08
FUJITSU

FUJITSU Software
NetCOBOL V11.0

Getting Started

[Windows (64) |

B1WD-3303-01ENZ0(00)
March 2014

Preface

This manual provides an introduction to NetCOBOL. NetCOBOL provides a full-featured development environment for COBOL programs.
It allows you to develop COBOL programs that also easily integrate with other languages.

The sample programs shipped with NetCOBOL are intended to give an overview of the capabilities of NetCOBOL. Refer to the "NetCOBOL
User's Guide" for further details on using NetCOBOL.
Audience
Prior to using NetCOBOL, it is assumed that you have the following knowledge:
- You have some basic understanding as to how to navigate through and use the Microsoft Windows product on your machine.
- You understand the COBOL language from a development perspective.

- Ifyou plan on using Microsoft's Visual Basic development environment, you have spent some time using Visual Basic to get a feel
for its interface and capabilities.

Product Names

Product Name Abbreviation

Microsoft(R) Windows Server(R) 2012 R2 Datacenter Windows Server 2012 R2
Microsoft(R) Windows Server(R) 2012 R2 Standard
Microsoft(R) Windows Server(R) 2012 R2 Essentials
Microsoft(R) Windows Server(R) 2012 R2 Foundation

Microsoft(R) Windows Server(R) 2012 Datacenter Windows Server 2012
Microsoft(R) Windows Server(R) 2012 Standard
Microsoft(R) Windows Server(R) 2012 Essentials
Microsoft(R) Windows Server(R) 2012 Foundation
Microsoft(R) Windows Server(R) 2008 R2 Standard Windows Server 2008 R2
Microsoft(R) Windows Server(R) 2008 R2 Enterprise

Microsoft(R) Windows Server(R) 2008 R2 Foundation
Microsoft(R) Windows Server(R) 2008 R2 Datacenter

Windows(R) 8.1 Windows 8.1(x64)
Windows(R) 8.1 Pro

Windows(R) 8.1 Enterprise
Windows(R) 8 Windows 8(x64)
Windows(R) 8 Pro

Windows(R) 8 Enterprise

Windows(R) 7 Home Premium Windows 7(x64)
Windows(R) 7 Professional
Windows(R) 7 Enterprise
Windows(R) 7 Ultimate

Oracle Solaris Solaris

Red Hat(R) Enterprise Linux(R) 5(for Intel Itanium) Linux(Itanium)

Red Hat(R) Enterprise Linux(R) 5(for Intel64) 64bit Linux(64)

Product Name

Abbreviation

Microsoft(R) Visual C++(R) development system

Visual C++

Microsoft(R) Visual Basic(R) programming system

Visual Basic

In this manual, the following products are written as "Windows" or "Windows(x64)"

- Windows Server 2012 R2
- Windows Server 2012

- Windows Server 2008 R2
Windows 8.1(x64)
Windows 8(x64)
Windows 7 (x64)

Trademarks

- NetCOBOL is a trademark or registered trademark of Fujitsu Limited or its subsidiaries in the United States or other countries or

in both.

- Microsoft, Windows, Windows Server, Visual Basic, and Visual Studio are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

- Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective

owners. Oracle Solaris is also referred as Solaris, Solaris Operating System, or Solaris OS.

- Other brand and product names are trademarks or registered trademarks of their respective owners.

Export Regulation

Exportation/release of this document may require necessary procedures in accordance with the requlations of the Foreign Exchange
and Foreign Trade Control Law of Japan and/or US export control laws.

The contents of this manual may be revised without prior notice. No part of this document may be reproduced or transmitted in any
form or by any means, electronic or mechanical, for any purpose, without the express written permission of Fujitsu Limited.

March 2014
Copyright 2012-2014 FUJITSU LIMITED

Contents

CNAPEET T INEW FEAEUTES. ...c.eeevtteiieaiiete ettt ettt sttt ettt b ettt bt b b e st a et s e bbb e sttt st b e b e b b e st aea et et e b et ebeben ettt et et et esenens 1
CHAPLET 2 SAMPIE PrOGTEMS......cvviuiiiirieieietcetitrttet ettt eae ettt bbbttt bbbttt st b b bttt st bbb sttt s st et ebebese et st eaebenenen 2
2.1 Advance preparation for using NetCOBOL Studio to execute @ SAMPle Program.......c.cocovueveueueeerererereriererereenereneseeseseseseesessneens 3
2.1.7 The basic concept 0f NEECOBOL SEUGI0. ...c.crurururueieieieireririeietet ettt sttt ettt bbbttt ettt bebene st seaena 3
2.1.2 Advance preparation fOr USING SAMPIE.......c.c.cirririririeieiee ettt ettt ettt ettt ettt ekttt e bbb e ettt anas 3
2.1.3 Notes on USING the SAMPIE PrOGIAIMS.c..eueueueuiueiirirtrteeeteteie ettt bes et se st ae b b eae e et st et ebebese sttt s e st besesene e sesesebenens 5
2.2 Sample 1: Data Processing Using Standard INPUE-OUEPUL........ccoveirirueueueieiieieieieie ettt ettt eneeaeas 5
2.2.1 USING NEECOBOL SEUIO. c.. ettt ettt ettt sttt b et b et b et et e et e b et et e st et e b et ebene st esentesese s enencs 6
2.2.2 Using the COBOL command and the LINK COMMANQ.........ceoiriiiiireiieeee ettt 7
2.2.3 Using the MAKE COMMENG.....c.ccrririiriueiiiineririeteteieites sttt seseatsesest s bbbt sttt st bbbttt st e be b b ettt st st et enebeseaeaeesseasene 7
2.3 Sample 2: Using Line Sequential and INAEXed FlES.........cccvirieueuiuiiinniirieieice ettt sttt et 7
2.3.T USING NEECOBOL SEUAI0 ... cuttiteteteteiieiririetetetet ettt ettt sttt sttt st et b bttt sttt b bttt st bbb e 8
2.3.2 USING MAKE FIlE..ceeeeeeicietetetrs ettt et b et 10
2.4 Sample 4: Screen INput-Output USiNg the SCTEEM SECEION. ...c.covrtiveieueeeiieietrteietete ettt sttt 10
2.4.T USING NEECOBOL SEUTIO ... cututeteteteteeeieeteietetetetet ettt sttt s ettt sebe st e e ee b e b e s e seseae et s et ebebebeseseatae s et et ebesenenentaeaseseee 10
2.54.2 USING MAKE FIlB..e ettt ettt ettt b etk e st bem et e s et e b e s et e b et et e st s eb et et ese s ebentesenensenan 13
2.5 Sample 5: Calling COBOL SUDPTOGIAMS.......cutiieueirieiieteieteieetete et ettt ettt te ettt et e b et et ese e ese e eseneeseseneesenestesenessenens 13
2.5.1 USING NEECOBOL SEUIO. c...vveneteiiieiiieieiiete ettt ettt ettt e et e st e s et s ene e e s anesteneseeseneeseseneesenesseseneeseneesesenssan 16
2.5.2 USING MAKE FIl..ecueuitviiieiirisietet ettt sttt sttt ettt sttt sttt ettt st b b bttt st st ene 24
2.6 Sample 6: Receiving @ COMMANA LiN@ ATGUMENE....c.coururtrueueuiuiiiintririeeeteteteetst st etesebeaeest ettt ebe ettt st bt ebeseaeesteaesebebenenes 24
2.6.1 USING NELCOBOL SEUAIO........vveninceeeeiereteiriiicececieietetes sttt se sttt a et e a e sene 25
2.6.2 USING MAKE FIlE....eeieeeicieieteieir ettt bbb bbbt see 28
2.7 Sample 7: Environment Variable HAaNAING........c.c.eiiiririree ettt 28
2.7.1 USING NEECOBOL SEUIO. ...ttt ettt ettt ettt ettt e b et et e s et e b et ebe e e b et eb et et e st e eneenas 29
2.7.2 USING MAKE FIlB... ettt ettt ettt ettt ettt b et et e s et b e me e e s et e b e st e es et et eme s eb et et es e e esentesenesenan 31
2.8 SAMPIE 8: USING @ PIINE FIlE....ueeeeiieeeeeee ettt ettt et s et a et et a et e s e st st ese e s sene s esenesseneaeseneeee 31
2.8.T USING NELCOBOL SEUAI0 ... cututriirteteteteucietririetetetet ettt ettt bbbttt sttt et b bt sttt bbbt st st ene 31
2.8.2 USING MAKE FilB..cueevtiieiieiirisietet ettt ettt sttt st ettt sttt b b bttt se st ene 33
2.9 Sample 9: Using a Print File (AVANCEA USAGE) ...cueueurueieiririiieieeieieieietets ettt sttt ettt sttt et ea s eaeassssesesenas 34
2.9.1 USING NELCOBOL SEUAIO.vvvrerineeiereeiereteiriiice ettt bttt b ettt e bbb sesene 39
2.9.2 USING MAKE FIlE...eeneeeieieteteirr ettt ettt bbbttt bbbt sae 42
2.10 Sample 11: REMOLE DALADASE ACCESS.vrveueueueuiiiieieie ettt ettt e ettt et be b s e s et et e e s esebebese st et et et eaeaebeseneatessesesesasenenn 42
2.10.7 USING NEECOBOL SEUAIO. ... eueeeiieetiieiei ettt ettt ettt ettt ettt et e et e s et e b et et e s et et e et eb et esene s enenenas L
2.10.2 USING IMAKE FILB... ettt ettt sttt ettt s et et e s et b et e s et e b e st e es et e s ene et es et et eseseseneeseneasenan 46
2.11 Sample 12: Remote Database Access (MUItiple TOW PTOCESSING)...c.cvrvrureeururereeuerririririeaeeeeeieseeeeseseeseseaesesesess s sseseaeesaeseseseses 46
2.171.T USING NEECOBOL SEUAIO ... cutiiieeeteteicietririetetetet sttt ettt sttt ettt sttt sttt b bbbttt sttt b bt sttt ene 48
2.1T.2 USING MAKE IR ..ottt ettt bbb 50
2.12 Sample 13: (alling COBOL fTOM ViSUBI BASICcutrvieieeeieiiiiiiririeieieiee ettt ettt sttt sttt st bbb 51
2.12.T USING NEECOBOL SEUAIO ... tutueetteteteteicietri ettt ettt sttt ettt s ettt st et b ettt et e bt e b sese e b et et ebebesenene e tetene 51
2.12.2 USING MAKE FIlB ..ttt ettt bbb bbbttt 53
2.13 Sample 14: Visual Basic calling COBOL -Simple ATM EXQMIPIE.......coueiririeiieieieieieei ettt 54
2.13.1 USING NEECOBOL SEUAIO. ...ttt ettt ettt ettt s et e st b et e e s et e b et e e e s et ete et ebeeesenessesenenan 56
2.13.2 USING IMAKE FIlB... ettt ettt ettt s et e s e e e s ene e e s et e s en e s es et et ene s es e et esesesensesenesenan 60
2.14 Sample 15: Basic Object-Oriented Programmingc.coeeeeueueueerenerinieiereseenentnerisieresesesesestsesteteseseseesesasse bbb e esesessesesenenencn 60
2.74.1 USING NELCOBOL SEUAI0.vueeeeeeiiereneiriiccececictete sttt eene 61
2.T4.2 USING MAKE IR ..eeeeieicietctrir ettt e bbbt 63
2.15 Sample 16: Collection C1ass (C1ass LIDTATY).......ccoveeererriririieierieieieieisisiesceeeseesesessestsessssesessesese s s esssssssssesesessssssnsassssssesesesnes 63
2.715.T USING NEECOBOL SEUAIO ... tuteetetetetetencietetet ettt ettt ettt ettt s et et b bbb e st e et e b et e b esese e e s et e b et esesenene e aseseee 70
2.15.2 USING IMAKE FILB..eeeeteee ettt b etk b et bbbt b e et e b et et e s et eb et et es et eb et eteneneenan 72
2.16 Sample 31: Windows SyStem FUNCEION Call....c.oveuiiieeiieerie ettt ettt st e s saenene 73

2.716.T USING NEECOBOL SEUAIO. ... cuteuttetetetenceteitetetetet ettt ettt sttt b st ee bt e b e s e s et e et e b et esesese e e s et esebesesenent e eseteee 74

2.160.2 USING IMAKE FILB.. ettt ettt b ek s et b et b et b e e e e b et et e s et e b et et ese s ebeneeteneneenan 76
2.17 Sample 32: Starting ANOENET PTrOGTAM.....ccueuiieieieieieete ettt ettt sttt ae et se e e st st ese e e be e s ene e senenes 76
2.17.1 USING NEECOBOL SEUAIO. ... eueveiieieiiieieeeetete ettt ettt ettt ettt s et st ene e e s et st e s e e sseneeseseneeseneseseneesenessesenenan 77
2.717.2 USING MAKE FIl...eeveiiieiirietetet ettt ettt sttt bbbttt sttt sttt b b sttt sttt ene 78
Appendix A Handling of WOTKSPACe @Nd PrOJECE.......cueuriueuirieieirieieeete ettt ettt ettt ettt b et bbbttt ne b et eaenes 80
AT DEFAUIE WOTKSPACE. ...ttt ettt b et s et b et e s et b em e s e s e e s e st et ese e e s eneaeesent b eneaeeseneebeneseseneeaenenns 80
A.2 Setting and switch Method Of WOTKSPACE.coueuiiiuiieeiiee ettt et 80
A.2.1 SEEEING WOTKSPACE. ...ttt ettt ettt ettt sttt sttt b ettt sttt b bttt st bbbttt st et bebeseaeaen 80
A.2.2 SWILCH OF WOTKSPACE. ... eiuieeeeirieiietete ettt b ettt a et e st b e s e s et eseesese s et esaseserseseneesesessesasensenensnsans 82

A3 TMPOTEING PIOJECL....cviiinieiieiiititctetretete ettt ettt ettt et b et e b s bbbt s bt b et e at s bt e b et et e seenesae s e st enessennen 83
IEX ettt d e H bRt e E b b h Rttt h kb bt sttt h b bttt et et nebene 87

-jv -

IChapter 1 New Features

This chapter provides an outline of the new features included in the latest release.

NetCOBOL

- UTF-32 support
Encoding form UTF-32 can now be used.

- Support for COBOL Resource Projects
A"COBOL resource project" is used for management of the library file and the descriptor file in the NetCOBOL Studio.

- Support for COBOL Solution Projects
A "COBOL solution project" is used for management of multiple projects in the NetCOBOL Studio.

- Project configuration conversion command
Provides the project configuration conversion command as a transfer support tool in order to convert a project in Project Manager
to a project in NetCOBOL Studio.

IChapter 2 Sample Programs

The sample programs shipped with NetCOBOL are intended to give an overview of the capabilities of NetCOBOL. Refer to the "NetCOBOL
Use's Guide" for further details on using NetCOBOL. The following table details the sample programs available with NetCOBOL.
NetCOBOL Sample Programs

- Sample 1
Data Processing Using Standard Input-Output

- Sample 2
Using Line Sequential and Indexed Files

- Sample 4
Screen Input-Output Using the Screen Section

- Sample 5
(alling COBOL Subprograms

- Sample 6
Receiving a Command Line Argument

- Sample 7
Environment Variable Handling

- Sample 8
Using a Print File

- Sample 9
Using a Print File (Advanced usage)

- Sample 11
Remote database access

- Sample 12
Remote database access (multiple row processing)

- Sample 13
Calling COBOL from Visual Basic

- Sample 14
Visual Basic calling COBOL -Simple ATM Example

- Sample 15
Basic Object-Oriented Programming

- Sample 16
Collection Class (Class Library)

- Sample 31
Windows System Function Call

- Sample 32
Starting other programs

Each sample explains the following two methods as a way of operating the exercise program.
- Using NetCOBOL Studio
- Using MAKE file

QIT Note

- When you execute the Sample program by using NetCOBOL Studio, see "2.1 Advance preparation for using NetCOBOL Studio to
execute a sample program".

- When you use MAKE file, use the command prompt beginning with "Start" > "Apps" > "Fujitsu NetCOBOL V11(x64)" > "NetCOBOL
Command Prompt".

