has true as its value. The trigger will only fire for process instances where a particular
UDA has the same value as the <newValue> element in the incoming XML data.

trigger.addControlCondition("eventData.getXMLData"
+ "('/root/doMakeChoice/text()[1]') == 'true'");

trigger.addCorrelationMap(UDA_NAME, "/root/currentValue/text()[1]");

5. Specify the outgoing arrow to be chosen by the trigger using the method addAction(String,
String).
The first parameter contains the name of the outgoing arrow that is to be chosen if the condition
specified in the second parameter is true.
In the programming sample, the trigger chooses the outgoing arrow if the value of a particular
UDA is less than 10.

trigger.addAction(exit.getName(), "uda." + UDA_NAME + " < 10");

6. Map any information of the incoming XML data that you require for further processing to UDAs.
In the programming sample, a single data mapping is defined, which maps the value of the
<newValue> element to a UDA.

trigger.addDataMap(UDA_NAME, "/root/newValue/text()[1]"

7. Set the trigger's state to active.

trigger.setState(TriggerDef.STATE_ACTIVE);

The definition of the Event Activity Node and the trigger is now complete. At runtime, for the trigger
to fire, some incoming XML data has to be sent to the trigger. This data is created by the sample
program and sent to the trigger using WFObjectFactory.processTriggerEvent():

StringBuffer bw = new StringBuffer();
bw.append("<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>");
bw.append("<root>");
bw.append("<currentValue>5</currentValue>");
bw.append("<doMakeChoice>true</doMakeChoice>");
bw.append("<newValue>7</newValue>");
bw.append("</root>");
WFObjectFactory.processTriggerEvent(bw.toString(), adminSession);

6.12 File Listeners
File Listeners monitor files in specified directory locations. When they detect new or newly modified
files, they notify the Interstage BPM file handlers, so they can perform automatic functions like starting
Interstage BPM process instances or making choices on activities. File listeners are typically used
for integrating Interstage BPM with other enterprise applications.

Interstage Business Process Manager Developer's Guide 134

6: Enhancing Interstage Business Process Manager

6.12.1 Using File Listeners
To use a file listener:
1. The File Listener configuration file fileListenerConf.xml is part of the workflow application

project which you create and import from Interstage BPM Studio. It should be located in
<DMSRoot>/apps/<application ID>.

2. If you changed your File Listener configuration file, restart your workflow application.
3. Create a process definition and add a trigger that will cause the File Listener to start a process

instance. Refer to section Using Triggers on page 129 for instructions.
4. Create a File Listener XML file for your trigger and save it into the filelistener directory. Refer to

section Using Triggers on page 129 for instructions.
If the trigger is working, the XML file will disappear and a process instance will start from the
process definition containing the trigger. If the trigger is not working, the XML file will move to the
filelistener\error directory.

6.12.2 Configuring File Listeners
The File Listener configuration file fileListenerConf.xml is located in
<DMSRoot>/apps/<application ID>.
The following is an example of a fileListenerConf.xml configuration file:

<FileListener>
<Directory>

<ScanInterval>60000</ScanInterval>
<StabilizationPeriod>2000</StabilizationPeriod>
<PostProcessing>

<onSuccess>
<Delete></Delete>

</onSuccess>
<onError>

<Move>
</Move>

</onError>
</PostProcessing>

</Directory>
</FileListener>

The following table describes the XML tags used in fileListenerConf.xml:

DescriptionTag

Encloses configuration parameters for the
directory to be monitored for new or newly
modified files.

<Directory>

Path of the directory to be monitored.
In non-SaaS mode, this can be any directory
In SaaS mode, or in non-SaaS when path is not
specified, path to be used is
<ServerSharedRoot>/tenants/<tenant
name>/apps/<application ID>/filelistener

<Path>

Interstage Business Process Manager Developer's Guide 135

6: Enhancing Interstage Business Process Manager

DescriptionTag

Time interval in milliseconds after which the
directory is scanned for any new incoming file.

<ScanInterval>

Time interval in milliseconds for which the size
of the file is observed (to see if it has changed)
before it is processed.

<StabilizationPeriod>

Action to be taken if the file is successfully
processed. Possible actions are <Delete> or
<Move>.

<PostProcessing><onSuccess>

Action to be taken if the file is not successfully
processed. Possible actions are <Delete> or
<Move>.

<PostProcessing><onError>

Deletes the file.<Delete>

Moves the file to the directory specified.
On success:
• In non-SaaS mode, move file to any specified

directory
• In SaaS mode, or in non-SaaS when path is

not specified, move file to
<ServerSharedRoot>/tenants/<tenant
name>/apps/<application
ID>/filelistener/success

On error:
• In non-SaaS mode, move file to any specified

directory
• In SaaS mode, or in non-SaaS when path is

not specified, move file to
<ServerSharedRoot>/tenants/<tenant
name>/apps/<application
ID>/filelistener/error

<Move>

6.13 Email Listeners
Email Listeners monitor incoming email messages containing data files intended for Interstage BPM.
When they detect messages containing these files, they notify the Interstage BPM file handlers, so
they can perform automatic functions like starting Interstage BPM process instances or making
choices on activities. Email listeners are typically used for integrating Interstage BPM with other
enterprise applications.

6.13.1 Using the Email Listener for Triggers
You must perform the following actions to use the Email Listener:
• You must configure the Email Listener.

This configuration must be made by a Tenant Administrator.Note:

Interstage Business Process Manager Developer's Guide 136

6: Enhancing Interstage Business Process Manager

To configure your Email Listener to listen for the email responses you will send, the following
parameters must be set to configure the Email Listener:
• EmailListenerAutoReplyEnabled
• EmailListenerDeleteInvalidMessages
• EmailListenerEmailAddress
• EmailListenerEnabled
• EmailListenerPassword
• EmailListenerPollingInterval
• EmailListenerPOPPort
• EmailListenerPropertiesFile
• EmailListenerServerHost
• EmailListenerUserName
• EmailStyleSheetFile
For a description of these configuration parameters, see the Interstage Business Process Manager
Server Administration Guide.

• Have a simple process definition with a Start Process or Make Choice (Activity-level) trigger with
or without data mapping available and enable its trigger.

The Email Listener works just like the File Listener with one exception. The File Listener transfers
any XML data file that is copied into the File Listener directory to the trigger handler for processing.
The Email Listener transfers any XML data file that is contained in a specially formatted email message
to the trigger handler for processing. This data file is typically used by the trigger handler to trigger
an Interstage BPM event. An application access key is the special formatting required.

These instructions use the System application and the default tenant.Note:

1. Obtain the application access key for the application upon which the prerequisite process definition
is defined.

You must be a Tenant Administrator or Application Owner to obtain this key using the
substeps given below, otherwise you must obtain this key from Tenant Administrator or
Application Owner.

Note:

a) Open Application Settings under the System Administration tab for the application upon
which the prerequisite process definition is defined.
Following the example, you would open the System application.

b) Click Access Key.
The application access key will be displayed.

c) Without editing the key, copy it to a secure location on your network.
This key must be added unedited to the message body of email messages to be used to
activate the Email Listener. If non-administrators will be creating these special Email Listener
messages, you must distribute this key to them.

2. Open your email client and create a new message.
3. Address the message to the email address specified in the tenant property

EmailListenerEmailAddress.
If you do not know this information, see the application administrator mentioned in Step 1.

Interstage Business Process Manager Developer's Guide 137

6: Enhancing Interstage Business Process Manager

4. Attach to the email message the Data Event file that will activate your trigger and transfer data
to the process containing it. The file must be in the XML format, and it must conform to the schema
defined on your trigger.
This Data Event file must be of the same format that you would use with the File Listener.
Only one file should be attached. If more than one file is attached, only the first file attached will
be used.
In summary, the following is needed in email messages that will activate the Email Listener:
• Application Access Key (see Step 1)
• Email Listener Email Address (see Step 3)
• XML Data Event File (see top part of Step 4, this step)

5. Send the Email message.
Interstage BPM will process the message and send an email response back to you.
That message will notify you of the pass or fail status of the Email Listener.

6. Check the results of sending the Email Listener message.
This results obtained will depend on the type of trigger to be activated by the message and the
success or failure of the message to activate the trigger.
If the message activates a Start Process trigger, a new process instance will be started from the
process definition defined in the trigger. Interstage BPM will also send you an email response
indicating the successful operation.
If the message activates a Make Choice trigger, the Activity defined on the trigger will be completed
along the path of the choice specified in the Data Event file. Interstage BPM will also send you
an email response indicating the successful operation.
If data was mapped in the trigger, it will be added to the process according to the trigger definition.
If the message fails to activate the trigger specified in the Data Event file, Interstage BPM will
send you an email response indicating the unsuccessful operation.
If you send an email message containing an invalid or already expired application access key,
Interstage BPM will discard the message and send you a response indicating that you are using
an invalid key.

6.14 JMS Listeners
JMS Listeners monitor incoming JMS messages containing data intended for Interstage BPM. When
they detect messages containing this data, they notify the Interstage BPM trigger handler, so it can
perform automatic functions like starting Interstage BPM process instances or making choices on
activities. JMS listeners are typically used for integrating Interstage BPM with other enterprise
applications.

6.14.1 Using the JMS Listener for Triggers
You must have the following to use the JMS Listener:
• The knowledge to create a simple JMS client application
• A simple process definition with a Start Process or Make Choice (Activity-level) trigger with or

without data mapping available and enable its trigger.

The JMS Listener works just like the File Listener with one exception. The File Listener transfers any
XML data file that is copied into the File Listener directory to the trigger handler for processing. The
JMS Listener transfers XML data from a JMS message to the trigger handler for processing. This

Interstage Business Process Manager Developer's Guide 138

6: Enhancing Interstage Business Process Manager

data is typically used by the trigger handler to trigger an Interstage BPM event. An application access
key must be included in the JMS message as indicated below.

The instructions in Step 1 use the System application and the default tenant.Note:

1. Obtain the the application access key for the application upon which the prerequisite process
definition is defined.

You must be a Tenant Administrator or Application Owner to obtain this key using the
substeps given below, otherwise you must obtain this key from Tenant Administrator or
Application Owner.

Note:

a) Open Application Settings under the System Administration tab for the application upon
which the prerequisite process definition is defined.
Following the example, you would open the System application.

b) Click Access Key.
The application access key will be displayed.

c) Without editing the key, copy it to a secure location on your network.
This key must be added unedited to the JMS message to be used to activate the JMS Listener.
If non-administrators will be creating these special JMS messages, you must distribute this
key to them.

2. Write theData Event STRING that will activate your trigger and transfer data to the process
containing it. The STRING must be in the XML format, and it must conform to the schema defined
on your trigger.

3. Determine the name of the Interstage BPM Server to which you want to post the JMS message.
4. When an Interstage BPM Server is deployed, it comes with the JMS Topics like CommandTopic

and ResponseTopic. Interstage BPM server will listen on to the CommndTopic for any incoming
JMS message to process, and once the processing is done, the Interstage BPM Server will post
a response message to the ResponseTopic. The user application can listen to the ResponseTopic
to get the response back from the Interstage BPM Server. Create a simple JMS client application
to post a text message onto the CommandTopic. This will be your JMS Message. You must set
the xmlString variable to the XML Data Event STRING (see Step 2), the
APPLICATION_ACCESSKEY property to the Application Access Key STRING (see Step 1), and
the SERVER_ID property to the name of the Interstage BPM Server to which you want to post
the JMS message expressed as a STRING (see Step 3). The following is an example of how you
would set these properties in the JMS message:

...
TextMessage msg = pubSession.createTextMessage();

String xmlString = [XML Data Event STRING];
String serverName = [name of Interstage BPM Server STRING];
String applicationAccessKey = [the Application Access Key STRING];

msg.setText(xmlString);
msg.setStringProperty("SERVER_ID", serverName);
msg.setStringProperty("APPLICATION_ACCESSKEY", applicationAccessKey);
...

5. Post the JMS message.

Interstage Business Process Manager Developer's Guide 139

6: Enhancing Interstage Business Process Manager

Interstage BPM server will process the JMS message and send a JMS response to ResponseTopic
about the pass or fail status of the JMS Listener. The response will be of type Text Message or
Object Message. When there is an exception accessing the application, a Text Message will be
posted back explaining the failure and if the XML Data Event STRING was successfully processed
then, the com.fujitsu.mode.workflow.TriggerResult Object will be posted back in the form of Object
Message.

6. Check the results of posting the JMS message.
This results obtained will depend on the type of trigger to be activated by the message and the
success or failure of the message to activate the trigger.
If the message activates a Start Process trigger, a new process instance will be started from the
process definition defined in the trigger. Interstage BPM will also send you a response indicating
the successful operation.
If the message activates a Make Choice trigger, the Activity defined on the trigger will be completed
along the path of the choice specified in the Data Event file. Interstage BPM will also send you a
response indicating the successful operation.
If data was mapped in the trigger, it will be added to the process according to the trigger definition.
If the message fails to activate the trigger specified in the Data Event file, Interstage BPM will
send you a response, described above, indicating the unsuccessful operation.
If you post a message containing an invalid or already expired application access key, Interstage
BPM will discard the message and send you a response indicating that you are using an invalid
key.

6.15 Using Agents
Agents in Interstage BPM are set up to run automatically and act asynchronously on your behalf.
You can use Agents to access systems that are external to Interstage BPM. The external systems
to which you can connect might be legacy systems or Web Services, both inside and outside of
company firewalls. Using Agents, you can incorporate these external services into your Interstage
BPM process instances.

Note: • To include external libraries, so they can be used in Interstage BPM Agents, copy your
external classes or JARs to a directory as specified in Integrating Interstage BPM with
External Applications on page 88.

• If you are using Agents in a cluster installation, configure your Agents on each cluster
node. The Agent's configuration must be identical on all cluster nodes.

6.15.1 Agents Overview
Agents are application-specific, and are configured using an XML file called agentsConfig.xml.
This file is part of the workflow application project when you import it from Interstage BPM Studio,
and can be found in <DMSRoot>/apps/<application id>.
Once an Agent is configured in Interstage BPM by adding it to agentsConfig.xml, it can be run as
an activity in an Interstage BPM process instance by assigning it to the Activity Node. The agent is
then run in place of the activity. The work item is actually assigned to a system user that has the
same name as the agent.

Interstage Business Process Manager Developer's Guide 140

6: Enhancing Interstage Business Process Manager

Configuration File agentsConfig.xml
The following code listing is from agentsConfig.xml:

<ActionAgentList>
<ActionAgent>

<Name>@TestFrameAgent</Name>
<Description>Use for Test, return first choice</Description>
<RetryInterval>20</RetryInterval>
<EscalationInterval>1</EscalationInterval>
<ClassName>com.fujitsu.iflowqa.testframe.TestFrameAgent
</ClassName>
<ConfigFile></ConfigFile>

</ActionAgent>
</ActionAgentList>

The following table describes the XML tags used in agentsConfig.xml:

DescriptionTag

Contains a set of Agents.<ActionAgentList>

Contains a definition for a single Agent. Each
Agent must have its own definition that is
contained under this tag.

<ActionAgent>

Name of the Agent. The name must begin with
"@". This designates it as an Agent. The name
has to be specified as the assignee of an Activity
Node, making the activity an "Agent" activity. As
such, it no longer behaves as a "normal"
Interstage BPM activity but as an Agent.

<Name>

Short description of the Agent. It typically explains
form and function.

<Description>

If the Agent fails to call its external service, the
Agent retries to call it after a specified time.
<RetryInterval> specifies the time interval in
seconds between attempts.

<RetryInterval>

Specifies the number of failures after which the
System Administrator is notified via email.
An email is sent after each escalation interval.
For example, with a value of 1 the System
Administrator is notified each time the Agent fails.
The email is sent to the address specified in the
ServerEmailAddress parameter of the Interstage
BPM Server.

<EscalationInterval>

Name of the Java class associated with the
Agent. This class is the functional part of the
Agent.

<ClassName>

Interstage Business Process Manager Developer's Guide 141

6: Enhancing Interstage Business Process Manager

DescriptionTag

CLASSPATH of the Java class associated with
the Agent.
In SaaS mode, this value is ignored.

<ClassPath>

It is the configuration file name<ConfigFile>

Agent Class
The class specified in the <ClassName> tag in agentsConfig.xml is the Agent’s access to its external
service. Henceforth, it is called the Agent Class. The Agent Class must implement the following
interface:

package com.fujitsu.iflow.server.intf;
public interface ActionAgentInvoke

{
public String invokeService(

ServerEnactmentContext sec, String configFile) throws Exception;
}

The Agent Class calls the external service using invokeService(), receives data from the service,
and returns a STRING to Interstage BPM that indicates the action of the service.
There are three possible results of Agent Class execution. These are:
• Return of a NULL STRING or an empty STRING: If the Agent Class returns a NULL STRING or

an empty STRING, the Agent repeats its attempt to execute its service. The time interval is
specified in the <RetryInterval> tag. Each time, the agent attempts execution the number of
times specified in the <EscalationInterval> tag, the Agent sends an email message to the
address specified in the ServerEmailAddress parameter of the Interstage BPM Server

• Return of any other STRING: If the Agent Class returns any other STRING, the Agent evaluates
it to see if it matches the name of one of the arrows outgoing from the Agent activity. If there is
a match, the process instance continues with the matching arrow. If the return STRING does not
match an arrow, the Agent throws a cannot-find-arrow exception, and the process instance goes
into error state.

• Agent Class throws an exception: The Agent sends the exception to Interstage BPM, and the
process instance goes into error state.

AgentSimulator Example
A sample process definition using an Agent is provided in the <Interstage BPM Server
Installation Directory>/client/samples/examples/sources directory. AgentSimulator.xpdl
is a process definition that models a simple bank loan approval process. An Agent called
AgentSimulator is used to simulate a loan decision maker.
For instructions on running the sample, refer to the comments in the source file AgentSimulator.java.

6.15.2 Configuring FTP Agents
FTP Agents automatically transfer files attached to process instances that contain them. Like all
Agents, FTP Agents take the place of Interstage BPM activities. Process instances started from a
process definition containing an FTP Agent activity automatically transfer the files that arge attached

Interstage Business Process Manager Developer's Guide 142

6: Enhancing Interstage Business Process Manager

to them. They transfer the attached file(s) to the FTP Server of any machine to which the Interstage
BPM Server machine can connect.
An FTP Agent, like all Agents, is configured with agentsConfig.xml. This configuration file contains
an <ActionAgent> section with default settings for the FTP Agent. Usually, you don't need to change
the FTP Agent settings in this file.
The FTP Agent uses Interstage BPM’s ServiceAgent class. It also uses a special FTP Agent
configuration file called ftp.xml. This configuration file defines FTP settings, e.g. the address of the
FTP host. Check this configuration file and adapt it to your needs.

Configuration File ftp.xml
The FTP Agent configuration file ftp.xml is located in in <DMSRoot>/apps/<application id>.
The following is a sample ftp.xml file that configures an FTP Agent:

<Services>
<Service>

<ServiceType>FTP</ServiceType>
<ServiceStatusUDA>AgentServiceStatus</ServiceStatusUDA>
<ServiceResultUDA>AgentServiceResult</ServiceResultUDA>
<ServiceSpecificInfo>

<FTPHost><HOSTNAME or IP Address></FTPHost>
<FTPPort></FTPPort>
<FTPUser>anonymous</FTPUser>
<FTPPassword></FTPPassword>
<FTPType>ASCII</FTPType>
<FTPAppend>FALSE</FTPAppend>
<FTPDirectory>%%REMOTE_FTP_DIRECTORY%%

</FTPDirectory>
<FTPFileNames>%%REMOTE_FTP_FILES%%</FTPFileNames>
<Documents>%%OUTGOING_FILES%%</Documents>

</ServiceSpecificInfo>
</Service>

</Services>

Some of the tags in this file are used by all agents using the ServiceAgent class. Some of them are
specific to FTP Agents.
The following table describes the XML tags used in ftp.xml:

DescriptionTag

For the FTP Agent, the service type is always
FTP. If there is no service type specified or the
service type is invalid, the process instance goes
into error state.
This tag is used by all agents using the
ServiceAgent class.

<ServiceType>

Name of the User Defined Attribute (UDA) that
stores the status of the FTP Agent activity.
Possible values are Done or Failed. Removing
this tag has no effect on the FTP Agent; however,
the user cannot see the status of the FTP Agent
activity.

<ServiceStatusUDA>

Interstage Business Process Manager Developer's Guide 143

6: Enhancing Interstage Business Process Manager

DescriptionTag

Name of the UDA that stores the error message,
if the FTP Agent throws an exception. Removing
this tag has no effect on the FTP Agent; however,
if the FTP Agent fails, the user cannot see the
error that occurred.

<ServiceResultUDA>

Host name or IP address of the machine that
receives the transferred file. The default value is
127.0.0.1, i.e. the local host. If there is no FTP
host specified or the FTP host is invalid, files are
transferred to the local FTP server, if available.
This tag is specific to the FTP Agent.

<FTPHost>

Port used by the FTP server. If no port is
specified, the default FTP port 21 is used.
This tag is specific to the FTP Agent.

<FTPPort>

User name of the FTP user that transfers the file.
If the user name is invalid, file transfer fails and
the process instance goes into error state.
This tag is specific to the FTP Agent.

<FTPUser>

Password of the FTP user that transfers the file.
This tag is specific to the FTP Agent.

<FTPPassword>

Type of files to be transferred. Allowed values
are ASCII or BINARY. Default value is BINARY.
Use ASCII if you are transferring text files. Use
BINARY if you are transferring binary files. If any
other value than ASCII or BINARY is specified,
the FTP Agent throws an exception.
This tag is specific to the FTP Agent.

<FTPType>

Specifies whether a file to be transferred is
appended to a remote file. Allowed values are
TRUE or FALSE. Default value is FALSE.
Use TRUE if you want to append the contents of
the local file to an already existing remote file.
Use FALSE if you want to overwrite an already
existing remote file. If any other value than TRUE
or FALSE is specified, the FTP Agent throws an
exception.
This tag is specific to the FTP Agent.

<FTPAppend>

Interstage Business Process Manager Developer's Guide 144

6: Enhancing Interstage Business Process Manager

DescriptionTag

Name of the User Defined Attribute (UDA) that
specifies the directory to which files are
transferred. A path relative to the FTP server is
specified.
For example: if /iflow is the value of the
REMOTE_FTP_DIRECTORY UDA and you are
working on a Windows system, the file is
transferred to c:\Inetpub\ftproot\iflow. If an
invalid directory is specified, the process instance
goes into error state.
This tag is specific to the FTP Agent.

<FTPDirectory>

Name of the UDA that specifies the file names to
be used for the remote files. This parameter is
used to rename files while transferring them.
For example, if LocalFile.txt is attached to the
process instance and REMOTE_FTP_FILES has
RemoteFile.txt as its value, LocalFile.txt is
transferred to the FTP directory and renamed to
RemoteFile.txt. REMOTE_FTP_FILES can contain
several file names separated by semicolon (;). If
REMOTE_FTP_FILES contains no file names, the
original file names are used.

<FTPFileNames>

Name of the UDA that specifies the files that are
transferred to the FTP directory. OUTGOING_FILES
can contain several file names separated by
semicolon (;). If OUTGOING_FILES contains no file
names, all files attached to the process instance
are transferred.

<Documents>

Files that have a semicolon (;) in their names cannot be transferred to an FTP directory.
Semicolons are considered as file name delimiters and are therefore not allowed within
names of files that are to be transferred.

Note:

6.15.3 Using FTP Agents
To use an FTP Agent in your process definition:
1. Create an Activity Node that represents the FTP agent.
2. Assign "@FTP" to the Activity Node.
3. Add all User Defined Attributes (UDAs) that correspond to parameters in the FTP Agent

configuration file ftp.xml to your process definition.
These are the UDAs you might need to add:
• AgentServiceStatus

• AgentServiceResult

• REMOTE_FTP_DIRECTORY

Interstage Business Process Manager Developer's Guide 145

6: Enhancing Interstage Business Process Manager

• REMOTE_FTP_FILES

• OUTGOING_FILES

If you don't want to add REMOTE_FTP_FILES or OUTGOING_FILES, remove the contents of the
corresponding tag from the ftp.xml file. Example: You want to keep the original names of the
files to be transferred. Therefore, you don't add the REMOTE_FTP_FILES UDA to your process
definition. In this case, you need to remove the contents of the <FTPFileNames> tag from your
ftp.xml file: <FTPFileNames></FTPFileNames>.
If you don't add REMOTE_FTP_FILES or OUTGOING_FILES while the corresponding parameter is
specified in the ftp.xml file, the process instance goes into error state once the FTP Agent
Activity becomes active.
Refer to section Configuring FTP Agents on page 142 for more information about the ftp.xml
configuration file.

4. Add a Done arrow that originates from the FTP Agent activity to activate the next activity.

The FTP Agent either returns Done or null:
• If it returns Done, the process instance continues with the Done arrow.
• If it returns null, the process instance goes into error state. The AgentServiceStatus UDA

indicates the error state, and the AgentServiceResult UDA stores the error message that has
been issued.

In the following cases, the process instance goes into error state, but AgentServiceStatus and
AgentServiceResult UDAs are NOT updated with error information:
• The FTP Agent activity has no outgoing Done arrow.
• Some data in agentsConfig.xml is incorrect or missing.
To see the error reason, the user needs to check the history of the process instance.

6.15.4 Configuring HTTP Agents
HTTP Agents are used to send data to external locations on the Internet and receive data from the
Internet. An Agent sends data to the URL specified in its configuration and receives response data
from that URL. It sends the value of the User Defined Attributes (UDAs) specified in the
<HTTPRequestUDA> tag to the URL specified in the <HTTPBaseURL> tag and assigns the return data
as the value of the UDA specified in the <HTTPReponseUDA> tag.
An HTTP Agent, like all Agents, is configured in the agentsConfig.xml file. This configuration file
contains an <ActionAgent> section with default settings for the HTTP Agent. Usually, you don't
need to change the HTTP Agent settings in this file.
To configure an HTTP Agent in Interstage BPM:
Create an HTTP Agent configuration file and place it in <DMSRoot>/apps/<application id>.

