
B1WD-3303-01ENZ0(00)
March 2014

Windows(64)

FUJITSU Software
NetCOBOL V11.0

Getting Started

Preface
This manual provides an introduction to NetCOBOL. NetCOBOL provides a full-featured development environment for COBOL programs.
It allows you to develop COBOL programs that also easily integrate with other languages.

The sample programs shipped with NetCOBOL are intended to give an overview of the capabilities of NetCOBOL. Refer to the "NetCOBOL
User's Guide" for further details on using NetCOBOL.

Audience

Prior to using NetCOBOL, it is assumed that you have the following knowledge:

- You have some basic understanding as to how to navigate through and use the Microsoft Windows product on your machine.

- You understand the COBOL language from a development perspective.

- If you plan on using Microsoft's Visual Basic development environment, you have spent some time using Visual Basic to get a feel
for its interface and capabilities.

Product Names

Product Name Abbreviation

Microsoft(R) Windows Server(R) 2012 R2 Datacenter

Microsoft(R) Windows Server(R) 2012 R2 Standard

Microsoft(R) Windows Server(R) 2012 R2 Essentials

Microsoft(R) Windows Server(R) 2012 R2 Foundation

Windows Server 2012 R2

Microsoft(R) Windows Server(R) 2012 Datacenter

Microsoft(R) Windows Server(R) 2012 Standard

Microsoft(R) Windows Server(R) 2012 Essentials

Microsoft(R) Windows Server(R) 2012 Foundation

Windows Server 2012

Microsoft(R) Windows Server(R) 2008 R2 Standard

Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Foundation

Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows Server 2008 R2

Windows(R) 8.1

Windows(R) 8.1 Pro

Windows(R) 8.1 Enterprise

Windows 8.1(x64)

Windows(R) 8

Windows(R) 8 Pro

Windows(R) 8 Enterprise

Windows 8(x64)

Windows(R) 7 Home Premium

Windows(R) 7 Professional

Windows(R) 7 Enterprise

Windows(R) 7 Ultimate

Windows 7(x64)

Oracle Solaris Solaris

Red Hat(R) Enterprise Linux(R) 5(for Intel Itanium) Linux(Itanium)

Red Hat(R) Enterprise Linux(R) 5(for Intel64) 64bit Linux(64)

- i -

Product Name Abbreviation

Microsoft(R) Visual C++(R) development system Visual C++

Microsoft(R) Visual Basic(R) programming system Visual Basic

In this manual, the following products are written as "Windows" or "Windows(x64)"

- Windows Server 2012 R2

- Windows Server 2012

- Windows Server 2008 R2

- Windows 8.1(x64)

- Windows 8(x64)

- Windows 7(x64)

Trademarks

- NetCOBOL is a trademark or registered trademark of Fujitsu Limited or its subsidiaries in the United States or other countries or
in both.

- Microsoft, Windows, Windows Server, Visual Basic, and Visual Studio are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

- Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners. Oracle Solaris is also referred as Solaris, Solaris Operating System, or Solaris OS.

- Other brand and product names are trademarks or registered trademarks of their respective owners.

Export Regulation

Exportation/release of this document may require necessary procedures in accordance with the regulations of the Foreign Exchange
and Foreign Trade Control Law of Japan and/or US export control laws.

The contents of this manual may be revised without prior notice. No part of this document may be reproduced or transmitted in any
form or by any means, electronic or mechanical, for any purpose, without the express written permission of Fujitsu Limited.

March 2014

Copyright 2012-2014 FUJITSU LIMITED

- ii -

Contents
Chapter 1 New Features.. 1

Chapter 2 Sample Programs.. 2
2.1 Advance preparation for using NetCOBOL Studio to execute a sample program.. 3

2.1.1 The basic concept of NetCOBOL Studio..3
2.1.2 Advance preparation for using sample..3
2.1.3 Notes on using the sample programs... 5

2.2 Sample 1: Data Processing Using Standard Input-Output.. 5
2.2.1 Using NetCOBOL Studio...6
2.2.2 Using the COBOL command and the LINK command.. 7
2.2.3 Using the MAKE command..7

2.3 Sample 2: Using Line Sequential and Indexed Files...7
2.3.1 Using NetCOBOL Studio...8
2.3.2 Using MAKE file...10

2.4 Sample 4: Screen Input-Output Using the Screen Section.. 10
2.4.1 Using NetCOBOL Studio...10
2.4.2 Using MAKE file...13

2.5 Sample 5: Calling COBOL Subprograms..13
2.5.1 Using NetCOBOL Studio...16
2.5.2 Using MAKE file...24

2.6 Sample 6: Receiving a Command Line Argument.. 24
2.6.1 Using NetCOBOL Studio...25
2.6.2 Using MAKE file...28

2.7 Sample 7: Environment Variable Handling.. 28
2.7.1 Using NetCOBOL Studio...29
2.7.2 Using MAKE file...31

2.8 Sample 8: Using a Print File... 31
2.8.1 Using NetCOBOL Studio...31
2.8.2 Using MAKE file...33

2.9 Sample 9: Using a Print File (Advanced usage) ...34
2.9.1 Using NetCOBOL Studio...39
2.9.2 Using MAKE file...42

2.10 Sample 11: Remote Database Access...42
2.10.1 Using NetCOBOL Studio...44
2.10.2 Using MAKE file...46

2.11 Sample 12: Remote Database Access (Multiple row processing)..46
2.11.1 Using NetCOBOL Studio...48
2.11.2 Using MAKE file...50

2.12 Sample 13: Calling COBOL from Visual Basic ... 51
2.12.1 Using NetCOBOL Studio...51
2.12.2 Using MAKE file...53

2.13 Sample 14: Visual Basic calling COBOL -Simple ATM Example... 54
2.13.1 Using NetCOBOL Studio...56
2.13.2 Using MAKE file...60

2.14 Sample 15: Basic Object-Oriented Programming .. 60
2.14.1 Using NetCOBOL Studio...61
2.14.2 Using MAKE file...63

2.15 Sample 16: Collection Class (Class Library).. 63
2.15.1 Using NetCOBOL Studio...70
2.15.2 Using MAKE file...72

2.16 Sample 31: Windows System Function Call.. 73

- iii -

2.16.1 Using NetCOBOL Studio...74
2.16.2 Using MAKE file...76

2.17 Sample 32: Starting Another Program... 76
2.17.1 Using NetCOBOL Studio...77
2.17.2 Using MAKE file...78

Appendix A Handling of workspace and project.. 80
A.1 Default workspace... 80
A.2 Setting and switch method of workspace.. 80

A.2.1 Setting workspace...80
A.2.2 Switch of workspace..82

A.3 Importing Project...83

Index... 87

- iv -

Chapter 1 New Features
This chapter provides an outline of the new features included in the latest release.

NetCOBOL

- UTF-32 support
Encoding form UTF-32 can now be used.

- Support for COBOL Resource Projects
A "COBOL resource project" is used for management of the library file and the descriptor file in the NetCOBOL Studio.

- Support for COBOL Solution Projects
A "COBOL solution project" is used for management of multiple projects in the NetCOBOL Studio.

- Project configuration conversion command
Provides the project configuration conversion command as a transfer support tool in order to convert a project in Project Manager
to a project in NetCOBOL Studio.

- 1 -

Chapter 2 Sample Programs
The sample programs shipped with NetCOBOL are intended to give an overview of the capabilities of NetCOBOL. Refer to the "NetCOBOL
Use's Guide" for further details on using NetCOBOL. The following table details the sample programs available with NetCOBOL.

NetCOBOL Sample Programs

- Sample 1
Data Processing Using Standard Input-Output

- Sample 2
Using Line Sequential and Indexed Files

- Sample 4
Screen Input-Output Using the Screen Section

- Sample 5
Calling COBOL Subprograms

- Sample 6
Receiving a Command Line Argument

- Sample 7
Environment Variable Handling

- Sample 8
Using a Print File

- Sample 9
Using a Print File (Advanced usage)

- Sample 11
Remote database access

- Sample 12
Remote database access (multiple row processing)

- Sample 13
Calling COBOL from Visual Basic

- Sample 14
Visual Basic calling COBOL -Simple ATM Example

- Sample 15
Basic Object-Oriented Programming

- Sample 16
Collection Class (Class Library)

- Sample 31
Windows System Function Call

- Sample 32
Starting other programs

Each sample explains the following two methods as a way of operating the exercise program.

- Using NetCOBOL Studio

- Using MAKE file

 Note

- When you execute the Sample program by using NetCOBOL Studio, see "2.1 Advance preparation for using NetCOBOL Studio to
execute a sample program".

- 2 -

- When you use MAKE file, use the command prompt beginning with "Start" > "Apps" > "Fujitsu NetCOBOL V11(x64)" > "NetCOBOL
Command Prompt".

2.1 Advance preparation for using NetCOBOL Studio to execute a sample
program

2.1.1 The basic concept of NetCOBOL Studio
Read through "NetCOBOL Studio" in the "NetCOBOL Studio User's Guide" to understand the necessary basic concepts (workspace,
perspective, etc.) for using NetCOBOL Studio.

Moreover, NetCOBOL Studio screen is composed of a window for the editor area and two or more information displays. Refer to "COBOL
perspective", "Editor" or "Debugging perspective" in the "NetCOBOL Studio User's Guide" for an explanation of each window.

Automatic build

Automatic build is turned on by default. It can be toggled off or on by selecting" Project" > "Build Automatically" from the NetCOBOL
Studio menu bar. When it is checked, it is turned on. Refer to "Automatic build" in the "NetCOBOL Studio User's Guide" for details on
automatic build.

Project folder

The project property is stored in a folder. It is saved in the workspace and when the project is imported, the project folder is created
under the workspace folder.

Example: The project folder for SAMPLE01 with a workspace folder of C:\NetCOBOL Studio\workspace:

C:\NetCOBOL Studio\workspace\SAMPLE01

2.1.2 Advance preparation for using sample
It is necessary to make the project for the sample program in the folder that is called workspace, and then to build, execute, and
debug it using NetCOBOL Studio.

The steps in order are:

1. Prepare the workspace.

2. Import the sample program project into the NetCOBOL Studio workspace.

Preparing the workspace

A "Workspace" is a folder that stores the various resources of the NetCOBOL Studio project.

About making a workspace, see "A.2 Setting and switch method of workspace" for details.

The workspace for this manual is C:\NetCOBOL Studio\workspace.

Importing sample program project into NetCOBOL Studio workspace

The provided sample program projects are imported to the NetCOBOL Studio workspace with the following procedure.

 Note

The following steps use "C:\COBOL" as the NetCOBOL Installation folder. Change "C:\COBOL" to the NetCOBOL installation folder.

1. Select "Start" > "Apps" > "Fujitsu NetCOBOL V11(x64)" > "NetCOBOL Studio", and start NetCOBOL Studio.

2. Select "File" > "Import..." from the menu bar. The "Import" wizard is started.

- 3 -

3. Select "General > "Existing Projects into Workspace", and click the "Next" button.

4. Select "Select root directory", and click the "Browse..." button. The "Browse For Folder" dialog box is displayed.

5. Select the folder including the project that is the storage location for the COBOL sample program (Here, C:\COBOL\Samples
\COBOL), and click the "OK" button.

6. Confirm the project for the COBOL sample program is displayed in the "Projects" pane, and click the "Select All" button.

7. Check "Copy projects into workspace", and click the "Finish" button.

The projects for the sample programs are imported to the NetCOBOL Studio workspace.

- 4 -

If the "Dependency" view below is not displayed, select "Window" > "Show View" > "Dependency" from the menu bar.

2.1.3 Notes on using the sample programs
For each sample program, the NetCOBOL Studio project associated files below are provided.