2.1 Advance preparation for using NetCOBOL Studio to execute a sample
program

2.1.1 The basic concept of NetCOBOL Studio

Read through "NetCOBOL Studio" in the "NetCOBOL Studio User's Guide" to understand the necessary basic concepts (workspace,
perspective, etc.) for using NetCOBOL Studio.

Moreover, NetCOBOL Studio screen is composed of a window for the editor area and two or more information displays. Refer to "COBOL
perspective", "Editor" or "Debugging perspective" in the "NetCOBOL Studio User's Guide" for an explanation of each window.

Automatic build

Automatic build is turned on by default. It can be toggled off or on by selecting" Project" > "Build Automatically" from the NetCOBOL
Studio menu bar. When it is checked, it is turned on. Refer to "Automatic build" in the "NetCOBOL Studio User's Guide" for details on
automatic build.

Project folder

The project property is stored in a folder. It is saved in the workspace and when the project is imported, the project folder is created
under the workspace folder.

Example: The project folder for SAMPLEOT with a workspace folder of C:\NetCOBOL Studio\workspace:

C:\NetCOBOL Studio\workspace\SAMPLEO1

2.1.2 Advance preparation for using sample

It is necessary to make the project for the sample program in the folder that is called workspace, and then to build, execute, and
debug it using NetCOBOL Studio.

The steps in order are:
1. Prepare the workspace.

2. Import the sample program project into the NetCOBOL Studio workspace.

Preparing the workspace
A "Workspace" is a folder that stores the various resources of the NetCOBOL Studio project.
About making a workspace, see "A.2 Setting and switch method of workspace" for details.

The workspace for this manual is C:\NetCOBOL Studio\workspace.

Importing sample program project into NetCOBOL Studio workspace

The provided sample program projects are imported to the NetCOBOL Studio workspace with the following procedure.

QJT Note

The following steps use "C:\COBOL" as the NetCOBOL Installation folder. Change "C:\COBOL" to the NetCOBOL installation folder.

1. Select "Start" > "Apps" > "Fujitsu NetCOBOL V11(x64)" > "NetCOBOL Studio", and start NetCOBOL Studio.

2. Select "File" > "Import..." from the menu bar. The "Import" wizard is started.

3. Select "General > "Existing Projects into Workspace", and click the "Next" button.

Create new projects from an archive file or directory.

Select an import source:

|tj|pr filter text

4 [= General
IZ, Archive File
|ﬁ Existing Projects into Wml:spacel
[, File System
EE|, Preferences
[» [= Run/Debug
[= Team
B = XML

Einish

4. Select "Select root directory", and click the "Browse..." button. The "Browse For Folder" dialog box is displayed.

5. Select the folder including the project that is the storage location for the COBOL sample program (Here, C:\COBOL\Samples
\COBOL), and click the "OK" button.

6. Confirm the project for the COBOL sample program is displayed in the "Projects" pane, and click the "Select All" button.
7. Check "Copy projects into workspace", and click the "Finish" button.

The projects for the sample programs are imported to the NetCOBOL Studio workspace.

If the "Dependency" view below is not displayed, select "Window" > "Show View" > "Dependency" from the menu bar.

=

i~ COBOL - NetCOBOL Studio{x64) - o IEH
File Edit Naigate Search Project Run Window Help

B e Q Qo A B % Debug | g COBOL

- s
- -

7 Depe 3 B2 Struc | %5 Navig| — O =B

==~

i=F SAMPLED2
= SAMPLEDS
a 25 SAMPLEDS
=% SAMPLEOS_DLL
=% SAMPLEOS_EXE
£ SAMPLEDS_LIB
= SAMPLEDS
=} SAMPLEDT
= SAMPLEDS
=F SAMPLEDS
= SAMPLE11
I SAMPLE12
= SAMPLE13

=F SAMPLE14
=F SAMPLE15
= SAMPLE16
=F SAMPLE3

= SAMPLE3Z

i

= Properties 13 = 0O|/[L problems 12 & Tasks| B Console| 35 Debug =0
Bl = | |0 items

Property Value Description Resource |

2.1.3 Notes on using the sample programs

For each sample program, the NetCOBOL Studio project associated files below are provided.

Please do not edit these project associated files. The application does not run correctly when these files are changed.
- .Settings\org.eclipse.core.resources.prefs
- .CobolOptions

- .project

2.2 Sample 1: Data Processing Using Standard Input-Output

Sample 1 demonstrates using the ACCEPT/DISPLAY function to input and output data. Refer to the "NetCOBOL User's Guide" for details
on how to use the ACCEPT/DISPLAY statements.

Function

Inputs an alphabetic character (lowercase character) from the console window, and outputs a word to the console window beginning
with the input alphabetic character.

Files Included in Sample 1
- SAMPLE1.COB (COBOL source program)
- MAKEFILE
- (OBOL85.CBR

COBOL Statements Used
ACCEPT, DISPLAY, EXIT, IF, and PERFORM statements are used.

2.2.1 Using NetCOBOL Studio

Compiling and Linking the Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample01 project is confirmed by using the "Dependency" view. If there is no sample01 project, import the
sample01 project into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL Studio
workspace".

3. Select the Sample01 project on the "Dependency" view, and verify that it matches the image below.

. Depe if RE Struc| — O

2%

4 1= SAMPLEDT ~
a (Bl Source Files
. 5k Samplel.cob
@2 Linking Files
a (2L Other Files
. [= .settings
| build.xml
COBOLA5.CBR
Makefile
B SAMPLEY.exe
Samplel.OB)
SAMPLET.pdb
Samplel5VD v

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OB)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE1.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE1.EXE is created.

Debugging

Refer to "Creating a COBOL Program" in Chapter 2 of the "NetCOBOL Studio User's Guide" for the sample1 debugging procedure using
the debugging facility of NetCOBOL Studio.

Program execution

Select the SAMPLEO1 project from the "Dependency" view, and then select "Run" > "Run As" > "COBOL Application" from the NetCOBOL
Studio menu bar.

When one alphanumerical character is entered, the first word with that character is displayed.

2.2.2 Using the COBOL command and the LINK command

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample01>COBOL.EXE -M SAMPLE1.COB
C:\COBOL\Samples\COBOL\SampleO1>LINK /0UT:SAMPLE1.EXE SAMPLE1.0BJ F4AGCIMP.LIB LIBCMT.LIB

2.2.3 Using the MAKE command

The sample program can also be compiled and linked using the nmake command.

C:\COBOL\Samples\COBOL\Sample01>nmake

Compilation of the sample program is now complete. Verify that SAMPLE1.EXE was created in the same folder in which the sample
program is stored.

Executing the Program
Execute SAMPLE1.EXE from a command prompt or from Windows Explorer.

Enter a lowercase letter and then press the ENTER key. A word that begins with the input lowercase letter is displayed.

2.3 Sample 2: Using Line Sequential and Indexed Files

Sample 2 demonstrates a program that reads a data file (line sequential file) created with the Editor, and then creates a master file
(indexed file). For details on how to use line sequential files and indexed files, refer to the "NetCOBOL User's Guide".

Overview

Reads a data file (line sequential file) that contains product codes, product names, and unit prices, and creates an indexed file with
the product code as a primary record key and the product name as an alternate record key.

Figure 2.1 Creating an indexed file from a line sequential file

Line sequential file Index file
0123 SCARE 0200 <] 0123 SCARE oz00
0456 BALL-PEN | 0100 <] ‘::> 0456 BALL-PEN | 0100
<]
4 alphanumeric 4 digit number 4 alphanumeric 4 digit number
characters [External decimal] characters [Binary]
i {Primary record key)

40 alphanumeric 40 alphanumetric
characters characters
| <] : Line feed code ‘ (Alternate record key)

Files Included in Sample 2

- SAMPLE2.COB (COBOL source program)

- DATAFILE (Data file)
- MAKEFILE
- (OBOL85.CBR

COBOL Statements Used
The CLOSE, EXIT, GO TO, MOVE, OPEN, READ, and WRITE statements are used.

2.3.1 Using NetCOBOL Studio

Compiling and Linking the Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample02 project is confirmed by using the "Dependency" view. If there is no sample02 project, import the
sample02 project into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL Studio
workspace".

3. Select the Sample02 project on the "Dependency" view, and verify that it matches the image below.

¥ Depe i 5L Struc| — O

2%

4 (2% SAMPLED2 ~
a (Bl Source Files
. EJ:_E] Sampled.cob
@2 Linking Files
4 (L Other Files
. [= .settings
i build.xml
COBOLA5.CBR
Datafile
Malkefile
B SAMPLE2, exe
Sample2.OBJ
SAMPLE2. pdb
Sampled SVD

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OB)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE2.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE2.EXE is created.

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The Run-time Environment Setup Tool dialog appears.

=8 Run-time Environment Setup Tool - =

File Envircnment Help

File Mame
C:AMetCOBOL Studin'wark zpacetSAMPLE02ACOBOLES.CER

Thread Mode

(®) Single Thread () Multi Thread

E nvironment Y ariables

Segtion: Comman | Section

IMFILE =D atafile
OUTFILE=AMASTER

Yariable Mame:

Yariable % alue;

Set Delete Apply

2. Select "Open" from the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE2.EXE).
3. Select the Common tab and enter data as shown below:

- For the file-identifier INFILE, specify the name of the data file (line sequential file) in DATAFILE.

- For the file-identifier OUTFILE, specify the name of master file (indexed file) in MASTER.

INFILE=_\DATAFILE
OUTFILE=.\MASTER

4. 1f MASTER is specified for OUTFILE, input the data and click the "Set" button.

5. Click the "Apply" button. The data is saved in the object initialization file. Select "Exit" from the "File" menu to terminate the
run-time environment setup tool.

;ﬂ Information

INFILE and OUTFILE are the file reference identifiers specified for ASSIGN clauses in COBOL programs. The file reference identifier is
used to associate a COBOL program and an actual file.

Program execution

Select the SAMPLEO2 project from the "Dependency" view, and then select Run" > "Run As" > "COBOL Application" from the NetCOBOL
Studio menu bar.

Execution result
No termination message is displayed.

After execution is complete, an indexed file (MASTER) with a product code as a key is created in the SAMPLEQ2 directory. Use Windows
Explorer or File Manager to verify that the indexed file was created.

Use the COBOL File Utility to confirm that the indexed file (MASTER) was created correctly. The indexed file record can be browsed
using the COBOL File Utility Browsing Records function. Refer to "COBOL File Utility" in the "NetCOBOL User's Guide" for details.

2.3.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample02>nmake

Compilation of the sample program is now complete. Verify that SAMPLE2.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information
Same as "2.3.1 Using NetCOBOL Studio.

Executing the Program

Execute SAMPLE2.EXE from a command prompt or Windows Explorer.

Execution result
Same as "2.3.1 Using NetCOBOL Studio".

2.4 Sample 4: Screen Input-Output Using the Screen Section

Sample 4 demonstrates using the Screen Section (the "screen handling function") to display and accept data. Refer to the "NetCOBOL
User's Guide" for details on how to use the screen handling function.
Overview
When an employee's number and name are written to the screen, the program creates an indexed file with the employee's number
as a primary record key, and the name as an alternate record key.
Files Included in Sample 4
- SAMPLE4.COB (COBOL source program)
- MAKEFILE
- SAMPLE4.KBD (Key definition file)
- COBOL85.CBR

COBOL Statements Used
The ACCEPT, CLOSE, DISPLAY, EXIT, GO TO, IF, MOVE, OPEN, and WRITE statements are used.

2.4.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

-10 -

. The presence of the sample04 project is confirmed by using the "Dependency" view. If there is no sample04 project, import the
sample04 project into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL Studio
workspace".

. Select the Sample04 project on the "Dependency" view and verify that it matches the image below.

X Depe &3 o %E struc) — O

2%

a 2 SAMPLEMM A
a (Bl Source Files
. 5t Sampled.cob

@2 Linking Files
a (L Other Files
- [.=ettings
| build.xml
COBOL25.CBR
Makefile
B SAMPLEL, exe
Sampled.kbd
Sampled.OBJ
SAMPLES. pdb

Sampled SVD

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OB)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE4.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE4.EXE is created.

-11 -

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The Run-time Environment Setup Tool dialog appears.

=8 Run-time Environment Setup Tool - =

File Envircnment Help

File Mame
C:ANetCOBOL StudiodworkspacehSAMPLE 044 COBOLES.CER

Thread Mode
(®) Single Thread () Multi Thread

E nvironment Y ariables

Section; Comman | Section

@CBR_SCR_KEYDEFFILE=A5ampled.kbd
OUTFILE=AMASTER

Yariable Mame:

Yariable % alue;

Set Delete Apply

2. Select "Open" from the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE4.EXE).

3. Select the Common tab and enter data as shown below:

- For the file-identifier OUTFILE, specify the master file name (indexed file) in MASTER.

- For the environment variable @CBR_SCR_KEYDEFFILE, specify SAMPLE4.KBD, which enables the F2 key for use.
4. C(lick the "Apply" button. The data is saved in the object initialization file.

5. Select "Exit" from the "File" menu to terminate the run-time environment setup tool.

Program execution

The SAMPLEO4 project is selected from the "Dependency” view, and then "Run" > "Run As" > "COBOL Application" is selected from the
NetCOBOL Studio menu bar.

Execution result

The screen for entering an employee's number and name is displayed.

-12 -

0 Screen : SAMPLE4 = b

ID-HUMBER: 1618618

HAHE: Jamesf]]

PF2:TERH

Enter an employee's 6 digit number and name (up to 40 alphanumeric characters), and press the ENTER key. The input data is written
to the master file, and the screen is cleared for the input of subsequent data.

To terminate processing, press the F2 key. Use Windows Explorer to confirm that the index file (MASTER) was created in the SAMPLEQ4
directory with the employee number as the main record key and the employee name as the record sub-key.

2.4.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample04>nmake

Compilation of the sample program is now complete. Verify that SAMPLE4.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information
Same as "2.4.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE4.EXE from a command prompt or from Windows Explorer.

Execution result
Same as "2.4.1 Using NetCOBOL Studio".

2.5 Sample 5: Calling COBOL Subprograms

Sample 5 demonstrates an application that calls a subprogram from the main program. Sample 5 was created using free format
source.

213 -

Sample 5 also demonstrates how to pass an argument string to a program and how to display a message box.

;ﬂ Note

- Because NetCOBOL Studio does not support free format, a free format build of the COBOL source program cannot be completed.
In the section entitled "NetCOBOL Studio is used", it explains how to use a COBOL source program in a variable format. "Compiling
and Linking the Program" in free format is explained in "Using MAKE file".

- C:\COBOLis used as the installation destination for NetCOBOL in this sample. Please change C:\COBOL to the folder where NetCOBOL
is installed.

Overview

Reads the contents of the master file (indexed file created in Sample 2), stores the records in a work file whose name is provided in
the @MGPRM environment variable (a way of passing information to a main program's linkage section), and then passes the work
file to a subprogram that prints the records.

The master file stores product codes, product names, and unit prices. The work file name must be specified in the @ MGPRM parameter
at program execution.

Files Included in Sample 5

SAMPLE5.COB (COBOL source program)

S_REC.CBL (COBOL library file)

MAKEFILE

- COBOL85.CBR

INSATSU.COB

When NetCOBOL Studio is used, the following are used. The COBOL source program is a variable format.

- SAMPLEQ5_EXE\SAMPLE5.COB (COBOL source program)

SAMPLEO5_EXE\COBOL85.CBR
SAMPLEO5_DLL\INSATSU.COB
SAMPLEO5_DLL\COBOL85.CBR
SAMPLEOS5_LIB\S_REC.CBL (COBOL library file)

COBOL Statements Used
The CALL, DISPLAY, EXIT, GO TO, MOVE, OPEN, READ, and WRITE statements are used.

Using Free Format in a COBOL Source Program

The following is an example of using free format in a COBOL source program.

14 -

Qn Note

In the above figure, colons are used to denote sections of source code that have been omitted.

In free format, COBOL statements can be written in any character position on the line. Lines beginning with "*>" are treated as
comments.

gn Note

You must specify the SRF compiler option in order to use free format. The SRF compiler option has two parameters; the first specifies
the format for the source program and the second specifies the format of copybooks. All copybooks must have the same format type.
The available types are FIX, for fixed format source, VAR, for variable format source, and FREE, for free format source.