Configuration File HTTPagent.xml
The following is a sample HTTP Agent configuration file:

<HTTPAgent>
<HTTPBaseURL method="POST"

followRedirects="true">{{Field HTTP_URL}}</HTTPBaseURL>
<HTTPHeaderParams name="Content-Type">text/xml;

charset=UTF-8</HTTPHeaderParams>
<HTTPHeaderParams name="User-Agent">I-BPM HTTP Agent
</HTTPHeaderParams>

Interstage Business Process Manager Developer's Guide 146

6: Enhancing Interstage Business Process Manager

<HTTPHeaderParams name="accept-charset">UTF-8
</HTTPHeaderParams>
<QueryParams name= "ParamName">Param value</QueryParams>
<HTTPRequestUDA>HTTP_REQUEST</HTTPRequestUDA>
<HTTPResponseUDA>HTTP_RESPONSE</HTTPResponseUDA>
<HTTPAgentStatusUDA>HTTP_STATUS</HTTPAgentStatusUDA>

</HTTPAgent>

The following table describes the XML tags used in HTTPagent.xml:

DescriptionTag

URL end point. The value for the <HTTPBaseURL>
tag specifies the external service to be called by
the HTTP Agent, e.g. a Servlet. This value can
also be defined to come from a process instance
UDA as QuickForm expression, such as {{Field
HTTP_URL}}.
Attributes:
method="POST" or "GET". Defines the request
method to be used for the HTTP request. If you
do not specify the method attribute, the process
instance will go into the error state. If you specify
an attribute value other than "POST" or "GET",
the HTTP agent will fail.
followRedirects="true".
Since the default value for followRedirects is
false, you must specify this attribute.

<HTTPBaseURL>

Interstage Business Process Manager Developer's Guide 147

6: Enhancing Interstage Business Process Manager

DescriptionTag

Sets the HTTP header properties like the
encoding style, the content type, etc. HTTP
headers are used to define a variety of web object
properties, for example, the properties of request
and response objects for the current HTTP
session.
Attributes:
name="Content-type" or "User-Agent".
"Content-type" defines the type of requested
content and takes the following value:
value="text/xml", charset=UTF-8.
This value can also be defined to come from
process instance UDAs as QuickForm expression
such as {{Field contentType}}.
"User-Agent" contains information about the
client (user agent) from where the request
originates.
Note that currently there is no restriction for the
value that can be specified in the name attribute
of the <HTTPHeaderParams> tag. Any valid values
for this attribute are valid HTTP headers.

<HTTPHeaderParams>

This tag is required in case the "GET" method is
used with the HTTP Agent. The value of this tag
is passed to the external service as Query String.
Note that the value of the UDA specified in the
<HTTPRequestUDA> tag is not used when the
"GET" method is used.
Correct usage of this tag is as follows:
<QueryParams name= "ParamName">Param
value </QueryParams>

This will result in the following URL specification
during HTTP Agent execution:
URL?ParamName=Param Value

You can specify any valid string for the name
attribute of the <QueryParams> tag.

<QueryParams>

Value of the UDA specified in this tag is part of
the query string for the HTTP request.

<HTTPRequestUDA>

UDA where the HTTP service status will be
stored.

<HTTPAgentStatusUDA>

UDA where the HTTP response will be stored.<HTTPResponseUDA>

Interstage Business Process Manager Developer's Guide 148

6: Enhancing Interstage Business Process Manager

6.15.5 Using HTTP Agents
To use an HTTP Agent in your process definition:
1. Create an Activity Node that represents the HTTP agent.
2. Assign @HTTPAgent to the Activity Node.
3. Add all the User Defined Attributes (UDAs) that correspond to parameters in the HTTPAgent.xml

file to your process definition.
These are the UDAs you might need to add:
• HTTP_URL

• HTTP_REQUEST

• HTTP_RESPONSE

• HTTP_STATUS

4. Add a Done and a Failed arrow that originate at the HTTP Agent activity for activating the next
node.
The HTTP Agent either returns Done or Failed:
• If it returns Done, the process instance continues with the Done arrow.
• If it returns Failed, the process instance continues with the Failed arrow.

HTTP Agent Example
A pre-configured HTTP Example is provided for your use in the <Interstage BPM Server
Installation Directory>/client/samples/examples/sources/HTTPAgentExample directory.
This example provides an easy-to-implement HTTP Agent. The example agent demonstrates the
complete functionality of an HTTP Agent.
This example includes a .war file that needs to be deployed on the application server where the
Interstage BPM server has been installed. Proceed with the implementation of the HTTP Agent as
described in the HTTPAgentExampleInstructions.txt file located in the HTTPAgentExample
directory.
Below, you find some additional explanations:
• The configuration files agentsConfig.xml and HTTPAgent.xml include the configuration of the

HTTP Agent used in this example. The HTTP Agent settings are contained in the HTTPAgent.xml
file. The agentsConfig.xml file specifies the HTTPAgent.xml file as an agent.

• You must restart the Interstage BPM Services to have your newly configured HTTP Agent take
effect.

• The imported template HTTP Agent Example V1.xpdl contains the HTTP Agent. An agent is
assigned to an Activity Node in the same manner that a User Group is assigned to an Activity
Node. However, the special designation for the agent name is the @ sign. In this case the agent
name is @HTTPAgent.

6.16 Using Timers
Timers trigger certain actions when they expire. These timers can be Activity-Node-Level timers that
start running when the Activity Node is activated or Process-Level timers that start running whenever
a new process instance is created from the process definition containing the timer.
Timers are controlled by time and action parameters, specified as User Defined Attributes and
Javascript, and set through Java Actions or forms. The expiration or firing time of a timer can be an
absolute, specific time or relative to another event (such as the start of the activity or process instance).

Interstage Business Process Manager Developer's Guide 149

6: Enhancing Interstage Business Process Manager

The timer can also be set to trigger actions periodically. Timers can also perform a variety of actions,
including escalation (assigning the activity to an additional list of users) or sending emails.
Execution and expiration of timers can also be controlled for the actions such as cancel, reschedule,
expire or reset active timres while the timer is running.
Refer to sections Controlling Execution of Timers on page 152 and Defining a Timer on page 150.
Timers can be set with the following nodes:
• Activity Node
• Delay Node
• Voting Activity Node
• Compound Activity Node
Refer to section Timers on page 32 for an overview of available timer types.

6.16.1 Defining a Timer
In the following example a timer is added to a Delay Node, which waits 200 milliseconds and then
sends an e-mail.
To add a timer to a node:
1. Define a Java Action and the User Defined Attributes (UDAs) for a TimerAction object.

JavaActionSet timerJASet = WFObjectFactory.getJavaActionSet();
timerJASet.setActionSetDescription("Timer controlled execution"

+ " of actions");
timerJASet.setActionSetName("TimerActions");
JavaAction[] timerJA = timerJASet.createJavaActions(1);

timerJA[0].setActionDescription("Sends an email ");
timerJA[0].setActionName("EmailSend");
timerJA[0].setClassName(CLASS_NAME_JAVA_ACTION);
timerJA[0].setMethodName("sendEmail(String,String,String,String,"

+ "String,String,ServerEnactmentContext)");
timerJA[0].setArgumentsUDANames("<E>uda.to</E><E>uda.from</E>"

+ "<E>uda.cc</E><E>uda.bcc</E><E>uda.subject</E>"
+ "<E>uda.body</E><E>sec</E>");

timerJASet.setJavaActions(timerJA);

plan.addDataItemRef("Timer_JavaActionSet",
DataItemRef.TYPE_STRING,
timerJASet.toString());

2. Define a TimerAction object. Use getTimerDef() from the WFObjectFactory class to create a
timer of a specified type.

TimerAction timerAction = WFObjectFactory.getTimerAction();
timerAction.setJavaActionSet("Timer_JavaActionSet");

3. In this step, define the type of the used timer with setType(timerType). You find the possible
values of the timerType constant in the TimerDef interface:
• RELATIVE: Defines a Relative timer.
• ABSOLUTE: Defines an Absolute timer.
• PERIODIC: Defines a Periodic timer.
• BUSINESSPERIODIC: Defines a Business Periodic timer.

Interstage Business Process Manager Developer's Guide 150

6: Enhancing Interstage Business Process Manager

• BUSINESSRELATIVE: Defines a Business Relative timer.

TimerDef timer = WFObjectFactory.getTimerDef();
timer.setName("Send mail timer");
timer.setDescription("This timer waits 2000 miliseconds and then"

+ " sends an email.");
timer.setType(TimerDef.RELATIVE);
timer.setTime("TimeOfExpiration");
timer.setTimerTimeExpression("DateAdd(Packages.java.util.Date(), 4,
\"hh\").getTime();");
timer.addTimerAction(timerAction);
plan.addDataItemRef("TimeOfExpiration",

DataItemRef.TYPE_LONG, "2000");

4. Define a TimerDef object, i.e. add the TimerAction object to TimerDef object.
5. Set the name of the UDA which contains the time of expiration.
6. You can also set a Javascript that gets evaluated to calculate the expiry date of a timer.

You can set the Javascript only for Absolute timers, Relative timers, and Periodic timers.Note:

• In case of an Absolute timer, the result of script evaluation is considered as the expiry time.
However, if script evaluation does not result in a date-time value in Long format, then the
UDA value is considered as the expiry time. That is, expiry time = script evaluation result or
UDA value.

• In case of relative timer, the result of script evaluation is considered as the reference time and
time specified in UDA value is considered as relative time from the reference time. That is,
expiry time = script evaluation result + UDA value.

This example sets the expiry time as four hours from the time the script is executed.

timerDef.setTimerTimeExpression("DateAdd(Packages.java.util.Date(), 4,
\"hh\").getTime();");

This example sets expiry time as two days from RequestDate in XML UDA.

timerDef.setTimerTimeExpression("sec.getProcessXMLAttributeElementValue(\"xmlUda\",
"//Request/RequestDate/text()\");");
timerDef.setTime("timerUda"); // timerUda holds the value for 2 days
in long format

TimerAction objects and TimerDef objects are distinct from one another, and they do not need
to be created in a specific order. However, to use a TimerAction object, it must be associated
with the TimerDef object by using TimerDef.addTimerAction(TimerAction action).

7. Add the TimerDef object to the node.

delayNode.addTimer(timer);

Interstage Business Process Manager Developer's Guide 151

6: Enhancing Interstage Business Process Manager

6.16.2 Adding a Due Date
You can add due date timer at plan or node level by specifying the time by when the process or node
should complete. The following sample code illustrates adding and retrieving DueDate on the Process
Definition.

//Adding DueDate on Plan:
plan.startEdit();
TimerDef timerDef = WFObjectFactory.getTimerDef();
timerDef.setName("DueDateTimer");
timerDef.setType(TimerDef.RELATIVE);
plan.addDataItemRef("DueDateExpTime",DataItemRef.TYPE_STRING, "300000");
timerDef.setTime("DueDateExpTime");

//To add DueDate on Plan
plan.setDueDateDef(timerDef);
plan.commitEdit();

//To get Due date on Plan
TimerDef dueDateDef = plan.getDueDateDef(timerDef);
ProcessInstance pi = plan.createProcessInstance();

//To retrieve DueDate of Process
Date dueDate = pi.getDueDate();

6.16.3 Controlling Execution of Timers
Interstage BPM allows you to control the execution of active timers. You can cancel an active timer,
re-schedule it to a new absolute time, reset it to recalculate the timer expiry time, or expire it
immediately. By controlling the execution of a timer, you can either change the actual expiry of a
timer or stop it from being executed.

Timer control is only accessible to the process owners and the administrators.Note:

You can control the execution of an active timer in the following ways:
• Cancel a timer: You can cancel an active timer. The cancelled timer will not execute even after

the expiry time is reached. However, it can be reactivated by re-scheduling or resetting it.
• You can reshedule and reset a cancelled timer.Note:

• Re-schedule a timer: You can re-schedule an active or cancelled timer by specifying an absolute
time at which they should expire.

Rescheduling any timer can only be achieved by mentioning an absolute time.Note:

The following code samples show usage of reschedule API

Calendar cal = Calendar.getInstance();
cal.clear();
cal.set(2009, 2, 3, 13, 30, 00);
timerInstance.reschedule(cal.getTimeInMillis());

Assignee of an activity can also re-schedule a DueDate timer along with process owners
and the administrators.

Note:

Interstage Business Process Manager Developer's Guide 152

6: Enhancing Interstage Business Process Manager

• Reset a timer:When you reset an active or cancelled timer, the system gets the timer value again
from the UDA or recalculates it from the script. This is useful when the UDA is changed after the
timer is activated or cancelled. Once reset, the timer will expire at the new expiry time that is
defined.

• Expire a timer: Active timers can be forcefully fired immediately, irrespective of their scheduled
expiry time.

A DueDate Timer cannot be forcefully fired.Note:

If a timer is rescheduled, reset, or expired, it is implicitly canceled and a new timer instance
is started.

Note:

6.16.4 Timer Instance History
The timer instance history information is stored for audit purposes. Each time there is a change to
a timer instance, the trail of the change is stored and can be retrieved to be viewed at a later time.
The following sample code shows how to retrieve the history of a timer.

TimerInstance[] tInsts = processInstance.getTimerInstances(timerDefId);
for (int i = 0; i < tInsts.length; i++) {
TimerInstance tInstance = tInsts[i];
System.out.println(tInstance.getId() + "\t"

+ tInstance.getName() + "\t"
+ tInstance.getDescription() + "\t"
+ tInstance.getTimerInstanceId() + "\t"
+ new Date(tInstance.getTimerExpirationTime()) + "\t"
+ tInstance.getState() + "\t" + tInstance.getActor();

}

6.16.5 Using Business Calendars
Interstage BPM allows you to create timers that trigger certain events associated with the timer upon
its expiration. The Business Calendars feature allows you to create business timers. A business
timer is a special type of timer that will only "count" business hours and days and expires only during
business hours. Business hours and days are specified in a Business Calendar.
The Business Periodic timers and the Business Relative timers are used with Business Calendars.
Since Business Calendars are used in combination with timers, they can be used with the following
types of nodes:
• Activity Node
• Delay Node
• Voting Activity Node
Refer to section Timers on page 32 for an overview of available timer types.
You can find the complete programming code of the examples presented in this section in the sample
file TriggerTimerSample.java.

Configuring Business Calendars
Interstage BPM allows you to use many different business calendars. If you haven’t defined a business
calendar for the process definition you are using, Interstage BPM uses the default business calendar
installed with Interstage BPM.

Interstage Business Process Manager Developer's Guide 153

6: Enhancing Interstage Business Process Manager

You can create and use your own custom business calendars or modify the default business calendar
to meet your needs. You may create as many Business Calendars as necessary to meet the needs
of your organization and use a different Business Calendar for every process definition or process
instance. The name of the calendar corresponds to the name of the calendar file. The calendar file
is given a .cal file extension, so it can be recognized as a Business Calendar.
A default calendar (named Default.cal) is provided at installation time. If no other calendar is
configured for use with Interstage BPM, you can still add a business timer to your Interstage BPM
process instances, and the default calendar will specify the business days and hours. The default
calendar also provides an example of a fully functional Business Calendar.
For instructions in creating and using your own custom business calendars or modifying the default
business calendar, refer to the Interstage Business Process Manager Server Administration Guide.

Assigning Business Calendars
You can assign a particular calendar to a process definition or process instance by assigning its
name (calendar file name without the .cal extension) to the __businessCalendar User Defined
Attribute (UDA). This UDA is used exclusively for Business Timers and Due Dates.
For example, say you had a calendar that you wanted to use for process instances run in your
German subsidiary and you called it German.cal. You want a certain activity to be assigned to one
of your employees, and if this employee is not available after a certain period of time, you want the
activity to be assigned to another employee. The time when the activity is reassigned depends on
your definition of the Business Calendar and the timer you use.
To assign a business calendar to a process definition:
1. Add a UDA of type STRING to your process definitions and assign the name of the calendar file

as its value.
For example, you could add a STRING type UDA to your German subsidiary division process
definitions and assign it a value of German:

plan.addDataItemRef("__businessCalendar", DataItemRef.TYPE_STRING,
"German");

2. Add a UDA with a given name, type, and initial value to the process definition. The value of the
UDA is to be specified as STRING and represents the start time for the timer.
In the example, the business time is set relative to the current time of the day by two minutes:

plan.addDataItemRef("__udaStartTime", DataItemRef.TYPE_STRING,
"BT(00:02:00)");

For a list of time and day codes that you can use for the business time, refer to section Time and
Day Codes for Timers on page 155.

3. Add a node to which the business periodic or business relative timer is to be assigned, for example,
an Activity Node.

Node orderActivity = plan.addNode("Order",Node.TYPE_ACTIVITY);

4. Create the timer by specifying its name, a description, the start time defined by the __udaStartTime
UDA, and by defining whether it is to be a business relative or periodic timer.

Interstage Business Process Manager Developer's Guide 154

6: Enhancing Interstage Business Process Manager

In the example, a business relative timer is used:

TimerDef busCalTimer = WFObjectFactory.getTimerDef();
busCalTimer.setName("busCalTimer");
busCalTimer.setDescription("Timer to show the business calendar
functionality");
busCalTimer.setTime("__udaStartTime");
busCalTimer.setType(TimerDef.BUSINESSRELATIVE);

5. Add the timer to the Activity Node.

TimerAction busCalTimerAction = WFObjectFactory.getTimerAction();
// Set the name of the UDA that contains the JavaActionSet to be
// executed when the timer expires.
busCalTimerAction.setJavaActionSet("BusCalActionSet");
// Add a TimerAction that specifies a JavaActionSet to this timer
// definition. The defined JavaActionSet of this action is executed
// when this timer expires.
busCalTimer.addTimerAction(busCalTimerAction);
//Add timer to the activity node
orderActivity.addTimer(busCalTimer);

You can also assign a business calendar to a particular Business Timer or Due Date. The Business
Timer or Due Date is then calculated based on this business calendar. Use the following expression:
UC(<business calendar>);

For <business calendar>, specify the name of your business calendar without the .cal extension.
In the following example, a business calendar called California.cal is used for the calculation of
the Business Timer:

plan.addDataItemRef("__udaStartTime", DataItemRef.TYPE_STRING,
"UC(California);BT(00:02:00)");

. . .
TimerDef busCalTimer = WFObjectFactory.getTimerDef();
. . .
busCalTimer.setTime("__udaStartTime");
busCalTimer.setType(TimerDef.BUSINESSRELATIVE);
. . .

You can change calendars while a process instance is running using the setProcessAttribute
JavaScript function and the __businessCalendarUDA. For example to change the business calendar
to England.cal, you would use the following script:

sec.setProcessAttribute(“__businessCalendar”,”England”);

6.16.6 Time and Day Codes for Timers
When defining a timer, you can use time and/or day codes to specify the time. In the following
example, a time code is used to set the business time relative to the current time. The time code is
marked bold.

plan.addDataItemRef("__udaStartTime", DataItemRef.TYPE_STRING,
"BT(00:02:00)");

These are the time and day codes that you can use.

Interstage Business Process Manager Developer's Guide 155

6: Enhancing Interstage Business Process Manager

Time Codes

ExampleMeaningCode

AT(16:30:00): 4:30pm on that day.Sets the absolute time of the day.AT

CT(00): Closing time.
CT(-02:00:00): 2 hrs before the closing
time.

Sets the business time relative to the
closing time of the day.
Allowed values: 00 or negative hours.
Typically you will use negative hours with
closing time in order to calculate a
relative time before closing time.

CT

OT(00): At the opening time.
OT(02:00:00): 2 hrs after the opening time.

Sets the business time relative to the
opening time of the day.
Allowed values: 00 or positive hours.

OT

BT(04:30:00): After 4 & 1/2 business hours
from the current time.
BT(-02:00): 2 business hours earlier.
BT(00): Use this to search forward to the
next business time, without changing the
time if the current time is not a business
time. You may need this if different
business days have different hours.
BT(-00): Use this to search backward to
the last previous business time. Has no
effect if the current time is already during
business time.

Sets the business time relative to the
current time of the day.

BT

Day Codes

ExampleMeaningCode

BD(4): Four business days from today.
BD(0): Same day if it is a business day,
else the next day.
BD(-0): Same day if it is a business day,
else the previous day.

Sets a business day.BD

RD(7): After one week.
RD(-1): One day earlier.

Sets a relative day from the current day.RD

WD(1): Sunday of that week.
WD(7): Saturday of that week.

Sets a day of the week.
Allowed values: 1 to 7.

WD

WN(1): The next Sunday after today.
WN(7): The next Saturday after today.

Sets the next weekday after today.
Allowed values: 1 to 7.

WN

Interstage Business Process Manager Developer's Guide 156

6: Enhancing Interstage Business Process Manager

ExampleMeaningCode

RM(3): After 3 months.Sets a relative month in the future. If the
month does not have enough days to be
the same day, the day will be the last day
of the month.

RM

DM(1): The first day of the month.
DM(-1): The last day of the month.

Sets an exact day of the month.
Allowed values: Any number except 0.

DM

BM(1): The first business day of the month.
BM(-1): The last business day of the
month.

Sets an exact business day of the month.
Allowed values: Any number except 0.

BM

DY(1): The first day of the year.
DY(-1): The last day of the year.

Sets a day of the year.
Allowed values: Any number except 0.

DY

BY(1): The first business day of the year.
BY(-1): The last business day of the year.

Sets a business day of the year.
Allowed values: Any number except 0.

BY

6.17 Modeling Remote Subprocesses
Remote subprocesses are subprocesses that run on a remote workflow server. A remote workflow
server might be, for example, another Interstage BPM Server.
A remote subprocess is represented by a Remote Subprocess Node in the parent process definition.
The interaction between parent and remote subprocess comprises the following steps:
1. When a Remote Subprocess Node is reached, the local workflow server sends a Start Process

request to the remote workflow server, carrying with it the User Defined Attribute (UDA) values
that the remote subprocess instance will work on.

2. The remote workflow server must receive this request, and start a process instance.
3. When the remote process instance completes, its workflow server sends a Process Completed

message back, carrying with it the results of the subprocess instance.
4. The local workflow server must receive this message, incorporate the results, and complete the

Remote Subprocess Node allowing the process instance to continue to the next node.
For a successful interaction, the following must be defined with the parent process definition:
• The URI of the remote process definition
• The identifiers of the UDAs that will be passed back and forth
• Return values of the subprocess definition.

Interstage Business Process Manager Developer's Guide 157

6: Enhancing Interstage Business Process Manager

6.17.1 Designing a Parent and Remote Subprocess Definition
This section explains how to design the parent and the subprocess definition. It explains the central
steps based on the following sample process definitions:

Figure 19: Parent Process Definition with a Remote Subprocess Node

Interstage Business Process Manager Developer's Guide 158

6: Enhancing Interstage Business Process Manager

Figure 20: Remote Subprocess Definition

You can find the complete programming code in the sample file RemoteSubProcess.java.
To design a parent and a remote subprocess definition:
1. Create the subprocess definition. Add a Start Node, one or more Exit Nodes and the required

Activity Nodes to the subprocess definition. Also, specify the UDAs that will be passed back and
forth.
In the sample program, createRemoteSubPlan() is called to create a subprocess definition:

Plan subPlan = createRemoteSubPlan();

The sample subprocess definition consists of a Start Node, an Activity Node and two Exit Nodes.
The Exit Nodes define the possible results of the subprocess definition that need to be handled
by the parent process definition:

Node exitNodeApp = plan.addNode("Approved", Node.TYPE_EXIT);
exitNodeApp.setPosition(new Point(500, 350));
Node exitNodeRej = plan.addNode("Rejected", Node.TYPE_EXIT);
exitNodeRej.setPosition(new Point(200, 350));

The following UDAs are created in the sample subprocess definition:

plan.addDataItemRef("Name",
DataItemRef.TYPE_STRING, "John Smith");

plan.addDataItemRef("Number",
DataItemRef.TYPE_STRING, "0123456789");

plan.addDataItemRef("Amount",
DataItemRef.TYPE_FLOAT, "0.0");

plan.addDataItemRef("Limit",
DataItemRef.TYPE_FLOAT, "0.0");

Interstage Business Process Manager Developer's Guide 159

6: Enhancing Interstage Business Process Manager

2. Create the parent process definition and set it to edit-mode.

plan = WFObjectFactory.getPlan();
plan.setWFSession(adminSession);
plan.startEdit();

3. In the parent process definition, create the UDAs that will be passed back and forth. In the sample
program, the following UDAs are created:

plan.addDataItemRefWithId("Name", "Name",
DataItemRef.TYPE_STRING, "John Smith");

plan.addDataItemRefWithId("SSN", "SSN",
DataItemRef.TYPE_STRING, "0123456789");

plan.addDataItemRefWithId("LoanAmount", "Loan Amount",
DataItemRef.TYPE_FLOAT, "0.0");

plan.addDataItemRefWithId("ApprovalLimit", "Approval Limit",
DataItemRef.TYPE_FLOAT, "0.0");

You can use different names for the same UDA in the process definitions involved. However,
the data type must be identical.

Note:

4. Add a Start Node, one or more Exit Nodes and the required Activity Nodes to the parent process
definition.

5. Add a Remote Subprocess Node to the parent process definition.

Node RemoteSubProcessNode = plan.addNode("Remote",
Node.TYPE_REMOTE_SUB_PROCESS);

RemoteSubProcessNode.setPosition(new Point(400, 300));

6. Define data mappings for the UDAs that need to be passed back and forth. Use the following
method of the Node interface:

addDataMappingElement(<UDA identifier in parent process definition>,
<UDA identifier in subprocess definition>,<direction of data flow>)

When the data value passes from the parent to the remote subprocess, specify
DataItemMappingElement.IN as the direction of data flow. When the data value passes from
the remote subprocess to the parent process, specify DataItemMappingElement.OUT. When the
data value passes is both directions, specify DataItemMappingElement.INOUT.
In the sample program, the following data mappings are defined:

RemoteSubProcessNode.addDataMappingElement("Name","Name",
DataItemMappingElement.IN);

RemoteSubProcessNode.addDataMappingElement("SSN","Number",
DataItemMappingElement.IN);

RemoteSubProcessNode.addDataMappingElement("LoanAmount", "Amount",
DataItemMappingElement.IN);

RemoteSubProcessNode.addDataMappingElement("ApprovalLimit", "Limit",
DataItemMappingElement.OUT);

Interstage Business Process Manager Developer's Guide 160

6: Enhancing Interstage Business Process Manager

7. Connect the parent and subprocess definition using the following method. To do so, specify the
communication protocol to be used by the workflow servers involved and the URI of the remote
subprocess definition:

RemoteSubProcessNode.setSubPlanURI("asap:" +
subPlan.getPlanURI());

Interstage BPM supports two open protocols for communication between workflow servers: Simple
Workflow Access Protocol (SWAP) and Asynchronous Service Access Protocol (ASAP). These
protocols pass XML messages over HTTP between workflow servers.
You are recommended to use ASAP (specified as asap) when the processes run on integrated
Interstage BPM Servers. Use SWAP (specified as swap) with Collaboration Ring only. For details
about Collaboration Ring integration, contact your local Fujitsu Support Organization.