Please do not edit these project associated files. The application does not run correctly when these files are changed.

- .Settings\org.eclipse.core.resources.prefs

- .CobolOptions

- .project

2.2 Sample 1: Data Processing Using Standard Input-Output
Sample 1 demonstrates using the ACCEPT/DISPLAY function to input and output data. Refer to the "NetCOBOL User's Guide" for details
on how to use the ACCEPT/DISPLAY statements.

Function

Inputs an alphabetic character (lowercase character) from the console window, and outputs a word to the console window beginning
with the input alphabetic character.

- 5 -

Files Included in Sample 1

- SAMPLE1.COB (COBOL source program)

- MAKEFILE

- COBOL85.CBR

COBOL Statements Used

ACCEPT, DISPLAY, EXIT, IF, and PERFORM statements are used.

2.2.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample01 project is confirmed by using the "Dependency" view. If there is no sample01 project, import the
sample01 project into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL Studio
workspace".

3. Select the Sample01 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE1.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE1.EXE is created.

Debugging

Refer to "Creating a COBOL Program" in Chapter 2 of the "NetCOBOL Studio User's Guide" for the sample1 debugging procedure using
the debugging facility of NetCOBOL Studio.

Program execution

Select the SAMPLE01 project from the "Dependency" view, and then select "Run" > "Run As" > "COBOL Application" from the NetCOBOL
Studio menu bar.

When one alphanumerical character is entered, the first word with that character is displayed.

- 6 -

2.2.2 Using the COBOL command and the LINK command

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample01>COBOL.EXE -M SAMPLE1.COB

C:\COBOL\Samples\COBOL\Sample01>LINK /OUT:SAMPLE1.EXE SAMPLE1.OBJ F4AGCIMP.LIB LIBCMT.LIB

2.2.3 Using the MAKE command
The sample program can also be compiled and linked using the nmake command.

C:\COBOL\Samples\COBOL\Sample01>nmake

Compilation of the sample program is now complete. Verify that SAMPLE1.EXE was created in the same folder in which the sample
program is stored.

Executing the Program

Execute SAMPLE1.EXE from a command prompt or from Windows Explorer.

Enter a lowercase letter and then press the ENTER key. A word that begins with the input lowercase letter is displayed.

2.3 Sample 2: Using Line Sequential and Indexed Files
Sample 2 demonstrates a program that reads a data file (line sequential file) created with the Editor, and then creates a master file
(indexed file). For details on how to use line sequential files and indexed files, refer to the "NetCOBOL User's Guide".

Overview

Reads a data file (line sequential file) that contains product codes, product names, and unit prices, and creates an indexed file with
the product code as a primary record key and the product name as an alternate record key.

Figure 2.1 Creating an indexed file from a line sequential file

Files Included in Sample 2

- SAMPLE2.COB (COBOL source program)

- 7 -

- DATAFILE (Data file)

- MAKEFILE

- COBOL85.CBR

COBOL Statements Used

The CLOSE, EXIT, GO TO, MOVE, OPEN, READ, and WRITE statements are used.

2.3.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample02 project is confirmed by using the "Dependency" view. If there is no sample02 project, import the
sample02 project into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL Studio
workspace".

3. Select the Sample02 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE2.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE2.EXE is created.

- 8 -

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The Run-time Environment Setup Tool dialog appears.

2. Select "Open" from the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE2.EXE).

3. Select the Common tab and enter data as shown below:

- For the file-identifier INFILE, specify the name of the data file (line sequential file) in DATAFILE.

- For the file-identifier OUTFILE, specify the name of master file (indexed file) in MASTER.

INFILE=.\DATAFILE

OUTFILE=.\MASTER

4. If MASTER is specified for OUTFILE, input the data and click the "Set" button.

5. Click the "Apply" button. The data is saved in the object initialization file. Select "Exit" from the "File" menu to terminate the
run-time environment setup tool.

 Information

INFILE and OUTFILE are the file reference identifiers specified for ASSIGN clauses in COBOL programs. The file reference identifier is
used to associate a COBOL program and an actual file.

Program execution

Select the SAMPLE02 project from the "Dependency" view, and then select Run" > "Run As" > "COBOL Application" from the NetCOBOL
Studio menu bar.

- 9 -

Execution result

No termination message is displayed.

After execution is complete, an indexed file (MASTER) with a product code as a key is created in the SAMPLE02 directory. Use Windows
Explorer or File Manager to verify that the indexed file was created.

Use the COBOL File Utility to confirm that the indexed file (MASTER) was created correctly. The indexed file record can be browsed
using the COBOL File Utility Browsing Records function. Refer to "COBOL File Utility" in the "NetCOBOL User's Guide" for details.

2.3.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample02>nmake

Compilation of the sample program is now complete. Verify that SAMPLE2.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information

Same as "2.3.1 Using NetCOBOL Studio.

Executing the Program

Execute SAMPLE2.EXE from a command prompt or Windows Explorer.

Execution result

Same as "2.3.1 Using NetCOBOL Studio".

2.4 Sample 4: Screen Input-Output Using the Screen Section
Sample 4 demonstrates using the Screen Section (the "screen handling function") to display and accept data. Refer to the "NetCOBOL
User's Guide" for details on how to use the screen handling function.

Overview

When an employee's number and name are written to the screen, the program creates an indexed file with the employee's number
as a primary record key, and the name as an alternate record key.

Files Included in Sample 4

- SAMPLE4.COB (COBOL source program)

- MAKEFILE

- SAMPLE4.KBD (Key definition file)

- COBOL85.CBR

COBOL Statements Used

The ACCEPT, CLOSE, DISPLAY, EXIT, GO TO, IF, MOVE, OPEN, and WRITE statements are used.

2.4.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

- 10 -

2. The presence of the sample04 project is confirmed by using the "Dependency" view. If there is no sample04 project, import the
sample04 project into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL Studio
workspace".

3. Select the Sample04 project on the "Dependency" view and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE4.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE4.EXE is created.

- 11 -

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The Run-time Environment Setup Tool dialog appears.

2. Select "Open" from the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE4.EXE).

3. Select the Common tab and enter data as shown below:

- For the file-identifier OUTFILE, specify the master file name (indexed file) in MASTER.

- For the environment variable @CBR_SCR_KEYDEFFILE, specify SAMPLE4.KBD, which enables the F2 key for use.

4. Click the "Apply" button. The data is saved in the object initialization file.

5. Select "Exit" from the "File" menu to terminate the run-time environment setup tool.

Program execution

The SAMPLE04 project is selected from the "Dependency" view, and then "Run" > "Run As" > "COBOL Application" is selected from the
NetCOBOL Studio menu bar.

Execution result

The screen for entering an employee's number and name is displayed.

- 12 -

Enter an employee's 6 digit number and name (up to 40 alphanumeric characters), and press the ENTER key. The input data is written
to the master file, and the screen is cleared for the input of subsequent data.

To terminate processing, press the F2 key. Use Windows Explorer to confirm that the index file (MASTER) was created in the SAMPLE04
directory with the employee number as the main record key and the employee name as the record sub-key.

2.4.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample04>nmake

Compilation of the sample program is now complete. Verify that SAMPLE4.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information

Same as "2.4.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE4.EXE from a command prompt or from Windows Explorer.

Execution result

Same as "2.4.1 Using NetCOBOL Studio".

2.5 Sample 5: Calling COBOL Subprograms
Sample 5 demonstrates an application that calls a subprogram from the main program. Sample 5 was created using free format
source.

- 13 -

Sample 5 also demonstrates how to pass an argument string to a program and how to display a message box.

 Note

- Because NetCOBOL Studio does not support free format, a free format build of the COBOL source program cannot be completed.
In the section entitled "NetCOBOL Studio is used", it explains how to use a COBOL source program in a variable format. "Compiling
and Linking the Program" in free format is explained in "Using MAKE file".

- C:\COBOL is used as the installation destination for NetCOBOL in this sample. Please change C:\COBOL to the folder where NetCOBOL
is installed.

Overview

Reads the contents of the master file (indexed file created in Sample 2), stores the records in a work file whose name is provided in
the @MGPRM environment variable (a way of passing information to a main program's linkage section), and then passes the work
file to a subprogram that prints the records.

The master file stores product codes, product names, and unit prices. The work file name must be specified in the @MGPRM parameter
at program execution.

Files Included in Sample 5

- SAMPLE5.COB (COBOL source program)

- S_REC.CBL (COBOL library file)

- MAKEFILE

- COBOL85.CBR

- INSATSU.COB

When NetCOBOL Studio is used, the following are used. The COBOL source program is a variable format.

- SAMPLE05_EXE\SAMPLE5.COB (COBOL source program)

- SAMPLE05_EXE\COBOL85.CBR

- SAMPLE05_DLL\INSATSU.COB

- SAMPLE05_DLL\COBOL85.CBR

- SAMPLE05_LIB\S_REC.CBL (COBOL library file)

COBOL Statements Used

The CALL, DISPLAY, EXIT, GO TO, MOVE, OPEN, READ, and WRITE statements are used.

Using Free Format in a COBOL Source Program

The following is an example of using free format in a COBOL source program.

- 14 -

 Note

In the above figure, colons are used to denote sections of source code that have been omitted.

In free format, COBOL statements can be written in any character position on the line. Lines beginning with "*>" are treated as
comments.

 Note

You must specify the SRF compiler option in order to use free format. The SRF compiler option has two parameters; the first specifies
the format for the source program and the second specifies the format of copybooks. All copybooks must have the same format type.
The available types are FIX, for fixed format source, VAR, for variable format source, and FREE, for free format source.

File Interdependence

The following figure shows the relationship between the source files used in Sample 5.

- 15 -

Prerequisite to Executing the Program

The master file created in Sample 2 is used; therefore, execute the program in Sample 2 before executing Sample 5.

2.5.1 Using NetCOBOL Studio

 Note

Because NetCOBOL Studio does not support free format, a free format build of the COBOL source program cannot be completed. This
section explains how to use a COBOL source program in a variable format.

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the SAMPLE05, SAMPLE05_EXE, SAMPLE05_DLL and SAMPLE05_LIB projects are confirmed by using the
"Dependency" view. If there are no sample05 projects, import projects of sample program to NetCOBOL Studio workspace. See
"Importing sample program project into NetCOBOL Studio workspace".

3. Select Sample05 projects on "Dependency" view, and verify that it matches the image below.

- 16 -

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Build setting of solution project

Set a project common option to the build page of the SAMPLE05 solution project.

Here, set compile option LIB as a common option.

a. Select the SAMPLE05 projects on "Dependency" view, and chosen the property from the context menu. The Property dialog
box is displayed.

b. Select the "Build" on the left pane, the "Build" page is displayed. Select the "Compiler Options" tab, confirm the content
of the option.

Here, confirm the storage folder of S_REC.CBL is specified for compiler option LIB, and click "OK" button.

- 17 -

5. Build setting of sub program and main program

Display the build page of the SAMPLE05_DLL project and the SAMPLE05_EXE project.

"Enable project specific settings" dose not check.

6. The library reference in the main program

The main program links library file (INSATSU.lib). This library file is output from the SAMPLE05_DLL project. Confirm "INSATSU.lib"
is added to the link file of the SAMPLE05_EXE project on the "Dependency" view.

- 18 -

7. Build of solution project

Select the SAMPLE05 project, and chosen the "Rebuild Project" from the context menu.

The solution project is built, and then SAMPLE5.EXE is created.

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The Run-time Environment Setup Tool dialog appears.

2. Select "Open" on the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE5.EXE).

When the build is done from NetCOBOL Studio, the executable program is made for the SAMPLE05_EXE project folder.