File Interdependence

The following figure shows the relationship between the source files used in Sample 5.

™ Source file —-SAMPLER.COE Library text —-2_RECCEL EE—
IDENTIFICATION DIVISION. | .-~ Record definition of work file
PROGEAM-ID. SAMPLEE. .-
a o
COPY "3 REC". — Souroe file _
) PRINTPRC.COR .
[Read master file] / IDENTIFICATION DIVISEIN.
PROGEAM-ID. PRINTPERC.
[Create work file] / F4

COPY "3 REC".
CALL "PRINTPEC" .. -

i

[Print processingl

-15-

Prerequisite to Executing the Program

The master file created in Sample 2 is used; therefore, execute the program in Sample 2 before executing Sample 5.

2.5.1 Using NetCOBOL Studio

Ln Note

Because NetCOBOL Studio does not support free format, a free format build of the COBOL source program cannot be completed. This
section explains how to use a COBOL source program in a variable format.

Compiling and Linking the Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the SAMPLEQ5, SAMPLEQ5_EXE, SAMPLEO5_DLL and SAMPLEQ5_LIB projects are confirmed by using the
"Dependency" view. If there are no sample05 projects, import projects of sample program to NetCOBOL Studio workspace. See
"Importing sample program project into NetCOBOL Studio workspace".

3. Select Sample05 projects on "Dependency" view, and verify that it matches the image below.

. Depen &3 5L Struct | — O

/B 5

4 &% SAMPLEOS A
4 (% SAMPLED5_DLL
a (Bl Source Files
. Insatsu.cob
@2 Linking Files
a (L Other Files
+ = .settings
£ build.xml
COBOLS5.CBR
IMSATSU.dII
IMSATSU. exp
IMSATSLU.lib
Insatsu.JE)
IMNSATSU. pdb
Insatsu.5YD
4 (2% SAMPLED3_EXE
a (Bl Source Files
. 5 5ampleS.cob
. @2 Linking Files
a (L Other Files
- [settings
£ build.xml
COBOL85.CBR
5_rec.chl
(87 SAMPLES. exe
Samples. OBl
SAMPLES.pdb
Samples.5VD
a [EE SAMPLEDS_LIB
5_rec.chl W

-16 -

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

. Build setting of solution project
Set a project common option to the build page of the SAMPLEQ5 solution project.
Here, set compile option LIB as a common option.

a. Select the SAMPLEQ5 projects on "Dependency" view, and chosen the property from the context menu. The Property dialog
box is displayed.

b. Select the "Build" on the left pane, the "Build" page is displayed. Select the "Compiler Options" tab, confirm the content
of the option.

= Properties for SAMPLEDS = =
type filter text Build (=T =1
Resource . :
Build Compiler Options | Library Names| Linker Options
Build Tools Compiler options:
Builders CHECK(ALL)
sl gl s] LIB(../SAMPLEO3 LIB)
Refactoring History T
Remote Development
Run/Debug Settings Remove
Target
Task Tags
The CHECK{ALL) compile eption is autematically added when the build mode is Debug.
Other compiler options:
@ 0K Cancel

Here, confirm the storage folder of S_REC.CBL is specified for compiler option LIB, and click "OK" button.

-17 -

5. Build setting of sub program and main program

Display the build page of the SAMPLEO5_DLL project and the SAMPLEO5_EXE project.

|typefi|terten‘t Build

T I []Enable project specific settings I

i Build Tools Compiler Options | Library Names | Linker Options|
Builders

Project References Compiler options:

Refactoring History BHECK(ALW) Add..

Remaote Development SRE(VAR,VAR)
Run/Debug Settings TAB(4) Change...
Target
Task Tags Bemove

[+ The CHECK(ALL) compile option is automatically added when the build mode is Debug.

Dther compiler options:

"Enable project specific settings" dose not check.

6. The library reference in the main program

The main program links library file (INSATSU.lib). This library file is output from the SAMPLEQ5_DLL project. Confirm "INSATSU.lib"
is added to the link file of the SAMPLEQO5_EXE project on the "Dependency" view.

(R ¥ st)

ro @ BEsEE
L]

4 2% SAMPLEOS_EXE
a (Bl Source Files
i 5if SampleS.cob
4 @2 Linking Files
INSATSU.ib - /../SAMPLEQ5_DLL | v
=

-18 -

7. Build of solution project
Select the SAMPLEQS project, and chosen the "Rebuild Project" from the context menu.
The solution project is built, and then SAMPLE5.EXE is created.

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The Run-time Environment Setup Tool dialog appears.

=8 Run-time Environment Setup Tool - O

File Envircnment Help

File Mame
C:AMetCOBOL StudicworkspacehSAaMPLEQNS EXENCOEOLES.CER

Thread Mode
(®) Single Thread () Multi Thread

E rviranment Y ariables

Sectian: Common | 5ection

@ GPRM=zampleh
IMFILE=_"SAMPLE 02\MASTER

Yariable Mame:

ariable Y alue:

Set Delete Apply

2. Select "Open" on the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE5.EXE).
When the build is done from NetCOBOL Studio, the executable program is made for the SAMPLEO5_EXE project folder.
The content of the initialization file for execution is displayed.

3. Select the Common tab and enter data as shown below:

- For the file-identifier INFILE, specify the path name of the master file (MASTER) created in Sample 2.

INFILE=. .\SAMPLEO2\MASTER

A relative path is a path relative to the current folder.
When you select the "Run" > "Run As" > "COBOL Application", the current folder is a project folder.

- Specify a work file name in the @ MIGPRM parameter. The string in this parameter is passed to the first linkage section item
in the executing program. The work file name can contain up to 8 alphanumeric characters. The extension "TMP" is added
to the work file name before the file is created.

4. C(lick the "Apply" button. The data is saved in the object initialization file.

5. Select "Exit" from the "File" menu to terminate the run-time environment setup tool.

-19-

Executing the Program
This sample program makes the executable file of the dynamic linking structure. Itis necessary to add the storage folder of the dynamic

link library (DLL) to environment variable PATH when the DLL is not in the same folder of executable file (EXE) because the DLL of

sub-program is loaded by dynamic linker of the system.
It explains the method of setting environment variable information with NetCOBOL Studio.

1. Select SAMPLEOS5_EXE project from the "Dependency" view, and then select "Run Configurations..." from the NetCOBOL Studio

"Run" menu bar.
The "Run Configurations" dialog boxes are displayed.

== Run Configurations El
Create, manage. and run configurations ;—;
=+l —
| = s Configure launch settings from this dialog:
type filter text “ - Press the 'New' button to create a configuration of the selected type.

; @J COBOL Application =| - Press the 'Duplicate’ button to copy the selected configuration.
5] Java Applet
77 Java Application 3 - Press the 'Delete’ button to remove the selected configuration.
Ju JUnit o - Press the 'Filter’ button to configure filtering options.

- Edit or view an existing configuration by selecting it

Ceonfigure launch perspective settings from the Perspectives preference page.

Filter matched 7 of 7 items

Run Close

-20-

2. Select "COBOL Application” on left pane, and then click "New" (| ') button.

SAMPLEO5_EXE" is displayed in the name of a right pane, and the configuration information at execution time is displayed.

Create. manage. and run configurations
Create a configuration to launch a COBOL application.

CEX B3~
|tj,rpeﬁltertmrt |

Name: | SAMPLEDS_EXE

m@ Euurcﬂ B Emilunmenﬂ = Qummun}

4 ¢ COBOL Applicatio

b SAMPLEDS_EX

] Java Applet Project name: | SAMPLEDS_EXE || Browse..|

3] Java Application
Ju JUnit

Executable File: | ChAMNetCOBOL Studiu"l.wml:space\SAMPLEﬂﬁ_E}'| Browse...

Working folder | CAMNetCOBOL Studiu\wurkspace\SAMPLEﬂS_Eﬂ | Browse... |

Program arguments: | |

< >
Filter matched 5 of 5 items

@

-21-

3. Select an "Environment" from a right pane.

Create. manaqge. and run confiqurations

Create a configuration to launch a COBOL application.

- B s -
CEX|E 3P| yme | SAMPLEDS_EXE

© Min | Source |7 Environment ., = Common|

Environment variables to set:

|tj,rpe filter text |

4 &b COBOL Applicatio

& SAMPLEDS_EX

] Java Applet Variable Value Mew...
3] Java Application

Ju JUnit

Select...

Edit...

Remove

(@ Apnend environment to native environment

£ >
Apply
Filter matched 5 of 5 items

@

4. Here, the storage folder of INSATSU.DLL is added to environment variable Path. First of all, click the "Select..." button.

The dialog box of the "Select Environment Variables" is displayed.

Select environment variables to add:

] F§ PUBLIC [C:\Users\Public] L]
ﬁil’ath [C:\Program Files\Fujitsu NetCOBOL for \
] ﬁProgramData [&\ProgramData]

| ﬁP‘rogramFiIE[ChProgram Files (x86)]

] ﬁProgramFiIal[xBﬁ]l [&\Program Files (x86)]

] ﬁProgramWﬁdEE[C:MProgram Files |

] ﬁﬂeg COBInstDir [HKEY_LOCAL_MACHIMEYSOF]

1 P2 ReaCOBRTSInstDir [C:\Proaram Files\Commar ¥
£ >

Select Al || DeselectAll |

-22-

5. Check "Path" environment variable, and click "OK" button.

"Path" is added to the "Environment variables to set".

Create. manage. and run configurations

Create a configuration to launch a COBOL application.

CEX| B3~

Name: | SAMPLEDS_EXE

© Main [/ Source [Environment ., 5 Common|

Environment variables to set:

|tj,rpe filter text |

¢ COBOL Applicatio
& SAMPLEDS_EX
=] Java Applet Variable Value MNew...

(3] Java Application ® path C:\Program Files\Fujitsu...
. Select...
Ju JUnit

Edit...

Remowve

(®) Append environment to native environment

(") Replace native environment with specified environment

£ >
Apply

Filter matched 5 of 5 items

When the "Replace native environment with specified environment" is checked and the following procedure is progressed, the
application cannot be correctly executed.

Check the "Append environment to native environment".

1. Select "Path" from "Environment" tab, and click the "Edit..." button.

The "Edit Environment Variable" dialog box is displayed.

Mame: | Path|

Value: | OL Studio\workspace\SAMPLEOS DLL| | Variables..

Add the storage folder of SAMPLEQ5_DLL project to "Value", and then click the "OK" button.

-23-

2. (lick "Apply" button of "Environment" tab. The environmental setting of execution time is completed.
3. Click "Run" button.
SAMPLES.EXE is executed.

Execution result

The message "GENERATE WORK-FILE=sample5.TMP" is displayed. Confirm the message contents, and close the message box by clicking
"0K" button.

When the program execution ends, master file is printed to the printer which is set as "Set as default printer ".

2.5.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

c:\COBOL\Samples\COBOL\Sample05>nmake

Compilation of the sample program is now complete. Verify that SAMPLES5.EXE and INSATSU.DLL were created in the same folder in
which the sample program is stored.

Setting Runtime Environment Information
Same as "2.5.1 Using NetCOBOL Studio".

Executing the Program
Execute SAMPLES.EXE from a command prompt or from Windows Explorer.

The message "GENERATE WORK-FILE=sample5.TMP" is displayed. Confirm the contents, and then click the OK button to close the
message box.

The master file contents are written to the default printer at the completion of program execution.

Execution result
Same as "2.5.1 Using NetCOBOL Studio".

2.6 Sample 6: Receiving a Command Line Argument

Sample 6 demonstrates a program that receives an argument specified at program execution, using the command line argument
handling function (ACCEPT FROM argument-name/argument-value). Refer to "Using ACCEPT and DISPLAY Statements" in the
"NetCOBOL User's Guide" for details on how to use the command line argument handling function.

Sample 6 also calls an internal program.

Overview

The sample program calculates the number of days from the start date to the end date. The start and end dates are specified as
command arguments in the following format:

command-name start-date end-date

start-date, end-date:

Specify a year, month, and day between January 1, 1900 and December 31, 2172 in the YYYYMMDD format.

Files Included in Sample 6
- SAMPLE6.COB (COBOL source program)
- MAKEFILE

-2 -

- (OBOL85.CBR

COBOL Statements Used
The ACCEPT, CALL, COMPUTE, COPY, DISPLAY, DIVIDE, EXIT, GO TO, IF, MOVE, and PERFORM statements are used.

2.6.1 Using NetCOBOL Studio

Compiling and Linking the Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample06 project is confirmed by using the "Dependency" view. If there is no sample06 project, import the
sample06 project into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL Studio
workspace".

3. Select the Sample06 project on the "Dependency" view, and verify that it matches the image below.

X Depen &3 §L Struct | — O

2%

. A
a (Bl Source Files
. ™ Samplef.cob
@2 Linking Files
a (L Other Files
. [= .settings
| build.xml
COBOLS5.CBR
Makefile
B SAMPLEG.exe
Samplet.OB)
SAMPLEG.pdb
SampleB.5VD W

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

1. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE6.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE6.EXE is created.

Executing the Program

1. Select the SAMPLEO6 project from the "Dependency” view, and then select "Run Configurations..." from the NetCOBOL Studio
"Run" menu bar.

The "Run Configurations" dialog boxes are displayed.

-25-

2. Select "COBOL Application” on the left pane, and then click the "New" (|) button.

SAMPLEOG is displayed in the name of the right pane, and the configuration information at execution time is displayed.

Create. manage. and run configurations

Create a configuration to launch a COBOL application.

CExX| B3R~
|tj,rpeﬁltertmrt |

4 ¢y COBOL Application
&b SAMPLEDS
] Java Applet Project name: | SAMPLEDE | | Browse... |
2 Java Application
Ju Unit

Name: | SAMPLEOG

M_‘Ep Euurctq /=) Emrirunmenﬂ == Qommunw

Evecutable Filer | CANetCOBOL Studio\workspace\SAN Browse..

Working folder. | C:\NetCOBOL Studio\workspace\SAN | Browse...

Program arguments | |

£ >
Filter matched 5 of 3 items

@

-26-

3. Select the "Main" tab, and then enter the start-date and end-date for "Program arguments".

S Run Configurations “
Create, manage. and run confiqurations
Create a configuration to launch a COBOL application. @
NS -
AMERINCE Name: | SAMPLEOG
type filter text -
| | f@ Main - B~ EUUFCEW =} Environmenﬂ =] Qommorﬂ
&% COBOL Application
& SAMPLEOG
4] Java Applet Project name: | SAMPLEDR | |Erowse... |
3] Java Application _ .
Ju JUnit Executable File: | CAMNetCOBOL Studlo\workspace"ﬁhﬂ Browse...
Working folder: | ChMNetCOBOL 5tudio\workspace\5hf’-| | Browse... |
Program arguments: | 20000101 20140101| |
< * | Apply | | Revert |
Filter matched 5 of 5 items
@ | Eun | | Close

Example of program argument

20000101 20140101

4. C(lick the "Apply" button, and then click the "Run" button.
SAMPLEQS is started.

Execution result
The output destination of the DISPLAY statement is system console for this sample program.

Days from January 1, 2000 to January 1, 2014 are displayed as follows.

-,

/E_(, Problems (@ Tasks (E Console 23 X %| SN 5E|I§I|I¥|“ gl = A i U S
<terminated> SAMPLEDE_1 [COBOL Application] C\MetCOBOL Studic‘\workspace\SAMPLEDE\ SAMPLEE. exe
DIFFERENCE OF DAYS IS5 +05114

-27 -

2 See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

Refer to "Definition of the target" in the "NetCOBOL Studio User's Guide" when you want to make the output destination of the DISPLAY
statement COBOL console.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

2.6.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample06>nmake

Compilation of the sample program is now complete. Verify that SAMPLE6.EXE was created in the same folder in which the sample
program is stored.

Executing the Program

Execute "SAMPLEG6.EXE start-date end-date" from a command prompt or from Windows Explorer.