8. Add arrows to connect the nodes in the parent process definition. Make sure to add an outgoing
arrow to the Remote Subprocess Node for each result that the subprocess might return.
The result values correspond to the names of the Exit Nodes in the remote subprocess definition.
A Remote Subprocess Node may have one or more outgoing arrows. Only one arrow is chosen
when the parent process resumes. The arrow that is chosen is the one that matches the result
of the remote subprocess. In the sample program, the subprocess returns either Approved or
Rejected.

Arrow ExitSubProcessApp = plan.addArrow("Approved", RemoteSubProcessNode,
activityNodeAfter);
Arrow ExitSubProcessRej = plan.addArrow("Rejected", RemoteSubProcessNode,
exitNode);

The names of the Exit Nodes in the subprocess definition and the names of the outgoing
arrows must be identical, also regarding uppercase/lowercase.

Note:

6.17.2 Running Remote Subprocess Definitions
To be able to run remote subprocess definitions, an Interstage BPM Linkage User must be configured
on the local and the remote Interstage BPM Server:
• On the local Interstage BPM Server, a user must be specified that can be authenticated on the

remote Interstage BPM Server. This user will create the subprocess instance on the remote
Interstage BPM Server.

• On the remote Interstage BPM Server, a user must be specified that can be authenticated on the
local Interstage BPM Server. This user will return the result of the remote subprocess instance
to the local Interstage BPM Server.

The Interstage BPM Linkage User is configured in the parameters SWAPLinkageUserName and
SWAPLinkagePassword of the Interstage BPM Server. For more information, refer to the Interstage
Business Process Manager Server Administration Guide.
Only published subprocess definitions can be called remotely unless the subprocess definition
belongs to the Interstage BPM Linkage User. The Interstage BPM Linkage User can call remote
subprocess definitions that are in Draft state. Therefore, use one of the following options to test your
subprocess definitions:
1. Publish the remote subprocess definition before running it.
2. Find out the Interstage BPM Linkage User configured for the local Interstage BPM Server; use it

as the owner of the subprocess definition.

Interstage Business Process Manager Developer's Guide 161

6: Enhancing Interstage Business Process Manager

3. Change the Interstage BPM Linkage User configured for the local Interstage BPM Server; specify
the owner of the subprocess definition as the Interstage BPM Linkage User.

6.17.3 Error Handling for Remote Subprocesses
You can handle the case when the starting of a remote subprocess fails, e.g. because the remote
server is not started by defining an Error Java Action for the Remote Subprocess Node in the parent
process definition. In this way you can avoid that the process instance goes into error state as soon
as the subprocess cannot be started.
An Error Java Action Set on the Remote Subprocess level will become active if the remote subprocess
fails to start. Refer to section Using Error Java Actions on page 101 for more information on this type
of Java Action.
To design and assign an Error Action Set to a Remote Subprocess Node:
1. Use getJavaActionSet() from the WFObjectFactory class to create a new JavaActionSet

object.

JavaActionSet errorJavaActionSet =
WFObjectFactory.getJavaActionSet();

2. Generate the required number of Java Actions for JavaActionSet.
In the following example, one Java Action is generated.

JavaAction[] errorJavaActions =
errorJavaActionSet.createJavaActions(1);

3. Define the Java Action Set.

errorJavaActions[0]
.setActionName("WriteLogEntry");

errorJavaActions[0]
.setActionDescription("Writes a log entry in case the Remote

Subprocess could not be started");
errorJavaActions[0]

.setMethodName("writeLogEntryWithException(String,ServerEnactmentContext)");
errorJavaActions[0]

.setClassName(CLASS_NAME_JAVA_ACTION);
errorJavaActions[0]

.setArgumentsUDANames("<E>uda.LogEntry</E><E>sec</E>");
errorJavaActionSet.setJavaActions(errorJavaActions);

4. Assign the JavaActionSet to the Remote Subprocess Node.

RemoteSubProcessNode.setJavaActionSet(errorJavaActionSet,
JavaActionSet.NODE_ERROR);

6.18 Using Compound Activity Nodes
A Compound Activity node encompasses a phase of a process and the milestones to be achieved
at the end of the phase. A phase is a container that contains various nodes and arrow transitions.
Once a phase is complete a milestone in the process is said to be achieved and the process can
move to the next activity or another phase. You can also define due date for a phases. This due date
can be defined using different types of Timers.

Interstage Business Process Manager Developer's Guide 162

6: Enhancing Interstage Business Process Manager

The Compound Activity node has child nodes nested inside it. It should have Start and Exit nodes
as child nodes. Refer to Defining a Compound Activity Node on page 163 for more information on
how to define a Compound Activity node.
The Compound Activity node and the nodes nested inside a Compound Activity node will have the
same Process Definition ID as the parent process. The nodes nested inside the Compound Activity
node cannot be accessed outside this node.
The following figure illustrates an example of a Compound Activity node.

Figure 21: Compound Activity Node

Workflow for Compound Activity Nodes
When the control reaches the compound activity node in a process,
1. Workitem for the Compound Activity is created and WorkItem state is changed to

WaitingForSubProcess.
2. The child Start node is activated.

A Compound Activity node must have Start and End nodes inside it.Note:

3. The status of Compound Node is changed to WaitingOnSubProcess and the child nodes will be
executed.

4. When the Child Exit node is reached
• The Compound Activity Node is closed and its state is changed to Completed.
• Workitems of the Compound Node are deleted.
• Outgoing arrow from the Compound Activity node that has the same name as child Exit node

is activated.

Make sure that the child Exit node name matches any one of the outgoing arrow names
from the Compound Activity node.

Note:

When the work item for Compound Activity is completed by making choice, then any active
child node instance will be aborted, its Work items are deleted and the Compound Activity
state is changed to Completed.

Note:

For more information on functions that are supported on Compound Activity node, refer to information
in Node Types on page 33.

6.18.1 Defining a Compound Activity Node
Pre-requisites
The Process Definition to which you are adding a Compound Activity node should be in the edit
mode.

Interstage Business Process Manager Developer's Guide 163

6: Enhancing Interstage Business Process Manager

To define a Compound Activity Node
1. Create an Compound Activity node using addNode(). Set the constant nodeType to

TYPE_COMPOUND_ACTIVTY

Node activity = plan.addNode("CompoundActivity",
Node.TYPE_COMPOUND_ACTIVTY);

Following sample code adds Compound Activity CompoundNode to the process Definition Plan

// Adding Compound Activity Node
Node compoundNode =
plan.addNode("CompoundNode",Node.TYPE_COMPOUND_ACTIVITY);
compoundNode.setRole("SampleGroup");
compundNode.setSize(new Dimension(200,100));

2. Add child nodes using the addChildNode() API of the Interface
com.fujitsu.iflow.model.workflow.Node

Following sample code adds child nodes to the Compound Activity node.

//Adding child nodes
Node subStartNode = compoundNode.addChildNode("SubStart",
Node.TYPE_START);
Node subActivityNode =
compoundNode.addChildNode("SubActivity",Node.TYPE_ACTIVITY);
subActivityNode.setRole("SampleGroup");

//Exit Node name should be same as Compound Activities' outgoing Arrow
name
Node subExitNode = compoundNode.addChildNode ("CommonName",
Node.TYPE_EXIT);

3. Add arrows for the child nodes. Make sure that name if an outgoing arrow is same as the exit
node name under the Compound Activity Node
The following sample code adds arrows to connect various Child Nodes

plan.addArrow("SubArrow1", subStartNode, subActivityNode);
plan.addArrow("SubArrow2", subActivityNode, subExitNode);

The following sample code adds an outgoing arrow with the same name as the exit node.

plan.addArrow("CommonName", compoundNode, actNode);

You cannot define arrow transitions from child nodes inside Compound Activity to nodes
outside Compound Activity.

Note:

6.19 Using Dynamic Subtasks
When a task is activated, it might be required to create subtasks to that task and assign these
subtasks to different users, in order to complete the task. Creating dynamic subtasks to a task enables
you to assign these subtasks to different users.
To add a subtask to an active task (Activity1), a dynamic child node instance needs to be created
and assigned. The workitem that is generated for this dynamic child node instance becomes the
subtask for Activity1.

Interstage Business Process Manager Developer's Guide 164

6: Enhancing Interstage Business Process Manager

To add a subtask to a task, the task should be either in the Active or
WaitingForSubProcess states.

Note:

When you add node instance to an activity, the task and the associated node instances states are
changed to WaitingforSubProcess. The dynamic child node instance and associated subtasks
states are changed to Active. When all the subtasks of a task are complete, the task is said to be
complete.

The workitems of dynamic child node instance is deleted when dynamic node instance is
completed or aborted.

Note:

You can also add dynamic child node instances to existing dynamic child node instances thus, nesting
dynamic child node instances.
A dynamic child node instance contains:
• Name
• Description
• Priority
• Comments
• Owner
• Order (the order of task that can be used when listing)
• Assignee
• Point (the position of task that can be used when displaying on screen)
You can set due date on a dynamic child node instance.
You cannot set the following on dynamic child node instances and subtasks:
• JavaAction
• Javascript
• Timers
• Triggers
• Iterator Count
• Recall Flag
• Transaction Flag
• Subprocess
• Chained Process
• Remote Subprocess
• Arrows (When creating dynamic child node instance, the arrow named complete is created as

default)
• Forms
To add subtasks to tasks:
The following steps demonstrate adding of dynamic child node instance (newNodeInst) to a node
instance (nodeInstance).
1. Start a process instance and activate a node instance. For example, nodeInstance is activated.

Interstage Business Process Manager Developer's Guide 165

6: Enhancing Interstage Business Process Manager

2. On an active node instance, create a dynamic child node instance (for example, newNodeInst)
using the API addChildDynamicNodeInstance(). Refer to the sample code below.

// create dynamic node instance
ProcessInstance procInst = … // Get process instance
String[] assignees = {"user1","user2"}
procInst.startEdit();
NodeInstance newNodeInst = nodeInstance.addChildDynamicNodeInstance("Sub
Task",assignees) ;
newNodeInst.setDesc("Description of this sub task");
newNodeInst.setOrder(10);
newNodeInst.setPriority(Node.PRIORITY_MEDIUM);
procInst.commitEdit();

addChildDynamicNodeInstance() API belongs to the NodeInstance of
com.fujitsu.iflow.model.workflow package. Refer to the API JavaDoc for more information.

Note:

Now, newNodeInst is in Active state and nodeInstance is in WaitingForSubProcess state.
The workitem that is generated for newNodeInst becomes the subtask for workitem generated
for nodeInstance.

You can get the parent node instances and dynamic child node instances using the APIs
getParentNodeInstance() and getChildNodeInstances().

Note:

6.20 Using Dynamic Processes
During execution of a process instance or a workitem, you might have the need to complete some
activities that are not part of the original process definition. In other words, you might want to create
activity nodes dynamically at run-time and complete their associated tasks when these activities are
not part of the original plan.
Dynamic process instance is a process instance that is created without being associated with any
process definition. Dynamic processes do not have any of arrow transitions. They are just a collection
of tasks that need to be completed for the dynamic process to be completed.
To create a dynamic process instance use the WFObjectFactory.createDynamicNodeInstance()
method.

When you create an application space, application ID is defined when
WFAdminSession.createApplicationSpace(String applicationId) is executed. To
create dynamic process, it is necessary to know the application ID for the application in
which dynamic process is to be created. You must use WFSession.chooseApplication()
to determine the application ID before WFObjectFactory.createDyanmicNodeInstance()is
executed to create dynamic process.
When you execute WFSession.chooseApplication() method, it is necessary to specify
the applicationId other than the System.

Note:

To create a dynamic process and generate dynamic node instances

Interstage Business Process Manager Developer's Guide 166

6: Enhancing Interstage Business Process Manager

The following steps demonstrate creating a dynamic process instance and generating node instances
and tasks.
1. Create and start a dynamic process instance using

WFObjectFactory.createDynamicNodeInstance() API. Refer to the following sample code that
creates a dynamic node instance called Root Task.

// create dynamic process instance
NodeInstance nodeInst =
WFObjectFactory.createDynamicNodeInstance(wfSession, "Root Task");

2. Create node instances for this dynamic process instance. The dynamic process instance name
and node instance name are set as same value. You can modify name and other attributes. Refer
to the sample code below.

// create dynamic node instance
ProcessInstance procInst = nodeInstance.getProcessInstance();
procInst.startEdit();
nodeInst.setName("Modified task name");
nodeInst.setDesc("Description of this sub task");
nodeInst.setOrder(10);
nodeInst.setPriority(Node.PRIORITY_MEDIUM);
procInst.commitEdit();

After a dynamic node instance is created, the process instance creator is set as node
instance owner, and work items are assigned to the node instance owner.

Note:

3. On this active dynamic node instance, add child dynamic node instances. The dynamic node
instance state changes to WaitingForSubProcess and the child dynamic node instance becomes
Active. Refer to the sample code below.

procInst.startEdit();
String[] assignees = String{"user01","user02"};
nodeInst.addChildDynamicNodeInstance("NewTask", assignees);
nodeInst.setDesc("Description of this sub task");
nodeInst.setOrder(10);
nodeInst.setPriority(Node.PRIORITY_MEDIUM);
procInst.commitEdit();

6.21 Decision Tables
Decision Tables allow you to design advanced rules for decision making without programming.
Decision Tables use a simple yet powerful table based approach for managing rules dynamically.
They avoid the need to learn, develop, and support a complex rules engine infrastructure.
Decision tables (.dt files) can exist independently of any process definition. This allows the designing
of decision tables to be done by business users using business terms, and as such, it can be
abstracted out from the more technical activity of creating a process definition.

6.21.1 Decision Table Concepts
A Decision Table is defined using the following:
• A list of input variables, called Condition Criteria. For eg., ‘Deal Amount’
• A list of output variables, called Result Locators. For eg., ‘Discount Rate’

Interstage Business Process Manager Developer's Guide 167

6: Enhancing Interstage Business Process Manager

• Conditions, which are pre-defined values with conditions for an input variable. For eg., ‘Deal
Amount > 5000’ or ‘Deal Amount <= 3000’

• Results, which are pre-defined values for an output variable. For eg., ‘Set Discount Rate to
35’

• Decisions, or rules, which map different conditions to different results. For eg, “If the condition
‘Deal Amount is > 5000’ is found to be true, the result ‘Set the Discount Rate
to 35’ should be applied".

Depending on what values the decision table receives for its input variables (or Condition criteria),
it evaluates if any of the listed conditions is met. For the condition that is met, it selects its
corresponding pre-defined result, that is, it sets the specified values for its output variables (the result
locators).
Creating a decision table mainly involves defining its condition criteria, result locators, conditions,
results, and mapping the conditions to results, that is, defining a decision.
A sample Decision Table can conceptually be illustrated as follows:

Figure 22: Decision Table concept

In the example above, CUSTOMER_LEVEL, DEAL_AMOUNT are the input variables or condition criteria.
DISCOUNT_RATE, SALES_MAN_BONUS are the pre-defined output variables or result locators. The
different decisions listed are:
• If CUSTOMER_LEVEL is GOLD and DEAL_AMOUNT is greater than 500000, set the DISCOUNT_RATE

and SALES_MAN_BONUS to 35

• If CUSTOMER_LEVEL is SILVER and DEAL_AMOUNT is greater than 500000, set the DISCOUNT_RATE
and SALES_MAN_BONUS to 25

• If CUSTOMER_LEVEL is REGULAR and DEAL_AMOUNT is greater than or equal to 500000, set the
DISCOUNT_RATE and SALES_MAN_BONUS to 15

The decision table is evaluated in a top-down order. Result values are set as per the table for the
first condition that is found to be met.

Interstage Business Process Manager Developer's Guide 168

6: Enhancing Interstage Business Process Manager

For example, if the CUSTOMER_LEVEL is SILVER, and the DEAL_AMOUNT is 800000, the first condition
is found not to be met. The second condition is found to be met, so the DISCOUNT_RATE and
SALES_MAN_BONUS are set to 25. Since the second decision has already been selected, the third and
fourth decisions are not evaluated.

Data Dictionary
Condition criteria have a feature called the Data Dictionary. This allows storing of synonym values
for any pre-defined value of a condition criteria. For example, consider a condition criterion called
'Country' and the condition created is 'Country = Japan'. Pre-defining allowable alternatives for
'Japan', such as 'JP','JPN', etc. will ensure the condition 'Country = Japan' is found to be met even
if the end-user enters 'JP' or 'JPN' instead of 'Japan'.
The Data Dictionary feature makes Decision Tables more flexible.

6.21.2 Using a Decision Table within a Process Definition
To use a decision table in a process definition, a pre-defined JavaAction to evaluate Decision Tables
(called the Decision Table JavaAction) is provided. The variables of the decision table (condition
criteria and result locators) then need to be mapped to UDAs of the process definition. For details
on how to do this, refer the Interstage BPM Studio User's Guide and/or the Interstage BPM Console
Online Help.
In a process instance, when the node of the Decision Tables JavaAction is active, if the input UDA
values match any of the conditions specified in the Decision Table, the Decision Table JavaAction
will set the values of the output UDAs as per the results of the Decision Table.

6.21.3 Decision Table Specifications

ConditionCriterion and ResultLocator
ConditionCriterion and ResultLocator contain following information:
• Name: Abstract names of ConditionCriteria and ResultLocators. These names are mapped to

actual UDA names when defining a Decision Table JavaAction.
• Description: A brief explanation of ConditionCriteria and ResultLocators. It does not affect

behavior of the decision table.
• The type of ConditionCriteria and ResultLocators. Following types are supported.

• BOOLEAN
• INTEGER
• LONG
• FLOAT
• BIGDECIMAL
• STRING
• DATE

Decisions
Decisions have following information:
• conditions for each ConditionCriterion
• values to assign to each ResultLocator

Interstage Business Process Manager Developer's Guide 169

6: Enhancing Interstage Business Process Manager

The following operators can be used within conditions:
• =, != for exact match of any data type
• >, <, >=, <=, for greater/less than comparisons of numeric types
• in(a,b,c) for comparison to one of a number of literals
• between(x,y) for numeric range testing
• LIKE(), NOT_LIKE() for pattern matching expressions; question mark (?) will match any single

character, and asterisk (*) will match any number of characters. For example, if LIKE(?OLD) is
used in a condition, all values such as GOLD, BOLD, TOLD will satisfy this condition; if LIKE(JAP*)
is used in a condition, all values such as JAPAN, JAPANESE will satisfy this condition.

Different operators are supported depending on the type of the condition criterion. See the following
table:

StringDateBigDecimalLongFloatIntegerBooleanOperator

NoYesYesYesYesYesNo<

NoYesYesYesYesYesNo>=

NoYesYesYesYesYesNo<=

NoYesYesYesYesYesNo>=

YesYesYesYesYesYesYes!=

YesYesYesYesYesYesYes=

YesYesYesYesYesYesNoin(a,b,c)

NoYesYesYesYesYesNobetween(x,y)

YesNoNoNoNoNoNolike

YesNoNoNoNoNoNonot_like

6.21.4 Managing Decision Tables
To manage Decision Tables, use the com.fujitsu.iflow.decisiontable package. It contains
APIs for managing Decision Tables. For a detailed description of this package and its APIs, refer to
the API Javadoc. The following important operations are discussed:
1. Creating decision tables
2. Creating condition criteria, result locators, and decisions
3. Validating decision tables
4. Evaluating decision tables
5. Saving decision tables
6. Loading decision tables

Creating Decision Tables
You can create decision table files by either using the API, or by creating an XML file which conforms
to the Decision Table XML Schema.
Creating Decision Tables using API

Interstage Business Process Manager Developer's Guide 170

6: Enhancing Interstage Business Process Manager

You can create a Decision Table by using the createDecisionTable() method of the
DecisionTableFactory class. Refer to the API Javadoc for details of this method. For example:

DecisionTable dt = DecisionTableFactory.createDecisionTable();
dt.setName("DecisionTableName");
dt.setDescription("example of decision table");

Creating Decision Tables manually by conformance to the XML Schema
If you want to create a complete decision table without using the APIs, ensure the Decision Table
XML file (.dt file) you create conforms to the XML Schema for the .dt file, DecisionTable.xsd, stored
in the <Interstage BPM Installation Directory>/client/DecisionTable directory.

Creating condition criteria, result locators, decisions
Creating Condition Criteria
Use the createConditionCriterion()method of the DecisionTable class to create a new condition
criterion. Refer to the API Javadoc for details of this method.
In the following example, CUSTOMER_LEVEL and DEAL_AMOUNT are the two condition criteria created.
Also, for CUSTOMER_LEVEL, the Data Dictionary feauture is used to create the synonyms 'normal' and
'none' for the main condition criterion value 'Regular'.

ConditionCriterion criterion1 = dt.createConditionCriterion();
criterion1.setName("CUSTOMER_LEVEL");
criterion1.setType(DataItemRef.TYPE_STRING);
Dictionary dic = criterion1.createDictionary();
DictionaryItem regularDictionaryItem = dic.createDictionaryItem();
regularDictionaryItem.setWord("Regular");
String synonyms[] = new String[2];
synonyms[0] = "Normal";
synonyms[1] = "None";
regularDictionaryItem.setSynonyms(synonyms);

ConditionCriterion criterion2 = dt.createConditionCriterion();
criterion2.setName("DEAL_AMOUNT");
criterion2.setType(DataItemRef.TYPE_INTEGER);

ConditionCriterion criteria[] = new ConditionCriterion[2];
criteria[0] = criterion1;
criteria[1] = criterion2;
dt.setConditionCriteria(criteria);

Creating Result locators
Use the createResultLocator() method of the DecisionTable class to create a new Result
Locator. Refer to the API Javadoc for details of this method. The following example creates the
DISCOUNT_RATE and SALES_MAN_BONUS result locators.

ResultLocator locator1 = dt.createResultLocator();
locator1.setName("DISCOUNT_RATE");
locator1.setType(DataItemRef.TYPE_STRING);

ResultLocator locator2 = dt.createResultLocator();
locator2.setName("SALES_MAN_BONUS");
locator2.setType(DataItemRef.TYPE_STRING);

ResultLocator locators[] = new ResultLocator[2];
locators[0] = locator1;

Interstage Business Process Manager Developer's Guide 171

6: Enhancing Interstage Business Process Manager

locators[1] = locator2;
dt.setResultLocators(locators);

Creating Decisions
The example below creates the following decisions:
• If CUSTOMER_LEVEL = 'GOLD', and, DEAL_AMOUNT > '500000', set DISCOUNT_RATE and

SALES_MAN_BONUS to '35'

• If CUSTOMER_LEVEL = 'SILVER', and, DEAL_AMOUNT > '500000', set DISCOUNT_RATE and
SALES_MAN_BONUS to '25'

Decision decision1 = dt.createDecision();
Condition condition1 = decision1.createCondition();
condition1.setCriterionName("CUSTOMER_LEVEL");
condition1.setOperator(Condition.CONDITION_OPERATOR_EQUAL);
condition1.setValue("Gold");
Condition condition2 = decision1.createCondition();
condition2.setCriterionName("DEAL_AMOUNT");
condition2.setOperator(Condition.CONDITION_OPERATOR_GREATER_THAN);
condition2.setValue("500000");
Condition conditions1[] = new Condition[2];
conditions1[0] = condition1;
conditions1[1] = condition2;
decision1.setConditions(conditions1);
Result result1 = decision1.createResult();
result1.setLocatorName("DISCOUNT_RATE");
result1.setValue("35");
Result result2 = decision1.createResult();
result2.setLocatorName("SALES_MAN_BONUS");
result2.setValue("35");
Result results1[] = new Result[2];
results1[0] = result1;
results1[1] = result2;
decision1.setResults(results1);

Decision decision2 = dt.createDecision();
... //add code for creating decision2, similar to creating decision1
...

Decision decisions[] = new Decision[2];
decisions[0] = decision1;
decisions[1] = decision2;
dt.setDecisions(decisions);

Validating Decision Tables
A decision table should be validated before it can be evaluated.
Validating a decision table involves some basic checks such as:
• Ensuring the Decision Table name is specified
• Ensuring ConditionCriterion name is specified
• Ensuring ConditionCriterion type is specified, and so on
Use the validate() method of the DecisionTable class to validate a decision table. Refer to the
API Javadoc for details of these methods.

ValidationResult[] validationResults = dt.validate();
System.out.println(validationResults.length + " Problems detected.");

Interstage Business Process Manager Developer's Guide 172

6: Enhancing Interstage Business Process Manager

for (int i = 0; i < validationResults.length; i++) {
ValidationResult validationResult = validationResults[i];
System.out.println("Severity = " + validationResult.getSeverity());
System.out.println("ID = " + validationResult.getIdentifier());
System.out.println("Problem = " + validationResult.getProblem());

}

Evaluating a Decision Table
Use the evaluate() method of the DecisionTable class to evaluate or test a decision table with
sample input values. Refer to the API Javadoc for details of this method.
Note that to successfully evaluate a decision table, the decision table must be valid. If validate()
returns any results whose severity is ERROR, evaluation of the decision table fails.
The following example sets CUSTOMER_LEVEL to a sample value of 'SILVER' and DEAL_AMOUNT to a
sample value of '800000'. The decision table is then tested using these sample values, and the result
values are set accordingly.

Properties conditionValues = new Properties();
conditionValues.setProperty("CUSTOMER_LEVEL","Silver");
conditionValues.setProperty("DEAL_AMOUNT","800000");
DecisionResult decisionResult = newDt.evaluate(conditionValues);

int decisonIndex = decisionResult.getExecutedDecision();
Decision allDecisions[] = newDt.getDecisions();
Decision selectedDecision = allDecisions[decisonIndex];

Result results[] = decisionResult.getResults();
for (int i = 0; i < results.length; i++){
Result result = results[i];
String locatorName = result.getLocatorName();
String value = result.getValue();
System.out.println("result : " + locatorName + " = " + value);

}

Saving a Decision Table
Use the save() method of the DecisionTable class to evaluate or test a decision table with sample
input values. Refer to the API Javadoc for details of this method.