The content of the initialization file for execution is displayed.

3. Select the Common tab and enter data as shown below:

- For the file-identifier INFILE, specify the path name of the master file (MASTER) created in Sample 2.

INFILE=..\SAMPLE02\MASTER

A relative path is a path relative to the current folder.

When you select the ""Run" > "Run As" > "COBOL Application", the current folder is a project folder.

- Specify a work file name in the @MGPRM parameter. The string in this parameter is passed to the first linkage section item
in the executing program. The work file name can contain up to 8 alphanumeric characters. The extension "TMP" is added
to the work file name before the file is created.

4. Click the "Apply" button. The data is saved in the object initialization file.

5. Select "Exit" from the "File" menu to terminate the run-time environment setup tool.

- 19 -

Executing the Program

This sample program makes the executable file of the dynamic linking structure. It is necessary to add the storage folder of the dynamic
link library (DLL) to environment variable PATH when the DLL is not in the same folder of executable file (EXE) because the DLL of
sub-program is loaded by dynamic linker of the system.

It explains the method of setting environment variable information with NetCOBOL Studio.

1. Select SAMPLE05_EXE project from the "Dependency" view, and then select "Run Configurations..." from the NetCOBOL Studio
"Run" menu bar.

The "Run Configurations" dialog boxes are displayed.

- 20 -

2. Select "COBOL Application" on left pane, and then click "New" () button.

SAMPLE05_EXE" is displayed in the name of a right pane, and the configuration information at execution time is displayed.

- 21 -

3. Select an "Environment" from a right pane.

4. Here, the storage folder of INSATSU.DLL is added to environment variable Path. First of all, click the "Select..." button.

The dialog box of the "Select Environment Variables" is displayed.

- 22 -

5. Check "Path" environment variable, and click "OK" button.

"Path" is added to the "Environment variables to set ".

6. It is confirmed that the "Append environment to native environment" is checked.

 Note

When the "Replace native environment with specified environment" is checked and the following procedure is progressed, the
application cannot be correctly executed.

Check the "Append environment to native environment".

1. Select "Path" from "Environment" tab, and click the "Edit..." button.

The "Edit Environment Variable" dialog box is displayed.

Add the storage folder of SAMPLE05_DLL project to "Value", and then click the "OK" button.

- 23 -

2. Click "Apply" button of "Environment" tab. The environmental setting of execution time is completed.

3. Click "Run" button.

SAMPLE5.EXE is executed.

Execution result

The message "GENERATE WORK-FILE=sample5.TMP" is displayed. Confirm the message contents, and close the message box by clicking
"OK" button.

When the program execution ends, master file is printed to the printer which is set as "Set as default printer ".

2.5.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

c:\COBOL\Samples\COBOL\Sample05>nmake

Compilation of the sample program is now complete. Verify that SAMPLE5.EXE and INSATSU.DLL were created in the same folder in
which the sample program is stored.

Setting Runtime Environment Information

Same as "2.5.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE5.EXE from a command prompt or from Windows Explorer.

The message "GENERATE WORK-FILE=sample5.TMP" is displayed. Confirm the contents, and then click the OK button to close the
message box.

The master file contents are written to the default printer at the completion of program execution.

Execution result

Same as "2.5.1 Using NetCOBOL Studio".

2.6 Sample 6: Receiving a Command Line Argument
Sample 6 demonstrates a program that receives an argument specified at program execution, using the command line argument
handling function (ACCEPT FROM argument-name/argument-value). Refer to "Using ACCEPT and DISPLAY Statements" in the
"NetCOBOL User's Guide" for details on how to use the command line argument handling function.

Sample 6 also calls an internal program.

Overview

The sample program calculates the number of days from the start date to the end date. The start and end dates are specified as
command arguments in the following format:

command-name start-date end-date

start-date, end-date:

Specify a year, month, and day between January 1, 1900 and December 31, 2172 in the YYYYMMDD format.

Files Included in Sample 6

- SAMPLE6.COB (COBOL source program)

- MAKEFILE

- 24 -

- COBOL85.CBR

COBOL Statements Used

The ACCEPT, CALL, COMPUTE, COPY, DISPLAY, DIVIDE, EXIT, GO TO, IF, MOVE, and PERFORM statements are used.

2.6.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample06 project is confirmed by using the "Dependency" view. If there is no sample06 project, import the
sample06 project into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL Studio
workspace".

3. Select the Sample06 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

1. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE6.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE6.EXE is created.

Executing the Program

1. Select the SAMPLE06 project from the "Dependency" view, and then select "Run Configurations..." from the NetCOBOL Studio
"Run" menu bar.

The "Run Configurations" dialog boxes are displayed.

- 25 -

2. Select "COBOL Application" on the left pane, and then click the "New" () button.

SAMPLE06 is displayed in the name of the right pane, and the configuration information at execution time is displayed.

- 26 -

3. Select the "Main" tab, and then enter the start-date and end-date for "Program arguments".

Example of program argument

20000101 20140101

4. Click the "Apply" button, and then click the "Run" button.

SAMPLE05 is started.

Execution result

The output destination of the DISPLAY statement is system console for this sample program.

Days from January 1, 2000 to January 1, 2014 are displayed as follows.

- 27 -

 See

Refer to "Definition of the target" in the "NetCOBOL Studio User's Guide" when you want to make the output destination of the DISPLAY
statement COBOL console.

2.6.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample06>nmake

Compilation of the sample program is now complete. Verify that SAMPLE6.EXE was created in the same folder in which the sample
program is stored.

Executing the Program

Execute "SAMPLE6.EXE start-date end-date" from a command prompt or from Windows Explorer.

C:\COBOL\Samples\COBOL\Sample06>SAMPLE6.EXE 20000101 20140101

Execution Result

Sample 6 displays the number of days from the specified start date to the specified end date.

C:\COBOL\Samples\COBOL\Sample06>SAMPLE6.EXE 20000101 20140101

DIFFERENCE OF DAYS IS +05114

C:\COBOL\Samples\COBOL\Sample06>

2.7 Sample 7: Environment Variable Handling
Sample 7 demonstrates a program that changes the value of an environment variable during COBOL program execution, using the
environment variable handling function (ACCEPT FROM/DISPLAY UPON environment-name/environment-value). Refer to "Using
ACCEPT and DISPLAY Statements" in the "NetCOBOL User's Guide" for details on how to use the environment variable handling function.

Overview

The sample program divides a master file (the indexed file created in Sample 2) that contains product codes, product names, and
unit prices into two master files according to product codes. The following table shows the division method and the names of the two
new master files:

Table 2.1 Division of the master files

Product Code File Name

Code beginning with 0 master-file-name.A

Code beginning with a non-zero value master-file-name.B

Files Included in Sample 7

- SAMPLE7.COB (COBOL source program)

- MAKEFILE

- COBOL85.CBR

- 28 -

COBOL Statements Used

The ACCEPT, CLOSE, DISPLAY, EXIT, GO TO, IF, OPEN, READ, STRING, and WRITE statements are used.

2.7.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample07 project is confirmed by using the "Dependency" view. If there is no sample07 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

3. Select the Sample07 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE7.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE7.EXE is created.

- 29 -

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The Run-time Environment Setup Tool dialog appears.

2. Select "Open" from the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE7.EXE).

3. Select the Common tab and enter data as shown below:

- For the file-identifier INFILE, specify the path name of the master file (MASTER) created in Sample 2.

INFILE=..\SAMPLE02\MASTER

4. Click the "Apply" button. The data is saved in the object initialization file.

5. Select "Exit" from the "File" menu to terminate the run-time environment setup tool.

Executing the Program

Select SAMPLE07 project from the "Dependency" view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio "Run"
menu bar.

 Note

Execute the program in Sample 2 beforehand.

Execution result

The following two files are created in the directory of the master file created in Sample 2:

- MASTER.A: Stores the data of products whose codes begin with 0.

- 30 -

- MASTER.B: Stores the data of products whose codes begin with a non-zero value.

The contents of the newly created master files (MASTER.A and MASTER.B) can be checked with the program in Sample 5 in the same
manner as for the master file created in Sample 2.

2.7.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample07>nmake

Compilation of the sample program is now complete. Verify that SAMPLE7.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information

Same as "2.7.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE7.EXE from a command prompt or from Windows Explorer.

 Note

Execute the program in Sample 2 beforehand.

Execution result

Same as "2.7.1 Using NetCOBOL Studio".

2.8 Sample 8: Using a Print File
Sample 8 demonstrates a program that outputs data (input from the console window) to a printer using a print file. Refer to "Printing"
in the "NetCOBOL User's Guide" for details on using a print file.

Overview

The sample program inputs data of up to 40 alphanumeric characters from the console window, and outputs the data to the printer.

Files Included in Sample 8

- SAMPLE8.COB (COBOL source program)

- MAKEFILE

- COBOL85.CBR

COBOL Statements Used

The ACCEPT, CLOSE, EXIT, GO TO, IF, OPEN, and WRITE statements are used.

2.8.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

- 31 -

2. The presence of the sample08 project is confirmed by using the "Dependency" view. If there is no sample08 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

3. Select the Sample08 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build project" from the NetCOBOL Studio menu bar when SAMPLE8.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE8.EXE is created.

Executing the Program

Select the SAMPLE08 project from the "Dependency" view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio
"Run" menu bar.

Execution result

A console window is displayed. In the console window, enter the data to be printed. Up to 40 characters can be entered at a time.

- 32 -

To terminate the program, press the RETURN key, type /END and press the RETURN key again. Click the "OK" button to close the
message window.

The input data is written to the printer at program termination.

2.8.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample08>nmake

Compilation of the sample program is now complete. Verify that SAMPLE8.EXE was created in the same folder in which the sample
program is stored.

Executing the Program

Execute SAMPLE8.EXE from a command prompt or from Windows Explorer.

- 33 -

Execution result

Same as "2.8.1 Using NetCOBOL Studio".

2.9 Sample 9: Using a Print File (Advanced usage)
Sample 9 demonstrates the following:

- Using a print file without a FORMAT clause

- Using the I control record to set and change page forms, in combination with Forms Control Buffers (FCBs)

- Using the CHARACTER TYPE clause to control letter size and pitch

- Using the PRINTING POSITION clause to control the layout (line / column)

Refer to "Printing" in the "NetCOBOL User's Guide" for details on using "print file 1" and "print file 2".

Overview

The table below describes each of the tasks performed by this sample. The tasks show a number of printing features. There are
essentially four elements that give you control over the various printing features:

1. COBOL syntax

- PRINTING MODE clauses in the SPECIAL-NAMES paragraph.

- ASSIGN TO PRINTER in the SELECT statement.

- CHARACTER TYPE and PRINTING POSITION clauses in data definitions.

2. The I-Control Record

A record that you write to the print file using the syntax:
"CTL IS page-cntl" in SPECIAL-NAMES
and
WRITE I-Control-Record AFTER ADVANCING page-cntl

3. Forms Control Buffers (FCBs)

These are form information buffers stored by the COBOL runtime system, using information defined in environment variables
of the form "FCBxxxx=".

4. Environment variables

Environment variables define fonts, FCBs, document names and other printing details.

The table below indicates which of the above are used to provide a particular feature. You will need to read the table, inspect the
COBOL code, and consult the chapter on "Printing" in the "NetCOBOL User's Guide" to fully understand all of the features being
demonstrated.

Table 2.2 Features demonstrated in Sample 9

Task Description Detailed features Controlled by
I-Control field / COBOL clause

Related Environment
Variable(s)

1a. Prints a page at 6 LPI,
10 CPI on a PowerFORM
overlay grid

6 LPI - defined in FCB I-Control:

FCB-NAME (="LT6L")

FCBLT6L=...