C:\COBOL\Samples\COBOL\Sample06>SAMPLE6.EXE 20000101 20140101

Execution Result

Sample 6 displays the number of days from the specified start date to the specified end date.

C:\COBOL\Samples\COBOL\Sample06>SAMPLE6.EXE 20000101 20140101
DIFFERENCE OF DAYS IS +05114

C:\COBOL\Samples\COBOL\Sample06>

2.7 Sample 7: Environment Variable Handling

Sample 7 demonstrates a program that changes the value of an environment variable during COBOL program execution, using the
environment variable handling function (ACCEPT FROM/DISPLAY UPON environment-name/environment-value). Refer to "Using
ACCEPT and DISPLAY Statements" in the "NetCOBOL User's Guide" for details on how to use the environment variable handling function.

Overview

The sample program divides a master file (the indexed file created in Sample 2) that contains product codes, product names, and
unit prices into two master files according to product codes. The following table shows the division method and the names of the two
new master files:

Table 2.1 Division of the master files

Product Code File Name
Code beginning with 0 master-file-name.A
Code beginning with a non-zero value master-file-name.B

Files Included in Sample 7
- SAMPLE7.COB (COBOL source program)
- MAKEFILE
- (OBOL85.CBR

-28 -

COBOL Statements Used

The ACCEPT, CLOSE, DISPLAY, EXIT, GO TO, IF, OPEN, READ, STRING, and WRITE statements are used.

2.7.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample07 project is confirmed by using the "Dependency" view. If there is no sample07 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL

Studio workspace".

3. Select the Sample07 project on the "Dependency" view, and verify that it matches the image below.

L Depen &3 . BE Struct
| = B

o
4 SAMPLEDT

a (Bl Source Files
. 5tf) Sample7.cob
@2 Linking Files
a (L Other Files
. [= .settings
B build.xml
COBOL85.CEBR
Makefile
B SAMPLET, exe
Sample?. OB)
SAMPLET. pdb
Sample?.5VD

= O

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OB)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE7.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE7.EXE is created.

-29.-

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The Run-time Environment Setup Tool dialog appears.

=8 Run-time Environment Setup Tool - =

File Envircnment Help

File Mame
C:A\MetCOBOL Studic'workspacetSAMPLEDFSWCOBOLES.CER

Thread Mode
(®) Single Thread () Multi Thread
E nvironment Y ariables

Section:; Common | Section

IMFILE=A\SaMPLEOZNMASTER

Yariable Mame:

Yariable * alue;

Set [elete Apply

2. Select "Open" from the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE7.EXE).

3. Select the Common tab and enter data as shown below:

- For the file-identifier INFILE, specify the path name of the master file (MASTER) created in Sample 2.

INFILE=. .\SAMPLEO2\MASTER

4. Click the "Apply" button. The data is saved in the object initialization file.

5. Select "Exit" from the "File" menu to terminate the run-time environment setup tool.

Executing the Program

Select SAMPLEQ7 project from the "Dependency” view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio "Run"
menu bar.

;;1 Note

Execute the program in Sample 2 beforehand.
Execution result

The following two files are created in the directory of the master file created in Sample 2:

- MASTER.A: Stores the data of products whose codes begin with 0.

-30-

- MASTER.B: Stores the data of products whose codes begin with a non-zero value.

The contents of the newly created master files (MASTER.A and MASTER.B) can be checked with the program in Sample 5 in the same
manner as for the master file created in Sample 2.

2.7.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample07>nmake

Compilation of the sample program is now complete. Verify that SAMPLE7.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information
Same as "2.7.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE7.EXE from a command prompt or from Windows Explorer.

gn Note

Execute the program in Sample 2 beforehand.

Execution result
Same as "2.7.1 Using NetCOBOL Studio".

2.8 Sample 8: Using a Print File

Sample 8 demonstrates a program that outputs data (input from the console window) to a printer using a print file. Refer to "Printing"
in the "NetCOBOL User's Guide" for details on using a print file.

Overview

The sample program inputs data of up to 40 alphanumeric characters from the console window, and outputs the data to the printer.

Files Included in Sample 8
- SAMPLES.COB (COBOL source program)
- MAKEFILE
- COBOL85.CBR

COBOL Statements Used
The ACCEPT, CLOSE, EXIT, GO TO, IF, OPEN, and WRITE statements are used.

2.8.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

-31-

2. The presence of the sample08 project is confirmed by using the "Dependency" view. If there is no sample08 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

3. Select the Sample08 project on the "Dependency" view, and verify that it matches the image below.

X Depen 3 - %L Struct | T O

2%

4 SAMPLEDS A

a (Bl Source Files
: E@ Sampled.cob

@2 Linking Files
4 (L Other Files
. [= .settings
| build.xml
COBOLS5.CBR
Makefile
B-| SAMPLES. exe
Sampled. OB)
SAMPLEZ.pdb
Sampled.5VD v

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OB)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4, Select "Project" > "Build project" from the NetCOBOL Studio menu bar when SAMPLE8.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE8.EXE is created.

Executing the Program

Select the SAMPLEOQ8 project from the "Dependency" view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio
"Run" menu bar.

Execution result

A console window is displayed. In the console window, enter the data to be printed. Up to 40 characters can be entered at a time.

-32-

0 Console : SAMPLES = B

1234567890123456789012345678901234567890 A
abcd
3636363636 363636 3 363636 365 Y P L E B 36 36 36-36-36-36.36. 36 36 36 36 36 36 36 36 36 6 3 36 3
FEHD
W

To terminate the program, press the RETURN key, type /END and press the RETURN key again. Click the "OK" button to close the
message window.

The input data is written to the printer at program termination.

1234 567890123456 739012 345678901 234 567830
abhied

FTEEEEE AT L SAI.IPLE 8*1.' FEEEEET T LT T AL AL

_///

2.8.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample08>nmake

Compilation of the sample program is now complete. Verify that SAMPLE8.EXE was created in the same folder in which the sample
program is stored.

Executing the Program

Execute SAMPLES.EXE from a command prompt or from Windows Explorer.

-33-

Execution result
Same as "2.8.1 Using NetCOBOL Studio".

2.9 Sample 9: Using a Print File (Advanced usage)

Sample 9 demonstrates the following:

- Using a print file without a FORMAT clause

Using the I control record to set and change page forms, in combination with Forms Control Buffers (FCBs)
- Using the CHARACTER TYPE clause to control letter size and pitch
- Using the PRINTING POSITION clause to control the layout (line / column)

Refer to "Printing" in the "NetCOBOL User's Guide" for details on using "print file 1" and "print file 2".

Overview

The table below describes each of the tasks performed by this sample. The tasks show a number of printing features. There are
essentially four elements that give you control over the various printing features:

1. COBOL syntax

- PRINTING MODE clauses in the SPECIAL-NAMES paragraph.

- ASSIGN TO PRINTER in the SELECT statement.

- CHARACTER TYPE and PRINTING POSITION clauses in data definitions.
2. The I-Control Record

A record that you write to the print file using the syntax:
"CTL IS page-cntl" in SPECIAL-NAMES

and

WRITE I-Control-Record AFTER ADVANCING page-cntl

3. Forms Control Buffers (FCBs)

These are form information buffers stored by the COBOL runtime system, using information defined in environment variables
of the form "FCBxxxx=".

4. Environment variables
Environment variables define fonts, FCBs, document names and other printing details.

The table below indicates which of the above are used to provide a particular feature. You will need to read the table, inspect the
COBOL code, and consult the chapter on "Printing" in the "NetCOBOL User's Guide" to fully understand all of the features being
demonstrated.

Table 2.2 Features demonstrated in Sample 9

Task Description Detailed features Controlled by Related Environment
I-Control field / COBOL clause Variable(s)

1a. Prints a page at 6 LPI, | 6 LPI - defined in FCB | 1-Control : FCBLT6L=...
10 CPl on a PowerFORM
overlay grid FCB-NAME (="LT6L")

10 CPI PRINTING MODE X ... AT PITCH ...

+
CHARACTER TYPE x
Letter size paper 1-Control:

234 -

Task Description

Detailed features

Controlled by
I-Control field / COBOL clause

Related Environment
Variable(s)

PAPER-SIZE (="LTR"™)

Impact font

PRINTING MODE x

. WITH FONT GOTHIC ...

CHARACTER TYPE x

@PrinterFontName=
(-.., Impact)

Courier New font

PRINTING MODE x

. WITH FONT MINCHOU ...

CHARACTER TYPE x

@PrinterFontName=
(Courier New, ...)

Grid (PowerFORM
overlay -
KOL6LT6L.0VD)

1-Control:
FOVL-NAME (="LT6L"™)

FOVL-R (= 1 - to use overlay on
a single page)

FOVLTYPE=KOL6
OVD_SUFFIX=0VD

Data item position
within line

PRINTING POSITION

Different character
type forms

PRINTING MODE x

. FORM ...

CHARACTER TYPE Xx

Document name
displayed by
Windows

1-Control:

DOCUMENT-NAME (=DOC1)

@(BR_DocumentName_D
0C1=<document name
string>

1b. Prints a page at 8 LPI,
10 CPI on a PowerFORM
overlay grid

8 LPI - defined in FCB

1-Control:

FCB-NAME (="LT8L")

FCBLT8L=...

10 CPI

PRINTING MODE x ...

CHARACTER TYPE x

AT PITCH ...

Letter size paper

1-Control:

PAPER-SIZE (="LTR")

Impact font

PRINTING MODE x

- WITH FONT GOTHIC ...

CHARACTER TYPE x

@PrinterFontName=
(..., Impact)

-35-

Task Description

Detailed features

Controlled by

|-Control field / COBOL clause

Related Environment
Variable(s)

Courier New font

PRINTING MODE x

- WITH FONT MINCHOU ...

CHARACTER TYPE Xx

@PrinterFontName=
(Courier New, ...)

Grid (PowerFORM
overlay -
KOL6LT8L.0VD)

1-Control:

FOVL-NAME (="LT8L"™)

FOVL-R (= 1 - to use overlay on

a single page)

FOVLTYPE=KOL6
OVD_SUFFIX=0VD

Data item position
within line

PRINTING POSITION

Different character
type forms

PRINTING MODE x

. FORM ...

CHARACTER TYPE X

2a. Prints letters in font
sizes 3,7.2,9,12,18, 24,
36, 50, 72, 100, 200, and
300 points. On legal-
sized paper

(After printing a header
page)

The COBOL runtime
system automatically
calculates the best
character pitch fitted to
the character size
(character pitch
specification is omitted).

Document name
displayed by
Windows

1-Control:

DOCUMENT-NAME (=D0OC1)

@(CBR_DocumentName_D
0C1=<document name
string>

Different font sizes

PRINTING MODE x

. IN SIZE nn POINT ...

CHARACTER TYPE x

Legal size paper

1-Control:
PAPER-SIZE (="XXX")

FCB-NAME (="LP16')

@PRN_FormName_XXX=L
egal 81/2x 14in

FCBLPI6=...

Impact font

Default - Gothic font

@PrinterFontName=
(..., Impact)

Shaded background
(PowerFORM overlay
- KOL6LGLT.OVD)

1-Control:

FOVL-NAME (="LGLT'™)

FOVL-R (= 1 - to use overlay on

a single page)

FOVLTYPE=KOL6
OVD_SUFFIX=0VD

Document name
displayed by
Windows

1-Control:

DOCUMENT-NAME (=DOC2)

@(BR_DocumentName_D
0C2=<document name
string>

2b. Prints characters at
pitches 1, 2, 3,5, 6, 7.5,
20, and 24 CPI.

Different pitches

PRINTING MODE x

. AT PITCH n CPI ...

-36 -

Task Description

Detailed features

Controlled by

|-Control field / COBOL clause

Related Environment
Variable(s)

The COBOL runtime
system automatically
calculates the best
character size fitted to
the character pitch (the
character size
specification is omitted).

+

CHARACTER TYPE x

Legal size paper

1-Control:
PAPER-SIZE (="XXX'™)

FCB-NAME (="LP16')

@PRN_FormName_XXX=L
egal 8 172 x 14in

FCBLPI6=...

Impact font

Default - Gothic font

@PrinterFontName=
(..., Impact)

Shaded background
(PowerFORM overlay
- KOL6LGLT.0VD)

1-Control:

FOVL-NAME (="LGLT")

FOVL-R (= 1 - to use overlay on

a single page)

FOVLTYPE=KOL6
OVD_SUFFIX=0VD

Document name

1-Control:

@(BR_DocumentName_D

displayed by 0(2=<document name
Windows DOCUMENT-NAME (=DOC2) string>
2c. Prints characters in Impact font PRINTING MODE x @PrinterFontName=

Impact,

Impact half-size,
Courier New, Courier New
half size.

. WITH FONT
{GOTHIC

{GOTHIC-HANKAKU} ...

+

CHARACTER TYPE x

(..., Impact)

Courier New font

PRINTING MODE x

. WITH FONT
{MINCHOU

{MINCHOU-HANKAKU}

CHARACTER TYPE Xx

@PrinterFontName=
(Courier New, ...)

Full size PRINTING MODE x
. BY FORM F ...
+

CHARACTER TYPE x

Half size PRINTING MODE x

. BY FORM H ...

-37-

Task Description

Detailed features

Controlled by

|-Control field / COBOL clause

Related Environment
Variable(s)

CHARACTER TYPE Xx

Legal size paper

1-Control:
PAPER-SIZE (="XXX'™)

FCB-NAME (="LPI16™)

@PRN_FormName_XXX=L
egal 8 1/2x 14in

FCBLPI6=...

Shaded background
(PowerFORM overlay
- KOL6LGLT.0VD)

I1-Control:

FOVL-NAME (="LGLT'™)

FOVL-R (= 1 - to use overlay on

a single page)

FOVLTYPE=KOL6
OVD_SUFFIX=0VD

Document name I-Control - @(CBR_DocumentName_D
displayed by 0(2=<document name
Windows DOCUMENT-NAME (=DOC2) string>

2d. Prints characters in Em-size PRINTING MODE x

different form sizes:

) . BY FORM F ...

Em-size,

en-size, expanded em- *

SIze, CHARACTER TYPE x

expanded en-size, -
En-size As above with:

tall em-size, tall en-size,
double em-size and

double en-size.

. BY FORM H ...

Expanded em-size

As above with:

. BY FORM F0201 ...

Expanded en-size

As above with:

. BY FORM HO201 ...

Tall em-size As above with:
. BY FORM FO0102 ...
Tall en-size As above with:

. BY FORM HO102 ...

Double em-size

As above with:

. BY FORM F0202...

Double en-size

As above with:

. BY FORM HO0202...

Legal size paper

1-Control:
PAPER-SIZE (="XXX")

FCB-NAME (="LP16')

@PRN_FormName_XXX=L
egal 81/2x 14in

FCBLPI6=...

-38-

Task Description Detailed features Controlled by Related Environment

I-Control field / COBOL clause Variable(s)

Shaded background 1-Control : FOVLTYPE=KOL6
(PowerFORM overlay ~
-KOL6LGLT.OVD) | FOVL-NAME (="LGLT") OVD_SUFFIX=0VD

FOVL-R (= 1 - to use overlay on

a single page)
Document name I-Control - @(CBR_DocumentName_D
displayed by 0(2=<document name
Windows DOCUMENT-NAME (=DOC2) string>

2e. Prints a mixture of the
above features: font size,
pitch, half/full size
characters.

Files Included in Sample 9
SAMPLE9.COB (COBOL source program)
KOL6LGLT.OVD (Form overlay pattern)

KOL6LT6L.OVD (Form overlay pattern)

KOL6LT8L.OVD (Form overlay pattern)

(OBOL85.CBR

MAKEFILE

COBOL Statements Used
The ADD, CLOSE, DISPLAY, IF, MOVE, OPEN, PERFORM, STOP, and WRITE statements are used.