FileOutputStream outFile = new FileOutputStream("/decisiontable.dt");
dt.save(outFile);

Decision tables are application-specific, and are to be stored in the <DMSRoot>/apps/<application
ID>/rule/<category> directory.

Loading an existing Decision Table
Use the load() method of the DecisionTable class to load an existing decision table. Refer to the
API Javadoc for details of this method.

DecisionTable newDt = DecisionTableFactory.createDecisionTable();
FileInputStream inFile = new FileInputStream("/decisiontable.dt");
newDt.load(inFile);

Interstage Business Process Manager Developer's Guide 173

6: Enhancing Interstage Business Process Manager

API Sample for Decision Tables
For a complete sample of managing a Decision Table, refer section Samples Related to Decision
Tables on page 213

6.22 Iterator Nodes
Normally, for each node created in a process definition, only a single node-instance is generated at
run-time. Enabling iteration on a node with an iteration count 'n' allows you to create 'n' instances of
the same node during run-time.
An iterator node has the following general features:
• Iteration is enabled during design-time.
• The number of iterations is specified using a UDA. If a specified UDA for an iterator node does

not exist, process validation will fail and no process instance can be started from the process
definition until the UDA is added.

• You can enable only the following types of nodes for iteration:
• Activity nodes
• Subprocess nodes
• Chained-process nodes

• All iterated node instances are executed in parallel.
• To enable iteration, iteration count should be > 0.
• If the iteration count for a node is set to <=0:

• Even though a single instance of a node would already have been created as soon as the
process instance is created, that node instance will not be activated

• Execution of the node instance will be skipped, and the next node will be activated.

• If a completed iterator node is reactivated, node instances created during the earlier execution
of the iterator node are re-used by reactivating them. For example, consider during the first run
of an iterator node 3 instances were created.
• If during its second run iteration count is set to 10, then only 7 new instances will be created;

3 instances from the previous run will be re-used by reactivating them.
• If during the second run iteration count is set to 2, no new instances will be created; of the 3

instances from the previous run, only 2 instances will be reactivated for re-use, and one
instance will remain inactive.

• For ad hoc activation, deactivation, if some iterated instances of a node are running, and some
are closed:
• You cannot reactivate a closed instance.
• If you deactivate a running instance, all running instances will be deactivated.

• Prologue and Epilogue JavaActions are executed only once irrespective of the number of iterations.
• You cannot change the source or target nodes of the outgoing arrows of an iterated node instance.
• If you delete an iterated node instance, all iterated instances for that node are deleted.
• If you delete the outgoing arrow instance of an iterated node instance, all outgoing arrow instances

of all iterated instances for that node are deleted.
• If you add an outgoing arrow instance to an iterated node instance, outgoing arrow instances are

added for all iterated instances of that node.

Interstage Business Process Manager Developer's Guide 174

6: Enhancing Interstage Business Process Manager

• Setting iterator count on a running node instance will not be effected during that run of the node.
It will be effected only during the next run (if any) of that node instance.

• Each iterated node instance can be identified and accessed using its iterator index number. Index
count ranges from 1 to 'n', where 'n' is the iteration count.

• From a running process instance containing an iterator node, the iterator count UDA specified
for the iterator node cannot be deleted.

6.22.1 Iterated Activity Nodes
Iterated Activity nodes have the following features:
• For an Activity node, consider you set iteration count as 'n'. As soon as the process instance is

created, the first instance of that node is created. After the process instance starts, when control
reaches that node, the following occurs:
• For an iterated Activity node, 'n-1' instances are created; work items are created for all users

of an assigned role, for each of the 'n' node instances. For example, if there are 10 users for
an assigned role, and iteration count is 5, 50 work items are generated.

• For each of the instances, if any user completes the work item, the work items for other users
within that node instance are deleted, and that node instance is complete.

• When all iterated instances of a node will complete, the activity of that node is completed, and
the next node is activated.

• The number of outgoing arrows from an activity iterator node is restricted to one.
• All instances of an iterator node share all the UDAs in the process. If one instance changes a

UDA's value, the change is reflected for all instances immediately.
• You cannot use triggers on an iteration-enabled Activity node.
• Each iterated instance has the same properties (name, description, and so on).
• The iterator index number of an iterated instance can be retrieved using a Model API function,

JavaScript function or a custom JavaAction. For more information, refer Retrieving the Iterator
Index of a Node Instance using Model API on page 177 and Retrieving the Iterator Index of an
Activity Node Instance using a Custom JavaAction Class on page 178.

• You can assign different users to each iterated instance of a node. For more information, refer
Retrieving the Iterator Index of an Activity Node Instance using a Custom JavaAction Class on
page 178. Role Actions are executed for each iterated node instance.

Recalling Work items for Iterator Nodes
Iterator Nodes support the work item recall feature in the following scenarios.
• When an iterator node is a source node for recall, recall is possible only if at least one of the

iterator node instances has been closed.
• If all the iterator node instances are closed, and the next activity is still active - On recall, the

active target activity is de-activated. The compensate Java Action defined for prologue Java
Action of target activity is executed, the compensate Java Action defined for epilogue Java
Action of source activity is executed. The recalled iterator activity is activated, and a work item
is created for the user that recalled the work item.

• If all of the iterator node instances have not been closed - Recall is possible only for any of
the closed iterator node instances. On recall, the recalled activity instance is re-activated and
a work item created for the user that recalled the work item.

Interstage Business Process Manager Developer's Guide 175

6: Enhancing Interstage Business Process Manager

• When an iterator node is a target node for recall, recall is possible only if all iterator node instances
are running. On recall, all iterated node instances are de-activated. The compensate Java Action
defined for prologue Java Action of target activity will be executed, the compensate Java Action
defined for epilogue Java Action of source activity will be executed. The recalled activity is
re-activated, and a work item is created for the user that recalled the work item.

For more information about recalling work items, refer Recalling Work Items on page 83.

6.22.2 Iterated Subprocess and Chained-process Nodes
Iterated Subprocess and Chained-process nodes have the following features:
• For a subprocess or chained-process node, consider you set iteration count as 'n'. As soon as

the process instance is created, the first instance of that node is created. After the process instance
starts, when control reaches that node, the following occurs:
• For an iterated Subprocess node, 'n-1' node instances will be created. For each of the 'n' node

instances, an instance of the linked subprocess will be created and started. Control will shift
to the next node only after all iterated instances of the subprocess node are complete.

• For an iterated Chained-process node, no further instances will be created. For the single
node instance that was created when the process instance was created, 'n' instances of the
linked child process will be created and started. Control will shift to next node as soon the 'n'
linked processes are started.

• If the process instance containing a subprocess iterator node is aborted, all iterated subprocess
instances are aborted.

Data Mapping for Subprocess and Chained-process Iterator Nodes
• Each iterated instance of a linked process (subprocess or chained-process) has its own UDAs.

An instance cannot interact directly with UDAs of its sibling iterated instances. It can directly
interact only with UDAs of its parent process.

• You can transmit different data between each iterated child process instance and its parent
process instance (and vice-versa) by using an XML UDA and XPath with the predefined variable
$index. The variable $index within the Xpath expression of a parent process XML UDA helps
map different values from the parent XML UDA to XML UDAs of different iterated child instances.
For details of how such data mapping can be implemented, refer Data Mapping between Parent
and Iterated Child Process Instances on page 179.

6.22.3 Working with Iterator Nodes

Creating an Iterator Node
While designing a process definition, you can enable a node for iteration by using the
setIteratorCount(String udaName)method of the com.fujitsu.iflow.model.workflow.Node
interface. Note that the UDA should be of type integer.
You can also retrieve the name of an iterator UDA using the getIteratorCount() method of the
com.fujitsu.iflow.model.workflow.Node interface.
For more information about these methods, refer the API Javadoc.

Interstage Business Process Manager Developer's Guide 176

6: Enhancing Interstage Business Process Manager

The following sample code sets the UDA IteratorCount as the iterator count UDA name for activity
node Activty, and also sets the iteration count to 5.

//lock a Process definition before calling the API
plan.startEdit();
plan.addDataItemRef("IteratorCount", DataItemRef.TYPE_INTEGER, "5");
Node activityNode = plan.addNode("Activity", Node.TYPE_ACTIVITY);
activityNode.setIteratorCount("IteratorCount");
//when you save the plan, the Iterator count of
//the above node will also get saved
plan.createProcessDef();
//Now you can check the Iterator count set above
String iteratorCountUda = activityNode.getIteratorCount();

An iteration enabled node can be reverted back to a normal node by setting an empty ("") string as
the iterator count UDA name.

It is recommended to set iterator count of a node by taking into consideration the number
of assignees for each Iterated activity instance, so that it should not result in creation of
more than 2000 work items per Process instance for the iterated activity. Otherwise,
depending upon the server environment setup and system load, the iterator node activation
transaction may take too long and time out, causing the process to go into error state.

Note:

Retrieving the Iterator Index of a Node Instance using Model API
You can retrieve the iterator index of a node instance using the getIteratorIndex() method of the
com.fujitsu.iflow.model.workflow.NodeInstance interface. For more information about this
method, refer the API Javadoc.
Sample code:

//retrieve the Node instance using Model API, then use code below
//for retrieving iterator index of node instance
//Let 'ni' represent retrieved Node Instance
int iteratorindex ;
iteratorIndex = ni.getIteratorIndex();

//this iteratorIndex can be used for manipulation of an XML UDA as follows

//Create the XPath using above retrieved iteratorIndex
String xpath="//OrderIds/orderId[position()=" + iteratorIndex + "]/text()";

//Retrieve the XML UDA from the process instance
:
:
//Assume 'dataItem' is the retrieved XML UDA

//Set the new value of the XML UDA using the XPath
dataItem.setElementValue(XPath, "Updated");

Interstage Business Process Manager Developer's Guide 177

6: Enhancing Interstage Business Process Manager

//Retrieve the new value
String udaValue = dataItem.getElementValue(xpath);

Retrieving the Iterator Index of an Activity Node Instance using a Custom
JavaAction Class
You can retrieve the iterator index of an activity instance by calling the getActivityIteratorIndex()
method of the com.fujitsu.iflow.server.intf.ServerEnactmentContext interface, and use
this index for reading values from an XML UDA for a particular node instance in a custom JavaAction
class.
For example, you would need to define a custom JavaAction class to retrieve the iterator index of
activity instances if you want to set different assignees to each instance.
To set Activity Instance Assignees, perform the following steps:
1. Create a custom JavaAction class that uses getActivityIteratorIndex() to define a custom

method that can be used to set assignees.
2. The custom JavaAction class defined above can be used in a Role Action method to assign

different assignees to different iterations of an activity instance.
1. Creating a Custom JavaAction Class

When creating a custom JavaAction class:
a) Import the ServerEnactmentContext interface.
b) Make sure that one parameter of the method that you want to call from a JavaAction is of type

ServerEnactmentContext.
c) When defining the Java Action, specify the values to pass to your method. Use the sec identifier

as a value for the ServerEnactmentContext parameter. At run time, Interstage BPM will pass
an object with this interface to the custom method.
For example, consider the XML UDA UdaAssignees

<Assignees>
<Assignee>ibpm_user1</Assignee>
<Assignee>ibpm_user2</Assignee>
<Assignee>ibpm_user3</Assignee>

</Assignees>

The sample code below is for the custom JavaAction class MyClass that uses the
getActivityIteratorIndex() method to define a custom method named setAssignee that
can be used to set assignees.

import com.fujitsu.iflow.server.intf.ServerEnactmentContext;
public class MyClass {

public void setAssignee(ServerEnactmentContext sec)
throws Exception {

String xpath = "//Assignees/Assignee[position()=" +
sec.getActivityIteratorIndex() + "]/text()";

String assignee =
sec.getProcessXMLAttributeElementValue("UdaAssignees", xpath);
//here "UdaAssignees" is the name of the XML UDA containing the
assignees

String[] assignees = { assignee };
sec.setActivityAssignees(assignees);

Interstage Business Process Manager Developer's Guide 178

6: Enhancing Interstage Business Process Manager

}
}

2. Using Role Actions to assign different assignees to different iterator instances
a) Add an Activity Node. The name of the first activity in the process definition uses the

'protected', 'final', 'static' modifiers.

String NODE_FILL_OUT_PR = "Fill out Purchase Request";
protected final static String NODE_FILL_OUT_PR = "Fill out Purchase
Request";
Node fillOutNode = plan.addNode("NODE_FILL_OUT_PR",Node.TYPE_ACTIVITY);
fillOutNode.setRole("SampleGroup");
fillOutNode.setPosition(new Point(450, 40));

b) Use getJavaActionSet() WFObjectFactory class to create a new JavaActionSet object.

JavaActionSet asRJavaActionSet = WFObjectFactory.getJavaActionSet();

c) Generate the required number of Java Actions for JavaActionSet.

JavaAction[] asRJavaActions = asRJavaActionSet.createJavaActions(1);

d) Define the JavaActions that set the assignee of an activity

asRJavaActions[0].setActionDescription("Sets Activity assignee");
asRJavaActions[0].setActionName("Set assignee");
asRJavaActions[0].setMethodName("setAssignee(ServerEnactmentContext");
asRJavaActions[0].setClassName("MyClass");

e) Assign JavaActionSet to the Activity Node as Role Action.

asRJavaActionSet.setJavaActions(asRJavaActions);
fillOutNode.setJavaActionSet(asRJavaActions,JavaActionSet.NODE_ROLE);

You can also use the getActivityIteratotIndex() in a JavaScript as follows:
var iteratorIndex = sec.getActivityIteratorIndex();

You can further use iteratorIndex as required.

Note:

Data Mapping between Parent and Iterated Child Process Instances
You can transmit different data between each iterated child process instance and its parent process
instance (and vice-versa) by using an XML UDA and XPath with the predefined variable $index.
Consider the following XML UDAs:
• Parent process XML UDA, named ParentXMLUDA

<Items>
<Item>A1</Item>
<Item>A2</Item>

</Items>

Interstage Business Process Manager Developer's Guide 179

6: Enhancing Interstage Business Process Manager

• Child instance #1 with XML UDA ChildXMLUDA_P

<ChildItems>
<ChildItem>P</ChildItem>

</ChildItems>

• Child instance #2 with XML UDA ChildXMLUDA_P

<ChildItems>
<ChildItem>P</ChildItem>

</ChildItems>

Note that since child instances come from the same child process, all child instances will have UDAs
with same names and initial values.
You can implement data mapping between parent and child XML UDAs using the
addDataMappingElement() method of the com.fujitsu.iflow.model.workflow.Node interface.
Syntax:
addDataMappingElement(java.lang.String parentDataItemRefName,java.lang.String
xPathForParentDataItem,java.lang.String childDataItemRefName,java.lang.String
xPathForChildDataItem,int direction)

Why $index is needed
Using the addDataMappingElement() method without $index, for example
addDataMappingElement("ParentXMLUDA", "//Items/Item[2]/text()", "ChildXMLUDA_P",
"//ChildItems/ChildItem/text()", DataItemMappingElement.INOUT)will cause the following
to happen:
1. At the start of the child process, UDAs of both child instances will receive the same value (as

specified by "//Items/Item[2]/text()") that is, the second item of ParentXMLUDA, which is
A2. The child instance UDAs will then be as follows:
• UDA of child instance #1:

<ChildItems>
<ChildItem>A2</ChildItem>

</ChildItems>

• UDA of child instance #2:

<ChildItems>
<ChildItem>A2</ChildItem>

</ChildItems>

2. At the end of the child instances, both instances will modify the same item in the parent instance
(as specified by "//Items/Item[2]/text()") that is, the second item of ParentXMLUDA, thus
overwriting each others transferred data. For example, child instance #1 will change the second
item of ParentXMLUDA to P1, and then child instance #2 will overwrite the second item of
ParentXMLUDA to P2. The parent XML UDA would be as follows:

<Items>
<Item>A1</Item>
<Item>P2</Item>

</Items>

Interstage Business Process Manager Developer's Guide 180

6: Enhancing Interstage Business Process Manager

Essentially, this means you cannot map different values from a parent process to the different child
instances. Such a problem will occur even when you use non-XML UDA data mapping.
To be able to map different values from a parent process to the different iterated child instances,
you need to use XML UDAs and the $index pre-defined variable.

Using $index

Using the addDataMappingElement() method with $index, for example
addDataMappingElement("ParentXMLUDA", "//Items/Item[$index]/text()",
"ChildXMLUDA_P", "//ChildItems/ChildItem/text()", DataItemMappingElement.INOUT)
will cause the following to happen:
1. UDAs of both child instances will receive different values (as specified by

"//Items/Item[$index]/text()"). The $index variable in the Xpath expression of the parent
UDA will automatically map the first item of the parent XML UDA to the XML UDA of the first
child instance, the second item of the parent XML UDA to the XML UDA of the second child
instance, and so on. The child instance UDAs will then be as follows:
• UDA of child instance #1:

<ChildItems>
<ChildItem>A1</ChildItem>

</ChildItems>

• UDA of child instance #2:

<ChildItems>
<ChildItem>A2</ChildItem>

</ChildItems>

2. At the end of the child instances, each child instance will have modified different items of the
parent XML UDA. The $index variable in the Xpath expression of the parent UDA will automatically
map the first item of the parent XML UDA to the XML UDA of the first child instance, the second
item of the parent XML UDA to the XML UDA of the second child instance, and so on. The parent
XML UDA will then be as follows:

<Items>
<Item>P1</Item>
<Item>P2</Item>

</Items>

Thus, using $index you can map different parent UDA values to UDAs of different iterated child
instances.

Note: • $index forces serial order mapping (first item to first child instance, second item to
second child instance); you need to ensure that items in your parent XML UDA are
ordered corresponding to the child instances to which they are to be mapped.

• $index can be used only in Xpath expressions of the parent process XML UDA.
• If $index is used for non-iterator node XML UDA XPaths, the variable will be replaced

by '1' during processing.

For other information related to data mapping, refer Designing a Parent and Remote Subprocess
Definition on page 158.

Interstage Business Process Manager Developer's Guide 181

6: Enhancing Interstage Business Process Manager

7 Administration
There exist two administrative roles in Interstage Business Process Manager:
• Super User: an administrator whose only responsibilty is to create and manage tenants, and

manage the Interstage BPM Server. A Super User cannot administrate tenant users, process
definitions, process instances, or work items. A Super User uses the Interstage BPM Tenant
Management Console for administration of tenants. For information about administrative functions
performed by a Super User refer the Interstage Business Process Manager Console Tenant
Management Guide and Interstage BPM Administration Guide.

• Tenant Owner: a tenant user in an administrative role. The Tenant Owner is created by the Super
User.

In non-SaaS mode, since there is only a single default tenant, the Super User and Tenant Owner
may be the same person but may need to log in as a Super User or Tenant Owner to perform the
different administrative functions.
This chapter provides programming examples, using the Model API, for administrative
operations performed by a Tenant Owner.
A Tenant Owner can perform the following administrative functions:
• Logging in/logging out a tenant owner
• Tenant user administration (hereafter referred to as user administration)
• Process definition administration
• Process instance administration
• Work item administration
You can find the complete programming code of the examples presented in this chapter in the
Adminstration.java and the SampleLocalUserManagement.java sample files.
For implementing the examples, you need the following packages from the Model API:
• com.fujitsu.iflow.model.util

Contains low level utility classes that are commonly used by other classes and interfaces.

• com.fujitsu.iflow.model.workflow

Contains interfaces that manage information required by process definitions and process instances.
This includes providing objects that represent nodes, arrows, forms, attachments, work items and
permission levels.

For more information on the Model API in general, refer to the API Javadoc.

7.1 Logging In/Logging Out an Administrator (Tenant Owner)
For administering process definitions or tenant users, an administrator (tenant owner) must be logged
in to the Interstage BPM Server. Logging in an administrator means to create a session, i.e. a
WFAdminSession object. The session is finished when an administrator is logged out again.
To log in/log out an administrator:
1. Create a new WFAdminSession object.

adminSession = WFObjectFactory.getWFAdminSession();

Use the WFObjectFactory class for accessing workflow objects. getWFAdminSession() then
creates a WFAdminSession object.

Interstage Business Process Manager Developer's Guide 182

7: Administration

2. Initialize the session with the appropriate configuration file.
You can use the sample iFlowClient.properties file located in <Interstage BPM Server
Installation Directory>/client/samples/examples/classes.
Either use this file or write the properties into a new file, which must be located in the current
runtime directory. For the location of the current runtime directory, refer to section Location of
Properties Files on page 61.

Ensure you specify the tenant name logged in for the property file used. The tenant name
is specified for value of WFObjectFactory.TENANT_NAME(TenantName).
TenantName=Default is specified for login to Default tenant.

Note:

In the iFlowClient.properties file, any backslashes "\" or colons ":" are escaped by
backslashes. For example, a server address is specified like this:
ibpmhost\:49950

When loading the iFlowClient.properties file using the java.util.Properties.load()
method, escape characters will automatically be taken into account. If you use another way
to load the properties, make sure that you handle any escape characters correctly. For
details about escape sequences that may occur in the iFlowClient.properties file, refer
to the Java documentation of the java.util.Properties.store() method.

Note:

Load the configuration file iFlowClient.properties for the session:

Properties sessionProps = new Properties();
sessionProps.load(new FileInputStream("iFlowClient.properties"));

Initialize the session:

adminSession.initForApplication(null, sessionProps);

3. Log in an administrator.

String server = sessionProps.getProperty("HostName") + "Flow";
adminSession.logIn(server, adminName, password);

For implementation reasons, always attach the constant "Flow" to the given host name.

4. After the administration tasks are completed, the administrator has to log out from the
WFAdminSession. To log out an administrator:

if (adminSession != null) {
adminSession.logOut();
}

7.2 Choosing a Workflow Application
After logging in, choose a workflow application within which you want to operate, using
WFSession.chooseApplication()

adminSession.chooseApplication(myApplicationID);

Interstage Business Process Manager Developer's Guide 183

7: Administration

If the ApplicationModeSecurity server parameter is set to Relax, choosing an application
is optional. To know about detailed behavior when an application is not chosen, refer the
ApplicationModeSecurity parameter in the Interstage BPMServer Administration Guide.

Note:

7.3 User and Group Administration
Every tenant user (hereafter referred to as a user) that is to work with Interstage BPM needs a user
account and must be assigned to one or more groups.

User Accounts
Depending on how Interstage BPM has been configured during deployment, user accounts are
managed either in Interstage BPM's local user store or in a Directory Service (remote user store).
If you are using the local user store, you can add users, delete users and reset their password using
the WFAdminSession interface.
If you are using a Directory Service, you use the functions of the Directory Service to add and delete
users.

Groups
A group is a collection of users who share a function within an organization. For example, a Manager
group might contain the first-line managers in an organization. In Interstage BPM, groups are used
to determine who is responsible for carrying out a task in a process.
Groups can be managed in Interstage BPM's local group store, in a Directory Service (remote group
store), or in both systems. If you are using the local group store, you can manage it using the
WFAdminSession interface. The WFAdminSession interface has operations for creating groups, adding
groups to other groups, adding users to groups, and so on.
Because groups can be members of other groups, you can model your organizational hierarchy into
a corresponding group hierarchy. Groups can be nested to any depth.

Users and groups can be managed in different stores. For example, an organization might
manage user accounts in a Directory Service and groups in the local group store.

Note:

7.3.1 Managing Local Users
Prerequisite:Interstage BPM has been configured to use its local user store. For more information,
refer to the Interstage Business Process Manager Server and Console Installation Guide.

The WFAdminSession interface allows you to retrieve a list of all local users, add local users, reset
their password and delete local users.
• To retrieve a list of all local users:

User[] localUser = adminSession.getLocalUsers();

Interstage Business Process Manager Developer's Guide 184

7: Administration

• To add a local user:

//Check whether the user already exists
User testUser = WFObjectFactory.getUser(sampleUser);
adminSession.createUser(testUser, usrPassword);

The user ID and the password can contain up to 200 characters. Use only alphanumeric characters,
hyphens and underscore characters ("_"). User names must not begin with an at character ("@")
as this is used to identify Agents in Interstage BPM.

• To reset the password of a local user:

adminSession.resetPassword(testUser, usrPassword);

If you want users to be able to change their password, use changePassword() from the
WFSession interface.

Note:

• To delete a local user:

adminSession.deleteUser(userID);

The user will be deleted and removed from all local groups to which the user belongs.

7.3.2 Managing Local Groups
This section introduces the most important operations for managing the local group store. In the
programming sample, a hierarchy of three groups is created and users are assigned to those groups.
The following figure shows the organizational structure that will be created:

Figure 23: Sample Groups and Users

To manage local groups:
1. Create the required local groups using createGroup() from the WFAdminSession interface.

The following sample creates an AllEmployees, US_Employees and UK_Employees group. Before
creating a group, the sample checks whether the group already exists.

group = WFObjectFactory.getGroup("AllEmployees ",
"ALL Employee group");

adminSession.createGroup(group);
group = WFObjectFactory.getGroup("US_Employees ",

"US Employee group");

Interstage Business Process Manager Developer's Guide 185

7: Administration

adminSession.createGroup(group);
group = WFObjectFactory.getGroup("UK_Employees ",

"UK Employee group");
adminSession.createGroup(group);

The group name can contain up to 200 characters. Use only alphanumeric characters, hyphens
and underscore characters ("_"). Group names must not begin with an at character ("@") as this
is used to identify Agents in Interstage BPM.

2. You can retrieve all groups available in Interstage BPM using getAllGroups().

Group[] LocalGroupList = adminSession.getAllGroups();

3. Create the users you want to assign to the local groups in Interstage BPM. In this sample, the
users Lisa, Sarah, Peter and John are created:

testUser = WFObjectFactory.getUser("UserSarah");
adminSession.createUser(testUser, "SomePassword");
testUser = WFObjectFactory.getUser("UserLisa");
adminSession.createUser(testUser, "SomePassword");
testUser = WFObjectFactory.getUser("UserPeter");
adminSession.createUser(testUser, "SomePassword");
testUser = WFObjectFactory.getUser("UserJohn");
adminSession.createUser(testUser, "SomePassword");

4. Assign the newly created users to the local group using addUserToGroup() from the
WFAdminSession interface. In the sample, Lisa and Sarah are assigned to US_Employees, John
and Peter are assigned to UK_Employees.

adminSession.addUserToGroup("UserSarah", "US_Employees");
adminSession.addUserToGroup("UserLisa", "US_Employees");
adminSession.addUserToGroup("UserPeter", "UK_Employees");
adminSession.addUserToGroup("UserJohn", "UK_Employees");

You can assign the same user to as many groups as you need.
You may assign any Interstage BPM user to any local group. The users to be assigned may be
stored in Interstage BPM's local user store or in a Directory Service.