10 CPI PRINTING MODE x ... AT PITCH ...

 +

CHARACTER TYPE x

Letter size paper I-Control:

- 34 -

Task Description Detailed features Controlled by
I-Control field / COBOL clause

Related Environment
Variable(s)

PAPER-SIZE (="LTR")

Impact font PRINTING MODE x

... WITH FONT GOTHIC ...

 +

CHARACTER TYPE x

@PrinterFontName=
(..., Impact)

Courier New font PRINTING MODE x

... WITH FONT MINCHOU ...

 +

CHARACTER TYPE x

@PrinterFontName=
(Courier New, ...)

Grid (PowerFORM
overlay -
KOL6LT6L.OVD)

I-Control:

FOVL-NAME (="LT6L")

FOVL-R (= 1 - to use overlay on

a single page)

FOVLTYPE=KOL6

OVD_SUFFIX=OVD

Data item position
within line

PRINTING POSITION

Different character
type forms

PRINTING MODE x

... FORM ...

 +

CHARACTER TYPE x

Document name
displayed by
Windows

I-Control:

DOCUMENT-NAME (=DOC1)

@CBR_DocumentName_D
OC1=<document name
string>

1b. Prints a page at 8 LPI,
10 CPI on a PowerFORM
overlay grid

8 LPI - defined in FCB I-Control:

FCB-NAME (="LT8L")

FCBLT8L=...

10 CPI PRINTING MODE x ... AT PITCH ...

 +

CHARACTER TYPE x

Letter size paper I-Control:

PAPER-SIZE (="LTR")

Impact font PRINTING MODE x

... WITH FONT GOTHIC ...

 +

CHARACTER TYPE x

@PrinterFontName=
(..., Impact)

- 35 -

Task Description Detailed features Controlled by
I-Control field / COBOL clause

Related Environment
Variable(s)

Courier New font PRINTING MODE x

... WITH FONT MINCHOU ...

 +

CHARACTER TYPE x

@PrinterFontName=
(Courier New, ...)

Grid (PowerFORM
overlay -
KOL6LT8L.OVD)

I-Control:

FOVL-NAME (="LT8L")

FOVL-R (= 1 - to use overlay on

a single page)

FOVLTYPE=KOL6

OVD_SUFFIX=OVD

Data item position
within line

PRINTING POSITION

Different character
type forms

PRINTING MODE x

... FORM ...

 +

CHARACTER TYPE x

2a. Prints letters in font
sizes 3, 7.2, 9, 12, 18, 24,
36, 50, 72, 100, 200, and
300 points. On legal-
sized paper

(After printing a header
page)

The COBOL runtime
system automatically
calculates the best
character pitch fitted to
the character size
(character pitch
specification is omitted).

Document name
displayed by
Windows

I-Control:

DOCUMENT-NAME (=DOC1)

@CBR_DocumentName_D
OC1=<document name
string>

Different font sizes PRINTING MODE x

... IN SIZE nn POINT ...

 +

CHARACTER TYPE x

Legal size paper I-Control:

PAPER-SIZE (="XXX")

FCB-NAME (="LPI6")

@PRN_FormName_XXX=L
egal 8 1/2 x 14 in

FCBLPI6=...

Impact font Default - Gothic font @PrinterFontName=
(..., Impact)

Shaded background
(PowerFORM overlay
- KOL6LGLT.OVD)

I-Control:

FOVL-NAME (="LGLT")

FOVL-R (= 1 - to use overlay on

a single page)

FOVLTYPE=KOL6

OVD_SUFFIX=OVD

Document name
displayed by
Windows

I-Control:

DOCUMENT-NAME (=DOC2)

@CBR_DocumentName_D
OC2=<document name
string>

2b. Prints characters at
pitches 1, 2, 3, 5, 6, 7.5,
20, and 24 CPI.

Different pitches PRINTING MODE x

... AT PITCH n CPI ...

- 36 -

Task Description Detailed features Controlled by
I-Control field / COBOL clause

Related Environment
Variable(s)

The COBOL runtime
system automatically
calculates the best
character size fitted to
the character pitch (the
character size
specification is omitted).

 +

CHARACTER TYPE x

Legal size paper I-Control:

PAPER-SIZE (="XXX")

FCB-NAME (="LPI6")

@PRN_FormName_XXX=L
egal 8 1/2 x 14 in

FCBLPI6=...

Impact font Default - Gothic font @PrinterFontName=
(..., Impact)

Shaded background
(PowerFORM overlay
- KOL6LGLT.OVD)

I-Control:

FOVL-NAME (="LGLT")

FOVL-R (= 1 - to use overlay on

a single page)

FOVLTYPE=KOL6

OVD_SUFFIX=OVD

Document name
displayed by
Windows

I-Control:

DOCUMENT-NAME (=DOC2)

@CBR_DocumentName_D
OC2=<document name
string>

2c. Prints characters in
Impact,

Impact half-size,
Courier New, Courier New
half size.

Impact font PRINTING MODE x

... WITH FONT

{GOTHIC }

{GOTHIC-HANKAKU} ...

 +

CHARACTER TYPE x

@PrinterFontName=
(..., Impact)

Courier New font PRINTING MODE x

... WITH FONT

{MINCHOU }

{MINCHOU-HANKAKU}

...

 +

CHARACTER TYPE x

@PrinterFontName=
(Courier New, ...)

Full size PRINTING MODE x

... BY FORM F ...

 +

CHARACTER TYPE x

Half size PRINTING MODE x

... BY FORM H ...

 +

- 37 -

Task Description Detailed features Controlled by
I-Control field / COBOL clause

Related Environment
Variable(s)

CHARACTER TYPE x

Legal size paper I-Control:

PAPER-SIZE (="XXX")

FCB-NAME (="LPI6")

@PRN_FormName_XXX=L
egal 8 1/2 x 14 in

FCBLPI6=...

Shaded background
(PowerFORM overlay
- KOL6LGLT.OVD)

I-Control:

FOVL-NAME (="LGLT")

FOVL-R (= 1 - to use overlay on

a single page)

FOVLTYPE=KOL6

OVD_SUFFIX=OVD

Document name
displayed by
Windows

I-Control:

DOCUMENT-NAME (=DOC2)

@CBR_DocumentName_D
OC2=<document name
string>

2d. Prints characters in
different form sizes:

Em-size,

en-size, expanded em-
size,

expanded en-size,

tall em-size, tall en-size,
double em-size and

double en-size.

Em-size PRINTING MODE x

... BY FORM F ...

 +

CHARACTER TYPE x

En-size As above with:

... BY FORM H ...

Expanded em-size As above with:

... BY FORM F0201 ...

Expanded en-size As above with:

... BY FORM H0201 ...

Tall em-size As above with:

... BY FORM F0102 ...

Tall en-size As above with:

... BY FORM H0102 ...

Double em-size As above with:

... BY FORM F0202...

Double en-size As above with:

... BY FORM H0202...

Legal size paper I-Control:

PAPER-SIZE (="XXX")

FCB-NAME (="LPI6")

@PRN_FormName_XXX=L
egal 8 1/2 x 14 in

FCBLPI6=...

- 38 -

Task Description Detailed features Controlled by
I-Control field / COBOL clause

Related Environment
Variable(s)

Shaded background
(PowerFORM overlay
- KOL6LGLT.OVD)

I-Control:

FOVL-NAME (="LGLT")

FOVL-R (= 1 - to use overlay on

a single page)

FOVLTYPE=KOL6

OVD_SUFFIX=OVD

Document name
displayed by
Windows

I-Control:

DOCUMENT-NAME (=DOC2)

@CBR_DocumentName_D
OC2=<document name
string>

2e. Prints a mixture of the
above features: font size,
pitch, half/full size
characters.

Files Included in Sample 9

- SAMPLE9.COB (COBOL source program)

- KOL6LGLT.OVD (Form overlay pattern)

- KOL6LT6L.OVD (Form overlay pattern)

- KOL6LT8L.OVD (Form overlay pattern)

- COBOL85.CBR

- MAKEFILE

COBOL Statements Used

The ADD, CLOSE, DISPLAY, IF, MOVE, OPEN, PERFORM, STOP, and WRITE statements are used.

2.9.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample09 project is confirmed by using the "Dependency" view. If there is no sample09 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

- 39 -

3. Select the Sample09 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build project" from the NetCOBOL Studio menu bar when SAMPLE9.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE9.EXE is created.

- 40 -

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The "Run-time Environment Setup Tool" dialog appears.

2. Select Open from the File menu, and select COBOL85.CBR in the SAMPLE09 folder. The window should look like the above figure.

3. Check the setting of environment variable FOVLDIR in the list of environment variables. If it is not set to your location for the
sample09 folder, change it to that value by:

FOVLDIR=.\

a. Selecting FOVLDIR in the environment variable list. "FOVLDIR" will be displayed in the Variable Name field, and its current
setting in the Variable Value field.

b. Use the browse ("...") button to navigate to the sample09 folder, select any file, and click "OK". The path and filename
are returned to the Variable Value field.

c. Delete the last "\" and the file name that follows it from the string in the Variable Value field.

d. Click the Set button to set your change in the Section list of environment variables.

e. Click the Apply button to save your changes to the COBOL85.CBR file.

4. When you have finished reviewing the environment variables, select Exit from the File menu.

Executing the Program

Select the SAMPLE09 project from the "Dependency" view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio
"Run" menu bar.

Execution result

The sample pages described in the table "Features demonstrated in Sample 9" above are printed to the default printer.

- 41 -

2.9.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample09>nmake

Compilation of the sample program is now complete. Verify that SAMPLE9.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information

Same as "2.9.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE9.EXE from a command prompt or from Windows Explorer.

Execution result

Same as "2.9.1 Using NetCOBOL Studio".

2.10 Sample 11: Remote Database Access
Sample 11 extracts data from a database and assigns it to a host variable using the SQL database function.

In normal operation, the database is placed on a server and is accessed by the client via an ODBC driver. A database file is included
with this sample to enable you to use a relational database off-line. This database file, called STOCK.MDB, includes the Microsoft
Access runtime support. It can therefore be used as long as Open Database Connectivity (ODBC) is installed and configured properly.

For more information about using ODBC drivers, refer to "Database (SQL)" in the "NetCOBOL User's Guide", and the relevant
documentation from your database vendor.

To run this sample program in a true distributed configuration, the following products are required:

Client

- ODBC driver manager

- ODBC driver

- Products needed for the ODBC driver

On the server

- Database

 Note

This sample does not function correctly with Microsoft® Access.

- Products needed for accessing the database via ODBC

Overview

The sample program accesses the database on the server and outputs all data stored in the database table "STOCK" to the client
console. When all data has been referenced, the link to the database is disconnected.

Files Included in Sample 11

- SAMPLE11.COB (COBOL source program)

- MAKEFILE

- 42 -

- COBOL85.CBR

COBOL Statements Used

The DISPLAY, IF and PERFORM statements are used.

Embedded SQL statements (embedded exception declarations and CONNECT, DECLARE CURSOR, OPEN, FETCH, CLOSE, ROLLBACK, and
DISCONNECT statements) are also used.

Prerequisite to Executing the Program

ODBC is a defined interface that attempts to provide a highly generic API into any database system that provides compliant drivers.
Just about every database system available today provides ODBC drivers for a variety of platforms.

In order to execute this sample, the DBMS product which can be connected via ODBC is installed in server side and make the table
named STOCK for the database connected by default.

Make the STOCK table in the format as following.

GNO GOODS QOH WHNO

Binary integer

4 digits

Fixed-length character

10 bytes

Binary integer

9 digits

Binary integer

4 digits

Store the data items shown below in the STOCK table.