2.9.1 Using NetCOBOL Studio

Compiling and Linking the Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sampleQ9 project is confirmed by using the "Dependency" view. If there is no sample09 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

-39-

3. Select the Sample09 project on the "Dependency" view, and verify that it matches the image below.

. Depen i3 5L Struct | — O
d|BE
y A
a (Bl Source Files
: EJ:_E] Sampled.cob
@2 Linking Files
4 (L Other Files
+ [== .settings
& build.xml
|£ COBOLA5.CBR
g Kolélglt.ovd
B Kol6ltél.ovd
B Kol6ltsl.ovd
|=| Makefile
[m7] SAMPLES. exe
|| Sample9.0B)
SAMPLES.pdb
Sampled.5VD b

=l

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OB)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build project" from the NetCOBOL Studio menu bar when SAMPLE9.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE9.EXE is created.

- 40 -

Setting Runtime Environment Information

1. Start "Run-time Environment Setup Tool". The "Run-time Environment Setup Tool" dialog appears.

=8 Run-time Environment Setup Tool - =

File Envircnment Help

File Mame
C:AMetCOBOL Studin'wark zpacetSAMPLEONCOBOLES.CER

Thread Mode
(®) Single Thread () Multi Thread

E nvironment Y ariables

Section; Comman | Section

[@PrinterF ontM ame=[Courier Mew Impac A
[@PRMN_FormM ame_#<=Legal

“ariable Mame: FCBDFLT =LPI[[E.66].CH1[4]).5IZE[110)

- FCELPIE=LPI[[E]L.CHT[2].51ZE[30]
FCELTEL=LPI[[E]L.CHT[1],FORMILT Lar

v FCELTEL=LPI[[3].CH1[1],FORRM[LT LAt
FOWLDIR=C:ACOBOLMSAMPLESSCOBL
ariable Yalue: FOVLTYPE=KOLE

0D _SUFFL<=0vD b
< b3

Set Delete Apply

2. Select Open from the File menu, and select COBOL85.CBR in the SAMPLEQ9 folder. The window should look like the above figure.

3. Check the setting of environment variable FOVLDIR in the list of environment variables. If it is not set to your location for the
sample09 folder, change it to that value by:

FOVLDIR=_\

a. Selecting FOVLDIR in the environment variable list. "FOVLDIR" will be displayed in the Variable Name field, and its current
setting in the Variable Value field.

b. Use the browse ("...") button to navigate to the sample09 folder, select any file, and click "OK". The path and filename
are returned to the Variable Value field.

C. Delete the last "\" and the file name that follows it from the string in the Variable Value field.
d. Click the Set button to set your change in the Section list of environment variables.
e. (lick the Apply button to save your changes to the COBOL85.CBR file.

4. When you have finished reviewing the environment variables, select Exit from the File menu.

Executing the Program

Select the SAMPLEQ9 project from the "Dependency” view, and then select "Run As" > "COBOL Application” from the NetCOBOL Studio
"Run" menu bar.

Execution result

The sample pages described in the table "Features demonstrated in Sample 9" above are printed to the default printer.

-4 -

2.9.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample09>nmake

Compilation of the sample program is now complete. Verify that SAMPLE9.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information
Same as "2.9.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE9.EXE from a command prompt or from Windows Explorer.

Execution result
Same as "2.9.1 Using NetCOBOL Studio".

2.10 Sample 11: Remote Database Access

Sample 11 extracts data from a database and assigns it to a host variable using the SQL database function.

In normal operation, the database is placed on a server and is accessed by the client via an ODBC driver. A database file is included
with this sample to enable you to use a relational database off-line. This database file, called STOCK.MDB, includes the Microsoft
Access runtime support. It can therefore be used as long as Open Database Connectivity (ODBC) is installed and configured properly.

For more information about using ODBC drivers, refer to "Database (SQL)" in the "NetCOBOL User's Guide", and the relevant
documentation from your database vendor.

To run this sample program in a true distributed configuration, the following products are required:
Client

- ODBC driver manager

- ODBC driver

- Products needed for the ODBC driver
On the server

- Database

QJ] Note

This sample does not function correctly with Microsoft® Access.
- Products needed for accessing the database via ODBC

Overview
The sample program accesses the database on the server and outputs all data stored in the database table "STOCK" to the client
console. When all data has been referenced, the link to the database is disconnected.
Files Included in Sample 11
- SAMPLE11.COB (COBOL source program)
- MAKEFILE

-4 -

- (OBOL85.CBR

COBOL Statements Used
The DISPLAY, IF and PERFORM statements are used.

Embedded SQL statements (embedded exception declarations and CONNECT, DECLARE CURSOR, OPEN, FETCH, CLOSE, ROLLBACK, and
DISCONNECT statements) are also used.

Prerequisite to Executing the Program

ODBC is a defined interface that attempts to provide a highly generic APl into any database system that provides compliant drivers.
Just about every database system available today provides ODBC drivers for a variety of platforms.

In order to execute this sample, the DBMS product which can be connected via ODBC is installed in server side and make the table
named STOCK for the database connected by default.

Make the STOCK table in the format as following.

GNO GOODS QOH WHNO
Binary integer Fixed-length character Binary integer Binary integer
4 digits 10 bytes 9 digits 4 digits
Store the data items shown below in the STOCK table.
GNO GOODS QOH WHNO

110 TELEVISION 85 2

111 TELEVISION 90 2

123 REFRIGERATOR 60 1

124 REFRIGERATOR 75 1

137 RADIO 150 2

138 RADIO 200 2

140 CASSETTE DECK 120 2

141 CASSETTE DECK 80 2

200 AIR CONDITIONER 4 1

201 AIR CONDITIONER 15 1

212 TELEVISION 0 2

215 VIDEO 5 2

226 REFRIGERATOR 8 1

227 REFRIGERATOR 15 1

240 CASSETTE DECK 25 2

243 CASSETTE DECK 14 2

351 CASSETTE TAPE 2500 2

380 SHAVER 870 3

390 DRIER 540 3

Then create the ODBC information file using SQLODBCS.EXE.

-S43 -

2.10.1 Using NetCOBOL Studio

Compiling and Linking the Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample11 project is confirmed by using the "Dependency" view. If there is no sample11 project, import the

project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

3. Select the Sample11 project on the "Dependency" view, and verify that it matches the image below.

X Depen 3 - %L Struct | T O

2%

4 12 SAMPLE11 A
4 (Bl Source Files
. 5t Samplel.cob
@2 Linking Files
a (L Other Files
- = .settings
| build.xml
COBOL25.CER
Makefile
B SAMPLE1.exe
Samplel1.0B)
SAMPLEN.pdb
Samplel1.5VD W

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OB)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4, Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE11.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE11.EXE is created.

- Lty -

Setting Runtime Environment Information

1. Start the "Run-time Environment Setup Tool". The "Run-time Environment Setup Tool" dialog appears.

=8 Run-time Environment Setup Tool - =

File Envircnment Help

File Mame
C:AMetCOBOL Studin'wark zpacetSAMPLET1MCOBOLES.CER

Thread Mode
(®) Single Thread () Multi Thread

E nvironment Y ariables

Section; Comman | Section

Yariable Mame:

Yariable % alue;

Set Delete Apply

2. Select"Open" from the "File" menu and select COBOL85.CBR in the folder that contains the executable program (SAMPLE11.EXE).
3. Select the Common tab and enter data as shown below:

- Specify DBMSACS.INF for the environment variable @0DBC_Inf.
4. C(lick the "Apply" button. The data is saved in the object initialization file.

5. Select "Exit" from the "File" menu to terminate the "Run-time Environment Setup Tool".

Executing the Program

Select the SAMPLET1 project from the "Dependency” view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio
"Run" menu bar.

Execution result

The data extracted from the table is displayed, as shown in the following figure. (Console: SAMPLE11)

no.12:

Product number = +0227

Product name = REFRIGERATOR
Stock quantiry = +00000015
Warehouse number = +0001

no.13:

Product number = +0240

Product name = CASSETTE DECK
Stock quantiry = +00000025
Warehouse number = +0002

- 45 -

no.14:

Product number = +0243

Product name = CASSETTE DECK
Stock quantiry = +00000014
Warehouse number = +0002
no.15:

Product number = +0351

Product name = CASSETTE TAPE
Stock quantiry = +00002500
Warehouse number = +0002
There are 15 data in total

END OF SESSION

2.10.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Samplell>nmake

Compilation of the sample program is now complete. Verify that SAMPLE11.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information
Same as "2.10.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE11.EXE from a command prompt or from Windows Explorer.
Execution result

Same as "2.10.1 Using NetCOBOL Studio".

2.11 Sample 12: Remote Database Access (Multiple row processing)

Sample 12 shows how two or more lines in a database can be operated using one SQL statement, demonstrating an example of
advanced usage of the database (SQL) function.

In this example, a database that exists on a server is accessed from a client, via an ODBC driver. For details of database access using
an ODBC driver, refer to "Database (SQL)" in the "NetCOBOL User's Guide".

To use this program, the following products are necessary:
Client

- ODBC driver manager

- ODBCdriver

- Products necessary for the ODBC driver
Server

- Database

QJT Note

This sample does not function correctly with Microsoft® Access.

- 46 -

- Products necessary for database access using 0DBC

Overview

Sample 12 uses the STOCK table of the sample database. Refer to "Sample Database" in the "NetCOBOL User's Guide" for details. Sample
12 accesses and disconnects it after the following operation:

- Display of all data items in the database

Fetch of the GNO value on a row with GOODS value "TELEVISION"

QOH update on a row with the fetched GNO
- Deletion of lines with GOODS values "RADIO", "SHAVER", and "DRIER"
- Redisplay of all data items in the database

Part of the output result is output to a file by using compiler option SSOUT.

Programs and files in Sample 12
- SAMPLE12.COB (COBOL source program)
- MAKEFILE
- COBOL85.CBR

COBOL functions used in sample 12
- Remote database access

- Project management function

COBOL statements used
The CALL, DISPLAY, IF, and PERFORM statements are used.

Embedded SQL statements (host variable with multiple rows specified, host variable with a table specified, embedded exception
declaration, CONNECT statement, cursor declaration, OPEN statement, FETCH statement, SELECT statement, DELETE statement,
UPDATE statement, CLOSE statement, COMMIT statement, ROLLBACK statement, and DISCONNECT statement) are used.

Prerequisite to Executing the Program

In order to execute this sample, the DBMS product which can be connected via ODBC is installed in server side and make the table
named STOCK for the database connected by default.

Make the STOCK table in the format as following.

- 47 -

GNO GOODS QOH WHNO
Binary integer Fixed-length character Binary integer Binary integer
4 digits 10 bytes 9 digits 4 digits
Store the data items shown below in the STOCK table.

GNO GOODS QOH WHNO
110 TELEVISION 85
11 TELEVISION 90
123 REFRIGERATOR 60
124 REFRIGERATOR 75
137 RADIO 150
138 RADIO 200

GNO GOODS QOH WHNO
140 CASSETTE DECK 120 2
141 CASSETTE DECK 80 2
200 AIR CONDITIONER 4 1
201 AIR CONDITIONER 15 1
212 TELEVISION 0 2
215 VIDEO 5 2
226 REFRIGERATOR 8 1
227 REFRIGERATOR 15 1
240 CASSETTE DECK 25 2
243 CASSETTE DECK 14 2
351 CASSETTE TAPE 2500 2
380 SHAVER 870 3
390 DRIER 540 3

Then create the ODBC information file using SQLODBCS.EXE.

2.11.1 Using NetCOBOL Studio

Compiling and Linking the Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample12 project is confirmed by using the "Dependency" view. If there is no sample12 project, import the
project of sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL Studio
workspace".

3. Select the Sample12 project on the "Dependency" view, and verify that it matches the image below.

¥ Depen i3 5L Struct | — O

BE%

y A
a (Bl Source Files
s EJ:_E] Sampleld.cob
@2 Linking Files
4 (L Other Files
. [= .settings
| build.xml
COBOL85.CER
Makefile
B SAMPLE12.exe
Samplel2.0BJ
SAMPLE12.pdb
Samplel2.5VD b

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OB)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

S48 -

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE12.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE12.EXE is created.

Setting Runtime Environment Information
1. Start "Run-time Environment Setup Tool". The "Run-time Environment Setup Tool" dialog appears.

2. Select"Open" from the File menu and create an object initialization file (COBOL85.CBR) in the folder that contains the executable
program (SAMPLE12.EXE).

=4 Run-time Environment Setup Tool - =

File Environment Help

File Mame
C:AMetCOBOL Studic'workspacetSAMPLET 2ACOBOLES.CER

Thread Mode
(®) Single Thread () Multi Thread

E nvironment Y ariables

Section: Comman | Section

RESULT=ARESULT.TT

Yariable Marme:

" ariable ' alue:

Set Delete Apply

3. Select the Common tab and set data as shown below:
- Specify an ODBC information file name in @0DBC_Inf (ODBC information file specification).
- Specify a file to save the DISPLAY statement output result in environment variable RESULT.
4. C(lick the "Apply" button. The set data is saved in the object initialization file.

5. Select "Exit" from the "File" menu to terminate the run-time environment setup tool.

Executing the Program

Select the SAMPLE12 project from the "Dependency" view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio
"Run" menu bar.

Execution result

The following is displayed in the COBOL console window. (Console: SAMPLE12)

SUCCESSFUL CONNECTION WITH DATABASE.

- 49 -

RECEIVE THE PRODUCT NUMBER WHOSE PRODUCT NAME 1S “TELEVISION®
SET STOCKS OF THE FOLLOWING PROCUCTS DECREASING 10
TELEVISION -> +0110
TELEVISION -> +0111
TELEVISION -> +0212
DELETE THE ROW WHICH HAS PRODUCT NAME 1S *RADIO". *“SHAVER®" OR "DRIER".

PROGRAM END

The contents of the STOCK table before and after the operation are output in the format shown below to the file assigned to
environment variable RESULT.

Contents before processing

No.01:
Product number = +0110
Product name = TELEVISION
Stock quantity = +000000085
Warehouse number = +0002

No.19:
Product number = +0390
Product name = DRIVER
Stock quantity = +000000540
Warehouse number = +0003

There are 19 data in total.
Contents after processing

No.01:
Product number = +0110
Product name = TELEVISION
Stock quantity = +000000075
Warehouse number = +0002

No.15:
Product number = +0351
Product name = CASSETTE TAPE
Stock quantity = +000002500

Warehouse number = +0002
There are 15 data items in total.

2.11.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Samplel2>nmake

Compilation of the sample program is now complete. Verify that SAMPLE12.EXE was created in the same folder in which the sample
program is stored.

Setting Runtime Environment Information
Same as "2.11.1 Using NetCOBOL Studio".

Executing the Program

Execute SAMPLE12.EXE from a command prompt or from Windows Explorer.

Execution result
Same as "2.11.1 Using NetCOBOL Studio".

-50-

2.12 Sample 13: Calling COBOL from Visual Basic

Sample 13 illustrates a COBOL DLL created with NetCOBOL that is called from a Visual Basic® application.

This sample program requires the following:
- Microsoft .NET Framework & or later

- Either Visual Basic 2010 or later, or Microsoft Windows SDK 7.1

Overview

At initialization, the Visual Basic application calls a subroutine JMPCINT2 that initializes the COBOL runtime environment, ready for a
call to a COBOL program.

The Visual Basic form shows a simple equation in which the user enters two numbers on either side of a multiply "*" sign and presses
the "="button. The Visual Basic application passes the two values to the COBOL application, which does the multiplication and returns
the result for the Visual Basic code to display.

The Visual Basic application's termination code calls the JMPCINT3 subroutine to close the COBOL runtime environment.

Files Included in Sample 13
- SAMPLE13.COB (COBOL source program)
- VBProj\app.config
- VBProj\Assemblylnfo.vb (Visual Basic Assembly information file)
- VBProj\Sample13.Designer.vb (Visual Basic Designer code file)
- VBProj\Sample13.resX (Visual Basic XM resource file)
- VBProj\sample13.sIn (Visual Basic solution file)
- VBProj\Sample13.vb (Visual Basic source code file)
- VBProj\sample13.vbproj (Visual Basic project file)
- MAKEFILE_VB
- MAKEFILE_COBOL
- COBOL85.CBR

Subroutines used in Sample 13
These subroutines are used by Visual Basic to initialize and terminate the COBOL runtime system.
- JMPCINT2
- JMPCINT3

2.12.1 Using NetCOBOL Studio

Compiling and Linking the Visual Basic Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Samplel3>nmake -f MakeFile_VB

Compilation of the sample program is now complete. Verify that SAMPLE13.EXE was created.