5. If you wish to create group hierarchies, use addGroupToGroup() to assign a child group to a
parent group. In the sample, US_Employees and UK_Employees are associated with the
AllEmployees group.

adminSession.addGroupToGroup("US_Employees", "AllEmployees");
adminSession.addGroupToGroup("UK_Employees", "AllEmployees");

When assigning a child group to a parent group, all members of the child group also become
members of the parent group.
You can assign the same group to multiple groups.

Do not create cyclic groups. For example, do not add Group1 as a child group of Group2
and Group2 as a child group of Group1.

Note:

6. If a user shall no longer be a member of a group, you can remove the user from that group.

adminSession.removeUserFromGroup(sampleUser, roleName);

Interstage Business Process Manager Developer's Guide 186

7: Administration

7.3.3 Listing Logged-In Users
To retrieve a list of all logged-in users:
• Use getAllUserAgentInfo() from the WFAdminSession interface.

UserInfo[] userInfoList = adminSession.getAllUserAgentInfo();

7.3.4 Logging Out Users
• To log out a single user:

Use logoutUser() from the WFAdminSession interface.

• To log out all users:
Use logoutAllUsers() from the WFAdminSession interface.

The following example shows how to log out all users from a given userInfoList, except the
administrator:

if (userInfoList != null) {
boolean loggedOut = false;
for (int i = 0; i < userInfoList.length; i++) {

// Control the name of the user to get a user which is not the
// current administrator.
if (!userInfoList[i].getName().equals(adminName)) {

adminSession.logoutUser(userInfoList[i].
getClientID());

loggedOut = true;
}

}
}

7.3.5 Resetting the User and Group Cache
In an administration session, WFAdminSession, an administrator can reset the cached data for groups
and users from the Directory Server.
At startup, the Interstage BPM Server retrieves the groups and users from the local or remote store
and stores them in a cache. In a WFAdminSession, an administrator can reset the cached data for
groups and users.
• To reset the group list:

adminSession.resetLDAPGroupsList();

resetLDAPGroupsList() clears the cache for groups immediately. It resets the cached memory
object of the groups defined in the local or remote store. Any modifications to the group list in the
local or remote store are reloaded into the memory object.

• To reset the users list:

adminSession.resetLDAPUsersList();

resetLDAPUsersList() clears the cache for users immediately. It resets the cached memory
object of the users defined in the local or remote store. Any modifications to the users list in the
local or remote store are reloaded into the memory object.

Interstage Business Process Manager Developer's Guide 187

7: Administration

When using a remote store, the group cache is automatically refreshed at a regular interval.
The expiration date for the LDAP group cache is set in the LDAPGroupCacheAgeSec parameter
of the Interstage BPM Server. Refer to the Interstage Business Process Manager Server
Administration Guide for more information.

Note:

7.4 Process Definition Administration
This section describes the following common process definition administration tasks:
• Listing process definitions
• Publishing process definitions
• Archiving process definitions
• Deleting process definitions
• Deleting archived process definitions
• Importing a process definition from an XPDL file
• Exporting a process definition to an XPDL file

7.4.1 Listing Process Definitions
For listing process definitions, use the WFObjectList interface from the
com.fujitsu.iflow.model.workflow package. The interface retrieves a list of the existing
WFObjects from the Interstage BPM Server.
To list process definitions:
1. Build a filter using the Filter class.

Possible filter criteria for process definitions are:
• AllArchivedPlans: Retrieves all archived process definitions.
• AllPlans: Retrieves all process definitions.
• MyInactivePlans: Retrieves all inactive process definitions.
• MyPlans: Retrieves all process definitions belonging to the logged in user.

2. Use openBatchedList().
3. Iterate the list of returned objects matching the filter criteria set with openBatchedList().

Example
Plan[] planList = null;
if (filter == Filter.AllArchivedPlans

|| filter == Filter.AllPlans
|| filter == Filter.MyInactivePlans
|| filter == Filter.MyPlans) {

WFObjectList wfObjectList =
WFObjectFactory.getWFObjectList(adminSession);

wfObjectList.openBatchedList(filter);

Vector tmpList = new Vector();
int batchSize = 50;

Object[] elements = wfObjectList.getNextBatch(batchSize);

Interstage Business Process Manager Developer's Guide 188

7: Administration

Plan plan = null;

while (elements != null && elements.length > 0) {
for (int i = 0; i < elements.length; i++) {

plan = (Plan) elements[i];
// Add process definition to temporary list
tmpList.add(plan);

}
// Read next list of process definitions regarding to filter
elements = wfObjectList.getNextBatch(batchSize);

}
// Copy the process instance of temporary list into a
// ProcessInstance array that will be returned
planList = new Plan[tmpList.size()];
planList = (Plan[]) tmpList.toArray(planList);

return planList;
}

7.4.2 Publishing Process Definitions
To publish a process definition:
• Use publishPlan() from the WFAdminSession interface.

When a process definition is published, its state changes to "published".

Example
The following example shows how to publish the first process definition from a list of process definitions
(planList) that are in private or draft state.

if (planList != null) {
boolean published = false;
for (int I = 0; I < planList.length; I++) {

if (planList[i].getState() == Plan.STATE_DRAFT
|| planList[i].getState() == Plan.STATE_PRIVATE) {
adminSession.publishPlan(planList[i].getId());

}
published = true;
}

}

7.4.3 Archiving Process Definitions
When a process definition is archived, its state changes to "archived". If you try to archive a process
definition that is already archived, Interstage BPM assumes that you want a published process
definition to be archived. In this case, the process definition still exists in the regular process definition
list having the state "deleted".
To archive a process definition:
• Use archivePlan() from the WFAdminSession interface.

adminSession.archivePlan(planList[i].getId());

Interstage Business Process Manager Developer's Guide 189

7: Administration

Once you have archived a process definition, you can retrieve it again as follows:
1. Get the list of all archived process definitions for retrieving the IDs of the archived process

definitions. Use the AllArchivedPlans filter criterion for doing so.
2. To retrieve a specific archived process definition, use getArchivedPlan(id) from the

WFAdminSession interface.

adminSession.getArchivedPlan(planList[i].getId());

Note that you can only perform a subset of functions on archived process definitions, such as retrieving
information on them. All functions that modify a process definition are not supported for archived
process definitions (e.g. setName).

7.4.4 Deleting Process Definitions
An administrator can delete process definitions from all users. A user, however, can only delete a
process definition of which he/she is the owner.
To delete a process definition:
• Use deletePlan() from the WFAdminSession interface.

adminSession.deletePlan(planList[i].getId());

The method selects a specified process definition from the database. The process definition must
be in "draft" or "private" state. If the process definition is in any other state, its state changes to
"deleted", but it will not be physically deleted from the database.

7.4.5 Deleting Archived Process Definitions
To delete an archived process definition from the database:
• Use deleteArchivedPlan() from the WFAdminSession interface.

adminSession.deleteArchivedPlan(archivedPlanList[i].getId());

7.4.6 Importing a Process Definition from an XPDL File
To import an XPDL file:
1. Create an empty process definition object with WFObjectFactory.getPlan().
2. Set the current session to the process definition object with setWFSession().
3. Create a process definition object from an XPDL file with convertFromXPDL().

Example
For the following example to work properly, make sure that the defined import directory
DIR_PATH_IMPORT contains some files.

File importDir = new File(DIR_PATH_IMPORT);

if (importDir.exists() && importDir.isDirectory()) {
File[] fileList = importDir.listFiles();
String filePath;
boolean fileFound = false;

Interstage Business Process Manager Developer's Guide 190

7: Administration

Plan plan = null;

for (int i = 0; i < fileList.length; i++) {
filePath = fileList[i].getAbsolutePath();

if (filePath.endsWith(".xml") ||
filePath.endsWith(".xpdl")) {
plan = WFObjectFactory.getPlan();
plan.setWFSession(adminSession);
plan.convertFromXPDL(new FileInputStream(fileList[i]));
break;

}
}

}

7.4.7 Exporting a Process Definition to an XPDL File
You can convert a process definition to XPDL data using convertToXPDL() from the Plan interface.
You need to extend the import declaration in the same way as when importing process definitions.
To export a process definition to an XPDL file:
1. Take the first process definition from a given list of process definitions.

if (planList != null && planList.length > 0) {
Plan plan = planList[0];
. . .

}

2. Check whether the destination directory exists. If not, a new directory is created.

File exportDir = new File(DIR_PATH_EXPORT);
if (!exportDir.exists() || !exportDir.isDirectory()) {

exportDir.mkdir();
}

3. Generate an absolute file name for the export file.

String fileName = DIR_PATH_EXPORT + "/" + "PLAN_" +
plan.getName() + "_" + plan.getId() + ".xml";

4. Create a new file object.

File file = new File(fileName);
if (!file.exists()) {

file.createNewFile();
. . .

}

5. Convert the process definition to XPDL.

plan.convertToXPDL(new FileOutputStream(file));

Interstage Business Process Manager Developer's Guide 191

7: Administration

7.5 Process Instance Administration
This section describes the following process instance administration tasks:
• Listing process instances
• Changing the ownership of a process instance
• Archiving process instances
• Suspending process instances
• Aborting process instances
• Deleting process instances
• Deleting archived process instances

7.5.1 Listing Process Instances
For listing process instances, use the WFObjectList interface from the
com.fujitsu.iflow.model.workflow package. This interface retrieves a list of the existing
WFObjects from the Interstage BPM Server.
To list process instances:
1. Build a filter using the Filter class.

Possible filter criteria for process instances are:
• AllActiveProcesses: Retrieves all active process instances.
• AllArchivedProcesses: Retrieves all archived process instances.
• AllInactiveProcesses: Retrieves all inactive process instances.
• AllProcesses: Retrieves all process instances.
• AllProcessesInErrorState: Retrieves all inactive process definitions.
• MyActiveProcesses: Retrieves all active process instances initiated by the logged in user.
• MyInactiveProcesses: Retrieves all inactive process instances initiated by the logged in user.
• MyProcesses: Retrieves all process instances initiated by the logged in user.

2. Use openBatchedList().
3. Iterate the list of returned objects matching the filter criteria set with openBatchedList().

Refer to the Administration.java sample source file located in your <Interstage BPM Server
Installation Directory>/client/samples/examples/sources directory for the detailed sample
code on how to list process instances.

7.5.2 Changing the Ownership of a Process Instance
Only an administrator and the current process instance owner can change the ownership of a process
instance. Process ownership must be set at the process definition level. The process owner is
determined by the setting of the attribute "Owner Role". The attribute "Owner Role" is evaluated by
the Interstage BPM Server before activating a new process instance.
Use setOwners() from the ProcessInstance interface to set the owner of a running process instance.
Before actually changing the ownership, this method checks whether the user or group who is to
become the new owner exists; if one of the new owners does not exist, the process instance will go
into error state.
In the following example, the ownership of the first process instance from a given list is assigned to
the first found user from a given user list.

Interstage Business Process Manager Developer's Guide 192

7: Administration

To change the ownership of a process instance:
1. List all existing user groups.

if (procInstList != null) {
String[] owners = null;
String role = "";
DirectoryServices ds = WFObjectFactory.getDirectoryServices(

adminSession, adminName, password);
String[] groups = ds.getUserGroups();
if (groups != null && groups.length > 0) {

role = groups[0];
}
owners = ds.getUserList(role);
if (owners != null) {

boolean assigned = false;
...

}
}

2. Take the first user to get the new owner for a process instance, and start the edit-mode.

for (int i = 0; i < procInstList.length; i++) {
procInstList[i].startEdit();

...
}

3. Set the owner to the process instance.

procInstList[i].setOwners(owners);

4. Commit the edit-mode.

procInstList[i].commitEdit();
assigned = true;

7.5.3 Archiving Process Instances
Only process instances that are completed, aborted or in error state can be archived. Therefore,
before archiving a process instance, you have to check for the process instance's current state. You
can identify the state of a completed process instance using the constant STATE_CLOSED from the
ProcessInstance interface. Use the constants STATE_ERROR or STATE_ABORTED to check whether
a process instance is in error state or has been aborted.
To archive a process instance:
1. Check a given list of process instances for process instances that are completed, aborted or in

error state. To do so, check the current state of the process instance using getState() from the
ProcessInstance interface.

if (procInstList[i].getState() == ProcessInstance.STATE_CLOSED ||
ProcessInstance.STATE_ABORTED || ProcessInstance.STATE_ERROR)
{
...

}

Interstage Business Process Manager Developer's Guide 193

7: Administration

2. To archive a process instance, use archiveClosedProcess() from the WFAdminSession interface.

adminSession.archiveClosedProcess(procInstList[i].getId());

Once you have archived a process instance, you can retrieve it again as follows:
1. Get the list of all archived process instances for retrieving the IDs of the archived process instances.

Use the AllArchivedProcesses filter criterion for doing so.
2. To retrieve a specific archived process instance, use getArchivedProcess(id) from the

WFAdminSession interface.

adminSession.getArchivedProcess(procInstList[i].getId());

Note that you can only perform a subset of functions on archived process instances, such as retrieving
information on them. All functions that modify a process instance are not supported for archived
process instances (e.g. setName).

7.5.4 Suspending Process Instances
When suspending a running process instance, its state changes to STATE_SUSPENDED. If this process
instance has any work items, they are also suspended. If the process instance has any running
subprocess instances, they are also suspended.
To suspend a process instance:
1. Check a given list of process instances for running process instances. To do so, check the current

state of the process instance using getState() from the ProcessInstance interface.

if (procInstList[i].getState() == ProcessInstance.STATE_RUNNING)
{
...

}

2. To suspend a running process instance, use suspend() from the ProcessInstance interface.

procInstList[i].suspend();

If defined on process definition level or Activity Node level, a set of Java Actions may be
executed before the process instance changes to STATE_SUSPENDED. This set of Java Actions
will become active as soon as you call the suspend() command. For example, a notification
email is sent to the owner of the process instance, or additional log file entries are written.
Refer to section Using onAbort, onSuspend, onResume Java Actions on page 109 for details
on how to define an onSuspendJavaActionSet.

Note:

You can resume a suspended process instance using resume() from the ProcessInstance interface.
The state of the process instance is then changed to STATE_RUNNING.
Again, if defined on process definition level or Activity Node level, a set of Java Actions may be
executed before the process instance changes to STATE_RUNNING again. This set of Java Actions
will become active as soon as you call the resume() command.

Interstage Business Process Manager Developer's Guide 194

7: Administration

7.5.5 Aborting Process Instances
When aborting a process instance, its state changes to STATE_ABORTED. If this process instance has
any work items, they are removed. If the process instance has any running subprocess instances,
they are also aborted.
To abort a process instance:
• Use abort() from the ProcessInstance interface.

This method can only be used by an administrator or the process instance owner. Other users
are not allowed to abort a process instance.

Example
In the following example, a given list of process instances is checked for running (constant
STATE_RUNNING) and suspended (constant STATE_SUSPENDED) process instances using getState()
from the ProcessInstance interface. getState() returns the current state of the process instance.
Then the first running or suspended process instance which is found inside the list is aborted.

if (procInstList != null) {
boolean aborted = false;
for (int i = 0; i < procInstList.length; i++) {

if (procInstList[i].getState() ==
ProcessInstance.STATE_RUNNING

|| procInstList[i].getState() == ProcessInstance.STATE_SUSPENDED)
{

procInstList[i].abort();
aborted = true;

}
}

}

If defined on process definition level or Activity Node level, a set of Java Actions may be
executed before the process instance changes to STATE_ABORTED. This set of Java Actions
will become active as soon as you call the abort() command. For example, a notification
email is sent to the owner of the process instance, or additional log file entries are written.
Refer to section Using onAbort, onSuspend, onResume Java Actions on page 109 for details
on how to define an onAbortJavaActionSet.

Note:

7.5.6 Deleting Process Instances
To delete a process instance:
• Use deleteProcessInstance() from the WFAdminSession interface.

This method deletes a process instance from the database, using a process instance ID.

Example
In the following example the first valid process instance from a given list is deleted:

if (procInstList != null) {
boolean deleted = false;
for (int i = 0; i < procInstList.length; i++) {

adminSession.deleteProcessInstance
(procInstList[i].getId());
deleted = true;

Interstage Business Process Manager Developer's Guide 195

7: Administration

break;
}

}

7.5.7 Deleting Archived Process Instances
To delete an archived process instance from the database:
• Use deleteArchivedProcess() from the WFAdminSession interface.

adminSession.deleteArchivedProcess(archivedProcInstList[i].getId());

7.6 Work Item Administration
This section describes the following work item administration tasks:
• Reassigning work items from one user to another
• Refreshing work items

7.6.1 Reassigning Work Items to Another User
To reassign a work item to another user:
• Use reassign() from the WFSessionAdmin interface.

Example
The following example shows how to reassign work items from one user to another existing user.

if (workItemList != null && workItemList.length > 0) {
WorkItem workItem = workItemList[0];
UserInfo[] userList = listUsers();
String oldAssignee = "";
String newAssignee = "";
if (userList != null && userList.length > 0) {

oldAssignee = workItem.getAssignee();
newAssignee = userList[0].getName();
adminSession.reassign(oldAssignee, newAssignee,
workItem.getProcessInstanceId(),
workItem.getId(),false);

}
}

7.6.2 Refreshing Work Items
If an administrator adds or deletes a user from a group in the directory, any running activities that
have that group as an assignee will not be automatically updates, and the outstanding workitems
will not be created or removed to match the group. In general operation, workitems are created to
match the group as it is at the time that the activity is started, and changes in the group after that
are purposefully ignored. In some situations, however, one would like the workitems of an activity
that is already started to be altered to match the changed group members. To update the workitems,
the administrator has to refresh the work items.

Interstage Business Process Manager Developer's Guide 196

7: Administration

Refreshing the work items can take some time because often several iterations are necessary to
complete the task. The time needed depends on the number of the active tasks in the database. The
execution time can be reduced by using options for selecting the work items to be refreshed:
• The work items of a process instance.
• The work items of all process instances that belong to a process definition.
• The work items for a group.
• All existing work items.
• To refresh the work items of a process instance:

boolean ignoreActivityWithRoleScript = true;
String refreshResult = null;

if (procInst != null) {
long procInstId = procInst.getId();
refreshResult = adminSession.refreshWIforProcess(procInstId,

ignoreActivityWithRoleScript);
}

• To refresh the work items of all process instances that belong to a process definition:

if (procDef != null) {
long procDefId = procDef.getId();
refreshResult = adminSession.refreshWIforPlan(procDefId,

ignoreActivityWithRoleScript);
}

• To refresh the work items for a group:

String group = "SampleGroup";
refreshResult = adminSession.refreshWIforGroup(group,

ignoreActivityWithRoleScript);

• To refresh all work items:

refreshResult = adminSession.refreshWorkItems
(ignoreActivityWithRoleScript);

If the SupportGroupWorkItem parameter of the Interstage BPM Server is set to true, the
filter Filter.MyActiveWorkItems is not supported, i.e. the work items cannot be retrieved
with this filter.
In this case you have to define your own filter for retrieving the work items to be refreshed.
Refer to section Listing Work Items on page 81 for details on building a filter for work items.
Refer to the Interstage Business Process Manager Server Administration Guide for details
on the SupportGroupWorkItem parameter.

Note:

The result of the refreshing is formatted as an XML string, which lists the successful and the failed
operations. The following gives an example of such an XML string:

<?xml version="1.0" encoding="UTF-8" ?>
<Processes>

<success>
<Process Name="procName" id="123"></Process>

Interstage Business Process Manager Developer's Guide 197

7: Administration

</success>

<failed>
<Process Name="procName" id="456" Status="ignored"

message="error message" />
<Process Name="procName" id="123">

<Activities>
<Activity Id="123456" Name="activityName"

Status="ignored" message="error message" />
</Activities>

</Process>
</failed>

</Processes>

The <success> tags contain a list of process instances for which the refreshing of the work items
was successful. The <failed> tags contain a list of process instances for which the refreshing failed.
The <Activities> tags contain activities of a process instance for which the refreshing failed.

Interstage Business Process Manager Developer's Guide 198

7: Administration

8 Retrieving History Information
For each process instance, the information concerning the workflow is stored in an Interstage BPM
database called teamflowdb. In the History table of the teamflowdb database, each single step in
a workflow of a process instance is stored.
You have the following possibilities to retrieve history information from the History table:
• With the Model API
• From a Hashtable
• With SQL Statements

8.1 Retrieving History Information With the Model API
To retrieve history information from a process instance using the Model API:
1. Use the following code as basis:

import com.fujitsu.iflow.model.workflow.ProcessInstance;
import com.fujitsu.iflow.model.util.IflowEnumeration;

int processHistoryFields[] = {
ProcessInstance.HISTORY_ID,

ProcessInstance.HISTORY_TIME_STAMP,
ProcessInstance.HISTORY_EVENT_CODE,
ProcessInstance.HISTORY_EVENT_TYPE,
ProcessInstance.HISTORY_RESPONSIBLE,
ProcessInstance.HISTORY_PRODUCER_TYPE,
ProcessInstance.HISTORY_PRODUCER_ID,
ProcessInstance.HISTORY_CONSUMER_TYPE,
ProcessInstance.HISTORY_CONSUMER_ID,
ProcessInstance.HISTORY_PROCESSINSTANCE_ID,
ProcessInstance.HISTORY_ISHANDLED_CODE,
ProcessInstance.HISTORY_EVENTDATA

};

ProcessInstance procInst =
WFObjectFactory.getProcessInstance(procID, session);

IflowEnumeration sElements =
processInstance.getHistory(processHistoryFields);

getHistory() retrieves all the history data from the related process instance. The columns that
are to be retrieved are defined by the integer array, which is passed as argument to the method.

2. Navigate through the resulting objects of type IflowEnumeration to access each row for the
history entries.

while(sElements.hasMoreElements())
{

Hashtable htblEvent = (Hashtable) sElements.nextElement();
// Here the code from the section "Retrieving the History

Information From a Hashtable"
}

The following table shows the mapping of the constants in the ProcessInstance class to the columns
of the History table.

Interstage Business Process Manager Developer's Guide 199

8: Retrieving History Information

Name of ColumnConstants in ProcessInstance Class

historyIDHISTORY_ID

CreatedTimeHISTORY_TIME_STAMP

EventCodeHISTORY_EVENT_CODE

EventTypeHISTORY_EVENT_TYPE

EventDataHISTORY_EVENTDATA

ProducerTypeHISTORY_PRODUCER_TYPE

ProducerIdHISTORY_PRODUCER_ID

ConsumerTypeHISTORY_CONSUMER_TYPE

ConsumerIdHISTORY_CONSUMER_ID

IsHandledHISTORY_ISHANDLED_CODE

ProcessInstanceIdHISTORY_PROCESSINSTANCE_ID

ResponsibleHISTORY_RESPONSIBLE

There is a constant defined to retrieve the column ServerName.Note:

8.2 Retrieving History Information From a Hashtable
With the code in section Retrieving History Information With the Model API on page 199, you can
retrieve all history data from a process instance. The results are stored in a hashtable. The following
sections show how to retrieve the values for the single constants of the ProcessInstance class.

8.2.1 HISTORY_ID
To retrieve the history ID of an entry, use the following code:

long historyId = ((Long)htblEvent.get
(new Integer(ProcessInstance.HISTORY_ID))).longValue();

Each entry in the History table has a unique identifier.

8.2.2 HISTORY_TIME_STAMP
To retrieve the timestamp of an entry, use the following code:

long timestamp = ((Long)htblEvent.get(
new Integer(ProcessInstance.HISTORY_TIME_STAMP))).longValue();

To convert the long value of the date into a readable form, use standard Java statements.

Interstage Business Process Manager Developer's Guide 200

8: Retrieving History Information

8.2.3 HISTORY_EVENT_CODE
To retrieve the event code of an entry, use the following code:

long historyEventCode = ((Long) htblEvent.get
(new Integer(ProcessInstance.HISTORY_EVENT_CODE)).longValue();

The event code indicates the type of the event. The following table lists possible values and their
meaning:

DescriptionEvent Code

Start (Default)0

Activate1

Make choice2

Accept3

Decline4

Reassign5

Exit6

Create subprocess7

Suspend work item8

Resume work item9

Start work10

Stop work11

Voting complete12

Process created13

Process migrated14

Process recall15

Deactivate target node16

Activate source node17

Generate future work items25

8.2.4 HISTORY_EVENT_TYPE
To retrieve the event type of an entry, use the following code:

String eventType = (String) htblEvent.get(
new Integer(ProcessInstance.HISTORY_EVENT_TYPE));

The event type specifies the name of an activity or the name of an arrow in Interstage BPM. If, for
example, an arrow has the name Create Purchase Requisition, the result of HISTORY_EVENT_TYPE
is Create Purchase Requisition.

Interstage Business Process Manager Developer's Guide 201

8: Retrieving History Information

8.2.5 HISTORY_EVENTDATA
To retrieve additional data about an event, use the following code:

String eventData = (String) htblEvent.get(
new Integer(ProcessInstance.HISTORY_EVENTDATA));

The retrieved value is in most cases NULL.

8.2.6 HISTORY_PRODUCER_ID
To retrieve the producer ID of an entry, use the following code:

long producerId = ((Long)htblEvent.get(
new Integer(ProcessInstance.HISTORY_PRODUCER_ID))).longValue();

Depending on the producer type, the producer ID specifies different types of information. Refer to
section History Table on page 205 for more details.

8.2.7 HISTORY_PRODUCER_TYPE
To retrieve the producer type of an entry, use the following code:

long lProdType=((Long)htblEvent.get(
new Integer(ProcessInstance.HISTORY_PRODUCER_TYPE))).longValue();

The producer type indicates the event responsible for creating the current event. The following table
lists possible values and their meaning:

DescriptionProducer Type

Arrow0

Activity3

Process7

Timer15

8.2.8 HISTORY_CONSUMER_ID
To retrieve the consumer ID of an entry, use the following code:

long consumerId = ((Long)htblEvent.get(
new Integer(ProcessInstance.HISTORY_CONSUMER_ID))).longValue();

Depending on the consumer type, the consumer ID specifies different types of information. Refer to
section Rules for Navigating Through the History Entries on page 204 for details.