GNO GOODS QOH WHNO

110

111

123

124

137

138

140

141

200

201

212

215

226

227

240

243

351

380

390

TELEVISION

TELEVISION

REFRIGERATOR

REFRIGERATOR

RADIO

RADIO

CASSETTE DECK

CASSETTE DECK

AIR CONDITIONER

AIR CONDITIONER

TELEVISION

VIDEO

REFRIGERATOR

REFRIGERATOR

CASSETTE DECK

CASSETTE DECK

CASSETTE TAPE

SHAVER

DRIER

85

90

60

75

150

200

120

80

4

15

0

5

8

15

25

14

2500

870

540

2

2

1

1

2

2

2

2

1

1

2

2

1

1

2

2

2

3

3

Then create the ODBC information file using SQLODBCS.EXE.

- 43 -

2.10.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample11 project is confirmed by using the "Dependency" view. If there is no sample11 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

3. Select the Sample11 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE11.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE11.EXE is created.

- 44 -

Setting Runtime Environment Information

1. Start the "Run-time Environment Setup Tool". The "Run-time Environment Setup Tool" dialog appears.

2. Select "Open" from the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE11.EXE).

3. Select the Common tab and enter data as shown below:

- Specify DBMSACS.INF for the environment variable @ODBC_Inf.

4. Click the "Apply" button. The data is saved in the object initialization file.

5. Select "Exit" from the "File" menu to terminate the "Run-time Environment Setup Tool".

Executing the Program

Select the SAMPLE11 project from the "Dependency" view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio
"Run" menu bar.

Execution result

The data extracted from the table is displayed, as shown in the following figure. (Console: SAMPLE11)

no.12:

 Product number = +0227

 Product name = REFRIGERATOR

 Stock quantiry = +00000015

 Warehouse number = +0001

no.13:

 Product number = +0240

 Product name = CASSETTE DECK

 Stock quantiry = +00000025

 Warehouse number = +0002

- 45 -

no.14:

 Product number = +0243

 Product name = CASSETTE DECK

 Stock quantiry = +00000014

 Warehouse number = +0002

no.15:

 Product number = +0351

 Product name = CASSETTE TAPE

 Stock quantiry = +00002500

 Warehouse number = +0002

There are 15 data in total

END OF SESSION

2.10.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample11>nmake

Compilation of the sample program is now complete. Verify that SAMPLE11.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information

Same as "2.10.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE11.EXE from a command prompt or from Windows Explorer.

Execution result

Same as "2.10.1 Using NetCOBOL Studio".

2.11 Sample 12: Remote Database Access (Multiple row processing)
Sample 12 shows how two or more lines in a database can be operated using one SQL statement, demonstrating an example of
advanced usage of the database (SQL) function.

In this example, a database that exists on a server is accessed from a client, via an ODBC driver. For details of database access using
an ODBC driver, refer to "Database (SQL)" in the "NetCOBOL User's Guide".

To use this program, the following products are necessary:

Client

- ODBC driver manager

- ODBC driver

- Products necessary for the ODBC driver

Server

- Database

 Note

This sample does not function correctly with Microsoft® Access.

- 46 -

- Products necessary for database access using ODBC

Overview

Sample 12 uses the STOCK table of the sample database. Refer to "Sample Database" in the "NetCOBOL User's Guide" for details. Sample
12 accesses and disconnects it after the following operation:

- Display of all data items in the database

- Fetch of the GNO value on a row with GOODS value "TELEVISION"

- QOH update on a row with the fetched GNO

- Deletion of lines with GOODS values "RADIO", "SHAVER", and "DRIER"

- Redisplay of all data items in the database

Part of the output result is output to a file by using compiler option SSOUT.

Programs and files in Sample 12

- SAMPLE12.COB (COBOL source program)

- MAKEFILE

- COBOL85.CBR

COBOL functions used in sample 12

- Remote database access

- Project management function

COBOL statements used

The CALL, DISPLAY, IF, and PERFORM statements are used.

Embedded SQL statements (host variable with multiple rows specified, host variable with a table specified, embedded exception
declaration, CONNECT statement, cursor declaration, OPEN statement, FETCH statement, SELECT statement, DELETE statement,
UPDATE statement, CLOSE statement, COMMIT statement, ROLLBACK statement, and DISCONNECT statement) are used.

Prerequisite to Executing the Program

In order to execute this sample, the DBMS product which can be connected via ODBC is installed in server side and make the table
named STOCK for the database connected by default.

Make the STOCK table in the format as following.

GNO GOODS QOH WHNO

Binary integer

4 digits

Fixed-length character

10 bytes

Binary integer

9 digits

Binary integer

4 digits

Store the data items shown below in the STOCK table.

GNO GOODS QOH WHNO

110

111

123

124

137

138

TELEVISION

TELEVISION

REFRIGERATOR

REFRIGERATOR

RADIO

RADIO

85

90

60

75

150

200

2

2

1

1

2

2

- 47 -

GNO GOODS QOH WHNO

140

141

200

201

212

215

226

227

240

243

351

380

390

CASSETTE DECK

CASSETTE DECK

AIR CONDITIONER

AIR CONDITIONER

TELEVISION

VIDEO

REFRIGERATOR

REFRIGERATOR

CASSETTE DECK

CASSETTE DECK

CASSETTE TAPE

SHAVER

DRIER

120

80

4

15

0

5

8

15

25

14

2500

870

540

2

2

1

1

2

2

1

1

2

2

2

3

3

Then create the ODBC information file using SQLODBCS.EXE.

2.11.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample12 project is confirmed by using the "Dependency" view. If there is no sample12 project, import the
project of sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL Studio
workspace".

3. Select the Sample12 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

- 48 -

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE12.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE12.EXE is created.

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The "Run-time Environment Setup Tool" dialog appears.

2. Select "Open" from the File menu and create an object initialization file (COBOL85.CBR) in the folder that contains the executable
program (SAMPLE12.EXE).

3. Select the Common tab and set data as shown below:

- Specify an ODBC information file name in @ODBC_Inf (ODBC information file specification).

- Specify a file to save the DISPLAY statement output result in environment variable RESULT.

4. Click the "Apply" button. The set data is saved in the object initialization file.

5. Select "Exit" from the "File" menu to terminate the run-time environment setup tool.

Executing the Program

Select the SAMPLE12 project from the "Dependency" view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio
"Run" menu bar.

Execution result

The following is displayed in the COBOL console window. (Console: SAMPLE12)

SUCCESSFUL CONNECTION WITH DATABASE.

- 49 -

RECEIVE THE PRODUCT NUMBER WHOSE PRODUCT NAME IS 'TELEVISION'

SET STOCKS OF THE FOLLOWING PROCUCTS DECREASING 10

 TELEVISION -> +0110

 TELEVISION -> +0111

 TELEVISION -> +0212

DELETE THE ROW WHICH HAS PRODUCT NAME IS 'RADIO'. 'SHAVER' OR 'DRIER'.

PROGRAM END

The contents of the STOCK table before and after the operation are output in the format shown below to the file assigned to
environment variable RESULT.

Contents before processing

No.01:

 Product number = +0110

 Product name = TELEVISION

 Stock quantity = +000000085

 Warehouse number = +0002

 :

No.19:

 Product number = +0390

 Product name = DRIVER

 Stock quantity = +000000540

 Warehouse number = +0003

There are 19 data in total.

Contents after processing

No.01:

 Product number = +0110

 Product name = TELEVISION

 Stock quantity = +000000075

 Warehouse number = +0002

 :

No.15:

 Product number = +0351

 Product name = CASSETTE TAPE

 Stock quantity = +000002500

 Warehouse number = +0002

There are 15 data items in total.

2.11.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample12>nmake

Compilation of the sample program is now complete. Verify that SAMPLE12.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information

Same as "2.11.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE12.EXE from a command prompt or from Windows Explorer.

Execution result

Same as "2.11.1 Using NetCOBOL Studio".

- 50 -

2.12 Sample 13: Calling COBOL from Visual Basic
Sample 13 illustrates a COBOL DLL created with NetCOBOL that is called from a Visual Basic® application.

This sample program requires the following:

- Microsoft .NET Framework 4 or later

- Either Visual Basic 2010 or later, or Microsoft Windows SDK 7.1

Overview

At initialization, the Visual Basic application calls a subroutine JMPCINT2 that initializes the COBOL runtime environment, ready for a
call to a COBOL program.

The Visual Basic form shows a simple equation in which the user enters two numbers on either side of a multiply "*" sign and presses
the "="button. The Visual Basic application passes the two values to the COBOL application, which does the multiplication and returns
the result for the Visual Basic code to display.

The Visual Basic application's termination code calls the JMPCINT3 subroutine to close the COBOL runtime environment.

Files Included in Sample 13

- SAMPLE13.COB (COBOL source program)

- VBProj\app.config

- VBProj\AssemblyInfo.vb (Visual Basic Assembly information file)

- VBProj\Sample13.Designer.vb (Visual Basic Designer code file)

- VBProj\Sample13.resX (Visual Basic XM resource file)

- VBProj\sample13.sln (Visual Basic solution file)

- VBProj\Sample13.vb (Visual Basic source code file)

- VBProj\sample13.vbproj (Visual Basic project file)

- MAKEFILE_VB

- MAKEFILE_COBOL

- COBOL85.CBR

Subroutines used in Sample 13

These subroutines are used by Visual Basic to initialize and terminate the COBOL runtime system.

- JMPCINT2

- JMPCINT3

2.12.1 Using NetCOBOL Studio

Compiling and Linking the Visual Basic Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample13>nmake -f MakeFile_VB

Compilation of the sample program is now complete. Verify that SAMPLE13.EXE was created.

In the example above, SAMPLE13.EXE is stored as shown below.

C:\COBOL\Samples\COBOL\SAMPLE13\VBProj\bin\SAMPLE13.EXE

- 51 -

Compiling and Linking the COBOL Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample13 project is confirmed by using the "Dependency" view. If there is no sample13 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

3. Select the Sample13 project from the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE13.DLL is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE13.DLL is created.

Executing the Program

1. Confirm that SAMPLE13.DLL is in a current folder or in the folder set to environment variable PATH.

2. Select the SAMPLE13 project from the "Dependency" view, and then select "Run As" > "COBOL Application" from the NetCOBOL
Studio "Run" menu bar.

The "Executable File Selection" dialog is displayed.

- 52 -

3. Enter the following file as an "Executable file name", and click the "OK" button.

C:\COBOL\Samples\COBOL\SAMPLE13\VBProj\bin\x64\Release\SAMPLE13.EXE

Execution result

1. The simple calculator window used by this application is shown in the following figure.

2. To use this form:

Enter a number (up to 4 digits) in each text box to the left of the "=" button.

Press the "=" button.

3. Visual Basic calls COBOL to perform the calculation and format the answer. Visual Basic then displays the answer to the right
of the "=" button.

2.12.2 Using MAKE file

Compiling and Linking the Visual Basic Program

Same as "2.12.1 Using NetCOBOL Studio".

Compiling and Linking the COBOL Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample13>nmake -f Makefile_COBOL

Compilation of the sample program is now complete. Verify that SAMPLE13.DLL was created in the same folder in which the sample
program is stored.

Executing the Program

Confirm that the SAMPLE13.DLL file is in a current folder or in the folder set to environment variable PATH.

Execute SAMPLE13.EXE from a command prompt or from Windows Explorer.

Execution result

Same as "2.12.1 Using NetCOBOL Studio".

- 53 -

2.13 Sample 14: Visual Basic calling COBOL -Simple ATM Example
Sample 14 demonstrates Visual Basic calling COBOL by using a simple automatic teller machine (ATM) bank account handling
example.