In the example above, SAMPLE13.EXE is stored as shown below.

C:\COBOL\Samples\COBOL\SAMPLE13\VBProj\bin\SAMPLE13.EXE

.51 -

Compiling and Linking the COBOL Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample13 project is confirmed by using the "Dependency" view. If there is no sample13 project, import the

project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

3. Select the Sample13 project from the "Dependency" view, and verify that it matches the image below.

¥ Depen 3 - RE Struct | T O
2| B%
[SAwpLErS A
4 (Bl Source Files
: Samplel3.cob
@2 Linking Files
4 (L Other Files
+ [= settings
> [VBProj
] build.xml
COBOL25.CER
Makefile_COBOL
Makefile_VE
SAMPLE13.dll
SAMPLET3. exp
SAMPLE13.lib
Samplel13.0B)
SAMPLE13.pdb
Samplel3.5V0 W

=

=l

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE13.DLL is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE13.DLL is created.

Executing the Program
1. Confirm that SAMPLE13.DLL is in a current folder or in the folder set to environment variable PATH.

2. Select the SAMPLE13 project from the "Dependency” view, and then select "Run As" > "COBOL Application" from the NetCOBOL
Studio "Run" menu bar.

The "Executable File Selection" dialog is displayed.

E Executable File Selection H

Specify the executable file name for invoking the application

Executable file name: || Browse...

0] Cancel

-52-

3. Enter the following file as an "Executable file name", and click the "OK" button.

C:\COBOL\Samples\COBOL\SAMPLE13\VBProj\bin\x64\Release\SAMPLE13_EXE

Execution result

1. The simple calculator window used by this application is shown in the following figure.

o Sample 13

| * = | |

Clear ‘

Enter 2 numbers of 4 digits or less. Click on the = button to call
the COBOL DLL that calculates the result. The result will be
displayed to the right.

End

2. To use this form:
Enter a number (up to 4 digits) in each text box to the left of the "=" button.
Press the "=" button.

3. Visual Basic calls COBOL to perform the calculation and format the answer. Visual Basic then displays the answer to the right
of the "=" button.

2.12.2 Using MAKE file

Compiling and Linking the Visual Basic Program
Same as "2.12.1 Using NetCOBOL Studio".

Compiling and Linking the COBOL Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Samplel3>nmake -f Makefile_COBOL

Compilation of the sample program is now complete. Verify that SAMPLE13.DLL was created in the same folder in which the sample
program is stored.

Executing the Program
Confirm that the SAMPLE13.DLL file is in a current folder or in the folder set to environment variable PATH.

Execute SAMPLE13.EXE from a command prompt or from Windows Explorer.

Execution result
Same as "2.12.1 Using NetCOBOL Studio".

-53-

2.13 Sample 14: Visual Basic calling COBOL -Simple ATM Example

Sample 14 demonstrates Visual Basic calling COBOL by using a simple automatic teller machine (ATM) bank account handling
example.

This sample program requires the following:
- Microsoft .NET Framework & or later

- Either Visual Basic 2010 or later, or Microsoft Windows SDK 7.1

Overview
This sample program performs the following account functions:
- Opening a new account
- Depositing funds
- Withdrawing funds
The account data, comprising account number, PIN number, name and balance, is saved in an indexed file.

The structure of the indexed file is:

Account number 9(5) *> (This is the primary record key.)

Password 9(4)
Name X(12)
Deposit 9(9)

When functions are requested from the "ATM terminal" (user screens), the record data for the account in the indexed file is updated.

Files Included in Sample 14
- VBProj\app.config
- VBProj\AssemblylInfo.vb (Visual Basic Assembly information file)

- VBProj\Error_h.Designer.vb (Visual Basic Designer code file)
Error message box.

- VBProj\Error_h.resX (Visual Basic XML resource file)
Error message box.

- VBProj\Error_h.vb (Visual Basic source code file)
Error message box.

- VBProj\Nyukin.Designer.vb (Visual Basic Designer code file)
Dialog for performing a deposit.

- VBProj\Nyukin.resX (Visual Basic XML resource file)
Dialog for performing a deposit.

- VBProj\Nyukin.vb (Visual Basic source code file)
Dialog for performing a deposit.

- VBProj\Samplel4.sin (Visual Basic solution file)

- VBProj\Sample14.vbproj (Visual Basic project file)

- VBProj\Sample14_bas.vb (Visual Basic standard module)

- VBProj\Sample14_frm.Designer.vb (Visual Basic Designer code file)
- VBProj\Sample14_frm.resX (Visual Basic XML resource file)

- VBProj\Sample14_frm.vb (Visual Basic source code file)

- VBProj\Sele.Designer.vb (Visual Basic Designer code file)
Account-handling dialog - shows account number, name and balance, and offers the withdrawal and deposit functions.

-54 -

- VBProj\Sele.resX (Visual Basic XML resource file)
Account-handling dialog - shows account number, name and balance, and offers the withdrawal and deposit functions.

- VBProj\Sele.vb (Visual Basic source code file)
Account-handling dialog - shows account number, name and balance, and offers the withdrawal and deposit functions.

- VBProj\Sinki.Designer.vb (Visual Basic Designer code file)
Dialog for opening a new account.

- VBProj\Sinki.resX (Visual Basic XML resource file)
Dialog for opening a new account.

- VBProj\Sinki.vb (Visual Basic source code file)
Dialog for opening a new account.

- VBProj\Sinkichk.Designer.vb (Visual Basic Designer code file)
Displays the assigned account number for a new account.

- VBProj\Sinkichk.resX (Visual Basic XML resource file)
Displays the assigned account number for a new account.

- VBProj\Sinkichk.vb (Visual Basic source code file)
Displays the assigned account number for a new account.

- VBProj\Syukin.Designer.vb (Visual Basic Designer code file)
Dialog for performing a withdrawal.

- VBProj\Syukin.resX (Visual Basic XML resource file)
Dialog for performing a withdrawal.

- VBProj\Syukin.vb (Visual Basic source code file)
Dialog for performing a withdrawal.

- K_KEN.COB (COBOL source program)
Retrieves accounts by account number.

- K_SIN.COB (COBOL source program)
Opens a new account.

- K_NYU.COB (COBOL source program)
Adds money deposited to an account.

- K_SYU.COB (COBOL source program)
Subtracts money withdrawn from an account.

- MAKEFILE_VB
MakefFile for Visual Basic program

- MAKEFILE_COBOL
MakeFile for COBOL Program

- (OBOL85.CBR

Processing Overview

The Visual Basic application starts, and subroutine JMPCINT2, which initializes the COBOL runtime system, is called when the main
form is loaded.

The Visual Basic forms manage the interface with the user - accepting input data, transaction requests and displaying output data
and messages. COBOL programs are called to manage the account data in the indexed file.

When the Visual Basic application is closed, it calls subroutine JMPCINT3, which terminates the COBOL runtime.

Figure A.55 shows the structure of the application:

-55-

“wizual Basic CaBaL

System
sampleld.exe
|
COB OL initialization processing JWP CINTZ Initialization procedurs subrodtine
|
Proceszing opening of 3 new account FAocount number retrieval processing
FAocount retrieval proce ssing FAocount retrieval processing
‘ithdrawal processing Processing for debiting money
Dep osit processing Processing for depositing money
|
|
COBOL termination processing Ml P CINTZ Termination subroutine

COBOL Statements used in Sample 14
The MOVE, IF, PERFORM, COMPUTE, OPEN, READ, WRITE, REWRITE, CLOSE and EXIT statements are used.

COBOL Runtime System Subroutines
The following routines are used to initialize and terminate the COBOL run-time system.
- JMPCINT2
- JMPCINT3

2.13.1 Using NetCOBOL Studio

Compiling and Linking the Visual Basic Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Samplel4>nmake -f MakeFile_VB

Compilation of the sample program is now complete. Verify that SAMPLE14.EXE was created.

In the example above, SAMPLE14.EXE is stored as shown below.

C:\COBOL\Samples\COBOL\SAMPLE14\VBProj\bin\x64\Release\SAMPLE14_EXE

Compiling and Linking the COBOL Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample14 project is confirmed by using the "Dependency" view. If there is no sample14 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

-56-

3. Select the Sample14 project on the "Dependency" view, and verify that it matches the image below.

. Depen i3 5L Struct | — O

N=k:

4 =% SAMPLE14 ~
a (Bl Source Files
. K_syu.cob
- K_ken.cob
- K_nyu.cob
, K_sin.coh
@2 Linking Files
4 (L Other Files
. [= .settings
. = VBProj
& build.xml
COBOLS5.CBR
K_KEM.dII
K_KEM.exp
K_KEM.lib
K_ken.OB]
K_KEM.pdb
K_ken.5VD
K_nyu. OBl
K_nyu.5VD
K_zin.OBJ
K_sin.5VD
K_syu.0OB)
K_syu.5VD
Makefile_COBOL
Makefile_VEB w

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when K_KEN.DLL is not created in "Other Files" (When an
automatic build is not executed).

The project is built, and then K_KEN.DLL is created.

Executing the Program
1. Confirm that K_KEN.DLL is in a current folder or in the folder set to environment variable PATH.

2. Select the SAMPLE14 project from the "Dependency" View, and then select "Run As" > "COBOL Application" from the NetCOBOL
Studio "Run" menu bar.

-57-

3. The "Executable File Selection" dialog is displayed.

S Executable File Selection H

Specify the executable file name for invoking the application

Executable file name: | | Browse...

0] 4 Cancel

4. Enter the following file as an "Executable file name", and click the "OK" button.

C:\COBOL\Samp les\COBOL\SAMPLE14\VBProj\bin\SAMPLE14.EXE

Execution result
The Sample14 dialog box

ozl Sample 14 “

Acount number ||

PIM number I

Mew

Account? OK End

1. Click on the "New Account?" button. The New Account Information dialog is displayed.

2. Open a new account. Type in a name (such as Smith), an amount (such as 10000) and a PIN number (such as 1234). Click
the "OK" button.
A dialog displays the assigned account number.

3. To terminate the application, click the "End" button.

The New Account Information dialog box

o New Account Information “

Mame ||

Depositamount I

PIM number I

OK | Cancel

1. Type in a name, an amount and a PIN number. Click the "OK" button. A new account is made and the account number
assignment dialog box is displayed. If an error occurs, an error dialog box is displayed.

2. To cancel new account creation, click the "Cancel" button.

-58 -

The Account Number Assignment dialog box

o Account Number Assignment “

Mame |Sm'rth

Account mnumber IDDDD3

OK

1. Confirm the account number and click the "OK" button.
The Sample14 dialog box is displayed:

The Withdrawal or Deposit dialog box

ol Withdrawal or Deposit “

Account number IDDDEP

MName IS mith
amount |10000
Withdrawal Deposit | Cancel

1. Click the "Withdrawal" button to withdraw.
2. (lick the "Deposit" button to deposit.
3. Click the "Cancel" button to interrupt the application.

The Deposit dialog box
ozl Deposit “

Account-number IDDDEP

Mame ISH"Iiﬂ"I

Current Balance I 10000

Deposit amt. I

OK | Cancel

1. Type in a deposit amount and click the "OK" button. The Withdrawal or Deposit dialog box is displayed. If an error occurs,
an "ERROR" dialog box is displayed.

2. (lick the "Cancel" button to interrupt the application.

-59.-

The Withdrawal dialog box

s Withdrawal

Account number ||:H:H:]'3

Mame |Srﬂﬂh

Current Balance | 10000

Withdrawal amt. "

OK | Cancel

1. Typein a withdrawal amount and click the "OK" button. The Withdrawal or Deposit dialog box is displayed. If an error occurs,
an "ERROR" dialog box is displayed.

2. Click the "Cancel" button to interrupt the application.

The ERROR window

o0 ERROR

The account number was not
entered.

oK

1. To confirm the error message, click the "0K" button.

2.13.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Samplel4>nmake -f MakeFile_COBOL

Compilation of the sample program is now complete. Verify that K_KEN.DLL and SAMPLE14.EXE were created in the same folder in
which the sample program is stored.

Executing the Program
Confirm that K_KEN.DLL is in a current folder or in the folder set to environment variable PATH.

Execute SAMPLE14.EXE from a command prompt or from Windows Explorer.

Execution result
Same as "2.13.1 Using NetCOBOL Studio".

2.14 Sample 15: Basic Object-Oriented Programming

This program illustrates basic object-oriented programming functions including encapsulation, object generation and method
invocation.

-60 -

Overview

In the sample program, three employee objects are generated. After an object has been generated using the "NEW" method, the
"Data-Set" method is invoked to set the data.

Although all of the employee objects have the same form, they have different data (employee numbers, names, departments and
sections, and address information). Address information containing postal codes and addresses also belongs to an object.

Upon input of an employee number on the screen, the appropriate "Data-Display" method in the employee object is invoked, and the
employee information in the object is displayed.

The employee object invokes the "Data-Get" method of the associated address object to acquire the address information.

The employee object consists of three pieces of data and an object reference to an address object. The structure of the object is
transparent to the main program user. However, the user must understand the "Data-Set" and "Data-Display" methods.

The encapsulation of data completely masks the information in the object.

Files Included in Sample 15

- MAIN.COB (COBOL source program)
MEMBER.COB (COBOL source program)
- ADDRESS.COB (COBOL source program)
MAKEFILE

(OBOL85.CBR

COBOL Functions used in Sample 15
- Object-oriented programming function
- Class definition (Encapsulation)
- Object generation
- Method invocation

- Project management

Object-Oriented Syntax used in Sample 15
- INVOKE and SET statements
- REPOSITORY paragraph

- (lass, object and method definitions

2.14.1 Using NetCOBOL Studio

Compiling and Linking the Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample15 project is confirmed by using the "Dependency" view. If there is no sample15 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

-61 -

3. Select the Sample15 project on the "Dependency" view, and verify that it matches the image below.

X Depen 8 BE Struct | - O
Sh-3
4 =% SAMPLE15 ~
A @ Source Files
[Address.cob
[5@ Main.cob
b Member.cob
@2 Linking Files
4 (L Other Files
[= settings
ff] ADDR.rep
|| Address.OE)
|| Address.5VD
s8] build xml
|Z| COBOLE3.CER
f#] EMPLOYEE.rep
B MAIN, exe
|| MAIMN.exp
|Z| MAIM.Iib
|= Main.CE]
= MAIM.pdb
|=| Main.5VD
|=| Makefile
|= Member.OB)
:| Member,5VD v

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OBJ
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when MAIN.EXE is not created in "Other Files" (When an
automatic build is not executed).

The project is built, and then MAIN.EXE is created.

Executing the Program
Select SAMPLE15 project from the "Dependency” view, and then select "Run As" > "COBOL Application" from the NetCOBOL Studio "Run"
menu bar.

Execution result

Sample 15 requires no special execution environment information to be set.

Please enter the employee number(l or 2 or 3)

The interface is very basic - simply enter an employee number 1, 2 or 3 to display details for that employee. After the details are
displayed, enter N to terminate or Y to continue.

Please enter the employee number(l or 2 or 3)

1

NO.-=-NAME-—=-=————————= BELONGING--——--——- POST-===ADDR= == === == m e
0001 James Smith Language group 411-0007 2929 Park Avenue, New York, N
Y

-62 -

Do you to end?(Y/N)

2.14.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Samplel5>nmake

Compilation of the sample program is now complete. Verify that MAIN.EXE was created in the same folderin which the sample program
is stored.

Executing the Program

Execute MAIN.EXE from a command prompt or from Windows Explorer.

Execution result
Same as "2.14.1 Using NetCOBOL Studio".

2.15 Sample 16: Collection Class (Class Library)

Sample 16 demonstrates the use of a collection class for creating a class library.
This sample can be used to create a class library in an actual program.

This sample covers only the basic operation. An easy-to-use class library can be created by modifying and changing this sample.

Overview
A collection class is the generic name of a class that handles a set of objects — it is used to collectively handle and store many objects.
This sample covers the following classes:
- Collect (Collection)
- Dict (Dictionary)
- List (List)

Class Layers

The following diagram shows the relationships between the class layers in Sample 16.