8.2.9 HISTORY_CONSUMER_TYPE
To retrieve the consumer type of an entry, use the following code:

long lConsType = ((Long)htblEvent.get(
new Integer(ProcessInstance.HISTORY_CONSUMER_TYPE))).longValue();

Interstage Business Process Manager Developer's Guide 202

8: Retrieving History Information

The consumer type indicates the type of the element that the event is intended for. The following
table lists possible values and their meaning:

DescriptionConsumer Type

Activity3

Process7

For more information on how to interpret the consumer type, refer to section Rules for Navigating
Through the History Entries on page 204.

8.2.10 HISTORY_ISHANDLED_CODE
To retrieve the value IsHandled of an entry, use the following code:

long isHandledCode = ((Long)htblEvent.get(
new Integer(ProcessInstance.HISTORY_ISHANDLED_CODE)))
.longValue();

The following table lists possible values and their meaning:

DescriptionisHandled Code

Not handled0

Handled1

Ignored2

Error3

Audit4

Suspended5

8.2.11 HISTORY_PROCESSINSTANCE_ID
To retrieve the process instance ID of an entry, use the following code:

long procInstId = ((Long)htblEvent.get(
new Integer(ProcessInstance.HISTORY_PROCESSINSTANCE_ID)))
.longValue();

8.2.12 HISTORY_RESPONSIBLE
To retrieve the responsible for the entry in the History table, use the following code:

String responsible = (String) htblEvent.get(
new Integer(ProcessInstance.HISTORY_RESPONSIBLE));

Possible values are:
• __process

System user ID to indicate the activity of the workflow engine.

• <userID>

Interstage Business Process Manager Developer's Guide 203

8: Retrieving History Information

Any valid user ID to indicate the user who performed an action.

8.2.13 Rules for Navigating Through the History Entries
To navigate through the entries in the History table of a process instance, the following rules are
defined.

Rule 1
To navigate through the entries of the History table, only entries fulfilling one of the three following
conditions are evaluated:
• Activation event

Applies if all of the following criteria are met:
• ConsumerType is defined as 3 (Activity)
• EventType is equal to __Activate

• Activity Node
Applies if all of the following criteria are met:
• ConsumerType is defined as 3 (Activity)
• EventType is not equal to __Activate

• ProducerType is defined as 7 (Process)

• Arrow
Applies if all of the following criteria are met:
• ConsumerType is defined as 3 (Activity)
• EventType is not equal to __Activate

• ProducerType is defined as 0 (Arrow)

Rule 2
In case there is an entry of type 1, i.e. an activation event, only the timestamp is retrieved.

Rule 3
In case there is an entry of type 2, i.e. an Activity Node, the consumer ID represents the ID of the
node instance in the process instance. Using the Model API, you can retrieve the node instance as
follows:

// CONSUMER_ID represents the node instance ID

long consumerId = ((Long)htblEvent.get(
new Integer(ProcessInstance.HISTORY_CONSUMER_ID))).longValue();

NodeInstance nodeInst = procInst.getNodeInstance(consumerId);

// Now continue to retrieve the information from the object
// of the class NodeInstance

Interstage Business Process Manager Developer's Guide 204

8: Retrieving History Information

Rule 4
In case there is an entry of type 3, i.e. an arrow, the producer ID represents the ID of the arrow
instance in the process instance. Using the Model API, you can retrieve the node instances of source
and target nodes as follows:

// PRODUCER_ID represents the arrow instance ID

long producerId = ((Long)htblEvent.get(
new Integer(ProcessInstance.HISTORY_PRODUCER_ID))).longValue();

ArrowInstance arrow = procInst.getArrowInstance(producerId);

NodeInstance sourceNodeInst = arrow.getSourceNodeInstance();
NodeInstance targetNodeInst = arrow.getTargetNodeInstance();

// Now continue to retrieve information from the source and
// target objects of the arrow instance

8.3 History Table
In the History table, each step in the workflow of a process instance is defined by a separate entry,
i.e. a row. A step can be defined by a system action, for example "Creation of a process instance",
or by the execution of an activity which is explicitly defined in the process definition, for example
"Vote for Approval".
The content of the History table is used to export workflow information from Interstage BPM to
ARIS Process Performance Manager. For more information, refer to the Interstage Business Process
Manager ARIS PPM Integration Guide.

The database schema described in this section could be changed in a future version of
Interstage BPM. If you develop your own application based on the database schema, you
need to change the application when the database schema is changed.

Note:

RemarksValue/SampleField

Unique identifier for each row in
the History table.

888919historyID

Interstage Business Process Manager Developer's Guide 205

8: Retrieving History Information

RemarksValue/SampleField

Each code uniquely identifies a
separate event.

0=Start (default)

1=Activate

2=MakeChoice

3=Accept

4=Decline

5=Reassign

6=Exit

7=CreateSubProcess

8=SuspendWorkItem

9=ResumeWorkItem

10=StartWork

11=StopWork

12=VotingComplete

13=ProcessCreated

14=ProcessMigrated

15=ProcessRecall

16=DeactivateTargetNode

17=ActivateSourceNode

25=GenerateFutureWorkItems

EventCode

Name of the event."Approve"

or
"Submit Purchase
Order:99198"

EventType

Additional information, but in
most cases NULL.

NULLEventData

Timestamp (string format) of the
creation of this activity.

"2004-11-12 13:19:12.820"

or
"22.12.2004 16:48"

CreatedTime

Name of the user or system who
was responsible for creating the
event. If there is no User Group
assigned to the node, the
system executes the node and
the name "__process" is taken.

"jim"

or
"__process"

Responsible

Interstage Business Process Manager Developer's Guide 206

8: Retrieving History Information

RemarksValue/SampleField

State of the event.0=notHandled

1=handled

2=ignored

3=Error

4=audit

IsHandled

Element responsible for creating
the current event. Either this is
an arrow or a node.

0: arrow

7: node

ProducerType

If ProducerType = 0, the
ProducerId denotes the arrow
instance ID of the current event.
Using the arrow instance ID, the
source and target node
instances of the event can be
retrieved.

99130ProducerId

The element type that the event
is intended for.

0=ArrowType

3=ActivityType

7=ProcessType

ConsumerType

If ProducerType = 7 the
ConsumerId denotes the node
instance ID of the current node.
If ProducerType = 0 the
ConsumerId denotes the node
instance ID of the target node.
The same node instance can be
retrieved by the arrow instance.

99116ConsumerId

Unique identifier of a process
instance.

88892ProcessInstanceId

The name of the server for which
these events are generated and
handled.

localhostServerName

Unique identifier of the
application that contains the
process instance

2applicationContainerId

8.4 Retrieving History Information With SQL Statements
You can retrieve history information using SQL statements on the teamflowdb database.
• To get an overview about all stored data in the History table:

SELECT * FROM HISTORY

Interstage Business Process Manager Developer's Guide 207

8: Retrieving History Information

• To retrieve all rows linked to a specific process instance:
SELECT * FROM HISTORY WHERE PROCESSINSTANCEID=<PROCID>

Replace <PROCID> by the requested ID (number) of the process instance.

The following figure shows as an example all the entries in the History table, assigned to a closed
process instance.

Figure 24: Entries in the History Table

Interstage Business Process Manager Developer's Guide 208

8: Retrieving History Information

Appendix A: Using the Interstage Business Process
Manager Samples

The samples in this manual demonstrate various ways to program Interstage BPM with the Model
API. After installing Interstage BPM Server, you find the following subdirectories in your <Interstage
BPM Server Installation Directory> directory (typically C:\Fujitsu\InterstageBPM on
Windows and /opt/FJSVibpm on UNIX or Linux):
/client/samples/examples/sources

/client/samples/examples/classes

/client/samples/examples/bin

The contents of each subdirectory is described in detail below.

To use sample programs in SaaS mode, set the appropriate value for the TenantName
property in iFlowClient.properties available in the <InterstageBPM installation
directory>/client/ directory.

Note:

A.1 /client/samples/examples/sources
This directory contains the Java source code of the examples used throughout this manual. To see
how the examples work, read the samples' source code found in the
/client/samples/examples/sources subdirectory of your Interstage BPM Server installation
directory. In the following sections you find a list of the available sample sources and information on
where to find additional explanations in this manual.

A.1.1 Samples Related to Process Modeling and Execution

SimplePlan.java
This sample creates a simple Interstage BPM process definition.
Additional information can be found in section
Designing a Simple Process Definition on page 63

ComplexPlan.java
This sample creates a complex Interstage BPM process definition and shows, for example, how to
add User Defined Attributes and Voting Activity Nodes, use Java Actions, etc.
Additional information can be found in sections
Designing a Complex Process Definition on page 68
Using Java Actions on page 90
Advanced Filtering & Sorting API on page 110
Special User Defined Attribute Properties on page 118
Using Extended Attributes on page 121
Transaction Control on page 128

ProcessExecution.java
This sample shows how to start a new process instance and execute work items.

Interstage Business Process Manager Developer's Guide 209

Appendix A: Using the Interstage Business Process Manager Samples

Additional information can be found in sections
Working with Process Instances on page 78
Transaction Control on page 128

This sample contains an INSTALL_ROOT constant containing the path to your Interstage
BPM Server installation directory. By default, the path value is set to
C:\Fujitsu\InterstageBPM. You need to adjust this value in case you installed Interstage
BPM Server in a different location or you use UNIX or Linux.

Note:

SampleJavaActions.java
This sample contains methods which are used for Java Actions in process definitions like the one
created with the ComplexPlan.java, for example, adding an attachment and sending an email.
Additional information can be found in section Using Java Actions on page 90.

BatchDetailsRetrieval.java
This sample shows how to work with the bulk processing capabilities provided by the WFDetailsList
interface.
Additional information can be found in section Retrieving Information about Multiple Objects at a
Time on page 114.

TriggerTimerSample.java
This sample demonstrates the use of triggers, timers, and business calendars. It creates a process
definition that is started by a trigger.
Additional information can be found in sections
Using Triggers on page 129
Using Timers on page 149

EventActivityNodeSample.java
This sample shows the typical steps involved in working with Event Activity Nodes.
Additional information can be found in section Using Event Activity Nodes on page 133.

RemoteSubProcess.java
This sample shows how to define and use a remote subprocess. It creates a process definition
containing a Remote Subprocess Node and another process definition which is used as remote
subprocess.
Additional information can be found in section Modeling Remote Subprocesses on page 157.

AgentSimulator.java and AgentSimulator.xpdl
AgentSimulator.xpdl is a process definition that models a simple bank loan approval process.
AgentSimulator.java is an example of an Agent Class, which simulates a loan decision maker.
For more information, refer to the comments in the AgentSimulator.java source file and to section
Using Agents on page 140.

Interstage Business Process Manager Developer's Guide 210

Appendix A: Using the Interstage Business Process Manager Samples

HTTPAgentExample
The HTTPAgentExample subdirectory contains a pre-configured HTTP Example for implementing an
HTTP Agent. The example agent demonstrates the complete functionality of an HTTP Agent. For
detailed information, refer to the HTTPAgentExampleInstructions.txt file and to section Using
HTTP Agents on page 149.

A.1.2 Samples Related to System Administration

Administration.java
This sample demonstrates various administrative activities, such as listing users, logging out users,
resetting data from a user directory, publishing and archiving process definitions, etc.

This sample works with existing process definitions and process instances. Make sure that
all process definitions are valid and can be executed. In addition, be aware that this sample
starts new instances and changes the status of existing instances.

Note:

Additional information can be found in chapter Administration on page 182.

SampleLocalUserManagement.java
This sample demonstrates local user and group administration, such as creating local users and
groups, assigning users to groups, associating groups with other groups, etc.
Additional information can be found in section User and Group Administration on page 184.

A.1.3 Samples Related to the JMS Interface
The JMS interface functionality can be used only in the non-SaaS mode.Note:

The JMS Interface is an interface to the Interstage BPM Server like the Model API. With the Model
API, you make method calls to model objects to perform all Interstage BPM operations. The Model
API remains the primary interface to the Interstage BPM Server, but as an option, you can interact
more directly with it using the JMS Interface. The JMS Interface functionality is, however, limited to
certain key Interstage BPM operations.
Two topics are basic to the JMS Interface:
• The Interstage BPM command topic
• The Interstage BPM response topic
A JMS Client posts request messages to the command topic. This message contains an Interstage
BPM command and the information necessary to execute it. The command topic is configured to
accept requests from JMS Clients, and they are transferred to the Interstage BPM Server for
processing. The JMS API executes the requested action on the Interstage BPM Server and retrieves
a response. The response message (to all properly formatted requests) contains the requested
information and is posted to the response topic. The information is then transmitted to the JMS Client.
Request and response JMS messages are XML that must be formatted according to iFlowJMS.xsd,
the Interstage BPM JMS Interface schema. You can find the iFlowJMS.xsd and related documents
in the <Interstage BPM Installation Directory>/client/samples/doc/jms directory.

Interstage Business Process Manager Developer's Guide 211

Appendix A: Using the Interstage Business Process Manager Samples

If you want to use the JMS Interface, perform the following steps:
1. Set up a JMS Client:

• Gather the Interstage BPM information that you will need to write the XML for the Interstage
BPM commands that you want to run through the JMS Interface.
To determine the required information, use the Interstage BPM JMS Interface schema
iFlowJMS.xsd and related documents as a guideline.

• Write XML for the Interstage BPM commands that you want to run.
Again, use the Interstage BPM JMS Interface schema and related documents as a guideline.
Optionally, the XML can specify a response topic different than the default response topic
created by the Interstage BPM installation.

• Set up your JMS Client to post the XML you have just written to the command topic. Use the
samples as a guide for PATH and CLASSPATH settings. Be sure to add the application
server-specific client properties files to your CLASSPATH.

• You are now ready to post the XML that you have written to the command topic.

2. Post requests to the command topic:
There are various JMS related samples available with your Interstage BPM installation in the
<Interstage BPM Installation Directory>/samples/examples/source directory. These
sample files can be recognized by their Jms*.java file names.

The JMS interface of Interstage BPM does not provide the functionality to create a process
definition. Therefore you find a separate sample, createPlan.java which shows how to
create a process definition.

Note:

Refer to section /client/samples/examples/bin on page 214 for instructions on how to compile and
execute the Interstage BPM samples.

List of Available Samples Related to the JMS Interface

Some of the JMS samples refer to the Server properties file, server.properties, located
in the <Interstage BPM Installation Directory>/samples/configuration. This file
is used for reading and/or updating the following attributes: planId, processId, workitemId,
choiceName, or UdaName. If you do not use the process definition created by the createPlan
sample file, you can update this file before executing the corresponding JMS sample.
For example: If you are executing the JmsAcceptWorkItem sample, the workitemid specified
in server.properties should be valid for it to work. JmsGetMyWorkItems updates the
server.properties with the appropriate workitemid. Thus you need to execute
JmsGetMyWorkItems before JmsAcceptWorkItem so that the server.properties file is
updated with the appropriate workitemid.

Note:

The samples related to the JMS interface must be executed in a specific sequence, as each
program uses the workflow objects generated by previous programs. For example,
createPlan must be executed before executing JmsGetMyPlans.

Note:

Retrieves a list of process definitions owned by the logged-in
user.

JmsGetMyPlans

Retrieves the state of a process definition.JmsGetPlanState

Interstage Business Process Manager Developer's Guide 212

Appendix A: Using the Interstage Business Process Manager Samples

Retrieves a UDA using the process definition.JmsGetPlanUDA

Creates a process instance.JmsCreateProcess

Starts a process instance.JmsStartProcess

Retrieves a list of process instances owned by the logged-in
user.

JmsGetMyProcesses

Retrieves the state of a process instance.JmsGetProcessState

Retrieves a UDA using the process instance.JmsGetProcessUDA

Retrieves a list of work items assigned to the logged-in user.JmsGetMyWorkItems

Accepts a work item.JmsAcceptWorkItem

Retrieves the state of a work item.JmsGetWorkItemState

Declines a work item.JmsDeclineWorkItem

Note: Before executing this sample, execute the following
samples in the shown sequence:
1. JmsCreateProcess

2. JmsStartProcess

3. JmsGetMyWorkItems

Retrieves a UDA using the work item.JmsGetWorkItemUDA

Performs a make choice operation.JmsMakeChoice

Note: Before executing this sample, execute the following
samples in the shown sequence:
1. JmsCreateProcess

2. JmsStartProcess

3. JmsGetMyWorkItems

Publishes a process definition.JmsPublishPlan

Sets a process definition to the state "Obsolete".JmsObsoletePlan

Suspends the execution of a process instance.JmsSuspendProcess

Resumes the execution of a process instance.JmsResumeProcess

Aborts the execution of a process instance.JmsAbortProcess

A.1.4 Samples Related to Decision Tables

DecisionTableAPI.java
This sample demonstrates various activities related to Decision Tables management, such as creating
a decision table, creating condition criteria, result locators, decisions, validating and evaluating a
decision table, saving a decision table, and loading a decision table file. Additional information can
be found in section Decision Tables on page 167.

Interstage Business Process Manager Developer's Guide 213

Appendix A: Using the Interstage Business Process Manager Samples

A.2 /client/samples/examples/classes
The /client/samples/examples/classes subdirectory contains the compiled class files for the
samples.

A.3 /client/samples/examples/bin
The /client/samples/examples/bin subdirectory contains two batch files:
• StartSamples.bat: Starts the execution of a sample file. Use the StartSamples.sh file on UNIX

or Linux.
You need to edit this batch file and set the directory where your application-server specific jar
files are stored for the APP_SERVER_JARS variable BEFORE you run it.
In addition, make sure that the CLASSPATH variable points to the correct directory where the
following files are located:
• iflow.jar

• When using Interstage Application Server: fujitsu-ibpm-engine-ejb_jar_client.jar
• Any application-server specific jar files
• J2SE Development Kit (JDK)
Refer to the StartSamples.bat or StartSamples.sh file for a sample path for Weblogic and
JBoss.
When you execute the batch file, you need to specify the sample file name (see below), the name
of a user with administrator rights and his/her password, as well as a the name of the Interstage
BPM Server, which must be the same as mentioned in the IBPMPROPERTIES table or the
ibpm.properties file.

• BuildSamples.bat: Builds the class files for the Java source files. Use the BuildSamples.sh
file on UNIX or Linux.
Again, make sure that the APP_SERVER_JARS and the CLASSPATH variables point to the correct
directory.

Interstage Business Process Manager Developer's Guide 214

Appendix A: Using the Interstage Business Process Manager Samples

Appendix B: Customizing Forms
A QuickForm is a standard HTML page that enables the display of process data in Interstage BPM
Clients and provides the ability to change that data. The Interstage BPM engine does not constrain
you to any particular form technology. This means that if you have a favorite form support technology,
you should be able to attach those forms to an activity, and your customization should be able to
provide a client that displays the data through that form.
QuickForms are generated by Interstage BPM Studio and by the Process Designer that is part of
the Interstage BPM Console. For information on generating QuickForms using these tools, refer to
the Interstage Business Process Manager Studio User's Guide and Interstage Business Process
Manager User's Guide.
This appendix describes how to customize the generated QuickForms. QuickForms can be edited
with any HTML editor because they are standard HTML files. You simply need to understand a little
bit about the components that are placed into the QuickForm and the effect that they have on the
final produced web page. This appendix does not cover how to use specific Web-authoring tools.

B.1 QuickForm Command Overview
When you look at a generated form, you will see that certain components that appear on the form
are represented by form tags. These tags have been generated within the HTML at the points where
UDA values are expected to appear. These component tags start with two open brace characters
and are concluded with two close brace characters. The double-braces tell the Interstage BPM
Console that what lies inside is a directive telling what value to place there. Brace characters are
not special characters in HTML, they do not require any special handling, so your HTML editor should
treat them as normal text that you can type and edit.
The following is a brief overview of the components that appear in a QuickForm; all of them are
optional:
• {{WorkItemHeader}}: This token will generate the top of the form to look the same as the rest

of the Console pages, including the navigation tabs and other buttons that appear. Use this when
you want the form to look the same as the Console. Without this, you have free capability to make
the page look any way you want to.

• {{ProcessPanel}}: The process panel displays details about the current state of the work item
including who it is assigned to, who started the process, when it was assigned, when it is due to
be completed, what the choices are, and buttons to accept, decline, or reassign the work item.

• {{AttachmentPanel}}: This panel lists the documents currently attached to the process, and
provides buttons for adding, removing or editing them.

• {{control type="Style" uda=udaIdentifier}}: This is the main way to put the value of a
UDA into the resulting web page. The value will be properly encoded for HTML, which means
that the ampersands and angle brackets will be properly replaced with the corresponding HTML
entities. This is used for displaying a UDA value, or for passing as an attribute of an HTML input
form element.
When creating the form using the Interstage BPM Studio or Console, you can choose one of the
following styles for each UDA - depending on its data type:

Interstage Business Process Manager Developer's Guide 215

Appendix B: Customizing Forms

CommentStringDateBooleanBigDecimal,
Float,
Integer,
Long

Style

The HTML form element that will be generated
depends on the data type of the selected UDA. For
example, for a UDA of type Date, the Default form
element will be a Calendar control. For a UDA of
type STRING, the default will be a text area.

xxxxDefault

Generates a hidden form element in the web page.
This is useful if you are including some JavaScript
in the page that will read from the hidden element,
and update to the hidden element for posting back
to the server.

xxxxHidden

Generates a text input field.
By default, this field has a width of 10 characters
allowing for the entry of a maximum of 10
characters. You can change this default setting.

x--xText Field

Generates a read-only field.
By default, this field has a width of 10 characters.
You can change this default setting.

xxxxRead Only

Generates a radio button for the UDA value.
By default, there is one radio button for the selected
UDA with a default a value. You can add additional
value names and assign default values.

x-xxRadio
Button

Generates a combo box for either choosing or
entering a UDA value.
By default, there is one entry available for the
selected UDA with a default a value. You can add
additional value names and assign default values.
These can then later be chosen from a list of
entries.

x-xxCombo
Box

Generates a calendar control for the web page.
The default date selected on the caledar is the
current date.

-x--Calendar

Generated a text input field in for entering
passwords, i.e. the input of a user cannot be read,
dots will be displayed for each entered character.
By default, this field has a width of 10 characters
allowing for the entry of a maximum of 10
characters. You can change this default setting.

x---Password

Interstage Business Process Manager Developer's Guide 216

Appendix B: Customizing Forms

CommentStringDateBooleanBigDecimal,
Float,
Integer,
Long

Style

Generates an area for text input.
By default, this text area consists of four columns
and two rows. You can change this default setting.

x---Text Area

Generates a check box for the UDA value.
By default, there is one check box for the selected
UDA with a default a value. You can add additional
value names and assign default values.

x---Checkbox

Generates a list for displaying and selecting UDA
values.
By default, there is one entry for the selected UDA
with a default a value. You can add additional value
names and assign default values. In addition,
multiple selection from the list is enable, and the
list will consist of two rows by default. You can
change this setting as well.

x---List

The following is an example of how you would put the value of the UDA with the ID
‘PurchaseAmount’ as Text Field into a form:
{{control type="TEXT" uda="PurchaseAmount" value="" maxchar="" maxwidth=""}}

• {{DefaultUDAsPanel}}: Rarely used, this token will generate form input elements for every UDA
in the process automatically at run time. You might use this if you had a form that was to be used
for many different processes with different schema. This is unusual because normally you want
to use the form purposefully to control which variables the user sees.

In general you can then lay out your HTML page in any way you wish. You may wish to change the
appearance of the form so that there are multiple columns, add a border, add color, etc. You may
include graphics at any place in the page. JavaScript may be used to provide interactions, including
data validation. Java applets may also be used within the page. When the QuickForm is being used,
it has full control of every aspect of the page.

B.2 QuickForm Token Command Parameter Details
{{ProcessPanel params}} This generates a hidden tag to carry the work item id, and another
hidden tag to carry the process instance sequence id. It also generates a number of sections, and
each section is controlled by the parameter. The parameter is a comma-delimited list of identifiers,
each identifier turns on a single process panel section. For example, if you only want the due date
and the choices to appear in the panel, then you might specify:
{{ProcessPanel due,choices}}

The following is a list of the identifiers that may be used, and their effect:
activity – specifies that the top of the panel should be included which displays the name of the
activity.

Interstage Business Process Manager Developer's Guide 217

Appendix B: Customizing Forms

from – displays the second line of the panel, the “From” line, which displays the owner of the process
instance.
to – displays the assignee of the work item.
date – displays the date that the work item was created and first offered to the assignee.
process – displays the name and description of the process instance, including a link to the process
instance display page.
due – displays the due date for the work item.
desc – displays the detailed description of the activity to be performed.
form – if the activity has at least one associated form, it will display the list of all forms as hyperlinks
that would allow the user to view the activity using the specific form.
choices – displays the choices that the user has at this point.
commands – displays the commands section of the process panel which includes the start/stop timer,
the Save button, the Accept button, the Decline button, and the Reassign button.
{{Field udaIdentifier}} The parameter specified is the identifier of a UDA that carries the value
that is to be put here. The data is encoded to be proper for putting into HTML. This token can be
used to put the value directly into a page for display to the user. It might easily be placed into a table
cell, or any other such HTML construct.
It also may be used to set the initial value of a form input element. If you have a requirement for an
input box of a particular size, you can specify the <INPUT> tag and use this token to generate the
value attribute of the tag. For example, you might use the following in order to have a 10 character
edit field for a UDA variable with the identifier 'ShoeSize':
<INPUT NAME=”uda_ShoeSize” value=”{{Field ShoeSize}}” maxchar="10" maxwidth="12">

The Console will replace the QuickForm token with the value for shoe size. Similarly, if you want to
use a <TEXTAREA> tag in order to have a larger editing area for a UDA with the identifier 'Description'
you might use something like:
<TEXTAREA NAME=”uda_Description”>{{Field Description}}</TEXTAREA>

Another technique to consider is composing a URL from a UDA variable. Imagine that you have an
existing application that can display detailed information about an item for sale. Given the item number
held in a UDA variable with the identifier 'ItemNo', you might include into the form a link like this:
details

Or if the UDA holds the entire URL then it could be directly placed into the href attribute of the <a>
tag. Clearly, the field token is the most versatile QuickForm token for including values into the form.
If you use the Hidden style for the identifier of a UDA variable, this token generates the entire hidden
<INPUT> tag so that UDA values will be available to JavaScript running in the form. The value must
be carried in a hidden form element if the value is to be sent back to the server. JavaScript can get
the value out of the form element, and can update the form element. This is useful when the data
that is stored in the UDA is not directly in the form that is convenient for display. In this case, a small
JavaScript could run, read the value, convert to a displayable form, and place that form in a visible
form element. Then, upon any change, a different JavaScript will be invoked to convert the data from
the visible representation back to the hidden field. A similar technique can be used in JavaScript
(and Java) to use the value as a key to look up information elsewhere and display the result of the
lookup on the page. For example, if a database holds detailed information on an item for sale, that
database might be accessed directly by the form, at the time that the form is displayed, in order to
include the latest information about the item directly on the form.