This sample program requires the following:

- Microsoft .NET Framework 4 or later

- Either Visual Basic 2010 or later, or Microsoft Windows SDK 7.1

Overview

This sample program performs the following account functions:

- Opening a new account

- Depositing funds

- Withdrawing funds

The account data, comprising account number, PIN number, name and balance, is saved in an indexed file.

The structure of the indexed file is:

Account number 9(5) *> (This is the primary record key.)

Password 9(4)

Name X(12)

Deposit 9(9)

When functions are requested from the "ATM terminal" (user screens), the record data for the account in the indexed file is updated.

Files Included in Sample 14

- VBProj\app.config

- VBProj\AssemblyInfo.vb (Visual Basic Assembly information file)

- VBProj\Error_h.Designer.vb (Visual Basic Designer code file)
Error message box.

- VBProj\Error_h.resX (Visual Basic XML resource file)
Error message box.

- VBProj\Error_h.vb (Visual Basic source code file)
Error message box.

- VBProj\Nyukin.Designer.vb (Visual Basic Designer code file)
Dialog for performing a deposit.

- VBProj\Nyukin.resX (Visual Basic XML resource file)
Dialog for performing a deposit.

- VBProj\Nyukin.vb (Visual Basic source code file)
Dialog for performing a deposit.

- VBProj\Sample14.sln (Visual Basic solution file)

- VBProj\Sample14.vbproj (Visual Basic project file)

- VBProj\Sample14_bas.vb (Visual Basic standard module)

- VBProj\Sample14_frm.Designer.vb (Visual Basic Designer code file)

- VBProj\Sample14_frm.resX (Visual Basic XML resource file)

- VBProj\Sample14_frm.vb (Visual Basic source code file)

- VBProj\Sele.Designer.vb (Visual Basic Designer code file)
Account-handling dialog - shows account number, name and balance, and offers the withdrawal and deposit functions.

- 54 -

- VBProj\Sele.resX (Visual Basic XML resource file)
Account-handling dialog - shows account number, name and balance, and offers the withdrawal and deposit functions.

- VBProj\Sele.vb (Visual Basic source code file)
Account-handling dialog - shows account number, name and balance, and offers the withdrawal and deposit functions.

- VBProj\Sinki.Designer.vb (Visual Basic Designer code file)
Dialog for opening a new account.

- VBProj\Sinki.resX (Visual Basic XML resource file)
Dialog for opening a new account.

- VBProj\Sinki.vb (Visual Basic source code file)
Dialog for opening a new account.

- VBProj\Sinkichk.Designer.vb (Visual Basic Designer code file)
Displays the assigned account number for a new account.

- VBProj\Sinkichk.resX (Visual Basic XML resource file)
Displays the assigned account number for a new account.

- VBProj\Sinkichk.vb (Visual Basic source code file)
Displays the assigned account number for a new account.

- VBProj\Syukin.Designer.vb (Visual Basic Designer code file)
Dialog for performing a withdrawal.

- VBProj\Syukin.resX (Visual Basic XML resource file)
Dialog for performing a withdrawal.

- VBProj\Syukin.vb (Visual Basic source code file)
Dialog for performing a withdrawal.

- K_KEN.COB (COBOL source program)
Retrieves accounts by account number.

- K_SIN.COB (COBOL source program)
Opens a new account.

- K_NYU.COB (COBOL source program)
Adds money deposited to an account.

- K_SYU.COB (COBOL source program)
Subtracts money withdrawn from an account.

- MAKEFILE_VB
MakeFile for Visual Basic program

- MAKEFILE_COBOL
MakeFile for COBOL Program

- COBOL85.CBR

Processing Overview

The Visual Basic application starts, and subroutine JMPCINT2, which initializes the COBOL runtime system, is called when the main
form is loaded.

The Visual Basic forms manage the interface with the user - accepting input data, transaction requests and displaying output data
and messages. COBOL programs are called to manage the account data in the indexed file.

When the Visual Basic application is closed, it calls subroutine JMPCINT3, which terminates the COBOL runtime.

Figure A.55 shows the structure of the application:

- 55 -

COBOL Statements used in Sample 14

The MOVE, IF, PERFORM, COMPUTE, OPEN, READ, WRITE, REWRITE, CLOSE and EXIT statements are used.

COBOL Runtime System Subroutines

The following routines are used to initialize and terminate the COBOL run-time system.

- JMPCINT2

- JMPCINT3

2.13.1 Using NetCOBOL Studio

Compiling and Linking the Visual Basic Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample14>nmake -f MakeFile_VB

Compilation of the sample program is now complete. Verify that SAMPLE14.EXE was created.

In the example above, SAMPLE14.EXE is stored as shown below.

C:\COBOL\Samples\COBOL\SAMPLE14\VBProj\bin\x64\Release\SAMPLE14.EXE

Compiling and Linking the COBOL Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample14 project is confirmed by using the "Dependency" view. If there is no sample14 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

- 56 -

3. Select the Sample14 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when K_KEN.DLL is not created in "Other Files" (When an
automatic build is not executed).

The project is built, and then K_KEN.DLL is created.

Executing the Program

1. Confirm that K_KEN.DLL is in a current folder or in the folder set to environment variable PATH.

2. Select the SAMPLE14 project from the "Dependency" View, and then select "Run As" > "COBOL Application" from the NetCOBOL
Studio "Run" menu bar.

- 57 -

3. The "Executable File Selection" dialog is displayed.

4. Enter the following file as an "Executable file name", and click the "OK" button.

C:\COBOL\Samples\COBOL\SAMPLE14\VBProj\bin\SAMPLE14.EXE

Execution result

The Sample14 dialog box

1. Click on the "New Account?" button. The New Account Information dialog is displayed.

2. Open a new account. Type in a name (such as Smith), an amount (such as 10000) and a PIN number (such as 1234). Click
the "OK" button.
A dialog displays the assigned account number.

3. To terminate the application, click the "End" button.

The New Account Information dialog box

1. Type in a name, an amount and a PIN number. Click the "OK" button. A new account is made and the account number
assignment dialog box is displayed. If an error occurs, an error dialog box is displayed.

2. To cancel new account creation, click the "Cancel" button.

- 58 -

The Account Number Assignment dialog box

1. Confirm the account number and click the "OK" button.
The Sample14 dialog box is displayed:

The Withdrawal or Deposit dialog box

1. Click the "Withdrawal" button to withdraw.

2. Click the "Deposit" button to deposit.

3. Click the "Cancel" button to interrupt the application.

The Deposit dialog box

1. Type in a deposit amount and click the "OK" button. The Withdrawal or Deposit dialog box is displayed. If an error occurs,
an "ERROR" dialog box is displayed.

2. Click the "Cancel" button to interrupt the application.

- 59 -

The Withdrawal dialog box

1. Type in a withdrawal amount and click the "OK" button. The Withdrawal or Deposit dialog box is displayed. If an error occurs,
an "ERROR" dialog box is displayed.

2. Click the "Cancel" button to interrupt the application.

The ERROR window

1. To confirm the error message, click the "OK" button.

2.13.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample14>nmake -f MakeFile_COBOL

Compilation of the sample program is now complete. Verify that K_KEN.DLL and SAMPLE14.EXE were created in the same folder in
which the sample program is stored.

Executing the Program

Confirm that K_KEN.DLL is in a current folder or in the folder set to environment variable PATH.

Execute SAMPLE14.EXE from a command prompt or from Windows Explorer.

Execution result

Same as "2.13.1 Using NetCOBOL Studio".

2.14 Sample 15: Basic Object-Oriented Programming
This program illustrates basic object-oriented programming functions including encapsulation, object generation and method
invocation.

- 60 -

Overview

In the sample program, three employee objects are generated. After an object has been generated using the "NEW" method, the
"Data-Set" method is invoked to set the data.

Although all of the employee objects have the same form, they have different data (employee numbers, names, departments and
sections, and address information). Address information containing postal codes and addresses also belongs to an object.

Upon input of an employee number on the screen, the appropriate "Data-Display" method in the employee object is invoked, and the
employee information in the object is displayed.

The employee object invokes the "Data-Get" method of the associated address object to acquire the address information.

The employee object consists of three pieces of data and an object reference to an address object. The structure of the object is
transparent to the main program user. However, the user must understand the "Data-Set" and "Data-Display" methods.

The encapsulation of data completely masks the information in the object.

Files Included in Sample 15

- MAIN.COB (COBOL source program)

- MEMBER.COB (COBOL source program)

- ADDRESS.COB (COBOL source program)

- MAKEFILE

- COBOL85.CBR

COBOL Functions used in Sample 15

- Object-oriented programming function

- Class definition (Encapsulation)

- Object generation

- Method invocation

- Project management

Object-Oriented Syntax used in Sample 15

- INVOKE and SET statements

- REPOSITORY paragraph

- Class, object and method definitions

2.14.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample15 project is confirmed by using the "Dependency" view. If there is no sample15 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

- 61 -

3. Select the Sample15 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when MAIN.EXE is not created in "Other Files" (When an
automatic build is not executed).

The project is built, and then MAIN.EXE is created.

Executing the Program

Select SAMPLE15 project from the "Dependency" view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio "Run"
menu bar.

Execution result

Sample 15 requires no special execution environment information to be set.

Please enter the employee number(1 or 2 or 3)

The interface is very basic - simply enter an employee number 1, 2 or 3 to display details for that employee. After the details are
displayed, enter N to terminate or Y to continue.

Please enter the employee number(1 or 2 or 3)

1

NO.---NAME--------------BELONGING---------POST----ADDR--------------------------

0001 James Smith Language group 411-0007 2929 Park Avenue, New York, N

Y

- 62 -

Do you to end?(Y/N)

2.14.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample15>nmake

Compilation of the sample program is now complete. Verify that MAIN.EXE was created in the same folder in which the sample program
is stored.

Executing the Program

Execute MAIN.EXE from a command prompt or from Windows Explorer.

Execution result

Same as "2.14.1 Using NetCOBOL Studio".

2.15 Sample 16: Collection Class (Class Library)
Sample 16 demonstrates the use of a collection class for creating a class library.

This sample can be used to create a class library in an actual program.

This sample covers only the basic operation. An easy-to-use class library can be created by modifying and changing this sample.

Overview

A collection class is the generic name of a class that handles a set of objects — it is used to collectively handle and store many objects.

This sample covers the following classes:

- Collect (Collection)

- Dict (Dictionary)

- List (List)

Class Layers

The following diagram shows the relationships between the class layers in Sample 16.

- 63 -

 Note

In addition to the above classes, Sample 16 also includes the classes BinaryTree-Class, DictionaryNode-Class and ListNode-Class. These
classes, which are used inside the List and Dict classes, are transparent to the collection class user, and are not explained here.

Collect Class

This is the highest collection class. All collection classes inherit this class.

Collect is an abstract class, and does not create any objects.

Since this class inherits the FJBASE class, all the methods defined in the FJBASE class can be used.

Definitions

CLASS-ID. Collect INHERITS FJBASE.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 REPOSITORY.

 CLASS FJBASE.

 OBJECT.

 PROCEDURE DIVISION.

 METHOD-ID. CollectionSize-Get.

 METHOD-ID. FirstElement-Get.

 METHOD-ID. NextElement-Get.

 METHOD-ID. PreviousElement-Get.

 END OBJECT.

 END CLASS Collect.

- 64 -

CollectionSize-Get method

This method ascertains the number of elements in a set.

Parameter

None

Return value

PIC 9(8) BINARY

Returns the number of elements in a set.

FirstElement-Get method

This method returns the first element in a set.