-63-

FIBASE

Inherited

Collect

CollectionSize-Get
FirstElement-Get
MextElement-Get
PreviousElement-Get

Inherited
List Dict
Element-Get Element-Get
Element-Insert Element-PutAt
Element-PutAt Firstkey-Get
Element-PutlLast Lastiey-Get
ElementMo-Get Remove-All
LastElement-Get Remove-At
Remove-All
Remove-At

g__z] Note

In addition to the above classes, Sample 16 also includes the classes BinaryTree-Class, DictionaryNode-Class and ListNode-Class. These
classes, which are used inside the List and Dict classes, are transparent to the collection class user, and are not explained here.

Collect Class
This is the highest collection class. All collection classes inherit this class.
Collect is an abstract class, and does not create any objects.

Since this class inherits the FJBASE class, all the methods defined in the FJBASE class can be used.

Definitions

CLASS-ID. Collect INHERITS FJBASE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
CLASS FJBASE.

OBJECT.
PROCEDURE DIVISION.
METHOD-ID. CollectionSize-Get.
METHOD-ID. FirstElement-Get.
METHOD-ID. NextElement-Get.
METHOD-ID. PreviousElement-Get.
END OBJECT.

END CLASS Collect.

- 64 -

CollectionSize-Get method
This method ascertains the number of elements in a set.
Parameter
None

Return value

PIC 9(8) BINARY

Returns the number of elements in a set.
FirstElement-Get method
This method returns the first element in a set.
Parameter
None

Return value

USAGE OBJECT REFERENCE

Returns the first element in a set. If no element exists, NULL is returned.
NextElement-Get method
This method returns the element following the one currently pointed to.
Parameter
None

Return value

USAGE OBJECT REFERENCE

Returns the element following the one currently pointed to. If no following element exists, NULL is returned.
PreviousElement-Get method
This method returns the element immediately preceding the one currently pointed to.
Parameter
None

Return value

USAGE OBJECT REFERENCE

Returns the element immediately preceding the one currently pointed to. If no preceding element exists, NULL is returned.

Dict Class
This class has the following features:
- Each element has a key.
- The key value is unique.
- Akey can be used for retrieval.
- The key is used for ordering.
Since this class inherits from the Collect class, all the methods defined in Collect can be used as well.

Definitions

CLASS-ID. Dict [INHERITS Collect.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

-65-

REPOSITORY .
CLASS Collect.

OBJECT.
PROCEDURE DIVISION.
METHOD-ID. Element-Get.
METHOD-ID. Element-PutAt.
METHOD-ID. FirstKey-Get.
METHOD-ID. LastKey-Get.
METHOD-ID. Remove-All.
METHOD-1ID. Remove-At.
END OBJECT.

END CLASS Dict.

Element-Get method
This method returns elements for a specified key.
Parameter

Key:

PIC X(10)

Specifies a key value for an element to be returned.

Return value

USAGE OBJECT REFERENCE

Returns an element for a specified key if it is found, and returns NULL if it is not found.
Element-PutAt method
This method adds an element for a specified key. Ifan element with the same key already exists, it is replaced by the new element.
Parameters

Key:

PIC X(10)

Specifies the key value of the element to be added or replaced.

Element:

USAGE OBJECT REFERENCE

Specifies the element to be added or replaced.
Return value
None
FirstKey-Get method
This method determines the key value for the first element.
Parameter
None

Return value

PIC X(10)

Returns the key value for the first element. If the number of elements is 0, or if the key for the first element is a blank, a blank
is returned.

LastKey-Get method

This method determines the key value for the last element.

-66 -

Parameter
None

Return value

PIC X(10)

Returns the key value for the last element. If the number of elements is 0, or if the key for the last element is a blank, a blank
is returned.

Remove-All method
This method deletes all elements contained in a set.
Parameter
None
Return value
None
Remove-At method
This method deletes an element for a specified key.
Parameter

Key:

PIC X(10)

Specifies the key value for the element to be deleted.
Return value

None

List Class
This class has the following features:
- Elements are arranged in a certain order.
- Allows duplicate elements.
Since this class inherits from the Collect class, all of the methods defined in the Collect class can be used as well.

Definitions

CLASS-ID. List INHERITS Collect.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
CLASS Collect.

OBJECT.
PROCEDURE DIVISION.
METHOD-ID. Element-Get.
METHOD-ID. Element-Insert.
METHOD-ID. Element-PutAt.
METHOD-ID. Element-PutLast.
METHOD-ID. ElementNo-Get.
METHOD-ID. LastElement-Get.
METHOD-ID. Remove-All.
METHOD-1D. Remove-At.
END OBJECT.

END CLASS List.

Element-Get method

This method returns the element at a specified location (index).

-67 -

Parameter

Index:

PIC 9(8) BINARY

Specifies the location of the element to be returned by an integer starting at 1.

Return value

USAGE OBJECT REFERENCE

Returns the specified element. If no element exists at the specified location, NULL is returned.
Element-Insert method
This method adds an element at the specified location (index).
Parameters

Index:

PIC 9(8) BINARY

Specifies the location at which the element is to be added by an integer beginning with 1.
If a value greater than the number of elements plus 1 is specified, no element is added.

Element:

USAGE OBJECT REFERENCE

Specifies the element to be added.

Return value

PIC 9(8) BINARY

Returns the location at which the element was added by an integer beginning with 1. If no element is added, 0 is returned.
Element-PutAt method
This method replaces the element at the specified location (index).
Parameters

Index:

PIC 9(8) BINARY

Specifies the location of the element to be replaced by an integer beginning with 1. If a value greater than the number of
elements is specified, no element is replaced.

Element:

USAGE OBJECT REFERENCE

Specifies the element to be replaced.

Return value
Returns the location of the replaced element using an integer beginning with 1.
If no element has been replaced, 0 is returned.

Element-PutLast method

This method adds an element after the last element.

Parameter
Element:

Specifies the element to be added.

-68 -

Return value
None
ElementNo-Get method
This method checks the location (index) of a specified element.
Parameter
Element:
Specifies the element whose location is checked.

Return value

PIC 9(8) BINARY

Returns the location of the element using an integer beginning with 1.
If the specified element is not found, 0 is returned.
If duplicate elements exist, the first found location is returned.
LastElement-Get method
This method returns the last element.
Parameter
None

Return value

USAGE OBJECT REFERENCE

Returns the last element. If the number of elements is 0, NULL is returned.
Remove-All method
This method deletes all the elements contained in a set.
Parameter
None
Return value
None
Remove-At method
This method deletes the element at the specified location (index).
Parameter

Index:

PIC 9(8) BINARY

Specifies the location of the element to be deleted using an integer starting at 1. If a value greater than the number of
elements is specified, no element is deleted.

Return value

Returns the location of the deleted element using an integer beginning with 1. If no element has been deleted, 0 is returned.

Programs and Files in Sample 16
COLLECT.COB (COBOL source program)
- DICT.COB (COBOL source program)
LIST.COB (COBOL source program)
BIN_TREE.COB (COBOL source program)

-69-

D_NODE.COB (COBOL source program)
L_NODE.COB (COBOL source program)
- MAKEFILE

(OBOL85.CBR

COBOL Functions Used in Sample 16
- Object-oriented programming functions
- Class definition (Encapsulation)
- Inheritance
- Object creation

- Method calling

Object-Oriented Syntax used in Sample 16
- INVOKE and SET statements
- Object properties
- Method calling
- REPOSITORY paragraphs

- (lass, object and method definitions

2.15.1 Using NetCOBOL Studio

Compiling and Linking the Program
1. NetCOBOL Studio is started by specifying the workspace made for the sample program. See "Preparing the workspace".

2. The presence of the sample16 project is confirmed by using the "Dependency" view. If there is no sample16 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

-70 -

3. Select the Sample16 project on the "Dependency" view, and verify that it matches the image below.

¥ Depen i BE Struct | — O
==
4 =% SAMPLE16 -
4 @ Source Files
[+ Collect.cob
[Mode.cob
Dict.cob
L_Mode.cob
List.cob
Bin_Tree.cob
@2 Linking Files
A [E} Other Files
[[= .settings
|=| Bin_Tree.OB)
|=| Bin_Tree5VD
f7] BINARVTREE-CLAS
& build.xml
COBOLBS.CBR
COLLECT.dI
COLLECT.exp
COLLECT.lib
Collect.QOBJ
| COLLECT.pdb
fF] COLLECT.rep
Collect.5VD
D_Mode OB
D_ModeSVD
Dict. OBJ
DICT rep
Dict.5VD
DICTIOMNARYMODE
=l L_ModeQEB)
= L_MNodeSVD
List.OBJ
LIST.rep
|Z] List.SVD
fF] LISTNODE-CLASS.r
|=| Makefile o
< m -

v

B B

B

The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OB)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

4. When compiling terminates, the following files are created. Select "Project"> "Build Project" from the NetCOBOL Studio menu
bar when the following files are not created in "Other Files" (When an automatic build is not executed).

COLLECT.DLL
COLLECT.LIB

COLLECT.REP

DICT.REP

-71 -

- LIST.REP

L:n Note

Some other files are also created, but they are not required when the class library is used.

Using the Class Library

When the sample class library to be used is installed in a program, the following files are required:

For Compiling or Linking

COLLECT.LIB (Import library)
COLLECT.REP (Repository library)
DICT.REP (Repository file)
LIST.REP (Repository file)

Install the above files to be used into a project that uses the class library.

For Executing
- COLLECT.DLL (DLL file)

2.15.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Samplel6>nmake

When compiling terminates, the following files are created.

COLLECT.DLL

COLLECT.LIB
COLLECT.REP

- DICT.REP
LIST.REP

Qn Note

Some other files are also created, but they are not required when the class library is used.

Using the Class Library

When the sample class library to be used is installed in a program, the following files are required:

For Compiling or Linking
- COLLECT.LIB (Import library)
- COLLECT.REP (Repository library)
- DICT.REP (Repository file)
- LIST.REP (Repository file)

-72 -

Install the above files to be used into a project that uses the class library.

For Executing
- COLLECT.DLL (DLL file)

2.16 Sample 31: Windows System Function Call

Sample 31 demonstrates how to invoke a Windows system function - for this example, a call to create a message box.

Overview

Sample 31 calls the Windows system function "MessageBoxA" to display a message in a message box with YES, NO and Cancel buttons.
(Note that an "A" needs to be appended to the function call when the function call contains a character string parameter and you are
working in ASCII, as opposed to Unicode data, where the suffix is "W".)

The message box returns a value indicating which button was pressed. This value is returned in the data item specified in the
RETURNING phrase.

In a batch file, this return value can be accessed by via ERRORLEVEL, as demonstrated in SAMPLE31.BAT.

@echo off
set msg=Return the value depending on return code from the MessageBox.
:START
echo %msg%
set msg=Selected the "Cancel", Restart again.
start /w MsgBox.exe
@rem If return code is over 9999 then call the COBOL program again.
it errorlevel 9999 goto START
@rem If return code is over 9 then selected the '"No".
if errorlevel 9 goto NG
echo Selected the 'Yes".
goto END
NG
echo Selected the "No".
ZEND
set msg=

Files Included in Sample 31
MSGBOX.COB (COBOL source program)
MAKEFILE

SAMPLE31.BAT (Batch file for start)
(OBOL85.CBR

COBOL Statements Used

Method of calling C program from COBOL program

Parameter transfer BY VALUE

RETURNING phrase of CALL statement
- Special register PROGRAM-STATUS (RETURN-CODE)

Qn Note

- Most Windows system functions (and C routines in general) require that strings be terminated with a null byte (X"00" or LOW-
VALUE). This sample shows how you can place these bytes using reference modification.

-73-

- The Windows system function names are case sensitive, so be sure to get the case correct, as in "MessageBoxA". Specify compiler
option "NOALPHAL" or "ALPHAL(WORD)" to ensure that the COBOL system uses mixed case for the function name.

2.16.1 Using NetCOBOL Studio

Compiling and Linking the Program
1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample31 project is confirmed by using the "Dependency" view. If there is no sample31 project, import the
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL
Studio workspace".

3. Select the Sample31 project on the "Dependency" view, and verify that it matches the image below.

. Depen i3 5L Struct | — O

B%

=% SAMPLE31 A
(Bl Source Files
EJ:_E] Msghbox.cob
@2 Linking Files
(EL Other Files
[-= .settings
| build.xml
COBOL85.CER
Makefile
B | MsgBox.exe
Msgbox. OB
MsgBox.pdb
Msgbox.5VD
@ Sample3l.bat v

4. The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . OB)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

The properties dialog box is displayed.
5. Link USER32.LIB to use "MessageBoxA" of the Window s system function in this exercise.

To confirm linked libraries, select the SAMPLE31 project from the "Dependency" view, and then select the "Property..." from the
context menu. The "Properties for SAMPLE31" dialog box is displayed.

- 74 -

6. When the "Build" is selected from a left pane, the "Build" page is displayed. And, select "Link Options" tab.

= Properties for SAMPLE31
type filter text Build
rce Enable project specific settings
> Build Tools Compiler Options| Library Mames Linker Options
Builders

Linker options:

Project References
Refactoring History \program files\microsoft sdks\windows'\w 7. 1\lib\x6d\user32.lib
Remote Development
Run/Debug Settings
Target

Task Tags

Uze C functions

C Run-time Library Name:

DLL Entry Object
® For COBOL program only For linking with non-COBOL program

Output debugging infermation

Other options:

®

Add...
Change...
Remove
Remove All
Up

Down

Browse...

Cancel

The storage place of USER32.LIB s set as follows. Please change the setting according to the installation environment of Windows

SDK.

C:\Program Files\Microsoft SDKs\Windows\v7.1\Lib\x64\USER32.LIB

7. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when MSGBOX.EXE is not created in "Other Files" (When

an automatic build is not executed).

The project is built, and then MSGBOX.EXE is created

Executing the Program
1. Open a command prompt, change directories to the SAMPLE31 folder, and execute SAMPLE31.BAT.

c:\NetCOBOL Studio\workspace\SAMPLE31>sample31.bat
Return the value depending on return code from the MessageBox

-75-

2. The following message boxes are displayed. Click one of the buttons.

From COBOL: TITLE

It is a message box.

Yes : Mo Cancel

3. The COBOL program detects which button was pressed and indicates such by displaying a message.

c:\NetCOBOL Studio\workspace\SAMPLE31>sample3l.bat
Return the value depending on return code from the MessageBox
Selected the '"Yes".

c:\NetCOBOL Studio\workspace\SAMPLE31>

When the Cancel button is clicked, the program is executed again.

2.16.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample31>nmake

Compilation of the sample program is now complete. Verify that MSGBOX.EXE was created in the same folder in which the sample
program is stored.

Select "Build Project" on "Project" menu bar of NetCOBOL Studio when MSGBOX.EXE is not created in "Other Files" (When an automatic
build is not executed).

The project is built, and then MSGBOX.EXE is created.

Executing the Program
Same as "2.16.1 Using NetCOBOL Studio".

2.17 Sample 32: Starting Another Program

Sample 32 demonstrates a program that starts another program, waits for the started program to terminate, and receives a completion
code from the started program via inter-program communications.

Overview

When SAMPLE32 is executed, you are prompted for a program to run. If you enter nothing, the program MSGBOX.EXE from the
SAMPLE31 folder is executed. If you specify a program name, you must enter the fully qualified path to the location of the application
(or batch file) to execute.

The Windows system function "CreateProcessA" is called specifying this for the argument, and specified program or batch file is started.
If the specified program is successfully started, SAMPLE32 then waits until the specified program terminates and then receives the
completion code from the started program.
Files Included in Sample 32
- SAMPLE32.COB(COBOL source program)
- MAKEFILE

-76 -

- (OBOL85.CBR

COBOL Statements Used

- STDCALL call convention

Parameter transfer in BY VALUE

STORED-CHAR-LENGTH function

- Project Manager

Before Executing the Application

Method of calling a C program from COBOL program

RETURNING phrase of CALL statement

- SAMPLE32 uses MSGBOX.EXE from SAMPLE 31; therefore, please build the MSGBOX application prior to executing SAMPLE32.