Interstage Business Process Manager Developer's Guide 218

Appendix B: Customizing Forms

B.3 QuickForm Example: Vacation Request
An example process called Vacation Request is included with the Interstage BPM Console that
demonstrates the kind of things that might be done with QuickForms. The Vacation Request sample
files are part of the Template Library.
1. If you have not done so already, import the TemplateLibrary.bar application using the Install

Application function of the Interstage BPM Console.
2. Search for the Vacation Request sample files and open the EDF_Employee.htm form in a text

editor.
3. Search for the form and input tags and note how they correspond to the instructions above.

Interstage Business Process Manager Developer's Guide 219

Appendix B: Customizing Forms

Appendix C: Supported JavaScript Functions
Interstage BPM provides a set of JavaScript functions that you can use with Java Actions, triggers,
and Complex Conditional Nodes.
This appendix explains which functions you can use with these elements. Also, it provides a description
of some of these functions.
Apart from functions listed in this appendix, you can use the JavaScript functionality that is defined
in the ECMA Standard. For information about the ECMA Standard, refer to the document
ecma-262.pdf included with the Interstage BPM installation.

The size that a method used in a JavaScript may have is limited by the Java Virtual Machine
(JVM). Currently, the method byte code size is limited to 65535 bytes (64 KBytes). If you
use a method with a larger size, the JVM will throw an error and you have to reduce the
size of the method before executing the JavaScript again.

Note:

C.1 General JavaScript Functions
You can use the JavaScript functions explained in this section with Java Actions, triggers, and
Complex Conditional Nodes.

Since numeric values are treated as values of type Number, you can use only the following
range of integers in JavaScript:

Note:

• Minimum: -9007199254740992
• Maximum : 9007199254740992
Note that the following minimum and maximum values of type Long are not supported:
• Minimum: Packages.java.lang.Long.MIN_VALUE
• Maximum: Packages.java.lang.Long.MAX_VALUE

new Packages.java.util.Date()
For a description, refer to the Javadoc that comes with the J2SE Development Kit (JDK).

Date DateAdd(Date or Number date, Number offset, String field)
Returns a JavaScript Date object containing the date and time that is the result of adding the offset
to the date. field determines the unit of time measure for the offset. Valid field values are:

DescriptionField Value

Seconds"ss"

Minutes"mi"

Hours"hh"

Days"dd"

Example:

var now = Packages.java.util.Date();
uda.Date = DateAdd (now, 1, "dd");

Interstage Business Process Manager Developer's Guide 220

Appendix C: Supported JavaScript Functions

The example works correctly only if the User Defined Attribute (UDA) Date is of type DATE.Note:

Say now has the following value:
Tue Jul 01 2006 14:02:59 GMT-0800 (PST)

Then, tomorrow (DateAdd (now, 1, "dd")) has the following value:
Wed Jul 02 2006 14:02:59 GMT-0800 (PST)

If date is of type Number, its value is interpreted as milliseconds since January 1, 1970.

Boolean DateCompare(Date or Number date1, String operator, Date or Number
date2)
Compares two Date values and returns true or false as the result of the comparison. Valid operators
are:

DescriptionOperator

Greater than">"

Less than"<"

Greater than or equal to">="

Less than or equal to"<="

Equal to"=="

Not equal to"!="

Example:

var now = Packages.java.util.Date();
var tomorrow = DateAdd (now, 1, "dd");
if (DateCompare (now,"<", tomorrow))

...;
//... Executes because DateCompare evaluates to true.

If date1 and date2 are of type Number, their values are interpreted as milliseconds since January
1, 1970.

Number DateDiff(Date or Number date1, Date or Number date2, String field)
Subtracts date2 from date1. Returns the difference between these date/times in days, hours, minutes
or seconds depending on the field value. Valid field values are:

DescriptionField Value

Seconds"ss"

Minutes"mi"

Hours"hh"

Days"dd"

Interstage Business Process Manager Developer's Guide 221

Appendix C: Supported JavaScript Functions

Example:

var now = Packages.java.util.Date();
var tomorrow = DateAdd (now, 1, "dd");
var diff = DateDiff (tomorrow, now, "dd"));
//diff has a value of 1.

If date1 and date2 are of type Number, their values are interpreted as milliseconds since January
1, 1970. Example:

var date = DateDiff (20000000,10000000,"ss");

BigDecimal DecimalAdd(BigDecimal value1, BigDecimal value2)
Returns a JavaScript BigDecimal object that is the sum of the parameters specified. The result
inherits the precision from the parameter with the most significant figures.
If you want to assign the result to a UDA, make sure that the UDA is of type BIGDECIMAL.
If you pass any other data type as a parameter, the function converts the parameter to a BigDecimal.
Example:

int x = 39;
var z = DecimalAdd ("3.1416",x);

If z is a BigDecimal, its value is 42.1416.

Boolean DecimalCompare(BigDecimal value1, String operator, BigDecimal
value2)
Compares two BigDecimal values and returns true or false as the result of the comparison.
Valid operators are:

DescriptionOperator

Greater than">"

Less than"<"

Greater than or equal to">="

Less than or equal to"<="

Equal to"=="

Not equal to"!="

If you want to assign the result to a UDA, make sure that the UDA is of type BIGDECIMAL.
If you pass any other data type as a parameter, the function converts the parameter to a BigDecimal.
Example:

var smallDecimal = "1.11";
var largeDecimal = "22.22";
if (DecimalCompare (smallDecimal,"<", largeDecimal))

...;
//Executes because DecimalCompare evaluates to true.

Interstage Business Process Manager Developer's Guide 222

Appendix C: Supported JavaScript Functions

BigDecimal DecimalDivide(BigDecimal value1, BigDecimal value2, Number
scale)
Divides value1 by value2 and returns the result of the division. scale determines the number of
significant digits for rounding. Any Number can be used as a scale value. Default value is 2.
The rounding mode is always to round half up; it rounds towards the "nearest neighbor" unless both
neighbors are equidistant. In that case, it rounds up.
If you want to assign the result to a UDA, make sure that the UDA is of type BIGDECIMAL.
If you pass any other data type as a parameter, the function converts the parameter to a BigDecimal.

BigDecimal DecimalMultiply(BigDecimal value1, BigDecimal value2, Number
scale)
Multiplies value1 by value2 and returns the result of the multiplication. scale determines the number
of significant digits for rounding. Any number can be used for scale. Default value is 2.
The rounding mode is always to round half up; it rounds towards the "nearest neighbor" unless both
neighbors are equidistant. In that case, it rounds up.
If you want to assign the result to a UDA, make sure that the UDA is of type BIGDECIMAL.
If you pass any other data type as a parameter, the function converts the parameter to a BigDecimal.

BigDecimal DecimalSubtract(BigDecimal value1, BigDecimal value2)
Subtracts value2 from value1. Returns the difference between these values as a BigDecimal.

boolean toBoolean(String or Number value)
Converts value to a JavaScript Boolean. The value can be either a String containing "true" or
"false", or a Number containing zero (for true) or non-zero (for false). Returns true or false
depending on the parameter passed. If value cannot be converted into a Boolean, false is returned.

BigDecimal toDecimal(BigDecimal value, Number scale)
Converts value to a BigDecimal object. Returns the result of the conversion to the number of
significant figures specified with scale. Any Number can be used for scale. Default value is 2.
If you want to assign the result to a UDA, make sure that the UDA is of type BIGDECIMAL.
If you pass any other data type as a parameter, the function converts the parameter to a BigDecimal.

Packages.java.lang.Float.parseFloat
For a description, refer to the Javadoc that comes with the J2SE Development Kit (JDK).

Packages.java.lang.Integer.parseInt
For a description, refer to the Javadoc that comes with the J2SE Development Kit (JDK).

Packages.java.lang.String.valueOf
For a description, refer to the Javadoc that comes with the J2SE Development Kit (JDK).

Interstage Business Process Manager Developer's Guide 223

Appendix C: Supported JavaScript Functions

C.2 JavaScript Functions Supported with Java Actions
With Java Actions, you can use the functions explained in section General JavaScript Functions on
page 220 and the functions listed below.
The functions listed below use the Server Enactment Context API
com.fujitsu.iflow.server.intf.ServerEnactmentContext to provide access to workflow
information. For a description, refer to the API Javadoc.
void sec.addAttachment(String attachmentName, String attachmentPath)

void sec.addProcessXMLAttributeSubstructure(String udaName, String xPath, String
value)

void sec.addProcessXMLAttributeSubstructureByIdentifier(String identifier, String
xPath, String value)

void sec.deleteAttachment(String attachmentName)

void sec.deleteProcessXMLAttributeSubStructure(String udaName, String xPath)

void sec.deleteProcessXMLAttributeSubStructureByIdentifier(String identifier,
String xPath)

void sec.escalateActivity(String assignees)

String sec.getActivityActor(String activityName)

Array sec.getActivityAssignees()

String sec.getActivityName()

String sec.getActor()

Array sec.getAllAttachmentNames()

Array sec.getAllAttributeNames()

String sec.getAttachment(String attachmentName)

Number sec.getCurrentActivityId()

Number sec.getCurrentProcessId()

Array sec.getGroupMembers(String groupName)

String sec.getProcessAttribute(String attName)

String sec.getProcessAttributeByIdentifier(String identifier)

String sec.getProcessAttributeStringType(String udaName)

String sec.getProcessDefinitionId()

String sec.getProcessDefinitionName()

String sec.getProcessDescription()

String sec.getProcessInitiator()

String sec.getProcessName()

Array sec.getProcessOwners()

Number sec.getProcessPriority()

Number sec.getActivityPriority()

String sec.getProcessTitle()

String sec.getProcessXMLAttributeElementValue(String udaName, String xPath)

String sec.joinString(Array)

Interstage Business Process Manager Developer's Guide 224

Appendix C: Supported JavaScript Functions

Array sec.resolveRelationship(String relationship, String sourceValue)

void sec.sendEmail(String to, String from, String cc, String bcc, String subject,
String body, String mimeType)

void sec.setActivityAssignees(Array assignees)

void sec.setOwners(Array users)

void sec.setProcessAttribute(String name, String value)

void sec.setProcessAttributeByIdentifier(String identifier, String value)

void sec.setProcessDescription(String description)

void sec.setProcessName(String name)

void sec.setProcessOwners(Array users)

void sec.setProcessPriority(Number priority)

void sec.setActivityPriority(Number priority)

void sec.setProcessTitle(String title)

void sec.setProcessXMLAttributeElementValue(String udaName, String xPath, String
value)

void sec.setProcessXMLAttributeElementValueByIdentifier(String identifier, String
xPath, String value)

void sec.setProcessXMLAttributeSubstructure(String udaName, String xPath, String
value)

void sec.setProcessXMLAttributeSubstructureByIdentifier(String identifier, String
xPath, String value)

void sec.validateProcessXMLAttributeValue(String udaName)

void sec.validateProcessXMLAttributeValueByIdentifier(String identifier)

Array sec.splitString(String commaSeparatedList)

Using User Defined Attributes (UDAs)
You can use UDAs that have been added to the process definition in your JavaScripts. Use the
following syntax:
uda.<udaIdentifier>. Note that you must use the identifier and not the name of the UDA, as
multibyte characters are not allowed for variable names in JavaScript.
The following example creates a variable and initializes it to the value of a UDA:
var someVariable = uda.Price;

The following example shows how to assign the value of a variable to a UDA:
var lastName = "Jones";

uda.udaIdentifier = lastName;

Interstage Business Process Manager Developer's Guide 225

Appendix C: Supported JavaScript Functions

UDAs having the identifier get or set or Function must not be accessed using the syntax
uda.<udaIdentifier>. The system behaviour is undefined in that case.
As a workaround, do one of the following:

Note:

• Use uda.get("<udaName>").
• Assign a different identifier to UDAs to be used in JavaScript, e.g. uda.myget where

myget is the identifier of a UDA having the name get.

The methods uda.get and uda.set allow you to access UDAs by their names:
• uda.get returns the value of the specified UDA:

var value = uda.get("<udaName>");

• uda.set sets the value of the UDA to the specified value:
uda.set("<udaName>", "<udaValue>");

When assigning a JavaScript return value to a UDA, make sure that their data type matches.
Otherwise, the assignment fails.

If the assignment of a value to a target UDA fails due to conversion or any other kind of
errors, error details are logged in IBPMServer.log. The target UDA is not updated and
holds its earlier value.

Note:

Interstage BPM maps UDA data types to the following Java data types:
• UDAs of type BIGDECIMAL are mapped to Packages.java.math.BigDecimal objects.
• UDAs of type DATE are mapped to Packages.java.util.Date objects.
For details about the Java objects, refer to the Javadoc that comes with the J2SE Development Kit
(JDK).

C.3 JavaScript Functions Supported with Triggers
With triggers, you use JavaScript expressions to specify control conditions. Control conditions narrow
down when the trigger fires.
You can use the functions explained in section General JavaScript Functions on page 220 and the
function explained below.

String eventData.getXMLData(String xpath)
Returns the text value of the XML element specified in the xpath expression.
Example:
Consider the following XML fragment:

<Customer>
<Data>

<Name>John</Name>
</Data>

</Customer>

The following statement assigns the text value "John" of the <Name> XML element to the name
variable:
var name = eventData.getXMLData ("/Customer/Data/Name/text()");

Interstage Business Process Manager Developer's Guide 226

Appendix C: Supported JavaScript Functions

Appendix D: Troubleshooting
D.1 Log File Information

If Interstage BPM does not seem to be working properly, check the following log files:
• IBPMServer.log - all errors from the server and the Interstage BPM adapters are logged in this

file. This log file is often very helpful in troubleshooting. For example, it may indicate that the
database server is down.

• AnalyticsError.log - all analytics errors are logged in this file.
These files are located at the following location on the Interstage BPM Server computer: <Interstage
BPM Server Installation Directory>/ server/instance/default/logs

D.2 Resolving Specific Error Situations

D.2.1 Interstage BPM Server Fails to Start
Check the IBPMServer.log in the <Interstage BPM Server Installation
Directory>/server/instance/default/logs directory.

What to doLook for

Check if the database is running. Also check that
you can access the database from the machine
where the Interstage BPM Server is installed in
case the database is running on a different
machine. You can use telnet <Database
Server Hostname> <Port> from the server host
machine to check that the connection to the
database host/port can be established.

DbService : setConnection: Connection to
database server failed. Is the database
server running and reachable through the
network? {ORA-01089: immediate shutdown
in progress - no operations are
permitted.

Ensure that the user name/password as specified
in the LDAPAccessUserID /
LDAPAccessUserPassword parameters of the
Interstage BPM Server are correct and you can
login to your Directory Server using the above
user name/password.

LdapBroker : getContext: Could not create
the directory services. {[LDAP: error
code 49 - Invalid Credentials]}

LdapBroker : getGroupMembersByDN: Could
not retrieve the user groups. {Could not
create the directory services. {[LDAP:
error code 49 - Invalid Credentials]}}

LdapBroker : Could not retrieve the user
groups. {Could not create the directory
services. {[LDAP: error code 49 - Invalid
Credentials]}}

Interstage Business Process Manager Developer's Guide 227

Appendix D: Troubleshooting

What to doLook for

Ensure that the LDAP Server is running on the
port as specified in the LDAPServer parameter
of the Interstage BPM Server. You can use
telnet ldapServerHostName port from the
server host machine to check that the connection
to the host/port can be established.

getContext: Could not create the
directory services.

LdapBroker : getGroupMembersByDN: Could
not retrieve the user groups. {Could not
create the directory services.

LdapBroker : Could not retrieve the user
groups. {Could not create the directory
services.

This is because you installed WebSphere
Application Server in a Cell (deployment manager
and a managed node) environment, causing the
BOOTSTRAP_ADDRESS port to be incorrect in some
configuration files.
1. Get the correct value of the

BOOTSTRAP_ADDRESS port from the WebSphere
Application Server Console (from Servers >
Application Servers > <ServerName> >
Ports).

2. Update the value of the BOOTSTRAP_ADDRESS
port for the following entries in the
iflowClient.properties, ibpm.properties
files, as well as Interstage BPM properties in
the database:

• JMSNamingProviderURL (in the format
iiop://<Host Name>:<BOOSTRAP_ADDRESS>)

• NamingProviderURL (in the format
iiop://<Host Name>:<BOOSTRAP_ADDRESS>)

IflowStartup : @(Failed to execute the
IBPM startup routine task)Unable to
deliver the message for the requested
eventClass.
{javax.naming.ServiceUnavailableException:
A communication failure occurred while
attempting to obtain an initial context
with the provider URL:
"iiop://<ServerName>:<Ports>". Make sure
that any bootstrap address information
in the URL is correct and that the target
name server is running. A bootstrap
address with no port specification
defaults to port 2809. Possible causes
other than an incorrect bootstrap address
or unavailable name server include the
network environment and workstation
network configuration.}

D.2.2 Error in IBPMServer.log
Check the IBPMServer.log in the <Interstage BPM Server Installation
Directory>/server/instance/default/logs directory.

What to doLook for

Possible cause of this error: A user has been
deleted from the Directory Server (LDAP Server)
but the reference of it is still there in one of the
groups.

getGroupMembersByDN: Could not retrieve
the user groups. {[LDAP: error code 32
- No Such Object]}

D.2.3 Timeout During JavaScript Execution
When executing large JavaScripts, the transaction timeout currently set for WebLogic and WebSphere
application servers (120 seonds) is insufficient. Due to this setting, script execution may fail with a
"transaction timeout".

Interstage Business Process Manager Developer's Guide 228

Appendix D: Troubleshooting

Your application server administrator can increase the transaction timeout depending on your usage
requirements, for example, to 200 seconds. This setting can be changed in the following location:
• WebLogic application server:

<WebLogic install dir>/../config/config.xml/<jta>/<timeout-seconds>

• WebSphere application server:
In the WebSphere Console: Servers -> ApplicationServers -> server1 (default name) ->
Container Services -> Transaction Services -> Total Transaction lifetime timeout.

D.2.4 Failure in Writing to an Oracle Database
When the updting of an Oracle database table fails, for example, when you try to archive a process
instance, check the Oracle alert log file located in the <Oracle Installation Dir>/admin/<DB
instance name>/bdump directory, for example:
C:\ProgramFiles\Oracle\admin\orcl\bdump\alert_orcl.log

The following error may be observed:
{Database add/create request failed. {ORA-08103: object no longer exists}}

This failure may be due to the fact that the Datafile size reached the file size limit on the hard disk
of the database server.
The system administrator of the database server needs to increase the file size on the database
server hard disk.

D.2.5 Warning or Error Messages for Interstage Application Server
When Interstage BPM Server is running on Interstage Application Server, warning or error messages
are sometimes logged to an event log or a syslog of the Operating System.
If any messages of Interstage Application Server are logged in container log files of Interstage BPM
Server or Console work units at the same time when the warning or error messages are logged to
an event log or a syslog, it is possible that they are caused by Interstage BPM. In this case, please
refer Contacting Your Local Fujitsu Support Organization on page 234 and ask the Fujitsu Support
Organization to investigate the problem.
However, if messages correspond to any of the following errors or warnings, it is not necessary to
ask the Fujitsu Support Organization to investigate the problem:

Interstage Business Process Manager Developer's Guide 229

Appendix D: Troubleshooting

DetailsError/
Warning

• Message logged to an event log or syslog: od60002
• Message logged to an EJB container log of the Interstage BPM Server:

IJServer21104 and IJServer21092

• Description of the message: A timeout is caused by the idle monitoring function for
STATEFUL Session Beans and an EJB object in the Interstage BPM Server is
automatically deleted by the Interstage Application Server. The message can be
ignored because the Interstage BPM Server automatically creates the alternative
EJB object.

1.

D.3 Errors During Installation, Deployment and Configuration
This section lists several errors that could occur during the installation, deployment and configuration
of Interstage BPM and describes the required action(s) to take:

Installation of IBPM fails when trying to install a new build

The build directory of the exisitng installed build was deleted, without un-installing
the build or un-installation failed.

CauseI

Interstage Business Process Manager Developer's Guide 230

Appendix D: Troubleshooting

For Windows
Manually delete the earlier build's registry-entry, as follows:
1. Go to Start > Run, type regedit, click OK.
2. In the Registry Editor screen, go to HKEY_LOCAL_MACHINE > SOFTWARE

> Fujitsu > Install > Interstage BPM Server .

3. Delete the Interstage BPM Server registry entry under Install key.
4. Go to HKEY_LOCAL_MACHINE > SOFTWARE > Microsoft > Windows >

CurrentVersion > Uninstall >Interstage Business Process Manager xx.x.

5. Delete the Interstage Business Process Manager xx.x registry entry under
Uninstall key. This will ensure complete deletion of the registry entry for Windows
platform.

For Solaris
Manually delete the Solaris package information, as follows:
1. Open the Command Prompt window and run the command pkginfo -l FJSVibpm

from any location of the Solaris machine, to check if the Solaris package
information still exists.

2. If the Solaris package information is displayed, then delete the package information
using the following steps:
a. Create a file named ibpm.uninst under the /tmp location.
b. Run the command pkgrm FJSVibpm to delete the Solaris package.
c. Run the command pkginfo -l FJSVibpm once more, to ensure that the

Solaris package has been deleted successfully. If no information is displayed,
then it confirms that the Solaris package has been completely deleted from
the Solaris platform.

For Linux
Manually delete the RPM package information, as follows:
1. Open the Command Prompt window and run the command rpm -qi FJSVibpm

from any location of the Linux machine, to check if the RPM package still exists.
2. If the RPM package information is displayed, then delete the package information

using the command rpm -e FJSVibpm.
3. Run the command rpm -qi FJSVibpm once more to ensure that the RPM package

has been deleted successfully. If no information is displayed, then it confirms that
the RPM package has been completely deleted from the Linux platform.

Action

The Interstage BPM installation program was unable to launch on Linux

The libXp-1.0.0-8.i386.rpm package is not installed on the Linux machine.CauseI

Interstage Business Process Manager Developer's Guide 231

Appendix D: Troubleshooting

On the Linux machine, do the following:
1. Download the libXp-1.0.0-8.i386.rpm package from your Red Hat Enterprise

Linux CD or the Red Hat Network website.
2. Install the package using the rpm -i libXp-1.0.0-8.i386.rpm command.
3. Retry launching the Interstage BPM installation program for Linux.

Action

An error occurred during Interstage BPM database creation/update

One of the following values provided during deployment were wrong:
• Database Administrator user name
• Database Administrator password

CauseI

Restore the database from the backup of the database made before deploying
Interstage BPM.
Run the Deployment Tool again and selectDatabase Configuration on theWelcome
screen. In this way, the database is configured without deploying Interstage BPM
again.

Action

One of the following values provided during deployment were wrong:
• Host name of the database server
• Database SID (database instance name)
• Database port

CauseII

Restore the database from the backup of the database made before deploying
Interstage BPM.
Remove Interstage BPM from the application server and deploy it again using the
Deployment Tool.

Action

Database server is not running.CauseIII

Start the database server.
Run the Deployment Tool again and selectDatabase Configuration on theWelcome
screen. In this way, the database is configured without deploying Interstage BPM
again.

Action

An error occurred during the execution of importLDAP.bat

One of the following values provided during deployment were wrong:
• LDAP Key
• LDAP Organizational Unit

CauseI

Remove Interstage BPM from the application server and deploy it again using the
Deployment Tool.

Action

Interstage Business Process Manager Developer's Guide 232

Appendix D: Troubleshooting

An error occurred during the execution of importAD.bat

One of the following values provided during deployment were wrong:
• Active Directory Key
• Active Directory Organizational Unit

CauseI

Remove Interstage BPM from the application server and deploy it again using the
Deployment Tool.

Action

D.4 Errors during Starting the Interstage BPM Server
The following tables explain the possible causes of errors during server startup and the appropriate
action(s) to take:

Errors Pertaining to Active Directory

The Active Directory Server is remote and Active Directory is not running.CauseI

Start the Active Directory Server, and then start the Interstage BPM Server.Action

One of the following values provided during deployment was wrong:
• User name for the Directory Service Login account
• Password for the Directory Service Login account
These values are used in the importAD.bat file as arguments of the net user
command.

CauseII

Remove Interstage BPM from the application server and deploy it again using the
Deployment Tool.

Action

Interstage BPM cannot connect to the Active Directory Server because one of the
following values provided during deployment was wrong:
• Active Directory Key
• Active Directory Organizational Unit

CauseIII

Remove Interstage BPM from the application server and deploy it again using the
Deployment Tool.

Action

Errors Pertaining to Sun Java System Directory Server

Interstage BPM cannot connect to the LDAP Server because one of the following
values provided during deployment was wrong:
• LDAP Key
• LDAP Organizational Unit

CauseI

Remove Interstage BPM from the application server and deploy it again using the
Deployment Tool.

Action

Interstage Business Process Manager Developer's Guide 233

Appendix D: Troubleshooting

Errors Pertaining to the Database

The Database Server is not running.CauseI

Start the Database Server, and then start the Interstage BPM Server.Action

Errors Pertaining to a Hostname Change

You changed the hostname of the computer where Interstage BPM Server has been
installed. As the hostname occurs in the names and values of various configuration
parameters of the Interstage BPM Server, the server cannot access its configuration
settings.

CauseI

In the IBPMProperties table of the Interstage BPM database, make the following
changes:
• In the PROPERTYKEY column, update any parameter names that have the hostname

in the suffix.
These parameters have the format <PARAMETER_NAME>.<HOSTNAME> or
<PARAMETER_NAME>.<HOSTNAME>.<SERVERNAME>.

• In the PROPERTYVALUE column, update any parameter values containing the
hostname.

To update the IBPMProperties table, use the appropriate database commands or
a database client software.