Parameter

None

Return value

USAGE OBJECT REFERENCE

Returns the first element in a set. If no element exists, NULL is returned.

NextElement-Get method

This method returns the element following the one currently pointed to.

Parameter

None

Return value

USAGE OBJECT REFERENCE

Returns the element following the one currently pointed to. If no following element exists, NULL is returned.

PreviousElement-Get method

This method returns the element immediately preceding the one currently pointed to.

Parameter

None

Return value

USAGE OBJECT REFERENCE

Returns the element immediately preceding the one currently pointed to. If no preceding element exists, NULL is returned.

Dict Class

This class has the following features:

- Each element has a key.

- The key value is unique.

- A key can be used for retrieval.

- The key is used for ordering.

Since this class inherits from the Collect class, all the methods defined in Collect can be used as well.

Definitions

CLASS-ID. Dict INHERITS Collect.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

- 65 -

 REPOSITORY.

 CLASS Collect.

 OBJECT.

 PROCEDURE DIVISION.

 METHOD-ID. Element-Get.

 METHOD-ID. Element-PutAt.

 METHOD-ID. FirstKey-Get.

 METHOD-ID. LastKey-Get.

 METHOD-ID. Remove-All.

 METHOD-ID. Remove-At.

 END OBJECT.

 END CLASS Dict.

Element-Get method

This method returns elements for a specified key.

Parameter

Key:

PIC X(10)

Specifies a key value for an element to be returned.

Return value

USAGE OBJECT REFERENCE

Returns an element for a specified key if it is found, and returns NULL if it is not found.

Element-PutAt method

This method adds an element for a specified key. If an element with the same key already exists, it is replaced by the new element.

Parameters

Key:

PIC X(10)

Specifies the key value of the element to be added or replaced.

Element:

USAGE OBJECT REFERENCE

Specifies the element to be added or replaced.

Return value

None

FirstKey-Get method

This method determines the key value for the first element.

Parameter

None

Return value

PIC X(10)

Returns the key value for the first element. If the number of elements is 0, or if the key for the first element is a blank, a blank
is returned.

LastKey-Get method

This method determines the key value for the last element.

- 66 -

Parameter

None

Return value

PIC X(10)

Returns the key value for the last element. If the number of elements is 0, or if the key for the last element is a blank, a blank
is returned.

Remove-All method

This method deletes all elements contained in a set.

Parameter

None

Return value

None

Remove-At method

This method deletes an element for a specified key.

Parameter

Key:

PIC X(10)

Specifies the key value for the element to be deleted.

Return value

None

List Class

This class has the following features:

- Elements are arranged in a certain order.

- Allows duplicate elements.

Since this class inherits from the Collect class, all of the methods defined in the Collect class can be used as well.

Definitions

CLASS-ID. List INHERITS Collect.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 REPOSITORY.

 CLASS Collect.

 OBJECT.

 PROCEDURE DIVISION.

 METHOD-ID. Element-Get.

 METHOD-ID. Element-Insert.

 METHOD-ID. Element-PutAt.

 METHOD-ID. Element-PutLast.

 METHOD-ID. ElementNo-Get.

 METHOD-ID. LastElement-Get.

 METHOD-ID. Remove-All.

 METHOD-ID. Remove-At.

 END OBJECT.

 END CLASS List.

Element-Get method

This method returns the element at a specified location (index).

- 67 -

Parameter

Index:

PIC 9(8) BINARY

Specifies the location of the element to be returned by an integer starting at 1.

Return value

USAGE OBJECT REFERENCE

Returns the specified element. If no element exists at the specified location, NULL is returned.

Element-Insert method

This method adds an element at the specified location (index).

Parameters

Index:

PIC 9(8) BINARY

Specifies the location at which the element is to be added by an integer beginning with 1.

If a value greater than the number of elements plus 1 is specified, no element is added.

Element:

USAGE OBJECT REFERENCE

Specifies the element to be added.

Return value

PIC 9(8) BINARY

Returns the location at which the element was added by an integer beginning with 1. If no element is added, 0 is returned.

Element-PutAt method

This method replaces the element at the specified location (index).

Parameters

Index:

PIC 9(8) BINARY

Specifies the location of the element to be replaced by an integer beginning with 1. If a value greater than the number of
elements is specified, no element is replaced.

Element:

USAGE OBJECT REFERENCE

Specifies the element to be replaced.

Return value

Returns the location of the replaced element using an integer beginning with 1.

If no element has been replaced, 0 is returned.

Element-PutLast method

This method adds an element after the last element.

Parameter

Element:

Specifies the element to be added.

- 68 -

Return value

None

ElementNo-Get method

This method checks the location (index) of a specified element.

Parameter

Element:

Specifies the element whose location is checked.

Return value

PIC 9(8) BINARY

Returns the location of the element using an integer beginning with 1.

If the specified element is not found, 0 is returned.

If duplicate elements exist, the first found location is returned.

LastElement-Get method

This method returns the last element.

Parameter

None

Return value

USAGE OBJECT REFERENCE

Returns the last element. If the number of elements is 0, NULL is returned.

Remove-All method

This method deletes all the elements contained in a set.

Parameter

None

Return value

None

Remove-At method

This method deletes the element at the specified location (index).

Parameter

Index:

PIC 9(8) BINARY

Specifies the location of the element to be deleted using an integer starting at 1. If a value greater than the number of
elements is specified, no element is deleted.

Return value

Returns the location of the deleted element using an integer beginning with 1. If no element has been deleted, 0 is returned.

Programs and Files in Sample 16

- COLLECT.COB (COBOL source program)

- DICT.COB (COBOL source program)

- LIST.COB (COBOL source program)

- BIN_TREE.COB (COBOL source program)

- 69 -

- D_NODE.COB (COBOL source program)

- L_NODE.COB (COBOL source program)

- MAKEFILE

- COBOL85.CBR

COBOL Functions Used in Sample 16

- Object-oriented programming functions

- Class definition (Encapsulation)

- Inheritance

- Object creation

- Method calling

Object-Oriented Syntax used in Sample 16

- INVOKE and SET statements

- Object properties

- Method calling

- REPOSITORY paragraphs

- Class , object and method definitions

2.15.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace made for the sample program. See "Preparing the workspace".

2. The presence of the sample16 project is confirmed by using the "Dependency" view. If there is no sample16 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

- 70 -

3. Select the Sample16 project on the "Dependency" view, and verify that it matches the image below.

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. When compiling terminates, the following files are created. Select "Project"> "Build Project" from the NetCOBOL Studio menu
bar when the following files are not created in "Other Files" (When an automatic build is not executed).

- COLLECT.DLL

- COLLECT.LIB

- COLLECT.REP

- DICT.REP

- 71 -

- LIST.REP

 Note

Some other files are also created, but they are not required when the class library is used.

Using the Class Library

When the sample class library to be used is installed in a program, the following files are required:

For Compiling or Linking

- COLLECT.LIB (Import library)

- COLLECT.REP (Repository library)

- DICT.REP (Repository file)

- LIST.REP (Repository file)

Install the above files to be used into a project that uses the class library.

For Executing

- COLLECT.DLL (DLL file)

2.15.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample16>nmake

When compiling terminates, the following files are created.

- COLLECT.DLL

- COLLECT.LIB

- COLLECT.REP

- DICT.REP

- LIST.REP

 Note

Some other files are also created, but they are not required when the class library is used.

Using the Class Library

When the sample class library to be used is installed in a program, the following files are required:

For Compiling or Linking

- COLLECT.LIB (Import library)

- COLLECT.REP (Repository library)

- DICT.REP (Repository file)

- LIST.REP (Repository file)

- 72 -

Install the above files to be used into a project that uses the class library.

For Executing

- COLLECT.DLL (DLL file)

2.16 Sample 31: Windows System Function Call
Sample 31 demonstrates how to invoke a Windows system function - for this example, a call to create a message box.

Overview

Sample 31 calls the Windows system function "MessageBoxA" to display a message in a message box with YES, NO and Cancel buttons.
(Note that an "A" needs to be appended to the function call when the function call contains a character string parameter and you are
working in ASCII, as opposed to Unicode data, where the suffix is "W".)

The message box returns a value indicating which button was pressed. This value is returned in the data item specified in the
RETURNING phrase.

In a batch file, this return value can be accessed by via ERRORLEVEL, as demonstrated in SAMPLE31.BAT.

@echo off

 set msg=Return the value depending on return code from the MessageBox.

:START

 echo %msg%

 set msg=Selected the "Cancel", Restart again.

 start /w MsgBox.exe

 @rem If return code is over 9999 then call the COBOL program again.

 if errorlevel 9999 goto START

 @rem If return code is over 9 then selected the "No".

 if errorlevel 9 goto NG

 echo Selected the "Yes".

 goto END

:NG

 echo Selected the "No".

:END

set msg=

Files Included in Sample 31

- MSGBOX.COB (COBOL source program)

- MAKEFILE

- SAMPLE31.BAT (Batch file for start)

- COBOL85.CBR

COBOL Statements Used

- Method of calling C program from COBOL program

- Parameter transfer BY VALUE

- RETURNING phrase of CALL statement

- Special register PROGRAM-STATUS (RETURN-CODE)

 Note

- Most Windows system functions (and C routines in general) require that strings be terminated with a null byte (X"00" or LOW-
VALUE). This sample shows how you can place these bytes using reference modification.

- 73 -

- The Windows system function names are case sensitive, so be sure to get the case correct, as in "MessageBoxA". Specify compiler
option "NOALPHAL" or "ALPHAL(WORD)" to ensure that the COBOL system uses mixed case for the function name.

2.16.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample31 project is confirmed by using the "Dependency" view. If there is no sample31 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

3. Select the Sample31 project on the "Dependency" view, and verify that it matches the image below.

4. The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

The properties dialog box is displayed.

5. Link USER32.LIB to use "MessageBoxA" of the Window s system function in this exercise.

To confirm linked libraries, select the SAMPLE31 project from the "Dependency" view, and then select the "Property..." from the
context menu. The "Properties for SAMPLE31" dialog box is displayed.

- 74 -

6. When the "Build" is selected from a left pane, the "Build" page is displayed. And, select "Link Options" tab.

The storage place of USER32.LIB is set as follows. Please change the setting according to the installation environment of Windows
SDK.

C:\Program Files\Microsoft SDKs\Windows\v7.1\Lib\x64\USER32.LIB

7. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when MSGBOX.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then MSGBOX.EXE is created

Executing the Program

1. Open a command prompt, change directories to the SAMPLE31 folder, and execute SAMPLE31.BAT.

c:\NetCOBOL Studio\workspace\SAMPLE31>sample31.bat

Return the value depending on return code from the MessageBox

- 75 -

2. The following message boxes are displayed. Click one of the buttons.

3. The COBOL program detects which button was pressed and indicates such by displaying a message.

c:\NetCOBOL Studio\workspace\SAMPLE31>sample31.bat

Return the value depending on return code from the MessageBox

Selected the "Yes".

c:\NetCOBOL Studio\workspace\SAMPLE31>

When the Cancel button is clicked, the program is executed again.

2.16.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample31>nmake

Compilation of the sample program is now complete. Verify that MSGBOX.EXE was created in the same folder in which the sample
program is stored.

Select "Build Project" on "Project" menu bar of NetCOBOL Studio when MSGBOX.EXE is not created in "Other Files" (When an automatic
build is not executed).

The project is built, and then MSGBOX.EXE is created.

Executing the Program

Same as "2.16.1 Using NetCOBOL Studio".

2.17 Sample 32: Starting Another Program
Sample 32 demonstrates a program that starts another program, waits for the started program to terminate, and receives a completion
code from the started program via inter-program communications.