- In the following screens, SAMPLEQG is also executed; therefore please build SAMPLEOQ6 prior to executing SAMPLE32.

2.17.1 Using NetCOBOL Studio

Compiling and Linking the Program

1. NetCOBOL Studio is started by specifying the workspace created for the sample program. See "Preparing the workspace".

2. The presence of the sample32 project is confirmed by using the "Dependency” view. If there is no sample32 project, import
project for the sample program into the NetCOBOL Studio workspace. See "Importing sample program project into NetCOBOL

Studio workspace".

3. Select the Sample32 project on the "Dependency" view, and verify that it matches the image below.

Depen &3 - BE Struct

8%

4 (% SAMPLE32

a (&l Source Files
. 5t Sample32.cob

@2 Linking Files

a (L Other Files

- = settings

s build.xml
COBOL25.CBR

Malkefile
B SAMPLE3Z. exe
Sample3Z.0B)
SAMPLE3Z. pdb
Sample3d.5VD

= 0O

W

4. The build is executed immediately after importing the project when an automatic build is set. In this case, the file (. EXE . 0B)
etc.) is generated after the build is displayed in "Other Files". It is set to automatic build by default.

5. Select "Project" > "Build Project" from the NetCOBOL Studio menu bar when SAMPLE32.EXE is not created in "Other Files" (When
an automatic build is not executed).

The project is built, and then SAMPLE32.EXE is created.

-77 -

Executing the Program

1.

Execute SAMPLE32.EXE from a command prompt or from Windows Explorer. The following is displayed, waiting for input.

Input the path name that execution program.
(1f Input no character, then execute the MsgBox.EXE of SAMPLE31)
=>

Input the path and filename of an executable program or batch file. The environment variable PATH is not referenced here;
therefore it is necessary to specify a relative path from the SAMPLE32 folder or a fully qualified path name.

If nothing is entered, and then MSGBOX.EXE of SAMPLE31 is executed. Press the ENTER key.

The completion code of MSGBOX.EXE of SAMPLE31 is displayed, indicating the button that was clicked. In the following screen,
the "No" button was clicked.

Input the path name that execution program.

(1f Input no character, then execute the MsgBox.EXE of SAMPLE31)
=>

Execute the program ..\SAMPLE31\MSGBOX.EXE

Succeeded in executing program ..\SAMPLE31\MSGBOX.EXE

Return code from ..\SAMPLE31\MSGBOX.EXE is "00000009".

IFSAMPLE32 is re-executed and an executable program or batch file name is specified, you are then prompted to enter command
line arguments (if any) for the EXE or BAT file, as shown below.

Input the path name that execution program.

(1T input no character, then execute the MsgBox.EXE of SAMPLE31)
=>_ _\SAMPLEO6\SAMPLEG . EXE

Input the command line arguments.

=>

. SAMPLEO6.EXE requires two command line arguments to be specified following the program name.

Input the path name that execution program.

(1f Input no character, then execute the MsgBox.EXE of SAMPLE31)
=>_ _\SAMPLEO6\SAMPLEG6 . EXE

Input the command line arguments.

=>20000101 20140101

A message indicating that SAMPLEQG6 has been started is displayed. The system console is opened and the execution result of
SAMPLEOQ6 is output. The completion code of SAMPLEO6.EXE is displayed and execution ends.

Input the path name that execution program.

(1T input no character, then execute the MsgBox.EXE of SAMPLE31)
=>_ _\SAMPLEO6\SAMPLEG . EXE

Input the command line arguments.

=>20000101 20140101

Execute the program ..\SAMPLEO6\SAMPLEG.EXE

Succeeded in executing program ..\SAMPLEO6\SAMPLEG.EXE

Return code from ..\SAMPLEO6\SAMPLE6.EXE is “00000000".

2.17.2 Using MAKE file

Compiling and Linking the Program

Open a command prompt. Compile and link the sample program using the following command.

C:\COBOL\Samples\COBOL\Sample32>nmake

-78 -

Compilation of the sample program is now complete. Verify that SAMPLE32.EXE was created in the same folder in which the sample
program is stored.

Executing the Program
Same as "2.17.1 Using NetCOBOL Studio".

-79-

IAppendix A Handling of workspace and project

This topic covers the handling of the workspace and the project.

A.1 Default workspace

The default workspace is in the following folder. It is created when NetCOBOL Studio is first started.

My documents folder (*1) \NetCOBOL Studio V11.0.0(x64)\workspace3.4

*1:The "My documents" folder is used to save each user's data. The location of the "My documents" folder varies based on the Windows
0s.

A.2 Setting and switch method of workspace

"Workspace" is a folder that stores various resources of the project made on Eclipse.

The Workspace can be used differently depending on the needs, such as workspace for development, workspace for the investigation,
and workspace for testing.

Workspace for Workspace for Workspace for
Development Testing Investigation
Project Al Project T1 Froject 11
Project A2 Project T2 Project 12
Project A3 Project T3 Project I3

A.2.1 Setting workspace

The Workspace is set using the "setting operating environment" dialog box according to the following procedures.

1. Select Apps > Fujitsu NetCOBOL V11(x64) > NetCOBOL Studio(x64) from the Start menu.
NetCOBOL Studio Start screen displays.

-80-

2. (lick the "Setup..." button. The "Setup Configuration" dialog box is displayed.

Wwiorkzpace folder name:

C:hUzershCenter\DocumentztMetCOBOL Studio ..]

Cancel

Help

Add..

Delete

E secution aphian:

¥ Always show Launch dialog

3. (lick the "Add" button. The "Select Folder" dialog box is displayed.

4. Select the folder used as the workspace. A "New folder" is made in the selected folder when the "Make New Folder" button is
clicked. It can be used by changing the name.

Select Workspace Folder

4 B Local Disk (C)
b L. FujitsuF4CR
bl inetpub
. MEFTLOGROOT
4 || NetCOBOL Studio
| PerfLogs
& | Program Files
| Program Files (x26)

Falder: | workspace

| Make New Folder |

Select a folder, and click the "OK" button. In this example, "C:\NetCOBOL Studio\workspace" is set as the new workspace.

-81-

5. Click the "Yes" button since the following message box is displayed.

NetCOBOL

The list of workspaces is displayed in the "Workspace folder name".

6. Select the Workspace, and click the "OK" button.

Setup Configuration

Workspace folder name:

C:AMetCOBOL Studiohwarks

C:hUsgershCentersDocuments\MNetCOBOL Studio ...

Execution option;

v Alwaps show Launch dialog

Cancel

Help

it §

Delete

The "Run" dialog box appears

7. (lick the "Runt" button on the "Run" dialog box.

NetCOBOL Studio is started. The Workspace becomes "C:\NetCOBOL Studio\workspace".

_E] Point

When NetCOBOL Studio starts next time, this setting becomes effective.

A.2.2 Switch of workspace

The Workspace can be switched to another workspace when NetCOBOL Studio is active.

1. Select "File" > "Switch Workspace" > "Other" from the NetCOBOL Studio menu bar.

The "Workspace Launcher" dialog box is displayed. The present workspace is displayed in "workspace".

2. Enter the switched new workspace name for "Workspace" using the full path.

The folder can be selected by using the "Browse" button.

-82 -

Moreover, when the "Workspace" drop-down button is selected, the history of the workspaces used so far is displayed. The
Workspace can be selected from the list displayed.

=

=% Workspace Launcher “

Select a workspace

MetCOBOL Studic(x6d) stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: | CA\MetCOBOL Studic'workspace w| | Browse...
b Copy Settings
)] oK Cancel

3. (lick the "OK" button.

NetCOBOL Studio is re-started. The Workspace becomes the specified workspace.

A.3 Importing Project

In the following cases, the projects are imported and used.
- When you want to use a project made with NetCOBOL Studio based on Eclipse 3.4, with NetCOBOL Studio based on Eclipse 3.2.
Use the following method to import an existing project in batch mode.
1. Set the workspace of the copy destination, and start NetCOBOL Studio.

2. Select "File" > "Import" from the NetCOBOL Studio menu bar. The "Import" wizard is started.

-83-

3. Select "General" > "Existing projects into Workspace", and click the "Next" button.

Select

Create new projects from an archive file or directory.

Select an import source:

|t1_.r|:re filter text

4 [= General
IZ, Archive File
|ﬁ Existing Projects into Wurlcspacel
[, File System
EE|, Preferences
[» = Run/Debug
[= Team
B [= XML

Finish

4. Select "Select root directory", and click the "Browse" button.
The "Browse For Folder" dialog box is displayed.

5. Select the workspace folder (In this example, C:\Samples) where the project of the copy source is included, and click the "OK"
button.

-84 -

6. Confirm that the project of the copy source is displayed in the "Project" pane, and click the "Select All" button.

Next, check "Copy projects into workspace”, and click the "Finish" button.

Import Projects

Select a directory to search for existing Eclipse projects.

(®) Select root directory: | C\Samples | | Browse...

() Select archive file: Browse...

Projects:

SAMPLED1 (C:\Samples\Sample01) | Select All
SAMPLED2 (C:\Samples\Sample02)
SAMPLEDS (C:\Samples\Sample(d) | Deselect All

| Refresh

[#]iCopy projects into workspace

-85-

The project is copied onto the NetCOBOL Studio workspace .

Eile Edit Mavigate Search Project Bun Window Help

H-E& R EBEHY 0@ A £ | ¢ cosoL |
IR R TR TR

E Struc | . Navig| = O = 0)[2= Outline i =0
o @ | <E‘1> An outline is not available.

> i SAMPLEO

b 1= SAMPLED2

b =E SAMPLEOY

[£ Problems 52 i) Tasl:sw = Cansole}

0items

-

Description Resource

= Properties &3

Property

i

-86 -

Index

[Special characters]

@MGPRM.......ovieeeeeeeeeeeteeeee ettt ene s 14
[A]

ACCEPT ..ottt e 6,10,24,28
ATQUIMIENE vttt ettt sa e nnes 24
(B]

BY VALUE. ..ottt sa e nns 73
[

CALL. ..ottt ettt be et 14
CAIlING. e 51,54,73
CHARACTER TYPE.......ceieeieeeeteieteetete ettt 34
€lass lIDIAMY....ouciieecee e 63
CLOSE. ..ttt ettt ettt ve s 8,10
COHECEION ClasS.....ccuievereeietiericteeeeeee e 63
command line arguMENE..........cceerireririeueeeeeeeneeeeee e 24
COMPUTE.....c ettt ettt et e 25
CONNECT ...ttt ettt et 43
[D]
dAtabase ACCESS......cvivveeeevierireeeeteeteeret e 42
DECLARE CURSOR.......ceveviitietieeeeetectee ettt 43
DISCONNECT......v ettt 43
DISPLAY. ...ttt ettt ere e 6,28
DIVIDE.... .ottt ettt ve e 25
[E]

ENCAPSUILION. ...ttt 60,70
environment variables..........ccooooieoeeiceceeeeeeeeeee 28
[F]

FOB ettt ettt ettt et ettt s bt ran 34
FETCH. oottt ettt ae e 43
Forms Control BUFfers..........cooveeveeeieeeceeeeeeeeeeeeeeeee 34
FOVLDIR ..ottt ettt e 41
free Format code.........ovomiomeeieeeeeeeeeeeeee e 14
(1]
| CONETOI TECOTA....oeveviricriieeeetecteeeeee e 34
INAEXEA fIlS.....eeceeeeieeeeeeeeeeeec e 7
INNEMEANCE. ...t 70
INVOKE........oiieeeeicte ettt ettt e 61,70
1)
JMPUINTZ.cceeceteetete ettt ettt anens 51
JMPCINT3 ettt ettt ettt nens 51
L]
line sequential files........ccoevvrieeeirieinreereeeee e 7
M]

MESSAE DOX.eeiuieiiieieieiee et 73
MELROAS. ... 60

-87 -

(0]
ODJECE et 70
object-oriented programming.........c.cococeveveeuerevecrcncrennns 60,63
ODJECE CTEALION. ..ttt 70
0bjects generation...........cocvvreeeeueueneninrenieieeeeeeres e 60
OBttt nnes 42
00 COBOL.....veerereeiereieirinereececierenetseseseeseeereneneneaseene 60,63
OPEN. ottt es 8
[P]
PATAMEERT ...ttt ettt et sttt s e b s eneens 24
PIINEING.cecoiiiiieieireeereeeeteeeee e 31,34
PRINTING MODE......couiueueueieiiniieieieieieeenesee e 34
PRINTING POSITION......c.coevevririririeieierererninerereeseierereneneneenene 34
[R]
READ.....cccuiueieteieiririccetieietetesees et se s naeaes 8
REPOSITORY......ovtuiriiririeiereieenertsieieiere ettt 61,70
RETURNING. ...ctutiieeteieteieecstristeieteiee et 73
ROLLBACK. ...ttt renesseseseenene 43
N
SCIEEN SECLION.....coviviieieieiietccrec e 10
SET ettt e 61
SOL. ettt 42,43
STRING. ettt senees 29
SUDPIOGIAM...eveiiiinieieierieteeeteeie ettt saenes 13
[v]
ViSURI BASIC..uvvevienieirieieeeieicc ettt 54
(W]
Windows function calls.........ccoeiveioreiineeeeeeceees 73
WRITE ...ttt 8

	Title Page
	Preface
	Contents
	Chapter 1 New Features
	Chapter 2 Sample Programs
	2.1 Advance preparation for using NetCOBOL Studio to execute a sample program
	2.1.1 The basic concept of NetCOBOL Studio
	2.1.2 Advance preparation for using sample
	2.1.3 Notes on using the sample programs

	2.2 Sample 1: Data Processing Using Standard Input-Output
	2.2.1 Using NetCOBOL Studio
	2.2.2 Using the COBOL command and the LINK command
	2.2.3 Using the MAKE command

	2.3 Sample 2: Using Line Sequential and Indexed Files
	2.3.1 Using NetCOBOL Studio
	2.3.2 Using MAKE file

	2.4 Sample 4: Screen Input-Output Using the Screen Section
	2.4.1 Using NetCOBOL Studio
	2.4.2 Using MAKE file

	2.5 Sample 5: Calling COBOL Subprograms
	2.5.1 Using NetCOBOL Studio
	2.5.2 Using MAKE file

	2.6 Sample 6: Receiving a Command Line Argument
	2.6.1 Using NetCOBOL Studio
	2.6.2 Using MAKE file

	2.7 Sample 7: Environment Variable Handling
	2.7.1 Using NetCOBOL Studio
	2.7.2 Using MAKE file

	2.8 Sample 8: Using a Print File
	2.8.1 Using NetCOBOL Studio
	2.8.2 Using MAKE file

	2.9 Sample 9: Using a Print File (Advanced usage)
	2.9.1 Using NetCOBOL Studio
	2.9.2 Using MAKE file

	2.10 Sample 11: Remote Database Access
	2.10.1 Using NetCOBOL Studio
	2.10.2 Using MAKE file

	2.11 Sample 12: Remote Database Access (Multiple row processing)
	2.11.1 Using NetCOBOL Studio
	2.11.2 Using MAKE file

	2.12 Sample 13: Calling COBOL from Visual Basic
	2.12.1 Using NetCOBOL Studio
	2.12.2 Using MAKE file

	2.13 Sample 14: Visual Basic calling COBOL -Simple ATM Example
	2.13.1 Using NetCOBOL Studio
	2.13.2 Using MAKE file

	2.14 Sample 15: Basic Object-Oriented Programming
	2.14.1 Using NetCOBOL Studio
	2.14.2 Using MAKE file

	2.15 Sample 16: Collection Class (Class Library)
	2.15.1 Using NetCOBOL Studio
	2.15.2 Using MAKE file

	2.16 Sample 31: Windows System Function Call
	2.16.1 Using NetCOBOL Studio
	2.16.2 Using MAKE file

	2.17 Sample 32: Starting Another Program
	2.17.1 Using NetCOBOL Studio
	2.17.2 Using MAKE file

	Appendix A Handling of workspace and project
	A.1 Default workspace
	A.2 Setting and switch method of workspace
	A.2.1 Setting workspace
	A.2.2 Switch of workspace

	A.3 Importing Project

	Index