Action

D.5 Contacting Your Local Fujitsu Support Organization
If you are unable to troubleshoot your problem:
1. Set the DebugLevel parameter of the Interstage BPM Server to 2 using these steps:

a) Start the Interstage BPM Server Configuration Tool using the following URL:
http://<Hostname>:<Port>/fujitsu-ibpm-config-webapp/IBPMConfigServlet

b) Log in as an Interstage BPM Super User.
c) Set the DebugLevel parameter to 2.
d) Click Save and Reload properties.

2. Replicate the actions that caused the error.
3. Contact your local Fujitsu Support organization and provide the following information:

General Information
• Operating System
• Directory Service (type and version)
• Database server (type and version)
• JDK or JRE version
• Application server (type and version)
• Interstage BPM edition, version and build number
• Major problem area
• Priority of the issue
• Environment in which the problem occurs

Interstage Business Process Manager Developer's Guide 234

Appendix D: Troubleshooting

Configuration Information
• The configuration file that you exported from the Interstage BPM Server
Log Files
• All log files from <Interstage BPM Server Installation

Directory>/server/instance/default/logs

• When using Interstage Application Server: All log files from <Interstage Installation
Directory>/J2EE/var/deployment/ijserver/<Your Work Unit>/log

• When using WebLogic: All log files from <WebLogic Installation
Directory>/user_projects/domain/<Your Domain>/servers/AdminServer/logs

• When using WebSphere: All log files from <WebSphere Installation
Directory>/profiles/<Your Application Server Profile>/logs/<Your Server>

OS System Logs
• The Windows event log that you obtain using the Windows Event Viewer
• UNIX system logs stored in /var/adm/messages

• Linux system logs stored in /var/log/messages

Problem Description
• Description of the steps you performed before the problem occurred
• Frequency with which the problem occurrs
Problem Details
• The application program and its source code that caused the error
• The XPDL file of the process definition that caused the error
• Information about Java Actions, Timers and Agents defined in the process definition
• Screenshot of the process instance history if the process instance goes into error state
• Stack trace if any exception is displayed

You can obtain the strack trace by clicking Details on the error page displayed in the Interstage
BPM Console.

• Screenshot of the exception wherever it is displayed
• Screenshot of the process instance (graphical view) if the process instance goes into error

state or into an unexpected state
• Calendar files (*.cal) if timers are used
• The agentsConfig.xml file if agents are used

Interstage Business Process Manager Developer's Guide 235

Appendix D: Troubleshooting

Glossary
A transaction is a set of actions that obeys the four so-called ACID
properties: atomic, consistent, isolated, and durable.

ACID properties

The description of a task, logical step, or work to be performed in a
process. An activity is represented by a work item.

Activity

A graphical representation of an activity .Activity Node

The time it takes to perform a particular activity.Activity Time

Components that asynchronously access systems external to Interstage
BPM.

Agents

A node that synchronizes multiple branches in a process.AND Node

An addition to a process definition allowing for adding explanatory
comments to the process definition.

Annotation

Application Programming Interface. The interfaces and classes that
programmers may use in their own customized applications to access
the server.

API

Asynchronous Service Access Protocol. ASAP is a communication
protocol based on SOAP and is used to start, manage, and monitor long
running services.

ASAP

A connector between nodes. Arrows guide the process flow from one
node to another.

Arrow

The person(s) assigned to perform an activity.Assignee

A document file generated by any application, which has been associated
with a process.

Attachment

Business Process Reengineering. The field of study which concentrates
on how work may be redefined in terms of processes.

BPR

A calendar that specifies working days and times.Business Calendar

See Process.Business Process

A node representing a complex task that can be accomplished
independently from the tasks defined in the parent process definition.

Chained-Process Node

A Java Action that can be defined as compensation for a regular Java
Action, e.g. for cleaning up the system and ensuring a consistent state
of external systems involved in a transaction.

Compensation Action

A Conditional Node where the condition is specified as a JavaScript
expression.

Complex Conditional
Node

A node that directs the process flow along one of several branches,
depending on specified criteria.

Conditional Node

A Java Action allowing for the interaction with external databases that
are independent of Interstage BPM.

Database Action

A node that accesses an external database using JDBC.DB Node

Interstage Business Process Manager Developer's Guide 236

Glossary

A node that suspends process execution for a certain amount of time.Delay Node

Repository for the entire network's authentication and configuration data.
Provides access to services, file servers, databases, and other
applications. User and application access to the repository is controlled.

Directory Service (DS)

The system integrated with Interstage BPM which is used to store
attachments, forms, etc. The DMS Adapter is the communication link
between the DMS and Interstage BPM.

DocumentManagement
System (DMS)

Specifies when an activity is due to be completed once it has become
active. A due date also specifies what will happen when it is reached
and the activity has not been completed.

Due Date

Enterprise JavaBeans.EJB

A node that sends out predefined emails.Email Node

A Java Action that is used to handle specific errors on process definition
level, on Remote Subprocess level, and on Java Action level.

Error Action

A node that identifies the end of a process branch. A process definition
has at least one Exit Node.

Exit Node

An HTML or XML file which may be associated with an activity, process
instance, or process definition. Forms can be created using Interstage

Form

BPM; their appearance can be modified using any XML or HTML editing
tool.

The Framework Adapter, also called DD Adapter, connects the Directory
Service and the Document Management System Adapters. The "DD" is

Framework Adapter

short for "document" and "directory". It handles authentication of the user
and manages a consistent user authentication to the Directory Services
and Document Management System.

Sets of individuals who typically share common characteristics. Groups
are defined in Interstage BPM's local group store, in a Directory Service
or in both systems.

Groups

A type of software, which facilitates collaboration.Groupware

Graphical User Interface.GUI

The person who starts a new process instance.Initiator

A Java Action allowing for accessing external functions from within a
process definition.

Integration Action

User interface which allows a user to create process instances, process
definitions and access and respond to work items. It is also used by
Interstage BPM Super Users to administrate Interstage BPM.

InterstageBPMConsole

An XML layout definition plus a Java adapter class from which an HTML
file is generated. An Interstage BPM Form is created and designed using
the Interstage BPM Form editor.

Interstage BPM Form

A custom programmed component used for performing the same function
several times.

Java Action

Lightweight Directory Access Protocol.LDAP

Interstage Business Process Manager Developer's Guide 237

Glossary

A service that allows clients to find objects based on names.Naming Service

A graphical representation of a step in a process. Interstage BPM
supports different node types, e.g. Activity Nodes, AND Notes,
Subprocess Nodes, Conditional Nodes.

Node

A built-in Java Action that specifies no operation.No-Operation Action

A Java Action allowing for notifying users on events related to process
execution. Users can be notified by email, for example, that a process
or a single activity has been started.

Notification Action

A Java Action that will be executed before a process instance is aborted.OnAbort Action

A Java Action that will be executed before a process instance is resumed.OnResume Action

A Java Action that will executed before a process instance is suspended.OnSuspend Action

A node that splits process flow into multiple parallel branches.OR Node

See Process Definition Owner and Process Instance Owner.Owner

A person involved in a process.Participant

A sequence of steps that are performed to reach a business goal.
Processes are modeled in process definitions.

Process

The representation of a business process in a form that supports
automated manipulation. A process definition defines the behavior and

Process Definition

properties of the process instances created from it including the flow of
control within the process.

The person who created (or last edited) the process definition.Process Definition
Owner

See Initiator.Process Initiator

Represents a single enactment of a specific process definition. The
structure of a process instance is exactly the same as the structure of
the process definition on which it is based.

Process Instance

Represents the due date for a process instance.Process Instance Due
Date

By default, the owner of a process instance is the owner of the process
definition from which the process instance was created.

Process InstanceOwner

See Participant.Process Participant

A container for process definitions, forms, simulation scenarios,
attachments, etc. On file system level, a project corresponds to a folder.

Project

A structured, field-based HTML file created using the Interstage BPM
Studio.

QuickForm

A node representing a subprocess that runs on a remote workflow server.Remote Subprocess
Node

The name of a person or group (for example, the Manager Role). Each
task (activity) in a process is assigned to a role for completion. Roles

Role

Interstage Business Process Manager Developer's Guide 238

Glossary

are equivalent to groups, as defined in Interstage BPM's local group
store or in a Directory Service.

Method used to determine choices on activities for which the rules are
defined.

Rule

In the Interstage BPM context, the component of the workflow
management system installed on the computer where the workflow
engine provides the run-time environment for a process.

Server

A Java Action allowing for interacting with the Interstage BPM Server.Server Action

A defined setup for simulating the execution of a process definition on
your local computer.

Simulation Scenario

Simple Object Access Protocol. SOAP is a standard communication
protocol that allows one application to send an XML message to another
application. It is used, for example, to access Web Services.

SOAP

Structured Query Language.SQL

A node that identifies the beginning of a process. Every process definition
has one and only one Start Node.

Start Node

A node that represents a complex task. The details of that task are
defined in another process definition.

Subprocess Node

Simple Workflow Access Protocol. SWAP passes XML messages over
HTTP between workflow servers.

SWAP

Visual grouping of activities performed by the same Role.Swimlane

An activity in a process; it typically requires a human decision to be
made.

Task

Expires after a specified interval or at a specified time and date. Timers
trigger certain actions when they expire.

Timer

Data that process participants need to access, modify, or add, such as
customer data, order numbers etc. User Defined Attributes are specified
in the process definition.

User Defined Attribute
(UDA)

User-specific configuration information. This includes information such
as whether a users wishes to receive email notifications, email address,
and default directory, etc.

User Profile

A node that allows users to work on an activity in collaboration with one
another.

Voting Activity Node

Rule defined on a Voting Activity Node to determine the outcome of the
vote.

Voting Rule

A node that retrieves data from a Web Service and makes it available
for further processing.

Web Service Node

The sequence of activities within a business process.Workflow

A process solution consisting of process definitions, forms, simulation
scenarios, attachments, etc. Interstage BPM allows for the creation of

Workflow Application

Workflow Application projects having a predefined structure. Such

Interstage Business Process Manager Developer's Guide 239

Glossary

applications can be deployed on an Interstage BPM server that can be
accessed by Interstage BPM clients.

An Interstage BPM component that provides the run-time environment
for process instances.

Workflow Server

An activity in the worklist.Work Item

The list of activities.Worklist

Web Services Description Language. WSDL is an XML-based language
that describes the Web Services an organization offers. It also describes
how to access the Web Services.

WSDL

A Java Action that allows you to perform specific operations on UDAs
of type XML, for example adding XML substructures, setting text or
attribute values in XML, or extracting UDA values from XML data.

XML Action

XML Path Language. XPath is a language for finding information in an
XML document. It is used to navigate through elements and attributes.

XPath

XML Process Definition LanguageXPDL

Interstage Business Process Manager Developer's Guide 240

Glossary

Index

A

Abort
process instance, 195

about this manual, 10
Absolute timers, 32
ACID properties, 44
Activity Actor, 100
Activity Nodes, 35, 85

assigning Epilogue Actions, 95
assigning Prologue Actions, 93
Role, 31

Ad Hoc Workflow, 14
Administration

users and groups, 184
Administrative Workflow, 14
Administrators

logging in, 182
logging out, 182

Agents, 140
FTP, 142
HTTP, 146

AND Nodes, 37, 72
Application development

strategies, 16
Architecture, 18, 19
Archive

process definition, 189
process instance, 193

ARIS Process Performance Manager, 23
Arrow instances, 44
Arrows, 30

addArrow(), 67
Attachments, 44, 86

B

Batched lists, 114
Blaze Advisor, 98
Built-in Java Actions, 96
Bulk processing, 114
Business Calendars, 153
Business Periodic timers, 32
Business Relative timers, 32

C

Case Handling Workflow, 15
CentraSite

Integration, 25
Chained-Process Nodes, 40, 77
Choices, 47

makeChoice(), 82
Clearing cache, 187
Collaborative Workflow, 15
Comments

adding, 116
Commit Actions, 91
Compensate Actions, 31, 92, 103
Component Workflow, 16
Compound Activity Node, 40
Conditional Nodes, 38, 73
Connectivity, 21
Custom EJB, 20

D

Database connectivity, 21
Decision Tables, 167

concepts, 167
manage, 170
specifications, 169

Delay Nodes, 36, 76, 85
Delete

archived process definition, 190
archived process instance, 196
process definition, 190
process instance, 195

Directory Service, 184
Directory Service connectivity, 21

E

Email Listeners, 136
Enactment Engine, 20
Epilogue Actions, 31, 91

assigning, 95
Error Actions, 31, 92, 101, 103
Error handling

for Java Actions, 106
for Remote Subprocesses, 162
in Java Actions, 102

Interstage Business Process Manager Developer's Guide 241

Index

Event Activity Nodes, 37
programming sample, 133

Exception handling, 62
Exit Nodes, 34, 85
Export

process definition to an XPDL file, 191
Extended attributes, 121

assigning, 122
names, 124
namespace, 126
retrieving, 123
retrieving values, 123

External systems, 21

F

File Listeners, 134
Filtering, 110

process definitions, 80, 188
process instances, 192
work items, 81

Filters, 48
adding, 113

Flow control, 30
Forms, 31
FTP Agents, 142, 145
Future Work Items, 47

G

Glossary, 236
Group administration, 184
Group cache

clearing, 187
Group management, 21

H

History information, 199
History table, 205
HTTP Agents, 146, 149

I

iFlow_api.jar, 51
iFlow.jar, 51
ILOG Rules Engine, 98
Import

process definition from an XPDL file, 190
Init Actions, 91
Interface WFObjectList, 110
Interstage Analytics, 22

Interstage BPM
Component architecture, 18, 19
concepts, 27
documentation list, 11
integrating with external applications, 88
Key features, 17
Overview, 17
subprocess capabilities, 49

Interstage BPM Linkage User, 161
Iterator Node

Activity Node, 175
concepts, 174
Subprcess and Chained-process Node, 176
working with, 176

Iterator Nodes, 86

J

Java Actions, 21, 30, 90
assigning Compensate Action, 104
assigning Error Action, 105
built-in, 96
Epilogue, 95
Error, 101
handling errors, 102
JavaScript, 96
onAbort, 109
onResume, 109
onSuspend, 109
Process Owner, 91
Prologue, 93
Rules, 97
structure, 106
supported JavaScript functions, 224
types, 91

JavaScript Actions, 96
JavaScript functions, 220

general, 220
supported with Java Actions, 224
supported with triggers, 226

JDBC, 21
JMS Interface, 211
JMS Listeners, 138

L

LDAP, 21
List

logged-in users, 187
process definitions, 188
process instances, 192
work items, 81

Interstage Business Process Manager Developer's Guide 242

Index

Lists
batching, 114

Local group management, 185
Local group store, 184
Local user management, 184
Local user store, 184
Logged-in users

listing, 187
Login, 65, 182, 187
Logout, 65, 182, 187

M

Model API, 22
architecture, 61
executing applications, 60
system environment, 51

N

Node instances, 44
Nodes, 30

AND Nodes, 72
Chained-Process Nodes, 77
Conditional Nodes, 73
Delay Nodes, 76
OR Nodes, 72
Remote Subprocess Node, 158
Subprocess Nodes, 74
types, 33
Voting Activity Nodes, 72

Notification, 114

O

onAbort Java Actions, 92, 109
onResume Java Actions, 92, 109
onSuspend Java Actions, 92, 109
OR Nodes, 38, 72

P

Periodic timers, 32
PPM adapter, 23
PPM autoConfig, 23
Process Definition EJB, 20
Process definitions, 27

archiving, 189
attributes, 28
creating, 68
deleting, 190
deleting archived, 190

Process definitions (continued)
designing, 63
edit-mode, 66
exporting to an XPDL file, 191
filter criteria, 188
filtering, 80
identifiers, 29
importing from an XPDL file, 190
listing, 188
modifying, 41
ownership, 32
publishing, 189
retrieving latest version, 79
states, 28
UDAs, 33
validating, 67
variable data, 33
versioning, 30

Process Discovery Workflow, 15
Process editing, 48
Process Instance EJB, 20
Process instances, 27, 41

aborting, 195
archiving, 193
attachments, 86
attributes, 42
changing owner, 192
creating, 80
deleting, 195
deleting archived, 196
filter criteria, 192
listing, 192
ownership, 44
resuming, 194
retrieving UDAs, 114
starting, 80
STATE_ABORTED, 195
STATE_CLOSED, 193
STATE_RUNNING, 194
STATE_SUSPENDED, 194
states, 43
suspending, 194

Process Owner Actions, 91
Production Workflow, 14
Programming samples, 209
Prologue Actions, 31, 91

assigning, 93
Publish

process definition, 189

Interstage Business Process Manager Developer's Guide 243

Index

Q

QuickForms, 215

R

Reassign
work item, 196

Reassignment modes, 50
Refresh

work items, 196
Relationships, 101
Relative timers, 32
Remote group store, 184
Remote Subprocess Nodes, 39, 158
Remote Subprocesses, 157

authentication, 161
error handling, 162

Remote user store, 184
Role Actions, 31, 91
Route Nodes, 85
Rules, 72

Java Action, 97

S

Security modes, 50
Server Enactment Context, 92
Sessions

administrator, 182
user, 182, 187

Sort order
adding, 113

Sorting, 110
Start Nodes, 34, 85
Subprocess capabilities, 49
Subprocess Nodes, 38, 74

T

Threshold, 72
Timer Actions, 91
Timers, 32, 149

business calendars, 153
controlling, 152
defining, 150
history, 153

Transaction APIs, 128
Transaction control, 128
Trigger Nodes, 85
Triggers, 129

defining, 131

Triggers (continued)
supported JavaScript functions, 226

Troubleshooting, 230
Interstage BPM Server startup, 233

U

User administration, 184
User Agent EJB, 19
User cache

clearing, 187
User Defined Attributes

adding, 70
worklist UDA, 113
worklist UDAs, 120

User Defined Attributes (UDA), 33
adding, 70
of type XML, 118

User Groups, 31
User management, 21
Users

listing, 187
logging in, 65
logging out, 65

V

Variable data
User Defined Attributes, 33

Voting Activity Nodes, 36, 72
Assignee, 31

Voting Nodes, 85
Voting rules, 72

W

Web Services, 22
Work items, 44

accepted, 46
active, 46
attributes, 44
completed, 46
declined, 46
executing, 82
filter criteria, 81
filtering, 81
inactive, 46
listing, 81
modes, 45
read, 46
reassigning, 196
recalling, 83

Interstage Business Process Manager Developer's Guide 244

Index

Work items (continued)
refreshing, 196
retrieving, 81
retrieving outgoing arrows, 114
states, 46

Workflow
overview, 13
types, 14

Workflow application operations, 27
Workflow elements, 30
Worklist UDAs, 113, 120

X

XML data, 118

Interstage Business Process Manager Developer's Guide 245

Index

	Contents
	About this Manual
	Introduction
	Overview of Workflow
	Overview of Interstage Business Process Manager
	Advantages of Interstage Business Process Manager’s Design
	Types of Workflow
	Creating Your Own Application

	Architecture Overview
	Configuration Overview
	System Architecture
	Interstage BPM Server Tier
	Interstage BPM Web and Client Tier

	Interstage Analytics Integration
	ARIS Process Performance Manager Integration
	CentraSite Integration
	Interstage BPM as a Service (SaaS)

	Concepts
	Process Definitions and Process Instances
	Process Definitions
	Process Definition States
	Process Definition Identifiers
	Workflow Elements
	Java Actions
	User Groups
	Forms
	Timers
	Process Definition Ownership
	User Defined Attributes
	Node Types
	Modifying Process Definitions

	Process Instances
	Process Instance States
	Node Instances and Arrow Instances
	Process Instance Ownership
	Attachments

	Work Items
	Work Item Modes
	Work Item States
	Choices
	Future Work Items

	Filters
	The Purpose of Structural Process Editing
	The Purpose of Interstage BPM’s Subprocess Capabilities
	Security and Reassignment Modes
	Security Modes
	Reassignment Modes

	Using the Model API
	System Environment
	Specifying Configuration Settings for Interstage Application Server (Local)
	Specifying Configuration Settings for Interstage Application Server (Remote)
	Specifying Configuration Settings for WebSphere Application Server for developing Standalone Applications (Local)
	Specifying Configuration Settings for WebSphere Application Server for Deploying Client J2EE Application (Local)
	Specifying Configuration Settings for WebSphere Application Server for developing Standalone Applications (Remote)
	Specifying Configuration Settings for WebSphere Application Server for Deploying Client J2EE Application (Remote)
	Specifying Configuration Settings for WebLogic
	Specifying Configuration Settings for JBoss

	Executing a Model API Application
	Location of Properties Files
	Model API Architecture
	Exception Handling

	Designing Process Definitions
	Designing a Simple Process Definition
	Logging in/Logging out a Normal User
	Choosing a Workflow Application
	Designing a Process Definition with Start Node, Activity Node and Exit Node

	Designing a Complex Process Definition
	Adding User Defined Attributes
	Using Voting Activity Nodes
	Adding AND Nodes and OR Nodes
	Using Conditional Nodes
	Using Subprocess Nodes
	Using Delay Nodes
	Using Chained-Process Nodes

	Working with Process Instances
	Retrieving the Latest Version of a Process Definition
	Creating and Starting a New Process Instance
	Listing Work Items
	Executing Work Items
	Recalling Work Items
	Handling Attachments

	Enhancing Interstage Business Process Manager
	Integrating Interstage BPM with External Applications
	Using Application Variables
	Using Java Actions
	Types of Java Actions
	Accessing Workflow Data Using the Server Enactment Context Interface
	Assigning Prologue Actions to an Activity Node
	Assigning Epilogue Actions to an Activity Node
	Using Built-In Java Actions
	JavaScript Java Actions
	Rules JavaActions
	Activity Actors and Relationships
	Using Error Java Actions
	Dealing with Errors in Java Actions
	Java Action Structure and Execution Plan in Case of Errors
	Using onAbort, onSuspend, onResume Java Actions

	Advanced Filtering & Sorting API
	Interface WFObjectList (Package com.Fujitsu.iflow.model.workflow)
	Methods for Filtering and Sorting
	Interface Semantics
	Identifying UDAs to be Used With Lists
	Sorting and Filtering Combinations of Fields and UDAs
	Note on Batching
	Notification

	Retrieving Information about Multiple Objects at a Time
	Using Process Comments
	Special User Defined Attribute Properties
	Working with User Defined Attributes of Type XML
	Worklist UDAs

	Using Extended Attributes
	Assigning Extended Attributes
	Retrieving the Value of an Extended Attribute
	Retrieving all Extended Attributes of an Element
	Names of Extended Attributes
	Namespace of Extended Attributes

	Transaction Control
	Using Triggers
	How It Works
	Defining a Trigger

	Using Event Activity Nodes
	File Listeners
	Using File Listeners
	Configuring File Listeners

	Email Listeners
	Using the Email Listener for Triggers

	JMS Listeners
	Using the JMS Listener for Triggers

	Using Agents
	Agents Overview
	Configuring FTP Agents
	Using FTP Agents
	Configuring HTTP Agents
	Using HTTP Agents

	Using Timers
	Defining a Timer
	Adding a Due Date
	Controlling Execution of Timers
	Timer Instance History
	Using Business Calendars
	Time and Day Codes for Timers

	Modeling Remote Subprocesses
	Designing a Parent and Remote Subprocess Definition
	Running Remote Subprocess Definitions
	Error Handling for Remote Subprocesses

	Using Compound Activity Nodes
	Defining a Compound Activity Node

	Using Dynamic Subtasks
	Using Dynamic Processes
	Decision Tables
	Decision Table Concepts
	Using a Decision Table within a Process Definition
	Decision Table Specifications
	Managing Decision Tables

	Iterator Nodes
	Iterated Activity Nodes
	Iterated Subprocess and Chained-process Nodes
	Working with Iterator Nodes
	Creating an Iterator Node
	Retrieving the Iterator Index of a Node Instance using Model API
	Retrieving the Iterator Index of an Activity Node Instance using a Custom JavaAction Class
	Data Mapping between Parent and Iterated Child Process Instances

	Administration
	Logging In/Logging Out an Administrator (Tenant Owner)
	Choosing a Workflow Application
	User and Group Administration
	Managing Local Users
	Managing Local Groups
	Listing Logged-In Users
	Logging Out Users
	Resetting the User and Group Cache

	Process Definition Administration
	Listing Process Definitions
	Publishing Process Definitions
	Archiving Process Definitions
	Deleting Process Definitions
	Deleting Archived Process Definitions
	Importing a Process Definition from an XPDL File
	Exporting a Process Definition to an XPDL File

	Process Instance Administration
	Listing Process Instances
	Changing the Ownership of a Process Instance
	Archiving Process Instances
	Suspending Process Instances
	Aborting Process Instances
	Deleting Process Instances
	Deleting Archived Process Instances

	Work Item Administration
	Reassigning Work Items to Another User
	Refreshing Work Items

	Retrieving History Information
	Retrieving History Information With the Model API
	Retrieving History Information From a Hashtable
	HISTORY_ID
	HISTORY_TIME_STAMP
	HISTORY_EVENT_CODE
	HISTORY_EVENT_TYPE
	HISTORY_EVENTDATA
	HISTORY_PRODUCER_ID
	HISTORY_PRODUCER_TYPE
	HISTORY_CONSUMER_ID
	HISTORY_CONSUMER_TYPE
	HISTORY_ISHANDLED_CODE
	HISTORY_PROCESSINSTANCE_ID
	HISTORY_RESPONSIBLE
	Rules for Navigating Through the History Entries

	History Table
	Retrieving History Information With SQL Statements

	Using the Interstage Business Process Manager Samples
	/client/samples/examples/sources
	Samples Related to Process Modeling and Execution
	Samples Related to System Administration
	Samples Related to the JMS Interface
	Samples Related to Decision Tables

	/client/samples/examples/classes
	/client/samples/examples/bin

	Customizing Forms
	QuickForm Command Overview
	QuickForm Token Command Parameter Details
	QuickForm Example: Vacation Request

	Supported JavaScript Functions
	General JavaScript Functions
	JavaScript Functions Supported with Java Actions
	JavaScript Functions Supported with Triggers

	Troubleshooting
	Log File Information
	Resolving Specific Error Situations
	Interstage BPM Server Fails to Start
	Error in IBPMServer.log
	Timeout During JavaScript Execution
	Failure in Writing to an Oracle Database
	Warning or Error Messages for Interstage Application Server

	Errors During Installation, Deployment and Configuration
	Errors during Starting the Interstage BPM Server
	Contacting Your Local Fujitsu Support Organization

	Glossary
	Index