Overview

When SAMPLE32 is executed, you are prompted for a program to run. If you enter nothing, the program MSGBOX.EXE from the
SAMPLE31 folder is executed. If you specify a program name, you must enter the fully qualified path to the location of the application
(or batch file) to execute.

The Windows system function "CreateProcessA" is called specifying this for the argument, and specified program or batch file is started.

If the specified program is successfully started, SAMPLE32 then waits until the specified program terminates and then receives the
completion code from the started program.

Files Included in Sample 32

- SAMPLE32.COB(COBOL source program)

- MAKEFILE

- 76 -

- COBOL85.CBR

COBOL Statements Used

- Method of calling a C program from COBOL program

- STDCALL call convention

- Parameter transfer in BY VALUE

- RETURNING phrase of CALL statement

- STORED-CHAR-LENGTH function

- Project Manager

Before Executing the Application

- SAMPLE32 uses MSGBOX.EXE from SAMPLE 31; therefore, please build the MSGBOX application prior to executing SAMPLE32.

- In the following screens, SAMPLE06 is also executed; therefore please build SAMPLE06 prior to executing SAMPLE32.

2.17.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample32 project is confirmed by using the "Dependency" view. If there is no sample32 project, import
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

3. Select the Sample32 project on the "Dependency" view, and verify that it matches the image below.

4. The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

5. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE32.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE32.EXE is created.

- 77 -

Executing the Program

1. Execute SAMPLE32.EXE from a command prompt or from Windows Explorer. The following is displayed, waiting for input.

Input the path name that execution program.

(If input no character, then execute the MsgBox.EXE of SAMPLE31)

=>

2. Input the path and filename of an executable program or batch file. The environment variable PATH is not referenced here;
therefore it is necessary to specify a relative path from the SAMPLE32 folder or a fully qualified path name.

3. If nothing is entered, and then MSGBOX.EXE of SAMPLE31 is executed. Press the ENTER key.

4. The completion code of MSGBOX.EXE of SAMPLE31 is displayed, indicating the button that was clicked. In the following screen,
the "No" button was clicked.

Input the path name that execution program.

(If input no character, then execute the MsgBox.EXE of SAMPLE31)

=>

Execute the program ..\SAMPLE31\MSGBOX.EXE

Succeeded in executing program ..\SAMPLE31\MSGBOX.EXE

Return code from ..\SAMPLE31\MSGBOX.EXE is '00000009'.

5. If SAMPLE32 is re-executed and an executable program or batch file name is specified, you are then prompted to enter command
line arguments (if any) for the EXE or BAT file, as shown below.

Input the path name that execution program.

(If input no character, then execute the MsgBox.EXE of SAMPLE31)

=>..\SAMPLE06\SAMPLE6.EXE

Input the command line arguments.

=>

6. SAMPLE06.EXE requires two command line arguments to be specified following the program name.

Input the path name that execution program.

(If input no character, then execute the MsgBox.EXE of SAMPLE31)

=>..\SAMPLE06\SAMPLE6.EXE

Input the command line arguments.

=>20000101 20140101

7. A message indicating that SAMPLE06 has been started is displayed. The system console is opened and the execution result of
SAMPLE06 is output. The completion code of SAMPLE06.EXE is displayed and execution ends.

Input the path name that execution program.

(If input no character, then execute the MsgBox.EXE of SAMPLE31)

=>..\SAMPLE06\SAMPLE6.EXE

Input the command line arguments.

=>20000101 20140101

Execute the program ..\SAMPLE06\SAMPLE6.EXE

Succeeded in executing program ..\SAMPLE06\SAMPLE6.EXE

Return code from ..\SAMPLE06\SAMPLE6.EXE is '00000000'.

2.17.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample32>nmake

- 78 -

Compilation of the sample program is now complete. Verify that SAMPLE32.EXE was created in the same folder in which the sample
program is stored.

Executing the Program

Same as "2.17.1 Using NetCOBOL Studio".

- 79 -

Appendix A Handling of workspace and project
This topic covers the handling of the workspace and the project.

A.1 Default workspace
The default workspace is in the following folder. It is created when NetCOBOL Studio is first started.

My documents folder (*1) \NetCOBOL Studio V11.0.0(x64)\workspace3.4

*1: The "My documents" folder is used to save each user's data. The location of the "My documents" folder varies based on the Windows
OS.

A.2 Setting and switch method of workspace
"Workspace" is a folder that stores various resources of the project made on Eclipse.

The Workspace can be used differently depending on the needs, such as workspace for development, workspace for the investigation,
and workspace for testing.

A.2.1 Setting workspace
The Workspace is set using the "setting operating environment" dialog box according to the following procedures.

1. Select Apps > Fujitsu NetCOBOL V11(x64) > NetCOBOL Studio(x64) from the Start menu.
NetCOBOL Studio Start screen displays.

- 80 -

2. Click the "Setup..." button. The "Setup Configuration" dialog box is displayed.

3. Click the "Add" button. The "Select Folder" dialog box is displayed.

4. Select the folder used as the workspace. A "New folder" is made in the selected folder when the "Make New Folder" button is
clicked. It can be used by changing the name.

Select a folder, and click the "OK" button. In this example, "C:\NetCOBOL Studio\workspace" is set as the new workspace.

- 81 -

5. Click the "Yes" button since the following message box is displayed.

The list of workspaces is displayed in the "Workspace folder name".

6. Select the Workspace, and click the "OK" button.

The "Run" dialog box appears

7. Click the "Runt" button on the "Run" dialog box.

NetCOBOL Studio is started. The Workspace becomes "C:\NetCOBOL Studio\workspace".

 Point

When NetCOBOL Studio starts next time, this setting becomes effective.

A.2.2 Switch of workspace
The Workspace can be switched to another workspace when NetCOBOL Studio is active.

1. Select "File" > "Switch Workspace" > "Other" from the NetCOBOL Studio menu bar.

The "Workspace Launcher" dialog box is displayed. The present workspace is displayed in "workspace".

2. Enter the switched new workspace name for "Workspace" using the full path.

The folder can be selected by using the "Browse" button.

- 82 -

Moreover, when the "Workspace" drop-down button is selected, the history of the workspaces used so far is displayed. The
Workspace can be selected from the list displayed.

3. Click the "OK" button.

NetCOBOL Studio is re-started. The Workspace becomes the specified workspace.

A.3 Importing Project
In the following cases, the projects are imported and used.

- When you want to use a project made with NetCOBOL Studio based on Eclipse 3.4, with NetCOBOL Studio based on Eclipse 3.2.

Use the following method to import an existing project in batch mode.

1. Set the workspace of the copy destination, and start NetCOBOL Studio.

2. Select "File" > "Import" from the NetCOBOL Studio menu bar. The "Import" wizard is started.

- 83 -

3. Select "General" > "Existing projects into Workspace", and click the "Next" button.

4. Select "Select root directory", and click the "Browse" button.

The "Browse For Folder" dialog box is displayed.

5. Select the workspace folder (In this example, C:\Samples) where the project of the copy source is included, and click the "OK"
button.

- 84 -

6. Confirm that the project of the copy source is displayed in the "Project" pane, and click the "Select All" button.

Next, check "Copy projects into workspace", and click the "Finish" button.

- 85 -

The project is copied onto the NetCOBOL Studio workspace .

- 86 -

Index
[Special characters]

@MGPRM... 14

[A]
ACCEPT.. 6,10,24,28
argument... 24

[B]
BY VALUE..73

[C]
CALL... 14
calling.. 51,54,73
CHARACTER TYPE.. 34
class library.. 63
CLOSE.. 8,10
collection class... 63
command line argument..24
COMPUTE..25
CONNECT.. 43

[D]
database access... 42
DECLARE CURSOR..43
DISCONNECT... 43
DISPLAY...6,28
DIVIDE.. 25

[E]
encapsulation..60,70
environment variables... 28

[F]
FCB... 34
FETCH... 43
Forms Control Buffers... 34
FOVLDIR... 41
free format code...14

[I]
I control record... 34
indexed files...7
inheritance...70
INVOKE.. 61,70

[J]
JMPCINT2..51
JMPCINT3..51

[L]
line sequential files..7

[M]
message box.. 73
methods...60

[O]
object... 70
object-oriented programming...60,63
object creation... 70
objects generation... 60
ODBC.. 42
OO COBOL..60,63
OPEN.. 8

[P]
parameter.. 24
printing... 31,34
PRINTING MODE... 34
PRINTING POSITION.. 34

[R]
READ.. 8
REPOSITORY...61,70
RETURNING...73
ROLLBACK...43

[S]
Screen Section.. 10
SET... 61
SQL..42,43
STRING..29
subprogram..13

[V]
Visual Basic.. 54

[W]
Windows function calls...73
WRITE... 8

- 87 -

	Title Page
	Preface
	Contents
	Chapter 1 New Features
	Chapter 2 Sample Programs
	2.1 Advance preparation for using NetCOBOL Studio to execute a sample program
	2.1.1 The basic concept of NetCOBOL Studio
	2.1.2 Advance preparation for using sample
	2.1.3 Notes on using the sample programs

	2.2 Sample 1: Data Processing Using Standard Input-Output
	2.2.1 Using NetCOBOL Studio
	2.2.2 Using the COBOL command and the LINK command
	2.2.3 Using the MAKE command

	2.3 Sample 2: Using Line Sequential and Indexed Files
	2.3.1 Using NetCOBOL Studio
	2.3.2 Using MAKE file

	2.4 Sample 4: Screen Input-Output Using the Screen Section
	2.4.1 Using NetCOBOL Studio
	2.4.2 Using MAKE file

	2.5 Sample 5: Calling COBOL Subprograms
	2.5.1 Using NetCOBOL Studio
	2.5.2 Using MAKE file

	2.6 Sample 6: Receiving a Command Line Argument
	2.6.1 Using NetCOBOL Studio
	2.6.2 Using MAKE file

	2.7 Sample 7: Environment Variable Handling
	2.7.1 Using NetCOBOL Studio
	2.7.2 Using MAKE file

	2.8 Sample 8: Using a Print File
	2.8.1 Using NetCOBOL Studio
	2.8.2 Using MAKE file

	2.9 Sample 9: Using a Print File (Advanced usage)
	2.9.1 Using NetCOBOL Studio
	2.9.2 Using MAKE file

	2.10 Sample 11: Remote Database Access
	2.10.1 Using NetCOBOL Studio
	2.10.2 Using MAKE file

	2.11 Sample 12: Remote Database Access (Multiple row processing)
	2.11.1 Using NetCOBOL Studio
	2.11.2 Using MAKE file

	2.12 Sample 13: Calling COBOL from Visual Basic
	2.12.1 Using NetCOBOL Studio
	2.12.2 Using MAKE file

	2.13 Sample 14: Visual Basic calling COBOL -Simple ATM Example
	2.13.1 Using NetCOBOL Studio
	2.13.2 Using MAKE file

	2.14 Sample 15: Basic Object-Oriented Programming
	2.14.1 Using NetCOBOL Studio
	2.14.2 Using MAKE file

	2.15 Sample 16: Collection Class (Class Library)
	2.15.1 Using NetCOBOL Studio
	2.15.2 Using MAKE file

	2.16 Sample 31: Windows System Function Call
	2.16.1 Using NetCOBOL Studio
	2.16.2 Using MAKE file

	2.17 Sample 32: Starting Another Program
	2.17.1 Using NetCOBOL Studio
	2.17.2 Using MAKE file

	Appendix A Handling of workspace and project
	A.1 Default workspace
	A.2 Setting and switch method of workspace
	A.2.1 Setting workspace
	A.2.2 Switch of workspace

	A.3 Importing Project

	Index

